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Photon-emission-correlation spectroscopy is an indispensable tool for the study of atoms, molecules,
and, more recently, solid-state quantum defects. In solid-state systems, its most common use is as an indi-
cator of single-photon emission, a key property for quantum technology. Beyond the single-photon purity
of an emitter, however, photon-correlation measurements can provide a wealth of information that can
reveal details about its electronic structure and optical dynamics that are hidden by other spectroscopy
techniques. This tutorial presents a standardized framework for using photon-emission-correlation spec-
troscopy to study quantum emitters, including discussion of theoretical background, considerations for
data acquisition and statistical analysis, and interpretation. We highlight important nuances and best
practices regarding the commonly used g@(r = 0) < 0.5 test for single-photon emission. Finally, we
illustrate how this experimental technique can be paired with optical-dynamics simulations to formulate
an electronic model for unknown quantum emitters, enabling the design of quantum control protocols and
assessment of their suitability for quantum information science applications.
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L. INTRODUCTION

Quantum defects originate from substitutional atoms,
vacancies, or impurity-vacancy complexes in solid-state
lattices. They can exhibit quantum coherent spin and opti-
cal properties and thus comprise foundational elements in
quantum information science [1-3]. Quantum defects are a
subset of the larger category of quantum emitters, systems
hosting discrete electronic states that interact with indi-
vidual photons. Examples include quantum dots, which
are highly optimized single-photon sources for quantum
photonics [4,5] and quantum communication [6,7], fluo-
rescent single molecules [8], and solid-state point defects
[1]. The latter category includes quantum defects that also
exhibit spin coherence, which can couple to other classical
and quantum degrees of freedom. For example, fluorescent
nanodiamonds containing quantum defects have advanced
the field of quantum sensing [9-11] and quantum regis-
ters in diamond are optically interfaced quantum memories
supporting multiqubit quantum algorithms [12—15].

Inspired by the well-known examples of quantum dots
[16,17] and diamond color centers [18,19], the list of
established quantum defect systems has grown to include
defects in silicon carbide [20-22], emifters in layered
materials [23] such as hexagonal boron nitride [24] and
transition-metal dichalcogenides [25], and rare-earth ions
[26]. Most solid-state defect systems remain unexplored,
however, and many promise potential advantages for quan-
tum information applications in terms of scalability, device
integration, optical properties, spin properties, and quan-
tum coherence [2,3,27]. In each case, controlling and
harnessing the quantum properties of a defect requires a
detailed understanding of its electronic structure as well
as its optical and spin dynamics, presenting formidable
obstacles for efficient experimental or theoretical charac-
terization.

Photon-emission-correlation spectroscopy (PECS) is a
valuable and often underutilized technique for elucidat-
ing the optical and spin dynamics of a quantum emitter.
PECS involves analyzing photon time correlations in the
optical emission from a fluorescent system, as shown in
Fig. 1. It is widely used to verify single-photon emission
associated with quantum emitters through the observation
of photon antibunching [28-33]. As a steady-state mea-
surement requiring only constant excitation, single-photon

detectors, and suitable timing electronics, PECS is rela-
tively simple to implement and yet it can provide a wealth
of information about the optical dynamics of an emitter,
including excited-state lifetimes and radiative and nonra-
diative relaxation pathways, as well as spin and charge
dynamics.

This paper describes the application of PECS as a
general-purpose characterization tool for solid-state quan-
tum emitters. We present application-specific guidelines
for reliable data acquisition, analysis, and interpreta-
tion. In particular, we demonstrate how PECS can be
used to reliably confirm single-photon emission and to
hypothesize a model of the electronic states and opti-
cal dynamics of the system, enabling an assessment of
the suitability of the emitter for quantum technology
applications.

II. BACKGROUND

The method of optical-intensity-correlation spectro-
scopy was pioneered by Hanbury Brown and Twiss, when
they recorded time-correlated photons while developing
a new intensity-interferometry technique to measure the
diameter of stars, marking the first observation of the
bunching of thermal light [34]. Subsequently, Glauber’s
foundational paper [35] laying the theoretical framework
for higher-order quantum correlation functions launched
the field of quantum optics. The observation of photon
antibunching in emission from trapped ions by Kimble
et al. confirmed the quantum-mechanical nature of light
[28,36] and numerous further experiments revealed phe-
nomena including quantum jumps [37] and nonclassical
light fields [38]. The connection between coherence and
intensity-correlation spectroscopy has also made it a use-
ful tool for characterizing lasers to confirm the onset of
lasing [39-41].

The technique has also found purchase in single-
molecule spectroscopy [42], where past innovations in
microscopy unveiled a new realm of molecular physics
[43]. PECS has facilitated exploration of intra- and inter-
molecular dynamics [44] that had previously been unre-
solvable for systems with fast time scales or low quantum
yields [45]. Arguably, the largest contribution of PECS to
single-molecule spectroscopy has been the development
of fluorescence-correlation spectroscopy (FCS), which is
widely used to resolve physical and kinetic dynamics such
as diffusion rates, molecule size and orientation, blinking,
and binding kinetics [31,46].

The emergence of quantum information science and the
promise of more photostable single-photon sources has
driven the application of PECS beyond single molecules
to solid-state systems such as the nitrogen-vacancy (NV)
center in diamond [29,42] and quantum dots [47]. The
application of PECS to solid-state systems has since grown
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FIG. 1. An experimental overview. (a) Laser light is focused through a microscope objective onto a quantum defect in a solid-state
crystal (gray block). The resulting fluorescence from the defect is emitted isotropically and collected through the objective as the
signal. Background photons arising from surface fluorescence and other fluorescent defects are also collected. (b) The full process of
PECS is illustrated. Starting in the upper left, excitation from a laser source causes the system to evolve between different electronic
states, emitting a photon when passing through a radiative transition. The emitted photons (yellow circles) are collected into a photon
time series, which includes experimental noise such as timing error, represented by light gray circles, and background photons (orange
circle). Time correlations are calculated between either all photons or only subsequent photons to make up the autocorrelation or
waiting-time distribution, respectively. Corrections and analysis of the photon-emission statistics help to paint a clearer picture of the

internal-dynamics model of the emitter.

to include many other materials as a part of the search for
optimal platforms for quantum technologies.

A. The autocorrelation function

While higher-order intensity correlations can be use-
ful for studying many-body interactions and multipho-
ton states [48—50], the primary method of characterizing
photon correlations is through the second-order intensity-
correlation function, often called the autocorrelation func-
tion. In its most general form, the autocorrelation function
is given by

(I(OI(t+ 1))
(o3 -

where I(f) is the intensity at time ¢, T is the time delay
between two intensity measurements, and () represents the
time average of the enclosed quantity [51].

There are two important types of correlation that can
appear in a measurement of g®(r). Regions where
g? (1) <1 indicate a decreased probability of detect-
ing two photons separated by t. This phenomenon is
referred to as antibunching and corresponds to a quan-
tum source with a sub-Poissonian photon distribution [51].
Regions where g? (1) > 1, indicating increased detection
probability, are referred to as bunching and correspond to

g?(r) = (1)

a super-Poissonian photon distribution. Any region where
g () = 1 corresponds to uncorrelated Poissonian light.

B. Single-photon emitters

A single-photon emitter (SPE) is a quantum system
that emits one photon at a time. Single photons are a
key requirement for many quantum information technolo-
gies [52,53]. In particular, single-photon purity, the extent
to which a system creates a pure single-photon-number
state, influences the security of quantum communication
protocols [54,55] and error rates in photonic quantum
computing and simulation [52]. High-purity single-photon
emission is also a prerequisite for realizing indistin-
guishable single photons [56], which form the basis for
linear-photonic quantum information processing protocols
[57-59] or quantum repeaters [60]. Single-photon emis-
sion manifests in PECS measurements as an antibunching
dip at zero delay. The characterization of antibunching
through PECS enables precise measurements of photon
purity for SPEs [52]

C. Optical dynamics of quantum defects

The potential of quantum defects extends far beyond
their use as SPEs. When the electronic or optical dynam-
ics of a defect depend on internal orbital and spin states,

010202-3



REBECCA E. K. FISHMAN et al.

PRX QUANTUM 4, 010202 (2023)

these states become accessible as matter qubits for use
in the storage or processing of quantum information. The
challenge in exploring new materials and defect systems is
that a plethora of dynamical phenomena, including radia-
tive and nonradiative transitions between electronic levels,
spin dynamics, intersystem crossings to metastable states,
and ionization or recombination charge transitions, may
occur under different conditions, or all in combination.
Signatures of these phenomena manifest in the bunch-
ing dynamics of PECS measurements. As a result, PECS
presents a versatile framework in which to hypothesize
and test dynamical models. In this section, we briefly dis-
cuss these phenomena and their importance for quantum
information science.

Spin states are desirable as quantum-mechanical degrees
of freedom because they are insulated from most envi-
ronmental noise yet manipulable through spin resonance
techniques, striking a balance between control and coher-
ence [61]. When spin states couple coherently to light,
they form a light-matter interface that is integral for quan-
tum communication and distributed quantum computing
as an interface between static and flying qubits [62,63].
Even when the optical coupling to spin states is incoher-
ent, as in the case of the intersystem crossing between
triplet and singlet states in the NV center, spin-dependent
optical dynamics can be used for spin initialization [64]
and readout [65]. Quantum sensing similarly takes advan-
tage of the intrinsic sensitivity of orbital and spin states to
external fields, together with optical readout [66,67]. Many
defects feature distinct spin manifolds separated by elec-
tric dipole forbidden transitions. Forbidden transitions to
shelving states with long lifetimes can allow a state to be
stored and protected in quantum memories [68].

Especially in wide-band-gap host materials, defects can
exist in multiple stable charge states. Once the charge
dynamics of a defect are understood and can be controlled,
they present new opportunities for optical and electrical
control, including electrical generation of single photons
[69] and long-term information storage [70]. Charge states
coupled to spin states can also be harnessed to signifi-
cantly improve the efficiency of state initialization [71]
and optical readout [72] for quantum computing or quan-
tum sensing, or to enable photoelectric spin readout in
microelectronic devices [73].

More generally, detailed understanding of the electronic
structure of an emitter, along with its radiative and non-
radiative dynamics, can also allow the design of additional
resonant excitation schemes that improve spin readout effi-
ciency [74] or achieve higher photon indistinguishability
and entanglement [75].

III. THEORY

PECS involves exciting and collecting emission from
quantum emitters, often using a confocal microscope,

as shown in Fig. I(a). The experimental situation is
similar for different types of emitters, including quantum
dots, single molecules, and quantum defects, since these
are all much smaller than the optical diffraction limit.
Figure 1(b) presents an overview of the acquisition and
analysis of PECS data. The process begins with the internal
dynamics of the quantum emitter system, which we assume
is initially unknown. The evolution of this unknown sys-
tem in response to excitation determines the timing of
photon emission. The goal of PECS analysis is to infer
the optical dynamics from the experimental data and ulti-
mately to develop a theoretical model for the quantum
system.

A. Types of photon correlation

There are two types of photon intensity correlation that
are often measured in experiments [see Fig. 2(a)]. In addi-
tion to the autocorrelation function [Eq. (1)], which repre-
sents the likelihood of receiving any two photons separated
by a specific time delay, the waiting-time distribution,
W(t), depends only on correlations between subsequent
photons. Intuitively, W(t)dt represents the probability
of detecting two subsequent photons with a time delay
between T and t + dt. Hence, W(t) depends both on the
dynamics of the system of study and on details of the
experimental setup, such as the collection efficiency. On
the other hand, g¥(t) captures correlations between all
photons in the time series and reflects the full counting
statistics of the system alone, independent of the collection
efficiency.

Figure 2(a) depicts the experimental setups used to
acquire W(t) and g@(r). The optical excitation is the
same for both cases, as is the use of a beam splitter in the
collection path to address detector dead time (see Sec. [V).
However, the manner in which the collected photons are
processed differs. For W(r), an incoming photon is regis-
tered as a start pulse, starting the clock until a subsequent
photon is registered as a stop pulse. This time difference
is then collected into a histogram of photon time delays.
As a result, the method of acquiring W(t) is referred to
as histogram mode. On the other hand, for g®(t), the
arrival time of each photon is recorded, which requires
a multichannel high-timing-resolution machine, such as
a time-correlated single-photon counter, as well as addi-
tional processing to yield the correlations. While W(rt) is
often simpler to acquire experimentally, g® () is more
straightforward to analyze for meaningful results.

