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As online social networks (OSNs) become more prevalent, a new paradigm for problem-solving through crowd-sourcing has
emerged. By leveraging the OSN platforms, users can post a problem to be solved and then form a team to collaborate and solve
the problem. A common concern in OSNs is how to form effective collaborative teams, as various tasks are completed through
online collaborative networks. A team’s diversity in expertise has received high attention to producing high team performance
in developing team formation (TF) algorithms. However, the effect of team diversity on performance under different types of
tasks has not been extensively studied. Another important issue is how to balance the need to preserve individuals’ privacy
with the need to maximize performance through active collaboration, as these two goals may conflict with each other. This
research has not been actively studied in the literature. In this work, we develop a team formation (TF) algorithm in the
context of OSNs that can maximize team performance and preserve team members’ privacy under different types of tasks. Our
proposed PRivAcy-Diversity-Aware Team Formation framework, called PRADA-TF, is based on trust relationships between
users in OSNs where trust is measured based on a user’s expertise and privacy preference levels. The PRADA-TF algorithm
considers the team members’ domain expertise, privacy preferences, and the team’s expertise diversity in the process of team
formation. Our approach employs game-theoretic principles Mechanism Design to motivate self-interested individuals within
a team formation context, positioning the mechanism designer as the pivotal team leader responsible for assembling the team.
We use two real-world datasets (i.e., Netscience and IMDDb) to generate different semi-synthetic datasets for constructing
trust networks using a belief model (i.e., Subjective Logic) and identifying trustworthy users as candidate team members. We
evaluate the effectiveness of our proposed PRADA-TF scheme in four variants against three baseline methods in the literature.
Our analysis focuses on three performance metrics for studying OSNs: social welfare, privacy loss, and team diversity.
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1 INTRODUCTION
1.1  Motivation

As online social networks (OSNs) or social media systems become prevalent, a new problem-solving paradigm
by crowd-sourcing emerges. In the OSN platforms, users can post a problem, and then other members form a
team to collaborate and solve the problem. For example, to complete a Human Intelligence Task (HIT) based on
crowd-sourcing, such as Amazon Mechanical Turk, it is critical to form a team of people with relevant skills and
knowledge. When a task requires experts in multiple domains to collaboratively solve the problem, how to form
a team is a critical component that can affect team productivity and performance.
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Our work is motivated by the need of many OSNs (examples to be given below), where a team consisting of
diverse team members with different expertise in various domain areas is needed to solve a problem collaboratively.
A major problem is that OSN users are not employees of a particular enterprise or company. Rather, they are
just members of the OSN, each with their own objective (e.g., monetary gain or social welfare ! gain) to stay in
the OSN community. This is an intricate problem because, on the one hand, the OSN administrator must recruit
members with diverse expertise to solve problems for the prosperity and growth of the OSN. On the other hand,
it must incentivize participating members, knowing that individual members have their own objectives.

We list three OSN examples to illustrate how useful our proposed framework is. The first example of Amazon
Mechanical Turk OSN would allow users to post a Human Intelligence Task (HIT), and workers receive a reward
or payoff when completing the posted HIT. The second example is a Multidisciplinary Co-authorship Collaboration
OSN. This allows a user to post a multidisciplinary problem, and the OSN administrator shall select qualified
members to solve the problem in the form of an article co-authored by the selected members. The third example
is a Social Bookmarking OSN for a posted multi-domain problem, and the OSN administrator shall select qualified
users to collect, organize, share, and discover online resources related to the posted problem.

Motivated by the three examples OSNs above, we propose to leverage trust to select a team formation that
achieves high performance in terms of performance metrics defined by the OSN administrator, such as high
social welfare and low privacy loss to OSN members and high team diversity.

Given a task T, a set of required domain expertise, and the number of required team members, we aim to form
a team to maximize the team’s performance based on the sum of individual members’ utilities to the team. Many
social scientists have shown that team productivity and successful task completion are closely related to the
composition of a team in terms of relevancy and diversity of skill sets, team coherence, trust among members,
information sharing, or shared mental model [33, 44]. However, depending on the nature of the task, the team
may require diverse expertise or focus on high expertise in a single domain.

Diversity has been identified as one of the critical elements of team formation for generating high-quality
solutions to somewhat complicated problems. Such problems may require creative and innovative thought
processes with diverse domain expertise. Various thoughts or multidisciplinary approaches are known to be very
creative and novel and bring more productive and beneficial outcomes in solving highly complicated problems,
compared to methods relying on homogeneous, single discipline-based expertise [52]. Many researchers have
scientifically and empirically proven the positive effect of high diversity on team or organization productivity [51].
However, in our real-world settings, high team diversity does not necessarily always produce high productivity
due to the different natures of an assigned task [45, 63]. To the best of our knowledge, few studies have investigated
such issues.

When collaborating with other team members, a member may care about how much she/he can preserve
privacy while still contributing to the team’s productivity. The primary reason is that collaboration often involves
sharing sensitive information, which a malicious team member could use to perform targeted attacks.

For instance, in the Multidisciplinary Co-authorship Collaboration OSN discussed earlier, a team member may
share the technical details of an ongoing government-funded research project. However, this information used
to solve a part of the multidisciplinary problem may not be disseminated without government approval. If a
malicious member of the team was to spread misinformation, it could affect the individual’s credibility and
reputation. Privacy loss minimization techniques have been studied as a distributed constraint satisfaction (DCS)
problem [23, 58] to preserve perfect privacy without trusting anyone in interactions while minimizing interactions.
However, since minimizing privacy loss normally leads to less information sharing, it may not be possible to
achieve maximum team productivity that often requires more information sharing. In particular, it would be

n the context of ‘Mechanism Design’ within game theory, ‘social welfare’ is defined as the aggregate of the utilities of all individual
players [59].
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hard to complete a task that requires diverse expertise if there is less information sharing due to minimizing
privacy loss. The relationship between privacy loss and team performance has been examined [26]. However,
little work has studied how information sharing in a team affects team performance and privacy loss when the
team is assigned to complete a task requiring expertise levels in multiple, diverse domains.

1.2 Research Goal & Contributions

This work proposes a framework PRivAcy-Diversity-Aware Team Formation, called PRADA-TF. PRADA-TF can
be applied in an OSN where team members are selected based on trust relationships between them. Trust can
be estimated based on their privacy preferences and expertise levels. PRADA-TF offers a mechanism design
(MD)-based team formation algorithm that effectively considers the required level of team expertise and the
privacy preservation preferences of team members. In addition, it identifies the optimal settings of key design
parameters that maximize team productivity while maintaining a balanced level of team diversity, information
sharing, and members’ privacy preferences.
Our work makes the following key contributions:

(1) In our work, we introduce PRADA-TF, a game-theoretic strategy rootedin Mechanism Design (MD) [46],
tailored for solving team formation issues. The MD framework was selected to orchestrate a strategic game
involving a mechanism designer (i.e., a centralized authority) and numerous cooperative agents, potentially
with divergent goals. This framework ensures that each participant, driven by the principle of individual
rationality — where every entity is assumed to act in their best interest to maximize their utility [59] - can
collectively reach their objectives. Through the application of MD, PRADA-TF delves into the impact of team
diversity and the privacy preferences of team members on performance across a variety of collaborative
endeavors within Online Social Networks (OSNs).

(2) We leverage a belief theory called Subjective Logic, which offers the capability of deriving trust relationships
between two users with no direct relationships to select a set of team members as promising candidates.
Although trust has been considered in various domains, we found little work considering prior trust relation-
ships in the context of TF in the OSN, where the game-theoretic MD is used to form a team based on team
diversity and privacy.

(3) Unlike any other approaches in the TF research, we consider two scenarios — ‘expected’ and ‘actual’ when
executing any given task. In the ‘actual’ task execution, a team member’s behavior is modeled based on the
player’s privacy preference revelation (see Section 5.4). Modeling this real-world scenario provides insightful
details about the ‘actual’ performance of the team regarding social welfare and potential privacy loss, which
is first studied in this work.

(4) Based on the generated trust network, we consider possible private information loss due to other team
members’ distrust (or dishonesty). This potential privacy loss directly affects team members’ behaviors by
affecting team performance and indicates trust in the team.

(5) We create two semi-synthetic datasets resembling two separate OSNs to test the feasibility of our approach
based on real-world Netscience [49] dataset and IMDb [7] dataset. These two datasets, each containing
thousands of members, realistically simulate a Multidisciplinary Co-authorship Collaboration OSN and an
artist OSN following the paradigm of problem-solving by crowd-sourcing.

(6) We conduct an extensive experiment for the in-depth comparative performance analysis of the seven TF
schemes consisting of four variants of our proposed PRADA-TF scheme and three state-of-the-art baseline
schemes. We discuss the key findings of their performance in terms of potential private loss, actual/expected
social welfare, team diversity, and asymptotic time complexity in Big-O notation.

