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Abstract

We consider the problem of deterministically enumerating all minimum k-cut-sets in
a given hypergraph for fixed constant k. The input here is a hypergraph G = (V, E)
with non-negative hyperedge costs. A subset ¥ C E of hyperedges is a k-cut-set
if the number of connected components in G — F is at least k and it is a mini-
mum k-cut-set if it has the least cost among all k-cut-sets. For fixed k, we call the
problem of finding a minimum k-cut-set as HYPERGRAPH- k- CUT and the problem
of enumerating all minimum k-cut-sets as ENUM- HYPERGRAPH- k- CUT. The spe-
cial cases of HYPERGRAPH- k- CUT and ENUM- HYPERGRAPH- k- CUT restricted to
graph inputs are well-known to be solvable in (randomized as well as determinis-
tic) polynomial time (Goldschmidt and Hochbaum in Math Oper Res 19(1):24-37,
1994; Karger and Stein in ] ACM 43(4):601-640, 1996; Kamidoi et al. in STAM J
Comput 36(5):1329-1341, 2007; Thorup, in: Proceedings of the 40th annual ACM
symposium on theory of computing, STOC, 2008). In contrast, it is only recently
that polynomial-time algorithms for HYPERGRAPH- k- CUT were developed (Chan-
drasekaran et al. in Math Program 186:85-113, 2019; Fox et al., in: Proceedings
of the 30th annual ACM-SIAM symposium on discrete algorithms, SODA, 2019;
Chandrasekaran and Chekuri in Math Oper Res 47:3380-3399, 2022). The random-
ized polynomial-time algorithm for HYPERGRAPH- k- CUT that was designed in 2018
(Chandrasekaran et al. 2019) showed that the number of minimum k-cut-sets in a
hypergraph is O (n**~2), where n is the number of vertices in the input hypergraph,
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and that they can all be enumerated in randomized polynomial time, thus resolv-
ing ENUM- HYPERGRAPH- k- CUT in randomized polynomial time. A deterministic
polynomial-time algorithm for HYPERGRAPH- k- CUT was subsequently designed in
2020 (Chandrasekaran and Chekuri 2022), but it is not guaranteed to enumerate all
minimum k-cut-sets. In this work, we give the first deterministic polynomial-time
algorithm to solve ENUM- HYPERGRAPH- k- CUT (this is non-trivial even for k = 2).
Our algorithm is based on new structural results that allow for efficient recovery of
all minimum k-cut-sets by solving minimum (S, 7')-terminal cuts. Our techniques
give new structural insights even for minimum cut-sets (i.e., minimum 2-cut-sets) in
hypergraphs—we give a new proof showing that the number of minimum cut-sets in
a n-vertex hypergraph is at most (g) and they can all be enumerated in deterministic
polynomial time for a given hypergraph.

Mathematics Subject Classification 90C27 - 05C65 - 05C85

1 Introduction

A hypergraph G = (V, E) consists of a finite set V of vertices and a finite set E of
hyperedges where each hyperedge e € E is a subset of V. We consider the problem
of enumerating all optimum solutions to the HYPERGRAPH- k- CUT problem when
k is a fixed constant. In HYPERGRAPH- k- CUT, the input consists of a hypergraph
G = (V, E) with non-negative hyperedge-costs ¢ : E — R, and a positive integer k.
The objective is to find a minimum-cost subset of hyperedges whose removal results in
at least k connected components. We will call a subset of hyperedges whose removal
results in at least k connected components as a k-cut-set and a minimum-cost k-cut-
set as a minimum k-cut-set; for k = 2, we will refer to a 2-cut-set as simply a cut-set
and a minimum-cost cut-set as a minimum cut-set. The central problem of interest to
this work is that of enumerating all minimum k-cut-sets in a given hypergraph with
non-negative hyperedge-costs—we will denote this problem as ENUM- HYPERGRAPH-
k- Cut. Throughout, we will consider k to be a fixed constant integer (e.g., k =
2,3,4,...). We will denote HYPERGRAPH- k- CUT and ENUM- HYPERGRAPH- k- CUT
for graph inputs as GRAPH- k- CUT and ENUM- GRAPH- k- CUT respectively. We note
that the case of k = 2 corresponds to global minimum cut which will be discussed
shortly.

Partitioning formulation There is a fundamental structural difference between
HYPERGRAPH- k- CUT and GRAPH- k- CUT (even for k = 2), which is especially evi-
dent when attempting to enumerate all optimum solutions. In order to illustrate this
difference, we discuss an equivalent partitioning formulation of HYPERGRAPH- k-
CUT. In this equivalent formulation, the objective is to find a partition of the vertex
set V into k non-empty sets V1, Vo, ..., Vi so as to minimize the cost of hyperedges
that cross the partition. A hyperedge e € E is said to cross a partition Vi, Va, ..., Vi
if it has vertices in at least two parts, that is, there exist distinct i, j € [k] such that
eNV; #@and e V; # (. We will denote a partition of V into kK non-empty parts
as a k-partition and a 2-partition as a cut. The cost of a k-partition is the sum of the
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cost of hyperedges crossing the partition. A k-partition with minimum cost is said to
be a minimum k-partition. We will denote the cost of a 2-partition as its cut value and
a minimum 2-partition as a minimum cut.

By definition, the number of minimum k-cut-sets is at most the number of minimum
k-partitions. Moreover, for a connected graph, the number of minimum k-partitions
is O (n*) for constant k, where n is the number of vertices (i.e., the number of min-
imum k-partitions is polynomial since k is a constant) [19, 23, 29]. However, for a
connected! hypergraph, the number of minimum k-partitions could be exponential
while the number of minimum k-cut-sets is only polynomial. For example, consider
the spanning-hyperedge-example: this is the n-vertex hypergraph G = (V, E) that
consists of only one hyperedge ¢ where e = V with the cost of the hyperedge e
being one. This hypergraph is connected and has only one minimum k-cut-set but
©® (k") minimum k-partitions (i.e., an exponential number of minimum k-partitions
even for k = 2). Thus, if we are hoping for polynomial-time algorithms to enumerate
all optimum solutions to HYPERGRAPH- k- CUT, then we cannot aim to enumerate all
minimum k-partitions (in contrast to connected graphs). This is the reason for defining
ENUM- HYPERGRAPH- k- CUT as the problem of enumerating all minimum k-cut-sets
as opposed to enumerating all minimum k-partitions. For connected graphs, the two
definitions are indeed equivalent.

GRAPH- k- CUT for k = 2 is the minimum cut problem in graphs which is well-
known to be solvable in polynomial time. Although the minimum cut problem in graphs
has been extensively studied, enumerating all minimum cut-sets in a graph in deter-
ministic polynomial time is already non-trivial. Dinitz, Karzanov, and Lomonosov
[12] constructed a compact representation for all minimum cuts in a connected graph
(known as the cactus representation) which showed that the number of minimum
cuts in a connected graph is at most (g) and that they can all be enumerated in
deterministic polynomial time. For constant k > 3, the number of minimum k-
partitions in a connected graph is O (n%)—this bound is tight and is a consequence of a
recent improved analysis of a random contraction algorithm to solve GRAPH- k- CUT
[19, 23, 29]; the same random contraction algorithm can also be used to enumer-
ate all minimum k-partitions in connected graphs in randomized polynomial time.
Deterministic polynomial-time algorithms to enumerate all minimum k-partitions in
connected graphs are also known. We discuss other techniques—both randomized and
deterministic—for enumerating minimum cuts and minimum k-partitions in graphs in
Sect. 1.2.

HYPERGRAPH- k- CUT s anatural generalization of GRAPH- k- CUT. HYPERGRAPH-
k- CUT for k = 2 is the minimum cut problem in hypergraphs which is well-known to
be solvable in polynomial time [30]. Once again, enumerating all minimum cut-sets
in a hypergraph in deterministic polynomial-time is already non-trivial. We encour-
age the reader to pause and think briefly about possible approaches to enumerate
all minimum cut-sets in a hypergraph before reading further. There exists a compact
representation of all minimum cut-sets in a hypergraph [7]—namely the hypercactus
representation—which can be used to show that the number of minimum cut-sets in
a hypergraph is at most (;) and that they can all be enumerated in deterministic poly-

LA hypergraph is defined to be connected if the every cut has at least one hyperedge crossing it.
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nomial time. To the best of the authors’ knowledge, this is the only known technique
for efficient deterministic enumeration of all minimum cut-sets in a hypergraph.

HYPERGRAPH- k- CUT is a special case of SUBMODULAR- k- PARTITION (e.g., see
[4, 36, 43, 44]). Owing to this connection, the complexity of HYPERGRAPH- k- CUT
for fixed £ > 3 has been an intriguing open question until recently. A randomized
polynomial-time algorithm for HYPERGRAPH- k- CUT was designed in 2018 by Chan-
drasekaran, Xu, and Yu [5]. The analysis of this algorithm showed that the number
of minimum k-cut-sets is O(nzk—z), where n is the number of vertices in the input
hypergraph (i.e., the number of minimum k-cut-sets is polynomial), and that they
can all be enumerated in randomized polynomial time (also see [13]). Subsequently,
Chandrasekaran and Chekuri designed a deterministic polynomial-time algorithm for
HYPERGRAPH- k- CUT in 2020 [4]. However, their deterministic algorithm is guaran-
teed to identify only one minimum k-cut-set and not all. The next natural question
is whether all minimum k-cut-sets can be enumerated in deterministic polynomial
time—namely, can we solve ENUM- HYPERGRAPH- k- CUT in deterministic polyno-
mial time?

As mentioned earlier, the only known technique for ENUM- HYPERGRAPH- k- CUT
for k = 2 is via the hypercactus representation which does not seem to generalize
to k > 3 (in fact, it is unclear if cactus representation generalizes to k > 3 even in
graphs). Moreover, all deterministic techniques for ENUM- GRAPH- k- CUT address the
problem of enumerating all minimum k-partitions in connected graphs—see Sect. 1.2;
hence, all these techniques fail for ENUM- HYPERGRAPH- k- CUT (as seen from the
spanning-hyperedge-example). For hypergraphs, we necessarily have to work with
minimum k-cut-sets as opposed to minimum k-partitions. Working with minimum
k-cut-sets as opposed to minimum k-partitions in the deterministic setting is a tech-
nical challenge that has not been undertaken in any of the previous works (even for
graphs). We overcome this technical challenge in this work. We adapt Chandrasekaran
and Chekuri’s deterministic approach for HYPERGRAPH- k- CUT and augment it with
structural results for minimum k-cut-sets to prove our main result stated below.

Theorem 1.1 There is a deterministic polynomial-time algorithm  for
ENUM- HYPERGRAPH- k- CUT for every fixed k.

Although we chose to highlight the above algorithmic result in this introduction,
we emphasize that the structural theorems that form the backbone of the algorithmic
result are our main technical contributions (see Theorems 1.2 and 1.3). We discuss these
structural theorems in the technical overview section. By tightening the proof technique
of one of our structural theorems for k = 2, we obtain an arguably elegant structural
explanation for the number of minimum cut-sets in a hypergraph being at most (’;)—
see Theorem 1.4. Theorem 1.4 leads to an alternative deterministic polynomial-time
algorithm to enumerate all minimum cut-sets in a hypergraph (that is relatively simpler
than computing a hypercactus representation). We believe that our structural theorems
are likely to be of independent interest in the theory of hypergraphs.
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1.1 Technical overview and main structural results

We focus on the unit-cost variant of ENUM- HYPERGRAPH- k- CUT in the rest of this
work for the sake of notational simplicity. Throughout, we will allow multigraphs and
hence, this is without loss of generality. Our algorithms extend in a straightforward
manner to arbitrary hyperedge costs. They rely only on minimum (s, ¢)-terminal cut
computations and hence, they are strongly polynomial-time algorithms.

A key algorithmic tool will be the use of terminal cuts. We need some notation. Let
G = (V, E) be a hypergraph. Throughout this work, n will denote the number of ver-
ticesin G and p := ), |e| will denote the representation size of G. We will denote
a partition of the vertex set into £ non-empty parts by an ordered tuple (V1, ..., Vj).
For a non-empty proper subset U of vertices, we will use U to denote V \ U, §(U) to
denote the set of hyperedges crossing the 2-partition (U, U), and d(U) := |8(U)|. We
recall that §(U) = 8(U), so we will use d(U) to denote the cost of the cut (U, U). More
generally, given a partition P = (Vq, Va, ..., V},), we denote the set of hyperedges
crossing the partition by 6 (V1, Vo, ..., Vj) (also by 6 (P) for brevity) and the number
of hyperedges crossing the partition by cost(Vy, Vo, ..., Vi) :=|8(V1, Va, ..., Vi)|
(also by cost(P) for brevity). Let S, T be disjoint non-empty subsets of vertices. A
2-partition (U, U) is an (S, T)-terminal cut if § € U € V \ T. Here, the set U is
known as the source set and the set U is known as the sink set. A minimum-cost
(S, T)-terminal cut is known as a minimum (S, T )-terminal cut. Since there could
be multiple minimum (S, 7')-terminal cuts, we will be interested in source minimal
minimum (S, 7')-terminal cuts and source maximal minimum (S, 7')-terminal cuts: a
minimum (S, T)-terminal cut (U, U) is a source minimal minimum (S, T)-terminal
cut if there does not exist a minimum (S, 7')-terminal cut (U’, U’) such that U’ cuU
and is a source maximal minimum (S, T)-terminal cut if there does not exist a min-
imum (S, T)-terminal cut (U’, ﬁ) such that U" 2 U. For every pair of disjoint
non-empty subsets S and T of vertices, there exists a unique source minimal min-
imum (S, 7T')-terminal cut and it can be found in deterministic polynomial time via
standard maxflow algorithms; a similar result holds for source maximal minimum
(S, T)-terminal cuts.

