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Abstract. We consider the problem of enumerating optimal solutions for two hypergraph 
k-partitioning problems, namely, HYPERGRAPH-k-CUT and MINMAX-HYPERGRAPH-k-PARTITION. 
The input in hypergraph k-partitioning problems is a hypergraph G � (V, E) with positive 
hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V 
into k nonempty parts (V1, V2, : : : , Vk)—known as a k-partition—so as to minimize an 
objective of interest. (1) If the objective of interest is the maximum cut value of the parts, 
then the problem is known as MINMAX-HYPERGRAPH-k-PARTITION. A subset of hyperedges 
is a MINMAX-k-CUT-SET if it is the subset of hyperedges crossing an optimum k-partition for 
MINMAX-HYPERGRAPH-k-PARTITION. (2) If the objective of interest is the total cost of hyperedges 
crossing the k-partition, then the problem is known as HYPERGRAPH-k-CUT. A subset 
of hyperedges is a MIN-k-CUT-SET if it is the subset of hyperedges crossing an optimum 
k-partition for HYPERGRAPH-k-CUT. We give the first polynomial bound on the number of MIN-

MAX-k-CUT-SETs and a polynomial-time algorithm to enumerate all of them in hypergraphs 
for every fixed k. Our technique is strong enough to also enable an nO(k)p-time deterministic 
algorithm to enumerate all MIN-k-CUT-SETs in hypergraphs, thus improving on the previously 
known nO(k2)p-time deterministic algorithm, in which n is the number of vertices and p is 
the size of the hypergraph. The correctness analysis of our enumeration approach relies on 
a structural result that is a strong and unifying generalization of known structural results 
for HYPERGRAPH-k-CUT and MINMAX-HYPERGRAPH-k-PARTITION. We believe that our structural 
result is likely to be of independent interest in the theory of hypergraphs (and graphs).
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1. Introduction
In hypergraph k-partitioning problems, the input consists of a hypergraph G � (V, E) with positive hyperedge costs 
c : E → R+ and a fixed positive integer k (e.g., k � 2, 3, 4, : : : ). The goal is to find a partition of the vertex set into k 
nonempty parts V1, V2, : : : , Vk so as to minimize an objective of interest. There are several natural objectives of inter-
est in hypergraph k-partitioning problems. In this work, we focus on two particular objectives, MINMAX-HYPER-

GRAPH-k-PARTITION and HYPERGRAPH-k-CUT: 
1. In MINMAX-HYPERGRAPH-k-PARTITION, the objective is to minimize the maximum cut value of the parts of the k- 

partition—that is, minimize maxk
i�1c(δ(Vi)); here, δ(Vi) is the set of hyperedges intersecting both Vi and V \Vi, and 

c(δ(Vi)) �
P

e∈δ(Vi)
c(e) is the total cost of hyperedges in δ(Vi).

2. In HYPERGRAPH-k-CUT,1 the objective is to minimize the cost of hyperedges crossing the k-partition—that is, 
minimize c(δ(V1, : : : , Vk)); here, δ(V1, : : : , Vk) is the set of hyperedges that intersect at least two sets in {V1, : : : , Vk}, 
and c(δ(V1, : : : , Vk)) �

P

e∈δ(V1, : : : , Vk)
c(e) is the total cost of hyperedges in δ(V1, : : : , Vk).

If the input G is a graph, then we refer to these problems as MINMAX-GRAPH-k-PARTITION and GRAPH-k-CUT, respec-
tively. We note that the case of k� 2 corresponds to global minimum cut in both objectives. In this work, we focus 
on the problem of enumerating all optimum solutions to MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT.

1.1. Motivations and Related Problems
We consider the problem of counting and enumerating optimum solutions for partitioning problems over hyper-
graphs for three reasons. First, hyperedges provide more powerful modeling capabilities than edges, and conse-
quently, several problems in hypergraphs become nontrivial in comparison with graphs. Although hypergraphs 
and partitioning problems over hypergraphs (including MINMAX-HYPERGRAPH-k-PARTITION) are discussed as early as 
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1973 by Lawler [45], most of these problems still remain open. The powerful modeling capability of hyperedges 
has been useful in a variety of modern applications, which, in turn, has led to a resurgence in the study of hyper-
graphs with recent works focusing on min-cuts, cut-sparsifiers, spectral-sparsifiers, etc. (Bansal et al. [6], Beideman 
et al. [7], Chandrasekaran and Chekuri [13], Chandrasekaran et al. [16], Chekuri and Xu [18], Chen et al. [20], Fox 
et al. [24], Ghaffari et al. [25], Kapralov et al. [37], Kogan and Krauthgamer [44], Soma and Yoshida [58]). Our work 
adds to this rich and emerging theory of hypergraphs.

Second, hypergraph k-partitioning problems are special cases of submodular k-partitioning problems. In sub-
modular k-partitioning problems, the input is a finite ground set V, a submodular function2 f : 2V → R provided by 
an evaluation oracle,3 and a positive integer k (e.g., k � 2, 3, 4, : : : ). The goal is to partition the ground set V into k 
nonempty parts V1, V2, : : : , Vk so as to minimize an objective of interest. Two natural objectives are of interest: (1) in 
MINMAX-SUBMOD-k-PARTITION, the objective is to minimize maxk

i�1 f (Vi), and (2) in MINSUM-SUBMOD-k-PARTITION, the 
objective is to minimize 

Pk
i�1 f (Vi). If the given submodular function is symmetric,4 then we denote the resulting pro-

blems as MINMAX-SYMSUBMOD-k-PARTITION and MINSUM-SYMSUBMOD-k-PARTITION, respectively. Because the hypergraph 
cut function is symmetric submodular, it follows that MINMAX-HYPERGRAPH-k-PARTITION is a special case of MINMAX-SYM-

SUBMOD-k-PARTITION. Moreover, HYPERGRAPH-k-CUT is a special case of MINSUM-SUBMOD-k-PARTITION (this reduction is 
slightly nontrivial with the submodular function in the reduction being asymmetric—e.g., see Okumoto et al. [52] for 
the reduction). Queyranne [54] claimed, in 1999, a polynomial-time algorithm for MINSUM-SYMSUBMOD-k-PARTITION 

for every fixed k; however, the claim was retracted subsequently (see Guinez and Queyranne [28]). The complexity 
status of submodular k-partitioning problems (for fixed k ≥ 4) are open, so recent works focus on hypergraph 
k-partitioning problems as a stepping-stone toward submodular k-partitioning (Beideman et al. [7], Chandrase-
karan and Chekuri [12, 13], Guinez and Queyranne [28], Okumoto et al. [52], Zhao [62], Zhao et al. [63]). Our 
work contributes to this stepping-stone by advancing the state of the art in hypergraph k-partitioning problems. 
We emphasize that the complexity status of two other variants of hypergraph k-partitioning problems that are 
also special cases of MINSUM-SUBMOD-k-PARTITION are still open: namely, HYPERGRAPH-k-PARTITION in which the 
objective is to minimize the sum of the cut values of the k parts and NORMALIZED-COVERAGE-k-PARTITION in which 
the objective is to minimize the sum of cost of hyperedges relative to the partition P, where the cost of a hyper-
edge e relative to P is c(e)(ℓ� 1) with ℓ�being the number of parts of P intersected by e (see Okumoto et al. [52], 
Zhao [62], Zhao et al. [63] for these variants).

Third, counting and enumeration of optimum solutions for graph k-partitioning problems are fundamental to 
graph theory and extremal combinatorics. They have found farther reaching applications than initially envisioned. 
We discuss some of the results and applications for k� 2 and k> 2 now. For k� 2 in connected graphs, it is well- 

known that the number of min-cuts and of α-approximate min-cuts are at most 
�

n
2

�

and O(n2α), respectively, and 

they can all be enumerated in polynomial time for constant α. These combinatorial results are the crucial ingredi-
ents of several algorithmic and representation results in graphs. On the algorithmic front, these results enable fast 
randomized construction of graph skeletons, which, in turn, play a crucial role in fast algorithms to solve graph 
min-cut (Karger [39]). On the representation front, counting results forms the backbone of cut sparsifiers, which, in 
turn, find applications in sketching and streaming (Ahn and Guha [2], Ahn et al. [3, 4], Kogan and Krauthgamer 
[44]). A polygon representation of the family of 6/5-approximate min-cuts in graphs was given by Benczur and 
Goemans in 1997 (see Benczur [9, 10], Benczur and Goemans [11]); this representation was used in the recent 
groundbreaking (3=2� ɛ)-approximation for traveling salesman problem (TSP) (Karlin et al. [41]). On the approxi-
mation front, in addition to the (3=2� ɛ)-approximation for metric TSP (Karlin et al. [41]), counting results also led 
to the recent 1.5-approximation for path TSP (Zenklusen [61]). For k>2, we note that fast algorithms for GRAPH-k- 
CUT have been of interest because they help in generating cutting planes when solving TSP (Applegate et al. [5], 
Cook et al. [21]). A recent series of works aimed toward improving the bounds on the number of optimum solu-
tions for GRAPH-k-CUT culminated in a drastic improvement in the runtime to solve GRAPH-k-CUT: namely, from 
O(n2k) time to O(nk) time (Gupta et al. [31–33]. Given the status of counting and enumeration results for k-partition-
ing in graphs and their algorithmic and representation implications that were discovered subsequently, we believe 
that a similar understanding in hypergraphs could serve as an important ingredient in the algorithmic and repre-
sentation theory of hypergraphs.

1.2. The Enumeration Problem
There is a fundamental structural distinction between hypergraphs and graphs that becomes apparent when enu-
merating optimum solutions to k-partitioning problems. In connected graphs, the number of optimum k-partitions 
for GRAPH-k-CUT and for MINMAX-GRAPH-k-PARTITION are nO(k) and nO(k2), respectively, and they can all be enumerated 
in polynomial time, in which n is the number of vertices in the input graph (Chandrasekaran and Wang [14], 
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Chekuri et al. [19], Gupta et al. [32, 33], Karger and Stein [40], Thorup [59]). In contrast, a connected hypergraph can 
have exponentially many optimum k-partitions for both MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT even 
for k�2; for example, consider the hypergraph with a single hyperedge containing all vertices, which we denote as 
the spanning hyperedge example. Hence, enumerating all optimum k-partitions for hypergraph k-partitioning pro-
blems in polynomial time is impossible. Instead, our goal in the enumeration problems is to enumerate k-cut sets cor-
responding to optimum k-partitions. We call a subset F ⊆ E of hyperedges a k-cut set if there exists a k-partition 
(V1, : : : , Vk) such that F � δ(V1, : : : , Vk); we call a 2-cut set a cut set. In the enumeration problems that we consider, the 
input consists of a hypergraph G � (V, E) with positive hyperedge costs c : E → R+ and a fixed positive integer k (e.g., 
k � 2, 3, 4, : : : ). 

1. For an optimum k-partition (V1, : : : , Vk) for MINMAX-HYPERGRAPH-k-PARTITION in (G, c), we denote δ(V1, : : : , Vk)

as a MINMAX-k-CUT-SET. In ENUM-MINMAX-HYPERGRAPH-k-PARTITION, the goal is to enumerate all MINMAX-k-CUT-SETs.
2. For an optimum k-partition (V1, : : : , Vk) for HYPERGRAPH-k-CUT in (G, c), we denote δ(V1, : : : , Vk) as a MIN-k- 

CUT-SET. In ENUM-HYPERGRAPH-k-CUT, the goal is to enumerate all MIN-k-CUT-SETs.
We observe that, in the spanning hyperedge example, although the number of optimum k-partitions for MINMAX- 

HYPERGRAPH-k-PARTITION (as well as HYPERGRAPH-k-CUT) is exponential, the number of MINMAX-k-CUT-SETs (as well as 
MIN-k-CUT-SETs) is only one.

1.3. Results
In contrast to graphs, whose representation size is the number of edges, the representation size of a hypergraph 
G � (V, E) is p :�

P

e∈E |e | . Throughout, our algorithmic discussion focuses on the case of fixed k (e.g., k � 2, 3, 4, : : : ).
There are no prior results regarding ENUM-MINMAX-HYPERGRAPH-k-PARTITION in the literature. We recall the sta-

tus of MINMAX-HYPERGRAPH-k-PARTITION. As mentioned earlier, MINMAX-HYPERGRAPH-k-PARTITION is discussed as 
early as 1973 by Lawler [45] with its complexity status being open until recently. We note that the objective here 
can be viewed as aiming to find a fair k-partition, that is, a k-partition in which no part pays too much in cut value. 
Motivated by this connection to fairness, Chandrasekaran and Chekuri [12] study the more general problem of 
MINMAX-SYMSUBMOD-k-PARTITION. They give the first (deterministic) polynomial-time algorithm to solve MINMAX- 
SYMSUBMOD-k-PARTITION and, as a consequence, obtain the first polynomial-time algorithm to solve MINMAX-HYPER-

GRAPH-k-PARTITION. Their algorithm does not show any bound on the number of MINMAX-k-CUT-SETs because 
it solves the more general problem of MINMAX-SYMSUBMOD-k-PARTITION for which the number of optimum k-parti-
tions can indeed be exponential (recall the spanning hyperedge example). Focusing on hypergraphs raises the 
question of whether all k-cut sets corresponding to optimum solutions can be enumerated efficiently for every 
fixed k. We answer this question affirmatively by giving the first polynomial-time algorithm for ENUM-MINMAX- 
HYPERGRAPH-k-PARTITION.