B. Two-level model

The internal evolution of the states of an emitter is deter-
mined solely based on the initial conditions, electronic
states, and transition rates between the states. The emis-
sion of a photon is dependent on which transitions are
radiative. Therefore, an analytic expression that captures
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FIG. 2. A comparison of the histogram mode and the full
counting statistics. (a) A schematic depicting the experimental
setup for measuring the histogram mode and the full counting
statistics. A snapshot in time shows photons and electric pulses
traveling left to right. A beam splitter directs the photon stream
into two separate detectors (semicircles), each of which corre-
sponds to a channel. In histogram mode, one channel acts as
a start pulse for a ramp circuit and the other is a stop pulse.
Additional start (stop) pulses that occur before (after) the stop
(start) pulse are neglected. For the full counting statistics, a
time-correlated single-photon counter (TCSPC) tags the absolute
times of photon arrivals at each channel. (b) The effect of collec-
tion efficiency and pump rate on the shape of the waiting-time
distribution for a two-level system. The collection efficiency is
represented by differently colored shaded regions and the pump
rate relative to the emission rate is represented on a spectrum
from solid [maximally different pump and emission rates (¢ —
1)] to dashed [pump rate = emission rate (¢ = 0)] lines. The solid
black curve represents g® (z/71). The dashed black curve repre-
sents the waiting-time distribution at unity collection efficiency
and equal pump and emission rates, at which point it is the far-
thest from approximating g@(t). The traces are normalized by
the pump rate and collection efficiency for ease of comparison.

the photon time correlations must be a function of the state
of the system over time and must reflect which transitions
are radiative. The simplest model to consider is a two-level
model, consisting of an excited state and a ground state.

The system transitions from the ground state to the excited
state at a rate I'g, that is dependent on the excitation source
and then decays through a radiative transition from excited
to ground at an infrinsic rate of I'y,, emitting one photon
each time it decays. Initially, we assume unity collection
efficiency (C=1) in which every transition from the excited
state to the ground state corresponds to a detected photon.
We subsequently relax that assumption.

To derive an expression for W(r), we must consider
the probability of receiving the first subsequent photon at
time f;, given that a photon was received at time #;. For
a two-level model, this is equivalent to the probability of
the system starting in the ground state at time #; and then
evolving to the excited state at time f after delay v’ =t — £
and decaying back to the ground state at delay t = #, — 7,
integrated over all possible excitation times:

W(r) = f TPy (T = TP ). Q)
0

Here,
Pasp(t) = Tape et 3)

is the normalized probability density function (PDF) for
a transition from state |a@) to |b) with transition rate I'gp.
Therefore, for a two-level system with unity collection
efficiency, the waiting-time distribution is given by

oI’
ge_ 8 (Tegt

r

—I T
— g & ) (4}
ge eg

W(t) =

To derive an equivalent expression for g (7), we must
consider the probability of receiving any photon at time
t;, given that one was received at time #). For any model
with a single radiative transition, this is equivalent to
P.(t2|P¢(t1) = 1), the probability of being in the excited
state at time £, given that the system was in the ground
state at #1. Normalized by the steady-state population of the
excited state, P2°, this gives the autocorrelation function,

P.(t|Pg(t)) = 1)
P =t-t)= - ;001 ,

e

)

so that g (7) = 1 corresponds to uncorrelated light and
any deviations from 1 correspond to positive or negative
correlations.

The time-dependent probability of the occupation of
each state is determined by the transition rates. Therefore,
the probability of excited-state occupation can be found by
solving a system of coupled ordinary differential equations
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(ODEs), which for a two-level model is

dP,

— = ~TeePy () + T Pel), (6a)
dpP,
? = FgePg(t) - FegPe(t)- (6b}

Solving with the initial conditions of

Pe(0) =1 (7)

results in the expression for autocorrelation from a two-
level model,

g(z)(r) =1—= e—(reg-Frgch' (8}

C. Generalizing to models with n > 2 levels

In order to capture more complicated dynamics, models
with n > 2 levels are necessary. Experimentally observed
optical dynamics can often be the product of multiple
electronic levels involving additional radiative and nonra-
diative transitions.

One example of a multilevel model, a three-level model,
might include a two-level model with an additional nonra-
diative pathway from the excited state to a third metastable
state and then to the ground state. In the following, we con-
sider the general cases of multilevel models with a single
radiative transition and unity collection efficiency.

In the case of W(t), the addition of nonradiative decay
pathways requires accounting for all possible combina-
tions of nonradiative loops through electronic states that
can occur before the emission of a second photon after
delay 7. For a general system with n possible nonradiative
decay pathways from the excited state back to the ground
state,

W(T) = Pge(T) * Pesg(T)

00 n +k
fiey (Zh,m) o
k=1 i=1

Here, h;(t) is the PDF for evolution through each nonra-
diative decay loop, i, starting and ending in the ground state
with a total duration t, and

h(T)™ = h(z) * h(T) % - - -

n

*h(7). (10)

The prefactor of Eq. (9) represents the PDF of traveling
through the radiative loop one time, while the part enclosed
in parentheses represents all possible combinations of non-
radiative loops. With increasingly complex models, the
evaluation of W(t) quickly becomes intractable.

The generalization of g@(7) to multilevel models is
more straightforward. As in the case of the two-level

model, for any n-level electronic structure, the full dynam-
ics are given by a system of n coupled differential equa-
tions. This system of equations can be summarized by the
rate equation,

P =GP, (11)

where P is a vector of state-occupation probabilities and G
is the transition-rate matrix. Each off-diagonal element of
the rate matrix, G;;, where i # j, is the total transition rate
into state [f) from state |j}. Each diagonal element Gj; =
— 2 Gii is the total transition rate out of state 7 and thus
preserves probability. Examples of transition-rate matrices
can be found in Appendix E. The time-dependent popula-
tion of each state can be obtained by solving Eq. (11), with
the initial condition set immediately following emission of
a photon [Eq. (7) for systems with a single ground state
and Eq. (B4) for multiple ground states]. g? () can then
be calculated from Eq. (5), letting P, be the population of
the excited state from which the radiative transition occurs.
Additional derivations of the waiting-time distribution as a
function of collection efficiency and for multilevel models
can be found in Appendix A. Discussion of autocorrelation
for models with multiple radiative transitions can be found
in Appendix B.

D. Relationship between W(7) and g'¥ (1)

W(t) and g® (1) can be analytically related, as both sets
of correlations originate from the same physical process,
and the correlations contained in W(t) make up a subset
of all those included in g¥ (7). As a result, g?(7) can
be constructed from W(t) through an infinite sum of self-
convolutions [76]:

@ (1) = W(z) + W(x) % W(T) + - --

_ L{W}(s) _
=L ‘[ ] 12
LG (0, (12)

where £ is the Laplace transform and s is a complex
frequency parameter. This is due to the fact that the
probability of receiving two photons separated by time t
with m intermediate detection events is equivalent to m
convolutions of the probability of receiving consecutive
photons.

Equation (12) shows how W(r) can be thought of as a
first-order approximation of g® (t). This relationship has
led to the occasional practice of using W(t) and g(z)(r)
interchangeably in experiments. However, W(t) depends
dramatically on the apparent brightness of the signal (see
Appendix A), while g (7) does not. Therefore, the accu-
racy of this approximation is tied to the setup collection
efficiency, C, and «, the relation between the pump rate
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(I'ge) and radiative decay rate (I'zg),

_ o= Tl 03
FCeg + Tge
both of which impact apparent brightness.
Figure 2(b) illustrates the effect of C and & on the shape
of W(t) and its comparison to g () (solid black line)
for a two-level model. Each shaded region depicts a set of
W(t) curves at a particular C, as a function of a. Within
a shaded region, the shape of W(r) ranges from a solid
colored line, representing W(t) for a system in which the
pump rate is significantly higher or significantly lower than
the decay rate (@ — 1), to a dashed line, representing a
system in which the two rates are equal (¢ = 0). A lower
collection efficiency generally leads to a closer approxima-
tion of g (t). On the other hand, adjusting the excitation
power so that the pump rate approaches the emission rate
causes W(t) to diverge from g?(t). The difficulty in
determining the experimental quantities of C and o make it
challenging to assess the validity of approximating g® (t)
with W(t) in practical situations. Further, the dependence
of W(t) on these three independent variables makes it dif-
ficult to decouple collection efficiency from transition rates
when measuring an unknown system. For this reason, it is
almost always preferable to acquire g (t) for quantita-
tive analysis. Therefore, the remainder of this text focuses
on the use of g@ (7).

E. Single-photon emission

PECS is an ideal measurement to characterize single-
photon emission. An ideal SPE can only emit one photon at
a time and hence the probability of observing two photons
with zero delay and, correspondingly g®(0), must equal
zero. This fact is typically justified by quantum optics
arguments. For a photon-number state |n) with exactly n
photons,

ap—D) _@-1

(2) —
PO = =

(14)

Using this relationship, it is apparent that g? (0) = 0 for
n=1 and that g@(0) > 0.5 for n > 2. Hence, it has
become common practice to check whether the measured
g (0) of an emitter is less than 0.5.

However, the use of the so-called “0.5 criterion” is
questionable, since it does not accurately reflect the sit-
uation encountered in most experiments with quantum
emitters. As derived, Eq. (14) applies to photon-number
states, which only occur if photons are emitted by identi-
cal two-level emitters into the same spatial and temporal
modes [51]. In typical experiments, however, uncorre-
lated emission from »n independent nonidentical emitters

does not create photon-number states. Hence, the crite-
rion for establishing single-photon emission needs to be
reevaluated.

Generalizing Eq. (5), the autocorrelation function mea-
sured from n emitters is proportional to the sum of a
correlated probability that two photons are received from
the same emitter and an uncorrelated probability that two
photons are received from different emitters. In the case
where emitter i has brightness I, this gives

g(z) (t:n)

I;

_i ; @w@m=w+" I
a —1 ZLlIk

P DY S

As T approaches 0 (as £ approaches f;), the first term goes
to zero, giving the normalized expression for g (0) from
multiple emitters:

Dot 2wl _ QO I =Y I}

@(0;n) =
grm==5"% VAL

(16)

For n emitters with identical brightness, I; = IVj, this
derivation returns Eq. (14). However, Eq. (14) only holds
in the case of emitters with identical brightness. For exam-
ple, in the case where n=2, Eq. (16) reduces to

2L
D0;2) = ——.. 17
g7(0;2) WAL (17)
If I, > I} such that [, = I} + 8, we find
@ (0. 1
g?(0:2) = - (18)
20 (I +8)

The second term in the denominator is always positive and
hence g (0) < 0.5.

Quantum emitters are typically not identical. Even when
they are the same species, a variety of factors, including
proximity to surfaces and alignment of the excitation or
emission dipoles, can influence their observed brightness.
Hence, the g® (0) < 0.5 criterion is insufficient to identify
single-photon emitters. It can be erroneously satisfied even
when multiple emitters are present.

In contrast, a measurement of the ideal relationship
g?(0) =0 would confirm single-photon emission. In
order to apply this stricter criterion to experiments, it is
necessary to account for systematic and stochastic errors
that can lead to measurements of g(2J (0) > 0 even for a
SPE. Section IV shows how to account for these effects
in order to achieve values of g»(0) = 0 within quantified
uncertainties for a SPE.
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IV. EXPERIMENTAL CONSIDERATIONS

The experimental acquisition and analysis of photon-
emission statistics present a number of challenges that
must be considered in conjunction with the idealized
theory from the previous section. A proper experiment
involves processing significant amounts of data and one
must account for the timing resolution of detectors and
correct for systematic experimental artifacts. Here, we
discuss the experimental setup for the collection of photon-
emission statistics, highlight an efficient algorithm to aid in
calculating g® () from photon arrival times, and describe
how to correct for the dominant sources of experimental
error, i.e., background photons that did not come from the
emitter and detector timing jitter.

A. Acquisition

Photon-emission-statistics measurements of quantum
emitters are typically acquired using a confocal micro-
scope. In contrast to a wide-field microscope, a confocal
arrangement rejects background emission from regions of
the sample outside a diffraction-limited volume around
the emitter of interest and it directs the collected pho-
tons to a single detector channel that can be optimized
for detection efficiency and timing resolution. Most detec-
tors suffer from dead time, which is a period following
each photon-detection event during which the detector is
blind to subsequent photons. In order to measure dynamics
within the detector dead time, a beam splitter is introduced
in the emission path, directing the photon stream into two
different, but nearly identical, detectors [see Fig. 2(a)].
In this way, the autocorrelation function of the original
photon stream is directly related to the cross-correlation
function calculated across the two detectors, each corre-
sponding to a channel. While W(t) can be acquired by
measuring only relative times through start-stop collec-
tion, g® () requires time tagging of each photon-detection
event and subsequent calculation of the photon correlations
across the two channels.