Our algorithm 1is inspired by the divide and conquer approach introduced by
Goldschmidt and Hochbaum for GRAPH- k- CUT [18]. This approach was general-
ized by Kamidoi, Yoshida, and Nagamochi to solve ENUM- GRAPH- k- CUT [26] and
by Chandrasekaran and Chekuri to solve HYPERGRAPH- k- CUT [4], both in deter-
ministic polynomial time. The techniques of [18] and [26] are not applicable to
ENUM- HYPERGRAPH- k- CUT since they are tailored to graphs and do not extend
to hypergraphs. We describe the details of the divide and conquer approach for
HYPERGRAPH- k- CUT due to Chandrasekaran and Chekuri [4]. The goal here is to
identify one part of some fixed minimum k-partiton (Vy, Vo, ..., Vi), say V| with-
out loss of generality, and then recursively find a minimum (k — 1)-partition in the
subhypergraph G[V;], where G[V;] is the hypergraph obtained from G by discard-
ing the vertices in V7 and by discarding all hyperedges that intersect Vi. Now, how
does one find such a part V;? Chandrasekaran and Chekuri proved a key structural
theorem for this: Suppose (Vi, ..., Vi) is a Vi-maximal minimum k-partition—i.e.,
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there is no other minimum k-partition (V/, ..., V/) such that V is a proper subset of
V. Then, they showed that for every subset 7 C Vi such that T N Vi # ¢ for all
j €{2,...,k}, there exists a subset S C V; of size at most 2k — 2 such that (V, Vl)
is the source maximal minimum (S, 7')-terminal cut. A consequence of this structural
theorem is that if we compute the collection C consisting of the source side of the
source maximal minimum (S, 7')-terminal cut for all possible pairs (S, T') of disjoint
subsets of vertices S and T with |S| < 2k —2 and |T| < k — 1, then the set V; will be
in this collection C (by applying the structural theorem to a set 7" of size k — 1 with
ITNVi| =1forall j € {2,...,k}). Moreover, the size of the collection C is only
O (n**73). Hence, recursing on G[U] for each set U in the collection C will identify
a minimum k-partition within a total run-time of n%®) source maximal minimum
(S, T')-terminal cut computations.

The limitation of the structural theorem of Chandrasekaran and Chekuri [4] is that
it aims to recover a minimum k-partition and in particular, a Vi-maximal minimum k-
partition. For the purposes of enumerating all minimum k-cut-sets, this is insufficient
as we have seen from the spanning-hyperedge-example. In particular, their structural
theorem cannot be used to even enumerate all minimum cut-sets in a hypergraph. We
prove two structural theorems that will help in enumerating minimum k-cut-sets. We
describe these structural theorems now.

Our goal is to deterministically enumerate a polynomial-sized family F of k-cut-sets
such that 7 contains all minimum k-cut-sets. Let F' be an arbitrary minimum k-cut-set.
Since F is a minimum k-cut-set, there exists a minimum k-partition (V1, ..., Vi) such
that F = §(V1, ..., Vi). We note that d(V|) < |F| by definition of the hypergraph
cut function d : 2V — R. We distinguish two cases:

Case 1. Suppose d(V1) < |F|. In order to identify minimum k-cut-sets F that have
this property, we show the following structural theorem.

Theorem 1.2 Let G = (V, E) be a hypergraph and let O PTy be the value of a
minimum k-cut-set in G for some integer k > 2. Suppose (U, U) is a 2-partition of
V with d(U) < O PTy. Then, for every pair of vertices s € U and t € U, there exist
subsets S € U\{s} and T < U\{t} with |S| < 2k — 3 and |T| < 2k — 3 such that
(U, U) is the unique minimum (S U {s}, T U {t})-terminal cut in G.

The advantage of this structural theorem is that it allows for a recursive approach to
enumerate a polynomial-sized family of minimum k-cut-sets containing F under the
assumption that d(V;) < |F| = O PTy (similar to the approach of Chandrasekaran
and Chekuri).

The drawback of this structural theorem is that it only addresses the case of
d(V1) < |F]. It is possible that the minimum k-cut-set F satisfies d(Vi) = |F]|.
For example, consider the problem of enumerating all minimum cut-sets in a hyper-
graph (i.e., ENUM- HYPERGRAPH- k- CUT for k = 2)—Theorem 1.2 does not help in
this case since there will be no cut (U, U) with d(U) < OPT». This motivates the
second case.

Case 2. Suppose d(V1) = |F|. In this case, we need to enumerate a polynomial-sized
family of k-cut-sets containing F, but we cannot hope to enumerate all minimum
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k-partitions (V{, ..., V]) for which F = §(V/,...,V]) (e.g., again consider the
spanning-hyperedge-example for k = 2 for which the unique minimum cut-set F
has |F| = d (V1) for exponentially many minimum cuts (V;, V») and hence, we can-
not hope to enumerate all minimum cuts). We observe that if d(V]) = |F|, then the
set F of hyperedges should be equal to the set of hyperedges crossing (Vi, V1), i.e.,
8(Vy) = F = 58(Vy, ..., Vi). We show the following structural theorem to exploit
this observation.

Theorem 1.3 Let G = (V, E) be a hypergraph, k > 2 be an integer, and P =
V1, ..., Vi) be a minimum k-partition such that §(Vi) = §(P). Then, for all subsets
T C Vi such that T N Vi#Wforall j € {2,3,...,k}, there exists a subset S C Vi
with | S| < 2k — 1 such that the source minimal minimum (S, T)-terminal cut (A, A)
satisfies 6(A) = §(Vi) and A C V.

We recall that for fixed disjoint subsets S, 7 C V, the source minimal minimum
(S, T')-terminal cut is unique. We emphasize the main feature of Theorem 1.3: it aims
to recover only the hyperedges crossing the cut (V;, Vi) but not the cut (V, V) itself.
It shows the existence of a small-sized witness which allows us to recover §(V)—
namely a pair (S, T) with |S|,|T| = O(k) for which §(V7) is the cut-set of the
source minimal minimum (S, T)-terminal cut. In this sense, Theorem 1.3 addresses
the drawback of Theorem 1.2.

Theorems 1.2 and 1.3 can be used to design a recursive algorithm that enumerates
all minimum k-cut-sets in deterministic polynomial time (along the lines of the algo-
rithm of Chandrasekaran and Chekuri described above). Here, we describe a more
straightforward non-recursive deterministic polynomial-time algorithm. For each pair
of subsets of vertices S, T of size at most 2k — 1, we compute the source minimal
minimum (S, 7')-terminal cut Vs 7; if G — §(Vs, 1) has at least k connected compo-
nents, then we add §(Vs 1) to the candidate family F; otherwise, we add Vs 7 to the
collection C. Next, we consider all possible k-partitions (Uj, ..., Ux) of the vertex
set where all sets Uy, ..., Uy are in the collection C and add the set §(Uy, ..., Uy)
of hyperedges to the family F. We now sketch the argument to show that the family
JF contains the (arbitrary) minimum k-cut-set F. Recall that there exists a minimum
k-partition (V1, ..., Vi) such that F is the set of hyperedges crossing this k-partition,
ie., F = §(Vi,..., V). We have two possibilities: (1) if d(V;) < |F| for every
i € [k], then by Theorem 1.2, every set V; is in the collection C (by applying The-
orem 1.2 to (U = V;,U = V;) and arbitrary vertices s € Vi, t € V;), and hence
F e F; 2)if d(V;) = |F| for some i € [k], then by Theorem 1.3, one of the
sets Vs.r has 6(Vs.7) = 6(V;) = F and hence, once again F' € F. We can prune
the family F to return the subfamily of minimum k-cut-sets in it. The size of the
collection C is O (n*~2) and the size of the family F is O(n‘”‘z). The run-time is
0(n4k—2)T(n, p) + 0(n4k2), where T (n, p) is the time complexity for computing
the source minimal minimum (s, #)-terminal cut in a n-vertex hypergraph of size p.

Additional consequence of Theorem 1.3 Theorem 1.3 is the technical novelty of this
work. We emphasize another structural consequence of Theorem 1.3 by using it to
bound the number of minimum cut-sets in a hypergraph. Let ¢ be an arbitrary vertex
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in the hypergraph G = (V, E). Consider the sets

H:={U C V\{t}: (U, U) is a minimum cut in G} and
M :={5U):U € H}.

We note that M is the family of all minimum cut-sets in the hypergraph. By applying
Theorem 1.3 for k = 2 and T = {t}, we obtain that for every set U € H, there exists
asubset S C U with | S| < 3 such that the source minimal minimum (S, {z})-terminal
cut (A, A) satisfies §(A) = §(U). Consequently, the size of the set M is at most the
number of possible ways to choose a non-empty subset S € V\{¢} of size at most 3
which is ("Tl) + (";1) + (”;1) = O(n?), where n := |V|. Thus, we have concluded
that the number of minimum cut-sets in a n-vertex hypergraph is O ().

We recall that the number of minimum cut-sets in a n-vertex hypergraph is known
to be at most (5) [7, 16]. So, the O(n?) upper bound on the number of minimum
cut-sets that we obtained above based on Theorem 1.3 appears to be weak. We show
the following strengthening of Theorem 1.3 for k = 2 to get the tighter bound.

Theorem 1.4 Let G = (V, E) be a hypergraph and P = (V, V,) be a minimum cut.
Then, for all non-empty subsets T C V,, there exists a subset S C Vi with |S| < 2 such
that the source minimal minimum (S, T)-terminal cut (A, A) satisfies 6(A) = §(Vy)
and A C V.

By applying Theorem 1.4 for T = {¢}, we obtain that for every set U € H, there
exists a subset S € U with |S| < 2 such that the source minimal minimum (S, {¢})-
terminal cut (A, A) satisfies §(A) = 8(U). Hence, the size of the set M is at most
the number of possible ways to choose a non-empty subset S € V \ {r} of size at
most 2 which is (”Il) + ("gl) = (3). Thus, we have obtained a structural explanation
(based on Theorem 1.4) for the number of minimum cut-sets in a hypergraph being at
most (g) Theorem 1.4 can also be used to enumerate all minimum cut-sets in a given
hypergraph using (;) source minimal minimum (S, 7')-terminal cut computations.

Theorem 1.4 should be compared with a similar-looking structural theorem for
graphs that was shown by Goemans and Ramakrishnan [17]. Goemans and Ramakr-
ishnan showed that (Theorem 15 in [17]) if G is a connected graph, then for every
set U € 'H, there exists a subset S € V; with |S| < 2 such that (U, U) is the source
minimal minimum (S, {¢})-terminal cut. This leads to a structural explanation for the
number of minimum cuts in a connected graph being at most (g) Our Theorem 1.4 can
be seen as a counterpart of Goemans and Ramakrishnan’s result for hypergraphs, but it
differs from their result in two aspects: (1) their result does not hold for hypergraphs—
the number of minimum cuts in a connected hypergraph could be exponential as we
have seen from the spanning-hyperedge-example and (2) the proof of their result is
based on the submodular triple inequality which holds only for the graph cut func-
tion but fails for the hypergraph cut function. So, our Theorem 1.4 is more general
as it handles minimum cut-sets in hypergraphs and moreover, needs a different proof
technique compared to [17]. We mention that Goemans and Ramakrishnan’s result for
connected graphs was our inspiration for Theorem 1.4, which in turn, was our starting
point for Theorem 1.3.
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Table 1 Summary of known techniques to solve enumeration problems in graphs and hypergraphs in
polynomial time

Techniques Graph Min-Cut Hypergraph Min-Cut  Graph-k-cut Hypergraph-k-cut
Random contraction  [27, 29] [5, 13, 16] [19,22,23,29] [5,13]
Cactus representation [12] [7-9] ? ?
Min (S, T)-cuts [17] Our work [26, 41] Our work

(Theorem 1.4) (Theorems 1.2, 1.3)
Edge splitting [25, 34] ? ? ?
Tree packing [28] ? [6, 39] ?

The random contraction technique leads to a randomized algorithm while techniques listed in the rest of
the rows lead to deterministic algorithms. Entries with a question mark indicate that we do not yet know if
the technique leads to a polynomial time algorithm for the corresponding enumeration problem

We conclude this section with a table summarizing known techniques for solving
enumeration problems in graphs and hypergraphs in polynomial time (see Table 1).
We refer the reader to Sect. 1.2 for a more elaborate discussion of related work.

