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Abstract

We propose a novel methodology for forecasting spatio-temporal data using supervised
semi-nonnegative matrix factorization (SSNMF) with frequency regularization. Matrix
factorization is employed to decompose spatio-temporal data into spatial and temporal com-
ponents. To improve clarity in the temporal patterns, we introduce a nonnegativity constraint
on the time domain along with regularization in the frequency domain. Specifically, regular-
ization in the frequency domain involves selecting features in the frequency space, making
an interpretation in the frequency domain more convenient. We propose two methods in the
frequency domain: soft and hard regularizations, and provide convergence guarantees to first-
order stationary points of the corresponding constrained optimization problem. While our
primary motivation stems from geophysical data analysis based on GRACE (Gravity Recov-
ery and Climate Experiment) data, our methodology has the potential for wider application.
Consequently, when applying our methodology to GRACE data, we find that the results with
the proposed methodology are comparable to previous research in the field of geophysical
sciences but offer clearer interpretability.
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1 Introduction

Time-series data analysis is primarily divided into two domains: time domain analysis and
frequency domain analysis, also referred to as spectral analysis. Spectral analysis specifically
examines the periodic properties of time-series data and summarizes them through the spectral
density function. The primary objective of spectral analysis is to estimate or infer the spectral
density function. In this paper, we propose a method that combines the usual spectral analysis
and nonnegative matrix factorization.

Matrix factorization is a technique used to decrease the rank of a matrix by factorizing
it into two low-rank matrices and extracting the latent features of the data. A low-rank
matrix means that each column (row) is linearly dependent, or in other words, there is a
correspondence for each column (row). Among matrix factorizations, nonnegative matrix
factorization involves factorizing a nonnegative matrix into two nonnegative matrices. In
[13], the nonnegative constraint is used to achieve interpretability. However, in general,
datasets may have negative values, so we need to relieve the nonnegative constraint on
factorization. Semi-nonnegative matrix factorization is a relaxation technique motivated by
K-means clustering, as described in [8].

Matrix factorization is an important technique used in this paper for separating the spatial
and temporal components of spatio-temporal data. The concept of breaking down complex
problems into multiple components has a long history in mathematical research. For instance,
the following statement by René Descartes aligns with our statement—To divide each of the
difficulties under examination into as many parts as possible, and as might be necessary for
its adequate solution.!

By decomposing the data into lower-dimensional matrices, matrix factorization can reveal
underlying patterns that are not immediately apparent from the raw data. This approach is
similar to the separation of variables in partial differential equations, which is used to simplify
the equations and make them easier to solve. In particular, the separation of variables allows
us to break down a complex equation into multiple simpler equations, each of which can be
solved independently. Matrix factorization also follows the similar decomposition method.
Matrix factorization is a unsupervised learning process, but for the prediction problem, we
need a supervised learning, particularly in the form of semi-nonnegative matrix factorization.
Supervised Nonnegative Matrix Factorization is proposed in [1] to solve the classification
problem. In [1] itis proposed to use regularization in the loss function of nonnegative matrix
factorization, which is a cross-entropy term between the ground truth and the class label. In
contrast, our proposed method is a supervised semi-nonnegative matrix factorization with
regularization in the frequency domain for forecasting spatio-temporal data. The traditional
approach involves employing regularization in the physical domain. However, numerous
time-series data characterized by time periodicity, such as those derived from geophysical
applications exhibit distinct characteristics in terms of frequency. In other words, the patterns
observed in the physical domain display periodicity aligned with Earth’s motion, often with
a noticeable yearly frequency. Utilizing such frequency information for regularization yields
convenience in terms of interpretation. Moreover, for forecasting problems, incorporating
frequency helps in predicting the spatial patterns that undergo periodic changes. We introduce
a novel approach using matrix factorization with regularization in the frequency domain for
forecasting problems.

' Discourse on the method of rightly conducting the reason and seeking the truth in the sciences, René
Descartes (1637) edited by Charles W. Eliot, P.F. Collier & Son, 1909, New York. Transcribed by Andy
Blunden. https://www.marxists.org/reference/archive/descartes/ 1635/discourse-method.htm.
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For the proposed method, we explore two approaches for the proposed regularization
method in the frequency domain: soft regularization and hard regularization. The soft regular-
ization method permits the presence of noisy or insignificant frequencies in the regularization
process, whereas the hard regularization method enforces such frequencies to be eliminated.
Thus, for soft regularization, it is not necessary to pre-specify the frequencies to be removed,
but it cannot completely eliminate specific frequencies. We use a high level of block coordi-
nate descent (BCD) and the projected subgradient descent method for the implementation.
Further we prove the convergence properties of BCD in this paper. The difficulty arises from
the fact that the Fourier transform operates in the complex domain, and the given penalty
is not always differentiable. In hard frequency regularization, we apply the results from the
three operator splitting method. This algorithm can entirely remove specific frequencies, but
it requires prior knowledge to specify which frequencies to remove. To address these chal-
lenges with hard frequency regularization, we introduce a heuristic method for solving hard
frequency regularization. The heuristic method allows for the removal of specific frequencies
without prior knowledge, but there is no guarantee of convergence.

This paper is composed of the following sections. In Sect.2 we propose supervised
semi-nonnegative matrix factorization with a novel regularization method, that is, soft/hard
regularization in the frequency domain. In Sect.3 we present the algorithms to solve the
problem proposed in Sect.2. In Sect.4 we provide theoretical convergence analysis of the
algorithms introduced in Sect. 3. In Sect.5 we apply our proposed method to synthetic data
to clarify the differences between the proposed method and existing methods, specifically
focusing on matrix factorization and regularization methods. Finally, in Sect. 6 we apply the
proposed method to the GRACE data for forecasting and compare the results with those by
the methods currently available in the geophysical community.

2 Methods
2.1 Problem Setup and Low-Rank Spatio-temporal Model

Consider two fixed integer time 7" and T, Tyo; > T > 0 and suppose that we have tensor
data X,y € RA*BxTwor We view each of X and Y as a ‘spatio-temporal’ data, where
Xla, b, t] encodes the observed value at ‘spatial location’ (a, b) at ‘time’ ¢. One can view
X as the evolution of a real-valued observable (e.g., gravitational force) in a spatial region
encoded as a A x B matrix over the period of discrete time {0, ..., T;,; — 1}, but with the
‘temporal slices” X[:, :, ¢], for times between T and T;,; — 1, missing. Similarly, we view )
as the evolution of an auxiliary observable (e.g., precipitation) over the same spatial region
over the longer period of time {0, ..., Ty, — 1}. The main question we address in this paper
is the following: Can we find spatio-temporal patterns from the joint tensor data (X', ))) and
use them to predict X over the missing period of [T, T;or)?

