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Abstract

We present a new semiparametric extension of the Fay-Herriot model, termed the agnostic Fay-Herriot

model (AGFH), in which the sampling-level model is expressed in terms of an unknown general function

g(·). Thus, the AGFH model can express any distribution in the sampling model since the choice of

g(·) is extremely broad. We propose a Bayesian modelling scheme for AGFH where the unknown

function g(·) is assigned a Gaussian Process prior. Using a Metropolis within Gibbs sampling Markov

Chain Monte Carlo scheme, we study the performance of the AGFH model, along with that of a

hierarchical Bayesian extension of the Fay-Herriot model. Our analysis shows that the AGFH is an

excellent modelling alternative when the sampling distribution is non-Normal, especially in the case

where the sampling distribution is bounded. It is also the best choice when the sampling variance is

high. However, the hierarchical Bayesian framework and the traditional empirical Bayesian framework

can be good modelling alternatives when the signal-to-noise ratio is high, and there are computational

constraints.
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1. Introduction

In area-level small area studies, the Fay-Herriot model Fay III and Herriot [9] is a commonly used

framework and is given by the following two-layered structure:

1. Sampling model:Conditional on the unknown and unobserved independent area-level effects

{θi : i = 1, 2, . . . ,M} on M small areas, the observed dataY = (Y1, . . . ,YM)
T are themselves

1 University of Minnesota, Minneapolis, USA

Corresponding author:

Snigdhansu Chatterjee, University of Minnesota, School of Statistics, Ford Hall, 224 Church Street SE, Minneapolis MN 55455,

USA.

E-mail: chatt019@umn.edu

Calcutta Statistical Association Bulletin
76(1) 78 –95, 2024

© 2023 Calcutta Statistical Association, Kolkata
Article reuse guidelines:

in.sagepub.com/journals-permissions-india
DOI: 10.1177/00080683231198606

journals.sagepub.com/home/csa

AMS Subject Classification: 62D05; 62F15



Thompson and Chatterjee 79

independent random variables. The i -th area observation Yi follows a Normal distribution

with mean θi and precision Di with the latter typically assumed to be known.

2. Linking model: The unobserved area-level effect for the i -th area, θi , has mean x�
i β, deter-

mined by the independent variable xi ∈ R
p and unknown β parameter, and variance λ.

In the above models and throughout this article, all vectors are column vectors, and the notation a�

denotes the transpose of (vector or matrix) a. The M× p matrix of auxiliary variablesXwhose i -th

row is given by xi ∈ R
p is assumed to be full column rank. Note that some authors parameterize the

sampling model in terms of (known) variance terms; we use the equivalent precision speci�cation

for notational ease whenmanipulating this likelihood. Thus, in this article, the notation Di represents

the precision of the sampling variance, and not its variance.

Discussions, including theoretical as well a variety of applications of the above framework may

be found in the book Rao and Molina [22] and in the papers Jiang et al. [12]; Das et al. [5]; Pfeffer-

mann and Glickman [18]; Datta et al. [8]; Rao [20]; Jiang and Lahiri [11]; Chatterjee et al. [3]; Li and

Lahiri [15]; Salvati et al. [24]; Datta et al. [6]; Pfeffermann [17]; Yoshimori and Lahiri [30, 31]; Molina

et al.[16]; Sugasawa and Kubokawa[25]; Rao[21].

Notationally, the Fay-Herriot model may be written as

Yi | θi ∼ N(θi , D−1
i ), independently, and (1.1)

θi ∼ N(x�
i β, λ), independently, for i = 1, . . . ,M. (1.2)

Thus, we have the marginal distribution speci�cation

Yi ∼ N(x�
i β, λ + D−1

i ), independently, for i = 1, . . . ,M.

Some routine frequentist computations can be readily performed on this model, and we can �rst

obtain an ordinary least squares (OLS) estimator of β as follows:

β̂OLS =

[

M
∑

i=1

xix
�
i

]−1 [

M
∑

i=1

xiYi

]

.

Using this, we may obtain the moment-based estimator of λ as in Rao and Molina [22], that of

λ̂ = max(0, λ̃) where

λ̃ =
1

M− p

[

M
∑

i=1

(Yi − x�
i β̂OLS)

2 −

M
∑

i=1

D−1
i (1 − hi i )

]

, and

hi i = x�
i

(

M
∑

i=1

xix
�
i

)−1

xi .

Works on pro�le and residual likelihoods, and adjustments thereof, have made improvements in

estimating λ over the moment-based estimator. Speci�cally, we also consider the adjusted residual

likelihood estimator introduced by Yoshimori and Lahiri[30].
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The central problem in small area statistics is to predict the θi ’s. One natural predictor is the

empirical version of the Best Linear Unbiased Predictor (BLUP). First, de�ne the quantities

γi = λ/(D−1
i + λ), and

β̃ =

[

M
∑

i=1

xix
�

i /(D−1
i + λ)

]−1 [

M
∑

i=1

xiYi/(D
−1
i + λ)

]

,

and their empirical versions, with estimates λ̂ plugged in

γ̂i = λ̂/(D−1
i + λ̂), and

β̂ =

[

M
∑

i=1

xix
�

i /(D−1
i + λ̂)

]−1 [

M
∑

i=1

xiYi/(D
−1
i + λ̂)

]

.

