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a b s t r a c t

An ensemble n-sub-epidemic modeling framework that integrates sub-epidemics to cap-
ture complex temporal dynamics has demonstrated powerful forecasting capability in
previous works. This modeling framework can characterize complex epidemic patterns,
including plateaus, epidemic resurgences, and epidemic waves characterized by multiple
peaks of different sizes. In this tutorial paper, we introduce and illustrate SubEpiPredict, a
user-friendly MATLAB toolbox for fitting and forecasting time series data using an
ensemble n-sub-epidemic modeling framework. The toolbox can be used for model fitting,
forecasting, and evaluation of model performance of the calibration and forecasting pe-
riods using metrics such as the weighted interval score (WIS). We also provide a detailed
description of these methods including the concept of the n-sub-epidemic model, con-
structing ensemble forecasts from the top-ranking models, etc. For the illustration of the
toolbox, we utilize publicly available daily COVID-19 death data at the national level for the
United States. The MATLAB toolbox introduced in this paper can be very useful for a wider
group of audiences, including policymakers, and can be easily utilized by those without
extensive coding and modeling backgrounds.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Reliable short-term forecasts of diverse growth processes unfolding in nature and society from predicting the weather to
the spread of epidemics are crucial in decision making. In the context of infectious diseases, short-term predictions can guide
prevention and mitigation interventions, as well as resource allocation. While simple statistical time-series forecasting ap-
proaches such as auto-regressive integratedmoving averagemodels (ARIMA) are widely used (Dimri et al., 2020; Hyndman&
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Athanasopoulos, 2018; Mondal et al., 2014; Shamsnia et al., 2011; Tektaş, 2010), forecasts from dynamical models that aim to
infer a mixture of underlying growth components may outperform classic time-series forecasting methods and provide in-
sights into the nature of the dynamics governing short-term growth or decline (Bleichrodt et al., 2023; Chowell et al., 2019,
2022). In particular, the ensemble n-sub-epidemic framework included in this tutorial is a recently developed ensemble
modeling approach that integrates sub-epidemics to capture complex temporal dynamics and has yielded competitive
forecasts of the trajectory of the coronavirus disease 2019 (COVID-19) and monkeypox (mpox) epidemics (Bleichrodt et al.,
2023; Chowell et al., 2022).

This mathematical framework characterizes time-series by aggregating multiple asynchronous growth processes and has
previously outperformed simpler growth models (Chowell et al., 2019; Tariq et al., 2022). Different growth curves can start at
different time points andmay follow different growth rates, scaling of growth, and final sizes. Hence, this ensemble modeling
framework can characterize plateaus, resurgences, and waves characterized by multiple peaks of different sizes. To facilitate
their application by non-specialists, there is an urgent need for an easy-to-use and flexible toolbox that requires minimal
understanding of the mathematics behind the model and coding skills.

In this tutorial-based primer, we introduce a user-friendly MATLAB (TheMathWorks Inc, 2022) toolbox to fit and forecast
the growth trajectories of infectious disease epidemics and pandemics using the ensemble n-sub-epidemic modeling
framework (Chowell et al., 2022). The toolbox is not only useful for studying the dynamics of infectious diseases but can also
be applied to a wide range of other natural and social science studies. Here, we provide a detailed step-by-step guide to
demonstrate how to prepare the data for analysis, use different options in the toolbox to generate fitting and forecasting
results, and interpret the findings. The toolbox can be useful to audiences such as policy makers and researchers interested in
fitting models to time series data, estimation of parameters with quantified uncertainty, generating short term forecasts
derived from the top-ranked and ensemble models, and evaluating performance of the models during the calibration and
forecast period. In addition, the users can fit the models using different parameter estimation approaches, under different
error structure assumptions, and select the underlying function for the sub-epidemic building block such as the generalized-
logistic growth model (GLM), Richards model, and the generalized Richards model (GRM). They can also choose whether the
sub-epidemics start synchronously at time 0 or asynchronously. We illustrate these functions in the toolbox using daily
COVID-19 deaths data from the United State of America (USA), and a tutorial video that demonstrates the different functions is
available at: https://www.youtube.com/channel/UC6IzIu-pPcMLlLYAho43loQ.

2. Methods

In this section, we provide an overview of the toolbox functions and describe the methods implemented in this toolbox.

2.1. Installing the toolbox

! Download the MATLAB code located in folder ‘ensemble n-subepidemic code v1.0’ from the GitHub repository: https://
github.com/gchowell/ensemble_n-subepidemic_framework.

! Create an ‘input’ folder in your working directory where your input data will be stored.
! Create an ‘output’ folder in your working directory where the output files will be stored.
! Open a MATLAB session.

2.2. Overview of the toolbox functions

The workflow described in this tutorial, summarized in Fig. 1, is composed of 4 main sections: 1) plotting model simu-
lations, 2) fitting the models to data with quantified uncertainty, 3) plotting the resulting model fits and calibration per-
formance metrics, and 4) plotting model-based forecasts and the associated forecasting performance metrics. Table 1 lists the
names of user functions associated with the toolbox along with a brief description of their roles. The internal functions
associatedwith the toolbox are given in Appendix A (Table A.1). In the options_fit.m and options_forecast.m functions,
the user can specify the parameters related to model fitting and forecasting as described in the toolbox tutorial (Section 3).

2.3. The n-sub-epidemic model

2.3.1. The building block growth model
Wemodel epidemic trajectories consisting of one or more overlapping and asynchronous sub-epidemics. That is, the sub-

epidemics are used as building blocks to characterize more complex epidemic trajectories. The mathematical equation for the
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sub-epidemic building block is the 3-parameter generalized-logistic growth model (GLM), which is specified by setting the
parameter <flag1>¼1 in the options.m file. This growth model has performed well in short-term forecasts of single
outbreak trajectories for different infectious diseases, including COVID-19 (Chowell et al., 2016; Chowell et al., 2024; Pell et al.,
2018; Shanafelt et al., 2018; Yan & Chowell, 2019). The GLM is given by the following differential equation:

Fig. 1. Overview of the workflow for fitting and forecasting time series trajectories using the n-sub-epidemic model.

Table 1
Description of user functions available in the toolbox.

