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Abstract
We analyze inexact Riemannian gradient descent
(RGD) where Riemannian gradients and retrac-
tions are inexactly (and cheaply) computed. Our
focus is on understanding when inexact RGD
converges and what is the complexity in the
general nonconvex and constrained setting. We
answer these questions in a general framework
of tangential Block Majorization-Minimization
(tBMM). We establish that tBMM converges to an
ϵ-stationary point within O(ϵ−2) iterations. Un-
der a mild assumption, the results still hold when
the subproblem is solved inexactly in each itera-
tion provided the total optimality gap is bounded.
Our general analysis applies to a wide range of
classical algorithms with Riemannian constraints
including inexact RGD and proximal gradient
method on Stiefel manifolds. We numerically
validate that tBMM shows improved performance
over existing methods when applied to various
problems, including nonnegative tensor decompo-
sition with Riemannian constraints, regularized
nonnegative matrix factorization, and low-rank
matrix recovery problems.

1. Introduction
A typical formulation of constrained Riemannian optimiza-
tion takes the following form:

min
θ∈Θ⊆M

(f(θ) := φ(θ) + ψ(θ)) , (1)

where M is a smooth Riemannian manifold embedded
in a Euclidean space, Θ is a closed subset of M, and
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f :M→ R is an objective function consisting of a smooth
part φ and convex (and possibly nonsmooth) part ψ. Rie-
mannian optimization problems of the form (1) have a wide
array of applications ranging from the computation of linear
algebraic quantities and factorizations and problems with
nonlinear differentiable constraints to the analysis of shape
space and automated learning (Ring & Wirth, 2012; Jaquier
et al., 2020). These applications arise either because of im-
plicit constraints on the problem to be optimized or because
the domain is naturally defined as a manifold.

Motivation: Inexact RGD. In many Riemannian optimiza-
tion problem instances, the dimension of the parameter
space is much less than that of the ambient dimension. Such
‘latent’ low-dimensional structure in the parameter space
can be utilized by using the Riemannian gradient of the
objective that lives in the (low-dimensional) tangent space,
instead of the full gradient in the (high-dimensional) ambi-
ent space. Thus many Riemannian optimization methods
take the following form (Baker et al., 2008; Yang, 2007;
Boumal et al., 2019; Edelman et al., 1998): Iteratively,

(i) Compute descent direction in the tangent space;

(ii) Take a step in that direction along a geodesic.

However, step (ii) is often challenging in practice so other
approaches alleviate this burden by utilizing approxima-
tions or imposing additional assumptions (Absil et al., 2009;
Boumal, 2023). A popular way to implement a similar idea
with less computational burden for computing the geodesic
is to make the parameter update first in the tangent spaces
and then map the resulting point back onto the manifold us-
ing a retraction (which is like a projection from the tangent
space onto the manifold).

Perhaps the simplest and most widely used Riemannian op-
timization algorithms for smooth objectives f of the above
form is Riemannian gradient descent (RGD):

(RGD)

{
Vn ← − grad f(θn−1)

θn ← Rtrθn−1 (αnVn) .

Here grad f(θn−1) denotes the Riemannian gradient of f at
θn−1, Rtrθn−1 denotes the retraction map from the tangent
space Tθn−1M at base point θn−1 onto the manifoldM
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(see Appendix A), and αn > 0 is a step size. In the literature,
one typically assumes that computing Riemannian gradients
and retractions are computationally feasible. However, there
are several problem instances where either computing exact
Riemannian gradient or the retraction is difficult (Wiersema
& Killoran, 2023; Ablin & Peyré, 2022; Wang et al., 2021).
For such situations, it is reasonable to consider the following
‘inexact version’ of RGD:

(Inexact RGD)

{
V̂n = −ĝradf(θn−1)

θn = R̂trθn−1

(
αnV̂n

)
,

(2)

where ĝrad and R̂tr are computationally feasible inexact
Riemannian gradient and retraction operators, respectively.
Our main question is the following. When does this inexact
RGD converge? What can we say about its complexity? We
answer these questions in a general framework of Rieman-
nian tangential Block Majorization-Minimization (tBMM).
Here we state a corollary of our general result for the context
of inexact RGD (see proof in Appendix G).

Corollary 1.1 (Inexact RGD). Let (θn)n be the iterations
generated by the inexact RGD (2) for solving (1) with ψ = 0.
Assume the manifold is complete and the objective function
is uniformly lower bounded with compact sub-level sets.
Then each limit point of (θn)n is a stationary point and an
ε-stationary point is obtained within O(ε−2) iterations if
the following holds:

(i) ∇φ is L-Lipschitz continuous for some L > 0.
(ii) For each n, choose Vn ∈ Tθn−1

M such that

Rtrθn−1(Vn) = R̂trθn−1

(
V̂n

)
.

Denote gn(η) := ⟨grad f(θn−1), η⟩+ L
2 ∥η∥

2 and de-
fine the optimality gap as

∆n := gn(αnVn)− gn(−
1

2L
grad f(θn−1)).

Then
∑∞
n=0 ∆n <∞.

General framework through tangential MM. We estab-
lish Corollary 1.1 for the broader class of first-order Rieman-
nian optimization algorithms called tangential Majorization-
Minimization (tMM). We first recall that the classical
Majorization-Minimization algorithm generalizes gradient
descent in Euclidean space (Mairal, 2013):

θn − θn−1 ← = − 1

λ
∇f(θn−1)

= argmin
η∈Rp

[
gn(η) := f(θn−1) + ⟨∇f(θn−1), η⟩+

λ

2
∥η∥2

]
.

Assuming λ ≥ L, the Lipschitz parameter for ∇f , the
quadratic function gn above satisfies (majorization) gn(η) ≥

f(θn + η) and (tightness) ∇gn(0) = ∇f(θn−1) and is
called the prox-linear surrogate of f at θn−1. Thus, we
majorize objective f near θn−1 by the prox-linear surrogate
gn and minimize it to find a descent direction.

In the Riemannian setting, RGD can be thought of as a
Riemannian version of MM. Notice that the prox-linear sur-
rogate gn above is in fact defined on the tangent space of Rp
at θn−1, and what it majorizes is not the original objective
f , but the ‘pull-back’ objective f(θn−1 + η) defined on the
tangent space. Applying this observation to RGD, we seek
to majorize the pull-back objective

φ̂n := φn ◦ Rtrθn−1 : Tθn−1M→ R

obtained by precomposing the objective function φ :M→
R with the retraction at θn−1. In this way, the Riemannian
objective is now lifted to the Euclidean objective φ̂n on the
tangent space. Here we apply the usual MM strategy on the
tangent space to find a descent direction, take a step on the
tangent space, and retract back onto the manifold. We call
this procedure ‘tangential MM’, which is concisely stated
below:

ĝn ←
[
Majorizing surrogate of φ̂n s.t. ĝn(0) = φ̂(0)

]
Vn ← argmin

η∈Tθn−1
M
ĝn(η) (3)

θn ← Rtrθn−1
(αnVn) .

To view the inexact RGD for smooth objectives (2) as a
special case of tMM (3), let

ĝn(η) := φ(θn−1) + ⟨gradφ(θn−1), η⟩+
λ

2
∥η∥2 (4)

where λ ≥ L and L > 0 is the Lipschitz continuity param-
eter of ∇φ. Then one can verify the update of tMM using
(4) is the same as (2) (see Section 4.2 for details).

In this work, we consider the more general setting when the
manifoldM is a product manifold given byM =M(1) ×
· · · × M(m). Then problem (1) becomes a multi-block
Riemannian constrained problem as follows:

min
θ=[θ(1),...,θ(m)]

θ(i)∈Θ(i)⊆M(i) for i = 1, . . . ,m

(f(θ) = φ(θ) + ψ(θ)) . (5)

Given that the problem (5) is typically nonconvex, expect-
ing an algorithm to converge to a globally optimal solution
from an arbitrary initialization might not always be reason-
able. Instead, our goal is to ensure global convergence to
stationary points from any initialization. In certain problem
classes, stationary points can be practically and theoretically
as good as global optimizers (Mairal et al., 2010; Sun et al.,
2015). Additionally, determining the iteration complexity of
such algorithms is crucial for both theoretical and practical

2



Convergence and Complexity Guarantee for Inexact First-order Riemannian Optimization Algorithms

purposes. This involves bounding the worst-case number
of iterations needed to achieve an ϵ-approximate stationary
point (appropriately defined in Sec. 3.1).

In this work, we propose a block-extension of tMM in (3)
that can also handle additional (geodesically convex) con-
straints within each manifoldM(i) as well as nonsmooth
nonconvex objectives (see Algorithm 1).We carefully ana-
lyze tBMM in various settings and obtain first-order opti-
mality guarantees and iteration complexity under inexact
computations. From the general results, we can easily de-
duce Corollary 1.1.

1.1. Related Works

Under the Euclidean setting, i.e. when each M(i) in (5)
is a Euclidean space, the corresponding Euclidean block
MM method has been well studied in the literature. For
convex problems, the Euclidean block MM method is stud-
ied in (Xu & Yin, 2013) with prox-linear surrogates, and in
(Razaviyayn et al., 2013; Hong et al., 2015) with general
surrogates. For nonconvex problems, some variants of block
MM are studied in some recent works, including BMM-DR
in (Lyu & Li, 2023), and BCD-PR in (Kwon & Lyu, 2023).

Under the Riemannian setting, some recent work showed
convergence and complexity of block MM methods for solv-
ing (5) when ψ = 0. Namely, in (Gutman & Ho-Nguyen,
2023), the authors established a sublinear convergence rate
for an block-wise Riemannian gradient descent. However,
the retraction considered there is restricted to the exponen-
tial map, which excludes many commonly used retractions
in the literature. In (Peng & Vidal, 2023), the authors estab-
lished convergence and complexity results of general block
MM on compact manifolds. In (Li et al., 2023), conver-
gence and complexity results are established for the Rieman-
nian block MM methods on general Riemannian manifolds.
Moreover, extra constrained sets on the manifolds and inex-
act computation of subproblems are allowed in the general
framework of (Li et al., 2023). However, all these analyses
are limited to the smooth problem (ψ = 0) and cannot be
directly applied to the general problem (5).

For nonconvex nonsmooth problems, in (Chen et al., 2020),
the authors studied a tangential type of MM method with
prox-linear surrogates on Stiefel manifolds with complexity
guarantees. However, the problem considered there is a
single-block problem.

1.2. Our Contributions

In this work, we propose tBMM, which is a general frame-
work of tangential type Riemannian block MM algorithms
for solving nonconvex, nonsmooth, multi-block constrained
Riemannian optimization problems (5), and allowing inex-
act computation of subproblems. We thoroughly analyze

tBMM (3) and obtain asymptotic convergence to the set of
stationary points and iteration complexity. The theoretical
contributions of this work, compared to the aforementioned
related work, lie especially in the following three aspects,

(1) (Iteration complexity) tBMM is applicable to nons-
mooth, nonconvex, multi-block Riemannian optimiza-
tion problems, and we derive the iteration complexity
of O(ε−2) along with asymptotic convergence to the
set of stationary points. See Theorem 3.1.

(2) (Constrained optimization) tBMM is applicable to con-
strained optimization problems on manifolds. Here,
constrained optimization on manifolds means we al-
low the domain Θ of the optimization problem to be a
closed subset of the manifold, i.e. Θ ⊆M, which is
not necessarily the entire manifold.