Based on these, we followRao andMolina[22] and de�ne the BLUPand its empirical versionEBLUP

as follows:

BLUP: θ̃i = x�

i β̃ + γi (Yi − x�

i β̃) = γiYi + (1 − γi )x
�

i β̃, and

EBLUP: θ̂i = x�

i β̂ + γ̂i (Yi − x�

i β̂) = γ̂iYi + (1 − γ̂i )x
�

i β̂, i = 1, . . . ,M.

The above frequentist predictors are straightforward and widely used but seem to depend criti-

cally on the parametric assumptions given in (1.1) being correct. However in real applications, the

Fay-Herriot and other area or unit level small area models are used on observed data that may be

bounded in nature or strictly positive. Examples of such cases are proportions and variables like

income or lifespan. While (1.1) is often justi�able when large samples are available, this may not

always be the case in small area contexts. At the very least, the robustness of the EBLUP-based

prediction technique against distributional misspeci�cations needs to be studied.

In this article, we present a semiparametric extension to the sampling distribution component

of the Fay-Herriot model. The semiparametric extension is designed to encapsulate any distribu-

tional choice, consequently, we call this extended model the agnostic Fay-Herriot model (AGFH

often hereafter). We present a Bayesian modelling technique using a Gaussian Process prior for the

unknown functional component of the AGFH model and some theoretical properties of the pro-

posed model. Additionally, we detail a Bayesian computational approach to estimating the AGFH

model, which involves a Metropolis within Gibbs Markov Chain Monte Carlo procedure.

We compare the performance of the AGFHmodel with that of three other techniques in a variety

of numeric experiments. We study four different choices of sampling distributions, including the

traditional Fay-Herriot framework and cases where the observations are non-negative or bounded.

The nature of the sampling distribution is the signal theAGFH learns amidst the noise of the linking

model’s variability, and multiple signal-to-noise ratio conditions are studied. The rival techniques

we consider include the EBLUP-based approach outlined above, and a hierarchical Bayesian (HB)

technique based on the traditional Fay-Herriot model (1.1)(1.2). In addition, we also study the

performance of a regression-based predictor that ignores themulti-level dependency present in small

area models but is straightforward to implement. In many of the cases we consider, especially where
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the sampling distribution is bounded or where the sampling variance is high, the AGFH registers

a lower Mean Squared Prediction Error (MSPE) value compared to other techniques. However,

there are interesting and subtle details about the robustness aspect of the EBLUP-based prediction

or hierarchical Bayesian prediction, which we discuss later in the article.

To ensure fair comparison, we always restrict the �rst two moments of the observable data

{Y1, . . . ,YM} to adhere to the Fay-Herriot model speci�cations. That is, we always impose the fol-

lowing conditions:

E(Yi ) = xTi β, (1.3)

V(Yi ) = D−1
i + λ. (1.4)

Thus, based on the �rst two moments, the traditional frequentist approach outlined above remains

a reasonable and valid technique to use. Using the moment conditions (1.3) and (1.4) is important

to ensure a level playing �eld for the traditional EBLUP-based approach; the HB approach and the

semi-parametric modelling approach easily adapts to alternate sets of conditions.

In this article, we report results only for the case where the sampling distribution is potentially

misspeci�ed. If instead only the linking model were misspeci�ed, then the analysis and results are

similar to the ones reported here, and we do not include them to reduce redundancy. When both

the sampling and the linking models are misspeci�ed, we need considerably more technical assump-

tions andmathematical details to ensure identi�ability and address theoretical and algorithmic chal-

lenges; these will be presented in a future article. Note that for the hierarchical Bayesian study, we

are interested in misspeci�cation in the Fay-Herriot model itself, thus we do not address Bayesian

robustness questions where robustness with respect to prior speci�cations is studied. Our prelimi-

nary studies on Bayesian robustness, for reasonable choices of priors, do not produce predictions

that are fundamentally dissimilar to the results reported here. We will also address Bayesian robust-

ness issues in a future publication.

Robustness in small area problems has been studied from several other perspectives earlier, but to

the best of our knowledge not from the distributional misspeci�cation and Bayesian computational

viewpoint that we present in this article. A comprehensive recent review of existing perspectives is

available in Jiang and Rao [13]. A major initial work in small area robustness studies is Lahiri and

Rao[14], where it was shown that for the problem of estimating the Mean Squared Prediction Error

(MSPE), the normality-based Prasad-Rao MSPE estimator remains second-order unbiased under

non-normality of the latent linking model when a simple method-of-moments estimator (e.g., Rao

and Molina [22] Section 6.1.2) is used for the variance component and the sampling error distri-

bution is normal. However, in Chen et al. [4], it was established that the normality-based MSPE

estimator is no longer second-order unbiased when the sampling error distribution is non-normal

or when the Fay-Herriot moment method is used to estimate the variance component, even when

the sampling error distribution is normal. The robust estimation perspective of MSPE is presented

in Wu and Jiang [29]. Robustness with respect to data issues is studied in Chatterjee [2]. Robustness

in small area models have also been explored from the perspective of having more broad modelling

assumptions in place of (1.1). In Datta and Mandal [7], a general model with uncertain linking

model was considered.More recently, Chakraborty et al.[1] proposed an extension of the traditional

Fay-Herriot model where the linking model is given by a mixture of two Normal distributions. In

Ghosh et al.[10], Student’s t-distribution and a hierarchical Bayesian modelling was used in studying

robustness.