Our approach is based on the following assumption that there are r latent spatial patterns
and each temporal slice of X’ and ) is their nonnegative linear combination. Such r spatial
patterns can be encoded as two tensors W, W' € RA*B*" ‘We hypothesize that each temporal
slice X[:, :, t] and V[:, :, t] can be approximated by some linear combination of the r spatial
patterns W[, :, s] and W'[:,:,s] for s = 0, ...,r — 1. That is, there exist common and
nonnegative coefficients h; ; > 0 fors =0, ..., r — 1 such that
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a Low-rank spatio-temporal model
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Fig. 1 (a) Schematic illustration of the low-rank spatio-temporal model. (b) From the joint spatio-temporal
data during the period [0, '), we learn the latent spatial patterns (VV, W') and low-rank time-series H, where
the temporal structure of H is regularized in the frequency domain. (¢) Using the auxiliary data ) and the
latent dictionary W, we infer the low-rank time-series Hypey during the missing period [T, Tiot). (d) The
missing data X[, :, T :] is then inferred as YV x3 Hpew

r—1 r—1
XL 1% Y W s sThs, Y1~ Y WL sThg. M
s=0 s=0

Hence the pair of W[, :, s], W[, :, s]) encodes possible spatial patterns of the two observ-
ables recorded in X', ) that can be simultaneously observed in the spatial region A x B. The
underlying latent statio-temporal model can be concisely re-stated as the following tensor
factorization equations:

X~Wsx3H, Ya~W x;H, 2

where x3 denotes the mode-3 tensor-matrix product and H € erﬁT and ﬁ[s, t] = hy, for
t € [0, T;or) encode the rank-r representation of the joint time-series (X', ))) over the basis
of (W, W'). We call (2) the low-rank spatio-temporal model (See Fig. 1a for an illustration.)

Remark 1 We remark that extending our model for multiple auxiliary spatio-temporal data
Vou ..., Vs_1 € RA¥BxTwr g straightforward by simply concatenating them into a single
AS x B x Ty, tensor Y and use the same framework as in (2) except that the ‘height’ of
Y and W' is now AS instead of A. For the simplicity of the discussion, we keep the setting
S = 1. But later in our experiments, we use an instance of S = 3 where ))y for normalized
precipitation ranging between O and 1, )| for normalized temperature, and ), for normalized
total water storage from the GLDAS Noah model.
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2.2 Infering the Missing Spatio-temporal Data Given the Latent Spatial Patterns

The unknown parameters for the low-rank spatio-temporal model (2) are the latent spatial pat-
terns W, W') € R?A*BX" and the low-rank nonnegative time-series He R%T"” . Learning
these parameters simultaneously should be carefully formulated through constrained non-
convex optimization problems, which we will discuss in the following section. Here we first
discuss how we can infer the missing spatio-temporal data X:, :, T:] € RA*B*Tw=T) by
assuming that we have the latent spatial patterns (W, W’). Here the notation T: means all
the elements starting from index T to the end. In a similar way, : 7 means all the elements
until index T — 1 excluding 7'. This can be done through the following three steps as below:

(Encoding) Hl., < argmin |V — W x3 U||% 3)
rxTiot
UEREO
(Slicing) Hpew < Hj o, [:, T:] 4
(Prediction) XT:,:, T:] <= W x3 Hyew, ®)

where the subscript F denotes the Frobenius norm.

Namely, according to the low-rank spatio-temporal model (2), the auxiliary data ) during
the missing period [T, Tio) is represented by the linear model Y ~ W' x3 Hpew for some
nonnegative matrix Hypew. Hence, by solving the nonnegative least-squares problem in (3),
we can infer the low-rank time-series Hpey. Now Hyey is also used to represent the missing
data X[, :, T:] over the corresponding latent spatial patterns in V. Thus, we can infer the
missing spatio-temporal data as in (5). See Fig. 1c, d for an illustration.

Remark 2 Tt is crucial to construct Hpey by considering the entire period of ) in (3) to
accurately infer the missing data. While it may seem doable to use Y[:, :, T:] for this purpose,
it is important to note that in the frequency domain, only L%J + 1 frequencies are present
for the time-series of length 7. Consequently, relying solely on the test period information
[T, T;s) of Y to construct Hyeyw could result in a loss of frequency information. For instance,
when the testing period spans 10 months, Encoding step of (3) solely with this period would
fail to capture the annual patterns. However, by considering the entire duration, even within
those 10 months, we can infer the annual patterns reasonably.

2.3 Spatio-temporal Matrix Factorization with Frequency Regularization

In this section, we introduce and propose the matrix factorization method with frequency reg-
ularization. In general, due to the nature of time-series data, specific frequencies often hold
significant physical meanings. Thus, analysis with these frequencies can greatly facilitate the
meaningful interpretation of the underlying physics in the given data. Consequently, regu-
larization in the frequency domain may be more advantageous for matrix factorization than
regularizing in the time domain. In this section, we aim to propose methods that incorporate
this idea.

Decompose the low-rank time-series H as [H, Hpew], where H € R%T and Hyey €

RZXOTM’_T. With a slight abuse of notation, we will denote X[:,:,: T] and Y[:,:,: T] as

X and Y, respectively, in this section. The main task of this method is to learn the joint
latent spatial patterns (V/, W’) and the common nonnegative low-rank time-series H from
the joint observed time-series data (X, Y) € R24xBxT Here, we make the assumption that
the observations were gathered over a sufficient period of time, and we consider the loss
of frequency information noted in Remark 2 is insignificant. The necessary duration for
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sufficient observation time can vary depending on the specific data and the temporal pattern
under consideration. For instance, for the GRACE data, as discussed in Sect. 6, a minimum
of 12 months of observations is required to discern the expected annual pattern. With this
assumption we formulate the problem as the following spatio-temporal matrix factorization
problem over [0, T):

minimize X — W x3 H|% + 1Y — W x3 H|% + ¢ (H),
subjectto W, W' € R**#*" and H € RU" (6)

where & > 0 is a supervision parameter and ¥ (H) is a penalty term for H, which will take
one of the following choices below:

() (Ridge penalty) v (H) = A|[H]|}

(b) (Lasso penalty) v (H) = A[[H|

(¢) (Soft frequency regularization) ¥ (H) = A||ﬁ|| .M (& ||-ll1,s» =Minkowski 1-norm)

(d) (Hard frequency regularization) v (H) = 0if H only uses a prespecified set of frequencies
and oo otherwise.

Here A > 0 is a regularization parameter and H denotes the Fourier transform of H.

The rationale behind regularizing the temporal structure of H in (6) is as follows. The
observed data (X as well as ))) may contain noise so we should avoid overfitting the latent
spatial patterns to accurately represent the observation. Instead of directly regularizing the
latent spatial patterns, we find it more effective to regularize the associated low-rank time-
series representation H so that it is sparse in the frequency domain. That is, our guiding
principle is that the observed spatio-temporal data admits a low-rank time-series representa-
tion H, which uses a small number of dominating frequencies. Our intuition is largely inspired
by analyzing geospatial data (e.g., GRACE data, see Sec.6.1), where typically the annual or
semi-annual spatio-temporal patterns are dominating, and other frequencies are often under-
represented. Options (a-b) above use standard Ridge and Lasso (least absolute shrinkage and
selection operator) penalties commonly used in the machine learning and statistics literature
[11]. (We opt for using the Lasso penalty being a convex relaxation of the computationally
more challenging £o-penalty [17].) Note that both penalties regularize H in the time domain,
whereas the options (c-d) regularize the Fourier transform H of H so the regularization is
done directly in the frequency domain. We will discuss the latter two options in more detail
in the next section.