Function Role

options.m Specifies the parameters related to model fitting including the characteristics of the time series data, the
sub-epidemic model, parameter estimation method, error structure, smoothing, and calibration period.

options_forecast.m Specifies the parameters related to the forecast including the forecasting period, the type of ensemble
weight for the ensemble models, and whether the forecasts will be evaluated.

plot_nsubepidemic.m Plots simulations of the n-sub-epidemic model.
Run_Fit_subepidemicFramework.m Derives the top-ranking sub-epidemic models to data with quantified uncertainty.
plotRankings_subepidemicFramework.m Plots the mean model fits of the top-ranking models including their sub-epidemic profiles and the

associated quality of model fit metrics including the Akaike Information Criterion (AICc), the relative
likelihood, and the evidence ratio.

plotFit_subepidemicFramework.m Displays themodel fit and 95% prediction interval as well as the empirical distribution of the parameters.
It also saves output .csv files in the output folder with the model fit, the parameter estimates including
95% confidence intervals, and the calibration performance metrics.

plotForecast_subepidemicFramework.m Displays the model-based forecast and the performance metrics of the forecast. Moreover, the data
associated with the forecasts, the parameter estimates, as well as the calibration and forecasting
performance metrics, are saved as .csv files in the output folder.
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dCðtÞ
dt

¼C0ðtÞ¼ rCpðtÞ
!
1% CðtÞ

K0

"
; (1)

where CðtÞ denotes the cumulative curve, dCðtÞdt describes the curve of daily incidences (here deaths for our COVID-19 data)
over time t. The positive parameter r denotes the growth rate per unit of time, K0 is the final outbreak size, and p2 ½0;1' is the
“scaling of growth” parameter which allows the model to capture early sub-exponential and exponential growth patterns. If
p ¼ 0, this equation describes a constant number of new deaths over time, while p ¼ 1 indicates that the early growth phase
is exponential. Intermediate values of p (0 <p<1) describe early sub-exponential (e.g., polynomial) growth dynamics.
Alternative growth equations to model the sub-epidemic building block include the 3-parameter Richards model
(<flag1>¼4) and the 2-parameter logistic growth model (<flag1>¼2).

2.3.2. The number of sub-epidemics
An n-sub-epidemic trajectory comprises n overlapping sub-epidemics and is given by the following system of coupled

differential equations:

dCiðtÞ
dt

¼Ci
0ðtÞ¼AiðtÞriCipi ðtÞ

!
1%

CiðtÞ
K0i

"
; (2)

where CiðtÞ tracks the cumulative number of deaths for sub-epidemic i, and the parameters that characterize the shape of the
ith sub-epidemic are given by ðri;pi;K0 iÞ, for i ¼ 1;…;n. Thus, the 1-sub-epidemic model is equivalent to the 3-parameter GLM
described above (1). When n>1; wemodel the onset timing of the ðiþ 1Þth sub-epidemic, where ði þ 1Þ ) n, by employing an
indicator variable given by AiðtÞ so that the ðiþ 1Þth sub-epidemic is triggered when the cumulative curve of the i th sub-
epidemic exceeds a threshold value denoted as Cthr . We assume that the ðiþ 1Þth sub-epidemic is only triggered when
Cthr) K0i. Hence, we have:

AiðtÞ¼
#
1;Ci%1ðtÞ>Cthr
0;Otherwise for i¼2;…n; (3)

where A1ðtÞ ¼ 1 for the first sub-epidemic. The total number of parameters that are needed to model an n-sub-epidemic
trajectory scales linearly with the number of sub-epidemics and is given by 3nþ 1. The initial number of deaths is given by
C1ð0Þ ¼ I0, where I0 is the initial number of deaths in the observed data. The cumulative curve of the n-sub-epidemic tra-
jectory is given by:

CtotðtÞ¼
Xn

i¼1
CiðtÞ: (4)

The n-sub-epidemic wave model can characterize diverse epidemic patterns, including epidemic plateaus where the
epidemic stabilizes at a high level for an extended period, epidemic resurgences where incidence increases again after a low
incidence period, and epidemic waves characterized by multiple peaks. The maximum number of sub-epidemics considered
in the epidemic trajectory is specified using parameter <npatches_fixed> in the options.m file. Here, we set
<npatches_fixed>¼2.

2.3.3. Fixed sub-epidemic onset
We can also consider n-sub-epidemic models with onset fixed at time 0. In this case, all sub-epidemics start at time 0, and

the threshold parameter Cthr drops from the model. We use parameter <onset_fixed> in the options.m file to specify
whether the onset timing of the sub-epidemics is fixed at time 0 (<onset_fixed>¼1) or not (<onset_fixed>¼0).

2.3.4. Top-ranked sub-epidemic models
To select the top-ranked sub-epidemic models, we calculate the AICc values of the set of best fit sub-epidemic models with

different values of Cthr . The AICc is given by (Hurvich & Tsai, 1989; Sugiura, 1978):

AICc ¼ % 2 logðlikelihoodÞ þ 2mþ 2mðmþ 1Þ
nd %m% 1

; (5)

wherem is the number of model parameters, including parameter Cthr if n>1 and <onset_fixed>¼0, and nd is the number
of data points. Specifically for normal distribution, the AICc is

AICc ¼nd logðSSEÞ þ 2mþ 2mðmþ 1Þ
nd %m% 1

; (6)
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where SSE ¼
Pnd

j¼1ðf ðtj;
bQÞ % ytj Þ

2. Parameter <topmodelsx> in the options.m file is used to specify the number of top-
ranked models that will be generated and used to derive ensemble models. If the sub-epidemics’ onset is fixed at time 0,
then the maximum number of models that can be selected (e.g., top-ranked models) cannot exceed the maximum number of
sub-epidemics considered in the epidemic's trajectory (<npatches_fixed>).

To illustrate the methodology, we set <onset_fixed>¼0 and analyzed four top-ranking sub-epidemic models (<top-
modelsx>¼4). We used them to construct three ensemble sub-epidemic models, which we refer to as: Ensemble(2),
Ensemble(3), and Ensemble(4), representing the ensembles of 2, 3, and 4 sub-epidemics, respectively. In the options.m file,
the values of the parameters related to the n-sub-epidemicmodel and the number of top-ranked sub-epidemicmodels follow
the code shown below:

2.4. Plotting simulations of the n-sub-epidemic model

Before fitting the sub-epidemic model to the data, it is useful to check that the selected model yields simulations broadly
consistent with the range of the time series data by generating model simulations with different parameter values. The function
plot_nsubepidemic.m can be used to plot model solutions where the user provides the type of growth model to model each
sub-epidemic by passing the parameter <flag1> (generalized-logistic growth model, Richards, Gompertz, etc.), the vectors
containing model parameter values for each sub-epidemic, the number of sub-epidemics, n , the Cthr value, the initial condition
for the first sub-epidemic, Cð0Þ; and the simulation duration, as passing input parameters to the function in the following order:
flag1, r, p, a;K;n;Cthr , Cð0Þ; and finally the duration of the simulation. For example, the following call plots a simulation of the n-
sub-epidemic model using the generalized logistic growth model (<flag1>¼1) as the building block and the following model
parameter values for three sub-epidemics: r ¼ ½0:18 0:18 0:18'; p ¼ ½0:98 0:98 0:98';K ¼ ½10000 5000 1000';n ¼ 3;Cthr ¼ 100:
The initial condition Cð0Þ ¼ 1, and the total duration of the simulation is set at 220.