82 Calcutta Statistical Association Bulletin 76(1)

We discuss the hierarchical Bayesian analysis of the traditional Fay-Herriot model in Section 2.

Following this, we present the semiparmetric extension of the Fay-Herriot model, the AGFH, in

Section 3. In Section 3 we discuss some theoretical properties of this model as well. Following this,

in Section 4 we present the methodological details of the Bayesian analysis in the AGFHmodel. In

Section 5, we report result from numerical simulation experiments, and compare performances of

different small area predictors under two different scenarios. Our concluding remarks are collected

in Section 6.

2. Hierarchical Bayesian Fay-Herriot Model

For a hierarchical Bayesian study, we augment (1.1) and (1.2) with priors on the parameters β and

λ. We use a uninformative prior on β, and an inverse Gamma prior on λ. Notationally, the prior is

speci�ed by

f (β, λ) ∝ 1 · f (λ) = IG(a, b),

where the notation IG(a, b) stands for inverse Gamma distribution with hyper-parameters a > 0 and

b > 0. The probability density function of this is given by

f (λ; a, b) =
ba

�(a)
(1/λ)a+1 exp{−b/λ}, λ > 0.

Let us use the notation θ = (θ1, . . . , θM)
� ∈ R

M, and Y = (Y1, . . . ,YM)
� ∈ R

M. Hierarchical

Bayesian approaches in small-area models have been attempted in Polettini [19]; Wanjoya et al. [28]

and several other papers. In the current context, the unknown (hyper-)parameters are θ , λ, β.

We set up a Gibbs sampling scheme for the Markov Chain Monte Carlo procedure to approxi-

mate the posterior distribution of these parameters. Note that conditional on θ , the parameters β

and λ are independent of Y. De�ne

β∗(θ ) =

�

M
�

i=1

xix
�
i

�−1 �

M
�

i=1

xiθi

�

,

γi (λ) = λ/(D−1
i + λ) and

θ∗
i (β, λ) = γiYi + (1 − γi )x

�
i β.

Then the conditional distributions for the Gibbs sampling algorithm are

β | θ , λ,Y ∼ Np

⎛

⎝β∗, λ

�

M
�

i=1

xix
�
i

�−1
⎞

⎠ , (2.1)

λ | β, θ ,Y ∼ IG

�

a + M/2, b +
1

2

M
�

i=1

(θi − x�
i β)2

�

, (2.2)

θi | β, λ,Y ∼ N
�

θ∗
i (β, λ), γiDi

�

, i = 1, . . . ,M. (2.3)
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3. Semi-parametric Fay-Herriot Model Extension

In this section, we propose an extension of the Fay-Herriot model (1.1)–(1.2) using a semipara-

metric framework. We use the term agnostic Fay-Herriot model (AGFH in short often hereafter)

to denote this model as it relaxes the distributional assumptions on the sampling level in the

traditional Fay-Herriot model.

Suppose we have an unknown function g : R → R satisfying the following conditions for some

K > 0:

∫ ∞

u=−∞

exp
{

−
u2

2
+ g(u)

}

du = K, (3.1)

∫ ∞

u=−∞

u exp
{

−
u2

2
+ g(u)

}

du = 0, (3.2)

K−1

∫ ∞

u=−∞

u2 exp
{

−
u2

2
+ g(u)

}

du = 1. (3.3)

Without loss of generality, we may assume that K = 1 since any constant may be easily absorbed

in g(·), but we will retain the notation K for clarity of presentation of the theoretical developments

below.

Condition (3.1) ensures that K−1 exp
{

− u2

2
+ g(u)

}

is a probability density function. LetU be the

generic notation for a random variable that has this density function, and let {Ui : i = 1, . . . ,M}

be iid copies of U. Note that conditions (3.2) and (3.3) imply that E(U) = 0 and V(U) = 1.

Let {Zi : i = 1, . . . ,M} be independent standardNormal random variables that are independent

of {Ui }. The latent variables driving the agnostic Fay-Herriot model (AGFH) are

θi = x�
i β + λ1/2Zi , i = 1, . . . ,M. (3.4)

Conditional on θi , the observed data are realizations of the random variable

Yi = θi + D
−1/2
i Ui , i = 1, . . . ,M. (3.5)

Notice that (3.4) presents a generalization of the linking model (1.2). If g(·) ≡ 0, then (3.4) is identi-

cal to (1.2) and we thus recover the classical Fay-Herriot model. However, for other choices of g(·)

function, we obtain realizations of an area-level small area model with a non-Gaussian sampling

error structure. The above AGFHmodel is semi-parametric in nature, owing to the presence of both

�nite-dimensional parameters β and λ and an in�nite-dimensional parameter g(·).