The preliminary research of this work has been published in our prior work [40]. In [40], we proposed a
team formation (TF) algorithm in the context of OSNs that can maximize team performance and preserve team
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members’ privacy under different types of tasks. The present paper substantially extends [40] by providing the
following additional contributions: (1) We substantially extended the discussions of the related state-of-the-art
approaches and clarified the key differences between our work and the existing counterparts. (2) We provided the
details of how a belief model (i.e., Subjective Logic, or namely SL) is used for the team leader (i.e., a mechanism
designer) to select team members based on two operators provided by the SL (i.e., discounting and consensus
operators [27]). This offers the estimation of trust between the team leader and candidate team members based
on the expertise and privacy preference levels in a given OSN. (3) We conducted the algorithmic complexity
analysis of the seven TF schemes, including our schemes and other counterparts, based on Big-O asymptotic
time complexity analysis and simulation running time in Section 7.5. A TF problem is known as an NP-Hard
problem [31]. Hence, this analysis can deliver insights into how the proposed heuristic approach can achieve at
least acceptable complexity for its use in practice. (4) We conducted an in-depth sensitivity analysis to investigate
the outperformance of the proposed PRADA-TF over other competitive counterparts by varying the values of the
following key design parameters: (a) a different type of tasks requiring diverse skill sets and domain expertise; (b)
a different level of the team members’ privacy preferences; and (c) a different team size (i.e., the number of team
members). These are addressed in Sections A.1-A.3.

The rest of the paper is structured as follows. Section 2 provides an overview of the related literature. Section 3
describes the example scenario and the task, information, and adversarial models considered in this work. Section 4
describes the objective function of the problem we aim to solve. Section 5 provides the details of the proposed
team formation approach based on the mechanism design and trust network modeled by a belief model called
Subjective Logic. Section 6 gives the detailed experimental settings for the conducted experiments. Section 7
demonstrates numerical results and provides underlying reasons for the in-depth performance analysis of the
compared schemes. Section 8 concludes the paper with key findings.

2 RELATED WORK

In this section, we discuss the overview of the existing related work, including collaborative team formation,
team diversity, privacy-preserving in multi-agent systems; and trust-based applications for OSNs.

2.1 Collaborative Team Formation

Team formation (TF) research has proposed many approaches using various team member selection criteria,
including domain expertise [32], cost of communications between team members [1, 32] or between team members
and a leader [29], skill sets [1, 32], or fair workload among members [1]. In addition, a TF problem has been
studied in social networks [8, 17, 66] in that close social relationships and homophily of team members can
reduce communication costs but may not be desirable to derive novel ideas [8]. In addition, a game theory based
on Mechanism Design (MD) is leveraged to solve the TF problem. In MD, a centralized entity called a mechanism
designer aims to maximize the sum of all participating agents’ utilities, known as social welfare. Each agent has its
own utility function to maximize. The first formal MD framework for TF was presented [68] with the analysis of
incentive compatibility, social welfare, and fairness. Liu et al. [39] solved a TF problem in a crowdsourcing market
using the pricing mechanism design whereas Wang et al. [65] took a game-theoretic approach and modeled each
worker in crowdsourcing as a selfish entity who did not necessarily cooperate with the request to join a social
crowdsourcing team. However, little work has considered team diversity and privacy issues in TF problems,
which are addressed in this work.

2.2 Team Diversity

Diversity is a subjective phenomenon created by group members based on the dissimilarity (or similarity) of
social identities. The diversity in the workplace was investigated by an individual’s visible (e.g., age, race, sex),
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non-visible (e.g., attitude or knowledge), and discretion (e.g., sexual orientation or hidden disability). In addition,
diversity in team members’ personality traits can impact team performance [2]. Gomez and Bernet [20], Pieterse
et al. [54], van Veelen and Ufkes [64] reported the positive effect of cultural diversity on team performance.
Moreover, Tasheva and Hillman [61] argued that individual-level diversity and team-level diversity are not
independent. Ely and Thomas [14] found that the benefits of cognitive diversity can be seen in complex problem-
solving rather than in performance. Cohen and Yashinski [5] showed that finding an optimal diverse team of
people is an NP-Complete problem. Marcolinon et al. [41] studied how the team’s diversity can beat the team’s
high expertise in team performance.

Most team diversity research has been conducted in the social sciences, while a few studies [5, 41] have
theoretically examined how the diversity of team members can affect team performance in terms of the mechanism
design perspective in game theory, which is studied in our work.

2.3 Privacy Preservation

Many studies proved that information sharing is an apparent driving force leading to high team performance and
success [43, 67]. However, the adverse impact of information sharing via close interactions among team members
has not been sufficiently explored. Privacy loss or minimization problems have been studied in distributed
constraint satisfaction (DCS) problems [23, 58]. In the DCS problems, distributed negotiation or cooperation is
studied while preserving perfect privacy by not trusting anyone in interactions. Both works [23, 58] showed a
tradeoff between privacy and efficiency.

Dwork [12] first introduced a mechanism design-based e-differential privacy (DP) to ensure a person’s privacy
cannot be compromised with the release of their data if the data is not present in the database. DP was extended to
provide game-theoretic guarantees [42], including approximate truthfulness, collusion resistance, and repeatable
play. External incentives are necessary for individuals to participate and report truthfully [50, 69]. There was
a privacy-aware mechanism design model of efficient results [50] while highlighting how ignoring privacy
awareness in the design of mechanisms may render it not incentive compatible. Xiao et al. [69] introduced a
transformation of a truthful mechanism into a deferentially private mechanism that remains truthful based on
the ideas for privately releasing histogram data. [24, 70] proposed a privacy-preserving framework in the context
of crowdsourcing by using blockchain technology. However, mechanism design-based privacy research has not
solved TF problems.

Du et al. [10] explored the application of game theory to user interactions and decision-making processes
regarding privacy protection in SNs. This study underscored the critical role of incentive mechanisms, community
influence, and evolutionary dynamics in shaping user privacy behavior. Concurrently, Du et al. [11] delved
into the necessity of safeguarding privacy-sensitive information within Internet of Things (IoT) applications.
It addresses this through the lens of privacy-conscious data analysis, secure data exchange, and trustworthy
data aggregation. The paper elaborates on utilizing distributed Multi-Party Computation (MPC), auctions, and
contractual agreements to mitigate security risks while advocating for continuous enhancements in IoT security
frameworks, protocols, cryptographic methods, and privacy-preserving data management strategies.

Based on the literature review above, TF problems with privacy preservation have not been sufficiently explored
where the TF1is also diversity-aware in team composition.

2.4 Trust-based Applications for OSNs

Trust plays an increasingly important role in decision-making in OSNs [3]. Lai and Turban [30] provided evidence
from virtual social groups that users tend to trust other members by expertise, identity, and personal information.
Tang et al. [60] used a measure of trust to share and exchange information and aggregate or filter data. Trust
also contributed to exhibiting the risk-taking behavior by users participating in OSNs [22]. Due to the lack of
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interactions between the majority of the users on any OSN platform, predicting and establishing trust between
any two users is a difficult task [19]. Various approaches have been presented for trust prediction based on the
following three categories: graph-based trust models [37, 38, 57], interaction-based trust models [55], and hybrid
trust models [18, 57]. Lin et al. [34] leveraged graph convolutional neural networks (GCNs) to propose Guardian
to learn latent factors in social trusts with GCNs. Nasir and Kim [47] proposed a framework based on transpose
trust propagation and co-citation to evaluate the trust and distrust between two unconnected users in a network.
Lin and Li [35] proposed a framework to predict dynamic social trust, which varies over time.

The above works discussed mainly focused on establishing and predicting trust between users and building
social groups or communities with high trust in OSNs to provide trustworthy services. However, our work
focuses on how trust can be leveraged to select a team formation that achieves high performance in terms of the
expected/actual social welfare, expected/actual potential privacy loss, and team diversity.

3 PRELIMINARIES

In this section, we describe the following: an example scenario mainly considered in this work, task model (i.e.,
attributes of an assigned task), information model (i.e., properties to explain the value of information for the
information shared by team members), and adversarial model (i.e., what adversarial behaviors a team member
may exhibit).

3.1 Example Scenario

We assume a scenario where a team must be formed in OSN platforms to successfully complete a sufficiently
complicated task. Imagine an online crowdsourcing system like Amazon Mechanical Turk, where a requestor
wants to form a team to execute a given task. We assume that the task requires fairly diverse skills or knowledge
and collaboration across team members to complete successfully. Thus, selecting qualified team members is the
key to success.

A team will consist of members with diverse levels of domain expertise and privacy preferences. Each member’s
privacy preference will affect communication patterns among team members, in which the contribution of
information naturally leads to high team productivity. In an OSN, a team leader aims to gather promising
candidate team members to achieve a particular task by reaching out to his/her friends or friends of friends. We
assume that each user is a trustor who can estimate trust in his/her friends, as trustees, based on domain expertise
or willingness to share information available to a trustor through direct or indirect experiences. Through the
chain of trust relationships between users, the team leader can gather a set of promising candidates for team
members and select a group based on specific criteria. We describe how to calculate a user’s trust in another
user and how the team leader collects a group of promising candidates and accordingly selects the final team
members in Section 5.5.

3.2 Task Model

We consider a multi-domain, multidisciplinary task posted in the OSN that requires a team of OSN users who
have expertise in the relevant domains or disciplines. Those team users can complete the task and maximize the
benefits of OSN in terms of the performance metrics defined by the OSN administrator. Such a task is general
and can range from a Human Intelligence Task (HIT) posted in the Amazon Mechanical Turk OSN, a technical
multidisciplinary problem posted in the Multidisciplinary Co-authorship Collaboration OSN, to an online resource
collection task posted in the Social Bookmarking OSN.

A prospective team is given a complex task composed of the following fundamental components:

e Team size (m): Any given prospective team consists of m team members. Hence, the team leader will select m
number of members for the team he/she aims to form.
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e Required domain expertise (E): We model the required domain expertise for a given task as a set, represented
by E = {e1, ez ...,..., e}, where e, is the extent of expertise in the domain & required to complete the task
with [ < m. Note that ey, refers to a real number where },, cg en = €, meaning that the sum of all expertise
levels equals €. Note that each domain expertise level can be filled by multiple members’ expertise levels in the
domain. Thus, each domain expertise is not necessarily met by a single person.