Notice that we referred to (6) as a matrix factorization problem while it involves factorizing
tensors X and ). This is because one can matricize these tensors as well as the latent spatial
patterns (W, W) to reformulate (6) as a matrix factorization problem. Namely, let X :=
(X(3))T € RABXT denote the matrix by matricizing the tensor X' along the time mode,
where X3, € RT*A8 denotes the mode-3 unfolding of X. Similarly, denote Y := (V3))7,
W= W', and W' := (W(’3))T. Then we have |X — W x3 H||r = | X — WH]||r and
|V =W' x3H||r = |[Y —WH]||r. So henceforth, we will consider the following supervised
semi-nonnegative matrix factorization (SSNMF) problem instead of (6): (denotingd := AB)

minimize || X — WH|% + &Y — WH|% + v (H)
subjectto W, W' € R*" and H € R’ZBT. @)
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3 Algorithms
3.1 Soft Frequency Regularization

Spectral analysis is popularly used in time-series analysis. It uncovers the underlying periodic
patterns present in the given time-series data. This method revolves around the concept of the
spectral density function, which is a probability density function describing the distribution
of the modulus of frequencies across different frequencies in the data. The primary goal of
spectral analysis is to accurately estimate the spectral density function using the sampled time-
series data. The discrete Fourier transform is widely utilized for such estimation. However, the
expectation value of the periodogram at a certain frequency does not converge to the spectral
density function at that frequency even when dealing with a large number of samples. To
mitigate this issue, smoothing in the frequency domain is commonly employed in practical
time-series analysis [5]. We aim to integrate spectral analysis in classical time-series data
analysis with SSNMF. That is, instead of analyzing the time-series data corresponding to
each spatial data, we utilize regularization from the perspective of analyzing in the frequency
domain of the time-series data obtained through the dimensional reduction of the given
spatio-temporal data using SSNMF. In Proposition 5, a mismatch term between X and Y can
disrupt the inference of the periodic pattern of X. Therefore, regularization in the frequency
domain may help mitigate the impact of this disparity in forecasting.

Definition 1 (Fourier transform) For a matrix A € R"™*T, we regard its rows A[s] for
s = 0,...,r — 1 as a univariate time-series where the column index corresponds to time.
With this interpretation, we can define the Fourier transform of A, denoted as K, to be the
r x T matrix of complex coefficients defined as

T-1
Als, k] Z Als, fle” kT ®)
f 0
forO0<s<r—1,0 S.k < T — 1. Denote by Fr the T x T Fourier matrix whose (f, k)
coordinate equals e~ 2"/k/T /T Then we can write

A = AFr. 9

In the case of Lasso, when we reduce the number of features, it simplifies the interpretation
of each parameter. Similarly, when we introduce sparsity in the frequency domain, it simplifies
the interpretation of the patterns in the temporal data obtained through matrix factorization.
Therefore, we propose the following statio-temporal decomposition problem with frequency
regularization:

min IX[:,: T) — WHI% + EIYL,: T1— WHIS + AHI Ly (10)
W, W' eRdx"
HeC T,
ﬁ3k=ﬁ3,7‘_k,ﬁ.7:7?1 ZO

Here, &, A > 0 are tuning parameters and for a complex matrix C € C"*, ||C||1.»s denotes
its Minkowski 1-norm defined as

ICl M = ZIIC[a, blll,m, llx +iylim == |x| + [yl 1D
a,b

The condltlon H sk = Hv 7—k is needed because we want H to be a real matrix and the
condition H]—' > ( is applied to the nonnegative constraint on H.
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Note that by the Parseval’s identity, |X — WH]||3. = [|(X — WH)F7 |3 = [IX — WH]3.
Therefore problem (10) is equivalent to

min_ |X — WH|% +&[|Y — WH|% + A|HF7 |10 (12)
HeR"
W’W/ERtlxr

Moreover, ||ﬁ||1’M = %IIHlll + > IIITI[s,k]Ill,M holds. This relation tells us that the

s, k=1
Minkowski 1-norm contains L 1-regularization term.
Algorithm 1 below takes the form of block coordinate descent for solving SSNMF (7)
for three instances of regularization: Ridge and Lasso regularization in the time domain; and
soft regularization in the frequency domain (see (12)).

Algorithm 1 SSNMF with Ridge, Lasso and soft frequency regularization

1: Input: X € RI*T (Data) and Y € R4*Tror (Auxiliary data);

2: Variables: N € N (iterations), L € N (sub-iterations); A > 0 (regularization parameter);

3: Regularizer: ¢ (H) = ||H||%, (Ridge) or |[HJ|; (Lasso) or [|[HF7 |1, p (soft frequency regularization)
4: Initialize: Wg, Wo € R and Hy € R"<T

S5:forj=1,---,Ndo

6:
H; < argmin [ X ]—|: Wj/_l :|H ’ + Ay (H) (13)
J HER’;BT VEY[:,: T] JEW j—1 F
(> Use projected subgradient descent. Sub-iteration L is required here.)
W; < argmin ||X — WH;||% (> wj:XHjT(HjHjT)—l) (14)
WeRdxr
W < argmin [[Y[:,: T]— WH;|[% (> W =YL, T]HjT(HjHjT)_1> (15)
W/ eRdxr
7: end for
8: (Encoding)
/ . 7 2 A
H.y < argmin ||[Y — WH||% + -y (H) (16)
He]RrT)T"” 3
>

(> Use projected subgradient descent. Sub-iteration L is required here.)

Hpew < Hjoy [ T 1 17

9: return Wy, Wy, Hy, Hnew.

3.2 Hard Constraints in the Frequency Domain

Lasso introduces sparsity in the time domain, allowing us to select proper features. Similarly,
we employ soft frequency regularization to introduce sparsity in the frequency domain.
However, in our experiments (Examples 3 and 4), we observed that the soft constraint reduces
the utilization of less dominant frequencies but does not completely eliminate them. As a
result, the soft constraint in the frequency domain partially fulfills our objective. This partial
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achievement led us to introduce the hard constraint in the frequency domain, enabling us
to selectively eliminate specific frequencies. Our algorithm is based on the three operator
splitting problem, and we have proven its convergence. However, for this algorithm specific
frequencies that need to be eliminated should be predetermined in advance. And determining
these frequencies necessitates prior knowledge of temporal patterns. Therefore, we introduce
a heuristic method to address the hard constraint problem, which does not rely on prior
knowledge. By doing so, we can achieve a clear temporal pattern related to the corresponding
spatial information. This additional step enhances our ability to identify and interpret the
meaningful patterns in the data.
Consider the three operator splitting problem to find x € R” such that

min f(x) + g(x) + h(x). (1)

If g and & are indicator functions on the convex domain G and H, respectively, then the
three operator splitting problem becomes

min f(x) subjecttox € GNH. (19)
xeR”

The method for finding a value of x is referred to as the following proposition. Define the

!
ergodic sequences X; = Hil > x¢. To prioritize satisfying the nonnegative condition over
=0
suppressing specific frequencies, we set

fH) = |X - WH|} +£]Y — WH| 7, (20)

0, ifH>0

H) = ,
§(H) 00, Otherwise

@2y

0, ifHe F ' (C*Rx {0}k

hr(H) =
r(H) 0o, Otherwise

(22)

here, the subscript R represents the number of frequencies to remain. If the priority is to
suppress specific frequencies rather than to satisfy the nonnegative condition, the functions
g and h g should be interchanged.

Instead of Algorithm 2, we found experimentally that the following algorithm also con-
verges for updating H, even though there is no convergence guarantee. Moreover, unlike
the previous method, the advantage of this method is that it does not require specifying the
frequencies to be removed in advance. Furthermore, Algorithm 2 should also be carefully
applied during the encoding process. In Example 1, we illustrate an example of time-series
data with the same period but different lengths. If we choose Algorithm 2 in Algorithm 3 (in
the step of (27)), we should consider the difference of the time-series length when obtaining
H € R"™*T and H,,,,, € R"*Trr | If we remove specific frequencies during the coding process
(27), how can we remove frequencies during the encoding process (30)? Assume that the
training period is 7 = 132 months, and the total period (including both the training and test
periods) is T;,; = 163 months. For example, in coding process the 11th Fourier coefficient
corresponds to a 12 month cycle but, during the encoding process, the 11th Fourier coefficient
corresponds to the 14.8 month cycle. This raises the question of how to handle frequency
removal in the encoding process.
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Algorithm 2 Three Operator Splitting [23]

1: Input: Initial point yy € R” *T. R € N (the number of remaining frequencies)

2:for j =0,---,N do

3:
1
H; = argmin {ng(H) + E\ij - HH2} (23)
HE]RrxT
1
G, = argmin {1he(@) + J12H; ~ 3, — 7,V ) - GIP} o
GeR"xT
Yj+1=y; —H; +G;j 2
1
T o
Y IVFH)|?
'[':0
4: end for

5: return Ergodic sequence Hy .