Organization We discuss special cases of ENUM- HYPERGRAPH- k- CUT that have
been addressed in the literature in Sect. 1.2. In Sect. 1.3, we recall properties of the
hypergraph cut function that will be useful to prove our structural theorems. This sec-
tion contains a strengthening of a partition uncrossing theorem from [4] whose proof
appears in “Appendix A”. In Sect. 2, we formally describe and analyze the determinis-
tic polynomial-time algorithm for ENUM- HYPERGRAPH- k- CUT that utilizes our two
structural theorems (Theorems 1.2 and 1.3). We prove Theorems 1.2 and 1.3 in Sects. 3
and 4 respectively. We prove the strengthening of Theorem 1.3 for k = 2—namely
Theorem 1.4—in Sect. 5. We give an alternative proof of Theorem 1.4 based on a novel
three-cut-set lemma in Sect. 6. We conclude with a few open problems in Sect. 7.

1.2 Related work

In this section, we discuss known techniques for the enumeration problem in the
special case of k = 2 and the special case of graphs along with challenges involved
in adapting these techniques to hypergraphs for k > 3.

ENUM-GRAPH-k-CUT for k = 2. GRAPH- k- CUT for k = 2 is the global minimum
cut problem (denoted GRAPH- MINCUT) which has been extensively studied. However,
efficient deterministic enumeration of all minimum cut-sets in a given connected graph
is already non-trivial. Dinitz, Karzanov, and Lomonosov [12] showed that the number
of minimum cuts in a connected graph is at most (Z), where n is the number of
vertices in the input graph, and they can all be enumerated in deterministic polynomial
time. In particular, they designed a compact data structure, namely a cactus graph,
to represent all minimum cuts in a connected graph. The upper bound of (g) on the
number of minimum cuts in a connected graph is tight as illustrated by the cycle-graph
on n vertices. Using the seminal random contraction technique, Karger [27] showed a
stronger result that the number of a-approximate minimum cuts in a connected graph
is O (n>*) and they can all be enumerated in randomized polynomial time for constant
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a. Karger’s tree packing technique [28] also leads to a deterministic polynomial-
time algorithm to enumerate all o-approximate minimum cuts in a connected graph
for constant «. Nagamochi, Nishimura, and Ibaraki [34] tightened Karger’s bound
for a particular value of « via the edge splitting operation: the number of (4/3 —
€)-approximate minimum cuts in a connected graph is at most (;) for any € > 0.
This fact was also shown by Goemans and Ramakrishnan [17] via a structural result
(see discussion after Theorem 1.4 above). Henzinger and Williamson [25] extended
Nagamochi, Nishimura, and Ibaraki’s edge splitting technique to show that the number
of (3/2 — €)-approximate minimum cuts in a connected graph is O (n?) for any € >
0. The results of Nagamochi, Nishimura, and Ibaraki, Goemans and Ramakrishnan,
and Henzinger and Williamson are all constructive and deterministic (i.e., lead to
deterministic polynomial-time algorithms to enumerate the respective approximate
minimum cuts) and they bound the number of minimum cuts in a connected graph (as
opposed to minimum cut-sets).

Polynomial-delay algorithms. An alternative line of work aims to enumerate all cuts in
hypergraphs in non-decreasing order of cut value with polynomial time delay between
outputs. Such algorithms are known as polynomial-delay algorithms in the literature.
Polynomial-delay algorithms have been designed based on polynomial-time solvabil-
ity of minimum (s, ¢)-terminal cut and using the Lawler-Murty schema [1, 24, 33, 40].
Since we know that the number of minimum cuts in a connected graph is polynomial,
the existence of a polynomial-delay algorithm immediately implies a polynomial-time
algorithm to solve ENUM- GRAPH- k- CUT for k = 2. This approach does not extend
to ENUM- HYPERGRAPH- k- CUT for k = 2 since the number of minimum cuts in a
hypergraph can be exponential (e.g., recall the spanning-hyperedge-example).

ENUM-HYPERGRAPH-k-CUT for k = 2. HYPERGRAPH- k- CUT for k = 2 is the
global minimum cut problem (denoted HYPERGRAPH- MINCUT) which has also been
extensively studied. We note that the number of minimum cuts in a connected hyper-
graph could be exponential (e.g., consider the spanning-hyperedge-example). But, how
about the number of minimum cut-sets? The number of minimum cut-sets in a hyper-
graph is at most (g) via decomposition theorems of Cunningham and Edmonds [10],
Fujishige [14], and Cunningham [9] on submodular functions. Cheng [8] designed an
explicit hypercactus representation for all minimum cut-sets in a hypergraph. Chekuri
and Xu [7] designed a faster deterministic polynomial-time algorithm to obtain a
hypercactus representation (along with all minimum cut-sets) of a given hypergraph.
Ghaffari, Karger, and Panigrahi [16] (also see [5, 13]) introduced a random contrac-
tion technique to solve HYPERGRAPH- MINCUT which also implied that the number of
minimum cut-sets in a hypergraph is at most (;) and that they can all be enumerated
in randomized polynomial time.

We mention that in contrast to graphs, the number of constant-approximate
minimum cut-sets in a hypergraph can be exponential. In fact, the number of (1 + €)-
approximate minimum cut-sets in a connected hypergraph can be exponential® for any

2 Consider the n-vertex hypergraph G = (V, E) where E consists of all size-2 hyperedges each of cost
§= e((g)—(l—i-e)(n— 1))_1 andahyperedge e = V of cost 1. The costof aminimumcutis A := 1+8§(n—1).
The cost of every cut is at most 1 + 8(;) < (1 +e€)Ar.
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€ € (0, 1). Moreover, the techniques of Nagamochi, Nishimura, and Ibaraki, Goemans
and Ramakrishnan, and Henzinger and Williamson even when restricted to minimum
cuts (as opposed to approximate minimum cuts) cannot extend to hypergraphs: This
is because, their techniques are tailored to enumerate all minimum cuts in a connected
graph as opposed to all minimum cut-sets; we have already seen that the spanning-
hyperedge-example has exponential number of minimum cuts and hence, all of them
cannot be enumerated in polynomial time.

Multiterminal variants for k-cut: We mention that GRAPH- k- CUT and HYPERGRAPH-
k- CUT have natural variants involving separating specified terminal vertices s, 52,

., k. These variants are NP-hard for k£ > 3 even in graphs and hence, these variants
are not viable lines of attack for GRAPH- k- CUT and HYPERGRAPH- k- CUT. We refer
the reader to [4] for a discussion of approximation algorithms for these variants.

ENUM-GRAPH-k-CUT. GRAPH- k- CUT for k > 3 has a rich literature with sub-
stantial recent work [6, 18-23, 26, 29, 31, 32, 37-39]. Goldschmidt and Hochbaum
[18] initiated the study on GRAPH- k- CUT by showing that it is NP-hard when & is
part of the input and that it is polynomial-time solvable when & is a fixed constant
(polynomial-time solvability is not obvious even for k = 3). Recall that we consider k
to be a fixed constant throughout this work. Goldschmidt and Hochbaum introduced
a divide-and-conquer approach for GRAPH- k- CUT which resulted in a deterministic
polynomial-time algorithm. However, their result did not guarantee any bound on the
number of minimum k-partitions or minimum k-cut-sets in connected graphs. Karger
and Stein [29] gave a randomized polynomial-time algorithm for GRAPH- k- CUT via
the random contraction technique. In addition, they showed that the number of mini-
mum k-partitions in a connected graph is O (n%*~2) and they can all be enumerated in
randomized polynomial time. The bound on the number of minimum k-partitions in a
connected graph has recently been improved to O (n*) [19, 23]. We mention that the
upper bound of O (1) on the number of minimum k-partitions in a connected graph
is tight as illustrated by the cycle-graph on n vertices.

There are two known approaches to solve ENUM- GRAPH- k- CUT in deterministic
polynomial time: (1) Thorup [39] showed that the tree packing approach can be used
to obtain a polynomial-time algorithm for GRAPH- k- CUT; this approach also extends
to solve ENUM- GRAPH- k- CUT (also see [6]). (2) Kamidoi, Yoshida, and Nagamochi
[26] extended Goldschmidt and Hochbaum’s divide and conquer approach to solve
ENUM- GRAPH- k- CUT (also see [41]).

HYPERGRAPH-k-CUT. The complexity of HYPERGRAPH- k- CUT was open since
the work of Goldschmidt and Hochbaum for GRAPH- k- CUT [18] until recently.
Although certain special cases of HYPERGRAPH- k- CUT were known to be solvable
in polynomial time [15, 42], considerable progress on HYPERGRAPH- k- CUT hap-
pened only in the last 3 years. Chandrasekaran et al. [5] designed the first randomized
polynomial-time algorithm for HYPERGRAPH- k- CUT; their Monte Carlo algorithm
runs in 0( pnzk 1) time where p=y. «ck le| is the representation size of the input
hypergraph. Fox, Panigrahi, and Zhang [13] improved the randomized run-time to
O (mn*~2), where m is the number of hyperedges in the input hypergraph. Both
these randomized algorithms are based on random contraction of hyperedges and are
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inspired partly by earlier work in [16] for HYPERGRAPH- MINCUT. These randomized
algorithms also imply that the number of minimum k-cut-sets is O (n**~2) and that
all of them can be enumerated in randomized polynomial time. Chandrasekaran and
Chekuri [4] designed a deterministic polynomial-time algorithm for HYPERGRAPH-
k- CUT via a divide and conquer approach. We emphasize that their algorithm finds a
minimum k-partition and did not have the tools to find all minimum k-cut-sets.

A polynomial bound on the number of minimum k-cut-sets along with the existence
of a randomized polynomial-time algorithm to enumerate all of them raises the possi-
bility of a deterministic algorithm for ENUM- HYPERGRAPH- k- CUT. As we mentioned
earlier, there are two deterministic approaches for ENUM- GRAPH- k- CUT—tree pack-
ing and divide-and-conquer. The tree packing approach does not seem to extend to
hypergraphs (even for HYPERGRAPH- MINCUT). This leaves the divide-and-conquer
approach. Notably, this approach also led to the first deterministic algorithm for
HYPERGRAPH- k- CUT in the work of Chandrasekaran and Chekuri [4]. As mentioned
earlier, we adapt Chandrasekaran and Chekuri’s divide-and-conquer approach and
augment it with structural results for minimum k-cut-sets to prove our main result
stated in Theorem 1.1.

1.3 Preliminaries

Let G = (V, E) be a hypergraph. Throughout, we will follow the notation mentioned
in the second paragraph of Sect.1.1. We will repeatedly rely on the fact that the
hypergraph cut function d : 2" — R, is symmetric and submodular. We recall that
a set function f : 2V — R is symmetric if f(U) = f(U) forall U € V and is
submodular if f(A)+ f(B) > f(AN B)+ f(AU B) for all subsets A, B C V.

We will need a partition uncrossing theorem that is a strengthening of a result from
[4]. We state the strengthened version below. See Fig. 1 for an illustration of the sets that
appear in the statement of Theorem 1.5. We emphasize that the second conclusion in
the statement of Theorem 1.5 is the strengthening. The proof of the second conclusion
is similar to the proof of the first conclusion which appears in [4]—we present a proof
of both conclusions for the sake of completeness in “Appendix A”.

Theorem 1.5 Let G = (V, E) be a hypergraph, k > 2 be an integer and ) # R C
UCV.LetS={uy,...,up} CSU\R for p > 2k — 2. Let (A;, A}) be a minimum
((SUR)\{M,-},U)—terminalcut. Supposethatu; € A;\(Uje[p)\(i}Aj) foreveryi € [p].
Then, the following two hold:

1. There exists a k-partition (P1, ..., Py) of V with U C Py such that

1
cost(Py...... Po) < 5 min{d(Ap) +d(A)) i, j € [pli # j).

2. Moreover, if there exists a hyperedge e € E such that e intersects W =
Ul<i<j<p(Ai N Aj), e intersects Z := Nje[p)A;, and e is contained in W U Z,
then the inequality in the previous conclusion is strict.
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Fig. 1 Illustration of the sets that appear in the statement of Theorem 1.5

Algorithm Enum-Cuts(G = (V, F). k)
Input: Hypergraph G = (V, E) and an integer k > 2
Output: Family of all minimum k-cut-sets in G
Initialize C 0, F < 0
For each pair (S,T) such that S,T C V with SNT =0 and |S|,|T| < 2k — 1
Compute the source minimal minimum (S, T)-terminal cut (U, U)
If G — 6(U) has at least k connected components
F«+ FU{sU)}
Else
C+ CuU{U}
For each k-partition (Uy,...,Uy) of V with Uy,..., U, € C
F FU{(Uy,...,Up)}
Among all k-cut-sets in the family F, return the subfamily of cheapest ones

Fig.2 Algorithm to enumerate hypergraph minimum k-cut-sets

2 Enumeration Algorithm

We will use Theorems 1.2 and 1.3 to design a deterministic polynomial-time algorithm
for ENUM- HYPERGRAPH- k- CUT in this section. We describe the formal algorithm in
Fig. 2. It enumerates n9® source minimal minimum (S, 7)-terminal cuts and consid-
ers the cut-set crossing each cut in this collection. If the removal of the cut-set leads
to at least k connected components, then it adds such a cut-set to the candidate family
JF; otherwise, it adds the source set of the cut into a candidate collection C. Next, the
algorithm considers all possible k-partitions that can be formed using the sets in the
collection C and adds the set of hyperedges crossing the k-partition to the family F.
Finally, it prunes the family F to return all minimum k-cut-sets in it. The run-time
guarantee and the cardinality of the family of k-cut-sets returned by the algorithm are
given in Theorem 2.1. Theorem 1.1 follows from Theorem 2.1 by observing that the
source minimal minimum (S, 7')-terminal cut in a hypergraph can be computed in
deterministic polynomial time—e.g., it can be computed in a n-vertex hypergraph of
size p in O (np) time [7].
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Theorem 2.1 Let G = (V, E) be a n-vertex hypergraph of size p and let k be an
integer. Then, Algorithm Enum-Cuts(G, k) in Fig. 2 returns the family of all minimum
k-cut-sets in G and it can be implemented to run in On*=2)T (n, p)+ 0(n4k2_2kp)
time, where T (n, p) denotes the time complexity for computing the source minimal
minimum (s, t)-terminal cut in a n-vertex hypergraph of size p. Moreover, the cardi-
nality of the family returned by the algorithm is O (n*¢k=1),

Proof We begin by showing correctness. The last step of the algorithm considers only
k-cut-sets in the family F, so the algorithm returns a subfamily of k-cut-sets. We only
have to show that every minimum k-cut-set is in the family J; this will also guarantee
that every k-cut-set in the returned subfamily is indeed a minimum k-cut-set.