We conduct sensitivity analysis of the considered TF algorithms’ performance when varying m and |E| and
discuss their overall trends in Section 7.

3.3 Information Model

A team member’s expertise preference (07) and contribution to the team performance may introduce a different
level of impact to the team performance. We model how valuable the contributed information is to the team
performance [56] by the so-called Value-of-Information (Vol), which is quantitatively measured by real numbers
in [0, 1] in terms of the following key components:

o Credibility (crd;p) represents the degree of information credibility player i provides based on his/her expertise
level in domain h.

o Usefulness (uf;) indicates the usefulness (or relevance) of the information player i provides where player i has
a certain level of expertise in the domain h.

e Novelty (nov;,) indicates the degree of novel ideas the information player i provides based on his/her expertise
in domain h.

Vol characterizes how much each team member can contribute to team performance through the quality of
information they provide. We identify three key factors that determine the quality of information: credibility,
usefulness, and novelty. These three factors can affect the team performance in different ways depending on a
user’s qualification, as the task may require different levels of information credibility [13], usefulness [36], and
novelty (or creativity) [21, 36]. We formulate these three factors as a weighted sum, a common way to combine
multiple factors into a single value [4]. In Eq. (1), we use this weighted sum to formulate the VoI, allowing each
weight to be considered depending on the specific context.

We measure the Vol about the information player i provides based on his/her expertise in the domain A by:
Volip, = Werd + crdip + Wyt - ufip + Wnoy - NOVip, (1)

where each of crd;j, uf;,, and nov;, is measured as a real number in [0, 1] and we hold weq + Wur + Wy = 1. If
player i is a member of the team executing a task that requires expertise in E, player i’s crd;;, uf;;, and nov;, are
obtained by:

e ma [0 (40, - |05
7] |

where 0, is represented by a real number in [0, 1] exhibiting player i’s truthful expertise type in domain h and
7 refers to a set of other players j’s in a given context of team composition.

In Eq. (2), player i’s Vol contains the following components: (a) Player i’s actual (truthful) expertise in domain
h, 07 (h), means the information credibility player i can provide, denoted by crd;;; (b) This metric evaluates the
extent to which player i’s expertise in domain h aligns with and contributes to the team’s required expertise level
(ep), directly impacting team performance. A higher uf;; indicates a stronger and more relevant contribution
to the team’s goals in that domain.; and (c) The novelty score assesses the uniqueness of player i’s expertise in
domain h relative to the expertise of other team members, with a higher nov;, signaling that player i brings
distinct and potentially innovative insights to the team’s collective knowledge.

()

0¢
crd, = 05, uf;; = min [1, %], nov;, =
1
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3.4 Adversarial Model

This section describes what adversarial behaviors a team member can exhibit by leaking other team members’
private information to the outside. We model the so-called potential privacy loss (PPL) based on an individual
team member’s distrust level. To derive trust relationships between two entities, even if they are not directly
connected (or known) to each other, we use a belief model called Subjective Logic (SL) [27]. SL is a well-known
belief fusion theory that can model the propagation of a user’s trust in a distributed OSN under uncertainty.
In addition, SL provides the capability of deriving trust relationships between different entities without direct
connection. Then, we use SL to measure a team leader (i.e., mechanism designer)’s trust in other users j’s in
a given OSN setting and denote it by Pj.WD , MD’s projected trust probability in node j. We measure the team
puD

leader’s distrust in user j by 1 — , as detailed in Section 5.6.

We estimate the PPL level of player i (i.e., a team member) by:

pl ( : ) ®)
i=exp| — - s

(Sher(1=85)) (1= Tjeaiz; PHP)
where pl; is the level of PPL that team member i can leak out, and A is a constant to scale the number of domain
expertise (i.e., A = |E|). We also denote the sum of team member i’s shared information with the team based on
(1- 9‘; ,) in given domain h where the revealed privacy preference is denoted by Gﬁl (see Section 5.4). Note that
the team leader (i.e., a mechanism designer) is only aware of the revealed value of player i’s privacy preference.

We also calculate the probability of other team members j’s PPL by (1 — [l emiz; P;VID). If (Xpep(1 - éfh))(l -

[Tjemizj P;VID ) = 0, team member i has zero privacy preference by sharing all information with the team, as
pl; = 0, assuming all other members have complete trust to member i. In this work, we assume that the team
leader is fully trusted with no chance of leaking any private information of other team members to unauthorized
parties.

We estimate PPL (i.e., pl;) based on Eq. (3) to ensure that each team member’s potential privacy loss is
proportional to the amount of private information they share. Because a lower privacy preference means a
member is more willing to share private information. More specifically, a higher PPL incurs when member i
prefers more private information sharing with other team members j’s (used as the denominator in the exponent

part).

4 PROBLEM DESCRIPTION & OBJECTIVE FUNCTION

Our work leverages<a game theory, called the Mechanism Design [15, 59], to solve a team formation problem in
an OSN environment. The team can develop novel, useful, and credible solutions to a sufficiently complex task
that demands diverse expertise. A sufficient level of information sharing with the team is necessary for high
performance. However, it is often unavoidable to face a certain level of privacy exposure to the team or possible
privacy leakout to unauthorized parties due to irresponsible (or less trustworthy) team members. We model a
mechanism designer as a team leader to select relevant team members with the criteria of candidates’ diverse
expertise and privacy preferences to ensure both maximum team performance and minimum privacy leakout.
In the team formation research [43, 67], information sharing and its impact on privacy preservation have been
a challenging problem. In this work, the team leader, as a mechanism designer (MD), aims to enable all players
to expose their truthful expertise and privacy types. This allows the team leader to select the most qualified
team members to maximize team performance while maximally preserving their privacy preferences. Each team
member i (i.e., a player in the Mechanism Design) has a utility, u;, based on the level of team performance a
member i contributes and the level of preserving i’s privacy. The MD aims to maximize social welfare, estimated
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by the sum of all players’ utilities [59]. The team leader’s goal is by the following objective function:

arg 1;1(1683)(( IEZT u,-(x, 9,’, 9_i|0i), VGl € @i, (4)

where ©; indicates a set of preferences and 0; refers to member i’s actual (true) expertise and privacy preferences.
Given X as a set of team composition decisions, x € X is a particular decision. The revealed preferences to the
team leader (i.e., MD) are denoted by 6; for player i and 6_; for other players —i (i.e., except i). A set of team
members chosen by team composition decision x is given by 7. Eq. (6) provides how u; (x, 6;,0_;16;) is estimated.

The team leader aims to maximize social welfare by selectlng a set of relevant team members in terms of their
expertise and privacy preferences, where the social welfare is estimated based on Eq. (5).

OSN users may not always behave rationally. We consider two types of irrational actors: (1) a lying actor that
exhibits a different privacy preference during task execution from the one revealed by the actor during team
formation; (2) an adversarial member that leaks out one member’s private information to other members. We
dealt with these two types of irrational actors by dynamically changing the OSN administrator’s subjective belief
towards a user’s trust so that for a future task posted, the administrator can select truly trustworthy actors for
team formation. More specifically, since both lying and privacy leakout behaviors are considered distrustful
behaviors that can impact a user’s trust, we use a belief model called Subjective Logic to estimate the mechanism
designer’s subjective belief towards a user’s trust.

5 PROPOSED PRADA-TF FRAMEWORK

In this section, our proposed PRADA-TF uses a game-theoretic approach Mechanism Design [46]. We describe a
player’s type, payoff computation, preference revelation, team selection process, and actual behavior modeled.

5.1 Mechanism Design for Team Formation

A set of players, N = {1,2,---,n}, participates in a team formation where a set of team choice x € X is
given with X = {x1,x,,...,x,}. Each player i has a truthful private signal (i.e., type) 6; € ©;, representing
preferences over outcomes. A set of truthful private signals by all players is denoted by 8 = (64, 62, . . ., 8,), which
describes the profile of all truthful types for the n players. The state 0 is selected randomly from the state space
O =0, X 0,,...,0,, representing the set of all possible profiles of types 8 € ©. The MD aims to select x, a set
of team members, to form a team based on the members’ preferences, 0’s (i.e., the decision rule by x(0)), to
maximize the sum of the payoffs of all team members by:

Z ui(x, 0;,0-;10;), 5)

€Ty

where u;(x, ;, 6_;]6; ) refers to player i’s utility when the MD selects x when player i’s revealed preference type
is 6;, other players j’s revealed preference types are denoted by 6_;, and 6; is player i’s truthful preference. The
ui(x, 6;, 0_,|01) is given in Eq. (6).

5.2 Types of Players
Type of each player 0; is represented with two private signals (i.e., 0; = {0}, GP H:

e Domain expertise (6;): We represent the domain expertise of player i with a vector of real numbers in [0, 1],
07 ={05,,...,05}, given 3 ,cpr 05 < |M| where M is a set of domain expertise whose subset is E as E C M.
Recall that E is the required domain expertise for a given task, implying 3,cr 05, < |E|. Note that the level of
expertise can represent the types and levels of skill sets a user has.
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e Privacy preference (Gf ): In a collaborative team setting, each member may have a different preference for
sharing his/her private, sensitive information. We denote this player i’s privacy preference as a vector Gf =
{oh,of, ...,
team members j’s. Note that higher 95) means that the player prefers to share less information for his/her
privacy loss protection in executing the given task. We follow the same concept of privacy used in the
privacy-preserving team formation literature [12, 23, 26, 42, 50, 58, 69]. In those works, an individual’s private
information is defined as any information the individual shares with team members while executing a given

task.

