&lnfgfm’sv MATHEMATICS OF OPERATIONS RESEARCH

Articles in Advance, pp. 1-23
https://pubsonline.informs.org/journal/moor ISSN 0364-765X (print), ISSN 1526-5471 (online)

Counting and Enumerating Optimum Cut Sets for Hypergraph
k-Partitioning Problems for Fixed k

Calvin Beideman,® Karthekeyan Chandrasekaran,®* Weihang Wang?

@University of Illinois Urbana-Champaign, Urbana, Illinois 61801
*Corresponding author
Contact: calvinb2@illinois.edu (CB); karthe@illinois.edu, () https: // orcid.org/0000-0002-3421-7238 (KC); weihang3@illinois.edu (WW)

Received: September 8, 2022 Abstract. We consider the problem of enumerating optimal solutions for two hypergraph
Revised: April 28, 2023 k-partitioning problems, namely, HYPERGRAPH-k-CUT and MmNMAX-HYPERGRAPH-k-PARTITION.
Accepted: October 30, 2023 The input in hypergraph k-partitioning problems is a hypergraph G = (V, E) with positive
Published Online in Articles in Advance: hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V
December 13, 2023 into k nonempty parts (V1,Va,..., Vy)—known as a k-partition—so as to minimize an
MSC2020 Subject Classifications: Primary: objective of interest. (1) If the objective of interest is the maximum cut value of the parts,
68R10, 05C65 then the problem is known as MiNMax-HYPERGRAPH-k-PARTITION. A subset of hyperedges

is a MINMAX-k-CUT-SET if it is the subset of hyperedges crossing an optimum k-partition for
https://doi.org/10.1287/moor.2022.0259 Minmax-HyPERGRAPH-k-PARTITION. (2) If the objective of interest is the total cost of hyperedges

crossing the k-partition, then the problem is known as HYPERGRAPH-k-CUT. A subset
of hyperedges is a MiN-k-cut-sET if it is the subset of hyperedges crossing an optimum
k-partition for HYPERGRAPH-k-CUT. We give the first polynomial bound on the number of MIN-
Max-k-cuT-seTs and a polynomial-time algorithm to enumerate all of them in hypergraphs
for every fixed k. Our technique is strong enough to also enable an n°®p-time deterministic
algorithm to enumerate all MIN-k-CUT-SETs in hypergraphs, thus improving on the previously
known n°%)p-time deterministic algorithm, in which 1 is the number of vertices and p is
the size of the hypergraph. The correctness analysis of our enumeration approach relies on
a structural result that is a strong and unifying generalization of known structural results
for HYPERGRAPH-k-CUT and MiNMAX-HYPERGRAPH-k-PARTITION. We believe that our structural
result is likely to be of independent interest in the theory of hypergraphs (and graphs).

Copyright: © 2023 INFORMS

Funding: All authors were supported by NSF AF 1814613 and 1907937.

Keywords: hypergraphs « k-partition problems o algorithms « enumeration

1. Introduction

In hypergraph k-partitioning problems, the input consists of a hypergraph G = (V, E) with positive hyperedge costs
c:E— R, and a fixed positive integer k (e.g., k =2,3,4,...). The goal is to find a partition of the vertex set into k
nonempty parts V1, V5, ..., Vi so as to minimize an objective of interest. There are several natural objectives of inter-
est in hypergraph k-partitioning problems. In this work, we focus on two particular objectives, MiNnMAX-HYPER-
GRAPH-k-PARTITION and HYPERGRAPH-K-CUT:

1. In MmnmaX-HYPERGRAPH-k-PARTITION, the objective is to minimize the maximum cut value of the parts of the k-
partition—that is, minimize max‘_,c(6(V;)); here, 5(V;) is the set of hyperedges intersecting both V;and V'\ V;, and
c(6(Vi)) = > pesvycle) is the total cost of hyperedges in 6(V;).

2. In HypercraprH-k-CuT,' the objective is to minimize the cost of hyperedges crossing the k-partition—that is,
minimize c(6(V1, ..., Vi)); here, 5(V1,..., Vi) is the set of hyperedges that intersect at least two sets in {V1,..., Vi},
and c(6(V1, ..., Vi) = X pesvy,.. vyCle) is the total cost of hyperedges in 6(V7, ..., Vi).

If the input G is a graph, then we refer to these problems as MiNnmaX-GRAPH-k-PARTITION and GRaPH-k-CUT, respec-
tively. We note that the case of k=2 corresponds to global minimum cut in both objectives. In this work, we focus
on the problem of enumerating all optimum solutions to MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT.

1.1. Motivations and Related Problems

We consider the problem of counting and enumerating optimum solutions for partitioning problems over hyper-
graphs for three reasons. First, hyperedges provide more powerful modeling capabilities than edges, and conse-
quently, several problems in hypergraphs become nontrivial in comparison with graphs. Although hypergraphs
and partitioning problems over hypergraphs (including Minmax-HYPERGRAPH-k-PARTITION) are discussed as early as

mailto:calvinb2@illinois.edu
mailto:karthe@illinois.edu
https://orcid.org/0000-0002-3421-7238
mailto:weihang3@illinois.edu
https://doi.org/10.1287/moor.2022.0259

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
2 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

1973 by Lawler [45], most of these problems still remain open. The powerful modeling capability of hyperedges
has been useful in a variety of modern applications, which, in turn, has led to a resurgence in the study of hyper-
graphs with recent works focusing on min-cuts, cut-sparsifiers, spectral-sparsifiers, etc. (Bansal et al. [6], Beideman
et al. [7], Chandrasekaran and Chekuri [13], Chandrasekaran et al. [16], Chekuri and Xu [18], Chen et al. [20], Fox
et al. [24], Ghaffari et al. [25], Kapralov et al. [37], Kogan and Krauthgamer [44], Soma and Yoshida [58]). Our work
adds to this rich and emerging theory of hypergraphs.

Second, hypergraph k-partitioning problems are special cases of submodular k-partitioning problems. In sub-
modular k-partitioning problems, the input is a finite ground set V, a submodular function” f : 2 — R provided by
an evaluation oracle,” and a positive integer k (e.g., k =2,3,4,...). The goal is to partition the ground set V into k
nonempty parts V1, Vs, ..., Vi so as to minimize an objective of mterest Two natural objectives are of interest: (1) in
MINMAX-SUBMOD-k- PARTITION the objective is to minimize maxt_, f(V;), and (2) in MiNsum-SuBMOD-k-PARTITION, the
objective is to minimize Zl Lf(V)).If the given submodular function is symmetric,* then we denote the resulting pro-
blems as MNnMAX-SyMSUBMOD-k-PARTITION and MINSUM-SYMSUBMOD-k-PARTITION, respectively. Because the hypergraph
cut function is symmetric submodular, it follows that MiNnMAX-HYPERGRAPH-k-PARTITION is a special case of MINMAX-SyM-
SuBMOD-k-PARTITION. Moreover, HYPERGRAPH-k-CUT is a special case of MINSUM-SUBMOD-k-PARTITION (this reduction is
slightly nontrivial with the submodular function in the reduction being asymmetric—e.g., see Okumoto et al. [52] for
the reduction). Queyranne [54] claimed, in 1999, a polynomial-time algorithm for MmNsuM-SymSuBMOD-k-PARTITION
for every fixed k; however, the claim was retracted subsequently (see Guinez and Queyranne [28]). The complexity
status of submodular k-partitioning problems (for fixed k > 4) are open, so recent works focus on hypergraph
k-partitioning problems as a stepping-stone toward submodular k-partitioning (Beideman et al. [7], Chandrase-
karan and Chekuri [12, 13], Guinez and Queyranne [28], Okumoto et al. [52], Zhao [62], Zhao et al. [63]). Our
work contributes to this stepping-stone by advancing the state of the art in hypergraph k-partitioning problems.
We emphasize that the complexity status of two other variants of hypergraph k-partitioning problems that are
also special cases of MINsUM-SUBMOD-k-PARTITION are still open: namely, HYPERGRAPH-k-PARTITION in which the
objective is to minimize the sum of the cut values of the k parts and NOrRMALIZED-COVERAGE-k-PARTITION in which
the objective is to minimize the sum of cost of hyperedges relative to the partition P, where the cost of a hyper-
edge e relative to P is c(e)(£ — 1) with £ being the number of parts of P intersected by e (see Okumoto et al. [52],
Zhao [62], Zhao et al. [63] for these variants).

Third, counting and enumeration of optimum solutions for graph k-partitioning problems are fundamental to
graph theory and extremal combinatorics. They have found farther reaching applications than initially envisioned.
We discuss some of the results and applications for k=2 and k> 2 now. For k=2 in connected graphs, it is well-

known that the number of min-cuts and of a-approximate min-cuts are at most (Z) and O(n**), respectively, and

they can all be enumerated in polynomial time for constant «. These combinatorial results are the crucial ingredi-
ents of several algorithmic and representation results in graphs. On the algorithmic front, these results enable fast
randomized construction of graph skeletons, which, in turn, play a crucial role in fast algorithms to solve graph
min-cut (Karger [39]). On the representation front, counting results forms the backbone of cut sparsifiers, which, in
turn, find applications in sketching and streaming (Ahn and Guha [2], Ahn et al. [3, 4], Kogan and Krauthgamer
[44]). A polygon representation of the family of 6/5-approximate min-cuts in graphs was given by Benczur and
Goemans in 1997 (see Benczur [9, 10], Benczur and Goemans [11]); this representation was used in the recent
groundbreaking (3/2 — €)-approximation for traveling salesman problem (TSP) (Karlin et al. [41]). On the approxi-
mation front, in addition to the (3/2 — €)-approximation for metric TSP (Karlin et al. [41]), counting results also led
to the recent 1.5-approximation for path TSP (Zenklusen [61]). For k> 2, we note that fast algorithms for GrapH-k-
Cur have been of interest because they help in generating cutting planes when solving TSP (Applegate et al. [5],
Cook et al. [21]). A recent series of works aimed toward improving the bounds on the number of optimum solu-
tions for GraPH-k-CuT culminated in a drastic improvement in the runtime to solve GrarH-k-CUT: namely, from
O(n?) time to O(n*) time (Gupta et al. [31-33]. Given the status of counting and enumeration results for k-partition-
ing in graphs and their algorithmic and representation implications that were discovered subsequently, we believe
that a similar understanding in hypergraphs could serve as an important ingredient in the algorithmic and repre-
sentation theory of hypergraphs.

1.2. The Enumeration Problem

There is a fundamental structural distinction between hypergraphs and graphs that becomes apparent when enu-
merating optimum solutions to k-partitioning problems. In connected graphs, the number of optimum k-partitions
for GRaPH-k-CuT and for Minmax-GrAPH-k-PARTITION are n0®) and #0") , respectively, and they can all be enumerated
in polynomial time, in which 7 is the number of vertices in the input graph (Chandrasekaran and Wang [14],

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 3

Chekuri et al. [19], Gupta et al. [32, 33], Karger and Stein [40], Thorup [59]). In contrast, a connected hypergraph can
have exponentially many optimum k-partitions for both MinmMaX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-K-CUT even
for k=2; for example, consider the hypergraph with a single hyperedge containing all vertices, which we denote as
the spanning hyperedge example. Hence, enumerating all optimum k-partitions for hypergraph k-partitioning pro-
blems in polynomial time is impossible. Instead, our goal in the enumeration problems is to enumerate k-cut sets cor-
responding to optimum k-partitions. We call a subset F C E of hyperedges a k-cut set if there exists a k-partition
(V1,..., Vi) such that F = 8(V7, ..., Vy); we call a 2-cut set a cut set. In the enumeration problems that we consider, the
input consists of a hypergraph G = (V, E) with positive hyperedge costs ¢ : E — R, and a fixed positive integer k (e.g.,
k=2,3,4,...).

1. For an optimum k-partition (V7, ..., V)) for Minmax-HYPERGRAPH-k-PARTITION in (G, ¢), we denote 6(V7, ..., V)
as a MINMAX-k-CUT-SET. In ENUM-MINMax-HYPERGRAPH-k-PARTITION, the goal is to enumerate all MINMAX-k-CUT-SETS.

2. For an optimum k-partition (V7,..., V) for HyPERGRAPH-k-CUT in (G, ¢), we denote 6(V7,..., Vi) as a MIN-k-
cut-seT. In ENUM-HYPERGRAPH-K-CUT, the goal is to enumerate all MIN-k-CUT-SETs.

We observe that, in the spanning hyperedge example, although the number of optimum k-partitions for MiNnmaXx-
HyYPERGRAPH-k-PARTITION (as well as HYPERGRAPH-k-CUT) is exponential, the number of MnMax-k-cUT-SETs (as well as
MIN-k-CUT-SETS) is only one.

1.3. Results
In contrast to graphs, whose representation size is the number of edges, the representation size of a hypergraph
G=(V,E)isp:=)" |e|. Throughout, our algorithmic discussion focuses on the case of fixed k (e.g., k= 2,3,4,...).
There are no prior results regarding ENUM-MINMAx-HYPERGRAPH-k-PARTITION in the literature. We recall the sta-
tus of MiINnMax-HYPERGRAPH-K-PARTITION. As mentioned earlier, MINMAX-HYPERGRAPH-k-PARTITION is discussed as
early as 1973 by Lawler [45] with its complexity status being open until recently. We note that the objective here
can be viewed as aiming to find a fair k-partition, that is, a k-partition in which no part pays too much in cut value.
Motivated by this connection to fairness, Chandrasekaran and Chekuri [12] study the more general problem of
Mmmax-SymSuBmMoD-k-PArTITION. They give the first (deterministic) polynomial-time algorithm to solve MiNnmax-
SymSuBMOD-k-PARTITION and, as a consequence, obtain the first polynomial-time algorithm to solve MiNMAX-HYPER-
GRAPH-k-PARTITION. Their algorithm does not show any bound on the number of MINMAX-k-CUT-SETs because
it solves the more general problem of MiNnMAX-SymSuBMOD-k-PARTITION for which the number of optimum k-parti-
tions can indeed be exponential (recall the spanning hyperedge example). Focusing on hypergraphs raises the
question of whether all k-cut sets corresponding to optimum solutions can be enumerated efficiently for every
fixed k. We answer this question affirmatively by giving the first polynomial-time algorithm for ENuM-MINMax-
HYPERGRAPH-K-PARTITION.