Theorem 1. There exists a deterministic algorithm to solve ENUM-MINMAX-HYPERGRAPH-k-PARTITION that runs in time 
O(kn4k2

�2k+1p), where n is the number of vertices and p is the size of the input hypergraph. Moreover, the number of MIN-

MAX-K-CUT-SETs in a n-vertex hypergraph is O(n4k2
�2k).

We emphasize that our result shows the first polynomial bound on the number of MINMAX-k-CUT-SETs in hyper-
graphs for every fixed k (in addition to a polynomial-time algorithm to enumerate all of them for every fixed k). 
Our upper bound of nO(k2) on the number of MINMAX-k-CUT-SETs is tight; there exist n-vertex connected graphs for 
which the number of MINMAX-k-CUT-SETs is nΘ(k

2), where k depends on n (see Section 6).
Next, we briefly recall the status of HYPERGRAPH-k-CUT and ENUM-HYPERGRAPH-k-CUT. HYPERGRAPH-k-CUT was shown 

to be solvable in randomized polynomial time only recently (Chandrasekaran et al. [16], Fox et al. [24]); the random-
ized algorithms also show that the number of MIN-k-CUT-SETs is O(n2k�2), and they can all be enumerated in random-
ized polynomial time. A subsequent deterministic algorithm was designed to solve HYPERGRAPH-k-CUT in time nO(k)p 
by Chandrasekaran and Chekuri [13]. Their techniques are extended to design the first deterministic polynomial- 
time algorithm to solve ENUM-HYPERGRAPH-k-CUT in Beideman et al. [7]. The algorithm for ENUM-HYPERGRAPH-k-CUT 

given in Beideman et al. [7] runs in time nO(k2)p. We note that this runtime has a quadratic dependence on k in the 
exponent of n although the number of MIN-k-CUT-SETs has only linear dependence on k in the exponent of n (because 
it is O(n2k�2)). So an open question that remained from Beideman et al. [7] is whether one can obtain an nO(k)p-time 
deterministic algorithm for ENUM-HYPERGRAPH-k-CUT. We resolve this question affirmatively.

Theorem 2. There exists a deterministic algorithm to solve ENUM-HYPERGRAPH-K-CUT that runs in time O(n16k�25p), where 
n is the number of vertices and p is the size of the input hypergraph.

Our algorithms for both ENUM-MINMAX-HYPERGRAPH-k-PARTITION and ENUM-HYPERGRAPH-k-CUT are based on a 
structural theorem that allows for efficient recovery of optimum k-cut-sets via minimum (s, t)-terminal cuts (see 
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Theorem 5). Our structural theorem builds on structural theorems that appear in previous works on HYPERGRAPH- 
k-CUT and MINMAX-HYPERGRAPH-k-PARTITION (Beideman et al. [7], Chandrasekaran and Chekuri [12, 13]). Our 
structural theorem may appear to be natural/incremental in comparison with ones that appear in previous works, 
but formalizing the theorem and proving it is a significant part of our contribution. Moreover, our single struc-
tural theorem is strong enough to enable efficient algorithms for both ENUM-HYPERGRAPH-k-CUT and ENUM- 
MINMAX-HYPERGRAPH-k-PARTITION in contrast to previously known structural theorems. In this sense, our structural 
theorem can be viewed as a strong and unifying generalization of structural theorems that appear in previous 
works. We believe that our structural theorem is of independent interest in the theory of cuts and partitioning in 
hypergraphs (as well as graphs).

1.4. Technical Overview and Main Structural Result
We focus on the unit-cost variant of ENUM-HYPERGRAPH-k-CUT and ENUM-MINMAX-HYPERGRAPH-k-PARTITION in the 
rest of this work for the sake of notational simplicity; that is, the cost of every hyperedge is one. Throughout, we 
allow multigraphs, and hence, this is without loss of generality. Our algorithms extend in a straightforward man-
ner to arbitrary hyperedge costs. They rely only on minimum (s, t)-terminal cut computations, and hence, they are 
strongly polynomial-time algorithms.

1.4.1. Notation and Background. Let G � (V, E) be a hypergraph. Throughout this work, n denotes the number of 
vertices in G, m denotes the number of hyperedges in G, and p :�

P

e∈E |e | denotes the representation size of G. We 
denote a partition of the vertex set into h nonempty parts by an ordered tuple (V1, : : : , Vh) and call such an ordered 
tuple an h-partition. For a partition P � (V1, V2, : : : , Vh), we say that a hyperedge e crosses the partition P if it inter-
sects at least two parts of the partition. We refer to a 2-partition as a cut. For a nonempty proper subset U of vertices, 
we use U to denote V \U, δ(U) to denote the set of hyperedges crossing the cut (U, U), and d(U) :� |δ(U) | to denote 
the cut value of U. We observe that δ(U) � δ(U), so we use d(U) to denote the value of the cut (U, U). More generally, 
given a partition P � (V1, V2, : : : , Vh), we denote the set of hyperedges crossing the partition by δ(V1, V2, : : : , Vh)
(also by δ(P) for brevity) and the number of hyperedges crossing the partition by |δ(V1, V2, : : : , Vh) | . We denote the 
optimum value of MINMAX-HYPERGRAPH-k-PARTITION and HYPERGRAPH-k-CUT, respectively, by

OPTminmax-k-partition :� min max
i∈[k]

|δ(Vi) | : (V1, : : : , Vk) is a k-partition of V

� �

and

OPTk-cut :� min |δ(V1, : : : , Vk) | : (V1, : : : , Vk) is a k-partition of V
� �

:

A key algorithmic tool is the use of fixed-terminal cuts. Let S, T be disjoint nonempty subsets of vertices. A 
2-partition (U, U) is an (S, T)-terminal cut if S ⊆ U ⊆ V \T. Here, the set U is known as the source set, and the set U 
is known as the sink set. A minimum valued (S, T)-terminal cut is known as a minimum (S, T)-terminal cut. Because 
there can be multiple minimum (S, T)-terminal cuts, we are interested in source minimal minimum (S, T)-terminal 
cuts: a minimum (S, T)-terminal cut (U, U) is a source minimal minimum (S, T)-terminal cut if there does not exist a 
minimum (S, T)-terminal cut (U′, U

′
) such that U′(U. For every pair of disjoint nonempty subsets S and T of verti-

ces, there exists a unique source minimal minimum (S, T)-terminal cut, and it can be found in deterministic polyno-
mial time via standard maxflow algorithms. In particular, the source minimal minimum (S, T)-terminal cut can be 
found in time O(np) (Chekuri and Xu [18]).

Our technique to enumerate all MINMAX-k-CUT-SETs and all MIN-k-CUT-SETs builds on the approaches of Chandrase-
karan and Chekuri [12, 13] for HYPERGRAPH-k-CUT and MINMAX-SYMSUBMOD-k-PARTITION (Beideman et al. [7]). We 
need the following structural theorem that is shown in Beideman et al. [7].

Theorem 3. (Beideman et al. [7]). Let G � (V, E) be a hypergraph and let OPTk-cut be the optimum value of HYPERGRAPH- 
K-CUT in G for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V with d(U) < OPTk-cut. Then, for every pair of verti-
ces s ∈ U and t ∈ U, there exist subsets S ⊆ U \ {s} and T ⊆ U \ {t} with |S | ≤ 2k� 3 and |T | ≤ 2k� 3 such that (U, U) is 
the unique minimum (S ∪ {s}, T ∪ {t})-terminal cut in G.

1.4.2. ENUM-HYPERGRAPH-k-CUT. We first focus on ENUM-HYPERGRAPH-k-CUT. We note that Theorem 3 allows us to 
recover those parts Vi of an optimum k-partition (V1, : : : , Vk) for which d(Vi) < OPTk-cut; the theorem tells us that 
each such Vi is the source side of a minimum (S, T)-cut for some S, T ⊆ V such that |S | , |T | ≤ 2k� 2. However, recall 
that our goal is not to recover all optimum k-partitions for HYPERGRAPH-k-CUT, but rather to recover all MIN-k-CUT- 
SETs (i.e., not to recover the parts of every optimum k-partition, but rather only to recover the k-cut set of every opti-
mum k-partition). The previous work (Beideman et al. [7]) that designed an nO(k2)p-time deterministic enumeration 
algorithm achieved this by proving the following structural theorem.
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Theorem 4. (Beideman et al. [7]). Let G � (V, E) be a hypergraph, k ≥ 2 be an integer, and P � (V1, : : : , Vk) be an opti-
mum k-partition for HYPERGRAPH-K-CUT such that δ(V1) � δ(P). Then, for all subsets T ⊆ V1 such that T ∩ Vj ≠ ∅ for all 
j ∈ [k] \ {1}, there exists a subset S ⊆ V1 with |S | ≤ 2k� 1 such that the source minimal minimum (S, T)-terminal cut 
(A, A) satisfies δ(A) � δ(V1) and A ⊆ V1.

This structural theorem, in conjunction with Theorem 3, allows one to enumerate a candidate family F of 
nO(k2) subsets of hyperedges such that every MIN-k-CUT-SET is present in the family. For every pair of disjoint sub-
sets S, T ⊆ V such that |S | , |T | ≤ 2k� 1, compute the source minimal minimum (S, T)-terminal cut (A, A), and if 
G� δ(A) has at least k connected components, then add δ(A) to the candidate family F ; otherwise, add the source 
set A to a candidate collection C. Next, for all possible k-partitions that can be formed using the sets in the collec-
tion C, add the set of hyperedges crossing the k-partition to the family F . The drawback of their structural theo-
rem is that it is driven toward recovering the cut set δ(Vi) of every part Vi of every optimum k-partition 
(V1, : : : , Vk). Hence, their algorithmic approach ends up with a runtime of nO(k2)p. In order to improve the run-
time, we prove a stronger result: we show that for an arbitrary cut (U, U) with cut value OPTk-cut (as opposed to only 
those sets Vi of an optimum k-partition (V1, : : : , Vk)), its cut set δ(U) can be recovered as the cut set of every minimum 
(S, T)-terminal cut for some S and T of small size. The following is the main structural theorem of this work.

Theorem 5. Let G � (V, E) be a hypergraph, and let OPTk-cut be the optimum value of HYPERGRAPH-K-CUT in G for some inte-
ger k ≥ 2. Suppose (U, U) is a 2-partition of V with d(U) � OPTk-cut. Then, there exist sets S ⊆ U, T ⊆ U with |S | ≤ 2k� 1 
and |T | ≤ 2k� 1 such that every minimum (S, T)-terminal cut (A, A) satisfies δ(A) � δ(U).

We encourage the reader to compare and contrast Theorems 3–5. Theorem 3 helps to recover cuts whose cut 
value is strictly smaller than OPTk-cut, whereas Theorem 5 helps to recover cut sets whose size is equal to 
OPTk-cut. Theorem 5 seems weaker because it only recovers cut sets, but its hypothesis is also weaker (we empha-
size that recovering cut sets is the best possible that one can hope to do under its hypothesis as seen from the 
spanning hyperedge example). However, proving Theorem 5 requires us to work with cut sets (as opposed to 
cuts), which is a technical barrier to overcome. Indeed, our proof of Theorem 5 deviates significantly from the 
proof of Theorem 3 because we have to work with cut sets. We also note that our Theorem 5 is stronger than The-
orem 4 on two fronts: (1) our result helps to recover the cut set δ(U) of an arbitrary cut (U, U) whose cut value is 
d(U) � OPTk-cut, whereas Theorem 4 helps only to recover the cut set δ(Vi) of a part Vi of an optimum k-partition 
(V1, : : : , Vk) for HYPERGRAPH-k-CUT whose cut value is d(Vi) � OPTk-cut, and (2) our result does not need source 
minimality of the minimum (S, T)-terminal cuts in the conclusion. Moreover, the proof technique of Theorem 4
given in Beideman et al. [7] crucially relies on a containment property with respect to V1 (namely, for every S ⊆

V1 and every T ⊆ V1 such that T ∩ Vj ≠ ∅ for all j ∈ [k] \ {1}, the source minimal minimum (S, T)-terminal cut 
(A, A) is such that A ⊆ V1), whereas under the hypothesis of Theorem 5, the containment property fails with 
respect to the set U, and consequently, our proof technique differs from theirs.

Theorems 3 and 5 lead to a deterministic nO(k)-time algorithm to enumerate all MIN-k-CUT-SETs via a divide-and- 
conquer approach. We describe this algorithm now. For each pair (S, T) of disjoint subsets of vertices S and T 
with |S | , |T | ≤ 2k� 1, compute the source minimal minimum (S, T)-terminal cut (A, A); (i) if G� δ(A) has at least 
k connected components, then add δ(A) to the candidate family F ; (ii) otherwise, add the set A to a collection C. 
We note that the sizes of the family F and the collection C are O(n4k�2). Next, for each subset A in the collection 
C, recursively enumerate all MIN-k=2-CUT-SETS in the subhypergraphs induced by A and A respectively5—denoted 
G[A] and G[A], respectively—and add δ(A) ∪ F1 ∪ F2 to the family F for each F1 and F2 being MIN-k=2-CUT-SET in 
G[A] and G[A], respectively. Finally, return the subfamily of k-cut sets from the family F that are of smallest 
size.