Algorithm 3 SSNMF with hard constraint in the frequency domain
1: Input: X € R?*T (Data) and Y € R?>Tior (Auxiliary data);

2: Variables: N € N (iterations); A > 0 (regularization parameter); R € N (the number of remaining

frequencies);
3: Initialize: Wo € R and Hy € R4XT
4: for j=1,---,N do
5 H; < Algorithm 2 or Algorithm 4 (27)
W; < argmin ||X — WH; | (> ie. W, :XHT<HjHT>—1) (28)
WeRdxr J J
W, < argmin [[Y[.: 71— WH;|} (> e W, =Y[:,:T]HJT(HjHJT)—1) (29)
W/ eRdxr
6: end for
7 H,, < Algorithm 2 or Algorithm 4 (30)
for f(H) = |Y — Wy H|I% 3D
Hpew < H;lew[:’ T:] (32)

8: return Wy, W, Hy, Hpew.

Example 1 For M = 2T, let f(¢) :cos% fort =0,...,T —1and F(¢) :cos% for

~ Til .
t=0,...,M—1,ie. f isapartial information of F. Then f (k) = % 3 ft)e 2KIT =
t=0

T-1 . .
ﬁ 2%) eth(l—k)/T + e—27nt(l+/<)/T implies that
t=

5, ifk=1,T-1
0, otherwise

fo =
and similarly
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1 .
. 5, ifk=2,2T -2
Fiy=12 ""=" :

0, otherwise
In the frequency domain, the length of time-series distorts the frequency information. There-
fore we should consider the difference in length between H (coding process) and Hyey
(encoding process).

The following Algorithm 4 is our heuristic approach to avoid the above problems.

Algorithm 4 Alternating projected gradient descent

: Input: Initial point Hy € R" T,

: Variable: R € N (the number of remaining frequencies);

1

2

3:for j =0,---,N do

4 fors =0,---,r—1do
5

’C‘;- = {k{ (). kgD T = k(). T — kR (D} (33)
(set of preserving frequency indexes)
Hj[s, 1] < Z ﬁj [s, k]eZ"k/T delete frequencies (projection step) (34)
kel
J
6:  end for
T
X w 2
H; < H; —y;Vf(H;), where f(H) = H |;/§Y:| - |;/§ /:| H . (gradient step) (35)
H; < max {0, H;} (projection step) (36)
1 VfH))
oL VIH) (37
j+1 WIwW+1)
8: end for

9: return Hy.

In (34) of Algorithm 4, unlike Algorithm 2, it is not necessary to remove the same fre-
quency at each iteration. In our experiments, for each s € {0,...,r — 1}, we removed
a few(hyperparameter) of the frequencies with low spectrum power from the temporal data
HJs]. In Sect. 6, we preserve the top R frequencies of the power spectrum density for each row
of H in (33). More precisely, in (33), we choose (positive) frequencies {kf () kg (j)} -
[0, L)+ 1) that satisfy [Hjls.k](D1| = -~ = [Hjls.k()]| = [Hjls. k]| for
k € {0, ey L%J + 1} \ {k‘f(j), e k‘;e(j)}. As mentioned in Algorithm 2, if you want to
prioritize removing frequencies, then you change the steps of (34) and (36) in Algorithm 4.

4 Theoretical Guarantees
4.1 Statement of Results

In Sect.2.3, we proposed spatio-temporal matrix factorization problems, with four choices
of penalization term for H. In Sect. 3, we proposed two iterative algorithms for solving these
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problems. Namely, Algorithm 1 covers SSNMF with Ridge or Lasso regularization in the
time domain and soft frequency regularization and Algorithm 3 covers SSNMF with hard
frequency regularization. In this section, we state theoretical convergence guarantees for
these algorithms.

Theorem 1 (Convergence of algorithm with Ridge, Lasso, and soft frequency regularization)
With Algorithm 1, W j, W// and H; converge to stationary points of (7) with Ridge, Lasso
and soft frequency regularization on H.

The convergence results for Ridge or Lasso regularization can be proven in a similar way
to soft frequency regularization. Hence we will omit the details for these cases and prove
Theorem 1 for soft frequency regularization in the following section. Next, we also establish
a similar convergence result for SSNMF with hard frequency regularization using Algorithm
3.

Theorem 2 (Convergence of algorithm with hard frequency regularization) In Algorithm 3, if
we choose Algorithm 2 in (27) and (30), then W , W; and H; converge to stationary points
of (7) with hard frequency regularization.

Algorithms 1 and 3 take the form of block coordinate descent at a high level. Because our
objective function is not continuously differentiable with a convex constraint on the domain,
we use the projected subgradient descent method [4].

Algorithm 5 Block Coordinate Descent (BCD)
1: Input: Initial point 8 = (601, A 96") € O X -+ X Op; N (number of iterations)

2:for j =0,---,Ndo
3: fori=1,--- ,mdo

4:
i . 1 i—1 i+1
6‘;+1 _argm1nf(9j+1,...,9}“,9,9; ,.‘.,6}")
6eo;
5: end for
6: end for

7: return 6y

Block Coordinate Descent (BCD) is an optimization technique used for nonconvex prob-
lems where the goal is to minimize a given objective function. In each iteration, BCD updates
only one block of variables while keeping the other blocks constant. This implies that each
subproblem tackled by BCD is a convex problem. But BCD does not always converge, even
if f is componentwise convex [10]. The challenge lies in the fact that the range of the Fourier
transform is the complex domain, and ||-||1, s is non-differentiable.

Definition 2 (Wirtinger derivatives [7]) We can regard the complex manifold C" =
{z1, ..., zn} as areal manifold R¥" = {x1, ..., x,, Y1,...,yn}forzj = xj+iy;. Inthis con-

|

]. To generalize complex

text, for any point p € R?", the tangent space is given by Tp]Rz” = spangr 337
J

9
p

d

and the tensor product TpRz" ®C = spanc{ o, By,
P

axj

p
derivatives, we introduce the Wirtinger derivatives are defined as % = % —i %
J J ke
% = % +1i % These derivatives extend the notion of differentiation in the complex
"] J J

and
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plane. It is worth noting that a R-differentiable function f : C" — C is C-differentiable if
and only if % = 0. As an example, the conjugate z does not satisfy the Cauchy-Riemann

equation, which means that j—i cannot be defined. However, we can still compute % which
evaluates to 0. Denote V, := ( o L ) and Vz 1= ( 9 9 )

dz1> "7 0z 0z1> """ 9zy

Proposition 1 a% Nzllh,m = %sign(ﬁi(z)) + %sign(%(z)). Here N(z) is the real part of z and
3(2) is the imaginary part of z.

Proof Letz =x +iy. &llzllim = % (& +12 ) (I + Iy = 3 (sign(x) + isign(y). 0
Proposition 2 V|| H|l; » = sign(M(H)).