Let FF C E be a minimum k-cut-set in G and let (Vq, ..., Vi) be a minimum k-
partition such that F = §(Vq, ..., Vi). We will show that F is in the family F. We
know that d(V;) < O PTy for every i € [k]. We distinguish two cases:

1. Suppose d(V;) < O PTy for every i € [k].
Consider an arbitrary part V; where i € [k]. By Theorem 1.2, there exist disjoint
subsets S, T C V with | S|, |T| < 2k —2 such that (V;, V;) is the unique minimum
(S, T)-terminal cut. Hence, the set V; is in the collection C. Consequently, all parts
Vi, ..., Vi are in the collection C. Hence, the set F = §(V1, ..., Vi) is added to
the family F in the second for-loop.

2. Suppose there exists i € [k] such that d(V;) = O PTy.
In this case, we have §(V;) = F = 6(V1, ..., Vi). By Theorem 1.3, there exist
disjoint subsets S, 7 € V with |S|, |T| < 2k — 1 such that the source minimal
minimum (S, 7)-terminal cut (A, A) satisfies §(A) = §(V;) = F. Therefore, the
set F is added to the family F in the first for-loop.

Thus, in both cases, we have shown that the set F' is contained in the family F. Since
the algorithm returns the subfamily of hyperedge sets in  that correspond to minimum
k-cut-sets, the set F' is in the family returned by the algorithm.

Next, we bound the run time and the number of minimum k-cut-sets returned by
the algorithm. The first for-loop can be implemented using O (n*~2) source mini-
mal minimum (s, #)-terminal cut computations. Moreover, the size of the collection
C is O(n*=2). The number of tuples (Uy, ..., Uy) € C* is 0(n4k2_2k). Verify-
ing if a tuple (Uy, ..., Ux) forms a k-partition takes O (n) time. For a tuple which
forms a k-partition, computing the hyperedges crossing that partition takes O(p)
time. Thus, the second for-loop can be implemented to run in time O (n4k2_2k p). The
size of the family F is 0(n4k2_2k). Each k-cut-set in F has representation size at
most p. Hence, computing the size of each k-cut-set in F and returning the cheapest
ones can be implemented to run in time O (n*°~2% p). Thus, the overall run-time is
0 T (n, p) + 02 p). 0

3 Proof of Theorem 1.2

We prove Theorem 1.2 in this section. We will use the following theorem to prove
Theorem 1.2.
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Theorem 3.1 Let G = (V, E) be a hypergraph and let O PTy be the value of a
minimum k-cut-set in G for some integer k > 2. Suppose (U, U) is a 2-partition of V
with d(U) < O PTy. Then, for every vertex s € U, there exists a subset S C U\{s}
with |S| < 2k — 3 such that (U, U) is the unique minimum (S U {s}, U)-terminal cut.

Proof Let s € U. Consider the collection

={Q CV\{s}:U € 0,d(Q) <dU)}.

Let S be an inclusion-wise minimal subset of U \ {s} such that S N Q # ¢ for all
Q € C,i.e., the set S is completely contained in U \{s} and is a minimal transversal of
C. Proposition 3.1 and Lemma 3.1 complete the proof of Theorem 3.1 for this choice
of S. O

Proposition 3.1 The 2-partition (U, U) is the unique minimum (S U {s}, U)-terminal
cut.

Proof For the sake of contradiction, suppose (¥, Y) is aminimum (SU{s}, U)-terminal
cut with Y # U. This implies that S U {s} € Y and U C Y. Moreover, we have
d(Y) < d(U) because (U, U) is a (S U {s}, U)-terminal cut. Consequently, the set
Y is in the collection C. Since S is a transversal of the collection C, we have that
S NY # ¢. This contradicts the fact that S is contained in Y. O

Lemma 3.1 The size of the subset S is at most 2k — 3.

Proof For the sake of contradiction, suppose |S| > 2k — 2. Our proof strategy is to
show the existence of a k-partition with cost smaller than O P Ty, thus contradicting
the definition of O PTy. Let S := {u1,uz, ..., u,} for some p > 2k — 2. For each
i €[pl,let (A;, A;) be the source minimal minimum ((SU{s})\{«;}, U)-terminal cut.
The following claim will allow us to show that the cuts (A;, A;) satisfy the hypothesis
of Theorem 1.5.

Claim 3.1 Foreveryi € [p], we have d(A;) < d(U) and u; € A;.

Proof Leti € [p]. Since S is a minimal transversal of the collection C, there exists a
set B; € C such that B; N S = {u;}. Hence, (B;, B;) is a ((S U {s})\{u;}, U)-terminal
cut. Therefore,

d(Ay) =d(Bi) =d(U).

We will show that A; is in the collection C. By definition, A; € V \ {s} and
U C A;. If A; = U, then the above inequalities are equations implying that (B;, B;)
is a minimum ((S U {s})\{u;}, U)-terminal cut, and consequently, (B;, B;) contra-
dicts source mlmmahty of the minimum ((S U {s})\{u;}, U)-terminal cut (4;, 4;).
Therefore, U C A;. Hence, A; is in the collection C.

We recall that the set S is a transversal for the collection C and moreover, none of
the elements of S\{u;} are in A; by definition of A;. Therefore, the vertex u; must be
in A;. O
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_Using Claim 3.1, we observe that the sets U, R := {s}, S, and the partitions
(A;j, A;) fori € [p] satisfy the conditions of Theorem 1.5. By the first conclusion of
Theorem 1.5 and Claim 3.1, we obtain a k-partition (Py, ..., Pr) of V such that

1
cost(Pr, ..., Pr) < Emin{d(Ai) +d(Aj) i jelplii#j}=dU) < OPT;.

The last inequality above is by the assumption in the theorem statement. Thus, we
have obtained a k-partition whose cost is smaller than O P T, a contradiction. O
Applying Theorem 3.1 to (U, U) yields the following corollary.

Corollary 3.1 Let G = (V, E) be a hypergraph and let O PTy be the value of a
minimum k-cut-set in G for some integer k > 2. Suppose (U, U) is a 2-partition of V
with d(U) < O PTy. Then, for every vertex t € U, there exists a subset T C U\{t}
with |T| < 2k — 3 such that (U, U) is the unique minimum (U, T U {t})-terminal cut.

We now restate Theorem 1.2 and prove it using Theorem 3.1 and Corollary 3.1.

Theorem 1.2 Let G = (V, E) be a hypergraph and let O PTy be the value of a
minimum k-cut-set in G for some integer k > 2. Suppose (U, U) is a 2-partition of
V with d(U) < O PTy. Then, for every pair of vertices s € U and t € U, there exist
subsets S € U\{s} and T C U\{t} with |S| < 2k — 3 and |T| < 2k — 3 such that
(U, U) is the unique minimum (S U {s}, T U {t})-terminal cut in G.

Proof Lets € U and ¢t € U. By Theorem 3.1, there exists a subset S € U\{s} such
that | S| < 2k — 3 and (U, U) is the unique minimum (S U {s}, U)-terminal cut. By
Corollary 3.1, there exists a subset T C U such that |T| < 2k — 3 and (U, U) is the
unique minimum (U, T U {¢})-terminal cut.

We now show that (U, U) is the unique minimum (S U {s}, T U {})-terminal cut.
Let (Y, Y) be a minimum (S U {s}, T U {r})-terminal cut. Suppose ¥ # U. We have
the following observations:

1. Since (U,U)isa (SU {s}, TU {tﬁ—terminal cut, we have that d(U) > d(Y).
2. Since (UNY,U NY)isa(SU{s}, U)-terminal cut, we have thatd(UNY) > d(U).
3. Since (UUY,U UY)isa (U, TU{t})-terminal cut, we have thatd(UUY) > d(U).

Moreover, since ¥ # U, we have that either U NY # U or U U Y # U. Since
(U, U) is the unique minimum (S U{s}, U)-terminal cut and also the unique minimum
(U, T U {t})-terminal cut, it follows that either d(U NY) > d(U) ord(UUY) >
d(U). These observations in conjunction with the submodularity of the hypergraph
cut function imply that

2d(U) >dU)+d¥)>d(UNY)+dUUY) > 2dU),
a contradiction. Hence, Y = U. O
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Fig.3 Uncrossing in the proof of Lemma 4.1

4 Proof of Theorem 1.3

We prove Theorem 1.3 in this section. We begin with the following useful containment
lemma. Variants of this containment lemma have appeared in the literature before under
slightly different hypothesis (e.g., see [4, 11, 18, 36]).

Lemma4.1 Let G = (V, E) be a hypergraph, k > 2 be an integer, P = (Vi, ..., Vi)
be a minimum k-partition such that 5(P) = 6(V1),and S C V|, T C V| such that
TNV, #W@forall j € {2,3,...,k}. Suppose that (U, U) is the source minimal
minimum (S, T)-terminal cut. Then, U C V| and (U,U) is a minimum (S,V])—
terminal cut.

Proof We note that S C U N Vy,so (UNVy, UNVy)isa (S, T)-terminal cut. Thus,
we have
d(UnNVy =dU). (D
Now consider P/ = (W :=U UV, Wy := V,\U, ..., Wi := V;\U) (see Fig. 3).
Foreachi € {2,3,...,k},wehave # # T NV; C V;\U, so P’ is a k-partition. Since
8(P) = &(Vy), every hyperedge which crosses P must intersect V;. Consequently,
every hyperedge which crosses P’ must intersect U U V). Therefore

d(U U Vp) = cost(P’) > cost(P) = d(V1). 2)

By submodularity of the hypergraph cut function and inequalities (1) and (2), we have
that

dU)+d(V)) zd(UNV)+dUU Vi) =dU)+dV1).

Therefore, inequality (1) is in fact an equation and hence, (U N Vi, U N Vj) is
a minimum (S, T)-terminal cut. If U \ Vi # @, then (U N Vi, U N V}) contra-
dicts source minimality of the minimum (S, 7)-terminal cut (U, U). Hence, U \Vi
= () and consequently, U C V.
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Since U C Vj, we have that (U, U) is a (S, V})-terminal cut. Furthermore, since
T C Vl, every (S, W)—terminal cut is also a (S, T)-terminal cut. Therefore, every
(S, Vi)-terminal cut must have weight at least d(U), and hence (U, U) is a minimum
(S, V})-terminal cut. ]

We now restate and prove Theorem 1.3.

Theorem 1.3 Let G = (V, E) be a hypergraph, k > 2 be an integer, and P =
V1, ..., Vi) be a minimum k-partition such that §(Vi) = §(P). Then, for all subsets
T C 71 suchthat T NV # @ forall j € {2,3,...,k}, there exists a subset S C Vi
with |S| < 2k — 1 such that the source minimal minimum (S, T)-terminal cut (A, Z)
satisfies 6(A) = §(Vi) and A C V.

Proof Let us fix an arbitrary T C V, such that T N Vi #@forall j € {2,...,k}.
For a subset X C V|, we denote the source minimal minimum (X, 7)-terminal cut by
(HX,H_X).ByLemma4.l,fora11X C Vi wehavethat Hy C Viandd(Hyx) < d(Vy).
If |Vi| < 2k — 1, then choosing S = V] proves the theorem. So, we will assume
henceforth that |Vi| > 2k — 1. We will show that there exists a subset S € V| with
|S| < 2k — 1 such that the source minimal minimum (S, T)-terminal cut (Hs, Hs)
satisfies §(Hg) = &(V7). This suffices since we have that Hg C V) for all subsets
S € Vj (by Lemma 4.1).

For the sake of contradiction, suppose that for every S € Vi with |S] < 2k — 1,
the source minimal minimum (S, T')-terminal cut (Hs, Hs) does not satisfy 8 (Hs) =

8(V1). Our proof strategy is to obtain a cheaper k-partition than (V7, ..., Vi), thereby
contradicting the optimality of (Vi, ..., Vi).