3.1. Some Theoretical Preliminaries

We present below some probabilistic and theoretical properties related to the AGFH model which

will be useful for methodological steps outlined later in this article. For notational simplicity, in

several of the algebraic steps belowwe will drop the subscript i when there is no source of confusion.
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For any y ∈ R we have

P
[

Y ≤ y|β, λ, g, θ, x
]

= P
[

θ + D−1/2U ≤ y|β, λ, g, θ, x
]

= P
[

U ≤ D1/2(y− θ )|β, λ, g, θ, x
]

= K−1

∫ D1/2(y−θ)

u=−∞

exp
{

−
u2

2
+ g(u)

}

du

= K−1D1/2

∫ y

t=−∞

exp
{

−
1

2
D(t − θ )2 + g

(

D1/2(t − θ )
)

}

dt.

using t = θ + D−1/2u. Thus, the probability density function of Yi , conditional on β, λ, g, θi , xi is

p(y|β, λ, g, θi , xi ) = K−1D
1/2
i exp

{

−
1

2
Di (y− θi )

2 + g
(

D
1/2
i (y− θi )

)

}

for y ∈ R.

Thus, the AGFH model can be expressed more compactly using the following conditions:

log p(Yi |β, λ, g, θi , xi ) ∝ −
1

2
Di (Yi − θi )

2 + g
(

D
1/2
i (Yi − θi )

)

, (3.6)

θi | β, λ, g, xi ∼ N
(

x�
i β, λ

)

. (3.7)

Note that in principle, theAGFHmodel can expressmany distributions in the samplingmodel, since

the choice of g(·) is extremely broad. The only conditions on g(·) are (3.1)–(3.3), and innumerable

functions satisfy these conditions. Note that in Section 4 we consider a Bayesian analysis of the

AGFHmodel with a Gaussian Process (GP) prior on g(·). This further restricts the set of functions

in which g(·) belongs.

Let us now compute the �rst two moments of Yi , conditional on β, λ, g, θi , xi . For the �rst

moment, we have

D1/2K−1

∫ ∞

y=−∞

y exp
{

−
1

2
D(y− θ )2 + g

(

D1/2(y− θ )
)

}

dy

= K−1

∫ ∞

u=−∞

(

θ + D−1/2u
)

exp
{

−
u2

2
+ g(u)

}

du

= θ + K−1D−1/2

∫ ∞

u=−∞

u exp
{

−
u2

2
+ g(u)

}

du

= θ,
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using (3.2). For the second non-central moment we have

D1/2K−1

∫ ∞

y=−∞

y2 exp
{

−
1

2
D(y− θ )2 + g

(

D1/2(y− θ )
)

}

dy

= K−1

∫ ∞

u=−∞

(

θ + D−1/2u
)2
exp

{

−
u2

2
+ g(u)

}

du

= θ2 + D−1K−1

∫ ∞

u=−∞

u2 exp
{

−
u2

2
+ g(u)

}

du

= θ2 + D−1,

using (3.1), (3.2), and (3.3). So, the conditional variance of Yi is D
−1
i . These two moments match

the conditional mean and variance of the traditional Fay-Herriot model given in (1.1).

The marginal mean and variance of Yi follow from the laws of total expectation and variance.

First,

E(Y) = E(E(Y|θ ))

= E(θ ) = x�β. (3.8)

Similiarly

V(Y) = E(V(Y|θ )) + V(E(Y|θ ))

= E(D−1) + V(θ ) = D−1 + λ (3.9)

Thus, the AGFH also matches the FH in terms of the marginal mean and variance expressions (1.3)

(1.4) for the observed data.

Next, de�ne Ũ as follows

Ũi = D
1/2
i

(

Yi − x�
i β

)

.

Rearranging (3.5) yields

Ũi = D
1/2
i

(

Yi − θi
)

+ D
1/2
i

(

θi − x�
i β)

= Ui + Z̃i ,

where {Z̃i ∼ N(0, Diλ)} are an independent sequence of random variables independent of {Ui }. Let

us compute the probability density function of Ũi . For any u ∈ R, we have

P
[

Ũ ≤ u
]

= P
[

U + Z̃≤ u
]

= EP
[

U ≤ u − Z̃|Z̃
]
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= EK−1

∫ u−Z̃

t=−∞

exp
{

−
t2

2
+ g(t)

}

dt

= EK−1

∫ u

v=−∞

exp
{

−
(v − Z̃)2

2
+ g(v − Z̃)

}

dv

= (2πDλ)−1/2K−1

∫ ∞

s=−∞

∫ u

v=−∞

exp
{

−
(v − s)2

2
+ g(v − s) −

s2

2Dλ

}

dvds

∝

∫ u

v=−∞

[∫ ∞

s=−∞

exp
{

−
(v − s)2

2
+ g(v − s) −

s2

2Dλ

}

ds

]

dv.