(3) (Robustness) tBMM is robust in the face of inexact
computations in each iteration. See (A1)(ii).

tBMM entails various classical and practical algorithms.
This includes inexact RGD (2), block Riemannian prox-
linear updates (see Section 4.2), and nonsmooth proximal
gradient method on Stiefel manifolds (see Section 4.3). We
apply our results to the above classical algorithms and obtain
the following including empirical findings:

(4) The inexact RGD (2) for smooth objectives converges to
the set of stationary points and has iteration complexity
of O(ε−2). See Corollary 1.1.

(5) We give a convergence and complexity result of O(ε−2)
for nonsmooth proximal gradient method on Stiefel
manifolds. See Section 4.3.

(6) We empirically verified tBMM is faster than the classi-
cal algorithm on various problems, including nonnega-
tive tensor decomposition with Riemannian constraints,
regularized nonnegative matrix factorization, and low-
rank matrix recovery. See Section 5.

1.3. Preliminaries and Notations

The notations we use in this work are consistent with those
of Riemannian optimization literature. In this section, we
provide a brief introduction to the notations used in our
paper, with further details provided in the Appendix A. We
use TxM or Tx to denote the tangent space at x ∈M and
Rtrx to denote a retraction at x. Retractions provide a way
to lift a function g :M→ R onto the tangent space TxM
via its pullback ĝ := g ◦ Rtrx : Tx → R. Denote rinj(x) as
the injectivity radius at x. For a subset Θ ⊆M and x ∈ Θ,
define the lifted constraint set T ∗

x as

T ∗
x :=

{
u ∈ Tx

∣∣∣∣ Rtrx(u) = x′ for some
x′ ∈ Θ with d(x, x′) ≤ r0/2

}
, (6)
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where r0 is the lower bound of the injectivity radius (see
(A2)(iii)) and d(x, x′) is the geodesic distance between x
and x′.

For block Riemannian optimization, we introduce the fol-
lowing notations: For θ = [θ(1), . . . , θ(m)],

gradi f(θ) :=

[
Riemmanian gradient of

θ 7→ f(θ(1), . . . , θ(i−1), θ, θ(i+1), . . . , θ(m))

]
,

grad f(θ) := [grad1 f(θ), . . . , gradm f(θ)].

Throughout this paper, we let (θn)n≥1 denote an output
of Algorithm 1 and write θn = [θ

(1)
n , . . . , θ

(m)
n ] for each

n ≥ 1. For each n ≥ 1 and i = 1, . . . ,m, denote

f (i)n : θ 7→ f(θ(1)n , . . . , θ(i−1)
n , θ, θ

(i+1)
n−1 , . . . , θ

(m)
n−1),

which we will refer to as the ith marginal objective function
at iteration n.

2. Algorithm
In Algorithm 1, we give a precise statement of the tBMM
algorithm we stated in high-level at (3). We first define
majorizing surrogate functions on Riemannian manifolds.

Definition 2.1 (Tangential surrogates on Riemannian man-
ifolds). Fix a function h :M → R and θ ∈ M. Denote
the pullback ĥ := h ◦ Rtrθ : TθM → R. A function
ĝ : TθM→ R is a tangential surrogate of h at θ if

ĝ(η) ≥ ĥ(η) for all η ∈ TθM and ĝ(0) = ĥ(0).

If ĝ : TθM → R is a tangential surrogate of h : M →
R and if ĝ, h are differentiable, then ∇ĝ(0) = ĥ(0) =
gradh(θ). The high-level idea of tBMM is the following.
In order to update the ith block of the parameter θ(i)n at
iteration n, we use first minimize a tangential majorizer
of the pullback of the ith block objective function, take a
step in the resulting direction in the tangent space, and then
use retraction to get back to the manifold. We remark that
another formulation of Riemannian BMM (Li et al., 2023)
uses majorizers on the manifold without using the tangent
spaces. In fact, if we have a majorizer on the manifold, then
its pullback is indeed a tangential majorizer. These two
formulations of Riemannian BMM coincide on Euclidean
spaces but not in general on non-Euclidean manifolds. See
the details in Appendix B.

Below we give some remarks on the computational aspects
of Algorithm 1. For Algorithm 1, the step size can be simply
set as 1 since the lifted constraint set already restricts the
length of tangent vectors (see definition in (6)). However,
computing the lifted constraint set requires access to specific
information about the manifold (see Section I for details).
Alternatively, one can minimize the tangent surrogate over

Algorithm 1 Tangential Block Majorization-Minimization
(tBMM)

1: Input: θ0 = (θ
(1)
0 , · · · , θ(m)

0 ) ∈ Θ(1) × · · · × Θ(m)

(initial estimate); N (number of iterations); α ∈ [0, 1]
(step size)

2: for n = 1, . . . , N do
3: Update estimate θn = [θ

(1)
n , · · · , θ(m)

n ] by
4: for i = 1, · · · ,m do
5: f (i)

n (·) := f
(
θ(1)n , · · · , θ(i−1)

n , · , θ(i+1)
n−1 , · · · , θ

(m)
n−1

)


ĝ
(i)
n ←

[
tangential surrogate of φ(i)

n at θ(i)n−1

]
G

(i)
n (η) := ĝ

(i)
n (η) + ψ

(i)
n (θ

(i)
n−1 + η)

V
(i)
n ∈ argminη∈T∗

θ
(i)
n−1

G
(i)
n (η)

α
(i)
n ← α;

(Optionally, α(i)
n ← line search using Alg. 2 )

θ
(i)
n = Rtr

θ
(i)
n−1

(
α
(i)
n V

(i)
n

)
(7)

6: end for
7: end for
8: output: θN

the ‘tangent cone’ (see Appendix A) and apply Riemannian
line search in Algorithm 2 to help determine a step size,
although it requires additional computational cost.

3. Statement of Results
Here we state our main results concerning the convergence
and complexity of our tBMM algorithm (Alg. 1) for the
constrained block Riemannian optimization problem in (5).

3.1. Optimality and Complexity Measures

For iterative algorithms, a first-order optimality condi-
tion is unlikely to be satisfied exactly in a finite number
of iterations, so it is more important to know how the
worst-case number of iterations required to achieve an ε-
approximate solution scales with the desired precision ε.
More precisely, for the multi-block problem (5), we say
θn = [θ

(1)
n , . . . , θ

(m)
n ] ∈ Θ generated by Algorithm 1 is an

ε-stationary point of f = φ+ ψ over Θ if

m∑
i=1

− infu∈T∗
θ
(i)
n

,∥u∥≤1

〈
gradi φ(θn)+

ProjT
θ
(i)
n

∂ψ
(i)
n (θ

(i)
n + V

(i)
n ), ur̂

〉
 ≤ ε, (8)

where r̂ = min{r0, 1}, i.e. the minimum of 1 and
the lower bound of injectivity radius r0; V

(i)
n ∈

argminη∈T∗
θ
(i)
n−1

(
G

(i)
n (η) := ĝ

(i)
n (η) + ψ

(i)
n (θ

(i)
n−1 + η)

)
.

When the objective function is smooth (ψ = 0), (8) reduces
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to the optimality measure for Riemannian constrained opti-
mization problems used in (Li et al., 2023). Furthermore, in
the Euclidean setting, (8) reduces to the optimality measure
used in (Lyu, 2022; Lyu & Li, 2023) for constrained
nonconvex smooth optimization and is also equivalent to
Def.1 in (Nesterov, 2013) for smooth objectives.

In the unconstrained block-Riemannian setting where
Θ(i) =M(i) for i = 1, . . . ,m, the above (8) becomes
m∑
i=1

∥gradi φ(θn) + ProjT
θ
(i)
n

∂ψ(i)
n (θ(i)n + V (i)

n )∥ ≤ ε. (9)

In the case of single-block m = 1, the above is consistent
with the optimality measure discussed in (Chen et al., 2020;
Yang et al., 2014). When the nonsmooth part ψ = 0, this
becomes the standard definition of ε-stationary points for
unconstrained Riemannian optimization problems.

Next, for each ε > 0 we define the (worst-case) iteration
complexity Nε of an algorithm computing (θn)n≥1 for solv-
ing (5) as

Nε := sup
θ0∈Θ

inf

{
n ≥ 1

∣∣∣∣ θn is an ε-approximate
stationary point of f over Θ

}
, (10)

where (θn)n≥0 is a sequence of estimates produced by the
algorithm with an initial estimate θ0. Note that Nε gives
the worst-case bound on the number of iterations for an
algorithm to achieve an ε-approximate solution due to the
supremum over the initialization θ0 in (10).

3.2. Statement of Results

In this section, we consider solving the minimization prob-
lem (5) using Algorithm 1, utilizing tangent spaces and
retraction for the majorization and minimization steps. One
advantage of tBMM is that it utilizes tangent spaces and
retractions so that one can bypass handling Riemannian
geometry directly.

We start with stating some general assumptions. We allow
inexact computation of the solution to the minimization
sub-problems in Algorithm 1. This is practical since the
minimization of the tangential surrogates may not always be
exactly solvable. To be precise, for each n ≥ 1, we define
the optimality gap ∆n by

∆n := max
1≤i≤m

(
G(i)
n (V (i)

n )− inf
η∈T∗

θ
(i)
n−1

G(i)
n (η)

)
. (11)

For the convergence analysis to hold, we require that the
optimal gaps decay fast enough so that they are summable.
See Assumption (A1).
(A1). For Alg. 1, we make the following assumptions:

(i) (Objective) The smooth part of objective φ : Θ =∏m
i=1 Θ

(i) → R is (block-wise) continuously differ-
entiable and the possibly nonsmooth part ψ is convex

and Lipschitz continuous with parameter Lψ. The
values of objective function f are uniformly lower
bounded by some f∗ ∈ R. Furthermore, the sub-
level sets f−1((−∞, a)) = {θ ∈ Θ : f(θ) ≤ a} are
compact for each a ∈ R.

(ii) (Inexact computation) The optimality gaps ∆n in (11)
are summable, that is,

∑∞
n=1 ∆n <∞.

(iii) (Retraction) The retraction Rtr satisfies the following:
There exists M2 > 0 such that for all θ ∈ Θ(i) and
V ∈ TθM(i),

∥Rtrθ(V )− (θ + V )∥ ≤M2∥V ∥2.

Note (A1)(iii) is a common assumption in the literature
of Riemannian optimization, which is used in e.g. (Absil
et al., 2007; 2006; Boumal et al., 2019; Liu et al., 2019;
Chen et al., 2020). This assumption is trivially satisfied in
Euclidean spaces since the retraction becomes the identity
there. Furthermore, (A1)(iii) holds when the constrained set
Θ(i) is compact, see Prop. 4.3.
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Figure 1. Illustration of the lifted constraint set T ∗
θ .

For our analysis we impose the following assumption.

(A2). For Algorithm 1, we assume the following: Each
tangential surrogate ĝ(i)n : M(i) → R of φ(i)

n at θ(i)n−1 is
differentiable and satisfies the following strong convexity
and restricted smoothness properties:

(i) (Strong convexity) There exists a constant ρ(i)n > 0 such
that for all η, ξ ∈ Tθ ,

ĝ(i)n (ξ + η) ≥ ĝ(i)n (ξ) + ⟨∇ĝ(i)n (ξ), η⟩ − ρ
(i)
n

2
∥η∥2.