Let S C V) be a set of size 2k — 1 such that Hg is maximal—i.e., there does not
exist 8 € Vj of size 2k — 1 such that Hy 2 Hg. Let S := {uy, ua, ..., uz—1}.

By assumption, we have that §(Hg) # 8(V7), but since (V1, V) isa (S, T)-terminal
cut, we have that d(Hs) < d(Vi). Therefore, §(V7) \ §(Hgs) is non-empty. Let us
fix a hyperedge ¢ € 6(V1) \ 8(Hs). Let ugy € en Vi. Let C :== S U {uxp} =
{uy, ..., usr—1, uzr}. For notational convenience we will use C — u; to denote C\{u; }
and C —u; —u;j to denote C\{u;, u;} foralli, j € [2k]. The choice of the hyperedge
e is crucial to our proof—its properties will be used much later in our proof. We
summarize the properties of the hyperedge e here. O

Observation 4.1 The hyperedge e has the following properties:

1. eﬂVl#M,
2. uzke_e,and
3. e C Hsg.

Our strategy to arrive at a cheaper k-partition than (Vq, ..., V) is to apply the
second conclusion of Theorem 1.5. The next few claims will set us up to obtain sets
that satisfy the hypothesis of Theorem 1.5.

Claim 4.1 Foreveryi € [2k], we have u; ¢ Hc—_,;.

Proof 1f i = 2k, then by Observation 4.1 we have uo; € eande € Hg souo; ¢ Hg =
Hc _yy, . Suppose i € [2k — 1]. Our proof will rely on the choice of S.
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Suppose for contradiction that u; € Hc_,, for some i € [2k — 1]. Then, we have
that § € He_y,;, s0 (Hc—y; N Hg, Hc—,; N Hg) is a (S, T)-terminal cut. Therefore,

d(Hc—y; N Hg) > d(Hy). 3
Also, since (Hc—,;, U Hg, Hc—,,; U Hg) is a (C — u;, T)-terminal cut, we have that
d(Hc—y; U Hg) > d(Hc—y,)- 4)

By submodularity of the hypergraph cut function and inequalities (3) and (4), we have
that

d(Hs) + d(Hc—y;) = d(Hc—y; N Hs) +d(He—y; U Hs) > d(Hg) + d(Hc—y,).

Therefore, inequality (3) is an equation, and consequently, (Hc—,, N\Hg, Hc—,; N Hy)
is a minimum (S, T')-terminal cut. If Hc—,, N Hs € Hs, then (Hc—, N
Hs, Hc—y; N Hy) contradicts source minimality of the minimum (S, T')-terminal cut
(Hs, Fs). Therefore Hc—,; N Hs = Hg and hence, Hs € Hc_,,. Also, the vertex
uyk isin C — u; but not in Hg and hence, Hs C Hc—,,;. However, |C —u;| = 2k — 1.
Therefore, the set C — u; contradicts the choice of S. O

The following claim will help in showing that u;, u; ¢ Hc_y;—u i which in turn,
will be used to show that the hypothesis of Theorem 1.5 is satisfied by suitably chosen
sets.

Claim 4.2 Foreveryi, j € [2k], we have Hc—y;—u; S He—y;.
Proof We may assume that i # j. We note that (He-uj—u; N He—uy,,

He—y;—u; "WHe—y,) is a (C —u; — uj, T)-terminal cut. Therefore

d(Hcfu,‘fuj N HC*M{) = d(HCfu,-fuj)o ©)

Also, (He—y;—u; Y He—u;s Ho—y;—u; Y He—y;) is @ (C — u;, T)-terminal cut. There-
fore
d(HC—ui—uj ) HC—u,') > d(HC—ui)~ (6)

By submodularity of the hypergraph cut function and inequalities (5) and (6), we have
that

d(HC‘fuifuj) + d(Hcfui) = d(HCfu,'fuj N HCfu,') + d(HCfu,'fuj ) HCfu,')
= d(HC—u,-—uj) "l‘d(HC—u,-)'

Therefore, inequality (5) is an equation, and consequently, (Hc—y;—u; N Hc—y;,

He—y;—u; NV He—y,) is @ minimum (C — u; — uj, T)-terminal cut. If He—y;—y;\
Hc_y, #* @, then
(Hc—u;—u; NHe—y;, Ho—y;—u; N He—y;) contradicts source minimality of the mini-

mum (C—u;—uj, T)-terminal cut (Hc—y; —u;, He—u;—u;)- Hence, He—y; —u; \Hc—u; =
(# and consequently, He—yj—u; © He—y;- O

@ Springer



C. Beideman et al.

Claim 4.2 implies the following Corollary.
Corollary 4.1 For every i € [2k], we have uj, uj ¢ He—y;—u;-

Proof By Claim 4.1, we have that u; ¢ Hc_,; and u; ¢ Hc_uj. Therefore, u;, u; ¢
He_y; N Hc,uj. By Claim 4.2, HC—ui—uj € Hc—y; and HC—ui—uj - HC—uj- There-
fore, HCfu,-fuj C Hey; N Hc,uj, and thus, u;, u; ¢ Hcfu,-fuj- O

The next claim will help in controlling the cost of the k-partition that we will obtain
by applying Theorem 1.5.

Claim 4.3 Foreveryi, j € [2k], we have d(Hc—y;) = d(V1) = d(He—y;—u;)-

Proof Let a, b € [2k]. Since (V, Vi) is a (C — ug, T)-terminal cut, we have that
d(Hc—y,) < d(Vy). Since (Hc—y,, Hc—u,) is a (C — uy, — up, T)-terminal cut, we
have that d(Hc—y,—y,) < d(Hc—y,) < d(V1). Thus, in order to prove the claim, it
suffices to show that d(Hc—,,—y,) = d(V1).

Suppose for contradiction that d(Hc—y,—u,) < d(V1). Let £ € [2k] \ {a, b} be
an arbitrary element (which exists since k > 2). Let R := {us}, U = Vi, &' =
C —uy —uy,and A; :== Hc—y,—y,; for every i € [2k]\{a, £}. We note that |S'| =
2k — 2. By Lemma 4.1, we have that (A;, A}) is a minimum (C — u, — u;, Vy)-
terminal cut for every i € [2k] \ {a, £}. Moreover, by Corollary 4.1, we have that
u;j € Ai\(Ujepi\ja,i,0yA;j) for every i € [2k] \ {a, £}. Hence, the sets U, R, and
§’, and the cuts (4;, A;) fori € [2k]\{a, £} satisfy the conditions of Theorem 1.5.
Therefore, by the first conclusion of Theorem 1.5, there exists a k-partition P’ with

cost(P) < %min{d(Hc_ua_ui) + d(He—uyay): i j € 261\ {a, £}).

By assumption, d(Hc—y,—u,) < dLVl)andb € [2k\{a, £},somin{d (Hc—y,—u;): i €
[2k1\{a, £}} < d(V}). Since (V1, V1) isa (C —u, — u;, T)-terminal cut, we have that
d(Hc—y,—u;) < d(Vy) for every i € [2k]\{a, £}. Therefore,

% min{d (He—u,—u,) + d(He—uy—u))t i, j € [2k1\ {a. )} < d(V1) = cost(P).

Thus, we have that cost(P’) < cost(P), whichis a contradiction, since P is a minimum
k-partition. O

The next two claims will help in arguing properties about the hyperedge ¢ which
will allow us to use the second conclusion of Theorem 1.5. In particular, we will need

Claim 4.5. The following claim will help in proving Claim 4.5.

Claim 4.4 Foreveryi, j € [2k], we have

d(Hc—u; N He—y;) =d(V1) =d(He—y; U Ho—u;)-
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Proof Since (Hc—y; N He—y;, Ho—u; N He—y;) is a (C — u; — uj, T)-terminal cut,
we have that d(Hc—y; N He—y;) = d(Hc—y;—u;). By Claim 4.3, we have that
d(Hc—u;—u;) = d(V1) = d(Hc—y,;). Therefore,

d(He—u; N He—u)) = d(He—up). )
Since (H¢—y; U He_y;, He—y; Y Hc_u_/.) isa (C —uj, T)-terminal cut, we have that
d(Hc—y; U He—y;) = d(He—u;). (3)

By submodularity of the hypergraph cut function and inequalities (7) and (8), we have
that

d(HC—u,') + d(HC—u/‘) = d(HC—u,‘ N HC—uj) + d(HC—u,' U HC—uj)
> d(He 1) + d(Ho—)).

Therefore, inequalities (7) and (8) are equations. Thus, by Claim 4.3, we have that
d(Hc—u; N He—y;) = d(Hc—y;) = d(V1),
and

d(Hc—y; YHc—y;) =d(Hc—y;) = d(V1).

Claim4.5 Foreveryi, j,{ € [2k] withi # j, we have Hc_,, € Hc—y; U Hc_uj.

Proof If ¢ =i or £ = j the claim is immediate. Thus, we assume that £ ¢ {i, j}. Let
Q = Hec_y,\(Hc—y; U Hc_uj). We need to show that Q = (J. We will show that
(Hc—u,\Q, Hc—y,\ @) is aminimum (C —uy, T')-terminal cut. Consequently, Q must
be empty (otherwise, Hc—,,\Q € Hc—y, and hence, (Hc—y,\Q, Hc—y4,\ Q) contra-
dicts source minimality of the minimum (C — ug, T')-terminal cut (Hc_y,, Hc—y,)).

We now show that (Hc—,,\Q, Hc—y,\ Q) is a minimum (C — uy, T)-terminal
cut. Since He—y,\Q = Hc—y, N (He—y; U Hc_uj), we have that C — u; —uj —
ug € Hc_y,\Q. We also know that u; and u; are contained in both Hc_,, and
Hc_y, U Hc_uj. Therefore, C — uy € Hc—y,\ Q. Thus, (Hc—,,\Q, Hc—y,\Q) is a
(C — uyg, T)-terminal cut. Therefore,

d(HCfug N (Hcfu,' ) HCfuj)) = d(Hcfug \ Q) = d(HCfug) )

We also have that (Hc—,, U (Hc—y; U Hc—uj), Hc_y, U (Hc—y; U HC_M_,.)) is a
(C — uj, T)-terminal cut. Therefore, d(Hc—y, U (Hc—y; U He—u;)) = d(Hc—y;).
By Claims 4.3 and 4.4, we have that d(Hc—y,) = d(V1) = d(Hc—y; U He—u)).
Therefore,

d(Hc—u, U (He—y; U He—y;)) = d(He—y; U He—u;)- (10)
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By submodularity of the hypergraph cut function and inequalities (9) and (10), we
have that

d(Hcful) + d(HCﬂt,' U HCfu_,') = d(Hcfu( N (Hcfui U HCfuj))
+ d(HC—ug ) (HC—u,- ) HC—uj))
> d(HC—ug) + d(HC—u,- U HC—uj)-

Therefore, inequalities (9) and (10) are equations, so (Hc—,,\Q, Hc—,,\Q) is a
minimum (C — uy, T)-terminal cut. O

Let R := {uy}, U := V1, and let (A_,-, A;):=(Hc—y,, Hc—y,) forevery i € [2k —
1]. By Lemma 4.1, we have that (A;, A;) is a minimum (C — u;, V)-terminal cut for
every i € [2k — 1]. Moreover, by Claim 4.1, we have that u; € A;\(Uje2k—1\(i}A4/)-
Hence, the sets U, R, and S, and the cuts (A;, A;) fori € [2k—1] satisfy the conditions
of Theorem 1.5. We will use the second conclusion of Theorem 1.5. We now show
that the hyperedge e that we fixed at the beginning of the proof satisfies the conditions
mentioned in the second conclusion of Theorem 1.5. We will use Claim 4.5 to prove
this. Let W := Uj<j<j<ok—1(A; NAj) and Z := ﬂie[zk_l]A_,- as in the statement of
Theorem 1.5.

Claim 4.6 The hyperedge e satisfies the following conditions:

1.eNW #£40,
2. eNZ #W, and
3.e.CWUZ.

Proof 1. By Lemma 4.1, for every i € [2k — 1] we have V| C A, and therefore
Vl C W. Thus, by Observation 4.1, we have that # # e N 71 CenW.

2. By definition, for every i € [2k — 1], we have uox € Hc—y;, = ‘A;, and therefore
usx € Z. Thus, by Observation 4.1, we have that e N Z # @.