B. Data processing

A brute-force calculation of the cross-correlation func-
tion for a large set of time-tagged data is extremely time
consuming even for modern computers. Fortunately, Lau-
rence ef al. have described a more efficient algorithm [77].
Rather than individually iterating through all photon pairs
between channels and binning the results into the photon-
correlation function, the algorithm of Laurence ef al. uses
the fact that the data are sorted in time bins to substan-
tially reduce the processing time. Their method also allows
for arbitrarily defined bins that are not equally sized. In
interpreting PECS data, it is often useful to utilize logarith-
mically varying time bins, in order to visualize and analyze
correlations occurring at widely varying time scales.

We incorporate the algorithm developed by Laurence
et al. into a library of MATLAB functions for calculating
and visualizing the autocorrelation function obtained from
raw PECS data. In addition to g (), the library functions
also calculate the time-averaged steady-state intensity over
the course of acquisition, which can be referenced to
control for experimental factors such as fluctuations in
emitter stability and setup drift. Blinking, in particular, is
a common problem for quantum emitters. Blinking emit-
ters stochastically switch between two or more brightness
levels due to changes in their electronic state or fluc-
tuations in their local environment. Our PECS analysis
code allows for the data to be thresholded according to
the time-averaged intensity, with the autocorrelation func-
tion calculated separately for different brightness levels.
This can enable detailed studies of optical dynamics even
for stochastically blinking emitters. Setup drift can typi-
cally be reduced by implementing a tracking scheme that
periodically adjusts the microscope alignment between
successive autocorrelation measurements.

Our implementation of the algorithm of Laurence ef al.
also returns the statistical uncertainty of a PECS measure-
ment. The algorithm iterates through photons in channel A,
calculating correlations with bins in channel B. The uncer-
tainty in PECS data is dominated by shot noise; hence, if
the number of photons recorded in a given bin is M, the
Poissonian uncertainty is +/M. To calculate g® (1), each
bin is normalized by its time-averaged expected number
of counts, I4IpTw, where I4 and Ip are the time-averaged
count rates in each channel, T is the total acquisition time,
and w is the bin width. Hence, the experimental uncertainty
in g@ (1) is

M

= LigwT

(19)

Equation (19) can be used to determine what acquisition
times are necessary to achieve a desired uncertainty in
g (1) given the intensity of an emitter. As an illustra-
tive example, for the emitter in Fig. 3(a) with I, =~ Iy ~
40 kcounts/s and w = 0.35 ns, the data are acquired for
600 s in order to achieve A = 0.05.

For additional detail about the processing algorithm and
a discussion of asymmetric errors, see Appendix C. A
PYTHON implementation of the algorithm of Laurence et
al. can be found in Ref. [78].

C. Correcting for background signals

Once the correlations have been processed, the next step
involves correcting the data for background. Background
photons can arise from dark counts of the detection sys-
tem, fluorescence of the host material, or other sources of
room light. These background signals result in an inflated
likelihood of observing uncorrelated light. As a result,
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FIG. 3. Background and timing-jitter correction to verify

single-photon emission in hexagonal boron nitride (h-BN). (a)
The raw photon-emission-statistics data from an emitter in 2-BN.
(b) The transverse intensity trace across the y cross section of the
PL scan in inset taken at the focus plane. The white scale bar
in the inset shows 1 pm. The signal (/) and background (/i)
are denoted by arrows and are extracted from the fit. (c) (lower
panel) The background-corrected data and fit (orange) and the
extracted g@ (1) after background and timing-jitter correction
(green). Convolution of the fully corrected data with the mea-
sured instrument response function (upper panel) gives the black
dotted line. (d) The value of g®(0) from the fit before correc-
tions (blue), after background correction only (orange) and after
background and timing-jitter correction (green). The uncertain-
ties in g@(0) are 68% confidence intervals propagated from the
corresponding best fits.

background signals compress the g® () function toward
1, decreasing the extent of deviation above or below 1 at
all delays.

The effect of a background signal with average intensity
Ipg on g@(7) for an emitter of intensity /.y, can be derived
following a similar logic to the derivation of Eq. (15). This
results in the background incorporated expression [29],

Zinens(D) = 1 = 07 + 8P ()07, (20)
where p = Iem/(lem + Ibg). As a result, correcting for
background only requires measuring p This can be
achieved in various ways, including measuring Iz at a
point outside the diffraction-limited volume around the
emitter, fitting the spatial profile of the emitter to obtain
Iy and I, or fitting excitation-power-dependent pho-
toluminescence intensity data using a known saturation

function for the emitter and a linearly scaling background
component.

Figure 3(a) shows an example of raw g@(r) data
acquired from an emitter in room-temperature hexagonal
boron nitride (A-BN) prior to any corrections. Figure 3(b)
illustrates the process of fitting an intensity line trace in
order to measure p so that background correction can be
performed. Transverse intensity line traces across the x and
y cross sections (data for the y cross section are shown) of
the two-dimensional photoluminescence (PL) scan of the
emitter at the focal plane (inset) are fitted using Gaussian
functions, with the peak amplitude and offset of the fits
giving the values for signal and background, respectively.
The background is then corrected by solving Eq. (20) for
g (7). In Fig. 3(c), the orange data points and the orange-
shaded fit show the resulting g® () data and fit following
background subtraction.

The emitter shown in Fig. 3 contributes 99% of the total
signal, so background photons have a minimal effect on
the shape of g () and the value of g?(0) [see Figs.
3(c) and 3(d)]. However, this is not always the case. In
many situations, background photons can be a dominant
source of systematic error. This can be partially mitigated
by adjusting the acquisition time to account for the effect
of background on error in g@(t), Apg ~ A/p? [79]. In
these cases, it can also be helpful to quantify the excitation
power dependence of the emission rate. Since the emitter
signal typically saturates with increased excitation power,
whereas background signals scale linearly, one can select
an excitation condition where the signal-to-background
ratio is maximized. Most emitters are characterized by sat-
uration functions that approximate the empirical form [80],

I
I(p) =22

+B )
psat +p p

21

where p is the excitation power, [y is the saturation inten-
sity, pPsat is the saturation power, and B is the prefactor for
the contribution from the background. Often, the acquisi-
tion of photon-emission statistics close to saturation power
balances the desire for high p and sufficient signal to min-
imize shot noise. In a two-level system, the saturation
power corresponds to the situation when the excitation rate
equals the emission rate: I';e = I'g.. However, one must
also consider the fact that the antibunching and bunching
time scales are generally a function of the excitation power,
as described in Sec. III.

D. Correcting for timing jitter

Detector timing jitter, also known as the instrument
response function (IRF), is the distribution of the electronic
response time of the detector system to signal an event after
photon arrival. Integrating the IRF over a time range gives
the probability of the detector registering a photon event
within that time window after the photon is received. The

010202-9



REBECCA E. K. FISHMAN et al.

PRX QUANTUM 4, 010202 (2023)

IRF of an ideal detector system is a delta function but for
a realistic experiment, the distribution will have a nonzero
width. While timing jitter can arise from any electronics
in the system that add arrival time uncertainty, the choice
of detector typically makes the largest contribution to the
IRF [81]. Commonly used single-photon avalanche diode
detectors typically have IRF widths ranging from 100 ps to
I ns.

The timing error manifests in the g® () trace as a con-
volution of the timing-error distribution with the actual
g (1) signal from the emitter, i.e.,

@ = IRFxg?.

gmeas

(22)

The convolution changes the measured value of g (0) and
the shape of g () at small delays comparable to the IRF
width.

Correction for the timing jitter requires measurement of
the IRF of the setup. The IRF can be obtained by collecting
the distribution of detection times from a highly attenuated
(approximately 0.1 photons per pulse), pulsed laser source
with a pulse width much less than the specified timing jit-
ter of the detectors. When using two detectors to measure
photon-emission statistics, the IRF of both detectors can be
acquired by measuring the autocorrelation from the pulsed
source. This measurement will give a convolution of the
timing distributions of the two detectors and the shape of
the pulsed source. However, when the optical pulse width
is much less than the IRF width, it can be neglected. While
some IRFs can be approximated as Gaussian, the shape
of the IRF can vary depending on the detector and the
functional form may not always be obvious [82].

Once the IRF of the setup is measured, the g¥ (1) data
can be compensated for its systematic effects. One method,
deconvolution, involves solving Eq. (22) for g (7). How-
ever, deconvolution amplifies noise and complicates prop-
agation of experimental uncertainty. Therefore, it is often
preferable to incorporate the measured IRF into a fitting
function to be compared directly with the measured g? (7)
data. This can be accomplished by including the numeri-
cal convolution of the measured IRF within the empirical
fit function for g (7). This method requires that the mea-
sured IRF and g® (1) be processed with the same, uniform,
time-bin width. The true time scales of the emitter and
uncertainties can be extracted from the resulting best fit.

Figure 3(c) illustrates an example of IRF correction.
The measured IRF data are shown in red (top) and are
binned with a 350-ps bin width, as are the measured g (7)
data (orange, bottom), here shown after background cor-
rection but before IRF correction. The green line displays
the IRF-corrected g‘® (t) empirical best fit. The black dot-
ted curve, which is a convolution of the green line and
IRF, aligns closely with the data and is used to determine
best-fit parameters and uncertainties using a least-squares

fitting method. Because the IRF and background correc-
tions both reduce the value of g®(0), it is possible to
extract a negative best-fit value. This is a consequence of
experimental uncertainties which, if quantified properly,
should be accounted for within the confidence interval of

£?(0).

E. Quantifying the effects of timing jitter

The extent of the effect of the IRF on the shape of g (7)
hinges on how its standard-deviation width, o, compares to
the internal time scales of the emitter. In the cases where
o 2 11, in which 7, denotes the shortest time scale to
emit subsequent photons (typically, the antibunching time
scale), the faster dynamics of the emitter can be obscured
by the timing jitter.

The combination of bunching and antibunching dynam-
ics on different time scales can further complicate the
effects of the detector IRF. Figure 4 illustrates an exam-
ple of the effect of a Gaussian IRF with width o on g@ ()
of an emitter represented by a three-level (two-time-scale)
model:

gP(@ =1— (1 + eV 4 g7/,

(23)

5 g%0
] |

1 25 4 -15 0 15
1'1:’0 T

FIG. 4. The effect of timing jitter on g (0). Left: the value
of g@(0) is calculated as a function of the ratio of 7;/0 and
7/o or B for a three-level system with time scales 7; and T,
and bunching amplitude B2 and a Gaussian IRF with standard
deviation o. Right: six points are selected from the parameter
combinations on the left to illustrate how g@(7) at low delays
changes for different ratios of 7; /o (bottom) and different values

of §; (top).
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with antibunching time scale 71, bunching time scale 12,
and bunching amplitude $;. The left-hand side of the figure
depicts the value of g (0) as a function of different param-
eters and the right-hand side depicts the effect on the
whole shape of g® (1) for select combinations. A dashed
line shows the threshold for measuring g® (0) = 0.5. The
upper two panels examine the effect for different bunching
amplitudes at a fixed ratio of 12/0 = 30. Hence in these
cases, the bunching time scale is much larger than the IRF
width. Nonetheless, the higher the bunching amplitude,
the greater effect the convolution of the IRF and g@ ()
have on the measured g(z)(r) at low times, an effect that
is amplified for low 71 /0. The lower two panels examine
the effect of the ratio 1 /0 for fixed fp = 1.5. As 11 = o
from above, the measured value of g(z)(O) increases and
the width of the antibunching dip at short delays decreases.
For systems with more than three levels, we would expect
similar effects, with the IRF impacting measurements of
g (0) and the shortest time scale, 7;, the most. These
effects exemplify how IRF correction can play a critical
role in extracting the actual value of g?(0) and confirm-
ing single-photon emission. An example of such a case is
illustrated by the ~2-BN emitter in Fig. 3(d).

V. ANALYSIS

The ability to analyze PECS data in order to infer the
internal dynamics of an emitter requires an understanding
of how stochastic evolution through radiative and nonra-
diative states in an electronic model leads to features in
g2 ().