(ii) (Restricted smoothness) There exists a constant L(i)
n >

0 such that for all η ∈ Tθ ,

|ĝ(i)n (η)− ĝ(i)n (0)− ⟨∇ĝ(i)n (0), η⟩| ≤ L
(i)
n

2
∥η∥2.

(iii) Each Θ(i) ⊆ M(i) is (geodesically) strongly convex
and there exists a uniform lower bound r0 > 0 for
rinj(x) over x ∈ Θ(i). Moreover, the lifted constraint
set T ∗

θ(i) (see (6)) is convex for each θ(i) ∈ Θ(i).
The assumption of convexity of the lifted constraint set T ∗

θ(i)

in (A2)(iii) makes the sub-problem of finding V (i)
n in (7)

a convex problem, which is easy to solve using classical
methods (Boyd et al., 2004; Nesterov, 1998; 2018). For
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Euclidean optimization problems, i.e. M(i) = RIn with
In ∈ Z+, the tangent spaces are identical to RIn . Hence
T ∗
θ(i) = Θ(i), whose convexity is already guaranteed by the

first part of (A2)(iii). More generally, for unconstrained opti-
mization problems on Hadamard manifolds (see Section 4.1)
which include Euclidean spaces, hyperbolic spaces, mani-
folds of positive definite matrices, when taking Exp as the
retraction in (6), we have T ∗

θ(i) = Tθ(i) since the exponen-
tial map is a global diffeomorphism on Hadamard manifolds
(see Theorem 4.1, p.221 in (Sakai, 1996)). Hence the con-
vexity of T ∗

θ(i) is guaranteed without further assumptions
in this case. In fact, for the unconstrained problem on any
Riemannian manifolds, when taking Exp as the retraction in
(6), which is the same setting as in (Gutman & Ho-Nguyen,
2023), T ∗

θ(i) becomes a ball of radius r0 centered at θ(i) so
the convexity is also guaranteed. In Figure 1, an illustration
of T ∗

θ that satisfies (A2)(iii) is shown. Additional details
about this concrete example can be found in Appendix D.

Our main result for Algorithm 1 is stated in Theorem 3.1.

Theorem 3.1 (Convergence of tBMM). Let f denote the
objective function in (5) with m ≥ 1. Let (θn)n≥0 be an
output of Algorithm 1. Suppose (A1) and (A2) hold. Let
r̂ = min{1, r0}. Then the following hold.

(i) Suppose there exist constants ρ, L > 0 such that for
all n ≥ 1 and i = 1, . . . ,m, ρ(i)n ≥ ρ, L(i)

n ≤ L,
and α(i)

n ∈ (0, α] with α = ρ/(ρ + 2LψM2). Let
M = f(θ0) − f∗ + m

∑∞
n=1 ∆n. Then for N ≥

L2

(L+C′)2
2M
ρα ,

min
1≤k≤N

m∑
i=1

− inf
η∈T∗

θ
(i)
k−1

,∥η∥≤1

〈
gradφ

(i)
k (θ

(i)
k−1)+

ProjT
θ
(i)
k−1

∂ψ
(i)
k (θ

(i)
k−1 + V

(i)
k ),

η

min{r0, 1}

〉(12)

≤ L+ C

min{r0, 1}

√
2M

ραN
.

(ii) In addition to the hypothesis in (i), further assume that
ψ = 0. Then every limit point of (θn)n≥0 is a station-
ary point of (5).

(iii) In addition to the hypothesis in (i), further assume
φ is joint smooth (Def. A.1). Let M ′ = (4α +
6)m

∑∞
n=1 ∆n + 6(f(θ0) − f∗). Then for each

N ≥ L2

(L+C′+L′)2
M2

M ′ρα ,

min
1≤k≤N

m∑
i=1

− inf
η∈T∗

θ
(i)
k−1

,∥η∥≤1

〈
gradi φ(θk−1)+

ProjT
θ
(i)
k−1

∂ψ
(i)
k (θ

(i)
k−1 + V

(i)
k ),

η

min{r0, 1}

〉(13)

≤ 2(L+ C + L′)

min{r0, 1}

√
M ′

ραN
,

In particular, the worst case iteration complexity is
Nε = O(ε−2).

Note that (12) in Theorem 3.1 (i) gives a type of iteration
complexity result but the measure of optimality (i.e., the
left-hand side of (12)) is adapted to cyclic block optimiza-
tion algorithms. In order to relate this to the more generic
optimality measure in (9), we need to bound the difference
between gradφ

(i)
k (θ

(i)
k−1) and gradi φ(θk−1). This can be

achieved by the additional smoothness property of φ as in
(24) and the resulting iteration complexity result is stated in
(13) in Theorem 3.1 (iii). We put the proof of Theorem 3.1
along with some key lemmas in Appendix I.

4. Applications
In this section, we discuss some examples of tBMM and its
connection to some other classical algorithms.

4.1. Example Manifolds

In this section, we list several examples of manifolds that
appear in various machine-learning problems.
Example 4.1 (Stiefel manifold). The Stiefel manifold Vn×k
is the set of all orthonormal k-frames in Rn. Namely, it is
the set of all ordered orthonormal k-tuples of vectors in Rn,
i.e. Vn×k =

{
A ∈ Rn×k : ATA = Ik

}
, where Ik is the

k × k identity matrix. For X ∈ Rn×k, let X = UΣV T be
the SVD, then the projection of X onto Vn×k is given by
ProjVn×k(X) = UV T .
Example 4.2 (Manifold of fixed-rank matrices). The set
Rr = {X ∈ Rn×m : rank(X) = r} is a smooth subman-
ifold of Rn×m. For X ∈ Rn×m, let X = UΣV T be the
SVD, and let ui and vi be the i-th column of U and V , re-
spectively. Write the singular values in Σ in nonincreasing
order, σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin{n,m}(X) ≥ 0. Then
the projection of X ontoRr is given by

ProjRr
(X) =

r∑
i=1

σi(X)uiv
T
i := UΣrV

T .

Another class of manifolds that is widely studied in the
literature is the Hadamard manifolds, which includes many
commonly encountered manifolds. Hadamard manifolds
are complete and simply connected Riemannian manifolds
with nonpositive sectional curvature ( (Burago et al., 2001)
and (Burago et al., 1992)). The injectivity radius at every
point is infinity on a Hadamard manifold. Examples of
Hadamard manifolds can be found in Appendix E.

4.2. Block Riemannian Prox-linear Updates and Block
Riemannian GD

A primary approach in tBMM is to use the Riemannian
prox-linear surrogates. We begin our discussion from the

6
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single-block case for (1) without constraints (i.e., Θ =M)
for simplicity. Given the iterate θn−1 ∈M, the Riemannian
prox-linear surrogate ĝ : Tθn−1M→ R takes the form

ĝn(η) := f(θn−1) + ⟨grad f(θn−1), η⟩+
λ

2
∥η∥2, (14)

where λ > 0 is the proximal regularization parameter.
Note that ĝ is defined only on the tangent space at θn−1

and not on the manifold. In order for ĝn to be a tangen-
tial surrogate of f at θn−1, one can impose the following
restricted smoothness property for the pullback objective
f̂ := f ◦ Rtrθn−1

: For some constant L > 0,∣∣∣f̂(η)− f̂(0)− ⟨grad f(θn−1), η⟩
∣∣∣ ≤ L

2
∥η∥2. (15)

The above property was introduced in (Boumal et al., 2019)
under the name of ‘restricted Lipschitz-type gradients’, and
was critically used to analyze Riemannian gradient descent
and Riemannian trust region methods. Hence under (15) and
assuming λ ≥ L, ĝn in (14) is indeed a tangential majorizer
of f at θn−1. The resulting tBMM with the Riemannian
prox-linear surrogate above reads as

θn ← Rtrθn−1

(
− 1

λ
grad f(θn−1)

)
,

which is the standard Riemannian gradient descent with a
fixed step size 1/λ ≤ 1/L. Our convergent result Theorem
3.1 holds for the above updates whenever λ ≥ L.

Next, when we further impose an additional strongly convex
constraint Θ ⊆M, the decent direction is not necessarily
the negative Riemannian gradient − grad f(θn−1) and one
needs to solve a quadratic minimization over the tangent
space. The portion of tBMM in this case reads as
Vn ← argminη∈T∗

θn−1

∥∥η − (
− 1
λ grad f(θn−1)

)∥∥2
= ProjT∗

θn−1

(
− 1
λ grad f(θn−1)

)
,

θn ← Rtrθn−1 (αnVn) .

(16)

where αn is the step size that could be either a small enough
constant or decided by Algorithm 2. Namely, the con-
strained descent direction Vn is the projection of the uncon-
strained descent direction − 1

λ grad f(θn−1) onto the lifted
constraint set T ∗

θn−1
. The above is a Riemannian version

of the projected gradient descent that our tBMM algorithm
entails. As in the unconstrained case, our convergent result
Theorem 3.1 holds for the above updates whenever λ ≥ L.

We can apply a similar approach for the constrained block
Riemannian optimization problem (5). Namely, for each
iteration n and block i, use the following Riemannian prox-
linear surrogate

ĝ(i)n (η) := f (i)n (θ
(i)
n−1) + ⟨grad f (i)n (θ

(i)
n−1), η⟩+

λ

2
∥η∥2.

(17)

Then the resulting portion of tBMM reads as the follow-
ing block projected Riemannian gradient descent: For
i = 1, . . . ,m,

V
(i)
n ← ProjT∗

θ
(i)
n−1

(
− 1
λ grad f(θ

(i)
n−1)

)
,

θ
(i)
n ← Rtr

θ
(i)
n−1

(α
(i)
n V

(i)
n ),

where α(i)
n is the step size that could be either a small enough

constant or decided by Algorithm 2.

It is worth mentioning that utilizing the Riemannian gradient
“grad” instead of the full Euclidean gradient “∇” can pro-
vide significant computational savings. One extensively
investigated example is RPGD on fixed-rank manifolds
(Example 4.2). There, computing ProjRr

(
θ
(i)
n−1 − 1

λ∇
)

involves computing the full SVD of a n × m matrix,
while ProjRr

(
θ
(i)
n−1 − 1

λ grad
)

only involves computing
the SVD of a much smaller 2r × 2r matrix (see e.g. (Wei
et al., 2016)) when r ≪ min{m,n}.

4.3. Nonsmooth Proximal Gradient Method on the
Stiefel Manifold (Chen et al., 2020)

In (Chen et al., 2020), the authors focus on the nonsmooth
optimization problem on the Stiefel manifold as follows,

min
θ∈Vn×p

f(θ) := ϕ(θ) + ψ(θ), (18)

where ϕ is Euclidean smooth with parameter Lϕ, ψ is con-
vex and Lipschitz continuous with parameter Lψ but is not
necessarily Euclidean smooth. In the paper, the authors
propose the following algorithm to solve (18),

G(V ) := ϕ(θn−1) + ⟨gradϕ(θn−1), V ⟩
+λ∥V ∥2F + ψ(θn−1 + V )

Vn = argminV ∈Tθn−1
G(V )

θn = Rtrθn−1
(αVn),

(19)

where α > 0 is a step size. Recall the Stiefel manifold
is compact, in order to compare and bound the difference
of vectors before and after retraction, the authors in (Chen
et al., 2020) use the following proposition substantially to
establish the complexity result.