>>plot_nsubepidemic(1,[0.18 0.18 0.18],[0.98 0.98 0.98],[],[10000 5000 1000],3,100,220)
Of note, in the above call, the value of parameter a is passed empty ([]) since the generalized logistic growth model does

not use this parameter. This function will generate a figure (Fig. 2A) that shows the corresponding model solution dCðtÞ= dt.
Additional representative simulations with other values of the Cthr are shown in Fig. 2.
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2.5. Parameter estimation method

Let f ðt;QÞ denote the expected curve of the epidemic's trajectory.We can estimate the set of model parametersQ by fitting
the model solution to the observed data via nonlinear least squares (Banks et al., 2014) or maximum likelihoodmethod (MLE)
(Roosa et al., 2019). We can choose the nonlinear least squares method by setting the parameter <method1> to 0 in the

options.m file. This is achieved by searching for the set of parameters bQ that minimizes the sum of squared differences
between the observed data fyt1 ; yt2 ;…; ytnd g and the model meanwhich corresponds to f ðt;QÞ. We will use smoothed data (as
discussed in section 3.2) to estimate a total of 3nþ 1 model parameters, namely Q ¼ ðCthr ; r1;p1;K01;…; rn;pn;K0nÞ. We es-
timate parameter Cthr through simple discretization of its range of plausible values. Our estimation procedure consists of two
steps. First, for each Cthr , we search for the set of parameters ðr1; p1;K01;…; rn; pn;K0nÞ to minimize the sum of squared errors.
Then we choose the Cthr and the corresponding estimates of other parameters leading to minimum SSE as the best fit.

Nonlinear least squares estimation method weights each of the data points equally and does not require a specific
distributional assumption for yt, except for the first moment E½yt ' ¼ f ðti;QÞ. That is, the mean of the observed data at time t is
equivalent to the expected count denoted by f ðt;QÞ at time t (Myung, 2003). This method yields asymptotically unbiased
point estimates regardless of any misspecification of the variance-covariance error structure. Hence, the estimated model

mean f ðti; bQÞ yields the best fit to observed data yti in terms of squared L2 norm. In MATLAB, we can use the fmincon

(TheMathWorks Inc, 2006) function to set the optimization problem. We also employ MATLAB's MultiStart

(TheMathWorks Inc, 2010) feature to specify the number of random initial guesses of the model parameters using the
parameter <numstartpoints> in the options.m file in order to search thoroughly for the best-fit parameter estimates.

We can also estimate parameters via MLE and assume different error structures in the data such as Poisson, negative
binomial, and normal probability distributions.

Fig. 2. Four representative profiles of the n-sub-epidemic model generated using the function plot_nsubepidemic.m where the sub-epidemic building block is
modeled using the generalized logistic growthmodel and characterized by the following parameters: r ¼ ½0:18 0:18 0:18'; p ¼ ½0:98 0:98 0:98';K ¼ ½10000 5000 1000'
for threesub-epidemics (n ¼3), the initial conditionCð0Þ ¼1, theCthr value isvariedwithvalues:A)100,B)400,C)3000,D)5000, and the totaldurationof thesimulation
is set at 220. The solid black line corresponds to the overall aggregated curvewhereas the individual sub-epidemics are shown in different colors (red, blue, and green).
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a) Poisson

For a Poisson error structure, the full log-likelihood is given by:

Xn

j¼1

n
yi lnðmiÞ % ln

$
ytj !

%
% mj

o
; (7)

where mj ¼ f ðtj;QÞ denotes the mean of ytj . The Poisson error structure can be specified by setting <method1>¼1 in the
options.m file.

b) Negative binomial

Let r > 0 denote the number of failures until the experiment is stopped, p 2 [0, 1] denote the success probability in each
experiment. The number of successes y before the r-th failure occurs has a negative binomial distribution:

f ðr; pÞ¼
!
r þ y% 1

y

"
py ð1% pÞr ¼ 1

y!

Yy%1

j¼0
ðjþ rÞ :pyð1% pÞr (8)

With mean m ¼ rp
ð1%pÞ and variance s2 ¼ rp

ð1%pÞ2
> m: For n observations y1, …, yn, the full log-likelihood is:

lðr; pÞ¼
Xn

i¼1

8
<

:

8
<

:
Xyi%1

j¼0
lnðjþ rÞ

9
=

;þ yi lnðpiÞþ rlnð1% piÞ % lnðyi!Þ

9
=

; (9)

If we want to express the distribution with m and s2, we can plug-in p ¼ 1% m
s2 and r ¼ m2

s2%m.
There are different types of variances commonly used in a negative binomial distribution. If the variance scales linearly

with the mean,i.e., s2 ¼ mþ am; (<method1>¼2 in options_fit.m), then p ¼ a
1þa and r ¼ m=a. The full log-likelihood (9) can

be expressed as follows:

lðq;aÞ¼
Xn

i¼1

8
<

:

8
<

:
Xyi%1

j¼0
ln
$
jþa%1f ðti; qÞ

%
9
=

;þ yi lnðaÞ %
$
yi þa%1f ðti; qÞ

%
lnð1þaÞ % lnðyi!Þ

9
=

;: (10)

If the variance scales quadratically with the mean, i.e., s2 ¼ mþ am2 (<method1>¼4 in options_fit.m or
options_forecast.m), then p ¼ am

1þam and r ¼ 1=a: The full log-likelihood (9) can be expressed as follows:

lðq;aÞ¼
Xn

i¼1

8
<

:

8
<

:
Xyi%1

j¼0
ln
$
jþa%1

%
9
=

;þ yi lnðaf ðti; qÞÞ %
$
yi þa%1

%
lnð1þaf ðti; qÞÞ % lnðyi!Þ

9
=

;: (11)

Themore general form of variance is s2 ¼ mþ amd (<method1>¼5 in options_fit.m) with any %∞<d<∞. Then the full
log-likelihood (9) can be expressed as follows:

lðq;aÞ¼
Xn

i¼1

2

4

8
<

:
Xyi%1

j¼0
ln
$
jþa%1mi

2%d
%
9
=

;þ yi ln
$
ami

d%1
%
%
$
yi þa%1mi

2%d
%
ln
$
1þami

d%1
%
% lnðyi!Þ

3

5; (12)

where mi ¼ f ðti; qÞ: The number of parameters is 1 plus the number of parameters in the dynamical model based on ordinary
differential equations (ODE) for (10)e(11), and 2 plus the number of parameters in the dynamical model for (12) if d is also
estimated via MLE.

2.5.1. Parametric bootstrapping
To quantify parameter estimate uncertainty, we follow a parametric bootstrapping approach which allows the compu-

tation of standard errors and related statistics in the absence of closed-form formulas (Hastie et al., 2001). We generate B

bootstrap samples from the best-fit model f ðt; bQÞ, with an assumed error structure specified using parameter <dist1> in the
options.m file to quantify the uncertainty of the parameter estimates and construct confidence intervals. Typically, the error
structure in the data is modeled using a probability model such as the Poisson or negative binomial distribution. Using
nonlinear least squares (<method1>¼0), besides a normally distributed error structure (<dist1>¼0), we can also assume a
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Poisson (<dist1>¼1) and a negative binomial distribution (<dist1>¼2) whereby the variance-to-mean ratio is empirically
estimated from the time series. To estimate this constant ratio, we group a fixed number of observations (e.g., 7 observations
for daily data into a bin across time), calculate the mean and variance for each bin, and then estimate a constant variance-to-
mean ratio by calculating the average of the variance-to mean ratios over these bins. Using maximum likelihood estimation,
we can estimate parameter uncertainty for Poisson and negative binomial error structures in the data (<method1>¼1 &
<dist1>¼1 for Poisson and <method1>¼3 & <dist1>¼3, <method1>¼4 & <dist1>¼4, and <method1>¼5 &
<dist1>¼5 for the different negative binomial error structures described above).