The rate equation governing the population dynamics,
Eq. (11), is a first-order linear ODE, with general solutions
of the form

n—1
P(t) = Aoto + ) _ Ai€""3;. (24)

i=1

Here, the A; are the eigenvalue rates, the v; are the eigen-
vectors, and the A; are constants determined by the initial
condition. For an n-level system with a single excited state,
the excited-state probability is

n—1
Pe(t) = Ao(Bo - &) + ) Ai(¥; - &)e".
i=1

(25)

The probability-conserving condition of ¥; G;; = 0 means
that there will always be a zero eigenvalue, A, and a
null eigenvector, vy, corresponding to the solution of the
steady-state equation,

0 = GP. (26)
The nonzero eigenvalues A; can be real or complex,
depending on the properties of G. If complex eigenvalues

do appear, they occur in conjugate pairs due to the real
non-negative transition rates. In this way, the general solu-
tion remains real. In all cases, the real part of any nonzero
eigenvalues will be negative [83]. Therefore, from the
eigenvalues, we can define a set of time scales governing
different processes, 1; = —1/Re(A;), where 7; > 0. Given
an initial condition corresponding to the system configura-
tion following the detection of a photon, we can follow Eq.
(5) to obtain a general form of the autocorrelation func-
tion. Normalizing Eq. (25) to the steady state, with the
assumption of no background such that any detected pho-
ton projects the system into the ground state, this results in
the following general empirical formula:

n—1

gP@) =1+ pe ™/, (27)
i=1

where B; = 4;(V; - &)/P2° are constants, P3° = Ag(D - &) is
the steady-state excited-state population, and n is the num-
ber of states. Equation (27) defines a curve that starts at 0
for T = 0 and decays to g@ — las T — o0.

Antibunching arises when emission of consecutive pho-
tons is delayed as the excited state is repopulated, leading
to a decreased likelihood of photons separated by short
times. Empirically, it is captured by terms in Eq. (27) with
negative prefactors. In the case of a two-level model, anti-
bunching occurs on the time scale of 71 = 1/(I'ge + I'ee),
representing the time to evolve from the ground state to the
excited state and back to the ground state again. Bunch-
ing dynamics, on the other hand, arise from transitions to
nonradiative states, which delay the emission of a photon,
such as transitions between charge or spin manifolds. Such
processes can result in the excited-state population(s) of
the emitter evolving nonmonotonically toward the steady
state, leading to bunching in the autocorrelation trace. Note
that while bunching shows an increase in correlations rel-
ative to the steady state, it results from a decrease in
overall emission. When multiple nonradiative states with
different lifetimes participate in the dynamics, the auto-
correlation function features multiple resolvable bunching
time scales. In some situations, multiple radiative excited
states can lead to multiple antibunching terms and complex
eigenvalues associated with the antibunching dynamics
[84]. However, such situations are uncommon and multiple
antibunching rates are typically difficult to resolve experi-
mentally. Therefore, it is typically appropriate to assume
a single antibunching time scale, with a corresponding
empirical model,

n—1

g =1-pie/" + 3 g,

i=2

(28)

where all the B; are positive. Given PECS data from an
emitter with an unknown level structure and dynamics,
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the set of models for varied n can be fitted to the data
and a statistical comparison based on the Akaike infor-
mation criterion (AIC), the Poisson likelihood, or the chi-
squared statistic can determine the most appropriate model
to describe the data. A determination of # in this way places
a lower limit on the number of electronic levels involved in
the dynamics. Additional details on fit comparisons using
the AIC can be found in Appendix D. Additional discus-
sion of Poisson likelihood in counting experiments can be
found in Refs. [85,86]. Potential electronic models can be
further narrowed down by measuring g‘®(t) at different
powers and fields and comparing with simulations, as we
describe in the next subsection.

A. Simulating photon-emission statistics

Simulations of g‘® (1) provide a means of testing poten-
tial models that explain features observed in experimental
data. The time-dependent state populations of a given
model, consisting of n states with transition rates desig-
nated by the n x n matrix, G, are governed by the rate
equation, Eq. (11). In principle, the system of equations
can be solved analytically according to Eq. (24). In prac-
tice, the dynamics can be efficiently simulated using a
numerical ODE solver.

For a simulation of g (), the initial conditions are the
state of the system immediately following the detection of
a photon. In a model with a single radiative transition from
excited |e) to ground state |g), assuming that background
photons can be neglected (this is the case if the experi-
mental g® () have been background corrected), the initial
condition is simply P, (0) = 1, with all other state popula-
tions equal to zero at time £ = 0. The numerical solution
of Eq. (11) yields the time-dependent state populations,
P(f). The steady-state populations, P*, can also be found
by numerically solving Eq. (26). Once the time-dependent
and steady-state populations are found, quantities such as
the PL intensity,

I = GgePe, (29)
and g®(7) [Eq. (5)] can then be calculated. The simula-
tion can also be adapted to account for models involving
multiple radiative transitions. Details on the simulations in
such cases can be found in Appendix E.

This simulation tool can be linked with various physical
models to compare simulations across changing experi-
mental parameters such as excitation power and fields.
Power dependence can be modeled by running multiple
simulations at different excitation powers, in which any
changes to transition rates that are dependent on the excita-
tion power are incorporated into the transition-rate matrix
for each simulation. For example, a pumped transition
from a ground to an excited state might have a linear
dependence on a power parameter and can be defined to

be adjusted accordingly as the power changes. In a similar
manner, the electric or magnetic field dependence of pho-
ton statistics can be simulated by defining transitions that
are a function of a field parameter. For example, spin-
dependent transition rates could change as a function of
external magnetic field due to the spin Hamiltonian of the
system.

Figure 5 shows examples of simulated autocorrelation
traces for four different models with varying excitation

31 (a) T (b) T\ 1
- i> i
8 1

0

[ () Eé (d) EX?

10° 102 10* 10° 102 10*
T(ns) T (ns)

FIG. 5. Simulated g® traces for four different physical mod-
els. The effects of increasing (red) or decreasing (yellow) the
excitation power and a lower (light blue) or higher (dark blue)
angle of the magnetic field on g”(7) vary depending on the
model. (a) The three-level model with a pumped transition (solid
red arrow) to the excited state and fixed nonradiative transition
rates (dashed arrows) to a metastable state. (b) The three-level
model with power-dependent transitions (solid red arrows) to and
from a metastable state. (c) The five-level model with a pumped
transition to the singlet excited state and spin-dependent tran-
sitions (blue arrow) to and from a metastable spin triplet. (d)
The nine-level model of a NV center with both spin-dependent
and power-dependent transitions. Radiative transitions are shown
as wiggly arrows. The insets in (c) and (d) show the effects
of changing power (top inset) and magnetic field angle (bot-
tom inset) separately for each model. The yellow, black, and red
curves in (a){c) depict excitation pump rates, respectively, half,
equal to, and double the radiative decay rate of each model. The
magnetic field parameters are chosen in order to qualitatively
represent different degrees of spin mixing, with black, light blue,
and dark blue curves corresponding to zero, medium, and high-
spin mixing, respectively. The black curves are identical between
the top and bottom insets, and the parameters are chosen such that
the black curves for each model are qualitatively the same across
(a)(c) and approximate the amplitude and peak position of (d).
More detail on the simulation parameters can be found in Table 1.
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powers and magnetic fields. The transition rates for each
model are chosen so that the black curves in Figs. 5(a)-5(c)
are qualitatively the same as each other and similar to
the black curve in the more complex model of Fig. 5(d).
However, the simulated g@ curves for the models in
Figs. 5(a)-5(c) vary in qualitatively distinct ways as a
function of the excitation power and the magnetic field.
Thus, in comparison with experimental PECS data, these
simulations can be varied to help narrow down potential
models.

Figure 5(a) depicts a basic three-level system, the sim-
plest model that can host both antibunching and bunching
dynamics. The single radiative transition is denoted by the
wiggly arrow. A single power-dependent transition, desig-
nated by the solid red arrow, is varied in order to simulate
g® (1) for high (red), medium (black), and low (yellow)
excitation powers.

Figure 5(b) shows a three-level model similar to that
in Fig. 5(a), but in this case the transitions to and from
the metastable third state also depend on the excitation
power. This will be the case, for example, if the metastable
state represents a different charge configuration than the
ground and radiative excited state, which can be accessed
through optically pumped ionization and recombination
transitions. Varying the excitation power differentiates
between the models in Figs. 5(a) and 5(b), as the bunch-
ing time scale 7, changes dramatically as a function of
the power in Fig. 5(b), in comparison to Fig. 5(a), where
the dominant power-dependent change is the bunching
amplitude. Experimental observations of ¥ (t) as a func-
tion of the excitation power can be compared with such
models to determine the nature of the nonradiative transi-
tions and extract their scaling with the optical excitation
power.

In Fig. 5(c), spin-dependent transitions are introduced
to the model, represented by the blue arrow. Here, varying
a magnetic field angle that mixes the spin eigenstates of
the metastable state can differentiate between the models
in Figs. 5(a) and 5(c), the traces of which exhibit similar
power-dependent behavior. The magnetic-field-dependent
bunching dynamics (shown in blue) arise from the spin-
dependent transitions in Fig. 5(c). These spin-dependent
transitions can sometimes be exploited to optically initial-
ize and measure the spin state. Hence, PECS measure-
ments showing a variation in response to external magnetic
fields can indicate the presence of optically addressable
spin states.

As more is known about a system and its dynamics,
PECS simulations can be extended to quite complex sit-
uations. Figure 5(d) depicts a nine-level simulation of
a NV center, including both optically driven ionization
and recombination transitions as well as magnetic-field-
dependent spin transitions. A table of simulation param-
eters and additional details can be found in Appendix E.

VL. PECS IN PRACTICE

The methods outlined thus far for measurement, analy-
sis, and simulation of g () can be employed systemati-
cally alongside other tools to identify potential electronic
models for unknown emitters. Figure 6 illustrates several
experimental and theoretical techniques that can be used in
conjunction to deduce the electronic structure and optical
dynamics of a quantum emitter.

Often, the first step is to characterize the basic opti-
cal properties of an emitter. Typical measurements include
PL emission spectra, autocorrelation to check for single-
photon emission, and the PL intensity as a function of the
excitation power to characterize saturation. These prelimi-
nary measurements can provide information about radia-
tive transitions such as the number of transitions, their
lifetimes, and the strength of vibronic coupling, but they
give little insight into nonradiative transitions.

Measurement of the polarization dependence of the PL
intensity can give further clarity on radiative transitions
by revealing their symmetry. For polarization-absorption
measurements, the excitation polarization angle is varied
and the collected PL intensity is recorded as a func-
tion of the excitation polarization angle. For polarization-
emission measurements, the sample is excited at a fixed
polarization and a filter in the collection path is varied to
filter the PL emission according to the polarization angle.
These polarization measurements help clarify the number
of dipole transitions and their orientations [88,89]. Struc-
tured light beams with radial or azimuthal polarization can
also reveal dipole orientation [90]. Knowledge of dipole
orientation with respect to the crystal axes can help sin-
gle out potential point groups and can be a key piece of
information when considering chemical models in cases
where the defect chemistry is unknown [91]. Additional
information about higher-lying excited states can be gained
through polarization measurements at various excitation
wavelengths in relation to the zero-phonon line [84,92,93].

The lower-left quadrant of Fig. 6 depicts examples of
these basic spectroscopic techniques applied to an emitter
in A-BN from Patel ef al. [84]. In that work, the authors
observed a single zero-phonon line and a phonon side-
band consistent with a vibronic transition through a single
optical dipole. This observation was further supported by
the emission polarization measurement (black squares),
which showed high polarization visibility. However, the
measured PL intensity as a function of the excitation polar-
ization (green circles) was not aligned with the emission
and the visibility was reduced. Hence, the optical excita-
tion and emission did not occur through the same optical
dipole transition. This measurement implies the presence
of previously hidden excited states in the excitation path-
way.

Initial characterization can also include measurements
tailored toward specific properties of interest. For example,
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FIG. 6. A nonexhaustive chart of the tools to study quantum emitters. A variety of techniques, both experimental and theoretical,
can give information about the electronic structure and optical dynamics of a quantum emitter. Tools that help clarify electronic
structure include experimental techniques, such as PL spectroscopy and polarization-dependent PL, and theoretical techniques of
molecular-orbital theory and ab initio energy calculations. Tools that help uncover optical dynamics include theoretical techniques
such as PECS simulations and ab initio transition-rate calculations, which should be supplemented with experimental techniques such
as field-dependent emission and PECS measurements. The images in the lower-left quadrant depict A-BN data adapted from Patel et
al. [84]. The images in the lower-right quadrant depict #-BN data adapted from Exarhos et al. [87].

measurements that help identify optical spin signatures,
such as magnetic-field-dependent PL, can single out emit-
ters with optically addressable spin states. Any features of
interest that are identified in initial characterization steps
can be expanded upon through additional study, including
acquisition and analysis of photon-emission statistics as a
function of external fields.

Theoretical tools such as molecular-orbital theory and
ab initio calculations can be applied together with exper-
imental techniques to construct a baseline model for the
electronic structure of the emitter. The crystal structure
of the host material and its point groups constrain the
types of level structures that can exist within the mate-
rial. The symmetries of the crystal lattice, supplemented
with information about the optical dipoles and from ana-
lyzed photon-emission statistics, can help narrow down
the model parameters, including the number of electronic
levels, the number of spin or charge manifolds, and the
characteristics of transitions. Density-functional theory
can point to likely defect chemistries through quantitative
estimates of formation energies, which can be com-
pared with experimental spectroscopic measurements of
the emitter to predict the likelihood of different defect
candidates.