We sketch the correctness analysis of this approach: let F � δ(V1, : : : , Vk) be a MIN-k-CUT-SET with (V1, : : : , Vk)

being an optimum k-partition for HYPERGRAPH-k-CUT. We show that the family F contains F. Let U :�∪
k=2
i�1 Vi. We 

note that δ(U) ⊆ F. We have two possibilities. (1) Say d(U) � |F | . Then, d(U) � OPTk-cut. Consequently, by Theo-
rem 5, the MIN-k-CUT-SET F is added to the family F by step (i). (2) Say d(U) < |F | . Then, by Theorem 3, the set U �

∪
k=2
i�1 Vi is added to the collection C by step (ii); moreover, F1 :� F ∩ E(G[U]) and F2 :� F ∩ E(G[U]) are MIN-k=2-CUT- 

SET in G[U] and G[U], respectively, and they would have been enumerated by recursion, and hence, the set δ(U) ∪

F1 ∪ F2 � F is added to the family F . The size of the family F can be shown to be nO(k log k), and the runtime can be 
shown to be nO(k log k)p (see Theorem 8). Using the known fact that the number of MIN-k-CUT-SETs in a n-vertex hyper-
graph is O(n2k�2), we can improve the runtime analysis of this approach to nO(k)p (see Lemma 2).

1.4.3. ENUM-MINMAX-HYPERGRAPH-k-PARTITION. Next, we focus on ENUM-MINMAX-HYPERGRAPH-k-PARTITION. There is a 
fundamental technical issue in enumerating MINMAX-k-CUT-SETs as opposed to MIN-k-CUT-SETs. We highlight this 
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technical issue now. Suppose we find an optimum k-partition (V1, : : : , Vk) for MINMAX-HYPERGRAPH-k-PARTITION (say 
via Chandrasekaran and Chekuri’s [12] algorithm) and store only the MINMAX-k-CUT-SET F � δ(V1, : : : , Vk) but forget 
to store the partition (V1, : : : , Vk). Now, by knowing a MINMAX-k-CUT-SET F, can we recover some optimum k-partition 
for MINMAX-HYPERGRAPH-k-PARTITION (not necessarily (V1, : : : , Vk))? Or, by knowing a MINMAX-k-CUT-SET F, is it even 
possible to find the value OPTminmax-k-partition without solving MINMAX-HYPERGRAPH-k-PARTITION from scratch again; 
that is, is there an advantage to knowing a MINMAX-k-CUT-SET in order to solve MINMAX-HYPERGRAPH-k-PARTITION? We 
are not aware of such an advantage. This is in stark contrast to HYPERGRAPH-k-CUT in which knowing a MIN-k-CUT-SET 

enables a linear-time solution to HYPERGRAPH-k-CUT.6

Why is this issue significant when solving ENUM-MINMAX-HYPERGRAPH-k-PARTITION? We recall that, in our approach 
for ENUM-HYPERGRAPH-k-CUT, the algorithm computed a polynomial-sized family F containing all MIN-k-CUT-SETs and 
returned the ones with smallest size; the smallest size ones are exactly MIN-k-CUT-SETs. It is unclear if a similar approach 
could work for enumerating MINMAX-k-CUT-SETs: suppose we do have an algorithm to enumerate a polynomial-sized 
family F containing all MINMAX-k-CUT-SETs. Now, in order to return all MINMAX-k-CUT-SETs (which is a subfamily of F ), 
note that we need to identify them among the ones in the family F ; that is, we need to verify if a given subset F ∈ F of 
hyperedges is a MINMAX-k-CUT-SET. This verification problem is closely related to the question mentioned in the previ-
ous paragraph. We do not know how to address this verification problem directly. So our algorithmic approach for 
ENUM-MINMAX-HYPERGRAPH-k-PARTITION has to overcome this technical issue.

Our ingredient to overcome this technical issue is to enumerate representatives for MINMAX-k-CUT-SETs. For a k-partition 
(V1, : : : , Vk) and disjoint subsets U1, : : : , Uk ⊆ V, we call the k-tuple (U1, : : : , Uk) a k-cut-set representative of (V1, : : : , Vk)

if Ui ⊆ Vi and δ(Ui) � δ(Vi) for all i ∈ [k]. We note that a fixed k-partition (V1, : : : , Vk) could have several k-cut set repre-
sentatives, and a fixed k-tuple (U1, : : : , Uk) could be the k-cut set representative of several k-partitions. Yet it is possible 
to efficiently verify if a given k-tuple (U1, : : : , Uk) is a k-cut set representative: consider the procedure that initializes 
Pi�Ui for each i ∈ [k] and for each connected component C in G� ∪k

i�1 δ(Ui). If δ(Ui) � δ(Ui ∪ C) for some i ∈ [k], then 
the procedure adds C into Pi, and then, (U1, : : : , Uk) is a k-cut set representative if and only if this procedure leads to a 
k-partition P1, : : : , Pk of V (see Theorem 9). Moreover, knowing a k-cut set representative (U1, : : : , Uk) of a k-partition 
(V1, V2, : : : , Vk) allows one to recover the k-cut set F :� δ(V1, : : : , Vk) because F �∪k

i�1 δ(Ui). Thus, in order to enum-
erate all MINMAX-k-CUT-SETs, it suffices to enumerate k-cut set representatives of all optimum k-partitions for MINMAX- 
HYPERGRAPH-k-PARTITION. At this point, the astute reader may wonder if there exists a polynomial-sized family of k-cut 
set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION given that the number of optimum 
k-partitions for MINMAX-HYPERGRAPH-k-PARTITION could be exponential. For example, is there a polynomial-sized family 
of k-cut set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION in the spanning hyperedge 
example? Indeed, in the spanning hyperedge example, even though the number of optimum k-partitions for MINMAX- 

HYPERGRAPH-k-PARTITION is exponential, there exists a 
�

k!
�

n
k

��

-sized family of k-cut set representatives of all optimum k- 

partitions: consider the family {({v1}, : : : , {vk}) : v1, : : : , vk ∈ V, vi ≠ vj ∀distinct i, j ∈ [k]}.

It turns out that Theorems 3 and 5 are strong enough to enable efficient enumeration of k-cut set representatives of 
all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION. We describe the algorithm to achieve this. For each pair 
(S, T) of disjoint subsets of vertices with |S | , |T | ≤ 2k� 1, compute the source minimal minimum (S, T)-terminal cut 
(U, U) and add U to a candidate collection C. We note that the size of the collection C is O(n4k�2). Next, for each k-tuple 
(U1, : : : , Uk) ∈ C

k, verify if (U1, : : : , Uk) is a k-cut set representative (using Theorem 9), and if so, then add the k-tuple to 
the candidate family D. Finally, return arg min{maxk

i�1d(Ui) : (U1, : : : , Uk) ∈ D}; that is, prune and return the subfam-
ily of k-cut set representatives (U1, : : : , Uk) from the family D that have minimum maxk

i�1d(Ui).

We note that the size of the family D is nO(k2), and consequently, the runtime is nO(k2)p. We sketch the correctness 
analysis of this approach. Let (V1, : : : , Vk) be an optimum k-partition for MINMAX-HYPERGRAPH-k-PARTITION. We show 
that the family D contains a k-cut set representative of (V1, : : : , Vk). By noting that OPTminmax-k-partition ≤ OPTk-cut 

and by Theorems 3 and 5, for every i ∈ [k], we have a set Ui in the collection C with Ui ⊆ Vi and δ(Ui) � δ(Vi). Hence, 
the k-tuple (U1, : : : , Uk) ∈ C

k is a k-cut set representative, and it is added to the family D. The final pruning step does 
not remove (U1, : : : , Uk) from the family D, and hence, it is in the subfamily returned by the algorithm.

1.4.4. Significance of Our Technique. As mentioned earlier, our techniques build on the structural theorems that 
appear in previous works (Beideman et al. [7], Chandrasekaran and Chekuri [12, 13]). The main technical novelty 
of our contribution lies in Theorem 5, which can be viewed as the culmination of structural theorems developed in 
those previous works. We also emphasize that using minimum (s, t)-terminal cuts to solve global partitioning pro-
blems is not a new technique per se (e.g., minimum (s, t)-terminal cut is the first and most natural approach to solve 
global minimum cut). This technique of using minimum (s, t)-terminal cuts to solve global partitioning problems 
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has a rich variety of applications in combinatorial optimization: for example, (1) it is used to design the first efficient 
algorithm for GRAPH-k-CUT for fixed k (Goldschmidt and Hochbaum [27]), (2) it is used to design efficient algo-
rithms for certain constrained submodular minimization problems (Goemans and Ramakrishnan [26], Nägele et al. 
[51]), and (3) more recently, it was used to design fast algorithms for global minimum cut in graphs as well as to 
obtain fast Gomory–Hu trees in unweighted graphs (Abboud et al. [1], Li and Panigrahi [46]). The applicability of 
this technique relies on identifying and proving appropriate structural results. Our Theorem 5 is such a structural 
result. The merit of the structural result lies in its ability to solve two different enumeration problems in hyper-
graph k-partitioning which was not possible via structural theorems that were developed before. Moreover, it leads 
to the first polynomial bound on the number of MINMAX-k-CUT-SETs in hypergraphs for every fixed k.

1.4.5. Organization. We discuss related work in Section 1.5. In Section 1.6, we recall properties of the hypergraph 
cut function. In Section 2, we prove a special case of Theorem 5. In Section 3, we use this special case to prove Theo-
rem 5. In Section 4, we design an efficient algorithm for ENUM-HYPERGRAPH-k-CUT and prove Theorem 2. In Section 5, 
we design an efficient algorithm for ENUM-MINMAX-HYPERGRAPH-k-PARTITION and prove Theorem 1. We present a 
lower bound example in Section 6. We conclude with an open question in Section 7.

1.5. Related Work
We briefly discuss the status of the enumeration problems for k� 2 followed by the status for k ≥ 2 in graphs and 
hypergraphs.

1.5.1. Enumeration Problems for k 5 2. For k� 2, both ENUM-MINMAX-HYPERGRAPH-k-PARTITION and ENUM-HYPER-

GRAPH-k-CUT are equivalent to enumerating optimum solutions for global minimum cut in hypergraphs. For graphs 
that are connected, it is well-known that the number of minimum cuts and of α-approximate minimum cuts are at 

most 
n
2

� �

and O(n2α), respectively, and they can all be enumerated in polynomial time for constant α�(Chekuri 

et al. [19], Dinitz et al. [22], Goemans and Ramakrishnan [26], Henzinger and Williamson [34], Karger [38], Naga-
mochi et al. [50]). For connected hypergraphs, the number of minimum cuts can be exponential as seen from the 
spanning hyperedge example. However, recent results show that the number of minimum cut sets in a hypergraph 

is at most 
n
2

� �

via several different techniques, and they can all be enumerated in polynomial time (Beideman et al. 

[7], Chandrasekaran et al. [16], Chekuri and Xu [18], Fox et al. [24], Ghaffari et al. [25]). On the other hand, there 
exist hypergraphs with an exponential number of 2-approximate minimum cut sets.7

1.5.2. GRAPH-k-CUT and ENUM-GRAPH-k-CUT. When k is part of the input, GRAPH-k-CUT is NP-hard (Goldschmidt and 
Hochbaum [27]) and admits a 2(1� 1=k)-approximation (Gupta et al. [30], Quanrud [53], Ravi and Sinha [56], Saran 
and Vazirani [57], Zhao et al. [63]). Manurangsi [49] shows that there is no polynomial-time (2� ɛ)-approximation 
for any constant ɛ > 0 assuming the small set expansion hypothesis (Raghavendra and Steurer [55]). We note that 
GRAPH-k-CUT is W[1]-hard when parameterized by k (Downey et al. [23]) and admits a fixed-parameter approxima-
tion scheme when parameterized by k (Gupta et al. [29, 30], Kawarabayashi and Lin [42], Lokshtanov et al. [47]) 
and is fixed-parameter tractable when parameterized by k and the solution size (Kawarabayashi and Thorup [43]).

GRAPH-k-CUT for fixed k is shown to be polynomial-time solvable by Goldschmidt and Hochbaum [27]. Subse-
quently, Karger and Stein [40] give a randomized polynomial-time algorithm whose analysis also shows that the 
number of optimum k-partitions in a connected graph is O(n2k�2) and they can all be enumerated in polynomial 
time for every fixed k (also see Chekuri et al. [19], Kamidoi et al. [36], Thorup [59], Xiao [60]). The number of opti-
mum k-partitions has recently been improved to O(nk) for fixed k, thereby leading to a faster algorithm for GRAPH-k- 
CUT for fixed k (Gupta et al. [31–33]).

1.5.3. HYPERGRAPH-k-CUT and ENUM-HYPERGRAPH-k-CUT. When k is part of input, HYPERGRAPH-k-CUT is at least as hard as 
the densest k-subgraph problem (Chekuri and Li [17]). Combined with results in Manurangsi [48], this implies that 
HYPERGRAPH-k-CUT is unlikely to have a subpolynomial factor approximation ratio. Moreover, HYPERGRAPH-k-CUT is 
W[1]-hard even when parameterized by k and the solution size (see Chandrasekaran and Chekuri [13]). These two 
hardness results illustrate that HYPERGRAPH-k-CUT differs significantly from GRAPH-k-CUT in complexity.

HYPERGRAPH-k-CUT for fixed k is recently shown to be polynomial-time solvable via a randomized algorithm 
(Chandrasekaran et al. [16], Fox et al. [24]). The analysis of the randomized algorithm also shows that the number 
of MIN-k-CUT-SETs is O(n2k�2), and they can all be enumerated in randomized polynomial time. A deterministic 
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polynomial-time algorithm was given by Chandrasekaran and Chekuri [13]. Subsequently, a deterministic 
polynomial-time algorithm for ENUM-HYPERGRAPH-k-CUT for fixed k was given by Beideman et al. [7].

1.5.4. MINMAX-GRAPH-k-PARTITION and ENUM-MINMAX-GRAPH-k-PARTITION. When k is part of input, MINMAX-GRAPH-k-PAR-

TITION is NP-hard (Chandrasekaran and Wang [14]), whereas its approximability is open; we do not yet know if it 
admits a constant factor approximation. When parameterized by k, it is W[1]-hard and admits a fixed-parameter 
approximation scheme (Chandrasekaran and Wang [14]).