3. Foreveryi € [2k — 1],letY; := A; \ W. We note that (Y7, ..., Yor—1, W, Z)isa
partition of V. Therefore, in order to show that e € W U Z, it suffices to show that
eNY; =@ foreveryi € [2k — 1]. By Observation 4.1, we know that e € Hg. We
will show that Hg N'Y; = # for every i € [2k — 1] which implies thate N Y; =
for every i € [2k — 1]. Let us fix an index i € [2k — 1]. We note that

Y,»=A,-\W=Ai\( U <AmAb>)=A,»\( U ((AmAbmAn)

1<a<b<2k—1 1<a<b=<2k—1

= A; \ U (AjNA) | =4\ U Ajl =40 U A;
Jjelk—11\{i) JEE—1N{i) JEk—1N\{i}
=A;N N 4= N 4 |\A.
Jjelk—1\{i) JERE—1N\{)
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Therefore,

jelk—11\{i} Jelk—11\{i}

= ( m HC—u_/) \ (HC—u,- U HC—uzk)~
JelZk=11\{i}

By Claim 4.5, we have that He—y; © He—y; YHC—uy, forevery j € [2k — 1]\{i}.
Therefore, He—y; \(Hc—u; U He—uy,) = ¥ forevery j € [2k — 1]\{i}, and hence,

ﬂ He—y; |\ (He—u; U He—uy,) = 9.
JERk—1]\{i}

Thus, we have Y; N FS = .
[m}

By Claim 4.6, the hyperedge e satisfies the conditions of the second conclusion of
Theorem 1.5. Therefore, by Theorem 1.5, there exists a k-partition P’ with

cost(P)) < %min{d(Ai) +d(Aj) i, jel2k—1],i # j}

=d(Vy) (By Claim 4.3)
= cost(P). (By assumption of the theorem)

Thus, we have obtained a k-partition P’ with cost(P") < cost(P), which is a contra-
diction since P is a minimum k-partition. O

5 Stronger Structural Theorem for k = 2

We prove the stronger version of Theorem 1.3 for k = 2—namely Theorem 1.4—
in this section. We were able to prove Theorem 1.4 via two more techniques that
are different from the one presented in this section—one technique is via a novel
three-cut-set-lemma while the second technique is via the canonical decomposition
of hypergraphs [7, 9, 10, 14]. It is unclear how to generalize both these techniques to
k > 3. Here, we present a proof of Theorem 1.4 that closely resembles the proof of
Theorem 1.3. We give an alternative proof of this theorem based on the three-cut-set-
lemma in Sect. 6.

We will again use the containment lemma (Lemma 4.1) in our proof. We mention
how we obtain the stronger statement relative to Theorem 1.3 in the proof below. We
restate and prove Theorem 1.4 now.

Theorem 1.4 Let G = (V, E) be a hypergraph and P = (V, V») be a minimum cut.
Then, for all non-empty subsets T C V,, there exists a subset S C Vi with |S| < 2 such
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that the source minimal minimum (S, T)-terminal cut (A, A) satisfies 8(A) = 8§(V})
and A C V.

Proof Let us fix an arbitrary non-empty subset T C V; = V5. For a subset X C
Vi, we denote the source minimal minimum (X, 7')-terminal cut by (Hy, H_X). By
Lemma 4.1, for all X € V| we have that Hy € V.If | V]| < 2, then choosing § = V;
proves the theorem. So, we will assume henceforth that |V|| > 3. We will show that
there exists a subset S € Vi with |S| < 2 such that the source minimal minimum
(S, T)-terminal cut (Hs, Hg) satisfies 8(Hs) = 8(V;). This suffices since we have
that Hg C V; for all subsets S € V; (by Lemma 4.1).

We begin with the following useful claim. We note that Claim 5.1 crucially relies
on the fact that V is a part of a minimum cut (i.e, it crucially relies on k = 2)—it does
not hold if V] is a part of a minimum k-partition for £ > 3. Claim 5.1 serves a similar
role in our proof to that of Claim 4.3 in the proof of Theorem 1.3. Unlike Claim 4.3,
Claim 5.1 places no restriction on the size of the sets involved. This is important for
obtaining the stronger structural result of Theorem 1.4. O

Claim 5.1 For every X C Vi, we have that d(Hx) = d(V}).

Proof Since X C V; and T C V,, we have that (Vi, V,) is a (X, T)-terminal cut.
Since (Hyx, Hy) is a minimum (X, T)-terminal cut, we have that d(Hx) < d(V}).
Since (Hy, Hy) is acut, and (V;, V2) is a minimum cut, we have that d(Hx) > d(V}).
Thus, d(Hx) = d(V1). O

For the sake of contradiction, suppose that forevery S € V; with | S| < 2, the source
minimal minimum (S, T)-terminal cut (Hs, Hs) does not satisfy §(Hs) = 8(V).
Our proof strategy is to obtain a cheaper cut than (V7, V»), thereby contradicting the
optimality of (V1, V»).

Let S C V] be a set of size 2 such that Hg is maximal—i.e., there does not exist
S’ C V) of size 2 such that Hy 2 Hg. In contrast to the proof of Theorem 1.3,
where subsets S of size 3 had to be considered, here we only consider subsets S of
size 2. We will see that this suffices to arrive at a contradiction. Let S := {uy, us}. By
assumption, we have that §(Hg) # 6(V}), but by Claim 5.1, we have that d(Hg) =
d(V1). Therefore, § (V1) \ 8 (Hs) is non-empty. Lete € §(V)\§(Hs). Letusz € eNVy.
Let C := {u1, us, u3}. For notational convenience we will use C —u; to denote C \ {u;}
and C — u; —u; to denote C\{u;, u;} foralli, j € [3]. The choice of the hyperedge
e is crucial to our proof—its properties will be used much later in our proof. We
summarize the properties of the hyperedge e here.

Observation 5.1 The hyperedge e has the following properties:

l.enNnVa#0
2. ugeiand
3. e C Hg,

Our strategy to arrive at a cheaper cut than (Vy, V») is to apply the second conclusion
of Theorem 1.5. The next few claims will set us up to obtain sets that satisfy the
hypothesis of Theorem 1.5. We note that the following claim and its proof are identical
to Claim 4.1 and its proof with 2k replaced by 3.
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Claim 5.2 Foreveryi € [3], we have u; ¢ Hc—_,;.

Proof By Observation 5.1 we have u3 € e and e C Hg, so u3 ¢ Hs = He_y;.
Suppose i € [2]. Our proof will rely on the choice of S.

Suppose for contradiction that u; € Hc_,, for some i € [2]. Then we have that
S € Hc—y;,s0 (Hc—y; N Hg, Hc—y; N Hy) is a (S, T)-terminal cut. Therefore,

d(Hc—y; N Hg) > d(Hs). (11)
Also, since (Hc—,; U Hg, Hc—,; U Hg) is a (C — u;, T)-terminal cut, we have that
d(Hc—y, U Hs) = d(Hc—y,). (12)

By submodularity of the hypergraph cut function and inequalities (11) and (12), we
have that

d(Hg) +d(Hc—y;) =z d(Hc—y; N Hs) +d(Hc—y; U Hs)
> d(Hs) +d(Hc—u;)-

Therefore, inequality (11) is an equation, and consequently, (Hc—,,NHs, Hc—,; N Hy)
is a minimum (S, T')-terminal cut. If Hc_,, N Hg C Hg, then this contradicts
the source minimality of the minimum (S, 7)-terminal cut (Hs, Hs). Therefore,
Hc_,;, N Hg = Hg and hence, Hy € Hc_,,;. Also, the vertex u3 is in C — u;
but not in Hg and hence, Hs C Hc—,;. However, |C — u;| = 2. Therefore, the set
C — u; contradicts the choice of S. O

The next two claims will help in arguing properties about the hyperedge e which
will allow us to use the second conclusion of Theorem 1.5. We note the similarity of
Claims 5.3 and 5.4 in this proof to Claims 4.4 and 4.5 in the proof of Theorem 1.3.
In order to prove Claims 4.4 and 4.5, we needed the size of C to be 2k in order to
invoke Claim 4.3. Here, we are able to prove Claims 5.3 and 5.4 with the size of C
being 2k — 1 (for k = 2). This is because we can use Claim 5.1 (which holds only for
k = 2) instead of Claim 4.3, and Claim 5.1 does not require the size of C to be 2k.

Claim 5.3 Foreveryi, j € [3], we have
d(Hc—y; N He—y;) =d(V1) =d(Hc—y; U He—u;)-
Proof Since (Hc—y; N He—y;, Ho—u; N He—y;) is a (C —u; — uj, T)-terminal cut,
we have that d(Hc_y; N Hc,,,j) > d(Hc,ul.,uj). By Claim 5.1, we have that
d(Hc-u;—u;) = d(V1) = d(Hc-y,). Therefore,
d(He—y; N Hey) = d(He ). (13)
Since (He—y; YHc—u;, Hc—u; U He—y;) is a (C —uj, T)-terminal cut, we have that

d(He -y U He ) = d(Heo,)). (14)
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By submodularity of the hypergraph cut function and inequalities (13) and (14), we
have that

d(HC—u,-) +d(HC—uj) > d(HC—ui n HC—uj) + d(HC—u,' U HC—uj)
> d(He—u) +d(He—u,).

Therefore, inequalities (7) and (8) are equations. Thus, by Claim 5.1 we have that
d(H N He ) = d(He ) = d(V1),
and
d(Hc—y; YHc—y;) =d(Hc—y;) = d(V1).
O

The next claim follows from Claim 5.3 similar to the proof of Claim 4.5 from
Claim 4.4 earlier. We include the proof for the sake of completeness.

Claim5.4 Foreveryi, j, ¢ € [31 withi # j, we have Hc—,, € Hc—y; U He_y;.

Proof If £ = i or £ = j the claim is immediate. Thus, we assume that ¢ # i, j. Let
Q = Hc_y,\(Hc—y; U Hc,uj). We need to show that Q = . We will show that
(Hc—u,\Q, Hc—4,\ Q) isaminimum (C —uy, T')-terminal cut. Consequently, Q must
be empty (otherwise, Hc—,,\Q ¢ Hc—y, and hence, (Hc—y,\Q, Hc—y4,\ Q) contra-
dicts source minimality of the minimum (C — ug, T')-terminal cut (Hc—y,, Hc—u,)).

We now show that (Hc—,,\Q, Hc—y,\ Q) is a minimum (C — uy, T')-terminal
cut. Since He—y,\Q = Hc—y, N (He—y; U Hc,uj), we have that C —u; —u; —
ug € Hc—y,\Q. We also know that u; and u; are contained in both Hc—,, and
Hc_,; UHc_y,. Therefore, C — uy € He—y,\ Q. Thus, (Hc—,,\Q, Hc—y,\Q) is a

J
(C — uy, T)-terminal cut. Therefore,

d(Hc—u, N (He—y; U He—y)) = d(He—y, \ Q) = d(Hc—y,)- 15)

We also have that (Hc—y, U (He—y; U He—u;), Ho—u, U (He—u; U He—y;)) 1s @
(C — uj, T)-terminal cut. Therefore, d(Hc—y, U (Hc—y; U He—u;)) = d(Hc—y;).
By Claims 5.1 and 5.3, we have that d(Hc—y,) = d(V1) = d(Hc—y; U He—u;)-
Therefore,

d(HC—ug U (HC—ui U HC—uj)) = d(HC—u,' U HC—uj)' (16)

By submodularity of the hypergraph cut function and inequalities (15) and (16), we
have that

d(HC—ug) + d(HC—u,' U HC—uj) = d(HC—ul N (HC—ul' ) HC—uj))
+ d(Hcfug U (Hcfu,' U Hcfuj)) = d(Hcfu[) + d(HCfu,- U Hcfuj)~
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Therefore, inequalities (15) and (16) are equations, so (Hc—,,\Q, Hc—,,\Q) is a
minimum (C — uy, T)-terminal cut. O

Let R := {u3},U := Vj,and foreveryi € [2],let (4;, A;) := (Hc—u;, Hc—y;). By
Lemma 4.1, we have that (A_i, A;) is a minimum (C — u;, V»)-terminal cut for every
i € [2]. Moreover, by Claim 5.2, we have that u; € A; \ A3—;. Hence, the sets U, R,
and S, and the cuts (4;, A;) fori € [2] satisfy the conditions of Theorem 1.5. We will
use the second conclusion of Theorem 1.5. We now show that the hyperedge e that
we fixed at the beginning of the proof satisfies the conditions mentioned in the second
conclusion of Theorem 1.5. We will use Claim 5.4 to prove this. Let W := A1 N Ay
and Z := A N A, as in the statement of Theorem 1.5.

Claim 5.5 The hyperedge e satisfies the following conditions:

l.eNW #0,
2. eNZ #W, and
3.eCWUZ.

Proof 1. By Lemma 4.1, for every i € [2] we have V; C A;, and therefore V, C W.
Thus, by Observation 5.1, we have that § e NV, Ce N W.

2. By definition, forevery i € [2], wehave uz € Hc—,;, = A;, and therefore u3 € Z.
Thus, by Observation 5.1, we have that e N Z # (.

3. Foreveryi € [2],let ¥; := A; \ W. We note that (Y1, Y2, W, Z) is a partition of
V. Therefore, in order to show that e C W U Z, it suffices to show thate N Y| =
e N Y, = (). By Observation 5.1, we know that e C FS We will show that
HsNY; = ¢ for every i € [2] which implies that e N Y; = ¢ for every i € [2].
Letus fix ai € [2]. We note that

Y, =A\W=A4\(A1NA) =A;\As_; = A; N A3, = A3 \ A;.

Therefore,

Yi NHs = (A3_; \ Aj) N Hg = (A3_; \ A;) \ Hs = Hc—yy_; \ (He—u; U Ho—y3) -

By Claim 5.4, we have that Hc_,,_, € Hc_,; U Hc_,;. Therefore,
HC—u37i \ (HC—M,' U HC—M3) =0.