95)}, where 95) represents player i’s preference in revealing information in domain o with other

Since expertise is estimated by a given objective and quantifiable criteria (e.g., track record, publications, work
experience, recommendations, etc.), a player cannot lie about their domain expertise. However, since a player’s
privacy preference cannot be known without direct experience, the preference might change depending on
other team members, their privacy preferences, and a given task (e.g., what information is required to share).
In particular, the player may want to use lower privacy preference to show the willingness to contribute more
to the team. We assume that the players do not expose their privacy preference higher than their true privacy
preference because the reluctance to share information with higher privacy preference may lead the player to be
excluded from the member selection. That is, we assume 07 = éf (i.e., revealing truthful expertise preferences)

while allowing 95’ > éf’ (i.e., possible to reveal not truthful privacy preferences).

5.3 Player’s Payoff

Recall that in game theory, each player receives a reward when an outcome is reached due to the combined
decisions and strategies taken by all the players. The reward received by an individual player for taking an action
leading to an outcome that helps the player achieve the objective is called a payoff.

After an outcome is generated, player i’s payoff can be calculated by:

wi (x, 05, 0-410;) = ™™ (x, 0 0_,105) + uP™ (x, 0y, 0_410;) — pli, (6)

where u{**™ (x, 6;,0_;10;) is the expected team performance when the MD decides to choose team x where 6;
is player i’s revealed type, 0_; is other players —i’s revealed types, and 6; is player i’s truthful type. The pl;
refers to i’s potential privacy loss (PPL), and ufriv(x, 6;,0_;16;) reflects how much player i’s privacy preferences
is preserved.

We measure uﬁeam(x, é,-, é-,-|€,-) based on how much credible, useful, and novel information (i.e., VoI) can be
influenced by playeri’s expertise and privacy preferences as:

W (.6, 0_,10) = Z Vol - (1 - 6)2 (7)
heE

This equation models the decrease of novelty when more information is shared as discussed in [62]. Furthermore,
by utilizing the privacy paradox and leveraging Privacy Calculus Theory [53] and Communication Privacy
Management Theory [6], we estimate the privacy-related utility as:

W™ (x, 0,01 1 0)) = >"(1= Voly) - (0F,)%. (8)
heE

The above utility reflects that sharing in less valuable information preserves player i’s privacy more and introduces
less adverse impact on team performance than sharing in more valuable information.
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5.4 A Player’s Preference Revelation
Unlike other TF research, we additionally validate the quality of TF algorithms when a task is actually ex-

ecuted by the selected team. Players do not have to reveal their truthful preferences, 6; = (67, Qf ), where
07 = {05,05,...,07 } and 9;0 = {0{’1, 0{’2, . 951}. We denote player i’s revealed preferences by 0; = (éf, é‘lg) A

player’s actual behavior is modeled based on whether the player reveals his/her truthful privacy type considering
the following two cases:

e Case 1: Gf == éf’ where player i does not lie about his truthful type. In this case, the revealed preference is the
same as the truthful preference and helps the MD make a fair decision.

e Case 2: Gf * éf’ where player i’s revealed preference is different from their truthful preference. In such a
scenario, during the actual task execution, the player can choose to exhibit the revealed preference or the
truthful preference based on the estimated utility. Player i’s preference in an actual task is denoted by 0? " and
is determined by:

oF =

1

’ {élp if 12} (x*, éi, éfi|9i) > ui(x, Gi, é—i|6i)a (9)

Gf otherwise.

Here u;(x*, 6;, 6_;]6;) is the payoff when x* decision is taken by the MD where 0; is the revealed type of the
player i, 6_; is other players’ revealed types, and 0; is player i’s truthful type. Thus, a player will compromise
his/her privacy preference if and only if the payoff by compromising the truthful privacy preference, Qf , using
the revealed privacy preference, é‘lo , brings a better payoff than using Gf .

To determine the lower bound of how much a player can compromise its revealed preferences, we introduce
a constant pc; as a real number in [0, 1]. The player can then select a real number between [pc; - Gf, Gf], as its
exhibited privacy preference. Inherently, the higher the value of pc;, the lower the willingness of the player i
has to compromise the privacy preference and vice-versa. Note that when player i compromises his/her privacy
preference, it implies that the player announces a lower privacy preference than 67 to increase its benefit by
sharing more information for team performance. We will investigate how pc; affects a team’s social welfare (i.e.,
team performance) in Section 7.

5.5 Trust-based Team Selection Process

5.5.1 Trust Definition. Trust is commonly defined based on competence and willingness, as identified in our
prior extensive trust modeling survey work [3]. Since competence is closely related to the level of expertise and
willingness commonly means how often one is willing to share information with others, trust therefore can also
be defined by expertise and information sharing. Recognizing that information sharing is exactly the opposite of
privacy preference, we define trust by expertise and privacy preference in this work.

5.5.2 Team Selection. Consider a bi-directional weighted social network of experts V = {vy,...,v12} in Fig. 1,
where each expert is associated with an expertise level in |M| knowledge domains. The weight of an edge from
one expert (v;) to another expert (v;) represents the level of trust v; has in v; by ¢;;. Then, this trust propagates
to arrive at MD’s trust in v; using Subjective Logic [27], which will be discussed in the next Section 5.6.

The team leader (i.e., MD) aims to form a skilled and privacy-aware team that outperforms any other team
composition regarding aggregated social welfare. The prospective members of the team are selected from the
MD’s k-hop trust network, where the MD is the central node, similar to a hub. All member candidates within k-hop
distance from the MD are selected during team formation. Based on the network density, the value of k is adjusted.
Innately, the higher the value of k, the higher the number of member candidates chosen is, and vice-versa. Given
all the prospective team members in MD’s k-hop trust network, the final team is chosen as follows: (1) For all the

ACM Trans. Intell. Syst. Technol.



12« Yash Mahajan, Jin-Hee Cho, and Ing-Ray Chen

users in the network, direct trust is calculated between all adjacent users, which is then propagated to derive the
indirect trust from the MD to any other users in the network; (2) All the member candidates whose direct/indirect
trust from MD is above a particular threshold (e.g., 0.9) are selected. Our proposed PRADA-TF’s candidate team
selection methods are applied to it to select the top ¢ number of member candidates; and (3) Finally, the team of
m members is selected by applying the social welfare function to select the top contributors for the required task,
from the top ¢ from the previous step. The following sections describe the k-hop trust network, followed by the
candidate team selection methods.

5.6 Building k-Hop Trust Network

As previously described, a k-hop trust network is built
from the MD outwards, and the member candidates
with trust values above a particular threshold (e.g., 0.9)
are selected for further rounds. When two adjacent
users in the OSN are connected, we calculate the direct
trust between them based on objective and verifiable
criteria. When two users are directly connected, they
can accurately estimate each other’s expertise and
privacy preferences based on previous experiences.
However, when users are not directly connected, the
trust can be derived by propagating it along the trust
chain with the direct trust values, as calculated earlier,
with the help of the discounting operator. Since the
MD can reach any user through indefinitely long trust Vg
chains, we limit the maximum length of these chains
to reduce complexity and remove highly uncertain
opinions. Finally, as the MD can reach the user through
different trust chain paths (within the maximum length
threshold), we combine these multiple opinions using
the consensus operator to derive reasonably certain
opinions about any user’s expertise and privacy preferences.

In this work, we estimate the MD’s trust in each user in a given trust network (e.g., an expert social network)
based on a binomial opinion (i.e., trust or distrust) offered by SL [27]. We establish a k-hop trust network using
the consensus and discounting operators. Due to the space constraint, we discuss them in Appendix B (Binomial
Subjective Opinions and Their Fusion Operators) in the supplement document.

V12

Fig. 1. The considered trust network where the gray, blue, and
green nodes indicate Tst, 2nd, and 3rd hop nodes, respectively.

5.7 Candidate Team Selection

As described in Section 5.5, using a sufficient value of k, a k-hop network is generated such that all the prospective
team members are reachable from the MD. From the resulting network, trust is propagated using the consensus
and discounting operators to arrive at a k-hop trust network, which is then leveraged to select the top ¢ players
for the next selection.

To all the top ¢ selected candidate members, we apply Candidate Team Selection (CTS) methods to avoid high
complexity and further cut down the number to {. From the { selected candidate members, the MD chooses
the final m players to perform a given task based on the social welfare function. Considering all combinations
of team x, the MD selects the team that maximizes the social welfare, as described in Eq. (14). Since the social
welfare function is used to select a prospective team, the function’s output is the expected social welfare and is
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Fig. 2. PRADA-TF’s Candidate Team Selection Process: E-SW and A-SW. refer to expected or actual social welfare. E-PPL and
A-PPL indicate expected or actual potential privacy loss. MD is a mechanism designer taking the role of a team leader.

not reflective of the social welfare achieved in an actual task execution where they may not be the same. In Fig. 2,
we summarize the overview of our proposed PRADA-TF’s candidate selection process described in this section.

6 EXPERIMENT SETUP

In this section, we describe performance metrics, datasets, parameterization, and the considered schemes used
for the comparative performance analysis of our proposed PRADA-TF with the existing counterparts.