Proposition 4.3 (Compact manifold embedded in Euclidean
space (Boumal et al., 2019; Liu et al., 2019)). LetM be a
compact Riemannian manifold embedded in an Euclidean
space with norm ∥·∥. Then there exist constants M1,M2 >
0 such that for all θ ∈M(i) and V ∈ TθM,

∥Rtrθ(V )− θ∥ ≤M1∥V ∥,
∥Rtrθ(V )− (θ + V )∥ ≤M2∥V ∥2.
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Figure 2. Comparison of tBMM and block projected gradient de-
scent on (nonnegative) tensor decomposition problems with l1
regularizations. Relative errors with standard deviation are shown
by the solid lines and shaded regions of respective colors.

In fact, when replacing the compact manifold with a com-
pact constrained set on an arbitrary embedded submanifold,
the bounds in Proposition 4.3 still hold. This is one situation
that our assumption in (A1)(iii) holds. When ϕ in (18) is
Lϕ-smooth, the algorithm (19) with proper regularization
parameter λ falls into our tBMM framework, and therefore
we can apply the convergence and complexity results in
Theorem 3.1. The complexity results are formally stated in
the following corollary. The proof is in Appendix H.

Corollary 4.4 (Complexity of nonsmooth proximal gradient
method on Stiefel manifolds). Let ϕ in (18) be Lϕ-smooth.
Then the complexity results in Theorem 3.1 hold for the
algorithm (19) when λ ≥ Lϕ. In particular, the algorithm
(19) has iteration complexity of O(ε−2).

We remark that in (Chen et al., 2020), the authors estab-
lished complexity results based on a different definition
of ε-stationary point, namely, θn is ε-stationary point if
∥Vn∥ ≤ ε/Lϕ. Though this definition brings practical
benefits, it is not a generic definition. The definition of
ε-stationary point (8) we used is more generic, and is a
natural generalization of the corresponding concept in the
Euclidean setting. Moreover, our definition allows further
constraints on the manifold, i.e. the constraint set Θ is not
necessarily the entire manifoldM.

5. Numerical Validation
In this section, we provide numerical validation of tBMM
on various problems. Additional details of the experiments
are provided in Appendix J.

Nonnegative Tensor Decomposition with Riemannian
Constraints. Given a tensor X ∈ RI1×···×Im and a fixed
integer R ≥ 1, the tensor decomposition problem aims to
find the loading matrices U (i) ∈ RIi×R for i = 1, . . . ,m
such that the sum of the outer products of their respec-
tive columns approximate X: X ≈

∑R
k=1

⊗m
i=1 U

(i)[:, k],
where U (i)[:, k] denotes the kth column of the Ii ×R load-
ing matrix U (i) and

⊗
denotes the outer product. One can
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Figure 3. Comparison of tBMM and block projected gradient de-
scent on nonnegative matrix factorization problems with l1 regu-
larizations. Relative errors with standard deviation are shown by
the solid lines and shaded regions of respective colors.

also impose Riemannian constraints on the loading matri-
ces, such that each U (i) ∈ M(i) resides on a Riemannian
manifold. This Riemannian tensor decomposition problem
can be formulated as the following optimization problem:

argmin
U(i)∈Θ(i)

(
f(U (1), . . . , U (m)) :=∥∥∥X−∑R

k=1

⊗m
i=1 U

(i)[:, k]
∥∥∥2
F
+
∑m

i=1 λi∥U (i)∥1

)
,

(20)
where Θ(i) ⊆M(i) denotes a closed and geodesically con-
vex constraint set and λi ≥ 0 is the hyperparameter of the
ℓ1-regularizer.

In our experiments shown in Figure 2, we let the first block
M(1) be the fixed-rank manifold Rr and the other blocks
be Euclidean spaces. We consider two different cases: with
or without nonnegativity constraints for each loading ma-
trix. In both cases, we use the prox-linear surrogates (see
Sec. 4.3) for tBMM. Due to the ℓ1 regularizer in (20), the
subproblem of minimizing the tangential surrogate Ĝ does
not have a closed-form solution. Furthermore, when non-
negativity is imposed, another projection onto the positive
orthant is required when solving the subproblems. Hence,
one needs to implement an iterative algorithm for solving the
subproblems. This brings inexactness to the solution to the
subproblems. In Figure 2, the left figure is the reconstruc-
tion error plot of solving problem (20) without nonnegativity
constraints, and the right figure is that with nonnegativity
constraints. In both cases, tBMM outperforms block pro-
jected gradient descent (block PGD).

Regularized Nonnegative Matrix Factorization with Rie-
mannian Constraints. Given a data matrix X ∈ Rp×N ,
the constrained matrix factorization problem is formulated
as the following,

argmin
W∈M(1)⊆Rp×R, H∈M(2)⊆RR×N

∥X −WH∥2F+λ∥H∥1.

We consider a similar setting as the tensor decomposition
problem in the last section. Namely, the first blockM(1)

is a fixed-rank manifold Rr with nonnegativity constraint

8
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Figure 4. Comparison of tBMM and NIHT on the problem of low-
rank matrix recovery. Relative errors with standard deviation are
shown by the solid lines and shaded regions of respective colors.

and the second block is Euclidean space. Similarly, the
nonnegativity constraints and the ℓ1 regularizer make the
subproblems have no closed-form solution. Therefore, the
iterative algorithms for solving it bring inexactness to the
solution to the subproblem. In Figure 3, we show the error
plot with slightly different settings. In the left figure, there
is no nonnegativity constraint to the second block H . In the
right figure, we impose a nonnegativity constraint on both
blocks. In both cases, tBMM using prox-linear surrogates
outperforms block PGD.

Low-rank Matrix Recovery. Consider the low-rank matrix
recovery problem (Donoho, 2006; Candes & Plan, 2009)
formulated as the following in (Tanner & Wei, 2013; Wei
et al., 2016),

min
X∈Rr⊆Rm×n

(
f(X) :=

1

2
∥A(X)− b∥2

)
(21)

whereRr is the manifold of fixed-rank matrices, see Exam-
ple 4.2. The linear map A : Rm×n → Rp maps an m× n
matrix to a p dimensional vector, given by

A(X)i := ⟨Ai, X⟩, for i = 1, · · · , p.

The p-dimensional vector b represents the observations.
Given the observations from the sensing operator A, low-
rank matrix recovery aims to find the fixed-rank matrix X .
We define the umdersampling ratio as ρ = p/mn.

We compare the performance of the proposed tBMM (Algo-
rithm 1) applied to the low-rank matrix recovery problem
against normalized iterative hard thresholding (NIHT) (Tan-
ner & Wei, 2013), see details in Appendix J.3. To solve (21),
we use the prox-linear surrogates (17) for tBMM (Algorithm
1) as discussed in Section 4.2. The resulting updates for this
single block problem are shown in (16).

In Figure 4, we compare the performance of tBMM and
NIHT for ρ = 0.5 and 0.75 respectively. Under both set-
tings, tBMM outperforms NIHT in terms of relative recon-
struction error. Moreover, tBMM is observed to be more
robust for different dimensions of the matrices. The better
performance of tBMM over NIHT can be attributed to two
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Figure 5. Illustration of the convergence of inexact RGD on the
low-rank matrix recovery problem. Relative errors with standard
deviation are shown by the solid lines and shaded regions.

main factors: Firstly, as discussed in Section 4.2, NIHT
needs to solve a full SVD of a matrix of dimension m× n
in each iteration, while tBMM only needs to solve that of
a 2r × 2r matrix, which provides computational savings.
Secondly, the performance of NIHT is affected by the over-
sampling ratio defined as µ = r(m + n − r)/p. When
µ > 1/2, the recovery of all low-rank matrices by the algo-
rithm is impossible (Tanner & Wei, 2013; Eldar et al., 2011),
which leads to the relatively poor performance of NIHT in
the left panel of Figure 4.

Inexact RGD. In the introduction, we state that the conver-
gence and complexity of inexact RGD can be deduced as a
corollary of our Theorem 3.1. Here, we provide numerical
validations based on the low-rank matrix recovery problem.
In Figure 5, we verify the performance of inexact tBMM
and inexact RGD. We pose inexactness by adding a noise
term ∆n = c/(n+ 1)2 to the Riemannian gradient, where
n is the iteration number. The ∆ns are summable, which
satisfies (A1)(ii). The inexact tBMM and inexact RGD show
compelling convergence speed.

6. Conclusion and Limitations
In this paper, we proposed a general framework named
tBMM which entails many classical first-order Riemannian
optimization algorithms, including the inexact RGD and the
proximal gradient method on Stiefel manifolds. tBMM is
applicable to solving multi-block Riemannian optimization
problems, and can handle additional (geodesically convex)
constraints within each manifold, as well as nonsmooth
nonconvex objectives. We established the convergence and
complexity results of tBMM. Namely, tBMM converges to
a ε-stationary point within O(ε−2) iterations. The conver-
gence and complexity results still hold when the subproblem
in each iteration is computed inexactly, as long as the opti-
mality gap is summable. We validated our theoretical results
on tBMM through various numerical experiments. We also
demonstrated that tBMM can show improved performance
on various Riemannian optimization problems compared to
existing methods.
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A. Preliminaries on Riemannian Optimization
In this paper, we use the same notations as the common Riemannian optimization literature, see e.g. (Absil et al., 2009) and
(Boumal, 2023). We refer the readers to (Sakai, 1996), (Lee, 2003), (Do Carmo & Flaherty Francis, 1992), and (Helgason,
1979) for the background knowledge on Riemannian geometry. Below we give some preliminaries on Riemannian
optimization.

We call a manifold to be a Riemannian manifold if it is equipped with a Riemannian metric (ξ, η) 7→ ⟨ξ, η⟩x ∈ R, where the
tangent vectors ξ and η are on the tangent space TxM. We denote TxM as Tx when the corresponding manifold is clear
from the context. Moreover, we drop the subscript x of the inner product ⟨·, ·⟩x when it is clear from the context. This inner
product induces a norm on the tangent space, which is denoted by ∥ · ∥x or ∥ · ∥. The geodesic distance generalizes the
concept of distance by measuring the shortest path between two points on a curved surface, accounting for the geometry of
the manifold. We denote the geodesic distance between x, y ∈M by dM(x, y) or simply d(x, y). An important concept in
Riemannian optimization is the Riemannian gradient of a smooth function f :M→ R denoted as grad f(x) at x ∈M. It
is defined as the tangent vector satisfying ⟨grad f(x), ξx⟩ = Df(x) [ξx] , ∀ξx ∈ TxM. Here Df(x) [ξx] is the directional
derivative along the direction ξx. As aforementioned in the introduction, the widely used Riemannian gradient descent
algorithms use retractions to map the Riemannian gradient to the manifold. A retraction denoted as Rtr is a smooth mapping
from the tangent bundle TM toM that satisfying the following key properties.

(i) For each x ∈ M, define rRtr(x) > 0 to be the ‘retraction radius’ such that within the ball of radius rRtr(x) around the
origin 0 = 0x, the restriction Rtrx : TxM→M of Rtr to TxM is well-defined.

(ii) Rtrx(0) = x; The differential of Rtrx at 0, DRtrx(0), is the identity map on TxM.