Proof To prove this proposition, we will consider componentwise derivatives. We have two
cases of k = 0,k = %, and 1 < k < T — 1. This distinction is important because the 0-th
and %-th Fourier coefficients of real time-series data should be real numbers.

For each entry of ﬁxk,

1. ifk=0ork = %:
G Wil v = g Bl v = sign(R(Hp)), since Hye € R.
2.if1 <k <T—landk # I:

9 1| -2 (1°H +|H, 7
Bﬁxk” 1,0 ~ (IHxll1,07 + IHg,7—kll1,0m)

*.") The other entries of H are independent of ﬁsk.

L L VTN SUNUE BUREpRp sign(3(A
< Ssign(RHL) = Ssign(SHa) + sign(iHs ) = 3sign(3(Hy7-1)
w1l o~ Lo L H ' ign(3(
= SsignOi(Hy)) — Zsign(3(Hy)) + 3signM(Hu) + sign(3(H)
= sign(m(ﬁsk)L

whEre (a) follows ﬁom Proposition 1 and (b) uses the fact that m(ﬁs,T_k) = St(ﬁsk) and
SMHy, 7-1) = —I(Hgy). ]

Proposition 3 %ﬂi(sign(ﬂi(ﬁ))]—';l) is a subgradient of § := & o (F, %), where F(H) =
H,3H) = Hand 6H, H) = |H||| y. i.e., SH) = |H||.ys. We can absorb the coefficient

% into the step size in projected subgradient descent in Lemma 2.

Proof Note that AG(H, H) = (AR, V5 6) + (aH, Vg 6) = 20 (AR, v ) [14]

AS(H) = 20 (<Aﬁ, Vs Qﬁ))
Since § is linear,

— AH(H) = 20 (<3AH, Vs es)) .
1
Since FjFr = ?I, where 77 is a Hermitian matrix of JFr,

1
= AHH) = 2R (<AH, ?3 1 Vs ®>) .
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— AHH) =% (<AH, %(vﬁ @)f;1>>

— AH(H) = <AH, %m ((Vﬁ(’ﬁ)}}_])>

m}

Definition 3 (Definition 1.4, [2]) Let X be a nonempty set. f : X — [—00, 00] is proper if
—o0 ¢ f(X)anddomf ={x € X : f(x) < oo} # (.

Lemma 1 (Convergence of BCD, Lemma 3.1, Theorem 4.1, [22]) Let f(91, 6N =
N

fo@',....,0N) + > fu(0™). Suppose that fo, fi, ..., fn satisfy the followings
n=1
1. The domfy is open and fy has a directional derivative in all direction on dom fy.
2. The set X0 = {01, ....0N): f(0!,....,0N) < £(8),....00)} is compact, and f is
continuous on X°.
3. The mapping 0" — f(O',...,0N) has at most one minimum for n > 2.

Then, for {(le, ey Olﬁv) }keN’ every cluster point is a stationary point of f.

Lemma 2 (Projected subgradient method, [4]) Consider the following constraint convex
optimization problem

argmin f(x) (38)
xeC
where f : R" — R is convex and C C R" is convex. The projected subgradient method is
given by xy11 = P(xx — ok g(k)), where P is the projection on C and oy is the kth step size
and g is a subgradient of f at xr. Then xi converges to the solution of (38).

Note that Problem (7) is a nonconvex problem. Therefore, finding the global minimum
of this problem is extremely difficult. Alternatively, to tackle this issue, we aim to find the
stationary points. The Subproblems (13), (14) and (15) are all convex optimization problems.
We will particularly focus on examining (13). Since H +— ||ﬁ|| 1,m 1s not differentiable, we
use projected ‘sub’gradient descent algorithm to solve (13). Proposition 3 will be used to
solve it.

Proof of Theorem 1 (BCD convergence) In Lemma 1, set 6! = H, 6> = W, 0% = W’ and

JoH, W, W) = X = WH| 7 +&|Y —WH|7, fi(H) = A[HFr |1 m +1gH), (W) =

A W% and f3(W') = Xl[W'||3, where &, A, 71,42 > 0,G = {H € R™T : H > 0}

and (g is an indicator function. Here, we introduce L,-regularization terms for W and W’

to satisfy conditions 2 and 3 in Lemma 1. Note that 11 and A; can be selected as arbitrarily

small positive numbers; thus, in Algorithm 1, we can disregard the L,-regularization term.
Now, we check the conditions in the Lemma 1.

1. Sincedomfy = R"™*T x REX" x R4*" is whole space, it is open. Clearly, f; is continuously
differentiable, it has a directional derivative in all directions.

2. Suppose we choose an initial point Hy € G. Then M := f(Ho, Wo, W{)) has a finite value.
The set X0 = {(H, W, W) : f(H,W,W') < M} = f~1([0, M])(. f > 0). Note that
£ on X%is [X — WHI% + &Y — WHI% +AHF7 [y g7 + 21 [W]3 + A2 [W[%. Since
IHFr|1.m, IW] F and |W’||F are bounded, the set X° becomes bounded. Clearly, f is
continuous on X0, this implies that X 0— f -1 ([0, M]) is closed; therefore, it is compact.
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3. Note that if the Hessian of f is positive definite, then f is strictly convex [9]. We can
calculate the following (see [16])

af T T 82f T

Sy = 2(WHH' — XHT) 423, W, = 2HH' +2)1, (39)
oaf _ 26(WHH” — XHT) + 20, W/ 32f = 26HH? + 22,1 (40)
IW’ 2 s 8W’2 24,

where I is an identity matrix. Since A1, A2 > 0, 3W2 and ‘)W’Z are positive definite.
Therefore, W — f(H, W, W) and W’ > f(H, W, W’) are strictly convex and have at
most one minimum.

(Solving subproblem via BCD): The Fourier transform H — H is linear and I, 0 is a
convex function. Consequently, the mapping H +— ||H||1 m = |[HFr|1,m is also convex and
it satisfies all the hypotheses of Lemma 2. We have computed its subgradient in Proposition
3. Therefore, we can solve the subproblem using the projected subgradient descent:

argmin||X — WH| 7 + 1Y — WHIIZ + A [HF7 ]|, - (41)
HeR§T

The other subproblems:

argmin X — WH| % + £||Y — WH||7 + A|HFr | 1,n (42)
WeRdxT

and
argmin X — WH| 7 + (Y — WH| 7 + A|HF7 |l m (43)
W/ERde

are usual normal equation and its solution is well-known.

Therefore W, W/] and H; converge to stationary points in Algorithm 1. O

Remark 3 To solve the subproblem (13), we apply the following gradient-projection steps.

(Gradient step) H; <~ H; —«;V f(H}), where (44)
SH)) =W W; H; | —WT_X)
HEW T W H L — W Y)
+ AE)t(szgn(?)t(H))]—'T ) (45)
(Projection step) H; < max {0, H; —o;V f(H))}. (46)

This can be interpreted from a frequency domain perspective.
H; < H; —«,;Vf(H;), where 47)
fH) =W W, H - W X)
+EW_ W Ho - W)
+ A9 (sign(R(H))) 48)

where Proposition 2 is used in (48). By applying the inverse Fourier transform to update rule
(47), we obtain the update rule in the time domain.
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Now, consider Theorem 2.