Using the best-fit model f ðt; bQÞ, we generate B-times replicated simulated datasets of size nd, where the observation at
time tj is sampled from the corresponding distribution specified by <dist1>. Next, we refit the model to each of the B

simulated datasets to re-estimate the parameters. The new parameter estimates for each realization are denoted by bQb;

where b ¼ 1;2;…;B:Using the sets of re-estimated parameters ðbQbÞ; it is possible to characterize the empirical distribution of
each estimate, calculate the variance, and construct confidence intervals for each parameter. The resulting uncertainty around

the model fit can similarly be obtained from ðt; bQ1Þ; f ðt; bQ2Þ;…;f ðt; bQBÞ. We characterize the uncertainty using 300 bootstrap
realizations (i.e., parameter B¼300 in the options.m file).

For the COVID-19 death data employed for illustration purposes, we fit the models through nonlinear least squares fitting
and a normal error structure (i.e., <method1>¼0 and <dist1>¼0). In the options.m file, the values of the parameters
related to the parameter estimation method and parametric bootstrapping follow:
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2.6. Model-based forecasts with quantified uncertainty

We use f ðtþh; bQÞ as the h days ahead forecast. The uncertainty of the forecasted value can be obtained using the pre-
viously described parametric bootstrap method. Let

f ðtþ h; bQ1Þ; f ðtþ h; bQ2Þ;…; f ðtþh; bQBÞ (13)

denote the forecasted value of the current state of the system propagated by a horizon of h time units, where bQb denotes
the estimation of parameter set Q from the bth bootstrap sample. We can use these values to calculate the bootstrap variance
as the measure of the uncertainty of the forecasts and use the 2.5% and 97.5% percentiles to construct the 95% prediction
intervals (PI). We can set the forecasting horizon using the parameter <forecastingperiod1> in the options_for-

ecast.m file.

2.7. Performance metrics

To assess the performance of the models during the calibration or forecasting periods, we used four performance metrics:
the mean absolute error (MAE), the mean squared error (MSE), the coverage of the 95% prediction intervals (PI), and the
weighted interval score (WIS) (Gneiting & Raftery, 2007). In the options_forecast.m file, the
parameter <getperformance> is a Boolean variable (0/1) to indicate whether the user wishes to compute the performance
metrics of the forecasts.

The mean absolute error (MAE) is given by:

MAE¼ 1
N

XN

h¼1

&&f ðth; bQÞ % yth
&&; (14)

where th are the time points of the calibration or forecasting period (Kuhn & Johnson, 2013), and N is the number of time
points of the period. Similarly, the mean squared error (MSE) is given by:

MSE¼
1
N

XN

h¼1

'
f ðth; bQÞ % yth

(2
: (15)

The coverage of the 95% PI corresponds to the fraction of data points that fall within the 95% PI, and is calculated as:

95% PI Coverage¼ 1
N

XN

h¼1
1
)
Yth > Lth ∩Yth < Uth

*
; (16)

where Lth and Uth are the lower and upper bounds of the 95% PIs, respectively, Yt are the data and 1 is an indicator variable that
equals 1 if Yt is in the specified interval and 0 otherwise.

The weighted interval score (WIS) (Gneiting & Raftery, 2007; M4Competition:Competitor's Guide: Prizes and Rules, 2018),
which is a proper score recently embraced for quantifying model forecasting performance in epidemic forecasting studies
(Bracher et al., 2021; Hwang, 2022; Roosa et al., 2020; Tariq et al., 2022), provides quantiles of predictive forecast distribution
by combining a set of Interval Score (IS) for probabilistic forecasts. An IS is a simple proper score that requires only a central
(1%a) * 100% PI (Gneiting & Raftery, 2007) and is described as

ISaðF; yÞ¼ ðu% lÞ þ 2
a
* ðl% yÞ * 1ðy < lÞ þ 2

a
* ðy% uÞ * 1ðy > uÞ : (17)

In this equation, 1 refers to the indicator function, meaning that 1ðy < lÞ ¼ 1 if y< l and 0 otherwise. The terms l and u
represent the a

2 and 1% a
2 quantiles of the forecast F: The IS consists of three distinct quantities:

1. The sharpness of F; given by the width u% l of the central ð1% aÞ * 100% PI.
2. A penalty term 2

a * ðl% yÞ * 1ðy < lÞ for the observations that fall below the lower end point l of the ð1% aÞ * 100% PI. This
penalty term is directly proportional to the distance between y and the lower end l of the PI. The strength of the penalty
depends on the level a.

3. An analogous penalty term 2
a * ðy% uÞ * 1ðy >uÞ for the observations falling above the upper limit u of the PI.

To provide more detailed and accurate information on the entire predictive distribution, we report several central PIs at
different levels ð1% a1Þ< ð1% a2Þ<…< ð1% aKÞ along with the predictive median, ~y, which can be seen as a central pre-
diction interval at level 1% a0/0. This is referred to as the WIS, and it can be evaluated as follows:
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WISa0:K ðF; yÞ¼
1

K þ 1
2
:

 

w0:jy%mjþ
XK

k¼1
wk:ISakðF; yÞ

!

; (18)

wherewk ¼ ak
2 for k ¼ 1;2;…:K andw0 ¼ 1

2. Hence, WIS can be interpreted as a measure of how close the entire distribution is
to the observation in units on the scale of the observed data (Bracher et al., 2021; Cramer et al., 2022).

2.8. Constructing ensemble forecasts from top-ranking models

Ensemble models that combine the strength of multiple models may exhibit significantly enhanced predictive perfor-
mance (e.g. (Bleichrodt et al., 2023; Chowell et al., 2020; Chowell et al., 2022; Chowell& Luo, 2021; Ray& Reich, 2018; Viboud
et al., 2018)). An ensemble model derived from the top-ranking K models are denoted by Ensemble(K) and illustrated in Fig. 3.
Thus, Ensemble(2) and Ensemble(3) refer to the ensemblemodels generated from the combination of the top-ranking 2 and 3
models, respectively. The ensemble models can be derived from the unweighted (equal weights across contributing indi-
vidual models) or a weighted combination of the highest-ranking sub-epidemic models based on the quality of fit as deemed
by the AICci for the i-th model where AICc1 ) … ) AICcI and i ¼ 1, …, I. In this case, we compute the weight wi for the i-th
model, i ¼ 1, …, I, where

P
wi ¼ 1 as follows:

wi ¼
1

AICci

1
AICc1

þ 1
AICc2

þ…þ 1
AICcI

for all i ¼ 1; 2;…; I; (19)

and hence wI ) …) w1.
The estimated mean curve of the daily COVID-19 deaths for the Ensemble(I) model is:

fensðIÞðtÞ¼
XI

i¼1
wifi

$
t; bQ

ðiÞ%
; (20)

where given the training data, bQ
ðiÞ
; denotes the set of estimated parameters, and fiðt; bQ