For x ∈ M and η ∈ TxM, the retraction curve t 7→ Rtrx(tη) agrees with the geodesic passing x with initial velocity η
to the first order. Furthermore, if this retraction curve coincides with the geodesic for all x ∈ M and η ∈ TM, then this
specific retraction is called an exponential map. In fact, the definition of exponential map involves solving a nonlinear
ordinary differential equation, which brings computational burden. Hence, using computationally efficient retractions instead
of exponential map is more desirable. The widely used retractions including Rtrx(η) = x + η in Euclidean spaces and
Rtrx(η) = x+η

∥x+η∥ on spheres. For more examples and details, we refer the readers to Sec. 4.1 in (Absil et al., 2009). A
manifoldM is called (geodesically) complete if the domain of exponential map is the entire tangent bundle. The exponential
map by its definition preserves distance, i.e. ∥η∥ = d(x, y) for Expx(η) = y.

A function g : M → R can be lifted to the tangent spaces via retractions. Namely, consider the composition of g and
a retraction Rtr, define the pullback as ĝ := g ◦ Rtrx : Tx → R. In tBMM, we seek a majorizing surrogate of the lifted
marginal loss function to minimize in each iteration. One important observation used in the analysis is the following,

⟨∇ĝ(0), η⟩ = Dĝ(0)[η] = Dg(x)[DRtrx(0)[η]] = Dg(x)[η] = ⟨grad g(x), η⟩. (22)

At each point x ∈M, the Riemannian manifoldM resembles an Euclidean space within a small metric ball with radius r
since it is locally diffeomorphic to the tangent space. The injectivity radius, denoted as rinj(x), is defined as the supremum
of values of r such that this diffemorphism holds. Namely, Expx is a diffemorphism of B(x, r) and its image onM when
r ≤ rinj(x) where B(x, r) = {η ∈ TxM : ⟨η, η⟩ < r} ⊆ TxM. Therefore, the inverse exponential map Exp−1

x is well
defined within the small ball of radius rinj(x). Many widely studied manifolds have uniformly positive injectivity radius,
including compact manifolds (see Thm. III.2.3 in (Chavel, 2006)) and Hadamard manifolds (see Appendix E, (Afsari, 2011)
and Theorem 4.1, p.221 in (Sakai, 1996)). We call a subset C ⊆M to be (geodesically) strongly convex if there is a unique
minimal geodesic γ connecting any two points x, y ∈ C and that γ ⊆ C.

For a subset Θ ⊆M and x ∈ Θ, define the tangent cone TΘ(x) and the normal cone NΘ(x) at x as

TΘ (x) :=

{
u ∈ TxM

∣∣∣∣Expx(t u

∥u∥

)
∈ Θ for some t ∈ (0, rinj(x))

}
∪ {0},

NΘ (x) :=

{
u ∈ TxM

∣∣∣∣ ⟨u, η⟩ ≤ 0 for all η ∈ TxM s.t. Expx

(
t
η

∥η∥

)
∈ Θ for some t ∈ (0, rinj(x))

}
.

Note that TΘ(x) = TxM and NΘ(x) = {0} if x is in the interior of Θ. When Θ is strongly convex, then the tangent cone
TΘ(x) is a convex cone in the tangent space TxM (see Prop.1.8 in (Cheeger & Gromoll, 1972) and (Afsari, 2011)).
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The lifted constraint set T ∗
xM is defined as

T ∗
xM := {u ∈ TxM|Rtrx(u) = x′ for some x′ ∈ Θ with d(x, x′) ≤ r0/2}, (23)

where r0 is the uniform lower bound of injectivity as in (A2)(iii). See an example of the lifted constraint set in Appendix
D and Figure 1. In (23), when exponential map is used as the retraction, the set T ∗

xM can be viewed as the ’lift’ of the
restricted constraint set Θ within a small ball to the tangent space TxM, which equals the image Exp−1

x (Θ ∩B(x, r0/2))
by the inverse exponential map. For the special case whenM is an Euclidean space, then the retraction becomes identity.
Therefore if Θ is a convex subset, we have T ∗

xM = Θ is also convex. We remark that if Θ is (geodesically) strongly
convex, then the lifted constraint set T ∗

xM is locally well defined, i.e. we can replace r0 in (23) by any value r′ ∈ (0, r0).

At different points on a Riemannian manifold, the corresponding tangent spaces are different. The parallel transport allows
one to transport a tangent vector to another tangent space. For a smooth curve γ : [0, 1]→M, the parallel transport along γ
from the point x = γ(0) to the point y = γ(1) is denoted as Γγx→y . We drop the superscript γ when it is clear from the
context. Intuitively, for a tangent vector η ∈ TxM, the vector Γγx→yη is a tangent vector in TyM. The key property of
parallel transport is that it is a linear isomorphism that preserves inner product. Namely,〈

Γγγ(0)→γ(t) (η), Γ
γ
γ(0)→γ(t) (ζ)

〉
γ(t)

= ⟨η, ζ⟩γ(0) for all t ∈ [0, 1], η, ζ ∈ Tγ(0).

A.1. Notations for Block Riemannian Optimization

In (5), we aim to minimize an objective function f within the product constraint set Θ = Θ(1) × · · · × Θ(m), where
each Θ(i) is a subset on a Riemannian manifold M(i). For convenience, we introduce the following notations: For
θ = [θ(1), . . . , θ(m)], let

gradi f(θ) := Riemmanian gradient of θ 7→ f(θ(1), . . . , θ(i−1), θ, θ(i+1), . . . , θ(m)),

grad f(θ) := [grad1 f(θ), . . . , gradm f(θ)],

d(x,y) :=

√√√√ m∑
i=1

d(x(i), y(i))2 for x = (x(1), . . . , x(m)), y = (y(1), . . . , y(m)) ∈
m∏
i=1

M(i).

We remark that one can endow the product manifold
∏m
i=1M(i) a joint Riemannian structure, and therefore the above

grad f(θ) can be viewed as the full Riemannian gradient at θ w.r.t the joint Riemannian structure. However, in the present
paper we do not explicitly use the product manifold structure.

Throughout the paper, we denote (θn)n≥1 as an output of Algorithm 1 and write θn = [θ
(1)
n , . . . , θ

(m)
n ] for n ≥ 1. For each

n ≥ 1 and i = 1, . . . ,m, denote the marginal objective function as

f (i)n : θ 7→ f(θ(1)n , . . . , θ(i−1)
n , θ, θ

(i+1)
n−1 , . . . , θ

(m)
n−1),

which is at iteration n and block i.

Below we define the joint smoothness used in Thm.3.1(iii).
Definition A.1 (Joint smoothness). LetM =M(1) × · · · ×M(m) be a product manifold where all theM(i)s are smooth
Riemannian manifold. Let φ :M→ R be a smooth function in each block. We say φ is jointly smooth if there exists a
constant L′ > 0 such that for each distinct i, j ∈ {1, . . . ,m} and (θ(1), . . . , θ(m)) ∈ Θ, whenever V ∈ Tθ(j) such that
Rtrθ(j)(V ) ∈ Θ(j), ∥∥∥∥ gradi φ(θ

(1), . . . , θ(j), . . . , θ(m))
− gradi φ(θ

(1), . . . ,Rtrθ(j)(V ), . . . , θ(m))

∥∥∥∥ ≤ L′∥V ∥. (24)

B. Relation Between Types of Majorizing Surrogates
In (Li et al., 2023), the authors studied the convergence of RBMM, which is a Riemannian block majorization-minimization
algorithm using the majorizing surrogates on the manifold. A function g :M→ R is a majorizing surrogate of h at θ if

g(x) ≥ h(x) for all x ∈M and g(θ) = h(θ).
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We remark that if a function g :M→ R is a majorizing surrogate of h :M→ R at some point θ ∈M, then the pullback
surrogate ĝ := g ◦ Rtrθ : TθM→ R is a tangential surrogate of h at θ. Indeed,

ĝ(η) = g(Rtrθ(η)) ≥ h(Rtrθ(η)) = ĥ(η) , ∀η ∈ TθM,

ĝ(0) = g(Rtrθ(0)) = g(θ) = h(θ) = h(Rtrθ(0)) = ĥ(0).

Note that minimizing the majorizer g directly on the manifoldM and minimizing its pullback ĝ on the tangent space are
in general two different optimization problems. However, if the manifoldM is Euclidean, then we can take the trivial
retraction of translating the base point to the origin, in which case the two viewpoints coincide. Hence in the Euclidean case,
tBMM agrees with RBMM in (Li et al., 2023). Also in the Euclidean setting, tBMM agrees with the standard Euclidean
BMM (Hong et al., 2015). Hence tBMM generalizes the Euclidean BMM.

C. Line Search Algorithm
Below is the optional line search for choosing the step size α in Algorithm 1,

Algorithm 2 Constrained Riemannian Line Search

1: Input: α ∈ [0, 1] (initial step size); θ
(i)
n ∈M(i) (previous block iterate); V (i)

n ∈ TΘ(i)(θ
(i)
n−1) (admissible search direction in the

tangent cone); γ ∈ (0, 1) (shrinkage parameter)
2: set α = 1
3: while f

(i)
n (Rtr

θ
(i)
n−1

(αV
(i)
n ))− f (i)

n (θ
(i)
n−1) >

ρα
4
∥V (i)

n ∥2 or Rtr
θ
(i)
n−1

(αV
(i)
n ) /∈ Θ(i) do

4: α = γα
5: end while
6: output: α

D. An Example of the Lifted Constraint Set
In this section, we provide a concrete example of a constrained problem on the manifold. An illustration of this example is
shown in Figure 1. Consider the 2-sphere S2 = {x ∈ R3 : ∥x∥ = 1}, which can also be viewed as a simple Stiefel manifold.
Consider three points x, y, z ∈ S2 that x is at the north pole; y and z are on the equator such that d(x, y) = π

2 . Then the
region on the sphere bounded by the geodesic triangle△xyz is a geodesic convex constraint set. Let us call this constraint
set Θ. Now for a point θ ∈ Θ ⊂ S2, the corresponding lifted constraint set T ∗

θ is one of the following three cases: 1) If θ is
a vertex of the geodesic triangle (e.g. x in Figure 1), then the lifted constraint set is a circular sector with central angle π

2 ; 2)
If θ is at the boundary but not the vertex (e.g. θ1 in Figure 1), then T ∗

θ is a half-disk; 3) If θ is in the interior of the triangle
(e.g. θ2 in Figure 1), then T ∗

θ is a disk. In all the three cases, the lifted constraint set is convex on the tangent space. In fact,
one could generalize this example of the geodesic triangle to the geodesic polyhedron on a submanifold of Rn. One can
then show the corresponding lifted constraint sets satisfy our assumptions using the same argument.

E. Examples of Hadamard Manifolds
The complete and simply connected Riemannian manifolds with nonpositive sectional curvature at every point is called
Hadamard manifolds ((Burago et al., 2001) and (Burago et al., 1992)). The injectivity radius is infinity at each point on a
Hadamard manifold. In fact, many widely studied spaces are Hadamard manifold and we give some examples below. We
refer the readers to (Bacak, 2014) for more details.