MINMAX-GRAPH-k-PARTITION for fixed k is polynomial-time solvable via the following observation (see Chandrasekaran 
and Chekuri [12], Chandrasekaran and Wang [14]): in connected graphs, an optimum k-partition for MINMAX-GRAPH-k- 
PARTITION is a k-approximate solution to GRAPH-k-CUT. The randomized algorithm of Karger and Stein [40] implies that 
the number of k-approximate solutions to GRAPH-k-CUT is nO(k2), and they can all be enumerated in polynomial time 
(Chekuri et al. [19], Gupta et al. [32, 33], Karger and Stein [40]). These two facts together imply that MINMAX-GRAPH-k-PAR-

TITION can be solved in time nO(k2), and moreover, the number of optimum k-partitions for MINMAX-GRAPH-k-PARTITION in 
a connected graph is nO(k2), and they can all be enumerated in polynomial time for constant k.

1.5.5. MINMAX-HYPERGRAPH-k-PARTITION and ENUM-MINMAX-HYPERGRAPH-k-PARTITION. MINMAX-HYPERGRAPH-k-PARTITION is 
discussed as early as 1973 by Lawler [45]. When k is part of input, MINMAX-HYPERGRAPH-k-PARTITION is at least as 
hard as the densest k-subgraph problem (this follows from the reduction in Chekuri and Li [17] and was observed 
by Chandrasekaran and Zhang [15]). For fixed k, the approach for MINMAX-GRAPH-k-PARTITION described does not 
extend to MINMAX-HYPERGRAPH-k-PARTITION. This is because the number of k-approximate solutions to HYPERGRAPH- 
k-CUT can be exponential, and hence, they cannot be enumerated efficiently (e.g., we have already seen that the 
number of 2-approximate minimum cut sets in a hypergraph can be exponential). Chandrasekaran and Chekuri 
[12] give a deterministic polynomial-time algorithm for the more general problem of MINMAX-SYMSUBMOD-k-PARTI-

TION for fixed k, which, in turn, implies that MINMAX-HYPERGRAPH-k-PARTITION is also solvable efficiently for fixed k. 
Their algorithm finds an optimum k-partition for MINMAX-HYPERGRAPH-k-PARTITION and is not conducive to enumer-
ate all MINMAX-k-CUT-SETs. We emphasize that no polynomial bound on the number of MINMAX-k-CUT-SETs for fixed k 
was known prior to our work.

For a detailed discussion on other hypergraph k-partitioning problems that are special cases of MINSUM-SUBMOD- 
k-PARTITION, we refer the reader to Zhao et al. [63], Zhao [62], and Okumoto et al. [52].

1.6. Preliminaries
Let G � (V, E) be a hypergraph. Throughout, we follow the notation mentioned in the second paragraph of Section 
1.4. For disjoint A, B ⊆ V, we define E(A, B) :� {e ∈ E : e ⊆ A ∪ B, e ∩ A ≠ ∅, e ∩ B ≠ ∅}, and E[A] :� {e ∈ E : e ⊆ A}. We 
repeatedly rely on the fact that the hypergraph cut function d : 2V → R+ is symmetric and submodular. We recall 
that a set function f : 2V → R is symmetric if f (U) � f (U) for all subsets U ⊆ V and is submodular if f (A) + f (B) ≥
f (A ∩ B) + f (A ∪ B) for all subsets A, B ⊆ V.

We need the following theorem that is proved in previous works on HYPERGRAPH-k-CUT and ENUM-HYPERGRAPH-k- 
CUT (see Figure 1 for an illustration of the sets that appear in the statement of Theorem 6).

Figure 1. Illustration of the sets that appear in the statement of Theorem 6. A hyperedge e of the form in the second part of the 
statement is also shown. 
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Theorem 6 (Beideman et al. [7], Chandrasekaran and Chekuri [13]). Let G � (V, E) be a hypergraph, k ≥ 2 be an integer, 
and ∅ ≠ R(U(V. Let S � {u1, : : : , up} ⊆ U \R for p ≥ 2k� 2. Let (Ai , Ai) be a minimum ((S ∪ R) \ {ui}, U)-terminal 
cut. Suppose that ui ∈ Ai \ (∪j∈[p]\{i}Aj) for every i ∈ [p]. Then, the following two hold: 

1. There exists a k-partition (P1, : : : , Pk) of V with U(Pk such that

|δ(P1, : : : , Pk) | ≤
1

2
min d(Ai) + d(Aj) : i, j ∈ [p], i ≠ j

� �

:

2. Moreover, if there exists a hyperedge e ∈ E such that e intersects W :� ∪1≤i<j≤p(Ai ∩ Aj), e intersects Z :� ∩i∈[p]Ai , and e 
is contained in W ∪ Z, then the inequality in the previous conclusion is strict.

We use Theorem 6 in our proof of Theorem 5, which proceeds via contradiction. Theorem 6 allows us to construct 
a k-partition with number of crossing hyperedges being strictly less than the optimum value for HYPERGRAPH-k-CUT, 
thus leading to a contradiction.

2. A Special Case of Theorem 5
Theorem 7 is the main theorem of this section. Theorem 7 implies Theorem 5 in the special case in which the 
2-partition (U, U) of interest to Theorem 5 is such that |U | ≤ 2k� 1. We encourage readers interested in under-
standing the motivation for considering this special case to read the statement of Theorem 7, jump ahead to Sec-
tion 3 in which we prove Theorem 5 using Theorem 7, and then return to the proof of Theorem 7.

Theorem 7. Let G � (V, E) be a hypergraph, and let OPTk-cut be the optimum value of HYPERGRAPH-K-CUT in G for some 
integer k ≥ 2. Suppose (U, U) is a 2-partition of V with d(U) � OPTk-cut. Then, there exists a set S ⊆ U with |S | ≤ 2k� 1 
such that every minimum (S, U)-terminal cut (A, A) satisfies δ(A) � δ(U).

Proof. Consider the collection

C :� {Q ⊆ V : U (Q, d(Q) ≤ d(U), and δ(Q) ≠ δ(U)}:

Let S be an inclusion-wise minimal subset of U such that S ∩ Q ≠ ∅ for all Q ∈ C; that is, the set S is completely 
contained in U and is a minimal transversal of the collection C. Proposition 1 and Lemma 1 complete the proof of 
Theorem 7 for this choice of S. w

Proposition 1. Every minimum (S, U)-terminal cut (A, A) has δ(A) � δ(U).

Proof. Let (A, A) be a minimum (S, U)-terminal cut. If A�U, then we are done, so we may assume that A ≠ U. 
This implies that S ⊆ A and U(A. Because (U, U) is a (S, U)-terminal cut, we have that d(A) � d(A) ≤ d(U). 
Because S intersects every set in the collection C, we have that A ∉ C. Hence, δ(A) � δ(U), and by symmetry of cut 
sets, δ(A) � δ(U). w

Lemma 1. The size of the subset S is at most 2k� 1.

Proof. For the sake of contradiction, suppose |S | ≥ 2k. Our proof strategy is to show the existence of a k-partition 
with fewer crossing hyperedges than OPTk-cut, thus contradicting the definition of OPTk-cut. Let S :� {u1, u2, : : : , up}

for some p ≥ 2k. For notational convenience, we use S� ui to denote S \ {ui} and S� ui � uj to denote S \ {ui, uj}. For 
a subset X ⊆ U, we denote the source minimal minimum (X, U)-terminal cut by (HX, HX ).

Our strategy to arrive at a k-partition with fewer crossing hyperedges than OPTk-cut is to apply the second con-
clusion of Theorem 6. The next few claims set us up to obtain sets that satisfy the hypothesis of Theorem 6. We 
emphasize that we apply Theorem 6 twice: first, in Claim 3 and, second, to prove the existence of a k-partition 
with fewer than OPTk-cut crossing hyperedges.

Claim 1. For every i ∈ [p], we have HS�ui
∈ C.

Proof. Let i ∈ [p]. Because S is a minimal transversal of the collection C, there exists a set Bi ∈ C such that 
Bi ∩ S � {ui}. Hence, (Bi , Bi) is a (S� ui, U)-terminal cut. Therefore,

d(HS�ui
) � d(HS�ui

) ≤ d(Bi) ≤ d(U):

Because (HS�ui , HS�ui ) is a (S� ui, U)-terminal cut, we have that U ⊆ HS�ui . If d(HS�ui ) < d(U), then δ(HS�ui ) ≠ 

δ(U) and U(HS�ui
, and consequently, HS�ui

∈ C. So we assume henceforth that d(HS�ui
) � d(U).
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Because (HS�ui ∩ Bi , HS�ui ∩ Bi ) is a (S� ui, U)-terminal cut and (HS�ui , HS�ui ) is a minimum (S� ui, U)-termi-
nal cut, we have that

d(HS�ui ∩ Bi) ≥ d(HS�ui):

Because (HS�ui ∪ Bi , HS�ui ∪ Bi ) is a (S� ui, U)-terminal cut and (HS�ui , HS�ui ) is a minimum (S� ui, U)-terminal 
cut, we have that

d(HS�ui
∪ Bi) ≥ d(HS�ui

):

Therefore, by submodularity of the hypergraph cut function, we have that

2d(U) ≥ d(HS�ui
) + d(Bi) ≥ d(HS�ui

∩ Bi) + d(HS�ui
∪ Bi) ≥ 2d(HS�ui

) � 2d(U): (1) 

Therefore, all these inequalities should be equations. In particular, we have that d(HS�ui
∩ Bi) � d(U) � d(Bi) �

d(HS�ui
), and hence, (HS�ui

∩ Bi , HS�ui
∩ Bi ) is a minimum (S� ui, U)-terminal cut. Because (HS�ui

, HS�ui
) is a 

source minimal minimum (S� ui, U)-terminal cut, we must have HS�ui
∩ Bi � HS�ui

, and thus, HS�ui
⊆ Bi . There-

fore, Bi ⊆ HS�ui
. Because Bi ∈ C, we have δ(Bi) ≠ δ(U). However, d(Bi) � d(U). Therefore, δ(U) \ δ(Bi) ≠ ∅. Let 

e ∈ δ(U) \ δ(Bi). Because e ∈ δ(U), but e ∉ δ(Bi), and U ⊆ Bi, we have that e ⊆ Bi, and thus, e ⊆ HS�ui
. Thus, we con-

clude that δ(U) \ δ(HS�ui
) ≠ ∅, and so δ(HS�ui

) ≠ δ(U). This also implies that U(HS�ui
. Thus, HS�ui

∈ C. w

Claim 1 implies the following corollary.

Corollary 1. For every i ∈ [p], we have ui ∈ HS�ui
.

Proof. By definition, S� ui ⊆ HS�ui , so S ∩ HS�ui ⊆ {ui}. By Claim 1, we have that HS�ui ∈ C. Because S is a trans-
versal of the collection C, we have that S ∩ HS�ui ≠ ∅. So the vertex ui must be in HS�ui . w

Having obtained Corollary 1, the next few claims (Claims 2–5) are similar to the claims appearing in the proof 
of Theorem 4 that appear in Beideman et al. [7, claims 4.2–4.5 in the proof of theorem 1.3]). Because the hypothe-
sis of the structural theorem that we are proving here is different from theirs, we present the complete proofs of 
these claims here. The way in which we use the claims is also different from Beideman et al. [7].

The following claim helps in showing that ui, uj ∉HS�ui�uj
, which, in turn, is used to show that the hypothesis 

of Theorem 6 is satisfied by suitably chosen sets.

Claim 2. For every i, j ∈ [p], we have HS�ui�uj
⊆ HS�ui

.

Proof. We may assume that i ≠ j. We note that (HS�ui�uj
∩ HS�ui

, HS�ui�uj
∩ HS�ui

) is a (S� ui � uj, U)-terminal 
cut. Therefore,

d(HS�ui�uj
∩ HS�ui

) ≥ d(HS�ui�uj
): (2) 

Also, (HS�ui�uj ∪ HS�ui , HS�ui�uj ∪ HS�ui ) is a (S� ui, U)-terminal cut. Therefore,

d(HS�ui�uj
∪ HS�ui

) ≥ d(HS�ui
): (3) 

By submodularity of the hypergraph cut function and Inequalities (2) and (3), we have that

d(HS�ui�uj
) + d(HS�ui

) ≥ d(HS�ui�uj
∩ HS�ui

) + d(HS�ui�uj
∪ HS�ui

)

≥ d(HS�ui�uj
) + d(HS�ui

):

Therefore, Inequality (2) is an equation, and consequently, (HS�ui�uj
∩ HS�ui

, HS�ui�uj
∩ HS�ui

) is a minimum 

(S� ui � uj, U)-terminal cut. If HS�ui�uj
\HS�ui

≠ ∅, then (HS�ui�uj
∩ HS�ui

, HS�ui�uj
∩ HS�ui

) contradicts source 

minimality of the minimum (S� ui � uj, U)-terminal cut (HS�ui�uj , HS�ui�uj ). Hence, HS�ui�uj \HS�ui � ∅, and con-

sequently, HS�ui�uj
⊆ HS�ui

. w

Claim 2 implies the following corollary.

Corollary 2. For every i, j ∈ [p], we have ui, uj ∉HS�ui�uj .