PECS measurements and simulations can be key to
evaluating hypothesized models. Measurement of g ()

at different optical excitation powers and applied mag-
netic fields and quantification of how the time scales and
bunching amplitudes change accordingly help unveil dis-
tinct dynamical processes. For example, Neu ef al. have
measured photon-emission statistics at different excitation
powers to help develop an electronic model for silicon-
vacancy centers in diamond [94]. Their observation of a
bunching time scale with a nonlinear power dependence
has led them to suggest an excitation-power-dependent
deshelving process involving an additional excited state.
As another example, Patel ef al. have proposed an indi-
rect excitation mechanism to account for a nonlinear power
dependence of the antibunching rate observed for sev-
eral A-BN emitters [84]. Using PECS simulations, Patel
et al. have also clarified the effect of additional optically
pumped transitions on the bunching rates and amplitudes.
These simulations have allowed the authors to distin-
guish between emitters with metastable states accessed
through optically pumped or spontaneous transitions. In
general, power-dependent PECS measurements can reveal
the presence of nonradiative states and their associated
lifetimes.

Meanwhile, PECS measurements as a function of
externally applied magnetic fields can reveal the ener-
getics and dynamics of spin states. As an illustra-
tive example, the lower-right panel of Fig. 6 shows
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magnetic-field-dependent PL and PECS data from an A-BN
emitter observed by Exarhos ef al. [87]. In this case,
the steady-state PL variations in response to applied dc
magnetic fields suggested the presence of spin states and
spin-dependent optical transitions. Field-dependent PECS
measurements revealed that the decreases in PL were cor-
related with increases in bunching amplitude but with
no change in bunching time scale. Molecular-orbital the-
ory has also provided some insight into the electronic
structure of the emitter. Using selection rules from the
symmetry group of the defect, the authors have narrowed
down the possible models to two options, which they
were able to distinguish between through PECS simu-
lation of both models. As a result, Exarhos et al. have
shown that the magnetic field dependence of autocorrela-
tion bunching amplitudes and time scales is consistent with
a spin-dependent intersystem crossing. Simulated PECS
data can be empirically fitted using Eq. (28) to quantita-
tively compare time scales and bunching amplitudes with
those observed in experimental data. In addition, the mea-
sured PL data can be compared with simulations as a
function of the optical power or the applied field. Dynami-
cal information gained through PECS measurements and
simulation can be further supplemented through ab ini-
tio calculations, which can give quantitative estimates of
vibronic coupling strengths, electron capture rates, ion-
ization cross sections, and nonradiative transition rates
[95,96].

The process of studying a quantum emitter using the
tools in Fig. 6 should be iterated until there is enough
experimental information to support a particular proposed
model and simulations can reproduce phenomena that are
similar to those observed. The result may still be an
approximation of the true underlying model. However,
in revealing key properties of the emitter, the outcome
of the combined experimental and theoretical approaches
can provide enough of a foundation to begin to realize
applications.

The formulation of a structural and dynamical model
of a quantum emitter is crucial to harnessing properties
for quantum technologies. A deeper understanding of a
system allows its strengths to be connected with partic-
ular applications. For example, emitters hosting excited
states with short optical lifetimes may be useful as sin-
gle photon sources or in applications that require a
high signal-to-noise ratio, such as quantum communi-
cation. Conversely, long-lived electronic spin states can
serve as quantum memories for applications that require
the storage of quantum states such as quantum regis-
ters for quantum repeaters. Magnetic-field-sensitive tran-
sitions can be utilized for quantum sensing. With a more
complete idea of the properties and optical dynamics
of the emitter, it becomes possible to evaluate how its
strengths and weaknesses compare to those of existing
platforms.

VII. CONCLUSIONS

PECS is an easy-to-implement experimental technique,
but it remains under-utilized. In this tutorial, we discuss the
theoretical foundation and application of PECS for quan-
tum emitters, highlighting the potential of PECS to reveal
optical dynamics when supplemented with other spectro-
scopic techniques. While standard optical-characterization
techniques provide information about radiative transitions,
the nonradiative transitions, which PECS is particularly
suited to resolve, are often those the properties of which
are leveraged for various quantum technologies.

With proper attention to acquisition, analysis, and inter-
pretation, PECS can provide detailed information about
the electronic structure and dynamics of a quantum emit-
ter that allows for the design of efficient quantum control
protocols. Here, we discuss a number of tools for the com-
munity to use for acquisition, analysis, simulation, and
interpretation of PECS. Expanding the set of available
quantum emitters and host materials, each with specific
advantages, will lead to continuous advances in science
and technology.
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APPENDIX A: WAITING-TIME ADDITIONAL
DERIVATIONS

This appendix contains additional derivations of W(t).
The first deals with the effect of imperfect collection effi-
ciency on W(t) and the second discusses an example of
deriving W(t) for models with n > 2 levels. In particular,
we explore the cases of a two-level system with imper-
fect collection efficiency and a three-level system with one
nonradiative transition and perfect collection efficiency.

1. Collection-efficiency dependence

The derivation of the waiting-time distribution in Eqgs.
2—4 assumes the condition of perfect collection efficiency.
However, in a realistic experiment, the setup collec-
tion efficiency, C, significantly impacts the probability of
receiving consecutive photons. Thus, a derivation of W(t)
that accurately captures experimental realities must incor-
porate C. For simplicity, we show the derivation for a
two-level system.

As with perfect collection efficiency, we consider the
probability that the system starts in the ground state,
evolves to the excited state, then decays back to the ground
state after delay 7, emitting a photon. However, in this
case the system can evolve through any number of cycles
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between excited and ground before the detection of a sub-
sequent photon. Additional multiplicative factors, C and
1 — C, account for the respective probabilities that the
subsequent photon is detected or is not detected once
it is emitted and we integrate and sum over all possi-
ble combinations of losing n photons before detecting
the next photon. This is equivalent to the infinite sum of
convolutions,

C
W(t) = m((l - C)que(t) * Pe—>g(t)

+ (1 = C)* Py (1) % Poy g (1) % Py, o () % P (0)

+o)

where P,_.5(#) is given by Eq. (3).

Equation (A1) can be evaluated in Laplace space follow-
ing the general relation for an infinite sum of convolutions
of the same function, A(f),

(A1)

L{h}(s)

_ =1
h(t) + h(t) xh(H) + -+ - = L [—1 — e

] ®, (A2)

where £ is the Laplace transform and s is a complex
frequency parameter.
Therefore, defining A(f) as

h(t) = (1 = O Pgose(® % Pesg (), (A3)

the probability that the system evolves but a photon is not
received yields the collection-efficiency-dependent expres-
sion for W(t) for a two-level system:

2CT 1T

e[(—rcg+rge)f2]r
\/_4cregrge + (reg + rge)z

W(r) =

1
sinh E\/ —ACT Ty + (T + Tt (Ad)

This relation between C and W(t) for a two-level model is
illustrated in Fig. 2.

2. Systems with n > 2 levels

Compared to g® (1), which is more straightforward to
generalize from a two-level to a multilevel model, W(t)
requires a unique derivation for each specific electronic
model and can be difficult to evaluate. Here, we con-
sider the most basic example of a three-level model with
both a radiative and nonradiative pathway to the ground
state and perfect collection efficiency. As with the deriva-
tion for imperfect collection efficiency, there is a need
to account for all cases where the system evolves to the
ground state but a photon is not detected. In this case, a
delay in receiving a subsequent photon stems from the non-
radiative transition through a third metastable state to the

ground state. The system can evolve through any number
of nonradiative cycles prior to the emission of a subsequent
photon.

Starting with Eq. (9), we define the PDF of a full non-
radiative cycle, from the ground state to the excited state,
then to the metastable state, and back to the ground state,
as

h(t) = Pg—)&(t) *Pe—m!(t) * Pm—»g(t)s (AS)
where the subscript m indicates the metastable third state.
The waiting-time distribution for a three-level model is
then given by

W(t) = Py_se(t) * Pes o ()(1 + h(D) + k(D) % h(H) + - - -),
(A6)

which can be evaluated using Eq. (A2). Additional model
complexity, such as other nonradiative decay pathways
or imperfect collection efficiency, further complicates the
derivation of W(r). However, such features are common
in realistic models. As a result, autocorrelation presents a
more tractable tool for measuring the optical dynamics of
realistic models.

APPENDIX B: AUTOCORRELATION FROM
MULTIPLE RADIATIVE TRANSITIONS

In the main text, we simplify the discussion by limit-
ing it to models with a single radiative transition. While
this suffices in many situations, it also is common for sys-
tems to have multiple radiative transitions, whether they
be due to different spin states or charge manifolds or some
other mechanism. In all cases, the transition-rate matrix,
G, still determines the state evolution according to the
rate equation, Eq. 11. However, the initial condition, Py,
which is the state immediately following photon emission,
is dependent on which transitions are radiative. Similarly,
optical dynamics such as intensity are also affected, which
in turn impacts the autocorrelation function.

In order to account for the effect of multiple radia-
tive transitions on g®(t), we introduce the transition
collection-efficiency matrix, C. C is made up of individ-
ual elements, Cj;, that give the probability of detecting
a photon from each transition from state j to state i. Cy;
can take on values from 0 to 1, with fractional values
accounting for different collection efficiencies for different
transitions, which might arise from polarization-selection
rules or different emission wavelengths.

With the collection-efficiency matrix defined, PL can
be calculated. The steady-state rate at which photons are
detected from a transition j to i (/;; ) depends on the steady-
state population of state j (P;°), the transition rate from the
state j to state i (Gj;), and the probability of collecting a
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photon from that transition (Cy; ):

The total steady-state photoluminescence (Ipz), which is
the average rate at which photons are detected from any
transition, is given by summing over the photon-detection
rates from all transitions:

Ip=)_Iy.
i

(B2)

Therefore, the probability of detecting a photon from a
specific transition from j to i (Pf,o{]_”)) is given by the
fractional contribution of that transition to the total PL:

Iy GyGyPP

= B3)
Iy, ~ Z}C;GyP¥ (

00 —i) __
P, =

As a result, the distribution of states following the detec-
tion of the photon is a column vector, Py, with components
given by the probability of detecting a photon from any
transition into state i:

D S - e M)
0— - S poo”
" "~ T5CyGy P

As discussed in the main text, the autocorrelation func-
tion is proportional to the probability of receiving any
photon at time f;, given that one was received at time #,.
Therefore, writing g () for multiple radiative transitions
requires accounting for the time-dependent populations of
all radiative states and the transition rates and collection
efficiency of the transitions out of those states. With the
initial state given by Eq. (B4) and properly normalized to
the steady state, this gives the equation for autocorrelation
from multiple radiative transitions:

EIELCy Gy Py (]| P(t) = Po)

D7 = =
gl =h—-1)= = %
L jgéicif Gjj J

(B3S)

In the case of a single radiative transition, this reduces to
Eq. (5). Autocorrelation data from emitters with multiple
radiative transitions can still be captured by the empiri-
cal fit, Eq. (27), with the possibility that multiple radiative
transitions could lead to multiple antibunching time scales.

APPENDIX C: ALGORITHM FOR PROCESSING
PHOTON CORRELATIONS

The time-tagged data acquired by two detectors and a
time-correlated single-photon counter (TCSPC) consists
of two separate time series detailing the arrival times

of all photons detected by each detector during acquisi-
tion. The photon-statistics processing code and an exam-
ple can be found in Ref. [97]. The processing algorithm
TTTR_cross_correlation(parsedData,opti-
ons) based on Laurence et al. [77], uses the input of two
time series along with various processing parameters to
calculate the normalized correlations and their uncertain-
ties. The algorithm uses binary search functions defined
within it to bin and count correlations, thus avoiding the
need to iterate through all individual events and signif-
icantly reducing the processing time. Additional features
include processing of average count rates to track stability
during measurement and an option for partitions to process
correlations between different blinking states separately.

1. Preparing the data

Certain TCSPCs store photon time series in particu-
lar file formats, which must be parsed before running the
processing algorithm. The function TTTR_import_PTU
(filenames) takes time series stored in a .PTU file
format and stores the data and metadata as a MATLAB
structure, TTTRData, which is then fed to the function
TTTR_extract_channel_ times (TTTRData, op-
tions) to convert the .PTU data into a MATLAB array
of times. These are output into the PARSEDDATA structure
containing the times and total number of counts for each
channel, global resolution, and total acquisition time.