Example E.1 (Euclidean spaces). The Euclidean space Rn with its usual metric is a Hadamard manifold. The sectional
curvature at each point is constant and equal to 0. ▲

Example E.2 (Hyperbolic spaces). Equip Rn+1 with the (−1, n)-inner product given by

⟨x, y⟩(−1,n) := −x0y0 +
n∑
i=1

xiyi

for x :=
(
x0, x1, . . . , xn

)
and y :=

(
y0, y1, . . . , yn

)
. Denote

Hn :=
{
x ∈ Rn+1 : ⟨x, x⟩(−1,n) = −1, x0 > 0

}
.
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Then the inner product ⟨·, ·⟩ induces a Riemannian metric g on the tangent spaces TpHn ⊂ TpRn+1 for each p ∈ Hn. The
sectional curvature of (Hn, g) is constant and equal to −1 at every point. ▲

Example E.3 (Manifolds of positive definite matrices). The space Sn++ of all symmetric positive definite matrices of size
n× n with real entries is a Hadamard manifold when equipped with the Riemannian metric given by

⟨Ω1,Ω2⟩Σ ≜
1

2
Tr

(
Ω1Σ

−1Ω2Σ
−1

)
∀Ω1,Ω2 ∈ TΣSn++.

▲

F. Preliminary Lemmas
Lemma F.1. Let ψ : Rn → R be a convex and Lipschitz continuous function with respect to the norm ∥ · ∥ with parameter
Lψ . Then for any x in the domain of ψ and any subgradient ∂ψ, we have ∥∂ψ(x)∥ ≤ Lψ .

Proof. Fix any x in the domain of ψ and any ∂ψ. Let

u∗ ∈ argmax
u,∥u∥≤1

⟨u, ∂ψ(x)⟩.

Let y = x+ u∗. Then u∗ = ∂ψ(x)
∥∂ψ(x)∥ and ⟨u∗, ∂ψ(x)⟩ = ∥∂ψ(x)∥, so

∥∂ψ(x)∥ = ⟨u∗, ∂ψ(x)⟩ ≤ ψ(x+ u∗)− ψ(x) ≤ Lψ∥u∗∥ = Lψ.

where the first inequality is by convexity of ψ, the second inequality is by Lipschitz continuity of ψ and the last equality is
by definition of y.

Proposition F.2 (Euclidean smoothness implies geodesic smoothness on the Stiefel manifold). If f is L-smooth in Euclidean
space Rn×p, then there exists a constant L̃g = M2

0L +M2LN such that f satisfying restricted smoothness (15) with
parameter L̃g on the Stiefel manifold Vn×p, where LN = maxx∈Vn×p ∥∇f(x)∥, M0 is a constant related to the retraction,
and M2 is the same constant as in Prop. 4.3.

Proof. See (Chen et al., 2021), Lemma 2.4 and Appendix C.1.

G. Proof for Section 1
Proof of Corollary 1.1. Under the assumptions of Cor. 1.1, the inexact retraction step in (2) can be viewed as an exact
retraction on Vn. Therefore, the inexactness of the second step in (2) is transferred to the first step. Namely, let

ĝn(η) = φ(θn−1) + ⟨gradφ(θn−1), η⟩+
L

2
∥η∥2.

Then inexact RGD can be viewed as tMM with tangential surrogate ĝn(η). The exact solution of minimizing ĝn is
− 1

2L gradφ(θn−1) and the inexact solution used for inexact RGD is Vn. Recall ∆n = ĝn(αnVn)− ĝn(− 1
2L gradφ(θn−1))

is summable. Hence (A1)(ii) is satisfied. Note (A1)(i) is satisfied by the assumptions in Cor. 1.1 and (A1)(iii) is not needed
in the analysis when ψ = 0 (see the proof of Theorem 3.1 in Section I). By definition of ĝ, (A2)(i),(ii) are satisfied. (A2)(iii)
again is satisfied by assumptions in Cor. 1.1. Hence Thm. 3.1 holds. The convergence and complexity results follow.

H. Proof for Section 4
Proof of Corollary 4.4. In order the complexity results in Thoerem 3.1 hold, we need to show assumptions (A1) and (A2)
hold. (A1)(i) holds by the assumptions on objective function of problem (18). (A1)(ii) holds trivially. (A1)(iii) holds by
Proposition 4.3. To see (A2) holds, let

ĝ(V ) := ϕ(θn−1) + ⟨gradϕ(θn−1), V ⟩+ λ∥V ∥2F .
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Then since ĝ is a quadratic function, (A2)(i), (ii) hold. (A2)(iii) holds since Stiefel manifold is complete and (18) is an
unconstrained problem. Namely, the constrained set is the manifolds itself, i.e. Θ = Vn×p. Lastly, ĝ(V ) is indeed a
tangential majorizer by the same analysis in Section 4.2 and Prop. F.2. Therefore, all the assumptions of Theorem 3.1 are
satisfied.

I. Convergence Analysis for tBMM
In this section, we prove Theorem 3.1. We will first prove the statement for the single-block case (m = 1) for notational
simplicity. The main ingredient in our analysis is the following descent lemma for constrained tBMM.

Lemma I.1 (An inexact descent lemma for constrained tBMM). Suppose Θ is a strongly convex subset of a Riemannian
manifoldM. Fix a function f :M→ R and θ ∈ Θ. Denote the pullback objective f̂ := f ◦ Rtrθ : TθM→ R. Suppose
we have a function ĝ : TθM→ R such that the following hold:

(i) (Tangential marjorization) ĝ is a majorizing surrogate of the pullback smooth part of the objective φ̂:

ĝ(η) ≥ φ̂(η) for all η ∈ TθM and ĝ(0) = φ̂(0).

(ii) (Strong convexity of surrogate) The surrogate ĝ : Tθ → R is ρ-strongly convex for some ρ > 0: for all η ∈ TθM,

ĝ(η) ≥ ĝ(0) + ⟨∇ĝ(0), η⟩ − ρ

2
∥η∥2.

Let T ∗
θ denote the lifted constrained set Θ at θ (see (6)). Define V ⋆ ∈ argminη∈T∗

θ
(ĝ(η) + ψ(θ + η)). Fix V ∈ T ∗

θ denote
∆ := ĝ(V ) + ψ(θ + V )− ĝ(V ⋆)− ψ(θ + V ⋆). Then for each α ∈ [0, 1], Rtrθ(αV ) ∈ Θ and

f(Rtrθ(αV ))− f(θ) (25)

≤− ρα

2
∥V ⋆∥2 − 1

2
ρα

(
1− 2LψM2 + ρ

ρ
α

)
∥V ∥2 + α∆.

Proof of Lemma I.1. That Rtrθ(αV ) is well-defined and belongs to Θ is due to the definitions of the retraction and the
lifted constrained set. Hence we only need to show (25).

Let G := ĝ + ψ : Tθ → R. Then since ĝ is strongly convex and ψ is convex, we have G is strongly convex. Recall T ∗
θ

is a convex subset of tangent space Tθ by (A2)(iii). The optimization problem that defines V ⋆ is to minimize a strongly
convex function in a convex subset of Euclidean space, so it admits a unique solution V ⋆. Then by the first order optimality
condition and since 0 ∈ Tθ ,

⟨∇ĝ(V ⋆) + ∂ψ(θ + V ⋆), 0− V ⋆⟩ ≥ 0.

Since G : Tθ → R is ρ-strongly convex,

G(0)−G(V ⋆)

≥⟨∇ĝ(V ⋆) + ∂ψ(θ + V ⋆),0− V ⋆⟩+ ρ

2
∥V ⋆∥2

≥ρ
2
∥V ⋆∥2.

Hence

G(0)−G(V )

= (G(0)−G(V ⋆)) + (G(V ⋆)−G(V )) ≥ ρ

2
∥V ⋆∥2 −∆.
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Again using the ρ-strong convexity of G : Tθ → R and the above inequality, for α ∈ [0, 1],

G(αV )−G(0) = G(αV + (1− α)0)−G(0)

≤ αG(V ) + (1− α)G(0) + ρα(1− α)
2

∥V ∥2 −G(0)

= α(G(V )−G(0)) + ρα(α− 1)

2
∥V ∥2

≤ −ρα
2
∥V ⋆∥2 − ρα(1− α)

2
∥V ∥2 + α∆. (26)

In order to conclude, note the following:

f(Rtrθ(αV ))− f(θ) = φ̂(αV ) + ψ(Rtrθ(αV ))− φ̂(0)− ψ(θ)
(a)

≤ φ̂(αV ) + ψ(αV ) + Lψ∥Rtrθ(αV )− αV ∥ − φ̂(0)− ψ(θ)
(b)

≤ G(αV )−G(0) + LψM2∥αV ∥2

(c)

≤ −ρα
2
∥V ⋆∥2 − 1

2
ρα

(
1− 2LψM2 + ρ

ρ
α

)
∥V ∥2 + α∆.

Namely, (a) follows from the Lipschitz continuity of ψ, (b) uses Proposition 4.3, (c) uses (26). This shows (25), as
desired.

A direct consequence of Lemma I.1 is the boundedness of iterates, which is stated in the following proposition.
Proposition I.2 (Boundedness of iterates). Under (A1) and (A2), the set {θn : n ≥ 1} is bounded.

Proof of Proposition I.2. Let m
∑∞
n=1 ∆n = T < ∞. By Lemma I.1 we immediately have, for all n ≥ 1, f(θn) ≤

f(θn−1) + m∆n−1 and therefore f(θn) ≤ f(θ0) + m
∑n−1
i=1 ∆i ≤ f(θ0) + T . Consider K = {θ ∈ Θ : f(θ) ≤

f(θ0) + T}, by (A1)(i), K is compact. Hence the set {θn : n ≥ 1} is bounded.

The following lemma states the local property of retractions, which is essential in the asymptotic convergence analysis.
Lemma I.3. For θ ∈M, V ∈ Tθ and α > 0, when α∥V ∥ is small, we have

d (Rtrθ(αV ),θ) = O(α∥V ∥).

Proof of Lemma I.3. By triangle inequality we have

d (Rtrθ(αV ),θ) ≤ d (Rtrθ(αV ),Expθ(αV )) + d (Expθ(αV ),θ)

= o(α∥V ∥) + ∥αV ∥
= O(α∥V ∥),

where the first equality is by definition of the exponential map and properties of retraction, see (Absil & Malick, 2012).

Now we are ready to prove Theorem 3.1 and we first prove it for m = 1. Then in the following proof, we will omit all
superscripts (i) in Algorithm 1 for indicating the blocks since we are in the single-block case.

Proof of Theorem 3.1 for m = 1. By the hypothesis, the step-size αn for n ≥ 1 is set as αn = α ≤ 1. Therefore, for each
n ≥ 1, Rtrθn−1

(αVn) is well-defined and belongs to Θ.

Let V ⋆n = argminη∈T∗
θn−1

(Gn(η) := ĝn(η) + ψ(θn−1 + η)). By Lemma I.1 and the hypothesis that α ≤ ρ
ρ+2LψM2

, for

each N ≥ 0,

0 ≤ αρ

2

N∑
n=0

∥V ⋆n ∥2 ≤
N∑
n=0

f(θn)− f(θn+1) + ∆n

≤ f(θ0)− f∗ +
∞∑
n=1

∆n <∞.
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It follows that ∥V ⋆n ∥ = o(1) and

min
0≤k≤N

∥V ⋆k ∥2 ≤
2(f(θ0)− f∗ +

∑∞
n=1 ∆n)

ρα(N + 1)
. (27)

Recall that V ⋆n is the minimizer of the tangential surrogate ĝn on the lifted constraint set T ∗
θn−1

⊆ Tθn−1M, which is convex
by (A2)(iii). Hence by the first-order optimality condition

⟨∇ĝ(V ⋆n ) + ProjTθn−1
∂ψ(θn−1 + V ⋆n ) , η − V ⋆n ⟩ ≥ 0 for all η ∈ T ∗

θn−1
.