Proof. By Corollary 1, we have that ui ∉HS�ui
. Therefore, ui, uj ∉HS�ui

∩ HS�uj
. By Claim 2, HS�ui�uj

⊆ HS�ui 
and 

HS�ui�uj
⊆ HS�uj

. Therefore, HS�ui�uj
⊆ HS�ui

∩ HS�uj
, and thus, ui, uj ∉HS�ui�uj

. w

The next claim shows that the cut values d(HS�ui
) and d(HS�ui�uj

) for every i, j ∈ [p] are equal to d(U).

Claim 3. For every i, j ∈ [p], we have d(HS�ui
) � d(U) � d(HS�ui�uj

).
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Proof. Let a, b ∈ [p]. We show that d(HS�ua
) � d(U) � d(HS�ua�ub

). Because (U, U) is a (S� ua, U)-terminal cut, we 
have that d(HS�ua

) ≤ d(U). Because (HS�ua
, HS�ua

) is a (S� ua � ub, U)-terminal cut, we have that d(HS�ua�ub
) ≤

d(HS�ua
) ≤ d(U). Thus, in order to prove the claim, it suffices to show that d(HS�ua�ub

) ≥ d(U).
Suppose for contradiction that d(HS�ua�ub

) < d(U). Let ℓ ∈ [p] \ {a, b} be an arbitrary element (which exists 

because we assume that p ≥ 2k and k ≥ 2). Let R :� {uℓ}, S′
:� S� ua � uℓ, and Ai :� HS�ua�ui 

for every i ∈ [p]\

{a, ℓ}. We note that |S′ | � p� 2 ≥ 2k� 2. By definition, (Ai , Ai) is a minimum (S� ua � ui, U)-terminal cut for 

every i ∈ [p] \ {a,ℓ}. Moreover, for every i ∈ [p] \ {a, ℓ}, we have ui ∈ HS�ua�ui
� Ai by Corollary 2, and for every 

j ∈ [p] \ {a, i, ℓ}, we have ui ∈ S� ua � uj ⊆ HS�ua�uj
� Aj . These imply that ui ∈ Ai \ (∪j∈[p]\{a, i, ℓ}Aj) for every i ∈ [p]

\{a, ℓ}. Hence, the sets U, R, and S′ and the cuts (Ai , Ai) for i ∈ [p] \ {a,ℓ} satisfy the conditions of Theorem 6. 
Therefore, by the first conclusion of Theorem 6, there exists a k-partition P′ with

|δ(P′) | ≤
1

2
min{d(HS�ua�ui

) + d(HS�ua�uj
) : i, j ∈ [p] \ {a,ℓ}}:

By assumption, d(HS�ua�ub
) < d(U) and b ∈ [p] \ {a,ℓ}, so min{d(HS�ua�ui

) : i ∈ [p] \ {a, ℓ}} < d(U). Because (U, U) is 
a (S� ua � ui, U)-terminal cut, we have that d(HS�ua�ui

) ≤ d(U) for every i ∈ [p] \ {a,ℓ}. Therefore,

1

2
min{d(HS�ua�ui) + d(HS�ua�uj) : i, j ∈ [p] \ {a,ℓ}} < d(U) � OPTk-cut:

Thus, we have that |δ(P′) | < OPTk-cut, which is a contradiction. w

The next two claims help in arguing the existence of a hyperedge satisfying the conditions of the second con-
clusion of Theorem 6. In particular, we need Claim 5. The following claim helps in proving Claim 5.

Claim 4. For every i, j ∈ [p], we have

d(HS�ui ∩ HS�uj) � d(U) � d(HS�ui ∪ HS�uj):

Proof. Because (HS�ui
∩ HS�uj

, HS�ui
∩ HS�uj

) is a (S� ui � uj, U)-terminal cut, we have that d(HS�ui
∩ HS�uj

) ≥
d(HS�ui�uj

). By Claim 3, we have that d(HS�ui�uj
) � d(U) � d(HS�ui

). Therefore,

d(HS�ui
∩ HS�uj

) ≥ d(HS�ui
): (4) 

Because (HS�ui
∪ HS�uj

, HS�ui
∪ HS�uj

) is a (S� uj, U)-terminal cut, we have that

d(HS�ui
∪ HS�uj

) ≥ d(HS�uj
): (5) 

By submodularity of the hypergraph cut function and Inequalities (4) and (5), we have that

d(HS�ui) + d(HS�uj) ≥ d(HS�ui ∩ HS�uj) + d(HS�ui ∪ HS�uj) ≥ d(HS�ui) + d(HS�uj):

Therefore, Inequalities (4) and (5) are equations. Thus, by Claim 3, we have that

d(HS�ui
∩ HS�uj

) � d(HS�ui
) � d(U), 

and

d(HS�ui
∪ HS�uj

) � d(HS�uj
) � d(U): w 

Claim 5. For every i, j, ℓ ∈ [p] with i ≠ j, we have HS�uℓ ⊆ HS�ui
∪ HS�uj

.

Proof. If ℓ � i or ℓ � j the claim is immediate. Thus, we assume that ℓ ∉ {i, j}. Let Q :� HS�uℓ \ (HS�ui
∪ HS�uj

). We 
need to show that Q � ∅. We show that (HS�uℓ \Q, HS�uℓ \Q) is a minimum (S� uℓ, U)-terminal cut. Conse-
quently, Q must be empty (otherwise, HS�uℓ \Q(HS�uℓ , and hence, (HS�uℓ \Q, HS�uℓ \Q) contradicts source 
minimality of the minimum (S� uℓ, U)-terminal cut (HS�uℓ , HS�uℓ )).

We now show that (HS�uℓ \Q, HS�uℓ \Q) is a minimum (S� uℓ, U)-terminal cut. Because HS�uℓ \Q � HS�uℓ ∩

(HS�ui ∪ HS�uj), we have that S� ui � uj � uℓ ⊆ HS�uℓ \Q. We also know that ui and uj are contained in both HS�uℓ�

and HS�ui
∪ HS�uj

. Therefore, S� uℓ ⊆ HS�uℓ \Q. Thus, (HS�uℓ \Q, HS�uℓ \Q) is a (S� uℓ, U)-terminal cut. Therefore,

d(HS�uℓ ∩ (HS�ui ∪ HS�uj)) � d(HS�uℓ \Q) ≥ d(HS�uℓ ): (6) 
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We also have that (HS�uℓ ∪ (HS�ui ∪ HS�uj), HS�uℓ ∪ (HS�ui ∪ HS�uj)) is a (S� ui, U)-terminal cut. Therefore, d(HS�uℓ�

∪ (HS�ui
∪ HS�uj

)) ≥ d(HS�ui
). By Claims 3 and 4, we have that d(HS�ui

) � d(U) � d(HS�ui
∪ HS�uj

). Therefore,

d(HS�uℓ ∪ (HS�ui
∪ HS�uj

)) ≥ d(HS�ui
∪ HS�uj

): (7) 

By submodularity of the hypergraph cut function and Inequalities (6) and (7), we have that

d(HS�uℓ ) + d(HS�ui
∪ HS�uj

) ≥ d(HS�uℓ ∩ (HS�ui
∪ HS�uj

)) + d(HS�uℓ ∪ (HS�ui
∪ HS�uj

))

≥ d(HS�uℓ ) + d(HS�ui ∪ HS�uj):

Therefore, Inequalities (6) and (7) are equations, so (HS�uℓ \Q, HS�uℓ \Q) is a minimum (S� uℓ, U)-terminal 
cut. w

Let R :� {up}, S′
:� S� up, and (Ai , Ai) :� (HS�ui , HS�ui ) for every i ∈ [p� 1]. By definition, (Ai , Ai) is a minimum 

(S� ui, U)-terminal cut for every i ∈ [p� 1]. Moreover, by Corollary 1, we have that ui ∈ Ai \ (∪j∈[p�1]\{i}Aj). Hence, 
the sets U, R, and S′ and the cuts (Ai , Ai) for i ∈ [p� 1] satisfy the conditions of Theorem 6. We now show that 
there exists a hyperedge satisfying the conditions mentioned in the second conclusion of Theorem 6. We use 
Claim 6 to prove this. Let W :� ∪1≤i<j≤p�1(Ai ∩ Aj) and Z :� ∩i∈[p�1]Ai as in the statement of Theorem 6.

Claim 6. There exists a hyperedge e ∈ E such that e ∩ W ≠ ∅, e ∩ Z ≠ ∅, and e ⊆ W ∪ Z.

Proof. We note that S ⊆ (S� ui) ∪ (S� uj) ⊆ HS�ui
∪ HS�uj 

for every distinct i, j ∈ [p� 1]. Therefore, S ∩ (Ai ∩ Aj) � ∅
for every distinct i, j ∈ [p� 1], and thus, S ∩ W � ∅. Because S is a transversal of the collection C, it follows that the 
set W is not in the collection C.

By definition, U ⊆ Ai for every i ∈ [p� 1], and thus, U ⊆ W. Because W ∉ C, by definition of C, we have that 
either W � U or d(W) > d(U) or δ(W) � δ(U). Because W � U is a special case of δ(W) � δ(U), we have that either 
d(W) > d(U) or δ(W) � δ(U). By Claim 1, we have that HS�up

∈ C, and thus, d(HS�up
) ≤ d(U) and δ(HS�up

) ≠ δ(U). 
Consequently, d(W) ≥ d(U) ≥ d(HS�up

), and δ(W) � δ(U) ≠ δ(HS�up
), and thus, δ(W) \ δ(HS�up

) ≠ ∅. Let e ∈ δ(W)\
δ(HS�up

). We show that this choice of e achieves the desired properties.

For each i ∈ [p], let Yi :� HS�ui
\W. By Claim 5, for every i, j, ℓ ∈ [p] with i ≠ j, we have that HS�uℓ ⊆ HS�ui

∪

HS�uj . Therefore HS�ui ∩ HS�uj ⊆ HS�uℓ�for every such i, j, ℓ ∈ [p], and hence, W ⊆ HS�uℓ�for every ℓ ∈ [p]. Thus, 

W ⊆ HS�up
. Because e ∈ δ(W) \ δ(HS�up

), we have that e ⊆ W ∪ Yp, e ∩ W ≠ ∅, and e ∩ Yp ≠ ∅. Therefore, in order to 

show that e has the three desired properties as in the claim, it suffices to show that Yp ⊆ Z. We prove this next.

By definition, Yp ∩ W � ∅. By Claim 5, for every i ∈ [p� 1], we have that HS�up
∩ HS�ui

⊆ HS�u1 
and HS�up

∩

HS�ui
⊆ HS�u2

, so HS�up
∩ HS�ui

⊆ HS�u1
∩ HS�u2

⊆ W. Thus, for every i ∈ [p� 1], Yp ∩ Yi ⊆ HS�up
∩ HS�ui

⊆ W, so 

because Yp ∩ W � ∅, we have that Yp ∩ Yi � ∅ for every i ∈ [p� 1]. Therefore,

Yp ⊆ W ∪
[

p�1

i�1

Yi

 !

�
[

p�1

i�1

HS�ui
�
\

p�1

i�1

HS�ui
� Z: w 

By Claim 6, there is a hyperedge e satisfying the conditions of the second conclusion of Theorem 6. Therefore, 
by Theorem 6, there exists a k-partition P′ with

|δ(P′) | <
1

2
min d(Ai) + d(Aj) : i, j ∈ [p� 1], i ≠ j

� �

� d(U) (By Claim 3)

� OPTk-cut: (By assumption of the theorem)

Thus, we have obtained a k-partition P′ with |δ(P′) | < OPTk-cut, which is a contradiction. This completes the 
proof of |S | ≤ 2k� 1. w

3. Proof of Theorem 5
We prove Theorem 5 in this section. Applying Theorem 7 to (U, U) yields the following corollary.

Corollary 3. Let G � (V, E) be a hypergraph, and let OPTk-cut be the optimum value of HYPERGRAPH-K-CUT in G for some 
integer k ≥ 2. Suppose (U, U) is a 2-partition of V with d(U) � OPTk-cut. Then, there exists a set T ⊆ U with |T | ≤ 2k� 1 
such that every minimum (U, T)-terminal cut (A, A) satisfies δ(A) � δ(U).
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We now restate Theorem 5 and prove it using Theorem 7 and Corollary 3.

Theorem 5 (Restated). Let G � (V, E) be a hypergraph and let OPTk-cut be the optimum value of HYPERGRAPH-K-CUT in G 
for some integer k ≥ 2. Suppose (U, U) is a 2-partition of V with d(U) � OPTk-cut. Then, there exist sets S ⊆ U, T ⊆ U with 
|S | ≤ 2k� 1 and |T | ≤ 2k� 1 such that every minimum (S, T)-terminal cut (A, A) satisfies δ(A) � δ(U).

Proof. By Theorem 7, there exists a subset S ⊆ U with |S | ≤ 2k� 1 such that every minimum (S, U)-terminal cut 
(A, A) has δ(A) � δ(U). By Corollary 3, there exists a subset T ⊆ U with |T | ≤ 2k� 1 such that every minimum (U, 
T)-terminal cut (A, A) has δ(A) � δ(U). We show that every minimum (S, T)-terminal cut (A, A) has δ(A) � δ(U). 
We need the following claim.

Claim 7. Let (Y, Y) be the source minimal minimum (S, T)-terminal cut. Then, δ(Y) � δ(U).