6.1 Metrics

Our proposed PRADA-TF variants are evaluated for performance against the following metrics:

e Team Diversity (7 D ): Team Diversity captures how diverse each team member’s expertise background is,
compared to the rest of the team. Team diversity, 7D, is calculated by:

Zie"]’?{i

7D = ,
171

(10)
where 7 refers to a set of all members in the team composition x and HH; measures the difference in team member
i’s expertise background to all other team members’ expertise types. Based on the Hellinger distance [25], H;
is estimated by:

S e e H(65,65)

H; = T , (11)
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where the difference between player i’s background and player j’s background, H (67, 07), for given team 7~

and i, j € 7, is computed by:
HOE05) = [ DS (12)
he&

Shep max [0,65, - 02, |
where Df; = ) (13)
! |E|
The ¢, and Gj?h represent the truthful expertise types of player i and j in domain A, respectively.
o Social Welfare (S'W ¢): This refers to a team’s expected social welfare estimated based on Eq. (6), which is a
sum of utilities of all the team members participating in a task:

SWq = Z u; (x, 0, 0_1;). (4
€T

Note that the actual SW is estimated by replacing revealed preferences, éi, with exhibited preferences, 9; ,at
the execution time. Therefore, the experimental results show both expected and actual social welfare.

e Potential Privacy Loss (PP L): This metric refers to the amount of penalty a player may have because of a
potential privacy leakout by other players. We use pl; in Eq. (3) to measure it. We demonstrate the expected
and actual PPL where a player’s revealed preference estimates the expected PPL, éi, while the actual PPL uses
the exhibited privacy level used by a player at task execution.

o Complexity Analysis Metrics: We analyze asymptotic time complexity using Big-O and simulation running time
in sec.

6.2 Experimental Setup

6.2.1 Datasets. We create two semi-synthetic datasets resembling two separate OSNs to test the feasibility of
our approach:

(1) A Netscience dataset is created from the real-world Netscience [49] dataset containing a network of 1,590
scientists working on Network Theory and Experiments. The Netscience dataset resembles a Multidisciplinary
Co-authorship Collaboration OSN where multidisciplinary collaboration is of utmost importance. We compile
the reference lists of two review articles on networks [16, 48]. Using the Scopus AP, the publication records
and metrics are extracted for the top three subject areas (according to All Science Journal Classification, or
ASJC) to determine the expertise of each author in the network using their corresponding publications and
citations. We further consolidate the network into five categories: biology, biochemistry, science, arts, and
engineering: Next, by creating edges whenever the cosine similarity of two authors equals or exceeds 0.9 in
an expert level and subject area, this sparse network will be converted into a small-world network, easier for
authors to reach through the MD. Based on the processed Netscience data, a network containing 1,269 nodes,
28,072 edges, and five subject-area specific communities is constructed. Subsequently, a Gaussian distribution
draws the privacy preferences of each author with a mean of i = 0.5 and a standard deviation of o = 0.3.

(2) An IMDb dataset is created from the real-world IMDb dataset [7], which contains a network of 1,021 artists
acting in global entertainment industries. The co-star network, where an artist’s expertise is publicly verified,
is suitable for evaluating the effects of diversity and privacy in a collaborative setting. The IMDb dataset
resembles an artist OSN as it contains sufficient details about an artist in the OSN: (1) different genres the
artist has acted in; and (2) the number of times the artist has co-acted/collaborated with other artists in the
past. Given that an artist can work in various domains, we pre-process the dataset to select the top three
genres and rate the artists based on those genres. The top three genres in our dataset are Drama, Comedy,
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Table 1. KEY PARAMETERS, MEANINGS, AND DEFAULT VALUES

Param. Meaning Value
N Total number of users in the OSN 1,269
E Total number of edges in the OSN 28,072
05 Strength in expertise in domain k [0, 1]
GSC Privacy-preserving preference in domain k [0, 1]
GSC Revealed privacy preserving preference in domain k [0, 1]
pei Extent to which a player can lie about its privacy-preserving [0, 1]
preference
We, W Weights for expertise and privacy privacy preserving respectively [0, 1]
1) Number of candidates selected from the trust network 200
4 Number of participants selected using CTS schemes 40
m Number of team members 20
|E] Number of expertise domains 5
Werds Wuf Weights for the three components of Vol [0, 1]
Wnov
€ Sum of domain expertise levels required by a given task (i.e., 5
ZeieE € = 6)
L A vector of domain expertise levels in a given task, {eq, es, ..., €/} [1,1,1,1,1]
A A constant to scale pl; in Eq. (3) |E|

and Crime. Given the top three genres, the expertise of the artist in each of the genres is estimated by:

geenre log [genre]. 7¢; (15)
D Cm

where D = log |comedy| + log |drama| + log |crime|, genre € {drama, comedy, crime}, c; is the total number
of movie credits an artist i has received throughout his career, and c,, is the average movie credits of all
artists in the dataset. By comparing against the dataset’s average, we obtain an accurate representation of the
artist’s expertise i in a genre between [0, 1] using Eq. (15). Note that during evaluations of the expertise, if the
expertise value exceeds 1, the artist is assigned full expertise in that genre. The privacy preferences of each
artist are also drawn from a normal distribution with a mean of y = 0.5 and a standard deviation of o = 0.3.
From the data on the collaboration between artists, we form a graph where an edge exists if two artists have
worked together in the past. The resulting graph has 1,021 nodes, 11,224 edges, and three different genres.

6.2.2  Parameterization. With 1,269 authors in the network, the author with the highest betweenness centrality
value is selected as the team leader and also a Mechanism Designer. This highly dense network has over 28,000
edges, so a value of 5 is chosen for k in k — hops, so most of the users in the network may be selected for recursive
trust calculation in the trusted network according to Section 5. Since all independent paths from the MD to each
user in the MD’s trust network are examined, high-degree users are more likely to have higher trust values, as
they can combine trust values from multiple directions using a consensus operator. Given that a task requires
diverse and novel information, we weigh Credibility, Usefulness, and Novelty in VoI (Value of Information) as
0.2, 0.3, and 0.5, respectively. The w, and w; in Eq. (5) of the supplement document are equally weighted with
we = ws = 0.5. Top 200 (= ¢) players with the highest trust values are selected from which 40 (= {) players
are selected based on a given candidate team selection method described in ‘Selection of Candidate Teams’ of
Section 5. A further shortlisting of 20 players is made from a list to 40 to maximize social welfare. Tabulated

ACM Trans. Intell. Syst. Technol.



16

«  Yash Mahajan, Jin-Hee Cho, and Ing-Ray Chen

[EEExpected Social Welfare B8 Actual Social Welfare |

USD VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(a) E-SW vs. A-SW under |E| =5

o BB Expected PPLEB Actual PPL |

USD VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(d) E-PPL vs. A-PPL under |E| =5

[llnxpmcd Social Welfare BB Actual Social Welfare

VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

usDh

(b) E-SW vs. A-SW under |E| =3

04 BBExpected PPLEB Actual PPL

USD VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(e) E-PPL vs. A-PPL under |E| =3

BEExpected Social Welfare BB Actual Social Welfare

0.4

0.2

VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(c) E-SW vs. A-SW under |E| =1

BB Expected PPLEB Actual PPL

USD  VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(f) E-PPL vs. A-PPL under |E| =1

B8 Team Diversity
0.4

USD  VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(g) Team Diversity under |E| =5

BETeam Diversity
0.4

0.2

USD  VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(h) Team Diversity under |E| =3

0.4

BB Team Diversity

USD  VoI-CTS C-CTS ED-CTS H-CTS IF-CTS Random

(i) Team Diversity under |E| =1

Fig. 3. Performance comparison of different candidate team selection (CTS) methods based on the five metrics, including
expected social welfare (E-SW), actual social welfare (A-SW), expected potential privacy loss (E-PPL), actual potential privacy
loss (A-PPL), and team diversity, when the number of domains varies with |E| = 5,3 or 1 and the corresponding task
composition, L(e;) = [1,1,1,1,1],[5/3,5/3,5/3], or [5], respectively. (a), (d), and (g) are under |E| = 5, (b), (e), and (h) are
under |E| = 3, and (c), (f), and (i) are under |E| = 1. The lower bound weight of a revealed privacy preference (pc;) is set to
= 0.8, the number of hops in an online trust network (k-hop) is set to 5, and the error bar represents the standard deviation.

below are the default values for the key design parameters for our experiments. Results are calculated using the
mean values from 1,000 simulation runs and the standard deviation at each point.

6.3 Comparing Schemes

In this work, we conduct a comparative performance analysis of the following schemes:

Utility-based Serial Dictatorship (USD) where candidates are selected based on the output of the utility function

for individual players (see Eq. (6)).

Expertise diversity-based CTS (ED-CTS) where candidates are selected based on the uniqueness and diversity of
the information to be contributed by the player given a task, similar to [41] (see Eq. (11)).
VoI-based CTS (VoI-CTS) where candidate members are selected based on the value of information to be

contributed by the player (Eq. (1)).

Information Sharing (IF-CTS) where candidate members are selected solely based on their revealed privacy
preference, éf’ . Players willing to share the most information are selected for the candidate team.
Homophily-based CTS (H-CTS) where candidates are selected based on the homophily of the cosine-similarity
metric [28] for the domain expertise of each player with the required expertise for a given task.
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Fig. 4. Comparison of different candidate team selection (CTS) methods based on the five metrics under varying the lower
bound weight of a revealed privacy preference (pc;), where the environment is set as the number of domains (|E|) = 5, pc; =
0.8, and task composition (L(e;) = [1, 1,1, 1,1]) under a 5-hop trust network (i.e;, k = 5).

e Centrality-based CTS (C-CTS) [9] where candidates are selected based on the centrality value of the player in
the trust network. To demonstrate the effectiveness, we leverage the betweenness centrality to identify the
influential members in the network.

e Random where players are selected randomly from a given trust network.