Theorem 1. There exists a deterministic algorithm to solve ENUM-MINMAX-HYPERGRAPH-k-PARTITION that runs in time
O(kn**~2+1p) where n is the number of vertices and p is the size of the input hypergraph. Moreover, the number of MIN-
MAX-K-CUT-SETS i1t a n-vertex hypergraph is O(n*"~2),

We emphasize that our result shows the first polynomial bound on the number of MnMax-k-CUT-SETs in hyper-
graphs for every fixed k (1n addition to a polynomial-time algorithm to enumerate all of them for every fixed k).
Our upper bound of n°*) on the number of MINMAX-k-CUT-SETS is tight; there exist n-vertex connected graphs for
which the number of MiNMax-k-cUT-sETs is 1®*"), where k depends on 71 (see Section 6).

Next, we briefly recall the status of HYPERGRAPH k-Cut and ENuM-HYPERGRAPH-k-CUT. HYPERGRAPH-k-CUT was shown
to be solvable in randomized polynomial time only recently (Chandrasekaran et al. [16], Fox et al. [24]); the random-
ized algorithms also show that the number of MiN-k-cUT-sETs is O(7%~2), and they can all be enumerated in random-
ized polynomial time. A subsequent deterministic algorithm was designed to solve HypErGrRaPH-k-CUT in time n°®p
by Chandrasekaran and Chekuri [13]. Their techniques are extended to design the first deterministic polynomial-
time algorithm to solve ENum-HYPERGRAPH-K-CUT in Beideman et al. [7]. The algorithm for ENuM-HYPERGRAPH-k-CUT
given in Beideman et al. [7] runs in time n°**)p. We note that this runtime has a quadratic dependence on k in the
exponent of 7 although the number of MIN-k-cUT-sETs has only linear dependence on k in the exponent of n (because
it is O(n*2)). So an open question that remained from Beideman et al. [7] is whether one can obtain an now p-time
deterministic algorithm for ENum-HyPERGRAPH-k-CUT. We resolve this question affirmatively.

Theorem 2. There exists a deterministic algorithm to solve ENUM-HYPERGRAPH-K-CUT that runs in time O(n'%F=2>

n is the number of vertices and p is the size of the input hypergraph.

p), where

Our algorithms for both ENuM-MINMax-HYPERGRAPH-k-PARTITION and ENuM-HYPERGRAPH-k-CUT are based on a
structural theorem that allows for efficient recovery of optimum k-cut-sets via minimum (s, t)-terminal cuts (see

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
4 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

Theorem 5). Our structural theorem builds on structural theorems that appear in previous works on HYPERGRAPH-
k-Cur and MINMax-HYPERGRAPH-k-PARTITION (Beideman et al. [7], Chandrasekaran and Chekuri [12, 13]). Our
structural theorem may appear to be natural/incremental in comparison with ones that appear in previous works,
but formalizing the theorem and proving it is a significant part of our contribution. Moreover, our single struc-
tural theorem is strong enough to enable efficient algorithms for both ENum-HyPERGRAPH-K-CUT and ENuM-
MmMax-HYPERGRAPH-k-PARTITION in contrast to previously known structural theorems. In this sense, our structural
theorem can be viewed as a strong and unifying generalization of structural theorems that appear in previous
works. We believe that our structural theorem is of independent interest in the theory of cuts and partitioning in
hypergraphs (as well as graphs).

1.4. Technical Overview and Main Structural Result

We focus on the unit-cost variant of ENUM-HYPERGRAPH-k-CUT and ENUM-MINMAXx-HYPERGRAPH-K-PARTITION in the
rest of this work for the sake of notational simplicity; that is, the cost of every hyperedge is one. Throughout, we
allow multigraphs, and hence, this is without loss of generality. Our algorithms extend in a straightforward man-
ner to arbitrary hyperedge costs. They rely only on minimum (s, f)-terminal cut computations, and hence, they are
strongly polynomial-time algorithms.

1.4.1. Notation and Background. Let G = (V, E) be a hypergraph. Throughout this work, n denotes the number of
vertices in G, m denotes the number of hyperedges in G, and p := >~ ,_. |e| denotes the representation size of G. We
denote a partition of the vertex set into # nonempty parts by an ordered tuple (V3,...,V}) and call such an ordered
tuple an h-partition. For a partition P = (V1, V,..., V), we say that a hyperedge e crosses the partition P if it inter-
sects at least two parts of the partition. We refer to a 2-partition as a cut. For a nonempty proper subset U of vertices,
we use U to denote V' \ U, 5(U) to denote the set of hyperedges crossing the cut (U, U), and d(U) := |5(L)| to denote
the cut value of U. We observe that 6(U) = 6(U), so we use d(U) to denote the value of the cut (U, U). More generally,
given a partition P = (V1,Vs,..., V), we denote the set of hyperedges crossing the partition by 6(V1, Va,..., V)
(also by 8(P) for brevity) and the number of hyperedges crossing the partition by [5(V1, Va,...,V))|. We denote the
optimum value of MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-K-CUT, respectively, by

OPT minmax-k-partition := min{m{e}(i([0(Vi)| : (V,..., V) is a k-partition of V} and
1€

OPT-cut := min{|6(V1, ..., Vi)| : (V4,..., Vi) is a k-partition of V' }.

A key algorithmic tool is the use of fixed-terminal cuts. Let S, T be disjoint nonempty subsets of vertices. A
2-partition (U, U) is an (S, T)-terminal cut if S C U C V \ T. Here, the set U is known as the source set, and the set U
is known as the sink set. A minimum valued (S, T)-terminal cut is known as a minimum (S, T)-terminal cut. Because
there can be multiple minimum (S, T)-terminal cuts, we are interested in source minimal minimum (S, T)-terminal
cuts: a minimum (S, T)-terminal cut (U, U) is a source minimal minimum (S, T)-terminal cut if there does not exist a
minimum (S, T)-terminal cut (U’, U’) such that U’ C U. For every pair of disjoint nonempty subsets S and T of verti-
ces, there exists a unique source minimal minimum (S, T)-terminal cut, and it can be found in deterministic polyno-
mial time via standard maxflow algorithms. In particular, the source minimal minimum (S, T)-terminal cut can be
found in time O(np) (Chekuri and Xu [18]).

Our technique to enumerate all MINMAX-k-CUT-SETs and all MIN-k-CcUT-SETs builds on the approaches of Chandrase-
karan and Chekuri [12, 13] for HYPERGRAPH-k-CUT and MINMAX-SYMSUBMOD-k-PARTITION (Beideman et al. [7]). We
need the following structural theorem that is shown in Beideman et al. [7].

Theorem 3. (Beideman et al. [7]). Let G = (V,E) be a hypergraph and let OP T} be the optimum value of HYPERGRAPH-
k-Cut in G for some integer k > 2. Suppose (U, U) is a 2-partition of V with d(U) < OPTy-cu. Then, for every pair of verti-
ces s € U and t € U, there exist subsets S C U \ {s} and T C U \ {t} with |S| <2k —3 and |T| < 2k — 3 such that (U, U) is
the unique minimum (S U {s}, T U {t})-terminal cut in G.

1.4.2. Enum-HyPERGRAPH-K-CuT. We first focus on ENum-HYPERGRAPH-k-CUT. We note that Theorem 3 allows us to
recover those parts V; of an optimum k-partition (V7, ..., Vi) for which d(V;) < OPTj-qy; the theorem tells us that
each such V; is the source side of a minimum (S, T)-cut for some S, T C V such that |S|, | T| < 2k — 2. However, recall
that our goal is not to recover all optimum k-partitions for HyPERGRAPH-k-CUT, but rather to recover all MIN-k-cUT-
SETs (i.e., not to recover the parts of every optimum k-partition, but rather only to recover the k-cut set of every opti-
mum k-partition). The previous work (Beideman et al. [7]) that designed an no(kz)p—time deterministic enumeration
algorithm achieved this by proving the following structural theorem.

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 5

Theorem 4. (Beideman et al. [7]). Let G = (V,E) be a hypergraph, k > 2 be an integer, and P = (V1, ..., Vi) be an opti-
mum k-partition for HYPERGRAPH-K-CuT such that 5(V1) = 8(P). Then, for all subsets T C V7 such that T 0V + 0 for all
je[k]\ {1}, there exists a subset S C Vy with |S| <2k —1 such that the source minimal minimum (S, T)-terminal cut
(A, A) satisfies 5(A) = 5(Vy1) and A C V7.

This structural theorem, in conjunction with Theorem 3, allows one to enumerate a candidate family F of
n9®) subsets of hyperedges such that every MIN-k-CUT-SET is present in the family. For every pair of disjoint sub-
sets S, T C V such that |S|,|T| <2k — 1, compute the source minimal minimum (S, T)-terminal cut (A, A), and if
G — 6(A) has at least k connected components, then add 6(A) to the candidate family F; otherwise, add the source
set A to a candidate collection C. Next, for all possible k-partitions that can be formed using the sets in the collec-
tion C, add the set of hyperedges crossing the k-partition to the family F. The drawback of their structural theo-
rem is that it is driven toward recovering the cut set 6(V;) of every part V; of every optimum k-partition
(V1,...,Vy). Hence, their algorithmic approach ends up with a runtime of #°)p. In order to improve the run-
time, we prove a stronger result: we show that for an arbitrary cut (U, U) with cut value OPTj-, (as opposed to only
those sets V; of an optimum k-partition (V1, ..., Vy)), its cut set 5(U) can be recovered as the cut set of every minimum
(S, T)-terminal cut for some S and T of small size. The following is the main structural theorem of this work.

Theorem 5. Let G = (V, E) be a hypergraph, and let OPTy-cy be the optimum value of HyPERGRAPH-K-CUT in G for some inte-
ger k> 2. Suppose (U, U) is a 2-partition of V with d(U) = OPT-cui. Then, there exist sets SC U, T C U with |S| <2k —1
and |T| < 2k — 1 such that every minimum (S, T)-terminal cut (A, A) satisfies 6(A) = o(U).

We encourage the reader to compare and contrast Theorems 3-5. Theorem 3 helps to recover cuts whose cut
value is strictly smaller than OPTy-,;, whereas Theorem 5 helps to recover cut sets whose size is equal to
OPTy-cut- Theorem 5 seems weaker because it only recovers cut sets, but its hypothesis is also weaker (we empha-
size that recovering cut sets is the best possible that one can hope to do under its hypothesis as seen from the
spanning hyperedge example). However, proving Theorem 5 requires us to work with cut sets (as opposed to
cuts), which is a technical barrier to overcome. Indeed, our proof of Theorem 5 deviates significantly from the
proof of Theorem 3 because we have to work with cut sets. We also note that our Theorem 5 is stronger than The-
orem 4 on two fronts: (1) our result helps to recover the cut set 5(U) of an arbitrary cut (U, U) whose cut value is
d(U) = OPT-cut, whereas Theorem 4 helps only to recover the cut set 5(V;) of a part V; of an optimum k-partition
(V1,..., Vi) for HyPERGRAPH-k-CUT whose cut value is d(V;) = OPT-y, and (2) our result does not need source
minimality of the minimum (S, T)-terminal cuts in the conclusion. Moreover, the proof technique of Theorem 4
given in Beideman et al. [7] crucially relies on a containment property with respect to V; (namely, for every S C
V1 and every T CV; such that TN V;# 0 for all j € [k] \ {1}, the source minimal minimum (S, T)-terminal cut
(A,A) is such that A C V;), whereas under the hypothesis of Theorem 5, the containment property fails with
respect to the set U, and consequently, our proof technique differs from theirs.

Theorems 3 and 5 lead to a deterministic n°%-time algorithm to enumerate all MIN-k-CUT-SETS via a divide-and-
conquer approach. We describe this algorithm now. For each pair (S, T) of disjoint subsets of vertices S and T
with |S|, |T| <2k — 1, compute the source minimal minimum (S, T)-terminal cut (4, A); (i) if G — 5(A) has at least
k connected components, then add 6(A) to the candidate family F; (ii) otherwise, add the set A to a collection C.
We note that the sizes of the family F and the collection C are O(n*~2). Next, for each subset A in the collection
C, recursively enumerate all MIN-k/2-CUT-SETs in the subhypergraphs induced by A and A respectively’—denoted
G[A] and G[A], respectively—and add 6(A) U F; U F; to the family JF for each F; and F, being MiN-k/2-CUT-SET in
G[A] and G[A], respectively. Finally, return the subfamily of k-cut sets from the family F that are of smallest
size.

We sketch the correctness analysis of this approach: let F=6(Vy,...,V)) be a MIN-k-cUT-sET with (V1, V)
being an optimum k-partition for HYPERGRAPH-k-CUT. We show that the famlly F contains F. Let U : U V We
note that 6(U) C F. We have two possibilities. (1) Say d(U) = |F|. Then, d(U) = OPTj-cy. Consequently, by Theo-
rem 5, the MIN-k-cUT-sET F is added to the family F by step (i). (2) Say d(U) < |F|. Then, by Theorem 3, the set U =

k/ 1 Vi is added to the collection C by step (ii); moreover, F := F N E(G[U]) and F, := F N E(G[U]) are MIN-k/2-CUT-
SET 1n G[U] and G[U], respectively, and they would have been enumerated by recursion, and hence, the set 6(U) U
F1 UF, =F is added to the family F. The size of the family F can be shown to be nOKklogk) ‘and the runtime can be
shown to be n°*1°8K) (see Theorem 8). Using the known fact that the number of MIN-k-CUT-SETs in a n-vertex hyper-
graph is O(n%*~2), we can improve the runtime analysis of this approach to n°®p (see Lemma 2).