Proof. Because (U, U) is a (S, T)-terminal cut, and (Y, Y) is a minimum (S, T)-terminal cut, we have that

d(U) ≥ d(Y):

Because (U ∩ Y, U ∩ Y) is a (S, U)-terminal cut, we have that

d(U ∩ Y) ≥ d(U):

Because (U ∪ Y, U ∪ Y) is a (U, T)-terminal cut, we have that

d(U ∪ Y) ≥ d(U):

Thus, by the submodularity of the hypergraph cut function, we have that

2d(U) ≥ d(U) + d(Y) ≥ d(U ∩ Y) + d(U ∪ Y) ≥ 2d(U):

Therefore, we have that d(U ∩ Y) � d(U) and d(Y) � d(U). Further, because (Y, Y) is a minimum (S, T)-terminal 
cut, it follows that (U ∩ Y, U ∩ Y) is a minimum (S, T)-terminal cut. Because (Y, Y) is the source minimal (S, T)- 
terminal cut, we have that U ∩ Y � Y, and hence, Y ⊆ U. Therefore, (Y, Y) is a minimum (S, U)-terminal cut. By 
the choice of S, we have that δ(Y) � δ(U). w

Applying Claim 7 to both sides of the partition (U, U), we have that the source minimal minimum (S, T)-terminal 
cut (Y, Y) has δ(Y) � δ(U), and the source minimal minimum (T, S)-terminal cut (Z, Z) has δ(Z) � δ(U). Therefore, 
for every e ∈ δ(U), we have that e ∩ Y ≠ ∅ and e ∩ Z ≠ ∅.

Let (A, A) be a minimum (S, T)-terminal cut. Because (Y, Y) is the source minimal minimum (S, T)-terminal 
cut, we have that Y ⊆ A. Because (Z, Z) is the source minimal minimum (T, S)-terminal cut, we have that Z ⊆ A. 
Because every e ∈ δ(U) intersects both Y and Z, it follows that every e ∈ δ(U) intersects both A and A, and hence, 
δ(U) ⊆ δ(A). Because (A, A) is a minimum (S, T)-terminal cut, d(A) ≤ d(U), and thus, we have that δ(A) � δ(U). w

4. Algorithm for Enum-Hypergraph-k-Cut
In this section, we design a deterministic algorithm for ENUM-HYPERGRAPH-k-CUT that is based on divide and con-
quer and has a runtime of nO(k) source minimal minimum (s, t)-terminal cut computations, where n is the number 
of vertices in the input hypergraph. The high-level idea is to use minimum (S, T)-terminal cuts to enumerate a col-
lection of candidate cuts such that, for every optimum k-partition for HYPERGRAPH-k-CUT, either the union of some 
k=2 parts of the optimum k-partition is contained in the candidate collection, or we find the set of hyperedges cross-
ing this optimum k-partition. This helps in cutting the recursion depth to logk, which saves on overall runtime. We 
describe the algorithm in Figure 2 and its guarantees in Theorem 8. We recall that for a hypergraph G � (V, E) and a 
subset A ⊆ V, the subgraph G[A] induced by A is given by G[A] � (A, E′), where E′

:� {e ∈ E : e ⊆ A}.
Theorem 8 is a self-contained proof that the number of MIN-k-CUT-SETs in a n-vertex hypergraph is O(n8k log k) and 

the runtime of the algorithm in Figure 2 is O(n8k log k) source minimal minimum (s, t)-terminal cut computations. In 
Lemma 2, we improve the runtime analysis of the same algorithm to O(n16k) source minimal minimum (s, t)-terminal 
cut computations. For this, we exploit the known fact that the number of MIN-k-CUT-SETs in a n-vertex hypergraph is 
O(n2k�2) (via the randomized algorithm in Chandrasekaran et al. [16]).

Theorem 8 and Lemma 2 together imply Theorem 2 because the source minimal minimum (s, t)-terminal cut in a 
n-vertex hypergraph of size p can be computed in time O(np) (Chekuri and Xu [18]).

Theorem 8. Let G � (V, E) be an n-vertex hypergraph of size p, and let k be a positive integer. Then, algorithm Enum-Cut- 
Sets(G, k) in Figure 2 returns the family of all MIN-K-CUT-SETs in G, and it can be implemented to run in time at most 
D4kn(8k�6)logkT(n, p) for some constant D, where T(n, p) denotes the time complexity for computing the source minimal 
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minimum (s, t)-terminal cut in an n-vertex hypergraph of size p. Moreover, the cardinality of the family returned by the 
algorithm is at most C2k�1n(8k�6)logk for some constant C.

Proof. We begin by showing correctness. The last step of the algorithm considers only k-cut sets in the family F , 
so the algorithm returns a subfamily of k-cut sets. We only have to show that every MIN-k-CUT-SET is in the family 
F ; this also guarantees that every k-cut set in the returned subfamily is indeed a MIN-k-CUT-SET. We show this by 
induction on k.

For the base case of k� 1, the only MIN-k-CUT-SET is the empty set that is contained in the returned family. We 
now show the induction step. Assume that k ≥ 2. Let F ⊆ E be a MIN-k-CUT-SET in G and let (V1, : : : , Vk) be an opti-
mum k-partition for HYPERGRAPH-k-CUT such that F � δ(V1, : : : , Vk). We show that F is in the family returned by 

the algorithm. Let U :�∪
⌊k=2⌋
i�1 Vi. We distinguish between the following two cases: 

1. Suppose d(U) < OPTk-cut.
By Theorem 3, there exist disjoint subsets S, T ⊆ V with |S | , |T | ≤ 2k� 2 such that (U, U) is the unique minimum 

(S, T)-terminal cut. Hence, the set U is in the collection C. Moreover, U contains ⌊k=2⌋ nonempty sets V1, V2, : : : , V⌊k=2⌋, 
so we have |U | ≥ ⌊k=2⌋. Similarly, we have |U | ≥ k� ⌊k=2⌋. Because (V1, : : : , Vk) is an optimum k-partition for HYPER-

GRAPH-k-CUT, the set {e ∈ F : e ⊆ U} is a MIN-⌊K=2⌋-CUT-SET in G[U]. Similarly, the set {e ∈ F : e ⊆ U} is a MIN- 
(K � ⌊K=2⌋)-CUT-SET in G[U]. Because d(U) < OPTk-cut, we know that G� δ(U) has fewer than k connected compo-
nents. Therefore, the set U is in the collection C. By induction hypothesis, we know that the set {e ∈ F : e ⊆ U} is con-
tained in the family FU and the set {e ∈ F : e ⊆ U} is contained in the family F ′

U. Therefore, the set F is added to the 
family F in the second for-loop.

2. Suppose d(U) � OPTk-cut.
By Theorem 5, there exist sets S ⊆ U and T ⊆ U with |S | , |T | ≤ 2k� 1 such that the source minimal minimum 

(S, T)-terminal cut (A, A) satisfies δ(A) � δ(U) � F. Therefore, the set A is in the collection C. Because F � δ(A), the 
hypergraph G� δ(A) contains at least k connected components. Therefore, the set F � δ(A) is added to the family 
F in the first for-loop.

Thus, in both cases, we show that the set F is contained in the family F . Because the algorithm returns the sub-
family of hyperedge sets in F that are MIN-k-CUT-SETs, the set F is in the family returned by the algorithm.

Next, we bound the cardinality of the family returned by the algorithm. Let f(k, n) be the maximum cardinality 
of the family returned by the algorithm among all n-vertex hypergraphs. There are O(n4k�2) pairs of subsets 
S, T ⊆ V with |S | , |T | ≤ 2k� 1 and S ∩ T � ∅. Hence, the cardinality of the collection C and the family F at the end 
of the first for-loop is O(n4k�2). Consequently, for k ≥ 2, by the recursion, we have that

f (k, n) � O(n4k�2)f

$

k

2

%

, n

 !

f k�

$

k

2

%

, n

 !

(8) 

and f (1, n) � 1. We now show that f (k, n) ≤ C2k�1n(8k�6)log k for some constant C.

Figure 2. Divide and conquer algorithm to enumerate hypergraph minimum k-cut-sets. 
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Let C ≥ 1 be a constant larger than the constant occurring in the O-notation of (8). Then, we have that

f (k, n) ≤ Cn4k�2f

$

k

2

%

, n

 !

f k�

$

k

2

%

, n

 !

: (9) 

We show by induction that f (k, n) ≤ C2k�1n(8k�6)logk. The base case of k�1 holds because f (1, n) � 1. For the induc-
tion step, let k ≥ 2. Using (9) and the induction hypothesis, we have that

f (k, n) ≤ Cn4k�2 ·C2⌊k
2⌋�1n 8⌊k

2⌋�6( )log ⌊k
2⌋( ) ·C2k�2⌊k

2⌋�1n 8k�8⌊k
2⌋�6( )log k�⌊k

2⌋( )

� C2k�1 · n4k�2+ 8⌊k
2⌋�6( )log ⌊k

2⌋( )+ 8k�8⌊k
2⌋�6( )log k�⌊k

2⌋( ):

Here, the exponent of n is

4k � 2 + 8

$

k

2

%

� 6

 !

log

$

k

2

% !

+ 8k � 8

$

k

2

%

� 6

 !

log k �

$

k

2

% !

≤ 4k � 2 + (8k � 12)log
k + 1

2

� �

, 

and it suffices to show that

4k � 2 + (8k � 12)log
k + 1

2

� �

≤ (8k � 6)log k: (10) 

This follows immediately for k� 2. For k ≥ 3, we have that

4k� 2+ (8k� 12)log
k+ 1

2

� �

� (8k� 6)log k

� 4k� 2+ (8k� 12)log(k+ 1)� 8k+ 12� (8k� 6)log k

� (8k� 6)log
k+ 1

k
� 6 log(k + 1)� 4k+ 10

≤ (8k� 6)log(4=3)� 6 log(k + 1)� 4k+ 10 (since k ≥ 3)

≤
1

2
(8k� 6)� 12� 4k+ 10

< 0:

This completes the proof that f (k, n) ≤ C2k�1n(8k�6)logk.
Next, we bound the maximum runtime of the algorithm. Let N(k, n) denote the runtime of the algorithm 

among all n-vertex hypergraphs. We have N(1, n) � O(1). For k ≥ 2, there are O(n4k�2) pairs of subsets S, T ⊆ V 
with |S | , |T | ≤ 2k� 1 and S ∩ T � ∅. Hence, the first for-loop performs O(n4k�2) source minimal minimum (S, T)- 
terminal cut computations. The collection C and the family F at the end of the first for-loop each have O(n4k�2)

sets. This implies that the first for-loop can be implemented to run in O(n4k�2)T(n, p) time. For each A ∈ C, the 
computation of Enum-Cut-Sets(G[A], ⌊k=2⌋) in the second for-loop runs in N(⌊k=2⌋, n) time. The computation of 
Enum-Cut-Sets(G[A], k� ⌊k=2⌋) in the second for-loop runs in N(k� ⌊k=2⌋, n) time. Hence, the second for-loop 
can be implemented to run in

O(n4k�2) N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+ f

$

k

2

%

, n

 !

· f k�

$

k

2

%

, n

 !

·O(p)

 !

time. The last step to prune the family F can be implemented to run in time that is linear in the time to implement 
the first and second for-loops: this is because, for each member of F , we can decide whether it is a minimum k-cut 
set in time linear in the time to write this member in F . Therefore, we have

N(k, n) � O(n4k�2)T(n, p)

+O(n4k�2) N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+ f

$

k

2

%

, n

 !

· f k�

$

k

2

%

, n

 !

·O(p)

 !

: (11) 

We now show that N(k, n) ≤ D4kn(8k�6)logkT(n, p) for some constant D.
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Let D ≥ max{C, N(1, n), 4} be a constant that is larger than the constants occurring in the O-notation of (11). 
Then, we have that

N(k, n) ≤ Dn4k�2 T(n, p) +N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+ f

$

k

2

%

, n

 !

· f k�

$

k

2

%

, n

 !

·Dp

 !

: (12) 

We show by induction that N(k, n) ≤ D4kn(8k�6)logkT(n, p). The base case of k�1 holds because N(1, n) ≤ D. We 
now show the induction step. Let k ≥ 2. We use the fact that T(n, p) ≥ p. Then, using (12), induction hypothesis, 
and the bound f (k, n) ≤ C2k�1n(8k�6)logk shown earlier, we have that

N(k, n) ≤ Dn4k�2 T(n, p) +N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 ! !

+Dn4k�2 C2k�2n 8⌊k
2⌋�6( )log ⌊k

2⌋( )n 8k�8⌊k
2⌋�6( )log k�⌊k

2⌋( ) ·Dp
� �

≤ Dn4k�2 T(n, p) +N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+C2k�2n(8k�12)log k+1
2( ) ·Dp

 !

≤ Dn4k�2 T(n, p) +D4⌊k
2⌋n 8⌊k

2⌋�6( )log ⌊k
2⌋( )T(n, p)

� �

+Dn4k�2 D4k�4⌊k
2⌋n 8k�8⌊k

2⌋�6( )log k�⌊k
2⌋( )T(n, p) +C2k�2n(8k�12)log k+1

2( ) ·Dp
� �

≤ Dn4k�2 T(n, p) + 2D2k+2n(4k�2)log k+1
2( )T(n, p) +C2k�2n(8k�12)log k+1

2( ) ·DT(n, p)
� �

(13) 

� T(n, p) Dn4k�2 + 2D2k+3n(4k�2)log(k+1) +C2k�2D2n(8k�12)log k+1
2( )+4k�2

� �

≤ T(n, p) Dn4k�2 + 2D2k+3n(4k�2)log(k+1) +C2k�2D2n(8k�6)logk
� �

(by inequality (10))

≤ T(n, p) · n(8k�6)logk(D+ 2D2k+3 +C2k�2D2)

≤ T(n, p) · n(8k�6)logk · 4 max(C, D)2k+3

≤ D4kn(8k�6)logkT(n, p),

(14) 

where Inequality (13) is because ⌊k=2⌋, k� ⌊k=2⌋ ≤ (k+ 1)=2 and Inequality (14) is because (4k� 2)log(k+ 1) ≤
(8k� 6)log k for all k ≥ 2. w

We recall that the number of MIN-k-CUT-SETs in an n-vertex hypergraph is O(n2k�2) (Chandrasekaran et al. [16]). 
Assuming this bound improves the runtime of algorithm Enum-Cut-Sets(G, k) in Figure 2.