USD, ED-CTS, VoI-CTS, and IF-CTS are the variants of our proposed PRADA-TF schemes. H-CTS and C-CTS are
proven-and-effective schemes as comparable counterparts, while Random is a baseline scheme.

7 NUMERICAL RESULTS & ANALYSIS

In this section, we demonstrate the simulation results and analyze their overall trends regarding the effects of
different task types, compromising privacy, team sizes, and candidate team sizes. In addition, we analyze the
algorithmic complexity of the considered TF algorithms based on both Big-O asymptotic time complexity analysis
and simulation running time in sec.

Due to space constraints, we only report results on the Netscience dataset. The results on the IMDb dataset are
consistent with those on the Netscience dataset and can be found in Appendix A of the supplement document.

7.1 Effect of Different Task Types

Fig. 3 shows the effect of different task types on the performance of the seven different candidate team selection
(CTS) methods based on the five metrics in Section 6.1. From Fig. 2, in the team selection process, we first select
the top ¢ participants from the k-hop trust network, from which the top { candidates are chosen based on the CTS
methods proposed. Finally, from the top ¢ candidates, the top m players are chosen based on the social welfare
function. For consistency and ease based on selecting the top m candidates, we used { = 2m under different m
values. Figs. 3(a)-3(c) show the performance comparison of seven different team selection methods based on
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Expected Social Welfare (E-SW) and Actual Social Welfare (A-SW). In Figs. 3(a)-3(c), we observe that in actual task
execution, players tend to maximize their utilities by compromising their privacy and thereby increasing their
information-sharing behavior (i.e., lowering the privacy preference level). Consequently, we observe that A-SW is
likely higher than E-SW for the same reason. In a task requiring a fairly diverse skill-set, i.e., L(e;) = [1,1,1,1,1]
with |E| = 5, from Fig. 3(a), we observe that the performance of the CTS methods is in the following order: USD
> VoI-CTS > C-CTS =~ ED-CTS ~ H-CTS > Random = IF-CTS. This is aligned with the trend observed for both
A-SW and E-SW. We find that players chosen from the IF-CTS scheme tend to curb their privacy sacrifice to
compensate for the consequent privacy loss, especially compared to C-CTS, ED-CTS, and H-CTS. We observe a
similar trend in the performance of the CTS methods in a task requiring adequately diverse skill sets, i.e., |[E| = 3
and L(e;) = [5/3,5/3,5/3]. Similar to Fig. 3(a), Fig. 3(d) shows that USD performs the best among all, whereas
IF-CTS performs the worst. However, this trend changes when a task requires domain-specific expertise, e.g.,
|E| = 1 and L(e;) = [5]. In Fig. 3(g), contrary to the previous trends from the task compositions with |E| = 3 and
|E| = 5, ED-CTS tends to perform the best, followed by H-CTS and USD. From the trends, we infer that a certain
level of diversity is important for promoting team performance in a collaborative setting. However, when a task
requires high expertise in a relatively less number of domains, the diversity in expertise and the novelty of the
information contributed introduce a more vital impact on team diversity, as in Figs. 3(c), 3(f), and 3(i), specifically
for ED-CTS and IF-CTS.

Figs. 3(d)-3(f) demonstrate the effect of different task types on Potential Privacy Loss (PPL). With the same
reasoning as that of the difference in A-SW and E-SW, we observe that the actual PPL (A-PPL) is lower than the
expected PPL (E-PPL). This is because, in actual task execution, a player might either stick to its revealed privacy
preference or switch to its actual privacy preferences (see Section 5.2, which would be higher, which would, in
turn, lead to less information shared and less privacy loss. This directly affects the utility, and we can observe the
effects on the A-SW and E-SW values, as discussed before. Observing Fig 3(d), we notice that IF-CTS has the
highest A-PPL, whereas USD has the lowest. That is, there exists a trade-off between information sharing and
privacy. Sharing more information, regardless of its value (Vol), will naturally lead to higher privacy loss. As
observed in Figs. 3(a), 3(b), and 3(c), information sharing (as shown in IF-CTS) is not a driving factor to maximize
SW because of its high PPL. On the other hand, all the VoI-CTS, C-CTS, ED-CTS, and H-CTS show similar levels
of PPL, indicating that all players act similarly in a selfish manner to protect their privacy, irrespective of the
scheme used. In Fig. 3(e), we observe a similar trend wherein IF-CTS has the highest A-PPL, whereas all the rest
of the CTS methods have comparable A-PPL values (except for Random). Notice that this directly affects the SW
(see Fig. 3(b)). In addition, in Fig. 3(f), the performance order in terms of A-PPL is observed as ED-CTS > H-CTS
> USD > Random > VoI-CTS > C-CTS > USD > IF-CTS. This is particularly interesting because, from Fig. 3(c),
we can see that ED-CTS, followed by H-CTS, performs the best. From these comparisons, we can conclude that
an inverse relationship exists between privacy loss and team performance estimated by SW.

Figs. 3(g)-3(i) show the diversity of the team formed using the seven different CTS methods under three different
types of tasks. For tasks requiring a fairly diverse skill-set (i.e., |E| = 5 or 3), we can see a clear trend between the
best performing CTS schemes and team diversity, e.g., USD or VoI-CTS in Figs. 3(g) and 3(h). In Fig 3(h), team
diversity is a standout factor that leads to higher utility, which can be clearly observed in USD and VoI-CTS.
However, we also observe relatively high diversity for poor-performing schemes (see IF-CTS and Random). To
further ensure our findings, from Fig. 3(i), we can observe that high team diversity is aligned with increased
social welfare. From this observation, team diversity is important when the task requires subject-area-specific
expertise. However, under a task requiring diverse domain expertise, it is unclear that having a certain level of
diversity is closely related to high team performance (i.e., high social welfare), as shown in Fig. 3(i).
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Fig. 5. Comparison of different candidate team selection (CTS) methods based on the five metrics under varying team size,
where the environment is set as the number of domains (|E|) = 5, pc; = 0.8, and task composition (L(e;) = [1,1,1,1,1]) under
a 5-hop trust network.

7.2 Effect of Compromising Privacy

Fig. 4 shows the effect of varying the lower bound of compromising a team member’s privacy preference (pc;)
under the seven different CTS methods based on the five metrics. Like Fig. 3, USD performs the best, followed by
VoI-CTS amongst all the E-SW and A-SW, as in Figs: 4(a) and 4(b). In Fig. 4(a), we observe that as pc; increases
(revealing more truthful privacy preferences), E-SW decreases when pc; ranges from 0.2 to 0.5 whereas it increases
when pc; increases from 0.5 to 1. That is when pc; = [0.2, 0.5], the utility achieved by compromising the privacy
is less than the privacy loss suffered as E-SW decreases for pc; = [0.5, 1]. Unexpectedly, overall A-SW decreases
as pc; increases except for USD, which increases as pc; increases. Although A-SW is always higher than E-SW,
fewer players choose to compromise their privacy because the utility achieved by compromising its privacy
compared to the privacy loss is less when pc; increases and players’ revealed privacy types become closer to their
true types. In USD, players are selected based on the utility function. Thus, as pc; increases, E-SW and A-SW
increase.

In Fig. 4(c), we can see that the E-PPL decreases relatively sharply for USD, whereas IF-CTS has the highest
value across all values of pc;. Overall we observe that the E-PPL decreases as pc; increases. In Fig. 4(d), we notice
that except for USD, which follows the general trend, the rest of all the CTS methods remain unchanged (e.g.,
C-CTS) or have a slight decrease in their value of A-PPL as pc; increases. The decreased A-PPL is because as pc;
increases, players start reporting higher privacy preference (less information sharing but revealing more truthful
information), leading to less potential privacy loss. In addition, in actual task execution, players may revert to
their true privacy preferences, further increasing their privacy preservation. Fig. 4(e) shows the trend in diversity
as pc; varies. We interpret that VoI-CTS has the highest increase in team diversity as pc; increases. On the other
hand, team diversity decreases under USD. For all the rest of the methods, the team diversity follows an almost
zero incline. Additionally, compared to Fig. 4(a), A-SW increases as the team diversity increases for USD, whereas
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Fig. 6. Comparison of different candidate team selection (CTS) methods based on the five metrics under varying candidate
team size, with the number of domains (|E|) = 5, pc; = 0.8, and task composition (L(e;) = [1, 1,1, 1,1]) under a 5-hop trust
network.

the A-SW decreases when the team diversity increases under VoI-CTS. This implies that although a certain level
of team diversity can contribute to high team performance (i.e., higher social welfare), it is not necessarily true
that higher team diversity produces higher social welfare based on the linear relationship.