ðiÞ
Þ denotes the estimated mean curve

of daily COVID-19 deaths, for the i-th model. To quantify the uncertainty of forecasts, we use wild bootstrap and for each
bootstrap sample, we get the forecast for each model and compute the weighted average accordingly. Then we construct the
95% CI or PI using the 2.5% and 97.5% quantiles (Chowell & Luo, 2021). Alternatively, we can set the ensemble weights based

Fig. 3. Schematic diagram of the construction of the ensemble model from the weighted combination of the highest-ranking sub-epidemic models as deemed by
the AICci for the i-th model where AICc1 ) … ) AICcI and i ¼ 1, …, I. An ensemble derived from the top-ranking I models is denoted by Ensemble(I).
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on different calibration performance metrics for the top-ranked models. For instance, we can make the ensemble weights
proportional to the relative likelihood ðlÞ rather than the reciprocal of the AICc. Let AICmin denote the minimum AIC from the
set of models. The relative likelihood or Akaike weight of model i is given by li ¼ eððAICmin%AICiÞ=2Þ (Burnham& Anderson, 2004).
We compute the weight wi for the i-th model where

P
wi ¼ 1 as follows:

wi ¼
li

l1 þ l2 þ…þ lI
for all i ¼ 1;2;…; I; (21)

and hence wI ) …) w1.
In the options_forecast.m file, we can specify three types of ensemble weights using the

parameter <weight_type1>. Specifically, unweighted (<weigth_type1>¼-1), weighted according to the AICc
(<weigth_type1>¼0), weighted based on the relative likelihood (<weigth_type1>¼1), and weighted based on the WIS
metric of the calibration period (<weigth_type1>¼2). Along with choosing the type of ensemble weight, we can also
specify parameters related to the forecasting horizon(<forecastingperiod>), and forecasting performance metrics
(<getperformance>)in the options_forecast.m file as indicated below.

2.9. Doubling times

Doubling times characterize the sequence of times at which the cumulative incidence doubles. Denote the times at which
cumulative incidence doubles by tdj

, such that 2Cðtdj
Þ¼ Cðtdjþ1

Þwhere td0
¼ 0;Cð td0

Þ ¼ C0, j ¼ 1;2;3;…;ng and ng is the total
number of times cumulative incidence doubles (Muniz-Rodriguez et al., 2020; Smirnova et al., 2021). The actual sequence of
“doubling times” is defined as follows:

dj ¼Dtdj
¼ tdj

% tdj%1
where j ¼ 1;2;3;…;ng: (22)

For exponential growth, doubling times remain invariant and are given by ðln 2Þ=r, whereas the doubling times increase
when the growth pattern follows sub-exponential growth (Smirnova et al., 2021).We can characterize the doubling times and

their uncertainty from the best-fit model f ðt; bQÞ (Wallinga& Lipsitch, 2007). We can evaluate the uncertainty of the sequence

of doubling times and the overall doubling time using the model parameter estimates derived from bootstrapping ð bQbÞ;
where b ¼ 1;2;3;…;B. That is, djð bQbÞ provides a sequence of doubling times for a set of bootstrap parameter estimates, bQb,
where b ¼ 1; 2; 3;…; B. We can use these curves to derive 95% CIs for the sequence of doubling times and quantify the
probability of observing a given number of doublings.

3. Toolbox tutorial

3.1. The dataset

For the purposes of this toolbox, the time series data will be stored in the input folder and needs to be a text file with the
extension *.txt. The data file can contain one or more incidence time series (one per column in the file). Each column cor-
responds to the incidence curve over time for each epidemic corresponding to a different area/group. For instance, each
column could correspond to different states in the U.S. or different countries in the world. In the options.m file, a specific
data column in the file can be accessed for inference using the parameter <outbreakx>. If the time series file contains
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cumulative incidence count data, the name of the file containing the time series data starts with “cumulative” according to the
following format:

cumulative-<cadtemporal>-<caddisease>-<datatype>-<cadregion>-<caddate1>.txt

where <cadtemporal> is a string parameter that indicates the temporal resolution of the data (e.g., daily, weekly, yearly).
Parameter <caddisease> is a string used to indicate the name of the disease related to the time series data. <datatype> is
a string parameter indicating the nature of the data (e.g., cases, deaths, hospitalizations, etc.) whereas <cadregion> is a
string parameter indicating the geographic region of the time series contained in the file (New York, USA, World, Asia, Africa,
etc.). Finally, <caddate1> is a string to indicate the date for the most recent observation in the data file in the format:
mm-dd-yyyy.

To illustrate themethodology presented in this tutorial paper, we used daily COVID-19 deaths reported in the USA from the
publicly available data tracking system of the Johns Hopkins Center for Systems Science and Engineering (CSSE) (Dong et al.,
2020). The data is also publicly available in the GitHub repository (Chowell et al., 2022). An example of a data file that wewill
use in this tutorial is: cumulative-daily-coronavirus-deaths-USA-05-11-2020.txt, which is in the input folder.
This file contains daily cumulative COVID-19 deaths from 02 to 27e2020 to 05-11-2020 reported across 50 US states and
Washington D.C.

(<outbreakx>¼1 through 51) and at the national level (<outbreakx>¼52). A partial view in Excel of the contents of the
data file is shown in Fig. 4.

If the time series file contains incidence data, the name of the data file does not start with theword cumulative and follows
the format:

Fig. 4. A partial view in Excel of a data file that we will use in this tutorial (cumulative-daily-coronavirus-deaths-USA-05-11-2020.txt) which is in
the toolbox's input folder. This file contains daily cumulative COVID-19 deaths from 02 to 27e2020 to 05-11-2020 reported across 50 US states and Washington
D.C.
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<cadtemporal>-<caddisease>-<datatype>-<cadregion>-<caddate1>.txt
For example: daily-coronavirus-deaths-USA-05-11-2020.txt
In the options.m file, the parameter <datevecfirst1> is a 3-value vector that specifies the date corresponding to the

first data point in time series data in format: [yyyy mm dd]. If the date of the first observation corresponds to February 27th,
2020, then <datevecfirst1>¼ [2020 02 27]. Similarly, the parameter <datevecend1> is a 3-value vector that specifies
the date of the most recent data file in format: [yyyy mm dd]. Thus, the name of the cumulative data file containing the most
recent data corresponds to:

cumulative-<cadtemporal>-<caddisease>-<datatype>-<cadregion>-<datevecend1>.txt
which is in the input folder and contains the latest time series data to assess forecast performance. Finally, the parameter

<DT> is an integer indicating the temporal resolution of the time series data (e.g., <DT>¼1 for daily data; <DT>¼7 for weekly
data). In the options.m file, the values of the parameters related to the data follow:

3.2. Data adjustments

3.2.1. Data smoothing
To reduce the noise in the original data due to artificial reasons such as the weekend effects, we can smooth out the time

series data using the moving average of the time series whereby <smoothfactor1> is a parameter in the options.m file
that specifies the span of the moving average (e.g., <smoothfactor1>¼1 implies no smoothing applied to the data). For the
daily COVID-19 death data employed for illustration purposes, we set <smoothfactor1>¼7 and smoothed out the daily
series using a 7-day moving average to reduce the noise in the original data due to artificial reasons such as the weekend
effects.