Thus, the density of Ũi is

fi (v) ∝

∫ ∞

s=−∞

exp
{

−
(v − s)2

2
−

s2

2Diλ
+ g(v − s)

}

ds (3.10)

3.2. Frequentist Parameter Estimation in AGFH

Note that the �nite dimensional parameters β and λ, de�ned in equations (1.3) and (1.4), are also

present in the AGFH model in moment equations (3.8) and (3.9). Consequently, we can use equa-

tions (3.8) and (3.9) to estimate these parameters in the AGFH model. Additionally, de�ne the

statistics

Ûi = D
1/2
i

(

Yi − x�
i β̂

)

, i = 1, . . . ,M.

These in turn, can be used (3.10) to estimate g(·) nonparametrically. However, using this frequentist

semiparametric estimation procedure is computationally cumbersome owing to the fact that (3.10)

is an intricate function of the in�nite dimensional parameter g(·). In a future publication, we will

report on approaches where g(·) is approximated using basis functions on an appropriate Hilbert

space.

4. Bayesian Approach for Analysing the AGFH Model

The AGFH model lends itself readily to Bayesian analysis, which we study below. On the �nite

dimensional parameters β and λ, we assume the same prior that we used earlier for hierarchical

Bayesian analysis in the original Fay-Herriot model, as given in Section 2 above. Additionally, we

assume that the function g(·) is a random function that has a Gaussian Process prior, with a covari-

ance function indexed by hyperparameters denoted by α. Notationally, the prior for the AGFH

model is given by

(β, λ) ∼ 1 · IG(a, b), and independently

g | α ∼ GP
(

0, κ(·, ·;α)
)

. (4.1)
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Here, κ(·, ·;α) is a kernel function on R with parameter α. Thus, (4.1) implies that for any positive

integer n ∈ {1, 2, . . .} and any collection of points {t1, . . . , tn} ⊂ R, the evaluation of the function

g(·) at these points, that is, the vector g =
�

g(t1), g(t2), . . . , g(tn)
��
, follows an n-dimensional Gaus-

sian distribution with mean zero, and the (i, j )-th entry of the variance-covariance matrix given

by κ(ti , t j ;α). As long as κ(·, ·;α) is a positive de�nite function, the fact that this formulation sat-

is�es the Kolmogorov consistency conditions and indeed de�nes a valid stochastic process is dis-

cussed in many standard references related to Gaussian Processes, see for example Rasmussen and

Williams [23]. For simplicity in presentation, in this article we consider the radial basis kernel func-

tion, given by

κ(x, y;α) = α0 exp{−α−1
1 (x− y)2}, x, y ∈ R

and we �x the hyperparameter α = (α0, α1)
� = (0.1, 0.1). While the Bayesian computations we per-

formed do not appear to be sensitive to reasonable choices of kernel functions or hyperparameters,

additional details pertaining to robustness of Gaussian Process formulation will be studied in future

works. Note however, our model assumptions above ensure that the posterior distribution is proper,

we omit the algebraic details of computations relating to this matter.

4.1. Metropolis-Hastings Within Gibbs Computational Approach

The unknown quantities in the AGFH framework are β, λ, θ , and g(·), and the additional random

quantity are the observables Y. Similar to the hierarchical Bayesian framework for the traditional

Fay-Herriot model, notice that conditional on θ and g(·), the parameters β and λ are independent

of Y. Consequently, we note that

p(β | θ , λ, g, α,Y) = Np

⎛

⎝β∗, λ

�

M
�

i=1

xix
�
i

�−1
⎞

⎠ . (4.2)

Similarly,

p(λ | θ, β, g, α,Y) ∝ p(Y | θ, g, α)p(θ | β, λ)p(β, λ)

∝ p(θ | β, λ)p(β, λ)

∝
1

λM/2
exp

�

−

M
�

i=1

(θi − x�
i β)2

2λ

�

1

λa−1
exp

�

b

λ

�

∝ IG

�

a + M/2, b +
1

2

M
�

i=1

(θi − x�
i β)2

�

. (4.3)

Thus, conditional on θ and β, the distribution of λ does not depend on g(·), α, and Y. Similarly,

conditional on θ and λ, the distribution of β does not depend on g(·), α, and Y.
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We individually sample the θi according the following MH likelihood.

p(θi | β, λ, g,Yi ) ∝ p(Yi | θi , g)p(θi | β, λ)p(β, λ)p(g) (4.4)

exp

(

−
Di (Yi − θi )

2

2
+ g(D

1/2
i (Yi − θi )) −

(θi − xiβ)
2

2λ

)

(4.5)

Note that at this point β, λ, and g are �xed within each step, and consequently their likelihoods

do not enter into the computations.

Finally, g(·) is updated by treating a kernel density estimate of the residuals between Yi and the

current Gibbs estimate θ
(h)
i as observations of its target function. Recalling (3.5), the residuals

U
(h)
i =

√

Di (Yi − θ
(h)
i )

approximate draws from (3.1). At each sampling iteration, let {w
(h)
i }Mi=1 be a KDE estimate of the

density of {U(h)}Mi=1. De�ne

v
(h)
i = log

(

w
(h)
i

)

+

(

U
(h)
i

)2

/2. (4.6)

Then, treat {v
(h)
i }Mi=1 as observations of g(·); when g(·) is required at other steps during sampling,

perform the typical Gaussian Process posterior analysis. The entire AGFH sampler is described in

Algorithm 1.