1.4.3. Enum-MiNMax-HyperGRAPH-K-PARTITION. Next, we focus on ENUM-MINMax-HYPERGRAPH-k-PARTITION. There is a
fundamental technical issue in enumerating MINMAX-k-CUT-SETs as opposed to MIN-k-cuT-seTs. We highlight this

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
6 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

technical issue now. Suppose we find an optimum k-partition (V, ..., Vi) for MINMAX-HYPERGRAPH-k-PARTITION (say
via Chandrasekaran and Chekuri’s [12] algorithm) and store only the Minmax-k-cut-seT F = 6(V71, ..., Vi) but forget
to store the partition (V, .. ., Vi). Now, by knowing a MINMAX-k-CUT-SET F, can we recover some optimum k-partition
for MINnMAX-HYPERGRAPH-k-PARTITION (not necessarily (V7, ..., Vy))? Or, by knowing a MINMAX-k-CUT-SET F, is it even
possible to find the value OPT minmax-k-partition Without solving MinmAX-HYPERGRAPH-k-PARTITION from scratch again;
that is, is there an advantage to knowing a MINMAX-k-CUT-SET in order to solve MiINMAx-HYPERGRAPH-k-PARTITION? We
are not aware of such an advantage. This is in stark contrast to HyPERGRAPH-k-CUT in which knowing a MIN-k-CUT-SET
enables a linear-time solution to HyPERGRAPH-k-CUT.®

Why is this issue significant when solving ENUM-MINMaX-HYPERGRAPH-k-PARTITION? We recall that, in our approach
for ENum-HYPERGRAPH-K-CUT, the algorithm computed a polynomial-sized family F containing all MiN-k-cUT-SETs and
returned the ones with smallest size; the smallest size ones are exactly MiNn-k-cuT-sETs. It is unclear if a similar approach
could work for enumerating MINMAX-k-CUT-SETs: suppose we do have an algorithm to enumerate a polynomial-sized
family F containing all MINMAX-k-cUT-SETs. Now, in order to return all MNMAX-k-CUT-SETs (which is a subfamily of F),
note that we need to identify them among the ones in the family F; that is, we need to verify if a given subset F € F of
hyperedges is a MnMaX-k-cUT-sET. This verification problem is closely related to the question mentioned in the previ-
ous paragraph. We do not know how to address this verification problem directly. So our algorithmic approach for
ENuM-MINMAX-HYPERGRAPH-K-PARTITION has to overcome this technical issue.

Our ingredient to overcome this technical issue is to enumerate representatives for MINMAX-k-CUT-SETs. For a k-partition
(V4,..., V) and disjoint subsets Uj, . .., Uy € V, we call the k-tuple (U, . . ., Uy) a k-cut-set representative of (V7, ..., V)
if U; € Vi and 6(U;) = 6(V;) for all i € [k]. We note that a fixed k-partition (V5, . . ., Vi) could have several k-cut set repre-
sentatives, and a fixed k-tuple (U3, ..., Ux) could be the k-cut set representative of several k-partitions. Yet it is possible
to efficiently verify if a given k-tuple (Uj, ..., Uy) is a k-cut set representative: consider the procedure that initializes
P;=U; for each i € [k] and for each connected component C in G— U, 5(U;). If §(U;) = 5(U; U C) for some i € [k], then
the procedure adds C into P, and then, (U3, ..., Uy) is a k-cut set representative if and only if this procedure leads to a
k-partition Py, ..., Py of V (see Theorem 9). Moreover, knowing a k-cut set representative (U, ..., Uy) of a k-partition
(V1, Vs, ..., Vi) allows one to recover the k-cut set F := §5(V1, ..., V}) because F :Ui.‘:1 o(U;). Thus, in order to enum-
erate all MINMAX-k-CUT-SETs, it suffices to enumerate k-cut set representatives of all optimum k-partitions for MiNnmax-
HyPERGRAPH-k-PARTITION. At this point, the astute reader may wonder if there exists a polynomial-sized family of k-cut
set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION given that the number of optimum
k-partitions for MiNmMax-HYPERGRAPH-k-PARTITION could be exponential. For example, is there a polynomial-sized family
of k-cut set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION in the spanning hyperedge
example? Indeed, in the spanning hyperedge example, even though the number of optimum k-partitions for MiNnmax-
n
k
partitions: consider the family {({v1},...,{vk}) 1 v1,..., 0k € V,v; # v; Vdistinct i,j € [k]}.

It turns out that Theorems 3 and 5 are strong enough to enable efficient enumeration of k-cut set representatives of
all optimum k-partitions for Minmax-HyPERGRAPH-k-PARTITION. We describe the algorithm to achieve this. For each pair
(S, T) of disjoint subsets of vertices with |S|, |T| <2k — 1, compute the source minimal minimum (S, T)-terminal cut
(U,U) and add U to a candidate collection C. We note that the size of the collection C is O(1n*~2). Next, for each k-tuple
(Uy,..., Uy € ck verify if (Uj, . .., Uy) is a k-cut set representative (using Theorem 9), and if so, then add the k-tuple to
the candidate family D. Finally, return arg min{maxi-‘zld(lli) : (U, ..., Ux) € D}; that is, prune and return the subfam-

ily of k-cut set representatives (U, . . ., Uy) from the family D that have minimum max*_, d(U;).
0(k?)

HYPERGRAPH-k-PARTITION is exponential, there exists a (k! ())—sized family of k-cut set representatives of all optimum k-

We note that the size of the family D is n°*"), and consequently, the runtime is n°*")p. We sketch the correctness
analysis of this approach. Let (V7, ..., Vi) be an optimum k-partition for MinmMaX-HYPERGRAPH-k-PARTITION. We show
that the family D contains a k-cut set representative of (V1,..., V). By noting that OPT minmax-k-partition < OPTk-cut
and by Theorems 3 and 5, for every i € [k], we have a set U; in the collection C with U; € V; and 6(U;) = 6(V;). Hence,
the k-tuple (U, ..., Uy) € Cr is a k-cut set representative, and it is added to the family D. The final pruning step does
not remove (U, . .., Uy) from the family D, and hence, it is in the subfamily returned by the algorithm.

1.4.4. Significance of Our Technique. As mentioned earlier, our techniques build on the structural theorems that
appear in previous works (Beideman et al. [7], Chandrasekaran and Chekuri [12, 13]). The main technical novelty
of our contribution lies in Theorem 5, which can be viewed as the culmination of structural theorems developed in
those previous works. We also emphasize that using minimum (s, t)-terminal cuts to solve global partitioning pro-
blems is not a new technique per se (e.g., minimum (s, t)-terminal cut is the first and most natural approach to solve
global minimum cut). This technique of using minimum (s,)-terminal cuts to solve global partitioning problems

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 7

has a rich variety of applications in combinatorial optimization: for example, (1) it is used to design the first efficient
algorithm for GrarH-k-Cur for fixed k (Goldschmidt and Hochbaum [27]), (2) it is used to design efficient algo-
rithms for certain constrained submodular minimization problems (Goemans and Ramakrishnan [26], Négele et al.
[51]), and (3) more recently, it was used to design fast algorithms for global minimum cut in graphs as well as to
obtain fast Gomory—-Hu trees in unweighted graphs (Abboud et al. [1], Li and Panigrahi [46]). The applicability of
this technique relies on identifying and proving appropriate structural results. Our Theorem 5 is such a structural
result. The merit of the structural result lies in its ability to solve two different enumeration problems in hyper-
graph k-partitioning which was not possible via structural theorems that were developed before. Moreover, it leads
to the first polynomial bound on the number of MINMAX-k-CUT-SETs in hypergraphs for every fixed k.

1.4.5. Organization. We discuss related work in Section 1.5. In Section 1.6, we recall properties of the hypergraph
cut function. In Section 2, we prove a special case of Theorem 5. In Section 3, we use this special case to prove Theo-
rem 5. In Section 4, we design an efficient algorithm for ENum-HYPERGRAPH-k-CUT and prove Theorem 2. In Section 5,
we design an efficient algorithm for ENuM-MINMax-HYPERGRAPH-k-PARTITION and prove Theorem 1. We present a
lower bound example in Section 6. We conclude with an open question in Section 7.

1.5. Related Work
We briefly discuss the status of the enumeration problems for k=2 followed by the status for k > 2 in graphs and
hypergraphs.

1.5.1. Enumeration Problems for k=2. For k=2, both ENUM-MINMAXx-HYPERGRAPH-k-PARTITION and ENuM-HYPER-
GRAPH-k-CUT are equivalent to enumerating optimum solutions for global minimum cut in hypergraphs. For graphs
that are connected, it is well-known that the number of minimum cuts and of a-approximate minimum cuts are at

most <Z> and O(1n**), respectively, and they can all be enumerated in polynomial time for constant & (Chekuri

et al. [19], Dinitz et al. [22], Goemans and Ramakrishnan [26], Henzinger and Williamson [34], Karger [38], Naga-
mochi et al. [50]). For connected hypergraphs, the number of minimum cuts can be exponential as seen from the
spanning hyperedge example. However, recent results show that the number of minimum cut sets in a hypergraph
is at most g via several different techniques, and they can all be enumerated in polynomial time (Beideman et al.
[7], Chandrasekaran et al. [16], Chekuri and Xu [18], Fox et al. [24], Ghaffari et al. [25]). On the other hand, there
exist hypergraphs with an exponential number of 2-approximate minimum cut sets.”

1.5.2. GraPH-k-Cut and Enum-GRrapH-k-Cut. When k is part of the input, GrarH-k-Cut is NP-hard (Goldschmidt and
Hochbaum [27]) and admits a 2(1 — 1/k)-approximation (Gupta et al. [30], Quanrud [53], Ravi and Sinha [56], Saran
and Vazirani [57], Zhao et al. [63]). Manurangsi [49] shows that there is no polynomial-time (2 — €)-approximation
for any constant € > 0 assuming the small set expansion hypothesis (Raghavendra and Steurer [55]). We note that
Graru-k-Cut is W[1]-hard when parameterized by k (Downey et al. [23]) and admits a fixed-parameter approxima-
tion scheme when parameterized by k (Gupta et al. [29, 30], Kawarabayashi and Lin [42], Lokshtanov et al. [47])
and is fixed-parameter tractable when parameterized by k and the solution size (Kawarabayashi and Thorup [43]).

Graru-k-Cur for fixed k is shown to be polynomial-time solvable by Goldschmidt and Hochbaum [27]. Subse-
quently, Karger and Stein [40] give a randomized polynomial-time algorithm whose analysis also shows that the
number of optimum k-partitions in a connected graph is O(n%~2) and they can all be enumerated in polynomial
time for every fixed k (also see Chekuri et al. [19], Kamidoi et al. [36], Thorup [59], Xiao [60]). The number of opti-
mum k-partitions has recently been improved to O(1¥) for fixed k, thereby leading to a faster algorithm for GraPH-k-
Cur for fixed k (Gupta et al. [31-33]).

1.5.3. HyperGRAPH-K-Cut and Enum-HYPERGRAPH-K-CuT. When k is part of input, HYPERGRAPH-K-CUT is at least as hard as
the densest k-subgraph problem (Chekuri and Li [17]). Combined with results in Manurangsi [48], this implies that
HyperGrAPH-K-CuUT is unlikely to have a subpolynomial factor approximation ratio. Moreover, HYPERGRAPH-k-CUT is
W][1]-hard even when parameterized by k and the solution size (see Chandrasekaran and Chekuri [13]). These two
hardness results illustrate that HyPErGrRaPH-k-CuUT differs significantly from Grapr-k-Cut in complexity.
HyperGrAPH-K-CuUT for fixed k is recently shown to be polynomial-time solvable via a randomized algorithm
(Chandrasekaran et al. [16], Fox et al. [24]). The analysis of the randomized algorithm also shows that the number
of MIN-k-cuT-sETs is O(n?72), and they can all be enumerated in randomized polynomial time. A deterministic

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
8 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

polynomial-time algorithm was given by Chandrasekaran and Chekuri [13]. Subsequently, a deterministic
polynomial-time algorithm for ENUM-HYPERGRAPH-K-CUT for fixed k was given by Beideman et al. [7].

1.5.4. Minmax-GRrapH-k-PArTiTion and Enum-MiNMAx-GRAPH-K-ParTiTioN. When k is part of input, MINMAX-GRAPH-k-PAR-
TITION is NP-hard (Chandrasekaran and Wang [14]), whereas its approximability is open; we do not yet know if it
admits a constant factor approximation. When parameterized by k, it is W[1]-hard and admits a fixed-parameter
approximation scheme (Chandrasekaran and Wang [14]).

Mmmax-GrapH-k-PARTITION for fixed k is polynomial-time solvable via the following observation (see Chandrasekaran
and Chekuri [12], Chandrasekaran and Wang [14]): in connected graphs, an optimum k-partition for MINMAX-GRAPH-k-
PARTITION is a k-approximate solution to GraPH-k-CuT. The randomized algorithm of Karger and Stein [40] implies that
the number of k-approximate solutions to GrapH-k-Cur is n°), and they can all be enumerated in polynomial time
(Chekuri et al. [19], Gupta et al. [32, 33], Karger and Stein [40]). These two facts together imply that MINnMAX-GRAPH-K-PAR-
TITION can be solved in time 79, and moreover, the number of optimum k-partitions for MinMAX-GRAPH-k-PARTITION in
a connected graph is n°%”), and they can all be enumerated in polynomial time for constant k.

1.5.5. Minmax-HYPERGRAPH-K-PARTITION and ENnum-MiNMAx-HYPERGRAPH-K-PARTITION. MINMAX-HYPERGRAPH-K-PARTITION is
discussed as early as 1973 by Lawler [45]. When k is part of input, MiNmMaAX-HYPERGRAPH-k-PARTITION is at least as
hard as the densest k-subgraph problem (this follows from the reduction in Chekuri and Li [17] and was observed
by Chandrasekaran and Zhang [15]). For fixed k, the approach for MinMaX-GRAPH-k-PARTITION described does not
extend to MINMAX-HYPERGRAPH-k-PARTITION. This is because the number of k-approximate solutions to HYPERGRAPH-
k-Curt can be exponential, and hence, they cannot be enumerated efficiently (e.g., we have already seen that the
number of 2-approximate minimum cut sets in a hypergraph can be exponential). Chandrasekaran and Chekuri
[12] give a deterministic polynomial-time algorithm for the more general problem of MINMAX-SYMSUBMOD-k-PARTI-
TION for fixed k, which, in turn, implies that MiINMAX-HYPERGRAPH-k-PARTITION is also solvable efficiently for fixed k.
Their algorithm finds an optimum k-partition for MinmMAx-HYPERGRAPH-k-PARTITION and is not conducive to enumer-
ate all MINMAX-k-cUT-sETs. We emphasize that no polynomial bound on the number of MiNnmax-k-cuT-sETs for fixed k
was known prior to our work.

For a detailed discussion on other hypergraph k-partitioning problems that are special cases of MINsuM-SuBMOD-
k-PArTITION, We refer the reader to Zhao et al. [63], Zhao [62], and Okumoto et al. [52].