Thus, for every i € [2], we have ¥; N Hg = 0.
O

By Claim 5.5, the hyperedge e satisfies the conditions of the second conclusion of
Theorem 1.5. Therefore, by Theorem 1.5, there exists a cut (V/, Vz/) with

1
cost(V{, V3) = d(V{) < S(d(AD) +d(A2) = d(V1).

@ Springer



C. Beideman et al.

The last equality above is by Claim 5.1. Thus, we have obtained a cut (V}, V;) with
d(Vl’) < d(Vy), which is a contradiction since (V1, V») is a minimum cut. O

6 Alternative Proof of Stronger Structural Theorem for k = 2

In this section we give an alternative proof of Theorem 1.4. This alternative proof
was the first proof that we discovered for Theorem 1.4, however we are unable to
generalize its proof technique to k > 2 (i.e., to prove Theorem 1.3). We present this
alternative proof since we believe that it is based on a novel 3-cut-set lemma which
may be of independent interest. Moreover, it is self-contained and does not rely on
Theorem 1.5 (as opposed to the proof presented in Sect.5).

Notation. Let G = (V, E) be a hypergraph and let R, S, T, U < V be subsets of
vertices. We define

E[S]:={ec€ E:eC S},

ES,T)={ecE:eCSUTandeNnS,eNnT # @},

ElS, T, U):={eecE:eCSUTUUandeN S,enNT,enU # @}, and
ER,S, T, U):={ec E:eCRUSUTUUandeNR,eNS,enNT,enU # 0}.

Our proof approach is similar to the one used in [17] to prove an analogous structural
theorem for graphs. Their proof relies on the submodular triple inequality which states
that for every graph G = (V, E) and every X, Y, Z C V, we have

d(Y N2\ X)+d(XNZ)\Y)+d(XNY)\ Z)
+d(V\ (XUYUZ)) <d(X)+d¥)+d(Z).

Unfortunately, the submodular triple inequality fails to hold in hypergraphs (e.g.,
consider a hypergraph G = (V, E) where V = {1,2,3,4}, and E = {V}, with
X ={1,2},Y ={1, 3}, and Z = {2, 3}). Our proof of Theorem 1.4 instead relies on
the following novel Hypergraph 3-cut-set lemma.

Lemma 6.1 (Hypergraph 3-cut-set lemma) Let G = (V, E) be a hypergraph, and let
X,Y,Z C V benon-empty and pairwise disjoint sets such that (X, Y), (Y, 7), (Z, 7),
(XUY,XUY),(XUZ,XUZ),YUZ,YUZ),and ( XUYUZ,XUY UZ)are
all minimum cuts. Then,

8(X) =8(Y) = 8(2).

Proof Let W := XUYUZ. Since (XUY U Z,XUY UZ) is a minimum cut,
W # @. Since (X, 7) and (X U Y, X UY) are both minimum cuts, we have that
d(X) = d(X UY). The hyperedges which are in §(X) but not §(X U Y) are the
hyperedges of E(X, Y). The hyperedges which are in §(X U Y) but not §(X) are the
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hyperedges of E(Y, Z), E(Y, W) and E(Y, Z, W). Thus, we have that
IEX, V)| =|EX,2)|+I|EXY,W)|+I|EX, Z, W)|. (17

We can symmetrically derive versions of Eq. (17) for |E(X, Z)|, |E(Y, X)|,
|E(Y, Z)|, |E(Z, X)|, and |E(Z, Y)|. Summing these six equations together we have
that

> |E(A, B)| = > |E(A, B)|

A,Be(X,Y,Z},A#B A,Be(X,Y,Z},A#B

+ > (IE(A, W)| + |E(A, B, W)]).
A,Be{X,Y.,Z},A#B

Thus, we have that

> (IE(A, W)| +|E(A, B, W)]) = 0.
A,Be{X,Y,Z},A#B

Therefore we have that for every A, B € {X,Y,Z} with A # B, E(A,W) =
E(A, B, W) = (. Therefore, we have that

d(X) =E(X, V)| + |EXX, Z)| +|E(X, W)]|
+HIEX, Y, )|+ |EX, Y, W)| + |E(X, Z, W)| +|E(X, Y, Z, W)
=EX, D+ |EX, |+ |EX,Y, Z)|+ |EXX, Y, Z, W)|.

We also have that

d(XUYUZ)=I|EX, W)|+|EY, W)|+|EZ, W)|+|EX,Y, W)
FHIEX,Z W+ EXY,Z, W)+ [EX, Y, Z, W)| = |E(X.Y,Z,W)|.

Since (XUYUZ, X UY U Z) is aminimum cut, we have thatd (X) = d(XUYUZ).
Thus, by the two equations above, we have that
IEX, DI+ IEX, 2|+ |EX, Y, )|+ |EX,Y,Z,W)|=|EX,Y,Z, W)|.
Thus,
|[E(X,Y)|+|EX,Z2)|+|E(X,Y,Z)|=0.

Therefore, we have that E(X,Y) = E(X,Z) = E(X,Y,Z) = (. By a symmetric
argument, we can conclude that E(Y, Z) = (. Then, we have that

S(X)=8(Y)=8(Z)=8(XUYUZ) =EX,Y,Z, W).
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O

We will repeatedly use the well-known uncrossing result given in Lemma 6.2 below.
We present a proof for the sake of completeness. We emphasize that the lemma relies
only on the submodularity of the hypergraph cut function and in fact, holds even for
submodular functions. We say that two sets A, B cross if AN B, AN B, AN B, and
A N B are all non-empty.

Lemma6.2 Let G = (V, E) be a hypergraph. Let A, B C VandP C S € ANB,
WCTC A N B be sets such that (A, A) and (B, B) are minimum (S, T)-terminal
cuts. If A and B cross, then (AN B, AN B) and (A U B, AU B) are also minimum
(S, T)-terminal cuts.

Proof Since S € AN B and T C AN B, we have that (AN B, AN B) and (AU
B, AU B) are (S, T)-terminal cuts. Since (A, A) and (B, B) are minimum (S, T)-
terminal cuts, we have that

d(A)+d(B) <d(ANB)+d(AU B).

Since the cut function of a hypergraph is submodular, we also have that
d(ANB)+d(AUB) <d(A)+d(B).

Thus, we conclude that
d(ANB)+d(AUB) =d(A) +d(B),

and therefore (AN B, AN B) and (AU B, A U B) are both minimum (S, 7)-terminal
cuts. m}

Corollary 6.1 Let A, B C V be sets such that (A, A) and (B, B) are minimum cuts.
If A and B cross, then (AN B, AN B) and (AU B, AU B) are also minimum cuts.

We now restate and prove Theorem 1.4.

Theorem 1.4 Let G = (V, E) be a hypergraph and P = (V, V») be a minimum cut.
Then, for all non-empty subsets T C V,, there exists a subset S C Vi with |S| < 2 such
that the source minimal minimum (S, T)-terminal cut (A, A) satisfies §(A) = §(Vy)
and A C V.

Proof LetT C V bearbitraryandlet’H := {U C V\T : (U, U) is a minimum cut in G}l.
Suppose for contradiction that the theorem does not hold for some V| € H. For every
a,b € Vi, let H,, be the minimal set in H such that a, b € H,p and 8 (Hyp) # 6(Vy)
(a set Hyp with a, b € Hyp and 8(Hgp) # 8(V7) exists since we have assumed that
the theorem does not hold for Vy). O

Claim 6.1 H,;, C V| foreverya,b € V).
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Proof Suppose for contradiction that there exist a, b € Vj such that Hg SZ V.
Then H,, NV # @.If Hy, N Vi = @, then Vi € H,y, and hence, Vi contradicts the
minimality of H,. So, HupNV, # @.Sincea € Hyp,NVy,and T C H,, NV}, the sets
H,p, and V7 cross. Consequently, by Corollary 6.1, the partition (H,p NV, Hap N V1)
is also a minimum cut, and thus H,, N V| € ‘H. This contradicts the minimal choice
of Hyp. O

Claim 6.2 There exist distinct vertices x,y,z € Vi such that x ¢ Hy,, y ¢ H,,
z & Hyy, and the three hyperedge sets §(Hyy N Hy;), 8(Hyy N Hy;), and 8(Hy; N Hy;)
are not all equal.

Proof Leta, b € V| be vertices such that | H,p| is maximum. By the definition of H,p,
we have that §(H,p) # 8(V1), and since (Hgp, Hyp) 1S @ minimum cut we must have
d(Hgp) = d(Vy). Therefore, §(V1)\8(Hup) # @, so let e € §(V1)\§(Hyp), and let
z € eN V. By Claim 6.1, we have that H,;, € Vj.Sincez € eand e € §(V1)\§(Hyp),
we have that z ¢ H,p. Let p € Hyp, be a vertex such that |Hp; N Hgp| is maximum.
Since z € Hy;\Hyp, we have that Hy, # H);. Thus, by the choice of a and b, we
have that Hy, ¢ Hp.. Therefore, Hyp\Hp; # @. Let y € Hyp\ Hp,. By our choice of
p, we have that |Hp,, N Hyp| > |Hy; N Hypl. Since y € (Hy; N Hyp)\(Hp, N Hyp),
we have that (Hp; N Hyp)\Hy; # 0. Let x € (Hp, N Hyp)\Hy;.

We now analyze relationships between some of the sets that we have defined. O

Proposition 6.1 y ¢ H,.

Proof Suppose for contradiction that y € Hy,. Then, since y ¢ Hp;, we have that
H,. N H_pz # 1. By the choice of p, we have that |Hp, N Hyp| > |Hy; N Hypl. Since
y € (Hy; N Hyp)\Hp;, we have that (Hp,; N Hyp)\Hy; # 0. Thus, Hy; N Hp, # 0.
Since z € Hy,NH,,, wehave H,,NH,, # (). By Claim 6.1, we haveH_xzﬂH_pz # 0.
Thus, Hy; and Hp; cross. Therefore, by Corollary 6.1, we have H,, N H,, € H. Since
Hy;, NHp; C Hy;and x, z € Hy; N H_, by the choice of x and z, the set H,; N H),
contradicts the minimality of H,,. Therefore, we conclude that y ¢ H,. O

Proposition 6.2 H,, C H.

Proof Suppose for contradiction that Hy, ¢ Hgp. By our choice of a, b, we cannot
have H,, C H,y either. We know that x, y € Hyy, N Hyp, and since Hyy, Hyp € Vi
(by Claim 6.1), we have that Hy, N Hyp # 0. Therefore, Hyy and Hyp, cross. Thus,
by Corollary 6.1, we have that Hy, N Hy, € H. Since Hyy N Hyp C Hyy and x,y €
Hgup N Hyy, we have that the set H,, N Hy, contradicts the minimality of Hyy. Thus,
we conclude that Hy, C Hgp. O

We now show that x ¢ Hy,, y ¢ Hy,, and z ¢ Hy,. We have the following facts:

1. By our choice of x, we have that x ¢ H,;.

2. By Proposition 6.1, we have that y ¢ H,,.

3. By our choice of z, we have that z ¢ H,, and therefore by Proposition 6.2, we
have that z ¢ H,y.
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Finally we note that the hyperedge e which we selected when choosing z contains
both z and some vertex r in Vi . By definition, we have that 7 € H,, Hy,.ByClaim6.1,
Hy;, Hy; € V. Therefore, e € §(Hy, N Hy;). By Claim 6.1, we have that H,;, C
Vi, and hence, r ¢ Hg,,. However, by choice of e, we have that e ¢ §(H,p), and
hence e N H,, = @. Therefore, by Proposition 6.2, we have that e N Hy, = ¥, and
hence e N (Hyy N Hy;) = . Thus, e ¢ §(Hyy N Hy;). Therefore, we conclude that
8(Hy; N Hy;) # §(Hyy N H,y;), and hence the sets 6 (Hyy N Hy;), §(Hyy N Hy;), and
8(H,; N Hy;) are not all equal. This completes the proof of Claim 6.2. O

Claim6.3 Letx,y,z € V| be such that x ¢ Hy,, y ¢ Hy,, and z ¢ Hyy. Then
ny \ (sz ) Hyz) = sz \ (ny U Hyz) = Hyz \ (ny U sz) =40.

Proof We will prove that H,,\(H,;U Hy;) = . The arguments for H,;\(H., U H,;)
and Hy,\(Hyy U Hy;) are similar.