Algorithm 1: Agnostic Fay-Herriot Sampler

Given: Y, X, D, desired number of samples H.

Initialize β (0), λ(0), θ (0).

for h = 1 to H do

β(h) | θ (h−1), λ(h−1) sampled according to (4.2).

θ (h) | β(h), λ(h−1) sampled with Metropolis-Hastings using (4.5).

λ(h) | β(h), θ (h) sampled according to (4.3).

Update g with values in (4.6).

Return: Samples (β(1), . . . , β(H)), (θ (1), . . . , θ (H)), (λ(1), . . . , λ(H)), and �nal g.

5. Results from Simulation Experiments

The potential advantage of the agnostic Fay-Herriot model is its ability to accommodate non-

Normal error structures in the Fay-Herriot sampling model. Doing so may improve the sampling

and estimation of the small area means θi . Comparing the HB Gibbs conditional distribution for θi
(2.3) to that of (4.5) for AGFH, g(·) manipulates the latter’s likelihood based on learned behavior

of the sampling error. Similarly, frequentist and empirical Bayes methods assume Normal sampling

errors.
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We explore that here in the presence of Gamma, symmetric Beta, and asymmetric Beta errors.

Doing so also provides an opportunity to investigate the robustness extant estimation methods

exhibit in the presence of these errors. In all cases, sampling errors are transformed to satisfy the

moment conditions (1.3) and (1.4).

Three estimation methods are explored in addition to the AGFH model. First, the the standard

hierarchical Bayes (HB) Gibbs sampler from Section 2 provides a Bayesian baseline to the AGFH.

Both the HB and AGFH samplers use the prior λ ∼ IG(1, 1) and were run 104 steps, thinning by

a factor of one tenth to produce a thousands samples. Both Bayesian methods estimate θ with

maximum a posteriori estimates using the �nal hundred samples. Note that the added complexity of

the AGFH model incurs a computational cost resulting in runtimes approximately 60 times longer

than the HB sampler. Additionally, two frequentist estimators are used: �rst, a linear regression of

Y ∼ Xβ where θ̂i = xi β̂ and β̂ is an OLS estimate, referred to as LM in tables and �gures. Second,

the traditional EBLUP predictor discussed in Section 1 with the adjusted REML estimate of λ from

Yoshimori and Lahiri [30], referred to as Adj. REML. The same analysis was also conducted using

REML and adjusted pro�le likelihood estimates of λ, and produced nearly identical results. Speci�c

details are available in the supplementary materials.

The following two examples highlight the impact the relative size each source of variability—

sampling variability through D and latent variability through λ—has on each estimation methodol-

ogy. In both examples, M= 100 small area units are considered. Accurate estimation of θ = {θi }
100
i=1

is most important and will be stressed throughout. Additional �gures and results are presented in

the supplementary materials. Our simulation studies support the general intuition that the presence

of g(·) in AGFH’s distribution for θi (as opposed to the lack of such �exibility in HB or frequentist

methods) allows the learned distribution of sampling errors to improve the sampling of θi . When

the distributional assumptions corresponding to hierarchical Bayesian or empirical Bayes methods

are satis�ed, then these methods may marginally outperform the AGFH, but even under such cir-

cumstances the AGFH remains competitive. This exhibits the robustness of the AGFH approach.

5.1. High Sampling Variability

We �rst consider the case where the sampling variability D ∈ {0.1, 0.01} dominates the latent effect

variability λ = 0.5. In this case, the sampling errors provide ample signal for the AGFH to estimate

their (potentially non-Normal) distribution, and Figure 1 depicts typical cases. In all four scenarios,

the estimated sampling error density (green) captures the true error distribution.

An accurate representation of the sampling errors by theAGFHmodel appears to engendermore

accurate estimation of θ . Tables 1 and 2 summarizes the mean squared prediction error (MSPE) for

each estimation methodology’s estimation of θ , averaged across 30 independent repeated analyses

(standard deviations in parenthesis). The former pertains to a scenario in which p = 1, β ≡ 1, and

the latter p = 3, β ∼ Unif(−5, 5).

For the most extreme departure from normality (the two bimodal Beta scenarios, which still

respect the moment conditions), AGFH is the most competitive method. Otherwise, extant meth-

ods are more performant, most notably the HB approach. A more detailed representation of the

relationship among MSPEs is shown in Figure 2 for the D = 0.01, λ = 0.5 case (additional cases

in the supplementary materials). The AGFHmodel outperforms the other methods in almost every

repeated analysis under symmetric and asymmetric Beta errors.



90 Calcutta Statistical Association Bulletin 76(1)

Figure 1. Empirical Sampling Error Distributions and their Estimates by AGFH. Here, p = 3,β ∼ Unif(−5, 5),

D = 0.01, and λ = 0.5. From Top Left: Normal Errors, Gamma Errors, Symmetric Beta Errors, Asymmetric Beta

Errors.