1.6. Preliminaries
Let G = (V,E) be a hypergraph. Throughout, we follow the notation mentioned in the second paragraph of Section
1.4. For disjoint A,B C V, we define E(A,B):={e€ E:eCAUB,eNA+0,eNB+0},and E[A]:={e€ E:e C A}. We
repeatedly rely on the fact that the hypergraph cut function d : 2 — R, is symmetric and submodular. We recall
that a set function f : 2V S Ris symmetric if f(U) = f(U) for all subsets U C V and is submodular if f(A) + f(B) >
f(ANB)+f(AUB)forallsubsets A,BC V.

We need the following theorem that is proved in previous works on HyrErRGRAPH-k-CuUT and ENUM-HYPERGRAPH-k-
Cur (see Figure 1 for an illustration of the sets that appear in the statement of Theorem 6).

Figure 1. Illustration of the sets that appear in the statement of Theorem 6. A hyperedge ¢ of the form in the second part of the
statement is also shown.

-
el

RRnnananne T~
—

te—,

M.

!
N

%,
kb

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 9

Theorem 6 (Beideman et al. [7], Chandrasekaran and Chekuri [13]). Let G = (V, E) be a hypergraph, k > 2 be an integer,
and 0 #RCUCV. Let S={uy,...,uy} CU\R for p>2k—2. Let (A;,A;) be a minimum ((S U R)\ {u;}, U)-terminal
cut. Suppose that u; € A; \ (Ujep)\(yA;) for every i € [p]. Then, the following two hold:

1. There exists a k-partition (P, ..., Py) of V with U C Py such that

|6(Py,..., Py)| < %min{d(Ai) +d(A):ijelplitf).

2. Moreover, if there exists a hyperedge e € E such that e intersects W := Uy <;<j<,(A; N A;), e intersects Z := mie[p]E, and e
is contained in W U Z, then the inequality in the previous conclusion is strict.

We use Theorem 6 in our proof of Theorem 5, which proceeds via contradiction. Theorem 6 allows us to construct
a k-partition with number of crossing hyperedges being strictly less than the optimum value for HyPERGRAPH-K-CUT,
thus leading to a contradiction.

2. A Special Case of Theorem 5

Theorem 7 is the main theorem of this section. Theorem 7 implies Theorem 5 in the special case in which the
2-partition (U, U) of interest to Theorem 5 is such that |U| < 2k — 1. We encourage readers interested in under-
standing the motivation for considering this special case to read the statement of Theorem 7, jump ahead to Sec-
tion 3 in which we prove Theorem 5 using Theorem 7, and then return to the proof of Theorem 7.

Theorem 7. Let G = (V, E) be a hypergraph, and let OPTy-cu be the optimum value of HYPERGRAPH-K-CUT in G for some
integer k > 2. Suppose (U, U) is a 2-partition of V with d(U) = OPT-cur. Then, there exists a set S C U with |S| <2k —1
such that every minimum (S, U)-terminal cut (A, A) satisfies 6(A) = 6(U).

Proof. Consider the collection
C:={QCV:UCQ, dQ)<d(U), and 6(Q) # 6(L)}.

Let S be an inclusion-wise minimal subset of U such that S N Q # 0 for all Q € C; that is, the set S is completely
contained in U and is a minimal transversal of the collection C. Proposition 1 and Lemma 1 complete the proof of
Theorem 7 for this choice of S. O

Proposition 1. Every minimum (S, U)-terminal cut (A, A) has 5(A) = 5(U).

Proof. Let (A,A) be a minimum (S, U)-terminal cut. If A=U, then we are done, so we may assume that A # U.
This implies that SC A and U CA. Because (U, U) is a (S,U)-terminal cut, we have that d(A) =d(A) <d(U).
Because S intersects every set in the collection C, we have that A ¢ C. Hence, 5(A) = 6(U), and by symmetry of cut
sets, 6(A) = o(U). O

Lemma 1. The size of the subset S is at most 2k — 1.

Proof. For the sake of contradiction, suppose |S| > 2k. Our proof strategy is to show the existence of a k-partition
with fewer crossing hyperedges than OPT-., thus contradicting the definition of OPT-cy. Let S := {uq,uy, ..., uy}
for some p > 2k. For notational convenience, we use S — u; to denote S \ {u;} and S — u; — u; to denote S \ {u;, u;}. For
a subset X C U, we denote the source minimal minimum (X, U)-terminal cut by (Hx, Hx).

Our strategy to arrive at a k-partition with fewer crossing hyperedges than OPTj-. is to apply the second con-
clusion of Theorem 6. The next few claims set us up to obtain sets that satisfy the hypothesis of Theorem 6. We
emphasize that we apply Theorem 6 twice: first, in Claim 3 and, second, to prove the existence of a k-partition
with fewer than OPT- crossing hyperedges.

Claim 1. For every i € [p], we have Hs_,, € C.
Proof. Let i€ [p]. Because S is a minimal transversal of the collection C, there exists a set B; € C such that

B; N S ={u;}. Hence, (B;,B;) is a (S — u;, U)-terminal cut. Therefore,

d(Hs) = d(Hs) < d(B)) <d(U),

Because (Hs ., Hs 4,) is a (S — u;, U)-terminal cut, we have that U € Hs_,,,. If d(Hs_,,) <d(U), then 6(Hs_,,) #
o(U) and U € Hs_,,, and consequently, Hs_,, € C. So we assume henceforth that d(Hs_,,) = d(U).

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
10 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

Because (Hs_,, N B;,Hs_,, N B;) is a (S — u;, U)-terminal cut and (Hs_,,, Hs_,,) is a minimum (S — u;, U)-termi-
nal cut, we have that
d(Hsfu,- N B_z) 2 d(Hsfl/li)'
Because (Hs_,, U B;,Hs_,,, U B;) is a (S — u;, U)-terminal cut and (Hs_,,,Hs_,,) is a minimum (S — u;, U)-terminal
cut, we have that
d(HS—u,- v B_l) 2 d(HS—u,-)~
Therefore, by submodularity of the hypergraph cut function, we have that
24(U) 2 d(Hs_,) + d(By) = d(Hs ., 1 By) + d(Hs_, U B7) = 2d(Hs_,) = 24(). M)

Therefore, all these inequalities should be equations. In particular, we have that d(Hs_,, N B;) =d(U) = d(B;) =
d(Hs_,,), and hence, (Hs_,, N B;,Hs_,, N B;) is a minimum (S — u;, U)-terminal cut. Because (Hs_,,,Hs_,,) is a
source minimal minimum (S — u;, U)-terminal cut, we must have H. S—u; N B, =H s—u;, and thus, Hs_,, C B,. There-
fore, B; C Hs_,,. Because B; € C, we have 0(B;) # 6(U). However, d(B;) = d(U). Therefore, 6(U)\ 6(B;) # 0. Let
e €6(U)\ 6(B;). Because e € 5(U), but e ¢ 6(B;), and U C B;, we have that e C B;, and thus, e C Hs_,,. Thus, we con-
clude that 5(U) \ 6(Hs_,,) # 0, and so 6(Hs_,,) # 6(U). This also implies that U C Hs_,,. Thus, Hs_,, € C. [

Claim 1 implies the following corollary.

Corollary 1. For every i € [p], we have u; € Hg_,,.

Proof. By definition, S — u; € Hs_y,, so S N Hs_,,, C {u;}. By Claim 1, we have that Hs_,, € C. Because S is a trans-
versal of the collection C, we have that S N Hs_,, # 0. So the vertex u; must be in Hs_,,,. O

Having obtained Corollary 1, the next few claims (Claims 2-5) are similar to the claims appearing in the proof
of Theorem 4 that appear in Beideman et al. [7, claims 4.2—4.5 in the proof of theorem 1.3]). Because the hypothe-
sis of the structural theorem that we are proving here is different from theirs, we present the complete proofs of
these claims here. The way in which we use the claims is also different from Beideman et al. [7].

The following claim helps in showing that u;, u; ¢ H R— which, in turn, is used to show that the hypothesis
of Theorem 6 is satisfied by suitably chosen sets.

Claim 2. For every i,j € [p], we have Hs_;,—y; € Hs 4,

Proof. We may assume that i # j. We note that (Hs,ui,uj N Hsy, Hs—y—u; N Hg ,)isa (S—u;— u]-,U)—terminal
cut. Therefore,

A(Hs—y—u, N Hs—y,) 2 d(Hs -y —y)- 2)
Also, (Hs_y,—y, U Hs_y,, Hs_y,—y, U Hs_y,) is a (S — u;, U)-terminal cut. Therefore,
d(Hs—y;—u; U Hs ;) > d(Hs_y,). 3)
By submodularity of the hypergraph cut function and Inequalities (2) and (3), we have that
A(Hs—y;—v;) + d(Hs ;) = d(Hs—y,—u; N Hs—u,) + d(Hs—y,—u; U Hs 1)
> d(Hs—y,—u) + d(Hs—u,)-
Therefore, Inequality (2) is an equation, and consequently, (Hs_y,—, N Hs_y, Hs_y,—y, N Hs_,,) is a minimum
(S —u;j — uj, U)-terminal cut. If Hs . \ Hs—y, # 0, then (Hs—y,—u, N Hs-u,, Hs—y,—u; N Hs-y,) contradicts source

minimality of the minimum (S — u; — uj,U)-terminal cut (Hs,ui,u/,Hs,u,,u/). Hence, Hs—y,—y; \ Hs_,, =0, and con-
sequently, Hs y,—y; € Hs—y,. O

Claim 2 implies the following corollary.
Corollary 2. For every i,j € [p], we have u;, u; & Hs_y, ;.

Proof. By Corollary 1, we have that u; ¢ Hs_,,. Therefore, u;, u; ¢ Hs—,, N Hs_,,. By Claim 2, Hs_,—y, € Hs—y, and
Hs—y;—u; © Hs—y;. Therefore, Hs—y;—u; ©Hs—u; N Hs_y, and thus, u;, u; ¢ Hs y—u;. O
The next claim shows that the cut values d(Hs_,,,) and d(Hs_,, ;) for every i,j € [p] are equal to d(U).

Claim 3. For every i,j € [p], we have d(Hs_,,) = d(U) = d(Hs .y, —u,)-

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 11

Proof. Let a,b € [p]. We show that d(Hs_,,) = d(U) = d(Hs_,,). Because (U, U) is a (S — u,, U)-terminal cut, we
have that d(Hs_,,) <d(U). Because (Hs—,,,Hs—y,) is a (S —u, — up, U)-terminal cut, we have that d(Hs_,,_,,) <
d(Hs—,,) <d(U). Thus, in order to prove the claim, it suffices to show that d(Hs_,,—_,,) = d(U).

Suppose for contradiction that d(Hs_,,—,,) <d(U). Let £€[p]\{a,b} be an arbitrary element (which exists
because we assume that p >2k and k >2). Let R:={u}, S":= S —u, —u,, and A;:=Hs_, _, for every i€ |[p]\
{a,£}. We note that |S’| =p —2 > 2k —2. By definition, (A;,A;) is a minimum (S — u, — u;, U)-terminal cut for
every i € [p] \ {a,{}. Moreover, for every i€ [p]\ {a,{}, we have u; € Hs_,,_,, = A; by Corollary 2, and for every
j€lpl\{a,i,t}, we have u; €S —u, —u; CHs_y,—y, = IT] These imply that u; € A; \ (Ujepp)\(a,1,004;) for every i€ [p]
\{a, €}. Hence, the sets U, R, and S’ and the cuts (A;,A;) for i€ [p]\ {a,{} satisty the conditions of Theorem 6.
Therefore, by the first conclusion of Theorem 6, there exists a k-partition P" with

1 .
[6(P")] < Emin{d(Hs_uﬂ_ui) +d(Hs y, ;) :1,j € [p]\ {a,}}.
By assumption, d(Hs_y, 4,) <d(U) and b € [p] \ {a, {}, so min{d(Hs_,,) : i € [p] \ {a,{}} <d(U). Because u,uis
a (S —u, — u;, U)-terminal cut, we have that d(Hs_,—,,) <d(U) for every i € [p] \ {a, {}. Therefore,
1
Emin{d(H57un7ui) + d(Hsfuﬂfuj) : i/j € [P] \ {ﬂ,f}} < d(U) = OPTk-cut-

Thus, we have that |6(P’)| < OPTj-cu, Which is a contradiction. O

The next two claims help in arguing the existence of a hyperedge satisfying the conditions of the second con-
clusion of Theorem 6. In particular, we need Claim 5. The following claim helps in proving Claim 5.

Claim 4. For every i,j € [p], we have
d(HS,u,. N HS,u].) = d(U) = d(HS,u,. U Hs,uf).

Proof. Because (Hs_,, N Hs_y, Hs—y; N Hg,u].) isa (S—u— uj,U)—terminal cut, we have that d(Hs_,, N Hs,u].) >
d(Hs_M,._uj). By Claim 3, we have that d(Hs_M,._uj) =d(U) =d(Hs-_,,). Therefore,

d(Hs—y, N Hs—y) 2 d(Hs—y,). 4)
Because (Hs_,, U Hs_,,Hs_,, UH;s_,,) is a (S — u;, U)-terminal cut, we have that
d(Hs,, U Hs) > d(Hs_.,). (5)
By submodularity of the hypergraph cut function and Inequalities (4) and (5), we have that
d(Hs—y,) + d(Hs—y) > d(Hs—y, N Hs—y;) + d(Hs—y, U Hs—y) > d(Hs—y,) + d(Hs_y).
Therefore, Inequalities (4) and (5) are equations. Thus, by Claim 3, we have that
d(Hs—y, N Hs—y) = d(Hs—,) = d(U),

and

d(Hsfu,- U Hsfu,-) = d(Hsfu,-) = d(U) |

Claim 5. For every i,j,{ € [p] with i # j, we have Hs_,, € Hs_,,, U Hs_y;.