3.2.2. Calibration period
To fit themodels to themost recent observations contained in a time series file, we can specify the length of the calibration

period whereby <calibrationperiod1> in the options.m file indicates the number of recent data points that will be
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used to calibrate the models. If <calibrationperiod1> exceeds the length of the time series contained in the data file, the
calibration period is set to the maximum length of the available data.

For illustration purposes, we used a 90-day calibration period (i.e., <calibrationperiod1>¼90). In the options.m file,
the values of the parameters related to smoothing and calibration period follow:

3.3. Fitting the n-sub-epidemic models to data with quantified uncertainty

To fit the n-sub-epidemic models to the data with quantified uncertainty, we need to run the function Run_Fit_su-
bepidemicFramework.m. This function uses the input parameters provided by the user in the options.m file. However, the
function can also receive <outbreakx> and <caddate1> as passing input parameters while the remaining inputs are
obtained from the options.m file.

For example, to fit the ensemble n-sub-epidemic models to the daily curve of COVID-19 deaths in the USA as of theweek of
‘05-11-2020’ (data file path: input/cumulative-daily-coronavirus-deaths-USA-05-11-2020.txt), we can run
the function from MATLAB's command line window as follows:

>> Run_Fit_subepidemicFramework(52,'05-11-2020')
This function will generate several output MATLAB files in the output folder. For instance, the following output file

contains the fits of the top-ranking models:
ABC-ensem-npatchesfixed-2-onsetfixed-0-smoothing-7-daily-coronavirus-deaths-USA-state-52-05-

11-2020-flag1-1-method-0-dist-0-calibrationperiod-90.mat

Please note the names of the output files contain the values of the parameters for reference.
The following output internal files contain the uncertainty characteristics associated with each of the top-ranking models:

(a) modifiedLogisticPatch-ensem-npatchesfixed-2-onsetfixed-0-smoothing-7-daily-coronavirus
-deaths-USA-state-52-05-11-2020-flag1-1-method-0-dist-0-calibrationperiod-90-rank-1.mat

(b) modifiedLogisticPatch-ensem-npatchesfixed-2-onsetfixed-0-smoothing-7-daily-coronavirus
-deaths-USA-state-52-05-11-2020-flag1-1-method-0-dist-0-calibrationperiod-90-rank-2.mat

(c) mod-
ifiedLogisticPatch-ensem-npatchesfixed-2-onsetfixed-0-smoothing-7-daily-coronavirus-deaths-

USA-state-52-05-11-2020-flag1-1-method-0-dist-0-calibrationperiod-90-rank-3.mat
(d) modifiedLogisticPatch-ensem-npatchesfixed-2-onsetfixed-0-smoothing-7-daily-coronavirus-

deaths-USA-state-52-05-11-2020-flag1-1-method-0-dist-0-calibrationperiod-90-rank-4.mat

These output files are needed to plot model fits, derive parameter estimates, generate short-term forecasts, and quantify
the calibration and forecasting performance metrics.

3.4. Plot the mean model fits and quality of fit metrics for the top-ranked models

After running the function Run_Fit_subepidemicFramework.m with the desired input parameters, we can use the
function plotRankings_subepidemicFramework.m to plot themeanmodel fits of the top-rankingmodels including their
sub-epidemic profiles and the associated quality of model fit metrics including the AICc, the relative likelihood, and the
evidence ratio based on the inputs. However, this function can also receive <outbreakx> and <caddate1> as passing input
parameters while the remaining inputs are obtained from the options.m file. Running this function from MATLAB's com-
mand line, we have:

>> plotRankings_subepidemicFramework(52,'05-11-2020')
Figs. 5 and 6 illustrate the outputs obtained from this function call. Fig. 5 shows themeanmodel fits of the top-ranked sub-

epidemic models, which indicate that the top-ranked models consist of 2 sub-epidemics. The corresponding goodness of fit
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Fig. 5. Mean model fits of the top-ranked sub-epidemic models (<topmodelsx>¼4 in options.m file) calibrated to the daily curve of COVID-19 deaths in the
USA from 27-Feb-2020 to 11-May-2020. The blue and red solid lines correspond to the individual sub-epidemic curves. The solid black line represents the overall
aggregated epidemic curve. The legend in each panel indicates the number of sub-epidemics involved in each model and the value of the Cthr parameter.

Fig. 6. Quality of model fit metrics for the top-ranked sub-epidemic models (<topmodelsx>¼4 in options.m file) calibrated to the daily curve of COVID-19
deaths in the USA from 27-Feb-2020 to 11-May-2020.
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statistics of the top-ranked models in terms of the AICc, the relative likelihood, and the evidence ratio are shown in Fig. 6. It
also saves the AICc values of the top-ranked models in the following .csv file:

AICc-topRanked-onsetfixed-0-flag1-1-method-0-dist-0-daily-coronavirus-deaths-USA-area-52-05-

11-2020.csv
For comparison, a simpler growth model consisting of a single sub-epidemic (<npatches_fixed>¼1) performs sub-

stantially worse (AICc ¼ 1107:13); Fig. 1 in Appendix A (Fig. A.1)).

3.5. Plot the model fits, parameter estimates, and performance metrics of the top-ranking models

Using the function plotFit_subepidemicFramework.m, we can plot the fits of the top-ranking models including their
sub-epidemic profiles and the residual plots based on the inputs indicated in the options.m file. However, this function can
also receive <outbreakx> and <caddate1> as passing input parameters while the remaining inputs are obtained from the
options.m file.

In addition, this function also plots the empirical distributions of the parameters associated with each of the top-ranking
models and the calibration performance metrics (MSE, MAE, 95% PI, WIS). Finally, this function also outputs a .csv file in the
output folder with the calibration performance metrics associated with the top-ranking models and the estimated sequence
of doubling times for each of the top-ranked models. Using the default parameter values indicated in the options.m file, the
actual call to this function from MATLAB's command line follows:

>> plotFit_subepidemicFramework(52, ‘05-11-2020’)

Fig. 7. Model fits of the top-ranking sub-epidemic models to the daily curve of COVID-19 deaths in the USA from 27-Feb-2020 to 11-May-2020. The sub-epidemic
models capture the entire epidemic curve well, including the latter plateau dynamics, by considering models with two sub-epidemics. The best model fit (solid
red line) and 95% PI (dashed red lines) are shown in the left panels. The cyan curves show simulated samples with the corresponding error structure imposed on
each bootstrap model fit, which are used to derive the 95% PI. The sub-epidemic mean profiles obtained from the parametric bootstrapping with 300 bootstrap
realizations are shown in the center panels, where the red and blue curves represent two sub-epidemics, and the gray curves are the aggregated epidemic
trajectories. Black circles correspond to the data points. For each model fit, the residuals are also shown (right panels).
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Figs. 7-9 illustrate the outputs obtained from the above call to the function. The fits of the top-ranking sub-epidemic
models, including the sub-epidemic profiles and residuals to the daily curve of COVID-19 deaths are shown in Fig. 7. This
figure indicates that the top-ranked models yield a similarly good fit to the data. The outputs also include figures that display
the empirical distribution of the parameter estimates related to the sub-epidemics involved in each fit of the top-ranked
models. For example, Fig. 8 shows the corresponding estimates for the 1st ranked sub-epidemic model. These parameter
estimates are well identified as the confidence intervals lie in a well-defined range of values (Cobelli & Romanin-Jacur, 1976;
Raue et al., 2009). The calibration performance metrics capturing the quality of fit of the top-ranked sub-epidemic models are
also displayed in Fig. 9. For instance, this figure indicates that WIS metrics ranges from ~117 to ~129 whereas the coverage of
the 95% prediction intervals varied little between ~91% and 96% for the top-ranked models. This function will store the
following .csv files in the output folder:
1) Calibration performance metrics:

performance-calibration-topRanked-onsetfixed-0-flag1-1-method-0-dist-0-daily-coronavirus
-deaths-USA-area-52-05-11-2020.csv