7.3 Effect of Different Team Sizes

In Fig. 5, we show how different team sizes affect the performance of different CTS methods in terms of the five
metrics. When comparing Figs. 5(a) and 5(b) against Figs. 5(c) and 5(d), respectively, we can infer the following.
First, as the team size increases, PPL increases, consequently decreasing the player’s utility. Looking at Figs. 5(b)
and 5(d), as the team size increases, A-PPL increases while A-SW decreases, which is reasonable as higher PPL
makes lower A-SW. Second, there exists a trade-off between information sharing and privacy, which directly
affects the utility received by the team player. We have already discussed the poor performance of IF-CTS. Unlike
the general trend observed, as the team size increases, the utility from collective information sharing predominates
the risk of privacy loss, and consequently, utility increases steadily. Lastly, C-CTS selects influential candidates in
the network. From Fig. 5(d), when the team size is small, a team with influential players has high A-PPL, which
increases as the team size increases. However, after examining Fig. 5(b), we notice that although A-PPL increases,
A-SW also increases. This implies that the valuable information shared by these influential members outweighs
A-PPL. Fig. 5(e) shows the effect of different team sizes on team diversity under the seven CTS methods. The team
diversity for USD and VoI-CTS increases as the team size increases because more task-specific candidates are
selected, increasing expertise diversity. However, the team diversity decreases for ED-CTS, H-CTS, and C-CTS
as the team size increases. This is because although players are chosen based on diversity or homophily (i.e.,
ED-CTS, H-CTS) and influence (i.e., C-CTS), the team consisting of highly diverse individuals cancels each other
out considering diversity. Overall as the team sizes increase, all metrics converge to certain points. This implies
that the CTS method is more important in promoting team performance under a smaller team size.
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Table 2. AsymproTIiC TIME COMPLEXITY OF THE SEVEN DIFFERENT CTS METHODS

Scheme Big-O Scheme Big-O
USD O(|V||E]) | ED-CTS | O(JVI?|&])
VoI-CTS | O(|V|*|E])| H-CTS ovy)
C-CTS O(|VIIE|) IF-CTS ovy)
Note that V is a set of players, & is a set of expertise domains, and E is a set of edges.
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Fig. 7. Comparison of different candidate team selection (CTS) methods based on running time, where the environment is
set as the number of domains (|E|) = 5, pc; = 0.8 and task composition (L(e;) = [1,1,1,1,1]).

7.4 Effects of Different Candidate Team Sizes

Fig. 6 shows the effects of varying the candidate team size for the seven different CTS methods in terms of the
five metrics described in Section 6.1. By keeping the team size fixed at 20, we vary the candidate team size from
25 to 200 to analyze its effect on team formation and performance. Although the team size is fixed, each CTS
method has a higher player pool to choose from as the candidate team size increases. Figs. 6(a) - 6(e) explain
that although the performance change is not drastic, it is nevertheless insightful. From Figs. 6(a) and 6(b), we
can infer that as the candidate team size increase, the social welfare of the team in both actual and expected
SW increases gradually. As the number of candidates increases, the CTS methods have more access to high
utility-yielding players, and thus the actual and expected SW values increase. Interestingly, the utility of USD
does not show much change by maintaining the highest throughout all candidate team sizes. This means that the
USD outperforms all, regardless of any other constraints.

Figs. 6(c) and 6(d) show the effect of candidate team size on the E-PPL and A-PPL values. Based on the reasonable
inference of an inverse relationship between information sharing and privacy, the E-PPL and A-PPL values show
the highest for IF-CTS, where players are chosen based on their information-sharing behaviors. However, the
candidate team size is consistent and has no apparent effect on the PPL values. Privacy is affected by the final
team formed. Although more players with varied backgrounds are considered, the overall risk of privacy loss
remains the same as long as the team size remains the same (also see Figs. 5(c) and 5(d)). With the same reasoning
from Fig. 6(e), we can see team diversity remains consistent with the increase in candidate team size. Except for
VoI-CTS and C-CTS, there is a slight upward trend in team diversity, which is expected because more candidates
are available for the MD to form the final team.

7.5 Complexity Analysis

Table 2 shows the asymptotic time complexity of all the CTS methods in Big-O. From Table 2, we can observe
that ED-CTS has the highest algorithmic complexity, whereas H-CTS and IF-CTS incur the lowest complexity.
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ED-CTS needs to calculate the expertise diversity by comparing each player with all other players in the network,
which increases the complexity. On the other hand, IF-CTS simply selects candidates based on their reported
privacy-preserving preferences, which makes the complexity linear. Although USD incurs higher complexity than
H-CTS and IF-CTS, compared to its outperformance in social welfare, PPL, and team diversity, its complexity,
O(|V]|&]), is not as high as VoI-CTS and C-CTS where |E| >> |&| (i.e., |E| = 28,072 and |&E| = 5).

To capture the cost of hidden operations in asymptotic complexity analysis, we also show Fig. 7 to explain the
actual simulation running times of all the seven CTS methods. We can see that the running times for all seven
methods are quite close and in the range 107!°. Aligned with the results discussed in Table 7, the running times
of USD and IF-CTS are significantly low, while H-CTS shows relatively good performance compared to VoI-CTS,
ED-CTS, and C-CTS.

8 CONCLUSIONS
8.1 Key Findings
We obtained the following key findings in this study:

e Among utility components, utility-based team selection (UTS) can best balance privacy preservation and team
performance.

e Due to potential privacy loss (PPL), telling truthful privacy preferences does not always lead to low team
performance, even if high privacy preferences result in less information sharing. This was clearly observed
with higher actual social welfare (SW) than expected SW, while there was higher expected PPL and lower
actual PPL.

e Higher team diversity does not always lead to higher team performance because it may introduce higher
challenges in understanding between team members and may provide a shallow level of domain expertise (e.g.,
a member with multiple domain expertise but with a shallow level). In addition, under low information sharing,
even if the information shared is diverse, it does not necessarily directly contribute to high team performance.

e An excessively large team can suffer from a lack of domain expertise and diversity due to overlapping expertise
between team members.

o Although the team formation (TF) problem is known NP-Hard, we solved the TF problem heuristically in
a polynomial time to identify a close-to-optimal solution that can meet multiple criteria of team members
selection. It is particularly noticeable that all seven TF algorithms show similar running times in the range of
107 in sec.

8.2 Limitations & Future Research

We discuss the limitations and future research directions to address the limitations as follows:

e Our work is limited in investigating the effect of privacy preservation and team diversity on team performance.
Team coherence was not explicitly considered. A future research direction is to analyze the effect of trust
among team members on team coherence and investigate the effect of team coherence on team performance.

e In this work, a player’s privacy preference is not changed. In reality, a player’s privacy preference may
continuously evolve over the duration of the task. Another future research direction is a dynamically changing
privacy model that can analyze the impact of various factors. They may affect a player’s privacy preference
during task execution.

e In this work, we simulated each player’s privacy preference. A future research direction is to model each
individual player’s privacy preference more accurately by first-party data (collected directly from users in a
target OSN).
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APPENDIX
A ADDITIONAL NUMERICAL RESULTS & ANALYSIS

In this appendix, we discuss the experimental results on the IMDDb dataset [7] (Section VI-B). We demonstrate the
simulation results and analyze their overall trends regarding the effects of different task types, compromising
privacy, and different team sizes when the IMDDb dataset [7] is used.

A.1  Effect of Different Task Types

Fig. 1 shows the effect of different task types on the performance of the seven different candidate team selection
(CTS) methods based on the five metrics. Confirming the trend observed with the Netscience dataset, we observe
that with the IMDB dataset ASW is still found to be higher than ESW, as players try to maximize their utility by
compromising their privacy during the actual task execution. Similarly, with the same reasoning as that of the
Netscience dataset (see Appendix A.1), APPL is lower than EPPL for all the different CTS methods. Interestingly,
we observe that USD still performs the best, however contrarily IF-CTS performs equally with USD. IF-CTS has
the highest ASW as well as the lowest APPL indicating that information sharing behaviour is beneficial to the
players, given the players are rewarded appropriately.

Comparing Fig 1(i) with 1(c) and 1(f), we can see that high diversity is inversely proportional to the team
performance when the number of domains is equal to 1 (|E| = 1). The inverse proportionality is because in a
single domain or less domain task, high diversity leads to higher potential privacy loss (see Fig. 1(f)) as team
members are localised into a single domain.

A.2  Effect of Compromising Privacy

Fig. 2 shows the effects of varying the lower bound of compromising a team member’s privacy preferences (pc;)
under the seven different CTS methods based on the five metrics. Like with the previous dataset, USD performs
the best, followed by IF-CTS in terms of ESW and ASW, as seen in Figs 2(a) and 2(b). Interestingly, IF-CTS
outperforms USD when the pc; decreases, which is when the players have a higher margin to be dishonest when
reporting their privacy preferences. From Fig. 2(b), we can see that when pc; € [0.2,0.6], IF-CTS performs better
than USD, but as pc; keeps increasing, USD starts performing better, indicating that players tend to compromise
their privacy more if the equivalent reward is higher. Moreover, comparing the IF-CTS scheme, where the final
team is selected based on the participant’s privacy preferences, in terms of SW and PPL, we observe that the slope
for IF-CTS is the highest in Figure 2(d), which shows the effect of pc; on PPL. The overall trend for ESW, as well
as ASW, is that as pc; increases and players report a privacy preference close to their actual privacy preferences,
we notice that both ESW and ASW increase, similar to what we observe with the Netscience dataset.

From Figs. 2(c) and 2(d), we also observe that the general trend for both EPPL and APPL is the same as that of
the Netscience dataset, which decreases as pc; increases. Corroborating the results from both datasets, we can
confirm that ‘privacy preference’ is a significant factor in overall social welfare, and each individual participating
acts selfishly to maximize their reward given their privacy preferences. Additionally, from all the rest of the
CTS schemes, Vol performs the best, whereas H-CTS, ED-CTS, and C-CTS are relatively less affected by the
increase in pc;, which is expected given the fact that all the above schemes don’t consider the privacy preferences,
and consequently the pc; when selecting the final team. The low variance observed is due to the difference in
candidate pools available due to the increase in pc;.