Proof. If £ =i or { =j the claim is immediate. Thus, we assume that ¢ ¢ {i,j}. Let Q:= Hs_,, \ (Hs_,, U Hs_,,). We
need to show that Q =0. We show that (Hs_,, \ Q,Hs_y, \ Q) is a minimum (S — u,, U)-terminal cut. Conse-
quently, Q must be empty (otherwise, Hs_,, \ Q< Hs_,,, and hence, (Hs_,, \ Q,Hs_y, \ Q) contradicts source
minimality of the minimum (S — u¢, U)-terminal cut (H s—u,, Hs—u,))-

We now show that (Hs_,, \ Q,Hs_y, \ Q) is a minimum (S — u¢, U)-terminal cut. Because Hs_ 4, \Q=Hs_,, N
(Hs-y, UHs_,,), we have that S —u; — u; — u; C Hs_, \ Q. We also know that u; and u; are contained in both Hs_,,

and Hs_, U Hs_y;. Therefore, S —uy C Hsy, \ Q. Thus, (Hs_,, \Q,Hs_,, \ Q) isa (S — u¢, U)-terminal cut. Therefore,
d(HSfu(N (HSfu,-) HSfuj)) = d(Hsfu, \ Q) 2 d(H57w)- (6)

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
12 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

We also have that (Hs_,, U (Hs—,,, U Hs,u,),Hs,w U (Hs—y, U Hs,u/.)) is a (S — u;, U)-terminal cut. Therefore, d(Hs_,,
U (Hs_y, U Hs,u/)) > d(Hs_y,). By Claims 3 and 4, we have that d(Hs_,,) = d(U) = d(Hs_,, U Hs). Therefore,

d(Hs—y, U (Hs—y, U Hsy,)) > d(Hs ., U Hs). @)
By submodularity of the hypergraph cut function and Inequalities (6) and (7), we have that
d(Hs—y,) + d(Hs—y, U Hs—y) > d(Hs—y, N (Hs—y, U Hs—y))) + d(Hs—y, U (Hs—y, U Hsy,)))
> d(Hs—y,) + d(Hs—y, U Hs_y).

Therefore, Inequalities (6) and (7) are equations, so (Hs_,, \ Q,Hs_, \ Q) is a minimum (S — u, U)-terminal
cut. O

Let R:={u,}, " := S —u,, and (A1, A) := (Hs_,,,, Hs_,,) for every i € [p — 1]. By definition, (A;, A;) is a minimum
(S — u;, U)-terminal cut for every i € [p —1]. Moreover, by Corollary 1, we have that u; € A; \ (Ujep—1)\(4;)- Hence,
the sets U, R, and S” and the cuts (A;, A;) for i € [p — 1] satisfy the conditions of Theorem 6. We now show that
there exists a hyperedge satisfying the conditions mentioned in the second conclusion of Theorem 6. We use
Claim 6 to prove this. Let W := U<icj<p-1(A; N Aj) and Z := miE[P—HE as in the statement of Theorem 6.

Claim 6. There exists a hyperedge e € E such thate "W £0,eNZ #0,ande CW U Z.

Proof. We note that S C (S —u;) U (S — ;) € Hs,, U Hsy, for every distinct 7, € [p — 1]. Therefore, S N (A; N Aj) =0
for every distinct 7,j € [p — 1], and thus, SN W = (). Because S is a transversal of the collection C, it follows that the
set W is not in the collection C.

By definition, U C A, for every i € [p—1], and thus, U CW. Because W¢C, by definition of C, we have that
either W =U or d(W) > d(U) or 6(W) = 6(U). Because W = U is a special case of §(W) = 6(U), we have that either
d(W) > d(U) or 6(W) = 6(U). By Claim 1, we have that Hs_,, €C, and thus, d(Hs_,,) <d(U) and 6(Hs_,) # 6(U).
Consequently, d(W) > d(U) > d(Hs_,,), and 6(W) = 6(U) # 6(Hs_4,), and thus, 6(W)\ 6(Hs_,,) # 0. Let e € 5(W)\
0(Hs_y,). We show that this choice of e achieves the desired properties.

For each i € [p], let Y;:=Hs_,, \ W. By Claim 5, for every i,j,¢ € [p] with i # j, we have that Hs_,, C Hg_,, U
Hs_y;. Therefore Hs—y, N Hs—y, € Hs—y, for every such i,j,{ € [r], and hence, W C Hs_,, for every ¢ € [p]. Thus,
W C Hg_y,. Because e € o(W)\ 6(H5,up), we have thate CW U Y, eN W # 0, and e N Y, # 0. Therefore, in order to
show that e has the three desired properties as in the claim, it suffices to show that Y, C Z. We prove this next.

By definition, Y, N W = 0. By Claim 5, for every i € [p — 1], we have that Hs ,, N Hs_, € Hs_, and Hs_,, N
Hs_y, € Hsu,, 80 Hs—y, N Hs—y; € Hs_y, N Hs_y, €W. Thus, for every i € [p—11,Y,NY;CHs, N Hs ,, €W, so
because Y, N W = 0, we have that Y, N Y; =0 for every i € [p — 1]. Therefore,

p-1 p-1

p—1
Y,CWU (U Yi> =JHsw =(Hs-w,=2Z. O
i=1 i=1 i=1
By Claim 6, there is a hyperedge e satisfying the conditions of the second conclusion of Theorem 6. Therefore,
by Theorem 6, there exists a k-partition P" with
NP . .
[6(P)] < Emm{d(A,-) +d(Aj):ijelp—1]i#j}
=d(U) (By Claim 3)
= OPTj-cut- (By assumption of the theorem)

Thus, we have obtained a k-partition P’ with |0(P’)| < OPT-cut, which is a contradiction. This completes the
proof of |S| <2k—1. O

3. Proof of Theorem 5
We prove Theorem 5 in this section. Applying Theorem 7 to (U, U) yields the following corollary.

Corollary 3. Let G = (V,E) be a hypergraph, and let OPTy-cy, be the optimum value of HYPERGRAPH-K-CUT in G for some
integer k > 2. Suppose (U, U) is a 2-partition of V with d(U) = OPTy-cy. Then, there exists a set T C U with |T| <2k —1
such that every minimum (U, T)-terminal cut (A, A) satisfies 5(A) = 6(U).

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 13

We now restate Theorem 5 and prove it using Theorem 7 and Corollary 3.

Theorem 5 (Restated). Let G = (V, E) be a hypergraph and let OPTy-cy be the optimum value of HyPERGRAPH-K-CUT in G
for some integer k > 2. Suppose (U, U) is a 2-partition of V with d(U) = OPT-cy Then, there exist sets S C U, T € U with
|S| <2k —1and |T| <2k — 1 such that every minimum (S, T)-terminal cut (A, A) satisfies 6(A) = 6(U).

Proof. By Theorem 7, there exists a subset S C U with |S| <2k — 1 such that every minimum (S, U)-terminal cut
(A, A) has 6(A) = 6(U). By Corollary 3, there exists a subset T C U with |T| < 2k — 1 such that every minimum (U,
T)-terminal cut (A, A) has 6(A) = 5(U). We show that every minimum (S, T)-terminal cut (4, A) has 6(A) = 5(U).
We need the following claim.

Claim 7. Let (Y,Y) be the source minimal minimum (S, T)-terminal cut. Then, 5(Y) = 5(U).
Proof. Because (U, U) is a (S, T)-terminal cut, and (Y, Y) is a minimum (S, T)-terminal cut, we have that
di) = d(y).

Because (UNY,UNY)is a (S, U)-terminal cut, we have that

duny)=dU).
Because (U U Y, U UY)is a (U, T)-terminal cut, we have that

dUuy)=dU).
Thus, by the submodularity of the hypergraph cut function, we have that

2d(U) =2 dU)+d(Y)=dUnNY)+dUUY)=2d4(U).

Therefore, we have that d(U N Y) = d(U) and d(Y) = d(U). Further, because (Y,Y) is a minimum (S, T)-terminal
cut, it follows that (U NY,UNY) is a minimum (S, T)-terminal cut. Because (Y,Y) is the source minimal (S, T)-
terminal cut, we have that UNY =Y, and hence, Y C U. Therefore, (Y,Y) is a minimum (S, U)-terminal cut. By
the choice of S, we have that 6(Y) =o6(U). O

Applying Claim 7 to both sides of the partition (U, U), we have that the source minimal minimum (S, T)-terminal
cut (Y,Y) has 6(Y) = 6(U), and the source minimal minimum (T, S)-terminal cut (Z,Z) has 6(Z) = 6(U). Therefore,
for every e € 5(U), we have thateNY # Q0 andenN Z # 0.

Let (A,A) be a minimum (S, T)-terminal cut. Because (Y,Y) is the source minimal minimum (S, T)-terminal
cut, we have that Y C A. Because (Z,Z) is the source minimal minimum (T, S)-terminal cut, we have that Z C A.
Because every ¢ € 6(U) intersects both Y and Z, it follows that every e € 5(U) intersects both A and A, and hence,
5(U) C 5(A). Because (A, A) is a minimum (S, T)-terminal cut, d(A) < d(U), and thus, we have that 5(A) = 6(U). O

4. Algorithm for Enum-Hypergraph-k-Cut

In this section, we design a deterministic algorithm for ENum-HyPErRGRAPH-k-CUT that is based on divide and con-
quer and has a runtime of 7°® source minimal minimum (s, t)-terminal cut computations, where is the number
of vertices in the input hypergraph. The high-level idea is to use minimum (S, T)-terminal cuts to enumerate a col-
lection of candidate cuts such that, for every optimum k-partition for HyPERGRAPH-k-CUT, either the union of some
k/2 parts of the optimum k-partition is contained in the candidate collection, or we find the set of hyperedges cross-
ing this optimum k-partition. This helps in cutting the recursion depth to logk, which saves on overall runtime. We
describe the algorithm in Figure 2 and its guarantees in Theorem 8. We recall that for a hypergraph G = (V,E) and a
subset A C V, the subgraph G[A] induced by A is given by G[A] = (A,E’), where E’ :={e€ E:e C A}.

Theorem 8 is a self-contained proof that the number of MIN-k-CUT-SETS in a n-vertex hypergraph is O(n%198%) and
the runtime of the algorithm in Figure 2 is O(n®¥1°8K) source minimal minimum (s, f)-terminal cut computations. In
Lemma 2, we improve the runtime analysis of the same algorithm to O(1n'%) source minimal minimum (s, t)-terminal
cut computations. For this, we exploit the known fact that the number of MIN-k-cUT-SETs in a n-vertex hypergraph is
O(n*-2) (via the randomized algorithm in Chandrasekaran et al. [16]).

Theorem 8 and Lemma 2 together imply Theorem 2 because the source minimal minimum (s,)-terminal cut in a
n-vertex hypergraph of size p can be computed in time O(np) (Chekuri and Xu [18]).

Theorem 8. Let G = (V, E) be an n-vertex hypergraph of size p, and let k be a positive integer. Then, algorithm Enum-Cut-
Sets(G, k) in Figure 2 returns the family of all MIN-k-cut-seTs in G, and it can be implemented to run in time at most
D¥n®=0MogkT (11, 1) for some constant D, where T(n, p) denotes the time complexity for computing the source minimal

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
14 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

Figure 2. Divide and conquer algorithm to enumerate hypergraph minimum k-cut-sets.

Algorithm Enum-Cut-Sets(G = (V. E). k)
Input: Hypergraph G = (V, E) and an integer k > 1
Output: Family of all MIN-k-CUT-SETS in G
Ifk=1
Return {0}
Else
Initialize C < (), F 0
For each pair (S,T) such that S, 7 CV with SNT =0 and |S|,|T| <2k -1
Compute the source minimal minimum (S, 7)-terminal cut (A, A)
If G—6(A) has at least k connected components
F e FULS(A)}
Else
C+—Cu{A}
For each A € C such that |A| > |k/2] and [4] >k — |k/2]
Fa <Enum-Cut-Sets(G[A4], | k/2])
F', +Enum-Cut-Sets(G[A], k — | k/2])
F—FU{(A)UFUF' :FeFaF eF,}

Among all k-cut-sets in the family F, return the subfamily that are of smallest size

minimum (s, t)-terminal cut in an n-vertex hypergraph of size p. Moreover, the cardinality of the family returned by the
algorithm is at most C2*~1n =008k for some constant C.

Proof. We begin by showing correctness. The last step of the algorithm considers only k-cut sets in the family F,
so the algorithm returns a subfamily of k-cut sets. We only have to show that every MIN-k-CUT-SET is in the family
F; this also guarantees that every k-cut set in the returned subfamily is indeed a MiN-k-cUT-sET. We show this by
induction on k.

For the base case of k=1, the only MIN-k-CUT-SET is the empty set that is contained in the returned family. We
now show the induction step. Assume that k > 2. Let F C E be a MIN-k-cUT-sET in G and let (V5, ..., V}) be an opti-
mum k-partition for HyPERGRAPH-k-CuUT such that F = 6(V7, ..., Vi). We show that F is in the family returned by
the algorithm. Let U :=U1Li/12J V;. We distinguish between the following two cases:

1. Suppose d(U) < OPTj-cy-

By Theorem 3, there exist disjoint subsets S, T C V with |S|, |T| < 2k — 2 such that (U, U) is the unique minimum
(S, T)-terminal cut. Hence, the set U is in the collection C. Moreover, U contains [k/2 | nonempty sets V1, V,..., Vik/),
so we have |U| > | k/2]. Similarly, we have |U| >k — | k/2]. Because (V1, ..., V) is an optimum k-partition for HyPEr-
GrapH-k-Curt, the set {e€ F:eC U} is a MiN-|K/2|-curser in G[U]. Similarly, the set {e€ F:eC U} is a MIN-
(K — | K/2])-cur-ser in G[U]. Because d(U) < OPT-;, we know that G — 5(U) has fewer than k connected compo-
nents. Therefore, the set U is in the collection C. By induction hypothesis, we know that the set {e € F : ¢ C U} is con-
tained in the family 7; and the set {¢ € F : ¢ C U} is contained in the family F7,. Therefore, the set F is added to the
family F in the second for-loop.

2. Suppose d(U) = OPT -yt

By Theorem 5, there exist sets SC U and T € U with |S|,|T| < 2k — 1 such that the source minimal minimum
(S, T)-terminal cut (A, A) satisfies 5(A) = 6(U) = F. Therefore, the set A is in the collection C. Because F = 5(A), the
hypergraph G — 6(A) contains at least k connected components. Therefore, the set F = 6(A) is added to the family
F in the first for-loop.

Thus, in both cases, we show that the set F is contained in the family . Because the algorithm returns the sub-
family of hyperedge sets in F that are MIN-k-CUT-SETs, the set F is in the family returned by the algorithm.