2) Doubling times for the top-ranked models:
doublingTimes-ranked(1)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-0-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
doublingTimes-ranked(2)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-0-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
doublingTimes-ranked(3)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-0-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
doublingTimes-ranked(4)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-0-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv

3.6. Generate the top-ranked and ensemble sub-epidemic model forecasts and the associated forecasting performance metrics

Using the function plotForecast_subepidemicFramework.m, we can plot the short-term forecasts from the top-
ranking sub-epidemic models as well as the ensemble models derived from the top-ranking sub-epidemic models based
on the inputs indicated in the options.m and the options_forecast.m files. However, this function can also receive

Fig. 8. Parameter estimates for the first (top panel) and the second sub-epidemics (bottom panels) are shown for the 1st-ranked sub-epidemic model after fitting
the n-subepidemic modeling framework to the daily curve of COVID-19 deaths in the USA from 27-Feb-2020 to 11-May-2020.
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parameters <outbreakx>, <caddate1>, <forecastingperiod>, or <weight_type1> as passing input parameters
while the remaining inputs are read from the options.m and options_forecast.m files. Moreover, the data associated
with each of the top-ranked model forecasts as well as the ensemble forecasts are saved as .csv files in the output folder.

In addition, this function also plots the forecasting performance metrics (MSE, MAE, 95% PI, WIS) for the top-ranking
models as well as the ensemble sub-epidemic models. Finally, this function also stores .csv files in the output folder with
the forecasting performance metrics associated with the top-ranking models and the ensemble models, and the estimated
doubling times for each of the top-ranked models. Using the default parameter values indicated in the options.m and
options_forecast.m files, the call to this function from MATLAB's command line follows:

>> plotForecast_subepidemicFramework(52, ‘05-11-2020’, 30, 1)
Figs. 10-14 illustrate the outputs obtained from this function call. Fig. 10 shows the 30-day forecasts derived from the top-

ranking sub-epidemic models whereas Fig. 11 shows the sub-epidemic profiles of the forecasts. These forecasts indicate that
the top-ranked models performed well. Moreover, the data associated with each of the top-ranked model forecasts are also
saved as .csv files in the output folder.

The forecasting performancemetrics for the top-rankedmodels are displayed in Fig. 12, and thesemetrics are also saved in
a .csv file in the output folder. In comparison, the forecast derived from the simpler one sub-epidemic model
(<npatches_fixed>¼1) was substantially worse as shown in Fig. 2 in Appendix A (Fig. A.2).

The corresponding three ensemble forecasts (Ensemble(2), Ensemble(3), and Ensemble(4)) derived from the weighted
combination of the top-rankedmodels based on their relative likelihood or Akaike weights (e.g., <weigth_type1>¼1 in the
options_forecast.m file) are shown in Fig. 13. Also, the corresponding forecasting performance metrics for the ensemble
models are shown in Fig. 14 and are saved in a .csv file in the output folder. The ensemble models performed similarly. The
ensemble models’ forecasts achieved the same coverage of the 95% PI. This function will store the following.csv files in the
output folder:

Fig. 9. Calibrationperformancemetrics for the top-rankingsub-epidemicmodelsfit to thedaily curve ofCOVID-19deaths in theUSA from27-Feb-2020 to11-May-2020.
These metrics are also saved in a .csv data file (‘performance-calibration-topRanked-onsetfixed-0-daily-coronavirus-deaths-USA-area-52-05-

11-2020.csv’). For instance, these WIS metrics during the calibration period ranged from ~117 to ~129 across the four top-ranked models.
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Fig. 10. 30-day forecasts derived from the top-ranking sub-epidemic models to the daily curve of COVID-19 deaths in the USA from 11-May-2020 to 10-June-
2020. The model fit (solid line) and 95% prediction interval (shaded area) are also shown. The vertical line indicates the start time of the forecast and separates the
calibration and forecast periods. Circles correspond to the data points. Of note, the data associated with each of the top-ranked model forecasts are also saved as
.csv files in the output folder.

Fig. 11. Sub-epidemic profiles of the 30-day forecasts derived from the top-ranking sub-epidemic models with <onset_fixed>¼0 to the daily curve of COVID-19
deaths in the USA from 11-May-2020 to 10-June-2020. Blue and red curves represent different sub-epidemics of the epidemic wave profile obtained from the
parametric bootstrapping with 300 bootstrap realizations. Gray curves correspond to the overall epidemic trajectory obtained by aggregating the sub-epidemic
curves. The vertical line indicates the start time of the forecast and separates the calibration and forecast periods.
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Fig. 12. 30-day forecasting performance metrics derived from the top-ranking sub-epidemic models for the daily curve of COVID-19 deaths in the USA from 11-
May-2020 to 11-June-2020. The forecasting performance metrics are also saved in a .csv data file in the output folder
(‘performance-forecasting-topRanked-onsetfixed-0-horizon-30-daily-coronavirus-deaths-USA-area-52-05-11-2020.csv’).

Fig. 13. 30-day sub-epidemic ensemble model forecasts (Ensemble(2), Ensemble(3), Ensemble(4)) of COVID-19 deaths in the USA from 11-May-2020 to 11-June-
2020. Circles correspond to the data points. The model fits (solid line), and 95% prediction intervals (shaded area) are shown. The vertical line indicates the start
time of the forecast. Of note, the data associated with each of the ensemble model forecasts are also saved as .csv files in the output folder.
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1) Forecasting performance metrics of the top-ranked models:
performance-forecasting-topRanked-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-

coronavirus-deaths-USA-area-52-05-11-2020.csv

2) Forecasting performance metrics of the ensemble models:
performance-forecasting-Ensemble-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weight

_type-1-daily-coronavirus-deaths-USA-area-52-05-11-2020.csv
3) Forecasts of the top-ranked models:

ranked(1)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-deaths-USA-area
-52-05-11-2020.csv

ranked(2)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-deaths-USA-area-
52-05-11-2020.csv

ranked(3)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-deaths-USA-area-
52-05-11-2020.csv

ranked(4)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-deaths-USA-area-
52-05-11-2020.csv

4) Forecasts of the ensemble models:
Ensemble(2)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weighttype-1-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
Ensemble(3)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weighttype-1-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
Ensemble(4)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weighttype-1-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv

5) Sequence of doubling times of the top-ranked models:
doublingTimes-ranked(1)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
doublingTimes-ranked(2)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv

Fig. 14. 30-day forecastingperformancemetricsderived fromtheensemblesub-epidemicmodels for thedailycurveofCOVID-19deaths intheUSA from11-May-2020 to
11-June-2020. The performance metrics are also saved in a .csv data file in the output folder (‘performance-forecasting-Ensemble-onsetfixed-0-horizon
-30-daily-coronavirus-deaths-USA-area-52-05-11-2020.csv’).
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doublingTimes-ranked(3)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-

deaths-USA-area-52-05-11-2020.csv
6) Sequence of doubling times of the ensemble models:
doublingTimes-Ensemble(2)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weighttype-1-

daily-coronavirus-deaths-USA-area-52-05-11-2020.csv

doublingTimes-Ensemble(3)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weighttype-1-
daily-coronavirus-deaths-USA-area-52-05-11-2020.csv

doublingTimes-Ensemble(4)-onsetfixed-0-flag1-1-method-0-dist-0-horizon-30-weighttype-1-
daily-coronavirus-deaths-USA-area-52-05-11-2020.csv

We can also consider models with a fixed sub-epidemic start at time 0 by setting the parameter <onset_fixed>¼1 in the
options.m file while the other parameters are kept unchanged. Because we have previously set <npatches_fixed>¼2,
then the maximum number of top-ranked models is two (one model with two sub-epidemics and one model with a single
sub-epidemic) since the parameter Cthr is no longer in the model.

After running the function Run_Fit_subepidemicFramework.m to calibrate the models to the data, we can run the
function plotForecast_subepidemicFramework.m to generate the new set of forecasts with the new models.

Fig. 15 shows the 30-day forecasts derived from the top-ranking n-sub-epidemic models whereas Fig. 16 shows the sub-
epidemic profiles of the forecasts. These forecasts indicate that the 1st ranked model, composed of two sub-epidemics,
performed well while the second-ranked model, composed of a single sub-epidemic, yielded lower performance and
underpredicted the trajectory of the epidemic. The corresponding forecasts derived from the weighted Ensemble(2) and the
unweighted Ensemble(2) models are shown in Figs. 17 and 18.

The corresponding forecasting performance metrics for the top-ranked models and the weighted and unweighted
Ensemble(2) models are shown in Table 2. For comparison, the performance metrics for the previous sub-epidemic models
that include the Cthr parameter are also shown (e.g., <onset_fixed>¼0). The top-ranked models and the ensemble models
with <onset_fixed>¼0 yielded similar performance whereas among the models when <onset_fixed>¼1, the second-
ranked model performed poorly relative to the top-ranked sub-epidemic model. Moreover, the weighted Ensemble(2)
clearly outperformed the unweighted Ensemble(2), which incorporates a uniform contribution from both top-rankedmodels
when <onset_fixed>¼1.

Fig. 15. 30-day forecasts derived from the top-ranking sub-epidemic models with <onset_fixed>¼1 to the daily curve of COVID-19 deaths in the USA from 11-
May-2020 to 10-June-2020. The model fit (solid line) and 95% PI (shaded area) are also shown. The vertical line indicates the start time of the forecast and
separates the calibration and forecast periods. Circles correspond to the data points. Of note, the data associated with each of the top-ranked model forecasts are
also saved as.csv files in the output folder.
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Fig. 16. Sub-epidemic profiles of the 30-day forecasts derived from the top-ranking sub-epidemic models with <onset_fixed>¼1 to the daily curve of COVID-19
deaths in the USA from 11-May-2020 to 10-June-2020. Blue and red curves represent two sub-epidemics of the 1st ranked model whereas the second-ranked
model consists of a single sub-epidemic. Gray curves correspond to the overall epidemic trajectory obtained by aggregating the sub-epidemic curves obtained
from the parametric bootstrapping with 300 bootstrap realizations. The vertical line indicates the start time of the forecast and separates the calibration and
forecast periods.

Fig. 17. 30-day sub-epidemic weighted Ensemble(2) (<onset_fixed>¼1) forecast of COVID-19 deaths in the USA from 11-May-2020 to 11-June-2020. Circles
correspond to the data points. The model fits (solid line), and 95% PI (shaded area) are shown. The vertical line indicates the start time of the forecast. Of note, the
data associated with each of the ensemble model forecasts are also saved as.csv files in the output folder.
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4. Conclusion

In this primer we introduced a user-friendly, novel, MATLAB toolbox to fit and forecast time-series trajectories quantify
parameter uncertainty, evaluate parameter identifiability, and assess forecasting performance using the ensemble n-sub-
epidemic framework (Chowell et al., 2022). This framework has shown competitive performance when applied to real-time
forecasting of epidemic outbreaks (Bleichrodt et al., 2023; Chowell et al., 2022). However, the system is broad enough and
requires minimal trajectory data and should find applications in other scientific fields and help researchers produce short-
term forecasts for a diversity of processes found in nature and society. The accessibility of the toolbox allows for those

Fig. 18. 30-day sub-epidemic unweighted Ensemble(2) model (<onset_fixed>¼1) forecast of COVID-19 deaths in the USA from 11-May-2020 to 11-June-2020.
Circles correspond to the data points. The model fits (solid line), and 95% prediction intervals (shaded area) are shown. The vertical line indicates the start time of
the forecast. Of note, the data associated with each of the ensemble model forecasts are also saved as.csv files in the output folder.

Table 2
30-day forecasting performance metrics derived from the top-ranked models as well as the weighted and unweighted ensemble(2) models with the sub-
epidemic onset fixed at time 0 (<onset_fixed>¼1) and the onset not fixed at time 0 (<onset_fixed>¼0) based on the fit to the daily curve of COVID-19
deaths in the USA from 11-May-2020 to 11-June-2020. The top-ranked models and the ensemble models with <onset_fixed>¼0 yielded similar per-
formance whereas, among the models with <onset_fixed>¼1, the second-ranked model composed of a single sub-epidemic performed poorly relative to
the top-ranked sub-epidemic model consisting of 2 sub-epidemics. Moreover, the weighted Ensemble(2) clearly outperformed the unweighted Ensemble(2)
model, which incorporates a uniform contribution from both top-ranked models with <onset_fixed>¼1.

Model MAE MSE Coverage 95% PI WIS

<onset_fixed>¼1

1st ranked model 353.56 167430.35 100.00 198.67
2nd ranked model 566.59 380552.56 46.67 370.33
Weighted Ensemble (2) 353.56 167430.35 100.00 198.59
Unweighted Ensemble (2) 431.31 236182.87 100.00 194.44
<onset_fixed>¼0

1st ranked model 216.82 69836.18 93.33 134.36
2nd ranked model 256.12 86390.82 96.67 154.28
Weighted Ensemble(2) 216.37 69294.66 100.00 132.21
Unweighted Ensemble(2) 224.51 68614.69 100.00 134.96
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unfamiliar with MATLAB to execute the models with ease, thereby making it a useful forecasting tool for students and those
without extensive coding or modeling backgrounds.

Computational details

The results in this paper were obtained using MATLAB Version 9.12.0.2170939 (The MathWorks Inc, 2022) along with the
fmincon function and Multistart feature.
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