2. Defining processing parameters

The OPTIONS structure allows the user to define pro-
cessing parameters. These set the range (tauLimits)
and resolution (tauRes) over which the correlations will
be calculated. The resolution should be chosen such that
it is smaller than the fastest time scale desired for mea-
surement. Since decreasing the resolution also increases
the uncertainties, which are Poissonian and depend on the
number of counts per bin, scans that require finer resolution
may require greater acquisition time. The choice of resolu-
tion and limits also affects the processing time, so a balance
must be struck between the resolution, the magnitude of
uncertainties, and the processing time.

Other parameters in the options structure include tRes
to specify the resolution for count-rate calculations,
tauAxis to choose a specific axis over which cross cor-
relation will be calculated, countRateRanges to parti-
tion blinking data based on intensity, tFlag to partition
the time axis for count-rate calculations, and verbose
and statusbar to enable command-window and pop-up
updates.

3. Algorithm detail

The algorithm first constructs two time axes, tauAxis
and tAxis, defining the bins over which the correlations
and average counts rates will be calculated, respectively.
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The delay time axis, tauAxis, is constructed from the
processing parameters defined in the options structure.
tAxis is constructed based on the total acquisition time
and resolution, tRes. The count rates in each channel are
calculated by counting the number of events in each bin
that tAxis defines and dividing by the bin width. The
overall count rate for each channel, avgRate, is calcu-
lated from the total counts and total measurement time of
the channel in order to compute the normalization factor
for g@(t) (see Sec. IV B).

To process the cross correlations between the two chan-
nels, the algorithm iterates through each time-tagged pho-
ton event in the channel with fewer events, referred to
as channel 1. With each iteration, the zero-delay refer-
ence point for the bins defined by tauAxis is updated
according to the time of the current photon event, fy. Then,
events in channel 2 are binned according to tauAxis,
with T = 0 corresponding to fp, and the numbers of pho-
tons that fall within each bin in channel 2 are counted as
the correlations.

4. Outputs

The processing algorithm outputs a structure, T2data,
that contains the axis of delay times, raw correlated data,
normalized gm(r), and errors. If count rates are calcu-
lated, the output structure will also include the time axis
for count rates, the average count rates over the acquisi-
tion time, and flags for partitioning the time axis. Figure 7
contains examples of processing-code outputs along with a
demonstration of several features of the code, including log
and linear binning options, the calculation of count rates,
and separate processing of different blinking states.

5. Additional complexity

The algorithm offers options of both log and linear pro-
cessing of the correlations, with examples of the resulting
outputs shown in Fig. 7(a) and inset, respectively. Linear
binning allows for resolution of features at low times and
log binning allows for resolution of time scales at both
short and long times. Log binning is achieved by pre-
defining bins with logarithmic spacing prior to calculating
correlations.

The processing algorithm also contains functionality
for processing different blinking states of an emitter to
extract state-specific optical dynamics. Time partitions can
either be predefined with flags using tFlag in the options
structure or can be calculated based on intensity thresh-
olds specified by countRateRanges in the options
structure. In the latter case, the specified threshold for
the partitions is applied to the time-dependent intensity
data as demonstrated in Fig. 7(b), where a threshold of
32 kcounts/s separates a bright state at approximately 40
kcounts/s from a dark state at approximately 3 kcounts/s.
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FIG. 7. The output of time-tagged time-resolved data pro-
cessed for photon correlations, shown for an example case of
an emitter in #-BN with blinking. (a) The raw photon-emission-
statistics data from an emitter in #-BN processed with logarith-
mic bins. The inset shows the same data processed on a linear
scale. The dashed line denotes T = 10 ns. (b) The intensity versus
time data binned at 0.01 s, displaying partitioning at 32 kcounts/s
between an on (orange) blinking state and an off (blue) blink-
ing state. (c) The photon-emission-statistics data from the same
photon time series as (a) processed on a logarithmic scale based
on intensity thresholding in (b). Bunching dynamics are mainly
present in the photon-emission statistics of the dark state (blue),
whereas the data processed for the bright state (orange) adheres
more closely to a two-level model. (d) The photon-emission-
statistics data processed on a linear scale based on the intensity
thresholding in (b).

The correlations for each state can then be calculated sep-
arately, resulting in two different autocorrelation traces
shown in Fig. 7(c) on a logarithmic scale and Fig. 7(d) on
a linear scale.

In the processing algorithm, upper and lower errors
(A%) are calculated for each bin according to the Poisson
error with asymmetric errors,

M+3+5

A* =
[AIBWT

(Ch

for bins with close to zero counts, at which point the
Poisson error [Eq. (19)] gives inaccurate results [98],
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APPENDIX D: AKAIKE INFORMATION
CRITERION

When analyzing experimental data for newer or
unknown emitters, the electronic level structure and
dynamics of the emitter are often unknown. As a result,
a fitting routine often must be implemented to determine
which empirical model best fits the data and its features.
The AIC can be used as a measure of relative quality to
identify a model that, in a comparative sense, captures the
dynamics best. In order to implement it, the data are fit-
ted to several models of Eq. (27), varying n, the number
of electronic levels. For a model with f* fit parameters, the
AIC is given by

AIC =2f —2In(L). (D1)
For a nonlinear fit with normally distributed errors, the log-
likelihood function is given by,

In(L) = 0.5 (—N (111(2;:) +1—In(V)n (Z‘ xf))) ,
i=1

(D2)

where N is the total number of data points and x? are the
residuals.

In order to compare models, the AIC for each model is
calculated and compared. The model with the lowest AIC
represents the model most likely to be correct, while the
relative likelihood for the other models can be calculated

as
AICpin — AIC;
exp (—) . (D3)

2

The AIC can be supplemented with other measures of fit
such as reduced chi-squared to empirically determine the
best choice of n.

APPENDIX E: OPTICAL-DYNAMICS
SIMULATION

The optical-dynamics simulation simulate_auto-
correlation(ModelPars, SimPars, Opts), takes
the input of an electronic model defined by states, the
transition rates between them, and the photon-collection
efficiencies of the transitions and returns the populations of
each state given an initial condition. Optical dynamics such
as the photon statistics and photoluminescence are also cal-
culated. The simulation is executed through the MATLAB
ODE solver, ODE15S. The simulation code and an example
can be found in Ref. [98].

1. Defining the model

The electronic model is defined through three inputs:
the number of levels (nLevels), the transition rates

between levels (G), and the collection-efficiency matrix
(C), all of which are passed to the function through
the ModelPars or SimPars structure. The transition-
rate matrix, G, defines the transition rates between levels
for a single experimental condition at a fixed excitation
power and a fixed magnetic field. G takes the form of
an nLevels by nLevels matrix with off-diagonal ele-
ments Gj; giving the transition rates from state |/) to state
|i) and diagonal elements Gj; giving the negative sum of
all rates leaving state [i). The columns of G all sum to
0. The collection-efficiency matrix, C, is an nLevels by
nLevels matrix with elements 0 < C; < 1 denoting the
fractional probability of collecting photons from the tran-
sition from state |j) to state |i). A nonradiative transition
would be denoted by C;; = 0, while a radiative transition
would have C;; = €, where € is the collection efficiency
from that transition.

2. Simulation detail

The steady-state populations are calculated from G
using the MATLAB NULL() function and normalized such
that the sum of all steady-state populations is 1. PL is
calculated from the steady-state populations and the C
matrix [see Eq. (29)]. The eigenrates of G are calcu-
lated through the MATLAB function EIG() and ordered and
identified as real or imaginary rates. The minimum and
maximum eigenrates are used to determine a range of the
time values (f) to input to the ODE solver. The initial con-
ditions are set according to Eq. (B4). The ODE solver,
ODEI15S, is run using the inputs of the rate equation, the
transition-rate matrix, and the initial conditions. A com-
parison between the steady-state populations calculated
through the null vector and through the ODE solver can
be used as an estimate of simulation error, per.

3. Simulation outputs

The steady-state populations, steady-state PL, eigenval-
ues of G, time-dependent populations of states, and vectors
of g? and ¢ are all returned in the SIMPARS structure.

4. Additional complexity

Multiple simulations can be executed by feeding mul-
tiple pairs of G and C matrices defining different models
or model conditions to the SimPars structure. The num-
ber of elements in SimPars determines the number of
simulations that will be run. Transition rates dependent on
physical interactions with fields such as spin or charge phe-
nomena can be defined prior to execution of the simulation
such that the model incorporates additional phenomena.
The transition rates between states can be defined as spin
states that are dependent on an applied magnetic field, B.
This takes the form of defining the spin-field interaction
through the Hamiltonian and calculating how an applied
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TABLE 1. The simulation parameters for Fig. 5.
Three-level model Three-level model
(spontaneous (pumped
Parameter transitions) transitions) Five-level model Nitrogen-vacancy model
kex (MHz) [25,50,100] [25,50,100] [25,50,100] [13.125,26.25,52.5]
k. (MHz) 50 50 50 75
kisco (MHz) 5 Skex 4.9995 5
kisco.out (MHz) 25 2.5kex 25 3.11
kisex (MHz) - e 2.5x 10~ 60
kisc,out+ (MHz) 0.025 2.75
kion,/krec e 3kex ,‘“2-25kex
B amplitude (G) 46 300
B angle (degrees) [0,30,60] [0,15,50]

field leads to a change of basis, represented by a change in
transition rates from spin-dependent states.

5. Simulation detail for Fig. 5

The curves in Fig. 5 are simulated using the method
described above. The simulation parameters used to gener-
ate Fig. 5 can be found in Table 1. Here, the excitation rate
is given by ke, the emission rate is given by k., and the
rates to and from the intersystem-crossing (isc) metastable
state are kisco and Kiscoout, respectively. For models with
spin states in the metastable state, such as the five-level
model and the NV model, kiseo (kisco,0ut) Specifies the zero-
B-field transition rate to (from) the ms = 0 spin-triplet
sublevel, while Kisc+ (Kiscourx) specifies the zero-B-field
transition rate to (from) the ms = %1 spin sublevels. kion
and kg are the ionization and recombination rates to and
from NV® and NV~. The B-field angle is given with
respect to the defect axis. Power-dependent transitions
are shown as a multiple of k.. For models with spin-
dependence (five-level and NV), the Hamiltonian specified
is for the case of a spin-1 triplet configuration with a single
symmetry axis and takes the form

1
H :g,ugB-S+D(S§ — 3S(S+ 1)), (El)

where g is the isotropic g factor, up is the Bohr mag-
neton, B is the magnetic field vector, D is the zero-field
splitting, and S and S; are spin-1 operators. For the five-
level model simulation, we assume D = 1000 MHz for the
spin-triplet metastable state. For the NV center, the val-
ues used are ggs = 2.01, ggs = 2.0028, Dgs = 1425 MHz,
and Dgs = 2859 MHz, where “ES” and “GS” refer to the
excited and ground state, respectively. When a magnetic
field is applied to a model with spin states, the interac-
tion between the spin states and the field, as defined by the
Hamiltonian, results in spin mixing. In the NV model, the
inner product of the excited-state and ground-state eigen-
vectors adjusts the baseline excitation (kex) and emission
(k) rates to give the distribution of excitation and emission

rates between the ground and excited spin states. Similarly,
for both the NV and the five-level model, other spin-
dependent transition rates such as the intersystem-crossing
rates (kisc) specified in Table I are adjusted according to the
new calculated spin projections in a magnetic field.

The transition-rate matrices for each black curve in Figs.
5(a)-5(c) are, respectively, as follows:

[[—50 50 257
50 =55 0 |, (E2a)
0 5 =25
[[—50 50 257
50 =55 0 |, (E2b)
0 5 =25
—50 50 25 0025  0.025
50 -55 0 0 0
0 49995 -—25 0 0 (E2c)
0 0.00025 0 —0.025 0
0 0.00025 0 0 —0.025

[1] I. Aharonovich, D. Englund, and M. Toth, Solid-state
single-photon emitters, Nat. Photon. 10, 631 (2016).

[2] M. Atatiire, D. Englund, N. Vamivakas, S. Y. Lee, and
J. Wrachtrup, Material platforms for spin-based photonic
quantum technologies, Nat. Rev. Mater. 3, 38 (2018).

[3] L. C. Bassett, A. Alkauskas, A. L. Exarhos, and K. M.
C. Fu, Quantum defects by design, Nanophotonics 8, 1867
(2019).

[4] S. Hepp, M. Jetter, S. L. Portalupi, and P. Michler, Semi-
conductor quantum dots for integrated quantum photonics,
Adv. Quantum Technol. 2, 1900020 (2019).

[5] S. E. Economou, N. Lindner, and T. Rudolph, Optically
Generated 2-Dimensional Photonic Cluster State from Cou-
pled Quantum Dots, Phys. Rev. Lett. 105, 093601 (2010).