Next, we bound the cardinality of the family returned by the algorithm. Let f(k, 11) be the maximum cardinality
of the family returned by the algorithm among all n-vertex hypergraphs. There are O(n*~2) pairs of subsets
S, TV with |S|,|T| £2k—1and SN T = 0. Hence, the cardinality of the collection C and the family F at the end
of the first for-loop is O(1n*~2). Consequently, for k > 2, by the recursion, we have that

,2 k k
f(k,l’l)ZO(Tl4k)f(\\EJln>f<k \\EJI”) (8)

and f(1,n) = 1. We now show that f(k,) < C*~15®-6logk for some constant C.

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 15

Let C > 1 be a constant larger than the constant occurring in the O-notation of (8). Then, we have that

flk,n) < Cn4k2f<m ,n> f(k — H ,n).)

We show by induction that f(k,n) < C?*~15®k-0)logk The base case of k=1 holds because f(1,1) = 1. For the induc-
tion step, let k > 2. Using (9) and the induction hypothesis, we have that

Flk,n) < Crk—2 . C2181-1,,(8L51-6)log(14]) . c2k—2151-1,,(8k—8(4]—6)log(k—(4])
— %1 ,n4k—2+(8L§ 1—6)log(14])+(8k—8(5]—6)log(k—14 J).

Here, the exponent of 7 is

e CH RO HIN GO)
< k-2 8k - 12)log (“5),

and it suffices to show that

4k — 2 + (8k — 12)log (’%) < (8k — 6)log k. (10)

This follows immediately for k =2. For k > 3, we have that

k+71> — (8k — 6)logk

= 4k — 2+ (8k — 12)log(k + 1) — 8k + 12 — (8k — 6)logk

4k —2 + (8k — 12)log(

=(8k— 6)logk+T1 —6log(k+1) —4k+10

< (8k —6)log(4/3) — 6log(k+1) —4k+10 (since k > 3)
s%(Sk—6)— 12 — 4k +10

<0.

This completes the proof that f(k, 1) < C?~15(8k-6)logk,

Next, we bound the maximum runtime of the algorithm. Let N(k,n) denote the runtime of the algorithm
among all n-vertex hypergraphs. We have N(1,1) = O(1). For k > 2, there are O(n*~2) pairs of subsets S,T C V
with |S|,|T| <2k —1and SN T = 0. Hence, the first for-loop performs O(n*~2) source minimal minimum (S, T)-
terminal cut computations. The collection C and the family at the end of the first for-loop each have O(n*~2)
sets. This implies that the first for-loop can be implemented to run in O(n*~2)T(n,p) time. For each A € C, the
computation of Enum-Cut-Sets(G[A], |k/2]) in the second for-loop runs in N(|k/2],n) time. The computation of

Enum-Cut-Sets(G[A],k — [k/2]) in the second for-loop runs in N(k — |k/2],n) time. Hence, the second for-loop
can be implemented to run in

oo 88 Ao))

time. The last step to prune the family 7 can be implemented to run in time that is linear in the time to implement
the first and second for-loops: this is because, for each member of F, we can decide whether it is a minimum k-cut
set in time linear in the time to write this member in F. Therefore, we have

N(k,n) = O(n*)I(n,p)
,n) f(k V;J,n> ~O(p)>. (11)

e s)

We now show that N(k, n) < D*n®—01gkT (51, p) for some constant D.

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
16 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

Let D > max{C,N(1,n),4} be a constant that is larger than the constants occurring in the O-notation of (11).
Then, we have that

A 3 B B A T e

We show by induction that N(k,n) < D¥*n®—018kT(31,). The base case of k=1 holds because N(1,1) <D. We
now show the induction step. Let k > 2. We use the fact that T(n,p) > p. Then, using (12), induction hypothesis,
and the bound f(k, n) < C*~158k-0)logk shown earlier, we have that

N(k,n) < Dn*2 <T(n,p) +N< EJ ,n) +N<k — EJ ,n))

+ D2 (CZk—Zn(8L§ |—6)log(141),, (8k—8141—6)log(k—15]) . Dp)

< Dn*2 (T(n,p) + N(\EJ ,n) +N (k - {SJ ,n> + C22y Bk 12)og ') . Dp)

< D2 (T, p) + DA 8-S T3,)
+ D2 (D4k—4L§ 1y (8k=8L51-6)log(k—L1) (1, p) 4 CZ~2 Bk 12)og('5) . Dp)

< D2 (T(n, p)+ 2 D2k+2,,(4k-2)log(t5!) T(n,p) + 22, 8k-12)log(4!) | DT(n,p)) (13)

= T(n,p) <Dn4k—2 4 DDt 4k-Dlog(k+1) | ~2k-2 Dzn(Sk—u)log(%)Mk—z)

< T(n,p) <Dn4k—2 4 o D2k+3 ,(k-D)log(k+1) C2k—2D2n(8k—6)logk) (by inequality (10))
<T(n,p)- n(8k—6)logk(D 1 op2k+3 Czk—zDz) (14)
< T(n,p) - n®-018k . 4max(C, D)+

< D¥pB—6logk T (1 1),

where Inequality (13) is because |k/2],k—|k/2] <(k+1)/2 and Inequality (14) is because (4k —2)log(k+1) <
(8k —6)logk forallk >2. O

We recall that the number of MIN-k-CUT-SETs in an n-vertex hypergraph is O(n%*~2) (Chandrasekaran et al. [16]).
Assuming this bound improves the runtime of algorithm Enum-Cut-Sets(G, k) in Figure 2.

Lemma 2. Algorithm Enum-Cut-Sets(G, k) in Figure 2 can be implemented to run in time at most C*n'**=2T(n,p) for
some constant C, where n is the number of vertices, p is the size of the input hypergraph G, and T(n, p) denotes the time
complexity for computing the source minimal minimum (s, t)-terminal cut in an n-vertex hypergraph of size p.

Proof. Let N(k, n) denote the maximum runtime of the algorithm among all n-vertex hypergraphs. Then, we
have that

N(1,n) = O(1) (15)

because the algorithm runs in constant time. For k > 2, there are O(n*~2) pairs of subsets S, T C V with |S|,|T| <
2k —1and S N T = 0. Hence, the first for-loop performs O(n*~2) source minimal minimum (S, T)-terminal cut com-
putations. The collection C and the family JF at the end of the first for-loop each have O(n*~2) sets. This implies that
the first for-loop can be implemented to run in O(n*~2)T(n, p) time. For each A € C, the computation of Enum-Cut-
Sets(G[A], |k/2]) in the second for-loop runs in N(lk/2],n) time. The computation of Enum-Cut-Sets(G[A],k
— k/2]) in the second for-loop runs in N(k — |k/2],n) time. We recall that F4 consists of all minimum |k/2]-cut-
sets in a n-vertex graph and, hence, has size O(n?¥/2=2). Similarly, 77, has size O(n**~1¥/2)-2) Hence, the second

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 17

for-loop can be implemented to run in time

T)
= O(n*2) <N< BJ ,n) +N<k V;J ,n) + O(n2k4)> _

Moreover, the size of the family F at the end of the second for-loop is O(n*~2) + O(n*~2)|F4| - | F/| = O(n*2)
O(n?=*) = O(n®~°). Hence, the last step to prune the family can be implemented to run in time O(1°~°). Hence,
the second for-loop and the last step can together be implemented to run in time

O(n*=2) (N(\EJ ,n) +N<k — {EJ ,n> + O(n2k4)> .
Therefore, we have
N(k, n) = O(n*-2) <T(n, p)+N < EJ , n) +N (k — EJ ,n> + O(n2k4)> . (16)

We now solve the recursion in (16) under the base case given by (15) to show that N(k,n) = O(nmax(016k-26))

T(n,p).
Let C >4 be a constant that is larger than the constants that appear in the O-notations of (15) and (16). Then,
we have that N(1,7) < C and

N(k,n) < Cn*2 (T(n,p) +N< {gJ ,n) +N<k — {SJ ,n) + Cn2k4> . (17)

We show that N(k,n) < C¥*pmax(0.16k=26)T (51 p) by induction on k. For the base case of k=1, we have that N(1,n)
< C. We now show the induction step.
For k =2, using Inequality (17) and N(1,n) < C, we have

N(2,n) < Cn®(T(n,p) +2N(1,n) + C) < Cn®(T(n,p) +2C + C)
< Cn®-4CT(n,p) < C*n°T(n,p) = CHFnm>O1K=20T (3 1),
For k=3, using Inequality (17), N(1,1) < C, and N(2,n) < C*n°T(n,p), we have
N(3,n) < Cn'(T(n,p) + N(1,n) + N(2,n) + Cn*) < Cn'®(T(n,p) + C + C*n®T(n,p) + Cn?)
<cn'. 4C4n6T(n,p) < CénzzT(n,p) = Canma"(O’lék’%)T(n,p).

Let k > 4. We have that 16[k/2] —26 > 0 and 16(k — | k/2]) — 26 > 0. Using (17) and the induction hypothesis, we
have that

N(k,n) < Cn*-2 (T(n,p) + CzL%anL%J’%T(n,p) + Cz(k’tg)nm(k’L%J)’%T(n,p) + Cn2k74)
< Cp#k-2 (1 + sl 1615126 | ~2(k-151),,16(k-151)-26 ank—4> T(n,p). (18)
Suppose k is even. Then, using (18), we have that
N(k,n) < Crn*2(1 + 2C* 126 + Cn®* T (n,p)
< CH 1 ¥2(1 4 2826 4 24T, p)
< O+ k2 gy max{0, 8626, 2641 Ty)

< Canlék—26 T(Vl, p),

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
18 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

where the last inequality is because C* > 4C**! and max{0, 8k — 26,2k — 4} < 12k — 24 for k > 2. Next, suppose that
kis odd. Then, using (18), we have that

Nk,) < Cri#*-2 (1 4 CF18k=1)=26 | k+1,8(k+1)-26 Cn2k74) T(n,p)
< CkF2y 42 (1 4 8k=1D=26 | 8(k+1)-26 | nZk—4) T(n,p)
< Ck+2 n4k72 (4nmax{0, 8k—18, 2k74})T(n’ p)

< Czknlék_%T(n, p),

where the last inequality is because C% > 4C? and max{0, 8k — 18,2k — 4} < 12k — 24 for k > 4. This completes the
proof that N(k,) < C*n'%=20T(n,p). O

5. Algorithm for ENnum-MiNMAx-HYPERGRAPH-K-PARTITION
In this section, we design a deterministic algorithm for ENUM-MINMaX-HYPERGRAPH-k-PARTITION that runs in time
n9)p, where n is the number of vertices and p is the size of the input hypergraph. For this, we rely on the notion of
k-cut-set representatives.

We recall that, for a k-partition (V5, ..., V) and disjoint subsets Uj, ..., U; € V, the k-tuple (U, ..., Uy) is defined
to be a k-cut set representative of (V5, ..., Vi) if U; € Viand 0(U;) = 6(V;) for all i € [k]. We first show that there exists
a polynomial-time algorithm to verify whether a given k-tuple (Uj, . .., Uy) is a k-cut set representative.

Theorem 9. Let G =(V,E) be an n-vertex hypergraph of size p and let k be a positive integer. Then, there exists an algo-
rithm, denoted algorithm Recover-Partition, that takes as input the hypergraph G and disjoint subsets Uy, ..., Uy C 'V and
runs in time O(knp) to decide if (U, ..., Uy) is a k-cut set representative of some k-partition (V1,..., V) and, if so, then
return such a k-partition.

Proof. We use algorithm Recover-Partition(G, Uy, . .., Uy) in Figure 3.

We begin by showing correctness. Because Algorithm 3 maintains U; C P; and 6(U;) = 8(P;) for all i € [k], if it
returns a k-partition, then the k-partition necessarily satisfies the required conditions. Next, we show that, if (U,
..., Uy) is a k-cut set representative of a k-partition (Vy,..., Vi), then the algorithm indeed returns a k-partition
(P1,...,Pr) with U; € P; and 6(U;) = 6(P;) for all i € [k] (however, (Py,...,Pr) may not necessarily be the same as
Vi,..., V).

Let (V4,..., Vi) be a k-partition such that U; € V; and 6(U;) = 6(V;) for all i € [k]. Let (P4, ..., Px) be the sequence
of subsets at the end of the for-loop. Moreover, for each j € [f], let P, .. .,Pi) be the sequence of subsets at the
end of the jth iteration of the for-loop. For notational convenience, for i € [k], we define P := U;. We note that
(P1,...,P)=(P,...,Pt) and PY C P! C---C P! for every i€ [k]. We observe that U; C P, and 6(U;) = 6(P}) for all
j€{0,1,2,...,t}. Moreover, the subsets P]1/ .. ~/P§< are pairwise disjoint for each j € {0,1,2,...,t}. Therefore, it suf-
fices to show that Uf , P; = V. .

We claim that C; U--U C; CUL; Pl for each j € {0,1,...,t}. Applying this claim for j=t gives that U5, P; =V as
desired. We now show the claim by induction on j. The base case of j=0 holds by definition. We now prove the
induction step. By induction hypothesis, we have that C; U... U Cj_y CUL, Pfl. We show that there exists 7 € [k]

Figure 3. Algorithm for Theorem 9.

Algorithm Recover-Partition(G = (V. E).U;.....Uy)
Input: Hypergraph G = (V, E) and disjoint subsets Uy,...,U, CV
Output: Decide if there exists a k-partition (Vi,...,V,) of V
with U; CV; and §(U;) = 0(V;) Vi € [k], and return one if it exists
Initialize P; < U; for all i € [k]
Let Cy,...,C; CV be the components of G —U¥_,4(U;) that are disjoint from UF_, U,
For j=1,...,t
If 3i € [k] such that §(P,UC;) =d(P;)
P+ P,UC;
If (Py,..., P) is a k-partition of V
Return (Py,..., B)
Else
Return NO

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 19

such that 6(P’ ug)= (5(P/) We know that C; is contained in one of the sets in {V1y,..., Vi}, say C; €V for
some ¢ € [k]. We prove that (S(P] UG = 6(P€) to complete the proof of the claim. Because C; is a component of
G— UL, o(U;) = G— UL, 8(V;), we know that each hyperedge in 6(C;) crosses the k—partltlon (Vy,...,Vy). More-
over, each hyperedge in 6(C;) intersects C; C V, and hence, 6(C;) € 6(Vg). Therefore,

5P UGy~ 5(Ph) € 8(C)) S (Vo) = o(U) = (P}).