A.3 Effect of Different Team Sizes

In Fig. 3, we show how different team sizes affect the performance of different CTS methods in terms of the five
metrics. Comparing ESW and ASW against EPPL and APPL (Figs 3(a)-3(d)), we can infer the following observation.
The overall trend for both ASW and ESW is that as the team size increases, the social welfare decreases. This is
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Fig. 1. Performance comparison of different candidate team selection (CTS) methods based on the five metrics, including
expected social welfare (E-SW), actual social welfare (A-SW), expected potential privacy loss (E-PPL), actual potential privacy
loss (A-PPL), and team diversity, when the number of domains varies with |E| = 3,2 or 1 and the corresponding task
composition, L(e;) = [1,1,1], [3/2,3/2], or [3], respectively. (a), (d), and (g) are under |E| = 3, (b), (e), and (h) are under
|E| = 2, and (c), (f), and (i) are under |E| = 1. Note that the lower bound weight of a revealed privacy preference (pc;) is set to
= 0.8, and the number of hops in an online trust network (k-hop) is set to 5.

expected as a larger team for the same task requirement will distribute its reward amongst more team members,
consequently leading to lower social welfare. Moreover, the general trend observed with respect to EPPL and
APPL is that the potential privacy loss increases exponentially as the team size increases and more individuals
have potential access to sensitive information. From the given figures, USD and IF-CTS perform the best, followed
by VOI-CTS, with the rest of the CTS schemes performing comparably.

Fig. 3(e) shows the effect of team size on the diversity. From the figure, we can infer that team diversity
decreases with increased team size. This decrease is directly correlated with the team size, as with a larger team,
the diversity of individuals decreases, and consequently, the team diversity decreases. To confirm this, we can
observe the H-CTS scheme, which forms the final team based on the cosine similarity of the expertise with the
required expertise. H-CTS decreases drastically as more and more similar players are selected and the team
size increases. Overall, ED-CTS has the highest team diversity, as expected, followed by USD and IF-CTS. By
comparing the results of varying pc;, we can confirm a direct correlation between team diversity and social
welfare.

Fig. 4 illustrates the impact of varying the exploration depth (k-hops) on network analysis, employing five
distinct metrics used in this work. The methods evaluated include adherence to true privacy preferences, reported
privacy preferences, and three variations of the Utility-based Serial Dictatorship (USD) Coordination and Trust
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Fig. 2. Comparison of different candidate team selection (CTS) methods based on the five metrics under varying the lower
bound weight of a revealed privacy preference (pc;), where the environment is set as the number of domains (|E|) = 3, pc; =
0.8, and task composition (L(e;) = [1, 1,1]) under a 5-hop trust network (i-e., k ='5).

Scheme (CTS) - specifically focusing on combined expertise and privacy utilities, expertise-based social welfare,
and privacy-based social welfare. The observations from Fig. 4(a)-(e) as k increases reveal a nuanced interplay
between social welfare, privacy preservation, and network exploration dynamics. Specifically, the USD scheme
outperforms others in achieving the highest Actual Social Welfare while ranking second for Expected Social
Welfare. This indicates its efficacy in balancing utility gains against privacy risks. Increasing the number of
explored participants generally enhances social welfare; however, it concurrently raises the likelihood of privacy
breaches. This leads to a decrease in players’ Privacy Preference Levels (PPL), reflecting a heightened prioritization
of privacy with increasing privacy risks. Furthermore, the exploration extension results in greater team diversity,
underscoring the trade-off between expansive network exploration and privacy preservation. Notably, the
expertise-based USD method lags in performance, suggesting a predominant player preference for privacy over
expertise in social welfare considerations. Paradoxically, adherence to reported privacy preferences results in
higher privacy losses, highlighting discrepancies between reported and actual preferences. Lastly, the minimal
distinction between 4-hop and 5-hop explorations suggests a plateau in network coverage efficiency beyond
a certain threshold, with approximately 95% of the network being explored within 4 hops. This consolidation
underscores the complex dynamics at play in optimizing social welfare within privacy-aware network explorations.

B BINOMIAL SUBJECTIVE OPINIONS AND THEIR FUSION OPERATORS

This appendix elucidates the binomial subjective opinion framework within Subjective Logic (SL) alongside two
pivotal fusion operators deployed in the k-hop trust network, as delineated in Section V.F of the main manuscript.

In this framework, a binomial opinion represented by a)g = (bg, dg, ug, ag) encapsulates the extent to which
entity A trusts (bg), distrusts (dg‘), or remains uncertain (ug‘) about entity B’s trust in a given context, ensuring that

bg + dg + ug = 1. The term ag denotes the base rate probability, reflecting A’s initial belief or inclination towards
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Fig. 3. Comparison of different candidate team selection (CTS) methods based on the five metrics under varying team size,
where the environment is set as the number of domains (|E|) = 3, pc; =0.8, and task composition (L(e;) = [1, 1, 1]) under a
5-hop trust network.

B, typically set as ag = 1/2 to represent an equitable prior distribution for both trust and distrust components.
The projected probability of A’s trust in B is thus calculated as:

pA = bhaatul (1)

This model also infers A’s distrust in B as dA + aB us o equivalently rendered as 1 — P4, given the sum of bg + dg + ug
equals 1. In scenarios requiring the assessment of a Mechanism Designer’s (MD) trust in a user within an Online
Social Network (OSN) through indirect trust chains (e.g., A trusts B, B trusts C, and C trusts D), we aim to calculate
the MD’s (denoted as A) trust in a distantly connected user (D). This process utilizes the concept of referral trust
and the discounting operator as follows:

The discounting operator facilitates the determination of indirect trust by amplifying the uncertainty component
in the trust calculation, adhering to the formula in Eq. (1). Considering three agents A, B, and C, with A’s referral
trust in B denoted by a)lg1 and B’s functional trust in C by wg, the indirect trust of A in C, through B is calculated

using wa”® = 0§ ® wl, where ® signifies the discounting operator. The resulting indirect trust w2” is defined by

(b"c*B, dAB ué B ag 4:B) "with the expressions:
AB _ 1 AyB JAB _ 1A B
be” =bgbe, di” =bgdg, (2)
AB _ A A AB _ B
us” =dg +uB +b uc, ag”’ = ag.
When faced with multiple direct trust assessments from users familiar with the target user, the MD utilizes the
consensus operator proposed in SL to amalgamate these diverse trust valuations into a unified trust decision.
This operator ensures a comprehensive and balanced trust evaluation by integrating multiple perspectives.
The consensus operator is used to obtain trust by combining two beliefs into one with reduced uncertainty in the

expectation value. Assuming A’s trust in C to be wé‘ = (b4, dA uc, ac) and B’s trust in C to be wc = (b8, dB ug, aB
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Fig. 4. Comparison of various ablation methods based on the five metrics under varying k in k-hops for network exploration,
where the environment is set as the number of domains (|E|) = 3, pc; = 0.8, and task composition (L(e;) = [1,1,1])

A B A®B _ (1 A®B jA®B |, A®B _A®B\ .. :
the consensus between g and we is denoted by w = (bc ,dc JUe T, ag ) with

c
A, B B, A A, B, JB, A
bZu; + blug dou; +diug

bAeBB — A®B — (3)
c e
B B
AB
AeB o Ycle  aeB _ A
& & j ac™ =4ac

where f = u’é + ug - uéué.

With the help of the discounting and consensus operators [27], the MD’s opinion in B, wg/m = {bg”), dg’m, ug’m, ag’m h
can be obtained to derive the MD’s trust based on Eq. (??). From the trust derived and calculated, the top ¢
candidate members based on Eq. (??) are selected for the next round of selections. Note that the considered paths
are restricted to only those independent paths where no user appears more than once.

For simplicity, we initialize each user’s trust value based on both expertise preference and willingness to share
information based on privacy preference. For example, the MD’s belief in trusting B via direct experience, in
terms of whether B will be relevant for the given task requiring E set of expertise domains, is formulated by:

ek (wel +wi(1-67)
|E|

where w, + ws = 1. Assuming with a fairly small uncertainty ug/ID (e.g., K/(N + K) where K = 2 is commonly

assumed for a binomial opinion and N is sufficiently large), we simply derive dg/”) =1- (bgw + ug’m ) based on

the requirement of additivity with bg’m + dg/m + ug/m =1

To elucidate the computation of indirect trust and the aggregation of trust evidence using the consensus
operator, we have meticulously detailed the procedures in Algorithm 1.

MD _
by~ =

: 4)
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Algorithm 1 Compute Indirect Trust and Aggregate via Consensus

Require: Trust network graph G, source node A, target node D, hop limit k

Ensure: Aggregated trust opinion of A towards D

1:
2:

10:

12:
13:
14:
15:
16:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

function CoMPUTEINDIRECTTRUST(A, D, k)
if k = 0 then
return Direct trust opinion of A towards D if available
end if
Initialize an empty list opinions
for each node B that A trusts directly do
w? « direct trust opinion of A towards B
for each node C that B trusts do
wg « direct trust opinion of B towards C
wiB — Discount(wh, wf)
if C = D or further hop possible then
opinions.append(w‘é:B)
end if
end for
end for
aggregatedOpinion «— CONSENSUS(opinions)
return aggregatedOpinion
end function
function D1scoUNT(wj, wZ)
Extract bg, dﬁ, ug, ag from wg
Extract b(B:, dg, ug, alg from a)g
Compute bé:B , dé:B , uézB using given formulas
return (bé:B, dé:B, ué:B, ag)
end function
function CoNsENsUs(opinions)
Aggregate all opinions in opinions list according to consensus rules
return Aggregated opinion

end function

> Apply discounting operator
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