Proposition 4 (Corollary 1 and Theorem 4, [23]) If f : R"™*T — Rand g = 1g, hg = 13 :
R™*T s RU {oo} are proper, lower semi-continuous and convex, where G and H € R" are
convex and tg, 1 are indicator functions. Let Hy be output of Algorithm 2, then

f(Hy) — min f=0 (%) : (49)
— ~ (1
distHy, H)=0 <N> . (50)

We will show that the matrix factorization with two constraints, i.e. 1) the nonnegativity
constraint of H and 2) the constraint that H has no specific frequencies and also satisfies the
hypothesis of Proposition 4.

Lemma 3 (Example 1.25, [2]) Let X be a Hausdorff space. The indicator function of a set

0, ifxeC | . . .
CCXietlc:X —> [-00,0]:xH— i _is lower semi-continuous if and
00, Otherwise

only if C is closed.

Proof of Theorem 2 This proof is similar to the proof of Theorem 1. (BCD convergence) Let
G={HeR*T:H>0}adH = F ' (CF x {0}7F). In Lemma 1, set 6! =
H,0> = W,0° = W and fo(H,W, W) = |X — WH|% + £|Y — WHI|%, fi(H) =
MHIE + g ), f2(W) = A1 [W(7 and f3(W') = Ao[|W'||7, where &, &, A1, A2 > 0.
If we choose an initial point Hy € G (", then f on X" is | X — WH|% + &Y — WH]|% +
AMHI% + A1 [[WI[% + A2|[W’[|%.. The remainder of the proof is similar to that of Theorem 1.

(How to solve subproblem in BCD) Set f, g and h g defined in (20)—(22). Since G and ‘H
are closed convex sets in R %7, by Lemma 3, g and hp are lower semi-continuous. Since
the indicator function on convex set is convex map, g and A are convex maps. Clearly, g
and h g are proper maps. Therefore f, g and hg satisfy the all hypothesis of Proposition 4.
Therefore W, W; and H; converge to stationary points in Algorithm 3. O

5 Analysis on Synthetic Data

The following proposition states that the presence of a mismatch term between X and Y can
disrupt the inference of the periodic pattern of X. Here S is the number of auxiliary data.

— X — 4% Tl 2miln
Proposition 5 Ler X = |: :| and W = |: :| Ifwe let Xpp = Y Xpie 7 and
\/%TY \/%TW/ " 1=0 "
T-1_ iln f— f—
Y, = lee2 7 , then the solution ofm}%nIIX - WHII%,- is given by the following.
=0
d—1 T T S—1 - T
o W W)W W W)W A
Hk] B Z (( W) w )k‘v + Z@((W W) w )k,x+pd ij
s=0 p=0
d—18-1T-1 . , 2l
ol v — 1% < < i)
PN (W W' W) VE(Wp = Ra)e T (51)
s=0 p=0 I=

@ Springer



Journal of Scientific Computing (2024) 100:29 Page 170f31 29

Proof The solution to ml_}n IX—WH II% is well-known as the normal equation, and its solution

isH=(W W) 'W'X.

d+dS—1

Hy = 22(; ((WTW)*WT)“XW
d—1 dsS—1
- ZO ((WTW)*'WT)“ X,j + ; ((WTW)*'WT)“H VEY,;
d—1

d—18—
(7w ), x5
s=0

1
=0 p=0

<(WTW)_1WT)k,s+pd VE ).

Il
=}

s

. T—1 .
Using the relations X; = Z lee S and (Y,)s; = Z (Y,,)Yle e

, we have

d—1T-1

Hy; =ZZ(<W W) TIW) R
ks

_1S—1T—
T T — 2xilj
+ ZZ (W'w)'w )mpd VEY e T

s=0 p=0 /=0

To see the disparity term between X and )Y\, we rearrange the above as the following,

d—1T-1 o
Hy; = ZZ <(W w)~'W ) Ryie T
5=0 =0
sl — S
+ZZ ((W wmw )ks+ de”e i
s=0 p=0 [=0
d—15-1T-1
T e - 2milj
+ (W'w)'w ) VE((p)g —Xy)e' ™
s=0 p=0 1=0
d—1 , , S—1 , ,
- W W)W w! Wy -1 W
=L |(WWW) 3 VE(WWW)
s=0 p=0
T—1 o
X <Z Xye T])
1=0
d—15-1T-1 , , . I
wwW) W) Vo) —Xa)e T
+ Z (( ) kst pd \/g(( p)sl sl)e
s=0 p=0 /=0
Now the inverse Fourier transform yields
d—1 , , 5—1 , ,
o W W)W WwW)-'W 4
Hy _§ (W'w)'w )kﬁ;‘@((w W)W )kﬁpd X,
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d—1S5S—-1T-1
vl oo -1 < 3 2zilj
P (W) V(W Ra)e T
s=0 p=0 [=0
O
o 2r-14j 2w-6j _
Example2 Set X;; = X -[cos( - )+cos( 0 )] + €0, 1), Yo)i; = (Yo)io
xcos(2”1'6134j) + €(0,0) and (Y))i; = (Yl)iocos<27f6'gj> + €(0,0) where 0 €

{0,1,2,3,4,5} and €(m, o) is a Gaussian noise with the mean m and the standard devi-
ation o. We apply the matrix factorization based on the following three cases i) with the
constraint on H, ii) without any constraint on H, iii) with the Principal Component Anal-
ysis(PCA). Figure?2 shows the spatial (top rows) and temporal (middle rows) patterns and
the corresponding spectrums (bottom rows). The left, middle, and right columns correspond
to the matrix factorization method with the nonnegativity constraint enforced, without the
nonnegativity constraint enforced, and with the PCA approach, respectively. In this example,
we use synthetic data for X that has two temporal patterns with frequencies of 6 and 14. As
shown in Fig. 2, when the nonnegativity constraint is enforced to H, we obtain clear spatial
patterns, and each row of H captures different temporal patterns. Here note that the result may
depend on the initial values assigned to H in BCD algorithm. On the other hand, when we
do not impose the nonnegative constraint on H (or when using PCA), their temporal patterns
cannot separate those two temporal frequency patterns, 6 and 14. In the time domain, we can
observe that H has nonnegative values in the first column.

Example 3 (Comparison of Frobenius norm, L.1-norm, and Minkowski 1-norm using pro-
jected (sub)gradient descent) In this example, we compare the behaviors of H in both the
time and frequency domains when applying projected (sub)gradient descent method with the
Frobenius norm, L.1-norm, and Minkowski 1-norm of H. Consider a time-series data Ho[k]
= cos(10m - 3"—0) + €, where ¢, € [0, 1] is uniform noise for k = 0, 1, ..., 29. In order
to minimize the Frobenius, L1-, and Minkowski 1-norms, i.e.|[H||%, |H||;, and [[H]|/1 4,
respectively, we apply the update rules with the projected subgradient descent method to
each norm as follows:
Frobenius norm: Hj+% =H; —a;jH;and H; | = max{O, Hj+% }
Ll-norm: H; , =H; — B;(sign(H;)) and H; 1 = max {0, H }.