Therefore for all η ∈ T ∗
θn−1

with ∥η∥ ≤ 1 we have

⟨∇ĝn(V ⋆n ) + ProjTθn−1
∂ψ(θn−1 + V ⋆n ), η⟩ ≥ ⟨∇ĝn(V ⋆n ) + ProjTθn−1

∂ψ(θn−1 + V ⋆n ), V
⋆
n ⟩ (28)

≥ −∥∇ĝn(V ⋆n ) + ProjTθn−1
∂ψ(θn−1 + V ⋆n )∥ · ∥V ⋆n ∥

Next, we bound the term ∥∇ĝn(V ⋆n ) + ProjTθn−1
∂ψ(θn−1 + V ⋆n )∥ by a linear term with respect to ∥V ⋆n ∥. Note by Lemma

I.2, for all n ≥ 1 there exists constant C such that ∥ gradφ(θn−1)∥ ≤ C. Since ĝn majorizes φ̂ on TθM and and is exact
at 0, and also noting (22), we get∇ĝn(0) = ∇φ̂(0) = gradφ(θn−1). Moreover, denoting

ζn := ∇ĝn(0)−∇ĝn(V ⋆n ),

by the restricted Ln-smoothness of ĝn : Tθn−1
→ R,

∥ζn∥ ≤ Ln∥V ⋆n ∥ ≤ L∥V ⋆n ∥.

The above and triangle inequality gives

∥∇ĝn(V ⋆n )∥ ≤ ∥ gradφ(θn−1)∥+ L∥V ⋆n ∥ ≤ C + L∥V ⋆n ∥. (29)

Then, note

∥ProjTθn−1
∂ψ(θn−1 + V ∗

n )∥ ≤ ∥∂ψ(θn−1 + V ∗
n )∥ ≤ Lψ (30)

where the last inequality follows from Lemma F.1. Hence, (28) together with (29) and (30) gives

⟨∇ĝn(V ⋆n ) + ProjTθn−1
∂ψ(θn−1 + V ⋆n ), η⟩ ≥ −(C ′ + L∥V ⋆n ∥) · ∥V ⋆n ∥

where C ′ = C + Lψ . It follows

⟨gradφ(θn−1) + ProjTθn−1
∂ψ(θn−1 + V ⋆n ), η⟩

= ⟨gradφ(θn−1)−∇ĝn(V ⋆n ), η⟩+ ⟨∇ĝn(V ⋆n ) + ProjTθn−1
∂ψ(θn−1 + V ⋆n ), η⟩

≥ −∥ζn∥ · ∥η∥ − C ′∥V ⋆n ∥ − L∥V ⋆n ∥2

≥ −(L+ C ′)∥V ⋆n ∥ − L∥V ⋆n ∥2

for all η ∈ T ∗
θn−1

such that ∥η∥ ≤ 1. Therefore, (27) and the above give

min
1≤k≤N

[
− inf
η∈T∗

θk−1
, ∥η∥≤1

⟨gradφ(θk−1) + ProjTθk−1
∂ψ(θk−1 + V ⋆k ),

η

min{1, r0}
⟩

]

≤ L+ C ′

min{1, r0}

√
2(f(θ0)− f∗ +

∑∞
n=1 ∆n)

ρα(N + 1)
+

L

min{1, r0}
2(f(θ0)− f∗ +

∑∞
n=1 ∆n)

ρα(N + 1)
.
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When N ≥ L2

(L+C′)2
2(f(θ0)−f∗+

∑∞
n=1 ∆n)

ρα , the above gives

min
1≤k≤N

[
− inf
η∈T∗

θk−1
, ∥η∥≤1

⟨gradφ(θk−1) + ProjTθk−1
∂ψ(θk−1 + V ⋆k ),

η

min{1, r0}
⟩

]

≤ 2(L+ C ′)

min{1, r0}

√
2(f(θ0)− f∗ +

∑∞
n=1 ∆n)

ρα(N + 1)
.

This shows (i). Note that (iii) is equivalent to (i) for the single-block (m = 1) case.

Next, we show (ii). Recall ψ = 0, so f = φ and is continuously differentiable. For asymptotic stationarity, suppose a
subsequence of the iterates (θnk)k≥1 converges to some limit point θ∞ ∈ Θ. Note by first-order optimality of V ⋆n and the
ρ-strongly convexity of ĝn,

∆n = ĝn(Vn)− ĝn(V ⋆n ) ≥ ⟨∇ĝn(V ⋆n ), Vn − V ⋆n ⟩+
ρ

2
∥V ⋆∥2 ≥ ρ

2
∥Vn − V ⋆n ∥2.

Since
∑∞
n=1 ∆n <∞ by (A1), we have ∥Vn−V ⋆n ∥ = o(1). Hence by triangle inequality ∥Vn∥ ≤ ∥Vn−V ⋆n ∥+∥V ⋆n ∥ = o(1).

Therefore, we have ∥θn − θn−1∥ = o(1) by Lemma I.3. Hence θnk−1 → θ∞ as k →∞. For each θ ∈ Θ, let Bθ denote
the metric ball of radius half of the injectivity radius rinj(θ) centered at θ. Fix θ′ ∈ Θ ∩ Bθ∞ be arbitrary. Note that
θ′ ∈ Θ ∩ Bθ∞ ∩ Bθnk−1 for all sufficiently large k since θn ∈ Θ for all n ≥ 1 and θnk−1 → θ∞. Denote by Γk the
parallel transport Γθnk−1→θ∞ . Then

⟨−Γk (grad f(θnk−1)) , Γk
(
ηθnk−1(θ

′)
)
⟩ = ⟨− grad f(θnk−1), ηθnk−1(θ

′)⟩ ≤ 0.

Now since f is continuously differentiable, we have grad f(θnk−1)→ grad f(θ∞) as k →∞. Also, by the continuity of
Riemannian metric, the left-hand side above converges to ⟨− grad f(θ∞), ηθ∞(θ′)⟩, so we obtain

⟨− grad f(θ∞), ηθ∞(θ′)⟩ ≤ 0.

Since θ′ ∈ Θ ∩Bθ∞ is arbitrary, the above show that θ∞ is a stationary point of f over Θ.

Now we prove Theorem 3.1 for the multi-block case m ≥ 2. The proof is almost identical to the single-block case.

Proof of Theorem 3.1 for m ≥ 2. By the hypothesis, the step-size α(i)
n for n ≥ 1 and i ∈ {1, . . . ,m} satisfies α(i)

n = α ≤
1. Therefore, for each n ≥ 1, Rtr

θ
(i)
n−1

(αV
(i)
n ) is well-defined and belongs to Θ(i).

Let V (i⋆)
n = argminη∈T∗

θ
(i)
n−1

(
G

(i)
n (η) := ĝ

(i)
n (η) + ψ

(i)
n (θ

(i)
n−1 + η)

)
. By Lemma I.1 and the hypothesis that α ≤

ρ
ρ+2LψM2

, for each N ≥ 0,

0 <
αρ

2

N∑
n=0

m∑
i=1

∥V (i⋆)
n ∥2 ≤

N∑
n=0

m∑
i=1

f (i)n (θ
(i)
n−1)− f (i)n (θ(i)n ) + ∆n

≤
N∑
n=0

f(θn)− f(θn+1) +m∆n

≤ f(θ0)− f∗ +m
∞∑
n=1

∆n =:M <∞.

It follows that
∑m
i=1∥V

(i⋆)
n ∥ = o(1) and

min
0≤k≤N

m∑
i=1

∥V (i⋆)
k ∥2 ≤ 2M

ραN
. (31)
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Recall that V (i⋆)
n is the minimizer of the surrogate G(i)

n on the lifted constrained set T ∗
θ
(i)
n−1

⊆ T
θ
(i)
n−1

M(i), which is convex

by (A2)(iii). Hence by the first-order optimality condition

⟨∇ĝ(i)n (V ⋆n ) + ProjT
θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i⋆)

n ) , η − V (i⋆)
n ⟩ ≥ 0 for all η ∈ T ∗

θ
(i)
n−1

.

Therefore for all η ∈ T ∗
θ
(i)
n−1

with ∥η∥ ≤ 1 we have

⟨∇ĝ(i)n (V (i⋆)
n ) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i⋆)

n ), η⟩ ≥ ⟨∇ĝ(i)n (V (i⋆)
n ) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i⋆)

n ), V (i⋆)
n ⟩

≥ −∥∇ĝ(i)n (V (i⋆)
n ) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i⋆)

n )∥ · ∥V (i⋆)
n ∥

≥ −(C ′ + L∥V (i⋆)
n ∥) · ∥V (i⋆)

n ∥ (32)

for some constant C ′ > 0, which can be determined following the same line of m = 1 case.

Since ĝ(i)n majorizes φ̂(i)
n on Tθn−1

M(i) and is exact at θ(i)n−1, and also noting and also noting (22), we get ∇ĝ(i)n (0) =

∇φ̂(i)
n (0) = gradφ

(i)
n (θ

(i)
n−1). Moreover, denoting

ζ(i)n := ∇ĝ(i)n (0)−∇ĝ(i)n (V (i⋆)
n ), (33)

by the restricted Ln-smoothness of ĝn : Tθn−1
→ R,

∥ζ(i)n ∥ ≤ L(i)
n ∥V (i⋆)

n ∥ ≤ L∥V (i⋆)
n ∥. (34)

Therefore it follows

⟨gradφ(i)
n (θ

(i)
n−1) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ), η⟩

= ⟨gradφ(i)
n (θ

(i)
n−1)−∇ĝn(V (i⋆)

n ), η⟩+ ⟨∇ĝn(V (i⋆)
n ) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ), η⟩

≥ −∥ζ(i)n ∥ · ∥η∥ − (C ′ + L∥V (i⋆)
n ∥)∥V (i⋆)

n ∥
≥ −(L+ C ′)∥V (i⋆)

n ∥ − L∥V (i⋆)
n ∥2

for all η ∈ T ∗
θ
(i)
n−1

and ∥η∥ ≤ 1. Thus it follows that

m∑
i=1

− inf
η∈T∗

θ
(i)
n−1

,∥η∥≤1
⟨gradφ(i)

n (θ
(i)
n−1) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ),
η

min{r0, 1}
⟩

≤ L+ C ′

min{r0, 1}

m∑
i=1

∥V (i⋆)
n ∥+ L

min{r0, 1}

m∑
i=1

∥V (i⋆)
n ∥2.

Therefore, the above with (31) implies

min
1≤n≤N

m∑
i=1

− inf
η∈T∗

θ
(i)
n−1

,∥η∥≤1
⟨gradφ(i)

n (θ
(i)
n−1) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ),
η

min{r0, 1}
⟩

≤ L+ C ′

min{r0, 1}

√
2M

ραN
+

L

min{r0, 1}
2M

ραN
.

When N ≥ L2

(L+C′)2
2M
ρα , the above gives

min
1≤n≤N

m∑
i=1

− inf
η∈T∗

θ
(i)
n−1

,∥η∥≤1
⟨gradφ(i)

n (θ
(i)
n−1) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ),
η

min{r0, 1}
⟩ ≤ 2(L+ C ′)

min{r0, 1}

√
2M

ραN
.
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This shows (i).