It is clear from Figure 1 that the AGFH model can accurately capture the shape of the sam-

pling distribution. This is also re�ected in its generally superior or competitive performance in

terms of the MSPE, as noted in Tables 1 and 2. Under the Normality assumption (traditional

Fay-Herriot model) in Table 1, the AGFH model’s performance is almost identical to that of the

traditional EBLUP-based approach, while the hierarchical Bayesian approach performs marginally

better. When the sampling distribution is highly non-Normal, as in the case of the Beta-distribution

based cases under study, the AGFH clearly dominates. In general, using ordinary linear regression

does not result in good prediction in small area models as demonstrated by the third column in

Tables 1 and 2. However, when the linking model’s mean (x�

i
β) dominates as in the case of Table 2,

and the sampling distribution is Gaussian, then linear regression can be competitive.
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Table 1. MSPE of θ̂i for Each Method of Estimation across Four Data-generating Scenarios: Normal Errors,

Gamma Errors, Beta (symmetric), and Beta (Asymmetric). Here, p = 1, β ≡ 1, and λ = 0.5.

D AGFH HB LM Adj REML

Normal
0.1 0.63 (0.15) 0.60 (0.14) 0.70 (0.20) 0.63 (0.17)

0.01 2.13 (2.45) 1.62 (1.47) 2.59 (1.95) 1.96 (1.60)

Gamma( 1
2
,10)

0.1 0.679 (0.55) 0.77 (0.55) 0.683 (0.21) 0.90 (0.72)

0.01 3.46 (6.70) 2.30 (3.50) 2.44 (1.79) 4.70 (7.11)

Beta( 1
8
, 1
8
)

0.1 0.50 (0.17) 0.59 (0.23) 0.71 (0.22) 0.59 (0.22)

0.01 1.47 (1.53) 1.67 (1.75) 2.83 (2.04) 1.79 (1.99)

Beta( 1
12

, 1
6
)

0.1 0.47 (0.10) 0.60 (0.14) 0.69 (0.18) 0.61 (0.17)

0.01 1.19 (0.84) 1.57 (1.28) 2.31 (1.74) 1.80 (1.68)

Figure 2. Comparison Between AGFH MSPEs and those of the Other Estimating Values, with a Diagonal Line

Drawn along Parity. Points Lying above the Line Indicate AGFH is Favorable; Points Below Parity Favor Other

Methods. Here, p = 3, β ∼ Unif(−5, 5), D = 0.01, and λ = 0.5. From Top Left: Normal Errors, Gamma Errors,

Symmetric Beta Errors, Asymmetric Beta Errors.
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Table 2. MSPE of θ̂i for Each Method of Estimation across Four Data-Generating Scenarios: Normal Errors,

Gamma Errors, Beta (Symmetric), and Beta (Asymmetric). Here, p = 3, β ∼ Unif(−5, 5), and λ = 0.5.

D AGFH HB LM Adj REML

Normal
0.1 1.00 (0.28) 0.77 (0.27) 0.88 (0.31) 0.80 (0.34)

0.01 6.83 (4.57) 3.71 (2.17) 4.74 (3.08) 3.97 (2.37)

Gamma( 1
2
,10)

0.1 0.97 (0.95) 0.95 (0.84) 0.89 (0.36) 1.04 (0.94)

0.01 4.59 (5.54) 3.46 (3.37) 4.11 (3.43) 4.54 (5.26)

Beta( 1
8
, 1
8
)

0.1 0.65 (0.15) 0.75 (0.18) 0.83 (0.20) 0.74 (0.17)

0.01 1.62 (1.38) 3.59 (1.71) 4.19 (2.14) 3.38 (1.69)

Beta( 1
12

, 1
6
)

0.1 0.61 (0.14) 0.72 (0.22) 0.82 (0.26) 0.71 (0.23)

0.01 1.25 (0.87) 3.94 (2.87) 4.81 (3.18) 3.88 (2.60)

Table 3. MSPE of θ̂i for Each Method of Estimation across Four Data-Generating Scenarios: Normal Errors,

Gamma Errors, Beta (Symmetric), and Beta (Asymmetric). Here, p = 1, β ≡ 1, and λ = 5.

D AGFH HB LM Adj REML

Normal
0.1 4.14 (0.50) 3.83 (0.45) 5.15 (0.53) 3.51 (0.40)

0.01 6.67 (2.71) 6.00 (1.55) 7.04 (2.02) 6.28 (1.66)

Gamma( 1
2
,10)

0.1 3.71 (0.79) 4.16 (0.82) 5.07 (0.74) 3.84 (0.89)

0.01 7.73 (6.45) 6.91 (4.35) 6.83 (2.12) 9.01 (7.24)

Beta( 1
8
, 1
8
)

0.1 4.08 (0.71) 3.65 (0.70) 4.94 (0.71) 3.37 (0.54)

0.01 5.67 (1.76) 5.87 (2.00) 7.07 (2.21) 5.90 (2.24)

Beta( 1
12

, 1
6
)

0.1 4.05 (0.7) 3.79 (0.55) 5.25 (0.70) 3.55 (0.47)

0.01 5.56 (0.95) 6.08 (1.36) 6.87 (1.82) 6.14 (1.67)

5.2. High Latent Variability

Here, we consider the case where λ = 5, thus there is considerable additional variability in the unob-

served θi values.We leave the linkingmean, x�

i β, and the sampling-level precisions, Di ’s, unchanged.