Lemma 2. Algorithm Enum-Cut-Sets(G, k) in Figure 2 can be implemented to run in time at most C2kn16k�26T(n, p) for 
some constant C, where n is the number of vertices, p is the size of the input hypergraph G, and T(n, p) denotes the time 
complexity for computing the source minimal minimum (s, t)-terminal cut in an n-vertex hypergraph of size p.

Proof. Let N(k, n) denote the maximum runtime of the algorithm among all n-vertex hypergraphs. Then, we 
have that

N(1, n) � O(1) (15) 

because the algorithm runs in constant time. For k ≥ 2, there are O(n4k�2) pairs of subsets S, T ⊆ V with |S | , |T | ≤

2k� 1 and S ∩ T � ∅. Hence, the first for-loop performs O(n4k�2) source minimal minimum (S, T)-terminal cut com-

putations. The collection C and the family F at the end of the first for-loop each have O(n4k�2) sets. This implies that 

the first for-loop can be implemented to run in O(n4k�2)T(n, p) time. For each A ∈ C, the computation of Enum-Cut- 

Sets(G[A], ⌊k=2⌋) in the second for-loop runs in N(⌊k=2⌋, n) time. The computation of Enum-Cut-Sets(G[A], k 
� ⌊k=2⌋) in the second for-loop runs in N(k� ⌊k=2⌋, n) time. We recall that FA consists of all minimum ⌊k=2⌋-cut- 

sets in a n-vertex graph and, hence, has size O(n2⌊k=2⌋�2). Similarly, F ′
A has size O(n2(k�⌊k=2⌋)�2). Hence, the second 
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for-loop can be implemented to run in time

O(n4k�2) N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+O(n2⌊k=2⌋�2)O(n2(k�⌊k=2⌋)�2)

 !

� O(n4k�2) N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+O(n2k�4)

 !

:

Moreover, the size of the family F at the end of the second for-loop is O(n4k�2) +O(n4k�2) |FA | · |F
′
A | � O(n4k�2)

O(n2k�4) � O(n6k�6). Hence, the last step to prune the family F can be implemented to run in time O(n6k�6). Hence, 
the second for-loop and the last step can together be implemented to run in time

O(n4k�2) N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+O(n2k�4)

 !

:

Therefore, we have

N(k, n) � O(n4k�2) T(n, p) + N

$

k

2

%

, n

 !

+ N k �

$

k

2

%

, n

 !

+ O(n2k�4)

 !

: (16) 

We now solve the recursion in (16) under the base case given by (15) to show that N(k, n) � O(nmax(0, 16k�26))
T(n, p).

Let C ≥ 4 be a constant that is larger than the constants that appear in the O-notations of (15) and (16). Then, 
we have that N(1, n) ≤ C and

N(k, n) ≤ Cn4k�2 T(n, p) +N

$

k

2

%

, n

 !

+N k�

$

k

2

%

, n

 !

+Cn2k�4

 !

: (17) 

We show that N(k, n) ≤ C2knmax(0, 16k�26)T(n, p) by induction on k. For the base case of k�1, we have that N(1, n)
≤ C. We now show the induction step.

For k� 2, using Inequality (17) and N(1, n) ≤ C, we have

N(2, n) ≤ Cn6 T(n, p) + 2N(1, n) +C
� �

≤ Cn6 T(n, p) + 2C+C
� �

≤ Cn6 · 4CT(n, p) ≤ C4n6T(n, p) � C2knmax(0, 16k�26)T(n, p):

For k� 3, using Inequality (17), N(1, n) ≤ C, and N(2, n) ≤ C4n6T(n, p), we have

N(3, n) ≤ Cn10 T(n, p) +N(1, n) +N(2, n) +Cn2
� �

≤ Cn10 T(n, p) +C+C4n6T(n, p) +Cn2
� �

≤ Cn10 · 4C4n6T(n, p) ≤ C6n22T(n, p) � C2knmax(0, 16k�26)T(n, p):

Let k ≥ 4. We have that 16⌊k=2⌋� 26 ≥ 0 and 16(k� ⌊k=2⌋)� 26 ≥ 0. Using (17) and the induction hypothesis, we 
have that

N(k, n) ≤ Cn4k�2 T(n, p) +C2⌊k
2⌋n16⌊k

2⌋�26T(n, p) +C2 k�⌊k
2⌋( )n16 k�⌊k

2⌋( )�26T(n, p) +Cn2k�4
� �

≤ Cn4k�2 1+C2⌊k
2⌋n16⌊k

2⌋�26 +C2 k�⌊k
2⌋( )n16 k�⌊k

2⌋( )�26 +Cn2k�4
� �

T(n, p): (18) 

Suppose k is even. Then, using (18), we have that

N(k, n) ≤ Cn4k�2(1 + 2Ckn8k�26 + Cn2k�4)T(n, p)

≤ Ck+1n4k�2(1 + 2n8k�26 + n2k�4)T(n, p)

≤ Ck+1n4k�2(4nmax{0, 8k�26, 2k�4})T(n, p)

≤ C2kn16k�26T(n, p), 
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where the last inequality is because C2k ≥ 4Ck+1 and max{0, 8k� 26, 2k� 4} ≤ 12k� 24 for k ≥ 2. Next, suppose that 
k is odd. Then, using (18), we have that

N(k, n) ≤ Cn4k�2
�

1+Ck�1n8(k�1)�26 +Ck+1n8(k+1)�26 +Cn2k�4
�

T(n, p)

≤ Ck+2n4k�2
�

1+ n8(k�1)�26 + n8(k+1)�26 + n2k�4
�

T(n, p)

≤ Ck+2n4k�2(4nmax{0, 8k�18, 2k�4})T(n, p)

≤ C2kn16k�26T(n, p), 

where the last inequality is because C2k ≥ 4Ck+2 and max{0, 8k� 18, 2k� 4} ≤ 12k� 24 for k ≥ 4. This completes the 
proof that N(k, n) ≤ C2kn16k�26T(n, p). w

5. Algorithm for ENUM-MINMAX-HYPERGRAPH-k-PARTITION

In this section, we design a deterministic algorithm for ENUM-MINMAX-HYPERGRAPH-k-PARTITION that runs in time 
nO(k2)p, where n is the number of vertices and p is the size of the input hypergraph. For this, we rely on the notion of 
k-cut-set representatives.

We recall that, for a k-partition (V1, : : : , Vk) and disjoint subsets U1, : : : , Uk ⊆ V, the k-tuple (U1, : : : , Uk) is defined 
to be a k-cut set representative of (V1, : : : , Vk) if Ui ⊆ Vi and δ(Ui) � δ(Vi) for all i ∈ [k]. We first show that there exists 
a polynomial-time algorithm to verify whether a given k-tuple (U1, : : : , Uk) is a k-cut set representative.

Theorem 9. Let G � (V, E) be an n-vertex hypergraph of size p and let k be a positive integer. Then, there exists an algo-
rithm, denoted algorithm Recover-Partition, that takes as input the hypergraph G and disjoint subsets U1, : : : , Uk ⊆ V and 
runs in time O(knp) to decide if (U1, : : : , Uk) is a k-cut set representative of some k-partition (V1, : : : , Vk) and, if so, then 
return such a k-partition.

Proof. We use algorithm Recover-Partition(G, U1, : : : , Uk) in Figure 3.
We begin by showing correctness. Because Algorithm 3 maintains Ui ⊆ Pi and δ(Ui) � δ(Pi) for all i ∈ [k], if it 

returns a k-partition, then the k-partition necessarily satisfies the required conditions. Next, we show that, if (U1, 
: : : , Uk) is a k-cut set representative of a k-partition (V1, : : : , Vk), then the algorithm indeed returns a k-partition 
(P1, : : : , Pk) with Ui ⊆ Pi and δ(Ui) � δ(Pi) for all i ∈ [k] (however, (P1, : : : , Pk) may not necessarily be the same as 
(V1, : : : , Vk)).

Let (V1, : : : , Vk) be a k-partition such that Ui ⊆ Vi and δ(Ui) � δ(Vi) for all i ∈ [k]. Let (P1, : : : , Pk) be the sequence 
of subsets at the end of the for-loop. Moreover, for each j ∈ [t], let (P

j
1, : : : , P

j
k) be the sequence of subsets at the 

end of the jth iteration of the for-loop. For notational convenience, for i ∈ [k], we define P0
i :� Ui. We note that 

(P1, : : : , Pk) � (Pt
1, : : : , Pt

k) and P0
i ⊆ P1

i ⊆⋯⊆ Pt
i for every i ∈ [k]. We observe that Ui ⊆ P

j
i and δ(Ui) � δ(P

j
i) for all 

j ∈ {0, 1, 2, : : : , t}. Moreover, the subsets P
j
1, : : : , P

j
k are pairwise disjoint for each j ∈ {0, 1, 2, : : : , t}. Therefore, it suf-

fices to show that ∪k
i�1 Pi � V.

We claim that C1 ∪⋯∪ Cj ⊆∪k
i�1 P

j
i for each j ∈ {0, 1, : : : , t}. Applying this claim for j� t gives that ∪k

i�1 Pi � V as 
desired. We now show the claim by induction on j. The base case of j�0 holds by definition. We now prove the 
induction step. By induction hypothesis, we have that C1 ∪ : : : ∪ Cj�1 ⊆∪k

i�1 P
j�1
i . We show that there exists i ∈ [k]

Figure 3. Algorithm for Theorem 9. 
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such that δ(P
j�1
i ∪ Cj) � δ(P

j�1
i ). We know that Cj is contained in one of the sets in {V1, : : : , Vk}, say Cj ⊆ Vℓ�for 

some ℓ ∈ [k]. We prove that δ(P
j�1
ℓ

∪ Cj) � δ(P
j
ℓ
) to complete the proof of the claim. Because Cj is a component of 

G� ∪k
i�1 δ(Ui) � G� ∪k

i�1 δ(Vi), we know that each hyperedge in δ(Cj) crosses the k-partition (V1, : : : , Vk). More-
over, each hyperedge in δ(Cj) intersects Cj ⊆ Vℓ, and hence, δ(Cj) ⊆ δ(Vℓ). Therefore,

δ(P
j�1
ℓ

∪ Cj)� δ(P
j�1
ℓ

) ⊆ δ(Cj) ⊆ δ(Vℓ) � δ(Uℓ) � δ(P
j�1
ℓ

):

This is possible only if δ(P
j�1
ℓ

∪ Cj)� δ(P
j�1
ℓ

) � ∅, that is, δ(P
j�1
ℓ

∪ Cj) ⊆ δ(P
j�1
ℓ

). We now show the reverse inclu-
sion. We have that

δ(P
j�1
ℓ

)� δ(P
j�1
ℓ

∪ Cj) � δ(Uℓ)� δ(P
j�1
ℓ

∪ Cj)

� δ(Vℓ)� δ(P
j�1
ℓ

∪ Cj)

� E(Vℓ �P
j�1
ℓ

�Cj, V �Vℓ �P
j�1
ℓ

) ∪ E(Vℓ ∩ P
j�1
ℓ

, P
j�1
ℓ

�Vℓ)

⊆ E[V �P
j�1
ℓ

] ∪ E[P
j�1
ℓ

]:

We note that the left-hand side is a subset of δ(P
j�1
ℓ

), whereas the right-hand side is disjoint from δ(P
j�1
ℓ

) because 

E[V �P
j�1
ℓ

] ∩ δ(P
j�1
ℓ

) � ∅ and E[P
j�1
ℓ

] ∩ δ(P
j�1
ℓ

) � ∅. Hence, the containment is possible only if δ(P
j�1
ℓ

)� δ(P
j�1
ℓ

∪

Cj) � ∅, and hence, δ(P
j�1
ℓ

) ⊆ δ(P
j�1
ℓ

∪ Cj). Consequently, δ(P
j�1
ℓ

∪ Cj) � δ(P
j�1
ℓ

).

We now bound the runtime. We can compute δ(Ui) for all i ∈ [k] in O(kp) time. For every choice of j ∈ [t], we 
can verify if there exists i ∈ [k] such that δ(Pi ∪ Cj) � δ(Pi) in time O(kp) as follows: For each i ∈ [k], we can com-
pute δ(Pi ∪ Cj) in O(p) time and verify if δ(Pi ∪ Cj) � δ(Ui) � δ(Pi) in O(p) time. The number of iterations of the 
for-loop is t ≤ n. Hence, the total runtime is O(knp). w

Next, we address the problem of enumerating all MINMAX-k-CUT-SETs. For this, we define a subproblem: namely, 
ENUM-MINMAX-HYPERGRAPH-k-CUT-SET-REPS. The input here is a hypergraph G � (V, E) and a fixed positive integer 
k (e.g., k � 2, 3, 4, : : : ). The goal is to enumerate a family F of k-cut set representatives satisfying the following two 
properties: 

1. Every k-tuple (U1, : : : , Uk) in the family F is a k-cut set representative of some optimum k-partition (V1, : : : , Vk)

for MINMAX-HYPERGRAPH-k-PARTITION.
2. For every optimum k-partition (V1, : : : , Vk) for MINMAX-HYPERGRAPH-k-PARTITION, the family F contains a k-cut 

set representative (U1, : : : , Uk) of (V1, : : : , Vk).
We note that, if a family F is a solution to ENUM-MINMAX-HYPERGRAPH-k-CUT-SET-REPS, then returning {∪k

i�1 

δ(Ui) : (U1, : : : , Uk) ∈ F} solves ENUM-MINMAX-HYPERGRAPH-k-PARTITION. Hence, it suffices to solve ENUM-MINMAX- 
HYPERGRAPH-k-CUT-SET-REPS in order to solve ENUM-MINMAX-HYPERGRAPH-k-PARTITION. We describe our algorithm 
for ENUM-MINMAX-HYPERGRAPH-k-CUT-SET-REPS in Figure 4 and its guarantees in Theorem 10. Theorem 1 follows 
from Theorem 10.