Minkowski 1-norm: H . H;—vy; (sign(f?’i(l:lj))}"T_l) andH; | = max {0, Hj+% }

j+1 T

In this experiment, we set « = 0.1, 8 = 0.1 and y = 0.5. For a fair comparison, we
iterate the projected (sub)gradient method until |H| r < 3. Figure3 displays H after pro-
jected (sub)gradient descent, with the Frobenius norm (blue), the L1-norm (green), and the
Minkowski 1-norm (red). The left figure in Fig. 3 shows the data in the time domain and the
right figure in the frequency domain. In this example, the solution is simply H = 0. We want
to observe how H; approaches 0 during the gradient descent process. Note that the iteration
goes until |H||r < 3 and according to Parseval’s identity, ||ﬁ|| r are same for three cases.
The difference among these three cases in the time and frequency domains is the amplitude
distribution. In the case of the L1-norm, as expected, it exhibits significant sparsity in the
time domain. Although the Minkowski 1-norm does not achieve the desired sparsity in the
frequency domain, it shows a tendency to yield smaller amplitudes of frequencies compared
to other norms. In this experiment, we expect the 5th frequency to be dominant, while the
other frequencies are considered noise originating from uniform noise. The Minkowski 1-
norm shows an effect of increasing the amplitude of the Oth frequency while reducing the
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Fig.2 Top: spatial patterns of X in Example 2. First(second) row shows the first(second) column of W. Middle:
temporal patterns of H. First(second) row is the first(second) row of H. Bottom: spectrums of temporal patterns
of H. First(second) row is the Fourier transform of the first(second) row of H. The left column shows the results
when the nonnegativity constraint is enforced to H, the middle column without the nonnegativity constraint
and the right column with PCA
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Fig.3 Behaviors under the projected (sub)gradient descent in Example 3. H with the Frobenius norm (blue),
the L1-norm (green), and the Minkowski 1-norm (red). Left: H in the time domain. Right: ‘H! in the frequency
domain

amplitudes of undominated (noise) frequencies. This effect remains consistent even when
experimenting with different random seeds for uniform noise. The experimental results show
that the Minkowski 1-norm reduces the amplitude of the undominated frequencies more effec-
tively than the Frobenius and L1-norms. That is, the soft frequency regularization achieves
our goal partially as stated in Sect. 3.2.

6 Experimental Results

6.1 GRACE Data

Gravity Recovery and Climate Experiment (GRACE) satellites measure the change of the
gravitational field on Earth. From this measurement, we can obtain the total water storage
anomaly. Our dataset X represented as a 3-tensor, and each entry value X'[m, n, t] is the vari-
ation in total water storage compared to the temporal average during Jan. 2004 - Dec. 2009 at
a latitude of m, longitude of n, and time (months) of t.2 The measurement unit is centimeters
(cm). By considering variations in total water storage, we can remove static mass and infer the
redistribution of water. Matrix factorization is one method used to extract latent patterns from
the data. In our research, matrix factorization is used to separate spatio-temporal data into
spatial latent figures and temporal latent figures. This approach enables us to analyze temporal
patterns. The nonnegative constraint helps us to obtain more interpretable spatial atoms. To
analyze the temporal patterns, we consider a soft constraint in the frequency domain. For the
reconstruction of the total water storage anomaly (TWSA),? we use auxiliary data that was
also utilized in [21]: precipitation,* temperature*, and Noah TWS.> Noah TWS refers to the
traditional method of restoring TWSA before the GRACE era. We divide the dataset into the

2 https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_grace_tws_anomaly.pdf.

3 CSR GRACE/GRACE-FO RL06 Mascon Solutions, https://www?2.csr.utexas.edu/grace/RL0O6_mascons.
html [19, 20].

4 ERAS monthly averaged data on single levels, https:/cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels-monthly-means?tab=overview [12].

5 GLDAS Noah Land Surface Model, https://disc.gsfc.nasa.gov/datasets/ GLDAS_NOAHO025_M_2.1/
summary ?keywords=gldas [3, 18].
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training set (132 months, Apr. 2002-Jan. 2014) and the test set (31 months, Feb. 2014—Jun.
2017). The train set consists of the data for the 142 months, and the test set for the remaining
41 months. However, due to technical issues, there are missing data in both sets, occurring
intermittently every 10 months (06/2002, 07/2002, 06/2003, 01/2011, 06/2011, 05/2012,
10/2012, 0372013, 08/2013, 09/2013, 02/2014, 07/2014, 12/2014, 06/2015, 10/2015,
1172015, 04/2016, 09/2016, 10/2016, 02/2017). These missing data have been excluded as
described in [21]. We chose 17 river basin data to assess our proposed method, that is, the
areas of Amazon, Congo, Ganges, Indus, Huanghe, Volga, Parana, Lena, Mackenzie, Ob,
Yenisei, Nile, Yangtze, Indigirka, Zambezi, Mississippi, Murray.®

We focus on the temporal patterns present in spatio-temporal data. In our experiments
with the GRACE data, we expect to find a spatial pattern that exhibits an annual cycle with
a period of 12 months. In this study, we utilize the discrete Fourier transform on the time-
series data obtained through SSNMF to uncover the temporal patterns in GRACE data. By
preserving specific frequencies selectively in the time-series corresponding to each spatial
basis, we can enhance the interpretability of the periodic patterns. To achieve this, we use
the method proposed in the pervious section, i.e. the soft/hard constraints in the frequency
domain and compare the results with the results by the Lasso/Ridge regression methods.
Furthermore, we compare the methodology with the existing methods such as Deep Neu-
ral Network(DNN), Multiple Linear Regression(MLR), Seasonal ARIMA with eXogenous
variables(SARIMAX) [6], and assess its forecasting performance, demonstrating comparable
results.

6.2 Comparison Among Lasso, Soft and Hard Frequency Regularization

Definition 4 (Inverse usage ratio of frequencies) In Example 3, we focused on reducing
the amplitude of undominated frequencies. To measure the decrease in amplitude for the
frequencies that are not dominant, we define the inverse usage ratio of frequencies as follows:

-1
| [s, k]|

Hs, ]
Xl: } s, | O0<s=<r—1,
0<k<T-1

w(H) = e R, (52)

where H e R™*T A large value of w(H)[so, ko] indicates that the koth Fourier coefficient of
the soth temporal pattern is small.

Example 4 For the comparison of the Lasso and soft frequency regularization methods we
consider the Yangtze dataset. Figure4 shows that in soft frequency regularization, w(H)
has larger values than Lasso. Similar to Example 3, we observe that soft frequency regular-
ization reduces the usage of undominated (noise) frequencies more effectively than Lasso
regularization, but it does not achieve the desired sparsity in the frequency domain.

Example 5 In this example, we compare soft and hard frequency regularization methods
for the Yangtze dataset. It can be observed that the elements of p(H) are higher with hard
frequency regularization than soft frequency regularization. In this experiment, we can verify
that hard frequency regularization is more effective than soft frequency regularization in

6 The latitude and longitude information for the river basin was obtained from https://hydro.iis.u-tokyo.ac.
jp/~taikan/TRIPDATA/Data/rivers.idx [15].
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Fig. 4 Yangtze data: r = 3, £ = 100. Each row corresponds to a choice of regularization parameters A €
{0, 102, 103, 104}. First row: spatial pattern of W, Second row: temporal pattern of H. Third row: (H)

and p(Hj,,), respectively. This shows only positive frequencies (frequencies up to half of the length of the
time-series) since they have the same value as the negative frequencies
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minimizing the utilization of particular frequencies. Figure 5 verifies these results. Note that
the reason why there is no always value of 1 (H) that diverges to oo with the hard constraint is
explained in Algorithm 4, where we prioritize the nonnegativity condition over the removal
of specific frequencies in H.

6.3 Accuracy of Spatio-temporal Prediction

Now for the evaluation of the proposed method, consider the following metric.

Definition 5 (Nash—Sutcliffe efficiency (NSE), [21]) Nash-Sutcliffe efficiency (NSE) is
defined as follows:

where X, is the output of the model, X is the spatial average of X and (-) denotes the
average in time. NSE ranges between —oo and 1. If NSE is close to 1, it is indicated that the
model predicts perfectly.