Thus in this framework, there is considerable additional variability, and the signal-to-noise ratio is

lower (greater λ relative the variability of the sampling distribution). In this case, the AGFH per-

forms the best among the competing methods when D = 0.01 and the sampling errors are highly

non-normal (see Tables 3, 4). When sampling-level variances are low and the precision is set at

D = 0.1, the traditional EBLUP-based approach eclipses the other techniques in most cases.

6. Concluding Remarks

In this article, we present a new semiparametric extension of the Fay-Herriot model, termed the

agnostic Fay-Herriot model (AGFH). Here, the sampling-level model is expressed in terms of an

unknown general function g(·). Thus in principle, the AGFHmodel can express any distribution in

the sampling model since the choice of g(·) is extremely broad. We proposed a Bayesian modelling

scheme for the AGFH where the unknown function g(·) is assigned a Gaussian Process prior. This
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Table 4. MSPE of θ̂i for Each Method of Estimation across Four Data-Generating Scenarios: Normal Errors,

Gamma Errors, Beta (Symmetric), and Beta (Asymmetric). Here, p = 3, β ∼ Unif(−5, 5), and λ = 5.

D AGFH HB LM Adj REML

Normal
0.1 4.48 (0.76) 4.43 (0.67) 5.13 (0.73) 3.89 (0.66)

0.01 10.48 (4.01) 7.75 (2.64) 8.79 (3.10) 8.02 (3.43)

Gamma( 1
2
,10)

0.1 4.29 (1.2) 4.63 (0.95) 5.28 (0.68) 4.11 (1.06)

0.01 10.43 (11.26) 9.21 (8.13) 8.95 (3.57) 10.42 (9.37)

Beta( 1
8
, 1
8
)

0.1 4.78 (0.66) 4.45 (0.65) 5.20 (0.60) 3.73 (0.51)

0.01 6.30 (1.14) 7.54 (1.81) 8.30 (2.01) 7.40 (1.74)

Beta( 1
12

, 1
6
)

0.1 4.47 (0.94) 4.20 (0.97) 5.17 (0.76) 3.64 (0.67)

0.01 6.43 (1.57) 7.46 (2.34) 8.15 (2.57) 7.14 (2.30)

choice naturally restricts the scope of the function g(·). Using a Metropolis within Gibbs sampling

Markov ChainMonte Carlo scheme, we studied the performance of the AGFHmodel in relation to

three other models. Among these three, we have the hierarchical Bayesian model for the traditional

Fay-Herriot model (1.1)(1.2) as one of the competitors, thus studying the performance of hierarchi-

cal Bayesian models as well in this article. The other competitions are the popular EBLUP-based

prediction method, and the use of linear regression-based prediction. We constrain the modelling

and simulation frameworks to adhere to the moment conditions (1.3) and (1.4) so that the EBLUP-

based and regression-based predictions remain plausible.

It can be seen that in general the AGFH method performs very well. It clearly outperforms

rival techniques when the sampling-level precision is small (i.e., variance is high) and when the

sampling distribution is bounded. The hierarchical Bayesian method also generally performs well.

When the signal-to-noise ratio is weaker, the EBLUP-based method is often very competitive. The

linear regression-based method is generally not very competitive unless the mean of the linking

model, x�

i β, dominated its variance. If the moment conditions (1.3) and (1.4) are not imposed, the

EBLUP-based and regression-based method are not competitive at all.

Overall, our simulation results show that when the moment conditions (1.3) and (1.4) are

imposed, the hierarchical Bayesian technique and even the empirical Bayesian technique can yield

very reasonable predictions even from misspeci�ed models. This suggests strong robustness proper-

ties of these techniques. While the AGFH framework often produces better numeric results, it also

requires considerable additional computations. Our additional simulations studies suggest that as

sample size M increases, the performance of the AGFH model improves, as expected. Additional

details, including a case study application, may be found in Thompson[26], and the R-package titled

agfh linked to this work is also available Thompson and Chatterjee[27].

Instead of generalizing the sampling model, we could have taken that as some known parametric

distribution and considered the linking model to be completely unknown and modeled that using

the AGFH. The modelling strategy for this case is similar to the one presented above, involving

a Gaussian Process prior and Bayesian techniques. We will report results for this case in a future

article. However, the case where both the sampling distribution and the linking distribution are

unknown ismore complicated. There, identi�ability conditions and other technical restrictions need

to be imposed. In general, the Bayesian framework we use with the AGFHmodel can handle known

constraints on the sampling and linkingmodels, and can be extremely �exible owing to the versatility
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of Gaussian Processes in approximating broad class of unknown functions. However, modelling

�exibility should be balanced with computational requirements and data size availability.

In the simulation results presented above, we could have considerably improved the performance

of theAGFHmodel by assuming certain properties of the sampling distribution. For example, when

the distribution is Gamma, the performance of the AGFHmodel can be improved by assuming the

knowledge that the sampling errors are bounded below. In order to use such knowledge for the

hierarchical Bayesian or empirical Bayesian model, we would need the precise knowledge about the

sampling distribution.
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