Figure 4. Algorithm for Theorem 10. 
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Theorem 10. Let G � (V, E) be an n-vertex hypergraph of size p and let k be a positive integer. Then, algorithm Enum- 
MinMax-Reps(G, k) in Figure 4 solves ENUM-MINMAX-HYPERGRAPH-K-CUT-SET-REPS, and it can be implemented to run in 
time O(kn4k2

�2k+1p). Moreover, the cardinality of the family returned by the algorithm is O(n4k2
�2k).

Proof. We begin by showing correctness; that is, the family F returned by the algorithm satisfies properties (1) 
and (2) mentioned in the definition of ENUM-MINMAX-HYPERGRAPH-k-CUT-SET-REPS. By the second for-loop, each k- 
tuple added to the collection D is a k-cut set representative of some k-partition (it need not necessarily be a k-cut 
set representative of an optimum k-partition for MINMAX-HYPERGRAPH-k-PARTITION). The algorithm returns a sub-
family of D, and hence, it returns a subfamily of k-cut set representatives. We only have to show that a k-cut set 
representative of an arbitrary optimum k-partition for MINMAX-HYPERGRAPH-k-PARTITION is present in the family D; 
this guarantees that the value λ�computed by the algorithm is exactly OPTminmax-k-partition, and owing to the way 
in which the algorithm constructs the family F from the family D, it follows that the family F satisfies properties 
(1) and (2).

Let OPTminmax-k-partition denote the optimum value of a minmax k-partition in G, and let OPTk-cut denote the 
optimum value of a minimum k-cut in G. We note that OPTminmax-k-partition ≤ OPTk-cut. This is because, if 
(P1, : : : , Pk) is a k-partition with minimum |δ(P1, : : : , Pk) | (i.e., an optimum k-partition for HYPERGRAPH-k-CUT), then

OPTminmax-k-partition ≤ max
i∈[k]

|δ(Pi) | ≤ |δ(P1, : : : , Pk) | � OPTk-cut:

Let (V1, : : : , Vk) be an arbitrary optimum k-partition for MINMAX-HYPERGRAPH-k-PARTITION. We show that the family F 

returned by the algorithm contains a k-cut set representative of (V1, : : : , Vk). We have that d(Vi) ≤ OPTminmax-k-partition ≤

OPTk-cut for all i ∈ [k]. Hence, by Theorems 3 and 5, there exist subsets Si ⊆ Vi, Ti ⊆ V �Vi with |Si | , |Ti | ≤ 2k� 1 such 
that the source minimal minimum (Si, Ti)-terminal cut (Ui, Ui) satisfies δ(Ui) � δ(Vi) for all i ∈ [k]. Source minimality of 
the cut (Ui, Ui) also guarantees that Ui ⊆ Vi for all i ∈ [k]. Hence, the k-tuple (U1, : : : , Uk) is a k-cut set representative of 
(V1, : : : , Vk). It remains to show that this k-tuple is indeed present in the families D and F . We note that the sets 
U1, : : : , Uk are added to the collection C in the first for-loop. Because the k-tuple (U1, : : : , Uk) is a k-cut set representative 
of the k-partition (V1, : : : , Vk), the k-tuple (U1, : : : , Uk) is added to the family D in the second for-loop (by correctness of 
algorithm Recover-Partition as proved in Theorem 9). Because the family D contains only k-cut set representatives of k- 
partitions, it follows that λ � OPTminmax-k-partition and (U1, : : : , Uk) are added to the family F in the third for-loop. Hence, 
the k-cut set representative (U1, : : : , Uk) of the optimum k-partition (V1, : : : , Vk) for MINMAX-HYPERGRAPH-k-PARTITION is 
present in the family F returned by the algorithm.

The bound on the size of the family F returned by the algorithm is

|F | ≤ |D | ≤ |C | k � O(nk(4k�2)):

Next, we bound the runtime of the algorithm. The first for-loop can be implemented to run in time O(n4k�2)

T(n, p). The second for-loop executes the algorithm from Theorem 9 O(n4k2
�2k) times, and hence, the second for- 

loop can be implemented to run in time O(kn4k2
�2k+1p). The computation of λ�and the third for-loop can be imple-

mented to run in time O( |D | ) � O(n4k2
�2k). The time to compute λ�is O(kp) |D | � O(kn4k2

�2kp) because, for each 
(U1, : : : , Uk) ∈ D, we can compute maxi∈[k]d(Ui) in time O(kp). The third for-loop can also be implemented to run 
in time O(kp) |D | � O(kn4k2

�2kp). Hence, the total runtime is O(n4k�2)T(n, p) +O(kn4k2
�2k+1p). We recall that T(n, p)

� O(np), and hence, the total runtime is O(kn4k2
�2k+1p). w

6. A Lower Bound on the Number of MINMAX-k-CUT-SETs
In this section, we show that there exist n-vertex connected graphs for which the number of MINMAX-k-CUT-SETs is 
nΩ(k2). In particular, we show the following result.

Lemma 3. For every positive integer k ≥ 2, there exists a positive integer n such that the number of optimum k-partitions 
for MINMAX-GRAPH-K-PARTITION in the n-vertex complete graph is nΩ(k2).

Proof. Let k ≥ 2 be fixed, and let G � (V, E) be the complete graph on n � k(k� 1) vertices (with all edge weights 
being uniformly one). We show that OPTminmax-k-partition � (k� 1)3 and every partition of V into k parts of equal 
size is an optimum k-partition for MINMAX-GRAPH-k-PARTITION. Because the number of partitions of V into k parts 
of equal size is Ω(kn) �Ω(nk2=2), the lemma follows.

First, we show that OPTminmax-k-partition ≥ (k� 1)3. For every partition of V into k nonempty parts, the largest 
part has at least k�1 vertices by the pigeonhole principle and at most k(k� 1)� (k� 1) � (k� 1)2 vertices 
because each of the remaining k�1 parts contain at least one vertex. Therefore, the cut value of the largest part 
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is at least

min
x∈{k�1, : : : , (k�1)2}

x(n� x) � (k� 1)3:

The equality follows because n � k(k � 1) and the function f (x) � x(n� x) is convex and is minimized at the 
boundaries. This implies that OPTminmax-k-partition ≥ (k� 1)3.

Next, we show that OPTminmax-k-partition ≤ (k� 1)3 and every partition of V into k parts of equal size is an optimum 
k-partition for MINMAX-GRAPH-k-PARTITION. Let (V1, : : : , Vk) be an arbitrary k-partition of V such that |Vi | � k� 1 for 
all i ∈ [k]. The MINMAX-GRAPH-k-PARTITION objective value of this k-partition is (k� 1)(n� (k� 1)) � (k� 1)3. Thus, 
(V1, : : : , Vk) is an optimum k-partition for MINMAX-GRAPH-k-PARTITION in G. w

We note that our example exhibiting nΩ(k2) optimum k-partitions for MINMAX-GRAPH-k-PARTITION has the number of 
vertices n upper bounded by a function of k. We are not aware of examples that exhibit nΩ(k2) optimum k-partitions 
for MINMAX-GRAPH-k-PARTITION for fixed k but arbitrary n (e.g., k � 2, 3, 4, : : : but n is arbitrary).

7. Conclusion
We show the first polynomial bound on the number of MINMAX-k-CUT-SETs in hypergraphs for every fixed k and give a 
polynomial-time algorithm to enumerate all MINMAX-k-CUT-SETs as well as all MIN-k-CUT-SETs in hypergraphs for every 
fixed k. Our main contribution is a structural theorem that is the backbone of the correctness analysis of our enumera-
tion algorithms. In order to enumerate MINMAX-k-CUT-SETs in hypergraphs, we introduce the notion of k-cut set repre-
sentatives and enumerated k-cut set representatives of all optimum k-partitions for MINMAX-HYPERGRAPH-k-PARTITION. 
Our technique builds on known structural results for HYPERGRAPH-k-CUT and MINMAX-HYPERGRAPH-k-PARTITION (Beide-
man et al. [7], Chandrasekaran and Chekuri [12, 13]).

The technique underlying our enumeration algorithms is not necessarily novel; we simply rely on minimum 
(s, t)-terminal cuts. Using fixed-terminal cuts to address global partitioning problems is not a novel technique by 
itself; it is common knowledge that minimum (s, t)-terminal cuts can be used to solve global minimum cut. How-
ever, there are several problems in which naive extensions of this technique fail to lead to efficient algorithms: for 
example, GRAPH-k-CUT for an n-vertex graph can be reduced to O(nk) multiway cut instances, but multiway cut for 
k terminals is NP-hard even for fixed constant k. Adapting this technique for specific partitioning problems requires 
careful identification of structural properties. In fact, beautiful structural properties are shown for a rich variety of 
partitioning problems in combinatorial optimization in order to exploit this technique: for example, it is used (1) to 
design the first efficient algorithm for GRAPH-k-CUT (Goldschmidt and Hochbaum [27]), (2) to solve certain con-
strained submodular minimization problems (Goemans and Ramakrishnan [26], Nägele et al. [51]), and (3) more 
recently to design fast algorithms for global minimum cut in graphs and for Gomory–Hu trees in unweighted 
graphs (Abboud et al. [1], Li and Panigrahi [46]). Our use of this technique also relies on identifying and proving a 
suitable structural property, namely, Theorem 5. The advantage of our structural property is that it simultaneously 
enables enumeration of MIN-k-CUT-SETs as well as MINMAX-k-CUT-SETs in hypergraphs, which was not possible via 
structural theorems that were developed before. Furthermore, it helps in showing the first polynomial bound on 
the number of MINMAX-k-CUT-SETs in hypergraphs for every fixed k. In work subsequent to the present paper, we also 
show that minimum (s, t)-terminal cuts can be used to enumerate all constant approximate minimum cuts in a 
given connected graph in polynomial time (Beideman et al. [8]).

We also emphasize a limitation of our technique. Although it helps in solving ENUM-HYPERGRAPH-k-CUT and 
ENUM-MINMAX-HYPERGRAPH-k-PARTITION, it does not help in solving a seemingly related hypergraph k-partitioning 
problem: namely, given a hypergraph G � (V, E) and a fixed integer k, find a k-partition (V1, : : : , Vk) of the vertex set 
that minimizes 

Pk
i�1 |δ(Vi) | . Natural extensions of our structural theorem fail to hold for this variant of the hyper-

graph k-partitioning problem. We note that this variant is polynomial-time solvable for k ≤ 5 (Chandrasekaran and 
Chekuri [12], Hirayama et al. [35], Okumoto et al. [52]), and resolving its complexity for k ≥ 6 remains open.

We mention an open question concerning HYPERGRAPH-k-CUT and the enumeration of MIN-k-CUT-SETs in hyper-
graphs for fixed k. We recall the status in graphs: the number of minimum k-partitions in a connected graph is 
known to be O(n2k�2) via Karger–Stein’s algorithm (Karger and Stein [40]) and Ω(nk) via the cycle example, where 
n is the number of vertices; recent works improve on the upper bound to match the lower bound for fixed k. This 
improvement in upper bound also led to the best possible O(nk)-time algorithm for GRAPH-k-CUT for fixed k (Gupta 
et al. [31–33]). For hypergraphs, the number of MIN-k-CUT-SETs is known to be O(n2k�2) and Ω(nk). Can we improve 
the upper/lower bound? Is it possible to design an algorithm for HYPERGRAPH-k-CUT that runs in time O(nkp)?
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Endnotes
1 We emphasize that the objective of HYPERGRAPH-k-CUT is not equivalent to minimizing 

Pk
i�1 c(δ(Vi)).

2 A real-valued set function f : 2V →R is submodular if f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) ∀A, B ⊆ V.
3 An evaluation oracle for a set function f : 2V → R over a ground set V returns the value f(S) given S ⊆ V.
4 A real-valued set function f : 2V →R is symmetric if f (A) � f (V \A) ∀A ⊆ V.
5 Subhypergraph G[A] has vertex set A and contains all hyperedges of G that are entirely contained within A.
6 Suppose we know a MIN-k-CUT-SET F. Then, consider the connected components Q1, : : : , Qt in G�F and create a partition (P1, : : : , Pk) by taking 
Pi�Qi for every i ∈ [k� 1] and Pk �∪

t
j�k Qj; such a k-partition (P1, : : : , Pk) is an optimum k-partition for HYPERGRAPH-k-CUT.

7 Consider the n-vertex hypergraph G � (V, E) obtained from the complete bipartite graph Kn=2, n=2 � (L ∪ R, E′) by adding n2=4 copies of two 
hyperedges e1 and e2, where e1 :� L and e2 :� R. The minimum cut value is n2=4 with (L, R) being the unique minimum cut. Moreover, for 
every nonempty subset X(L, the 2-partition (X, X) has cut value at most n2=2. The cut sets of these 2-partitions are all distinct. Thus, G has 
exponentially many 2-approximate minimum cut sets.
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