Let Q := Hyy\(Hy; U Hy;). We note that x € Hyy, N H,;, and therefore Hy,\Q
is non-empty. Therefore (Hy,\Q, Hyy\ Q) is a cut. Since (Hyy, %) is a minimum
cut, this means that

d(Hyy) < d(Hyy \ Q). (18)

The hyperedges which are in §(H,y) but not in §(Hy \ Q) are the hyperedges in
E(Q, m). The hyperedges which are in § (Hy, \ Q) butnot 6 (H,y) are the hyperedges
in E(Q, Hyy\ Q). Thus, inequality (18) implies that

|E(Q, Hyy)| < |E(Q, Hyy \ Q). 19)

Next we note that x € Hy,\H,;, y € Hy;\Hy;, z € Hy; N Hy;, and, by Claim 6.1,
Vi € Hy. N H_yz Therefore, Hy, and Hy; cross. Thus, by Corollary 6.1, we have that
H,;UHy, € H.If O = ¢ we are done. Otherwise, we have that Hy, N (H,, U Hy;) =
Q # 0,y € HyyN(Hy;UHy;),z € HeyN(Hy,UH,y;),and Vi € HyyN(Hy, U Hy).
Thus, Hyy and Hy, U Hy, cross. Therefore, by Corollary 6.1, we have that H,, U H,, U
Hy, € H. Therefore, we have that

d(H¢; UHy;) =d(Hy,y UH; UHy) =d(QU (H,; UH,yy)). (20)

Since Q and H,; U H,, are disjoint, we have that the hyperedges which are in 6 (H,; U

Hy,;) butnotin §(Q U (H,; U Hy,)) are the hyperedges of E(Q, H,; U Hy;), and the

hyperedges which are in § (Q U (H,; U H,;)), but not § (Hy, U Hy;) are the hyperedges
of E(Q, Hyy U Hy; U Hy;). Thus, Eq. (20) implies that

[E(Q, szUHyz)l = |E(Q, nyUszUHyZ)L (21)

Therefore, we have that

|E(Q, Hyy)| > |E(Q, Hyy U Hy; U Hy)|
= |E(Qs sz U Hyz)|
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> |E(Q, (Hy; U Hy;) N Hyy)l
= |E(Q, Hyy \ Q)|
> |E(Q, Hyy)l.

Here the equation on the second line comes from Eq. (21) and the inequality on the last
line comes from Inequality (19). Since the first and last terms in the inequality chain are
the same, equality holds throughout. Therefore, |E(Q, Ky)l = |E(Q, Hxy\Q)|, and
sod(Hyy) = d(Hyy\ Q). Thus, Hyy\Q € H.Sincex,y € Hy;UHy;,x,y € Hy,\OQ.
Furthermore Hy,\Q € Hyy. Since Hyy is a minimial element of H containing x and
v, it must be that Hyy \ Q = Hy,, and thus Q = ¢. |

The next claim completes the proof of Theorem 1.4, because the conclusion of this
claim is in direct contradiction with the conclusion of Lemma 6.1. O

Claim 6.4 There exist non-empty and pairwise disjoint sets X, Y, Z < V| such that
X, Y, Z,XUY XUZYUZ XUYUZe€Hand§(X),5),58(Z) are not all
equal.

Proof Let x,y,z € Vi be such that x ¢ Hy,, y ¢ Hy;, and z ¢ H,,, and the three
hyperedge sets § (Hyy N Hy;), §(Hyy N Hy;), and § (H,; N Hy;) are not all equal. Such
x,y, z exist by Claim 6.2. Let

X' := Hyy N Hy,
Y':= H, N Hy,, and
Z' = H.; N H,y,.

By Claim 6.3, we have that H,,\(Hy,UH,;), Hy;\(HyyUH,;), and Hy,\(Hy,UHy;)
are all empty, and hence Hy, = X'UY', H,;, = X'UZ',and Hy, = Y' U Z'. Let

U := Hyy N Hy, N Hy,
W :=H,, UH,, U H,,,

X:=X\U,
Y :=Y'\U, and
Z:=7\U.

Since H,y, and H,; cross (because x € Hyy, N Hy;, y € Hy,\Hy;, and z €
H. \H,y), we have that X" € H. Since x ¢ H,, we have that x ¢ U, and hence
x € X,so0 (X, 7) is a cut. Therefore,

d(X) > d(X"). (22)

The hyperedges which are in §(X) but not §(X”) are the hyperedges of E(X, U). The
hyperedges which are in §(X”) but not § (X) are the hyperedges of E(U, Y), E(U, Z),
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EWU,W), E(U,Y,Z2), EU,Y,W), E(U,Z,W), and E(U,Y,Z,W). Thus, Eq.
(22) implies that

IE(X, )| = |[EU. )|+ EU, DI+ |EU, W)+ |EU.Y,Z)|+ |EWU, Y, W)|
+I|EWU,Z, W)+ |EWU,Y,Z, W)

We can derive symmetric inequalities for |E(Y, U)| and |E(Z, U)| by exchanging
variable names in the preceding argument. Summing these three inequalities together,
we have that

Yo IEA D=2 Y (EAU)+IEA U W) +3EU, W)
Ae(X,Y.Z) Ae(X,Y.Z}

+|EWU,X,Y)|+|EWU,X,Z2)|+|EWU,Y, Z)|
+|EU, X, Y, W)|+|EWU,X,Z,W)|+|EWU,Y,Z, W)|.

Subtracting |E(X,U)| + |[E(Y,U)| + |E(Z, U)| from both sides of this inequal-
ity, we have that E(U, X), E(U,Y), E(U, Z2), E(U,W),E(U,Y,Z), E(U,Y, W),
EWU,Z,W),and E(U,Y, Z, W) are all empty. Thus, §(X) = §(X’),so X € H. Sim-
ilarly, all of the hyperedges in §(X’ U Y") which are not in §(X U Y) are from sets that
we have concluded are empty, so §(XUY) = §(X'UY') = §(H,,). Thus, XUY € H.
Symmetrically, Y, Z, XUZ, and YUZ are all in H as well. Since XUY and Y UZ cross,
we have that XUYUZ € H, by Corollary 6.1.Sincex € X,y e Y,z€ Z,X,Y,and Z
are all non-empty. By definition, X, Y, and Z are disjoint. Since {§(X), §(Y), §(Z2)} =
{8(X"),8(Y"),8(Z")} = {8(Hxy N Hy;), 8(Hyy N Hy;),8(Hy, N Hy;)}, we have that
the three hyperedge sets 6(X), §(Y), §(Z) are not all equal, by the guarantee that we
obtained from Claim 6.2. Thus, X, Y, Z satisfy the conditions of the claim we are
proving. O

7 Conclusion and Open Problems

Several works in the literature have approached global cut and partitioning problems
via minimum (S, T')-terminal cuts (e.g., see [3, 4, 17, 18, 35]). Our work adds to
this rich literature by showing that ENUM- HYPERGRAPH- k- CUT can be solved via
minimum (S, T')-terminal cuts. In addition to the first deterministic polynomial-time
algorithm for solving ENUM- HYPERGRAPH- k- CUT, one of the main contributions of
this work is an elegant explanation for the number of minimum cut-sets in a n-vertex
hypergraph being at most (;) and a simple approach to enumerate all of them in a given
hypergraph in deterministic polynomial time based on minimum (S, 7')-terminal cuts.
We note that our deterministic run-time to solve ENUM- HYPERGRAPH- k- CUT is
nO®) p, where p is the size of the input hypergraph. Subsequent to the present work,
we improved the deterministic run-time to n°® p in a separate paper [2]. In that paper,
we strengthened Theorem 1.3 in a way that allowed it to solve ENUM- HYPERGRAPH-
k- CUT as well as to enumerate all minmax k-cut-sets (a k-cut-set F C FE of a
hypergraph H = (V, E) isaminmax k-cut-set if there exists a partition V1, Vo, ..., Vi
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of V such that max; e« 18 (Vi)| < max;e) 6(P;)| for every partition Py, Pa, ..., Py
of Vand F =6(Vy, ..., V).

‘We mention an open question raised by our work. For a long time, the known upper
bound on the number of minimum k-partitions in connected graphs was O (n*~2) [6,
29, 39] while the known lower bound was €2 (n¥) (cycle), where n is the number of
vertices in the input graph. A recent result improved the upper bound to O (n¥) for
fixed k which also resulted in a faster randomized algorithm to solve GRAPH- k- CUT
for fixed k [19, 23]. We currently know that the number of minimum k-cut-sets in
hypergraphs is O (n?*=2) and is Q(n*) (the lower bound comes from graphs). Can
we improve the upper bound on the number of minimum k-cut-sets in hypergraphs to
0 (n*)?
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A Proof of Theorem 1.5

We prove Theorem 1.5 in this section. We will need certain partition uncrossing and
partition aggregation results from [4] that rely on more careful counting of hyperedges
than simply employing the submodularity inequality. We begin with some notation
that will help in such careful counting—our notation will be identical to the notation in
[4]. Let (Y1, ...,Y,, W, Z) be apartition of V. We recall that cost(Y1, ..., Y, W, Z)
denotes the number of hyperedges that cross the partition. We define the following
quantities:

1. Letcost(W,Z) :={e | e CWUZ,eNW # @, e Z # @} be the number of
hyperedges contained in W U Z that intersect both W and Z.

2. Leta(Yy, ..., Y,, W, Z) be the number of hyperedges that intersect Z and at least
two of the setsin {Y1, ..., Y,, W}.

3. Let B(Y1,...,Yp, Z) be the number of hyperedges that are disjoint from Z but
intersect at least two of the sets in {Y1, ..., Y,}.

Forapartition (Y1, ..., Yy, W, Z), we will be interested in the sum of cost(Y1, ..., ¥p,

W, Z) with the three quantities defined above which we denote as o (Y1, ...,Y,, W,

Z),i.e.,

oY1,....Yp, W, Z) :=cost(Yy,...,Y,, W, Z) + cost(W, Z)
+a(Y]5""Yp5 W7 Z)+,B(Y],...,YP,Z).
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The precise interpretation of the quantity o (Y1, ..., Y,, W, Z) will not be important
for our purposes—see [4] for the interpretation.

The following result from [4] shows that a collection of sets can be uncrossed
to obtain a partition with small o-value. We note the similarity of the hypothesis of
Lemma A.1 with the hypothesis of Theorem 1.5 and once again, refer to Fig. 1 for an
illustration of the sets that appear in the statement of Lemma A.1.

LemmaA.l [4]. Let G = (V, E) be a hypergraph and % # R C U C V. Let

S={uy,...,up} CU\Rfor p > 2. Let (A;, A;) be a minimum ((S U R)\{u;}, U)-
terminal cut. Suppose that u; € A;j\(Ujepn\(iyA ;) for everyi € [p]. Let

Z:=0"_|Ai, W:=Uicicj<p(A;NA)), and Y; := A; — W Vi € [p].
Then, (Y1,...,Y,, W, Z) is a (p + 2)-partition of V with
o(Yi,....Yp, W, Z) <min{d(A;) +d(Aj) : i, ] € [pl.i # j}.

Moreover, if p = 2, then the above inequality is an equation.

The next lemma from [4] will help in aggregating the parts of a £-partition P where
£ > 2k to a k-partition KC while controlling the cost of .

LemmaA.2 [4]. Let G = (V, E) be a hypergraph, k > 2 be an integer, and
Y1,...,Yp, W, Z) be a partition of V for some integer p > 2k — 2. Then, there
exist distinct iy, ..., ix—1 € [p] such that

Zcost(Y;],...,Y,-k_l,V\(U/j‘.;}Y,-j)> <cost(Yy,..., Yp, W, 2Z) +a(Yy,..., Yy, W, 2)

We now restate and prove Theorem 1.5.

Theorem 1.5 Let G = (V, E) be a hypergraph, k > 2 be an integer and ) # R C
UCV.LetS={uy,...,up} SU\Rfor p > 2k — 2. Let (A;, A}) be a minimum
((SUR)\{u;}, U)-terminal cut. Suppose that u; € AN\WUjep\(i}Aj) foreveryi € [p].
Then, the following two hold:

1. There exists a k-partition (P, ..., Py) of V with U C Py such that

1
cost(Py...... Po) < 5 min{d(Ap) +d(A)) i, j € [pli # j).

2. Moreover, if there exists a hyperedge e € E such that e intersects W =
Ul<i<j<p(Ai N Aj), e intersects Z := Njg[p)A;, and e is contained in W U Z,
then the inequality in the previous conclusion is strict.

Proof For the first conclusion of the theorem, we will use the same proof that appeared
in [4]. We need the details of this proof to prove the second conclusion of the theorem.
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We begin by proving the first conclusion. By applying Lemma A.1, we obtain a
(p + 2)-partition (Y1, ..., Y, W, Z) such that

o(Y,..., Yy, W, Z) <min{d(A;) +d(A}) :i, j € [pl,i # j}

and moreover, U C W, where Yi = A;—Wioralli € [p], W =Ui<i<j<p(A;NAj),
and Z = ﬂie[p]A_,-. We recall that p > 2k — 2. Hence, by applying Lemma A.2 to the
(p +2)-partition (Y1, ..., Y,, W, Z), we obtain a k-partition (Py, ..., Py) of V such
that WU Z C P, and

cost(Py, ..., Py) < %(cost(Yl,...,Yp,W, ) +aYi, ... Y, W, 2) + B(Y1,.... Y, 2))
(23)
< %(cost(Yl,...,Yp, W,Z)+cost(W,Z) +a(Yy,...,Y,, W, Z)
+B(Y1, ..., Yp, 2)) (24)
= %a(yl,...,yp, W, Z) (25)
< %min{d(Ai) +d(Ap) i, jelpli#j} (26)

We note that U is strictly contained in Py since UUZC WUZ C Pyand Z is
non-empty.

We now prove the second conclusion of the theorem. If there exists a hyperedge
e € E such that e intersects W, e intersects Z, and e is contained in W U Z, then
cost(W, Z) > 0. Consequently, inequality (24) in the above sequence of inequalities
should be strict. O
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