[6] M. Anderson, T. Miiller, J. Huwer, J. Skiba-Szymanska, A.
B. Krysa, R. M. Stevenson, J. Heffernan, D. A. Ritchie, and

010202-20


https://doi.org/10.1038/nphoton.2016.186
https://doi.org/10.1038/s41578-018-0008-9
https://doi.org/10.1515/nanoph-2019-0211
https://doi.org/10.1002/qute.201900020
https://doi.org/10.1103/PhysRevLett.105.093601

PHOTON-EMISSION-CORRELATION...

PRX QUANTUM 4, 010202 (2023)

A. J. Shields, Quantum teleportation using highly coherent
emission from telecom C-band quantum dots, npj Quantum
Inf. 6, 14 (2020).

[7] Y. Arakawa and M. J. Holmes, Progress in quantum-dot sin-
gle photon sources for quantum information technologies:
A broad spectrum overview, Appl. Phys. Rev. 7, 021309
(2020).

[8] S. L. Bayliss, D. W. Laorenza, P. J. Mintun, B. D. Kovos,
D. E. Freedman, and D. D. Awschalom, Optically address-
able molecular spins for quantum information processing,
Science 370, 1309 (2020).

[9] M. Radtke, E. Bernardi, A. Slablab, R. Nelz, and E. Neu,
Nanoscale sensing based on nitrogen vacancy centers in
single crystal diamond and nanodiamonds: Achievements
and challenges, Nano Futures 3, 042004 (2019).

[10] B. S. Miller, L. Bezinge, H. D. Gliddon, D. Huang, G.
Dold, E. R. Gray, J. Heaney, P. J. Dobson, E. Nastouli, J.
J. Morton, and R. A. McKendry, Spin-enhanced nanodia-
mond biosensing for ultrasensitive diagnostics, Nature 587,
588 (2020).

[11] H. S. Knowles, D. M. Kara, and M. Atatiire, Controlling a
nuclear spin in a nanodiamond, Phys. Rev. B 96, 115206
(2017).

[12] L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F.
Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin,
Coherent dynamics of coupled electron and nuclear spin
qubits in diamond, Science 314, 281 (2006).

[13] C.E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets,
M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen,
and T. H. Taminiau, A Ten-Qubit Solid-State Spin Register
with Quantum Memory up to One Minute, Phys. Rev. X 9,
031045 (2019).

[14] J. Cramer, N. Kalb, M. Rol, B. Hensen, M. Blok, M.
Markham, D. Twitchen, R. Hanson, and T. Taminiau,
Repeated quantum error correction on a continuously
encoded qubit by real-time feedback, Nat. Commun. 7,
11526 (2016).

[15] M. Abobeih, Y. Wang, J. Randall, S. Loenen, C. Bradley,
M. Markham, D. Twitchen, B. Terhal, and T. Taminiau,
Fault-tolerant operation of a logical qubit in a diamond
quantum processor, Nature 606, 884 (2022).

[16] G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single
photon sources with single semiconductor quantum dots,
Front. Phys. 9, 170 (2014).

[17] S. E. Thomas, M. Billard, N. Coste, S. C. Wein, Priya, H.
Ollivier, O. Krebs, L. Tazairt, A. Harouri, A. Lemaitre, L.
Sagnes, C. Anton, L. Lanco, N. Somaschi, J. C. Loredo,
and P. Senellart, Bright Polarized Single-Photon Source
Based on a Linear Dipole, Phys. Rev. Lett. 126, 233601
(2021).

[18] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. Hollenberg, The nitrogen-vacancy
colour centre in diamond, Phys. Rep. 528, 1 (2013).

[19] L. V. H. Rodgers, L. B. Hughes, M. Xie, P. C. Maurer, S.
Kolkowitz, A. C. B. Jayich, and N. P. de Leon, Materials
challenges for quantum technologies based on color centers
in diamond, MRS Bull. 46, 623 (2021).

[20] P. G. Baranov, A. P. Bundakova, A. A. Soltamova, S. B.
Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, and J.
Schmidt, Silicon vacancy in SiC as a promising quantum

system for single-defect and single-photon spectroscopy,
Phys. Rev. B 83, 125203 (2011).

[21] O. O. Soykal, P. Dev, and S. E. Economou, Silicon vacancy
center in 4h-SiC: Electronic structure and spin-photon
interfaces, Phys. Rev. B 93, 081207(R) (2016).

[22] M. Radulaski, M. Widmann, M. Niethammer, J. L. Zhang,
S.-Y. Lee, T. Rendler, K. G. Lagoudakis, N. T. Son, E.
Janzén, T. Ohshima, J. Wrachtrup, and J. Vuékovic, Scal-
able quantum photonics with single color centers in silicon
carbide, Nano Lett. 17, 1782 (2017).

[23] C. Palacios-Berraquero, in Quantum Confined Excitons in
2-Dimensional Materials (Springer International Publish-
ing, Cham, 2018), p. 71.

[24] M. Toth and 1. Aharonovich, Single photon sources in
atomically thin materials, Annu. Rev. Phys. Chem. 70, 123
(2019).

[25] X. Liu and M. C. Hersam, 2D materials for quantum
information science, Nat. Rev. Mater. 4, 669 (2019).

[26] T. Zhong and P. Goldner, Emerging rare-earth doped mate-
rial platforms for quantum nanophotonics, Nanophotonics
(2019).

[27] A. M. Ferrenti, N. P. de Leon, J. D. Thompson, and R. J.
Cava, Identifying candidate hosts for quantum defects via
data mining, npj Comput. Mater. 6, 126 (2020).

[28] H. J. Kimble, M. Dagenais, and L. Mandel, Photon Anti-
bunching in Resonance Fluorescence, Phys. Rev. Lett. 39,
691 (1977).

[29] R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Pho-
ton antibunching in the fluorescence of individual color
centers in diamond, Opt. Lett. 25, 1294 (2000).

[30] S. Castelletto, B. C. Johnson, V. Ivady, N. Stavrias, T.
Umeda, A. Gali, and T. Ohshima, A silicon carbide room-
temperature single-photon source, Nat. Mater. 13, 151
(2014).

[31] X. Michalet, R. A. Colyer, G. Scalia, S. Weiss, O. H. W.
Siegmund, A. S. Tremsin, J. V. Vallerga, F. Villa, F. Guer-
rieri, I. Rech, A. Gulinatti, S. Tisa, F. Zappa, M. Ghioni,
and S. Cova, New photon-counting detectors for single-
molecule fluorescence spectroscopy and imaging (2011).

[32] T. T. Tran, K. Bray, M. J. Ford, M. Toth, and L
Aharonovich, Quantum emission from hexagonal boron
nitride monolayers, Nat. Nanotechnol. 11, 37 (2016).

[33] M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mal-
let, J. Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski,
Single photon emitters in exfoliated WSe; structures, Nat.
Nanotechnol. 10, 503 (2015).

[34] R. Hanbury Brown and R. Q. Twiss, Correlation between
photons in two coherent beams of light, Nature 177, 27
(1956).

[35] R. J. Glauber, The quantum theory of optical coherence,
Phys. Rev. 130, 2529 (1963).

[36] D. F. Walls, Evidence for the quantum nature of light,
Nature 280, 451 (1979).

[37] J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J.
Wineland, Observation of Quantum Jumps in a Single
Atom, Phys. Rev. Lett. 57, 1699 (1986).

[38] F. Diedrich and H. Walther, Nonclassical Radiation of a
Single Stored Ion, Phys. Rev. Lett. 58, 203 (1987).

[39] S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A.
Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D.

010202-21


https://doi.org/10.1038/s41534-020-0249-5
https://doi.org/10.1063/5.0010193
https://doi.org/10.1126/science.abb9352
https://doi.org/10.1088/2399-1984/ab5f9b
https://doi.org/10.1038/s41586-020-2917-1
https://doi.org/10.1103/PhysRevB.96.115206
https://doi.org/10.1126/science.1131871
https://doi.org/10.1103/PhysRevX.9.031045
https://doi.org/10.1038/ncomms11526
https://doi.org/10.1038/s41586-022-04819-6
https://doi.org/10.1007/s11467-013-0360-6
https://doi.org/10.1103/PhysRevLett.126.233601
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1557/s43577-021-00137-w
https://doi.org/10.1103/PhysRevB.83.125203
https://doi.org/10.1103/PhysRevB.93.081207
https://doi.org/10.1021/acs.nanolett.6b05102
https://doi.org/10.1146/annurev-physchem-042018-052628
https://doi.org/10.1038/s41578-019-0136-x
https://doi.org/10.1038/s41524-020-00391-7
https://doi.org/10.1103/PhysRevLett.39.691
https://doi.org/10.1364/ol.25.001294
https://doi.org/10.1038/nmat3806
https://doi.org/10.1038/nnano.2015.242
https://doi.org/10.1038/nnano.2015.67
https://doi.org/10.1038/177027a0
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1038/280451a0
https://doi.org/10.1103/PhysRevLett.57.1699
https://doi.org/10.1103/PhysRevLett.58.203

REBECCA E. K. FISHMAN et al.

PRX QUANTUM 4, 010202 (2023)

Bouwmeester, Self-Tuned Quantum Dot Gain in Photonic
Crystal Lasers, Phys. Rev. Lett. 96, 127404 (2006).

[40] Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A.
Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu,
Evolution of the onset of coherence in a family of photonic
crystal nanolasers, Appl. Phys. Lett. 91, 031108 (2007).

[41] Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E.
Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H.
Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo,
Plasmonic nanolaser using epitaxially grown silver film,
Science 337, 450 (2012).

[42] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable
Solid-State Source of Single Photons, Phys. Rev. Lett. 85,
290 (2000).

[43] Gruber, A. Dribenstedt, C. Tietz, L. Fleury, J. Wrachtrup,
and C. V. Borczyskowski, A scanning confocal optical
microscopy and magnetic resonance on single defect cen-
ters, Science 276, 2012 (1997).

[44] 1. Gopich and A. Szabo, Theory of photon statistics in
single-molecule Forster resonance energy transfer, J. Chem.
Phys. 122, 014707 (2005).

[45] T. Basché, W. E. Moemer, M. Orrit, and U. P. Wild, Single-
Molecule Optical Detection, Imaging and Spectroscopy
(VCH Verlagsgesellschaft mbH, Weinheim, 1997).

[46] E. L. Elson, Fluorescence correlation spectroscopy: Past,
present, future, Biophys. J. 101, 2855 (2011).

[47] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M.
Petroff, L. Zhang, E. Hu, and A. Imamoglu, A quantum dot
single-photon turnstile device, Science 290, 2282 (2000).

[48] M.J. Stevens, S. Glancy, S. W. Nam, and R. P. Mirin, Third-
order antibunching from an imperfect single-photon source,
Opt. Express 22, 3244 (2014).

[49] E. Z. Casalengua, J. C. L. Carreno, F. P. Laussy, and E. del
Valle, Conventional and unconventional photon statistics,
Laser Photon. Rev. 14, 014707 (2020).

[50] D. Amgar, G. Yang, R. Tenne, and D. Oron, Higher-order
photon correlation as a tool to study exciton dynamics in
quasi-2D nanoplatelets, Nano Lett. 19, 8741 (2019).

[51] R. Loudon, The Quantum Theory of Light (Oxford Univer-
sity Press, New York, 1973).

[52] P. Senellart, G. Solomon, and A. White, High-performance
semiconductor quantum-dot single-photon sources, Nat.
Nanotechnol. 12, 1026 (2017).

[53] U. Sinha, S. N. Sahoo, A. Singh, K. Joarder, R. Chatterjee,
and S. Chakraborti, Single-photon sources, Opt. Photon.
News 30, 32 (2019).

[54] M. Leifgen, T. Schrider, F. Gadeke, R. Riemann, V. Métil-
lon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen,
and O. Benson, Evaluation of nitrogen- and silicon-vacancy
defect centres as single photon sources in quantum key
distribution, New J. Phys. 16, 023021 (2014).

[55] K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T.
Yamamoto, S. Yorozu, and Y. Arakawa, Quantum key dis-
tribution over 120 km using ultrahigh purity single-photon
source and superconducting single-photon detectors, Sci.
Rep. 5, 14383 (2015).

[56] N. Morioka, C. Babin, R. Nagy, 1. Gediz, E. Hesselmeier,
D. Liu, M. Joliffe, M. Niethammer, D. Dasari, V. Vorobyov,
R. Kolesov, R. Stéhr, J. Ul-Hassan, N. T. Son, T. Ohshima,
P. Udvarhelyi, G. Thiering, A. Gali, J. Wrachtrup, and F.

Kaiser, Spin-controlled generation of indistinguishable and
distinguishable photons from silicon vacancy centres in
silicon carbide, Nat. Commun. 11, 2516 (2020).

[57] E.Knill, R. Laflamme, and G. J. Milburn, A scheme for effi-
cient quantum computation with linear optics, Nature 409,
46 (2001).