Next, we show (ii). Recall ψ = 0, so f = φ and is continuously differentiable. For asymptotic stationarity, suppose a
subsequence of the iterates (θnk)k≥1 converges to some limit point θ∞ ∈ Θ. Note by first-order optimality of V (i⋆)

n and
the ρ-strongly convexity of ĝn,

∆n = ĝ(i)n (Vn)− ĝ(i)n (V (i⋆)
n ) ≥ ⟨∇ĝ(i)n (V (i⋆)

n ), V (i)
n − V (i⋆)

n ⟩+ ρ

2
∥V (i⋆)∥2 ≥ ρ

2
∥V (i)

n − V (i⋆)
n ∥2. (35)

Since m
∑∞
n=1 ∆n ≤ ∞ by (A1), we have

∑m
i=1 ∥V

(i)
n − V (i⋆)

n ∥ = o(1). Hence by triangle inequality
∑m
i=1∥V

(i)
n ∥ ≤∑m

i=1 ∥V
(i)
n −V (i⋆)

n ∥+
∑m
i=1 ∥V

(i⋆)
n ∥ = o(1). Therefore, we have ∥θn−θn−1∥ = o(1) by Lemma I.3. Hence θnk−1 → θ∞

as k →∞. Therefore since f is continuously differentiable, for each i = 1, . . . ,m,

lim
k→∞

grad f (i)nk (θ
(i)
nk−1) = lim

k→∞
gradi f(θ

(1)
nk
, · · · , θ(i−1)

nk
, θ

(i)
nk−1, θ

(i+1)
nk−1, · · · , θ

(m)
nk−1)

= gradi f(θ
(1)
∞ , · · · , θ(i−1)

∞ , θ(i)∞ , θ(i+1)
∞ , · · · , θ(m)

∞ )

= gradi f(θ∞).

Fix i ∈ {1, . . . ,m}. For each θ ∈ Θ(i), let Bθ denote the metric ball of radius half of the injectivity radius rinj
(i)(θ) centered

at θ inM(i). Fix θ′ ∈ Θ(i) ∩B
θ
(i)
∞

be arbitrary. Note that θnk−1 ∈ Θ(i) ∩B
θ
(i)
∞
∩B

θ
(i)
nk−1

for all sufficiently large k since

θ
(i)
n ∈ Θ(i) for all n ≥ 1 and θ(i)nk−1 → θ

(i)
∞ . Denote by Γk the parallel transport Γ

θ
(i)
nk−1→θ

(i)
∞

onM(i). Then

〈
−Γk

(
grad f (i)nk (θ

(i)
nk−1)

)
, Γk

(
η
(i)
θnk−1(θ

′)
)〉

=
〈
− grad f (i)nk (θ

(i)
nk−1), η

(i)
θnk−1(θ

′)
〉
≤ 0.

Also note that by the continuity of Riemannian metric, the left-hand side above converges to ⟨− gradi f(θ∞), η
θ
(i)
∞
(θ′)⟩, so

we obtain

⟨− gradi f(θ∞), η
θ
(i)
∞
(θ′)⟩ ≤ 0.

Since θ′ ∈ Θ(i) ∩B
θ
(i)
∞

and i ∈ {1, . . . ,m} are arbitrary, the above shows that θ∞ is a stationary point of f over Θ.

Lastly, we show (iii). For each n ≥ 1 and i = 1, . . . ,m, denote

ξ(i)n := grad f (i)n (θ
(i)
n−1)− gradi f(θn−1).

Now by writing

∇ĝ(i)n (V (i⋆)
n )− gradi φ(θn−1) =

(
∇ĝ(i)n (V (i⋆)

n )−∇ĝ(i)n (0)
)
+

(
gradφ(i)

n (θ
(i)
n−1)− gradi φ(θn−1)

)
= ζ(i)n + ξ(i)n ,

from (32), for all η ∈ T ∗
θ
(i)
n−1

with ∥η∥ ≤ 1,

⟨gradi φ(θn−1) + ProjT
θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ), η⟩ (36)

= −⟨ξ(i)n , η⟩ − ⟨ζ(i)n , η⟩+ ⟨∇ĝn(V (i⋆)
n ) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ), η⟩

≥ −(∥ζ(i)n ∥+ ∥ξ(i)n ∥) · ∥η∥ − C ′∥V (i⋆)
n ∥ − L∥V (i⋆)

n ∥2

≥ −(∥ζ(i)n ∥+ ∥ξ(i)n ∥)− C ′∥V (i⋆)
n ∥ − L∥V (i⋆)

n ∥2.

According to the hypothesis, by using a triangle inequality,

∥ξ(i)n ∥ ≤ L′(∥V (1)
n ∥+ · · ·+ ∥V (i−1)

n ∥) ≤ L′
m∑
i=1

∥V (i)
n ∥.
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Combining with (34),

∥ζ(i)n ∥+ ∥ξ(i)n ∥ ≤ L∥V (i⋆)
n ∥+ L′

m∑
i=1

∥V (i)
n ∥,

where ζ(i)n is defined in (33). From (35), we have

ρ

2

N∑
n=1

m∑
i=1

∥V (i)
n − V (i⋆)

n ∥2 < m
∞∑
n=1

∆n <∞.

Therefore,

N∑
n=1

m∑
i=1

∥V (i)
n ∥2 ≤ 2

N∑
n=1

m∑
i=1

∥V (i)
n − V (i⋆)

n ∥2 + 2
N∑
n=1

m∑
i=1

∥V (i⋆)
n ∥2 <

4αm
∑∞
n=1 ∆n + 4M

αρ
.

And also,
N∑
n=1

m∑
i=1

∥V (i)
n ∥2 +

m∑
i=1

∥V (i⋆)
n ∥2 <

4αm
∑∞
n=1 ∆n + 6M

αρ
.

Hence

min
0≤n≤N

m∑
i=1

∥V (i)
n ∥2 +

m∑
i=1

∥V (i⋆)
n ∥2 <

4αm
∑∞
n=1 ∆n + 6M

αρN
. (37)

From (37), there exists a subsequence (kn)n≥1 such that 1 ≤ kn ≤ n and

max

{
m∑
i=1

∥V (i⋆)
kn
∥2,

m∑
i=1

∥V (i)
kn
∥2
}
≤

m∑
i=1

∥V (i⋆)
kn
∥2 + ∥V (i)

kn
∥2 ≤ M ′

αρn
,

where M ′ := 4αm
∑∞
n=1 ∆n + 6M .

Hence we get

(∥ζ(i)n ∥+ ∥ξ(i)n ∥) + C ′∥V (i⋆)
n ∥+ L∥V (i⋆)

n ∥2 ≤ (L+ C ′)∥V (i⋆)
n ∥+ L′

m∑
i=1

∥V (i)
n ∥+ L

m∑
i=1

∥V (i⋆)
n ∥2

≤ (L+ C ′)

√
M ′

ραn
+ L′

√
M ′

ραn
+ L

M

ραn

= (L+ C ′ + L′)

√
M ′

ραn
+ L

M

ραn
.

This combining (36) gives

min
1≤n≤N

m∑
i=1

− inf
η∈T∗

θ
(i)
n−1

,∥η∥≤1
⟨gradi φ(θn−1) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ),
η

min{r0, 1}
⟩

≤ L+ C ′ + L′

min{r0, 1}

√
M ′

ραN
+

L

min{r0, 1}
M

ραN
.

When N ≥ L2

(L+C′+L′)2
M2

M ′ρα , the above gives,

min
1≤n≤N

m∑
i=1

− inf
η∈T∗

θ
(i)
n−1

,∥η∥≤1
⟨gradi φ(θn−1) + ProjT

θ
(i)
n−1

∂ψ(i)
n (θ

(i)
n−1 + V (i)

n ),
η

min{r0, 1}
⟩ ≤ 2(L+ C ′ + L′)

min{r0, 1}

√
M ′

ραN
,

the desired complexity result.
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J. Details of Numerical Experiments
For all the numerical experiments in Section 5, we test the algorithms with random initial points. Each experiment is
repeated for 10 times with i.i.d. Gaussian/uniform random initial points, depending on the setting of the problem. The
relative reconstruction error defined as Error(X) = ∥X −X∗∥/∥X∗∥ is computed as a function of elapsed time (on a
Macbook Pro 2020 with 1.4 GHz Quad-Core Intel Core i5). Averaged relative reconstruction error with standard deviation
are shown by the solid lines and shaded regions in all the plots.

J.1. Nonnegative Tensor Decomposition with Riemannian Constraints

For the (nonnegative) tensor decomposition problem with Riemannian constraints we studied in Section 5, we pose
Riemannian constraints to the first block. Specifically, in the experiments, we let M(1) = Rr ⊆ R50×10 with r = 2.
The other two blocks are Euclidean spaces, i.e. M(2) = R40×10 andM(3) = R30×10. When the loading matrices are
nonnegative, the nonnegativity can be considered as an additional constraint set within each block. Namely, the constraint
sets Θ(2) and Θ(3) are nonnegative orthants of the corresponding Euclidean spaces. As for the first low-rank block M (1), it
is shown in (Song & Ng, 2020) that the intersection of the fixed-rank manifold and nonnegative orthant remains a smooth
manifold. Therefore, one can also simply letM(1) to be the nonnegative fixed-rank manifold. The ℓ1-regularizer in (20)
brings nonsmoothness to the problem. In the numerical experiments, we set the regularization parameter λi = 10−2 for
i = 1, 2, 3.

J.2. Regularized Nonnegative Matrix Factorization with Riemannian Constraints

Similar to the tensor decomposition problem described in the previous section, we letM(1) = Rr ⊆ R50×10 with r = 5
andM(2) = R10×40. The nonnegativity can be viewed as constraint sets, as stated in the previous section. This low-rank
matrix factorization (without ℓ1 regularization) is recently studied in (Song et al., 2022), where the authors proposed a
tangent space based alternating projection method. In our setting, we further include the ℓ1-regularization term that brings
nonsmoothness. The regularization parameter is set to be λ = 10−2.

J.3. Low-rank Matrix Recovery

We state the NIHT for solving (21) in Alg. 3.

Algorithm 3 Normalized Iterative Hard Thresholding (NIHT) (Tanner & Wei, 2013)
Input: Initial point X0, left singular vector space U0

for i = 1, · · · , n do
∇f(Xi) = A∗(A(Xi)− b)
αi =

∥ProjUi (∇f(Xi))∥
2

∥AProjUi (∇f(Xi))∥
2

Xi+1 = ProjRr
(Xi − αi∇f(Xi))

end for
output: Xn

Here A∗ : Rp → Rm×n is the Hermitian adjoint operator of A, ProjUi = UiU
∗
i is the projection onto the left singular

vector subspace of Xi. Note NIHT is a projected gradient descent algorithm with adaptive step size.

In the numerical validation in Figure 4, we set the dimensions to be m = 50, n = 12, p = 300 or 450 respectively. The true
solution X∗ is a low-rank matrix in Rm×n with rank r = 3. The sensing matrices Ai for i = 1, · · · , p are i.i.d. Gaussian
random matrices. The observations b is generated by b = A(X∗).

J.4. Inexact RGD

We show the performance of inexact RGD based on the low-rank matrix recovery problem in Figure 5. The dimensions are
set to be m = 50, n = 12, and p = 300. The inexactness is simulated by adding noise to the Riemannian gradient with
∆n = c/(n+ 1)2, where n is the iteration number. The inexact tBMM is implemented with c = 1. In the left plot of Figure
5, inexact tBMM shows similar performance as exact tBMM where both of them outperform NIHT. In the right plot of
Figure 5, it is shown that inexact RGD with different noise parameter c converges at similar speed.
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