We use the number of spatial-temporal patterns, denoted as r, as a hyperparam-
eter, ranging from 2 to 20. Additionally, we chose additional parameters for & €
{1073,1072, 107", 1,10, 10%, 10*, 10%, 10°}, 2 € {107, 1,10, 10%,10%,10%}, and R €
{10, 20, 30, 40}. For each hyperparameter, we conduct 10 experiments and calculate the
median value of the NSEs obtained from these 10 experiments. Table 1 summarizes the
result.

In these experimental results, we can observe that the soft frequency, Lasso, and Ridge
regularization methods generally demonstrate the best predictive performance among all,
as shown in Table 1. As confirmed in Example 5, hard frequency regularization is most
effective in removing undominated frequencies compared to other regularization mehtods,
but it appears less effective in predictive performance. This experiment shows that we can
select each form of regularization depending on whether our analysis primarily centers on
the time domain or the frequency domain. Our choice can also depend on our priority for
interpretability and predictive accuracy.

6.4 Atom Removal

The term ‘atom’ refers to a spatial latent pattern of the given data. Note that some atoms could
represent noise. Therefore, by removing such noisy atoms learned during the coding process,
we may achieve better results. This process is similar to PCA, where we select the principal
components that capture the most variation in the data. However, the key difference between
PCA and the proposed method is the utilization of supervised information to identify the
appropriate atoms. If the NSE value significantly increases after removing a particular atom,
that atom can be considered as noise. Given the possibilities for discarding multiple atoms,
we only consider removing a single atom. All hyperparameter settings are the same as those
in above. As shown in Tables 1, 2 and 3, our method is comparable to previous research in the
geophysical research community. The sharp increase in NSE in the Ob region is noteworthy.

@ Springer



29 Page24o0f31 Journal of Scientific Computing (2024) 100:29

Soft constraint Hard constraint

A=10%
R=1

A=103
R=5

Amplitude

------- Soft constraint ~—— Hard constraint

H(H) H(H'new)

LEEEEEEG

i Freqaency : : , ’ . : Frequency
Fig. 5 Yangtze data, r = 3, & = 100. Each row corresponds to regularization parameters A &
{O, 102, 103, 104} and remaining frequencies, specifically R € {1, 5, 10, 20}. First row: spatial pattern of

W, Second row: temporal pattern of H. Third row: j(H) and (Hj,,,) respectively. This shows only positive
frequencies (frequencies up to half of the length of the time-series) since they have the same value as the
negative frequencies. Vertical lines in plots signify an infinite value
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Table 2 Median of NSE in

. . Region Method
previous resear'ch in the DNN MLR SARIMAX
geophysical science [21]

Amazon 0.85 0.51 0.8
Congo 0.41 —1.49 0.6
Ganges 0.83 —0.44 0.76
Indus 0.62 —2.74 0.45
Huanghe 0.35 -9.53 0.29
Volga 0.95 0.87 0.93
Parana —-0.23 —1.21 —0.16
Lena 0.8 0.66 0.73
Mackenzie 0.68 0.09 0.65
Ob 0.71 0.35 0.75
Yenisei 0.8 0.55 0.78
Nile 0.71 —0.77 0.61
Yangtze 0.68 0.28 0.66
Indigirka 0.38 0.1 05
Zambezi 0.8 0.61 0.67
Mississippi 0.65 0.28 0.73
Murray 0.72 —-0.95 0.7

The boldface numbers indicate the highest NSE values in both the current
table and Table 3

Prior to discarding the atoms under the hard constraint, the NSE value in the Ob region was
0.18. However, after discarding the atoms, it dramatically increased to 0.77. See Fig. 6.

7 Conclusion

In this paper, we considered forecasting problems, specifically those arising in applications
characterized by time periodicity, such as geophysical problems. In geophysical scenar-
ios, spatial patterns exhibit changes with distinct periodicities, and frequency information
becomes pivotal for accurate forecasting. To address this, we introduced novel methods
based on Supervised low-rank Semi-Nonnegative Matrix Factorization (SSNMF), incorpo-
rating both soft and hard regularization in the frequency domain. These proposed methods
aim to extract accurate temporal patterns from spatio-temporal data by leveraging essential
periodicity information.

For the soft constraint approach, we proposed to use the Minkowski 1-norm for feature
selection in the frequency domain, similar to Lasso. Although the amplitudes of undomi-
nated (noise) frequencies are reduced with soft regularization, those noisy frequencies are
not completely eliminated. Consequently, we introduced the hard constraint in the frequency
domain, employing three operator splitting techniques. However, for the hard constraint it
is required to provide prior knowledge about the frequencies to be removed. For this, we
introduced the heuristic approach, which allows for the removal of specific frequencies in
the frequency domain without requiring any prior knowledge. Consequently, the forecasting
of spatio-temporal data through the soft frequency, Lasso, and Ridge regularization methods
comparably align with prior research in geophysical science, while hard frequency regular-
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Fig.6 In the Mississippi region with 11 atoms, § = 104, and 30 remaining frequencies, removing one spatial

and the corresponding temporal atom (bold red line in the middle and bottom figures) causes the NSE to
change from 0.1 to 0.77. This suggests that the first atom contains noisy components
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ization falls behind in this regard. Nonetheless, hard frequency regularization contributes
to more concise interpretation by enforcing sparsity in the frequency domain. This affords
us the flexibility to choose the most suitable regularization method, depending on whether
our primary emphasis lies in the time domain or the frequency domain, as well as our pri-
ority between interpretability and predictive capacity. We provided theoretical convergence
results for the proposed methods. We also presented numerical results demonstrating the
effectiveness of the proposed methods using GRACE data from geophysical applications.
These results show the benefits of taking frequency information into account for forecasting
problems, enhancing both accuracy and interpretability.

As explained in this paper, the proposed method proves effective for problems charac-
terized by time periodicity, particularly enhancing the interpretability of the provided data.
However, there are instances when non-periodic events, such as anomalous occurrences,
become significant in time-series data. Our current method might overlook such frequency
information. In future work, we will attempt to further develop the proposed method to
address situations where non-periodic characteristics also play a crucial role in the observed
phenomena within the given data. Additionally, for this study, we did not conduct a compre-
hensive analysis of geophysical data, specifically GRACE data, which falls outside the scope
of this paper. Instead, our emphasis lies on developing the methodology and providing proofs
of performance. In our future research, we will also attempt to apply the proposed method to
domain-specific problems, such as geophysical problems, and perform a thorough analysis,
emphasizing interpretability.

8 Notation

T, T;o;: Train time period and test period

X, Y; € RA*BXT: Main spatio-temporal data and supervision datas
r: The number of spatial/temporal patterns of X

H: Temporal pattern on train period of X

S: The number of data for supervision

H;.,,: Temporal pattern on train + test period of X

Hiey: Test period part in Hy,,,

H: Concatenation of H and Hey,

I || 7: Frobenius norm

10. X, Y; € R¥*T: Matricization of X and )

11. Y € R¥S*T: Matrix obtained by stacking Y1, ..., Yy vertically
12. W, W', W, W’: Spatial pattern of X', ) and its matricization

13. ﬁ, Fr: Fourier transform of H and Fourier transform matrix

14. &, A: Regularization parameter of supervision data and frequency
15. |I-ll1,m: Minkowski 1-norm

16. R: The number of remaining frequencies

17. 3%, 3%, V., Vz: Wirtinger derivatives

18. M(z), J(z): Real and imaginary part of z

19. w(H): Inverse usage ratio of frequencies of H

PN LD
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