This is possible only if 6(P]{‘f1 ug)— 6(Pj;1) = (), that is, 6(P]{‘f1 ug)c 6(P];1). We now show the reverse inclu-
sion. We have that

S(PY =8P U Gy = s(Up) — 5P U Gy
=06(Ve)—o(P, ' UG
=E(V,—P, ' —=C,V-V,—P,YUEWV,nP, ", P~V
CE[V—P 'TUEP].

We note that the left-hand side is a subset of 6(P][_1), whereas the right-hand side is disjoint from 6(P]€_1) because
E[V —P, ' 1no(P) =0 and E[P, 1N 6(P, ") = 0. Hence, the containment is possible only if 6(P} ') — (S(P][1 U
Cj) =0, and hence, 5(P, ") C 6(P, " U C;). Consequently, 5(P, ' U C;) = 6(P}).

We now bound the runtime. We can compute 6(U;) for all i € [k] in O(kp) time. For every choice of j € [t], we
can verify if there exists i € [k] such that 6(P; U C;) = 6(P;) in time O(kp) as follows: For each i € [k], we can com-
pute 6(P; U Gj) in O(p) time and verify if 6(P; U C;) = 6(U;) = 6(P;) in O(p) time. The number of iterations of the
for-loop is t < n. Hence, the total runtime is O(knp). O

Next, we address the problem of enumerating all MiNnmax-k-cuT-seTs. For this, we define a subproblem: namely,
ENuM-MINMax-HyPERGRAPH-k-CUT-SET-REPS. The input here is a hypergraph G = (V, E) and a fixed positive integer
k(e.g,k=2,3,4,...). The goal is to enumerate a family F of k-cut set representatives satisfying the following two
properties:

1. Every k-tuple (U, ..., Uy) in the family F is a k-cut set representative of some optimum k-partition (Vy, ..., V)
for MINMAX-HYPERGRAPH-K-PARTITION.

2. For every optimum k-partition (V, ..., Vi) for MiNnMAX-HYPERGRAPH-k-PARTITION, the family F contains a k-cut
set representative (Uj, ..., Ux) of (V1,..., Vy).

We note that, if a family F is a solution to ENUM-MINMAx-HYPERGRAPH-k-CUT-SET-REPS, then returning {UX,
o(U;) : (Uy, ..., U) € F} solves ENUM-MINMaX-HYPERGRAPH-k-PARTITION. Hence, it suffices to solve ENUM-MINMAX-
HYPERGRAPH-k-CUT-SET-REPS in order to solve ENUM-MINMAX-HYPERGRAPH-k-PARTITION. We describe our algorithm
for ENUM-MINMax-HYPERGRAPH-k-CUT-SET-REPs in Figure 4 and its guarantees in Theorem 10. Theorem 1 follows
from Theorem 10.

Figure 4. Algorithm for Theorem 10.

Algorithm Enum-MinMax-Reps(G = (V. E). k)
Input: Hypergraph G = (V, E) and an integer k > 2
Output: Family F of k-cut-set representatives of all optimum k-partitions
for MINMAX-HYPERGRAPH-k-PARTITION
Initialize C <0, D« 0, and F <+ 0
For each pair (S,T) such that S,7CV with SNT =0 and |S], |T| <2k —1
Compute the source minimal minimum (S, T)-terminal cut (U, U)
C«+CuU{U}
For all (Uy,...,Us) € C* such that Uy, ..., U, are pairwise disjoint
If Recover-Partition(G,Uy,...,Uy) returns a k-partition
D« DU{(Uy,...,Up)}
A min{max,e) d(U;) : (Un,...,U;) € D}
For all (Uy,...,Us) € D such that max;cp d(U;) = A:
F— FU{(Uy,...,Up)}
Return F

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
20 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

Theorem 10. Let G = (V,E) be an n-vertex hypergraph of size p and let k be a positive integer. Then, algorithm Enum-
MinMax—Rf;ns(G, k) in Figure 4 solves ENumM-MINMAx-HYPERGRAPH-K-CUT-SET-REPS, and it can be implemented to run in
time O(kn*"~2+1p). Moreover, the cardinality of the family returned by the algorithm is O(n*~2),

Proof. We begin by showing correctness; that is, the family F returned by the algorithm satisfies properties (1)
and (2) mentioned in the definition of ENUM-MINMax-HYPERGRAPH-k-CUT-SET-REPs. By the second for-loop, each k-
tuple added to the collection D is a k-cut set representative of some k-partition (it need not necessarily be a k-cut
set representative of an optimum k-partition for MiNnmaX-HYPERGRAPH-k-PARTITION). The algorithm returns a sub-
family of D, and hence, it returns a subfamily of k-cut set representatives. We only have to show that a k-cut set
representative of an arbitrary optimum k-partition for MinMax-HYPERGRAPH-k-PARTITION is present in the family D;
this guarantees that the value A computed by the algorithm is exactly OPT ninmax-k-partition, and owing to the way
in which the algorithm constructs the family F from the family D, it follows that the family F satisfies properties
(1) and (2).

Let OPT minmax-k-partition denote the optimum value of a minmax k-partition in G, and let OPTj-.y denote the
optimum value of a minimum k-cut in G. We note that OPTminmax-k-partition < OPTi-cue- This is because, if
(P1,...,Py) is a k-partition with minimum [5(P, ..., Py)| (i.e., an optimum k-partition for HyPERGRAPH-k-CUT), then

OPTminmax-k-partition < Izrel[?fi(|6(P1)| < |6(P1/ .. -rPk)| = OPTk-cut-

Let (V4,..., V) be an arbitrary optimum k-partition for MNnMAX-HYPERGRAPH-k-PARTITION. We show that the family F
returned by the algorithm contains a k-cut set representative of (V1, ..., V). We have that d(V;) < OPT minmax-k-partiton <
OPT o for all i € [k]. Hence, by Theorems 3 and 5, there exist subsets S; € V;, T; €V — V; with |S;|, | T;| <2k — 1 such
that the source minimal minimum (S;, Tj)-terminal cut (U;, U;) satisfies 5(U;) = 6(V;) for all i € [k]. Source minimality of
the cut (U;, U;) also guarantees that U; C V; for all i € [k]. Hence, the k-tuple (Uj, ..., Uy) is a k-cut set representative of
(V1,..., V). It remains to show that this k-tuple is indeed present in the families D and F. We note that the sets
U, ..., Uy are added to the collection C in the first for-loop. Because the k-tuple (U, ..., Uy) is a k-cut set representative
of the k-partition (V5, ..., Vy), the k-tuple (U, ..., Uy) is added to the family D in the second for-loop (by correctness of
algorithm Recover-Partition as proved in Theorem 9). Because the family D contains only k-cut set representatives of k-
partitions, it follows that A = OPT minmax-k-partiton and (Uy, . . ., U) are added to the family F in the third for-loop. Hence,
the k-cut set representative (U, ..., Uy) of the optimum k-partition (V74,..., Vi) for Minmax-HYPERGRAPH-k-PARTITION is
present in the family F returned by the algorithm.
The bound on the size of the family F returned by the algorithm is

|F|<|D| < |C|k — O(nk(4k‘2))_

Next, we bound the runtime of the algorithm. The first for-loop can be implemented to run in time O(n*-2)
T(n,p). The second for-loop executes the algorithm from Theorem 9 O(1**~%) times, and hence, the second for-
loop can be implemented to run in time O(kn***~%+1p). The computation of A and the third for-loop can be imple-
mented to run in time O(|D|) = O(n**~%). The time to compute A is O(kp)|D| = O(kn*~%p) because, for each
(Uy, ..., Ux) € D, we can compute maxed(U;) in time O(kp). The third for-loop can also be implemented to run
in time O(kp)| D| = O(kn**~%*p). Hence, the total runtime is O(n*~2)T(1,p) + O(kn** ~2+1p). We recall that T(n, p)
= O(np), and hence, the total runtime is O(kn*’~2+1p). O

6. A Lower Bound on the Number of Minmax-k-CuT-SETS
In this section, we show that there exist n-vertex connected graphs for which the number of MINMAX-k-CUT-SETs is
nk) In particular, we show the following result.

Lemma 3. For every positive integer k > 2, there exists a positive integer n such that the number of optimum k-partitions
for MiNMAX-GRAPH-K-PARTITION in the n-vertex complete graph is n"),

Proof. Let k > 2 be fixed, and let G = (V, E) be the complete graph on n = k(k — 1) vertices (with all edge weights
being uniformly one). We show that OPT ninmax-k-partition = (K — 1)3 and every partition of V into k parts of equal
size is an optimum k-partition for MInMAX-GRAPH-k-PARTITION. Because the number of partitions of V into k parts
of equal size is Q(k") = Q(1""/2), the lemma follows.

First, we show that OPT ninmax-k-partition = (k — 1)3. For every partition of V into k nonempty parts, the largest
part has at least k—1 vertices by the pigeonhole principle and at most k(k—1) —(k—1) = (k— 1)2 vertices
because each of the remaining k — 1 parts contain at least one vertex. Therefore, the cut value of the largest part

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 21

is at least

min x(n—x) = (k—1)°.
xe{k—1, ..., (k—=1)*}

The equality follows because n =k(k —1) and the function f(x) = x(n —x) is convex and is minimized at the
boundaries. This implies that OPT minmax-k-partition = (kK — 1)3.

Next, we show that OPT minmax-k-partition < (k — 1)3 and every partition of V into k parts of equal size is an optimum
k-partition for MinMax-GRAPH-k-PARTITION. Let (V7, ..., Vi) be an arbitrary k-partition of V such that |V;| =k —1 for
all i € [k]. The MiNnMaX-GRAPH-k-PARTITION objective value of this k-partition is (k —1)(n — (k —1)) = (k — 1)°. Thus,
(V1,..., Vi) is an optimum k-partition for MINMAX-GRAPH-k-PARTITION in G. O

We note that our example exhibiting #%*) optimum k-partitions for MinMaX-GRAPH-k-PARTITION has the number of
vertices n upper bounded by a function of k. We are not aware of examples that exhibit n%) optimum k-partitions
for MINMAX-GRAPH-k-PARTITION for fixed k but arbitrary n (e.g., k = 2,3,4, ... but n is arbitrary).

7. Conclusion

We show the first polynomial bound on the number of MiNnmMax-k-cUT-SETs in hypergraphs for every fixed k and give a
polynomial-time algorithm to enumerate all MiNMAX-k-CUT-SETs as well as all MiN-k-cUT-SETs in hypergraphs for every
fixed k. Our main contribution is a structural theorem that is the backbone of the correctness analysis of our enumera-
tion algorithms. In order to enumerate MINMAX-k-CUT-SETs in hypergraphs, we introduce the notion of k-cut set repre-
sentatives and enumerated k-cut set representatives of all optimum k-partitions for MiNnMaX-HYPERGRAPH-k-PARTITION.
Our technique builds on known structural results for HyPERGRAPH-k-CUT and MiNMax-HYPERGRAPH-k-PARTITION (Beide-
man et al. [7], Chandrasekaran and Chekuri [12, 13]).

The technique underlying our enumeration algorithms is not necessarily novel; we simply rely on minimum
(s, f)-terminal cuts. Using fixed-terminal cuts to address global partitioning problems is not a novel technique by
itself; it is common knowledge that minimum (s, #)-terminal cuts can be used to solve global minimum cut. How-
ever, there are several problems in which naive extensions of this technique fail to lead to efficient algorithms: for
example, GRaPH-k-CUT for an n-vertex graph can be reduced to O(n¥) multiway cut instances, but multiway cut for
k terminals is NP-hard even for fixed constant k. Adapting this technique for specific partitioning problems requires
careful identification of structural properties. In fact, beautiful structural properties are shown for a rich variety of
partitioning problems in combinatorial optimization in order to exploit this technique: for example, it is used (1) to
design the first efficient algorithm for Graru-k-Cut (Goldschmidt and Hochbaum [27]), (2) to solve certain con-
strained submodular minimization problems (Goemans and Ramakrishnan [26], Négele et al. [51]), and (3) more
recently to design fast algorithms for global minimum cut in graphs and for Gomory-Hu trees in unweighted
graphs (Abboud et al. [1], Li and Panigrahi [46]). Our use of this technique also relies on identifying and proving a
suitable structural property, namely, Theorem 5. The advantage of our structural property is that it simultaneously
enables enumeration of MIN-k-CUT-SETs as well as MINMAX-k-CUT-sETs in hypergraphs, which was not possible via
structural theorems that were developed before. Furthermore, it helps in showing the first polynomial bound on
the number of MINMAX-k-CUT-SETs in hypergraphs for every fixed k. In work subsequent to the present paper, we also
show that minimum (s, f)-terminal cuts can be used to enumerate all constant approximate minimum cuts in a
given connected graph in polynomial time (Beideman et al. [8]).

We also emphasize a limitation of our technique. Although it helps in solving ENum-HYPERGRAPH-k-CUT and
ENuM-MINMax-HYPERGRAPH-k-PARTITION, it does not help in solving a seemingly related hypergraph k-partitioning
problem: namely, given ahypergraph G = (V, E) and a fixed integer k, find a k-partition (V4, ..., Vi) of the vertex set
that minimizes > _;_; |6(V;)|. Natural extensions of our structural theorem fail to hold for this variant of the hyper-
graph k-partitioning problem. We note that this variant is polynomial-time solvable for k <5 (Chandrasekaran and
Chekuri [12], Hirayama et al. [35], Okumoto et al. [52]), and resolving its complexity for k > 6 remains open.

We mention an open question concerning HYPERGRAPH-k-CUT and the enumeration of MIN-k-CUT-SETs in hyper-
graphs for fixed k. We recall the status in graphs: the number of minimum k-partitions in a connected graph is
known to be O(n?~2) via Karger-Stein’s algorithm (Karger and Stein [40]) and Q(1¥) via the cycle example, where
n is the number of vertices; recent works improve on the upper bound to match the lower bound for fixed k. This
improvement in upper bound also led to the best possible O(1")-time algorithm for Grapt-k-Cur for fixed k (Gupta
et al. [31-33]). For hypergraphs, the number of MiN-k-CUT-SETs is known to be O(n*-2) and Q(n*). Can we improve
the upper /lower bound? Is it possible to design an algorithm for HyPERGRAPH-K-CUT that runs in time O(r*p)?