[58] M. Scholz, T. Aichele, S. Ramelow, and O. Benson,
Deutsch-Jozsa Algorithm Using Triggered Single Photons
from a Single Quantum Dot, Phys. Rev. Lett. 96, 180501
(2006).

[59] Y. M. He, Y. He, Y. J. Wei, D. Wu, M. Atatiire, C.
Schneider, S. Hofling, M. Kamp, C. Y. Lu, and J. W.
Pan, On-demand semiconductor single-photon source with
near-unity indistinguishability, Nat. Nanotechnol. 8, 213
(2013).

[60] M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers,
P. C. Humphreys, R. N. Schouten, R. F. Vermeulen,
M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S.
Wehner, and R. Hanson, Realization of a multinode quan-
tum network of remote solid-state qubits, Science 372, 259
(2021).

[61] A. Chatterjee, P. Stevenson, S. D. Franceschi, A. Morello,
N. P. de Leon, and F. Kuemmeth, Semiconductor qubits in
practice, Nat. Rev. Phys. 3, 157 (2021).

[62] T. E. Northup and R. Blatt, Quantum information transfer
using photons, Nat. Photon. 8, 356 (2014).

[63] L. C. Bassett, Quantum optics with single spins (2020).

[64] M. Widmann, S. Y. Lee, T. Rendler, N. T. Son, H. Fed-
der, S. Paik, L. P. Yang, N. Zhao, S. Yang, . Booker,
A. Denisenko, M. Jamali, S. A. Momenzadeh, 1. Ger-
hardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup,
Coherent control of single spins in silicon carbide at room
temperature, Nat. Mater. 14, 164 (2015).

[65] D. A. Hopper, H. J. Shulevitz, and L. C. Bassett, Spin read-
out techniques of the nitrogen-vacancy center in diamond,
Micromachines 9, 437 (2018).

[66] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Rev. Mod. Phys. 89, 035002 (2017).

[67] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D.
Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and
M. D. Lukin, High-sensitivity diamond magnetometer with
nanoscale resolution, Nat. Phys. 4, 810 (2008).

[68] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard,
V. M. Acosta, J. Nunn, and B. J. Sussman, Quantum mem-
ories: Emerging applications and recent advances, J. Mod.
Opt. 63, 2005 (2016).

[69] B. Schuler, K. A. Cochrane, C. Kastl, E. S. Barnard, E.
Wong, N. J. Borys, A. M. Schwartzberg, D. F. Ogletree,
F. J. G. D. Abajo, and A. Weber-Bargioni, Electrically
driven photon emission from individual atomic defects in
monolayer WS;, Sci. Adv. 6, eabb5988 (2020).

[70] S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles,
Long-term data storage in diamond, Sci. Adv. 2, e1600911
(2016).

[71] D. A. Hopper, J. D. Lauigan, T.-Y. Huang, and L. C. Bas-
sett, Real-Time Charge Initialization of Diamond Nitrogen-
Vacancy Centers for Enhanced Spin Readout, Phys. Rev.
Appl. 13, 024016 (2020).

[72] B.J. Shields, Q. P. Unterreithmeier, N. P. de Leon, H. Park,
and M. D. Lukin, Efficient Readout of a Single Spin State in

010202-22


https://doi.org/10.1103/PhysRevLett.96.127404
https://doi.org/10.1063/1.2751131
https://doi.org/10.1126/science.1223504
https://doi.org/10.1103/PhysRevLett.85.290
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1103/PhysRevLett.105.093601
https://doi.org/10.1016/j.bpj.2011.11.012
https://doi.org/10.1126/science.290.5500.2282
https://doi.org/10.1364/OE.22.003244
https://doi.org/10.1021/acs.nanolett.9b03442
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1364/OPN.30.9.000032
https://doi.org/10.1088/1367-2630/16/2/023021
https://doi.org/10.1038/srep14383
https://doi.org/10.1038/s41467-020-16330-5
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevLett.96.180501
https://doi.org/10.1038/nnano.2012.262
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1038/s42254-021-00283-9
https://doi.org/10.1038/nphoton.2014.53
https://doi.org/10.1038/nmat4145
https://doi.org/10.3390/mi9090437
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1038/nphys1075
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1126/sciadv.abb5988
https://doi.org/10.1126/sciadv.1600911
https://doi.org/10.1103/PhysRevApplied.13.024016

PHOTON-EMISSION-CORRELATION...

PRX QUANTUM 4, 010202 (2023)

Diamond via Spin-to-Charge Conversion, Phys. Rev. Lett.
114, 136402 (2015).

[73] P. Siyushev, M. Nesladek, E. Bourgeois, M. Gulka, J.
Hruby, T. Yamamoto, M. Trupke, T. Teraji, J. Isoya, and
F. Jelezko, Photoelectrical imaging and coherent spin-state
readout of single nitrogen-vacancy centers in diamond,
Science 363, 728 (2019).

[74] L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. Alke-
made, and R. Hanson, High-fidelity projective read-out of a
solid-state spin quantum register, Nature 477, 574 (2011).

[75] D. Huber, M. Reindl, Y. Huo, H. Huang, J. S. Wildmann,
0. G. Schmidt, A. Rastelli, and R. Trotta, Highly indistin-
guishable and strongly entangled photons from symmetric
GaAs quantum dots, Nat. Commun. 8, 15506 (2017).

[76] C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in
Atomic Physics: An Overview (World Scientific Publishing
Co. Pte. Ltd., Singapore, 2011).

[771 T. A. Laurence, S. Fore, and T. Huser, Fast, flexible
algorithm for calculating photon correlations, Opt. Lett. 31,
829 (2006).

[78] W.  Sun, Nanocluster/photons,
nanocluster/photons (2019).

[79] H. J. Shulevitz, T.-Y. Huang, J. Xu, S. J. Neuhaus, R.
N. Patel, Y. C. Choi, L. C. Bassett, and C. R. Kagan,
Template-assisted self-assembly of fluorescent nanodia-
monds for scalable quantum technologies, ACS Nano 16,
1847 (2022).

[80] A. Bommer and C. Becher, New insights into nonclassical
light emission from defects in multi-layer hexagonal boron
nitride, Nanophotonics 8, 2041 (2019).

[81] M. Wahl, Technical notes: Time-correlated single photon
counting (2014), PicoQuant GmbH.

[82] M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam,
R. P. Mirin, and J. A. Gupta, Fast lifetime measurements of
infrared emitters using a low-jitter superconducting single-
photon detector, Appl. Phys. Lett. 89, 031109 (2006).

[83] C. Timm, Random transition-rate matrices for the master
equation, Phys. Rev. E 80, 021140 (2009).

[84] R. N. Patel, D. A. Hopper, J. A. Gusdorff, M. E. Turian-
sky, T.-Y. Huang, R. E. K. Fishman, B. Porat, C. G. Van
de Walle, and L. C. Bassett, Probing the Optical Dynam-
ics of Quantum Emitters in Hexagonal Boron Nitride, PRX
Quantum 3, 030331 (2022).

[85] M. Hauschild and T. Jentschel, Comparison of maximum
likelihood estimation and chi-square statistics applied to

https://github.com/

counting experiments, Nucl. Instrum. Methods Phys. Res.
A 457,384 (2001).

[86] C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, Acceler-
ating quantum optics experiments with statistical learning,
Appl. Phys. Lett. 116, 184003 (2020).

[87] A. L. Exarhos, D. A. Hopper, R. N. Patel, M. W. Doherty,
and L. C. Bassett, Magnetic-field-dependent quantum emis-
sion in hexagonal boron nitride at room temperature, Nat.
Commun. 10, 222 (2019).

[88] E. Neu, M. Fischer, S. Gsell, M. Schreck, and C. Becher,
Fluorescence and polarization spectroscopy of single sil-
icon vacancy centers in heteroepitaxial nanodiamonds on
iridium, Phys. Rev. B 84, 205211 (2011).

[89] R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D.
Awschalom, Anisotropic interactions of a single spin and
dark-spin spectroscopy in diamond, Nat. Phys. 1, 94
(2005).

[90] H. Takashima, H. Maruya, K. Ishihara, T. Tashima, K. Shi-
mazaki, A. W. Schell, T. T. Tran, I. Aharonovich, and S.
Takeuchi, Determination of the dipole orientation of single
defects in hexagonal boron nitride, ACS Photon. 7, 2056
(2020).

[91] N. R. Jungwirth, H.-S. Chang, M. Jiang, and G. D. Fuchs,
Polarization spectroscopy of defect-based single photon
sources in ZnO, ACS Nano 10, 1210 (2016).

[92] L. J. Rogers, K. D. Jahnke, M. W. Doherty, A. Dietrich, L.
P. McGuinness, C. Miiller, T. Teraji, H. Sumiya, J. Isoya, N.
B. Manson, and F. Jelezko, Electronic structure of the neg-
atively charged silicon-vacancy center in diamond, Phys.
Rev. B 89, 235101 (2014).

[93] N. R. Jungwirth and G. D. Fuchs, Optical Absorption
and Emission Mechanisms of Single Defects in Hexagonal
Boron Nitride, Phys. Rev. Lett. 119, 057401 (2017).

[94] E. Neu, M. Agio, and C. Becher, Photophysics of single
silicon vacancy centers in diamond: Implications for single
photon emission, Opt. Express 20, 19956 (2012).

[95] A. Alkauskas, Q. Yan, and C. G. Van de Walle, First-
principles theory of nonradiative carrier capture via mul-
tiphonon emission, Phys. Rev. B 90, 075202 (2014).

[96] Adam Gali, Ab initio theory of the nitrogen-vacancy center
in diamond, Nanophotonics 8, 1907 (2019).

[97] https://github.com/penn-gel/photon-emission-correlation-
spectroscopy

[98] R. Barlow, A note on AlnL = —1/2 errors (2004), arXiv
e-prints, ArXiv:physics/0403046.

010202-23


https://doi.org/10.1103/PhysRevLett.114.136402
https://doi.org/10.1126/science.aav2789
https://doi.org/10.1038/nature10401
https://doi.org/10.1038/ncomms15506
https://doi.org/10.1364/ol.31.000829
https://github.com/nanocluster/photons
https://doi.org/10.1021/acsnano.1c09839
https://doi.org/10.1515/nanoph-2019-0123
https://doi.org/10.1063/1.2221516
https://doi.org/10.1103/PhysRevE.80.021140
https://doi.org/10.1103/PRXQuantum.3.030331
https://doi.org/10.1016/S0168-9002(00)00756-7
https://doi.org/10.1063/1.5143786
https://doi.org/10.1038/s41467-018-08185-8
https://doi.org/10.1103/PhysRevB.84.205211
https://doi.org/10.1038/nphys141
https://doi.org/10.1021/acsphotonics.0c00405
https://doi.org/10.1021/acsnano.5b06515
https://doi.org/10.1103/PhysRevB.89.235101
https://doi.org/10.1103/PhysRevLett.119.057401
https://doi.org/10.1364/OE.20.019956
https://doi.org/10.1103/PhysRevB.90.075202
https://doi.org/10.1515/nanoph-2019-0154
https://github.com/penn-qel/photon-emission-correlation-spectroscopy
https://arxiv.org/abs/physics/0403046

	I.. INTRODUCTION
	II.. BACKGROUND
	A.. The autocorrelation function
	B.. Single-photon emitters
	C.. Optical dynamics of quantum defects

	III.. THEORY
	A.. Types of photon correlation
	B.. Two-level model
	C.. Generalizing to models with n>2 levels
	D.. Relationship between W() and g(2)()
	E.. Single-photon emission

	IV.. EXPERIMENTAL CONSIDERATIONS
	A.. Acquisition
	B.. Data processing
	C.. Correcting for background signals
	D.. Correcting for timing jitter
	E.. Quantifying the effects of timing jitter

	V.. ANALYSIS
	A.. Simulating photon-emission statistics

	VI.. PECS IN PRACTICE
	VII.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: WAITING-TIME ADDITIONAL DERIVATIONS
	1.. Collection-efficiency dependence
	2.. Systems with n>2 levels

	. APPENDIX B: AUTOCORRELATION FROM MULTIPLE RADIATIVE TRANSITIONS
	. APPENDIX C: ALGORITHM FOR PROCESSING PHOTON CORRELATIONS
	1.. Preparing the data
	2.. Defining processing parameters
	3.. Algorithm detail
	4.. Outputs
	5.. Additional complexity

	. APPENDIX D: AKAIKE INFORMATION CRITERION
	. APPENDIX E: OPTICAL-DYNAMICS SIMULATION
	1.. Defining the model
	2.. Simulation detail
	3.. Simulation outputs
	4.. Additional complexity
	5.. Simulation detail for Fig. [f5]5

	. REFERENCES