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
22 Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS

Acknowledgments
The authors thank the reviewers for carefully reading and providing constructive feedback. A preliminary version of this
work appeared at the International Colloquium on Automata, Languages, and Programming 2022.

Endnotes

! We emphasize that the objective of HYPERGRAPH-k-CUT is not equivalent to minimizing 35, c(5(V;)).

2 A real-valued set function f : 2 — R is submodular if f(A) + f(B) = f(A N B) + f(AU B) YA,BC V.

3 An evaluation oracle for a set function f : 2" — R over a ground set V returns the value f(S) given SC V.

4 A real-valued set function f: 2V S Ris symmetric if f(A) =f(V\A) VACV.

5 Subhypergraph G[A] has vertex set A and contains all hyperedges of G that are entirely contained within A.

6 Suppose we know a MIN-k-cUT-sET F. Then, consider the connected components Qy, ..., Qs in G —F and create a partition (Py, ..., P) by taking
P;=Q; foreveryie[k—1]and P :U;zk Qj; such a k-partition (Py, ..., Py) is an optimum k-partition for HyPERGRAPH-K-CUT.

7 Consider the n-vertex hypergraph G = (V, E) obtained from the complete bipartite graph K2 ;2 = (L U R, E’) by adding n?/4 copies of two
hyperedges e; and e,, where e; := L and e, := R. The minimum cut value is #?/4 with (L, R) being the unique minimum cut. Moreover, for
every nonempty subset X C L, the 2-partition (X, X) has cut value at most 12 /2. The cut sets of these 2-partitions are all distinct. Thus, G has
exponentially many 2-approximate minimum cut sets.

References
[1] Abboud A, Krauthgamer R, Trabelsi O (2021) Subcubic algorithms for Gomory—Hu tree in unweighted graphs. Proc. 53rd Annual ACM
SIGACT Sympos. Theory Comput. (ACM, New York), 1725-1737.
[2] Ahn K, Guha S (2009) Graph sparsification in the semi-streaming model. Proc. 36th Internat. Colloquium Automata Languages Programming
Part II (Springer, Berlin, Heidelberg), 328-338.
[3] Ahn K, Guha S, McGregor A (2012) Analyzing graph structure via linear measurements. Proc. 23rd Annual ACM-SIAM Sympos. Discrete
Algorithms (ACM-SIAM, New York-Philadelphia), 459-467.
[4] Ahn K, Guha S, McGregor A (2012) Graph sketches: Sparsification, spanners, and subgraphs. Proc. 31st Sympos. Principles Database Sys-
tems (ACM, New York), 5-14.
[5] Applegate D, Bixby R, Chvétal V, Cook W (2006) The Traveling Salesman Problem: A Computational Study (Princeton University Press, Prin-
ceton, NJ).
[6] Bansal N, Svensson O, Trevisan L (2019) New notions and constructions of sparsification for graphs and hypergraphs. Proc. 60th Annual
IEEE Sympos. Foundations Comput. Sci., 910-928.
[7] Beideman C, Chandrasekaran K, Wang W (2022) Deterministic enumeration of all minimum k-cut-sets in hypergraphs for fixed k. Proc.
33rd Annual ACM-SIAM Sympos. Discrete Algorithms (ACM-SIAM, New York-Philadelphia), 2208-2228.
[8] Beideman C, Chandrasekaran K, Wang W (2023) Approximate minimum cuts and their enumeration. Sympos. Simplicity Algorithms, 36—41.
[9] Benczur A (1995) A representation of cuts within 6/5 times the edge connectivity with applications. Proc. 36th Annual IEEE Foundations
Comput. Sci. (IEEE, Piscataway, NJ), 92-102.
[10] Benczur A (1997) Cut structures and randomized algorithms in edge-connectivity problems. Unpublished PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA.
[11] Benczur A, Goemans M (2008) Deformable polygon representation and near-mincuts. Groetschel M, Katona GOH, eds. Building Bridges:
Between Mathematics and Computer Science, Bolyai Society Mathematical Studies, vol. 19 (Springer, New York), 103-135.
[12] Chandrasekaran K, Chekuri C (2021) Min-max partitioning of hypergraphs and symmetric submodular functions. Proc. 32nd Annual ACM-
SIAM Sympos. Discrete Algorithms (ACM-SIAM, New York-Philadelphia), 1026-1038.
[13] Chandrasekaran K, Chekuri C (2022) Hypergraph k-cut for fixed k in deterministic polynomial time. Math. Oper. Res. 47(4):3380-3399.
[14] Chandrasekaran K, Wang W (2023) Fixed parameter approximation scheme for min-max k-cut. Math. Programming 197:1093-1144.
[15] Chandrasekaran K, Zhang X (2020) Hardness of min-max hypergraph k-partition when k is part of input, Personal communication.
[16] Chandrasekaran K, Xu C, Yu X (2021) Hypergraph k-cut in randomized polynomial time. Math. Programming 186:85-113.
[17] Chekuri C, Li S (2020) On the hardness of approximating the k-way hypergraph cut problem. Theory Comput. 16(14):1-8.
[18] Chekuri C, Xu C (2018) Minimum cuts and sparsification in hypergraphs. SIAM]. Comput. 47(6):2118-2156.
[19] Chekuri C, Quanrud K, Xu C (2020) LP relaxation and tree packing for minimum k-cut. SIAM]. Discrete Math. 34(2):1334-1353.
[20] Chen Y, Khanna S, Nagda A (2020) Near-linear size hypergraph cut sparsifiers. Proc. 61st Annual IEEE Sympo. Foundations Comput. Sci.
(IEEE, Piscataway, NJ), 61-72.
[21] Cook W, Cunningham W, Pulleyblank W, Schrijver A (1997) Combinatorial Optimization (Wiley, Hoboken, NJ).
[22] Dinitz EA, Karzanov AV, Lomonosov MV (1976) On the structure of a family of minimum weighted cuts in a graph. Fridman AA, ed.
Studies in Discrete Optimization (Nauka Publishers, Moscow).
[23] Downey R, Estivill-Castro V, Fellows M, Prieto E, Rosamund F (2003) Cutting up is hard to do: The parameterised complexity of k-cut
and related problems. Electronic Notes Theoretical Comput. Sci. 78:209-222.
[24] Fox K, Panigrahi D, Zhang F (2019) Minimum cut and minimum k-cut in hypergraphs via branching contractions. Proc. 30th Annual
ACM-SIAM Sympos. Discrete Algorithms (ACM-SIAM, New York-Philadelphia), 881-896.
[25] Ghaffari M, Karger D, Panigrahi D (2017) Random contractions and sampling for hypergraph and hedge connectivity. Proc. 28th Annual
ACM-SIAM Sympos. Discrete Algorithms (ACM-SIAM, New York-Philadelphia), 1101-1114.
[26] Goemans MX, Ramakrishnan VS (1995) Minimizing submodular functions over families of sets. Combinatorica 15(4):499-513.
[27] Goldschmidt O, Hochbaum D (1994) A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res. 19(1):24-37.
[28] Guinez F, Queyranne M (2012) The size-constrained submodular k-partition problem. Accessed 2021, https://docs.google.com/viewer?
a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aWIndWluZXpob21lcGFnZXxneDoONDVIMThkMDg4ZWRIOGI1.

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1

Beideman, Chandrasekaran, and Wang: Count Opt Cut Sets for Hypergraph k-Partition
Mathematics of Operations Research, Articles in Advance, pp. 1-23, © 2023 INFORMS 23

[29] Gupta A, Lee E, Li] (2018) An FPT algorithm beating 2-approximation for k-cut. Proc. 29th Annual ACM-SIAM Sympos. Discrete Algorithms
(ACM-SIAM, New York-Philadelphia), 2821-2837.

[30] Gupta A, Lee E, Li J (2018) Faster exact and approximate algorithms for k-cut. Proc. 59th IEEE Annual Sympo. Foundations Comput. Sci. (IEEE,
Piscataway, NJ), 113-123.

[31] Gupta A, Lee E, Li J (2019) The number of minimum k-cuts: Improving the Karger-Stein bound. Proc. 51st ACM Sympos. Theory Comput.
(ACM, New York), 229-240.

[32] Gupta A, Lee E, Li J (2020) The Karger-Stein algorithm is optimal for k-cut. Proc. 52nd Annual ACM Sympos. Theory Comput. (ACM, New
York), 473-484.

[33] Gupta A, Harris D, Lee E, Li] (2020) Optimal bounds for the k-cut problem Preprint, submitted May 17, https://arxiv.org/abs/2005.08301.

[34] Henzinger M, Williamson D (1996) On the number of small cuts in a graph. Inform. Processing Lett. 59(1):41-44.

[35] Hirayama T, Liu Y, Makino K, Shi K, Xu C (2023) A polynomial time algorithm for finding a minimum 4-partition of a submodular func-
tion. Proc. 34th Annual ACM-SIAM Sympos. Discrete Algorithms (ACM-SIAM, New York-Philadelphia), 1680-1691.

[36] Kamidoi Y, Yoshida N, Nagamochi H (2007) A deterministic algorithm for finding all minimum k-way cuts. SIAM]. Comput. 36(5):1329-1341.

[37] Kapralov M, Krauthgamer R, Tardos], Yoshida Y (2021) Toward tight bounds for spectral sparsification of hypergraphs. Proc. 53rd Annual
ACM SIGACT Sympos. Theory Comput. (ACM, New York), 598-611.

[38] Karger D (1993) Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. Proc. Fourth Annual ACM-SIAM Sympos.
Discrete Algorithms (ACM-SIAM, New York-Philadelphia), 21-30.

[39] Karger D (2000) Minimum cuts in near-linear time. |. ACM 47(1):46-76.

[40] Karger D, Stein C (1996) A new approach to the minimum cut problem. . ACM 43(4):601-640.

[41] Karlin A, Klein N, Gharan SO (2021) A (slightly) improved approximation algorithm for metric TSP. Proc. 53rd Annual ACM SIGACT
Sympos. Theory Comput. (ACM, New York), 32-45.

[42] Kawarabayashi K, Lin B (2020) A nearly 5/3-approximation FPT algorithm for min-k-cut. Proc. 31st ACM-SIAM Sympos. Discrete Algorithms
(ACM-SIAM, New York-Philadelphia), 990-999.

[43] Kawarabayashi K, Thorup M (2011) The minimum k-way cut of bounded size is fixed-parameter tractable. Proc. 52nd Annual Sympos. Founda-
tions Comput. Sci. (ACM, New York), 160-169.

[44] Kogan D, Krauthgamer R (2015) Sketching cuts in graphs and hypergraphs. Proc. 2015 Conf. Innovations Theoretical Comput. Sci. (ACM,
New York), 367-376.

[45] Lawler E (1973) Cutsets and partitions of hypergraphs. Networks 3(3):275-285.

[46] Li]J, Panigrahi D (2020) Deterministic min-cut in poly-logarithmic max-flows. Proc. 61st Annual Sympos. Foundations Comput. Sci., 85-92.

[47] Lokshtanov D, Saurabh S, Surianarayanan V (2020) A parameterized approximation scheme for Min k-Cut. Proc. 61st IEEE Annual Sym-
pos. Foundations Comput. Sci. (IEEE, Piscataway, NJ), 798-809.

[48] Manurangsi P (2017) Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. Proc. 49th Annual ACM Sympos. The-
ory Comput. (ACM, New York), 954-961.

[49] Manurangsi P (2018) Inapproximability of maximum biclique problems, minimum k-cut and densest at-least-k-subgraph from the small
set expansion hypothesis. Algorithms 11(1):10.

[50] Nagamochi H, Nishimura K, Ibaraki T (1997) Computing all small cuts in an undirected network. SIAM]. Discrete Math. 10(3):469—481.

[51] Négele M, Sudakov B, Zenklusen R (2019) Submodular minimization under congruency constraints. Combinatorica 39:1351-1386.

[52] Okumoto K, Fukunaga T, Nagamochi H (2012) Divide-and-conquer algorithms for partitioning hypergraphs and submodular systems.
Algorithmica 62(3):787-806.

[53] Quanrud K (2019) Fast and deterministic approximations for k-cut. Proc. Approximation Randomization Combin. Optim. Algorithms Techni-
ques, vol. 23 (Springer, New York), 1-20.

[54] Queyranne M (1999) On optimum size-constrained set partitions. Presentation, Aussois Workshop on Combinatorial Optimization, Aus-
sois, France.

[55] Raghavendra P, Steurer D (2010) Graph expansion and the unique games conjecture. Proc. 42nd Annual ACM Sympos. Theory Comput. (ACM,
New York), 755-764.

[56] Ravi R, Sinha A (2008) Approximating k-cuts using network strength as a Lagrangean relaxation. Eur. . Oper. Res. 186(1):77-90.

[57] Saran H, Vazirani V (1995) Finding k cuts within twice the optimal. SIAM |. Comput. 24(1):101-108.

[58] Soma T, Yoshida Y (2019) Spectral sparsification of hypergraphs. Proc. 30th Annual ACM-SIAM Sympos. Discrete Algorithms (ACM-SIAM,
New York-Philadelphia), 2570-2581.

[59] Thorup M (2008) Minimum k-way cuts via deterministic greedy tree packing. Proc. 40th Annual ACM Sympos. Theory Comput. (ACM, New
York), 159-166.

[60] Xiao M (2008) An improved divide-and-conquer algorithm for finding all minimum k-way cuts. Proc. 19th Internat. Sympos. Algorithms Comput.
(ACM, New York), 208-219.

[61] Zenklusen R (2019) A 1.5-approximation for path TSP. Proc. 30th Annual ACM-SIAM Sympos. Discrete Algorithms (ACM-SIAM, New
York-Philadelphia), 1539-1549.

[62] Zhao L (2002) Approximation algorithms for partition and design problems in networks. Unpublished PhD thesis, Kyoto University, Kyoto,
Japan.

[63] Zhao L, Nagamochi H, Ibaraki T (2005) Greedy splitting algorithms for approximating multiway partition problems. Math. Programming
102(1):167-183.

https://arxiv.org/abs/2005.08301

	Counting and Enumerating Optimum Cut Sets for Hypergraph k-Partitioning Problems for Fixed k
	Introduction
	A Special Case of Theorem 5
	Proof of Theorem 5
	Algorithm for Enum-Hypergraph-k-Cut
	Algorithm for Enum-MinMax-Hypergraph-k-Partition
	A Lower Bound on the Number of Minmax-k-Cut-Sets
	Conclusion

