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During the 2022–2023 unprecedented mpox epidemic, near
real-time short-term forecasts of the epidemic’s trajectory were
essential in intervention implementation and guiding policy.
However, as case levels have significantly decreased, evaluating
model performance is vital to advancing the field of epidemic
forecasting. Using laboratory-confirmed mpox case data from
the Centers for Disease Control and Prevention and Our
World in Data teams, we generated retrospective sequential
weekly forecasts for Brazil, Canada, France, Germany, Spain,
the United Kingdom, the United States and at the global scale
using an auto-regressive integrated moving average (ARIMA)
model, generalized additive model, simple linear regression,
Facebook’s Prophet model, as well as the sub-epidemic wave
and n-sub-epidemic modelling frameworks. We assessed
forecast performance using average mean squared error,
mean absolute error, weighted interval scores, 95% prediction
interval coverage, skill scores and Winkler scores. Overall,
the n-sub-epidemic modelling framework outcompeted other
models across most locations and forecasting horizons, with the
unweighted ensemble model performing best most frequently.
The n-sub-epidemic and spatial-wave frameworks considerably
improved in average forecasting performance relative to
the ARIMA model (greater than 10%) for all performance
metrics. Findings further support sub-epidemic frameworks for
short-term forecasting epidemics of emerging and re-emerging
infectious diseases.
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1. Introduction
In May 2022, public health officials noted an unprecedented global surge in mpox (formally mon-
keypox) cases in multiple countries previously free of the disease [1]. Early on, little was known
regarding critical transmission and control factors—vaccination, the role of asymptomatic individuals
and transmission pathways—which shaped the variable epidemic trajectories noted in the over 111
impacted countries [2–4]. Therefore, as mpox cases increased in late July 2022, our team started to
produce and make publicly available weekly short-term forecasts of new cases for the highest-affected
countries (e.g. Brazil, Canada, France, Germany, Spain, the United Kingdom and the United States)
and at the global level [5–7]. As part of our forecasting efforts, we employed semi-mechanistic growth
models [8], which have shown previous forecasting success in the context of emerging infectious
diseases [7,9,10].

For any emerging pathogen that rapidly transmits throughout a population, short-term forecasts of
the epidemic’s trajectory at different spatial scales can help guide policy and intervention strategies
[11–16]. However, there is little opportunity to assess forecasting performance and improve models
amid an ongoing public health crisis. Fortunately, as of September 2022, mpox cases have steadily
declined worldwide [17–19], with non-endemic countries reporting 92 982 cases and 163 deaths overall
as of 8 May 2024 [4]. Therefore, given the heterogeneous impact of the epidemic at different spatial
scales and the substantial decline in mpox cases, a retrospective evaluation of the employed forecasting
methodologies is vital to prepare for future public health events.

Several methodologies have been employed to forecast the trajectory of the 2022–2023 mpox
epidemic in various geographical regions, including, but not limited to, models focused on human
judgement [20], deep learning and artificial intelligence models [21,22], machine learning models
[21–25], statistical models such as auto-regressive integrated moving average (ARIMA) models [21,23–
27], compartmental models [28] and semi-mechanistic sub-epidemic models [7]. Performance metrics
employed have mainly included variations of mean absolute error (MAE) [7,21,23–25,27], mean
squared error (m.s.e.) [7,21–26] and mean absolute percentage error [21,23–25]. Only two studies
used probabilistic measures of performance, such as the weighted interval score (WIS) [7,29]. Of the
studies included here, four focused on the ascending phase of the epidemic (January–mid-August
2022) [20,24–26], three included forecasts of the epidemic’s ascension and peak (February–September
2022) [21,22,29] and four focused on the ascending, peak and declining phases of the epidemic (January
2022–present) [7,23,27,28].

In this article, we conducted a comprehensive retrospective assessment of forecasting performance
(one–four weeks ahead) of semi-mechanistic sub-epidemic modelling frameworks compared against
other commonly employed statistical models, including ARIMA, generalized additive models (GAM),
simple linear regression (SLR) and Facebook’s Prophet model (Prophet) for the highest-impacted
countries (e.g. Brazil, Canada, France, Germany, Spain, the United Kingdom and the United States) and
on the global scale. We focused on producing and evaluating forecasts for the entirety of the epidemics
in the countries of interest (21 July 2022 to 23 February 2023). We considered a comprehensive set
of performance metrics in the field of epidemic forecasting, namely the MAE, m.s.e., 95% prediction
interval (PI) coverage and WIS.

2. Methods
2.1. Data source and preparation
Our team obtained multiple daily confirmed mpox case series for the highest-impacted countries (e.g.
Brazil, Canada, France, Germany, Spain, the United Kingdom and the United States) and on a global
scale from the Centers for Disease Control and Prevention (CDC) [30] and the Our World in Data
(OWID) GitHub page [18] on 9 and 15 August 2023, respectively. Although both data repositories
employ slightly different collection and reporting methodologies, each defined a confirmed case as
a laboratory-confirmed case (i.e. infection detected by polymerase chain reaction testing) [31,32].
Additional details regarding reporting methods and case obtainment for both sources can be found
in electronic supplementary material, appendix S1, section A.

We aggregated cases to the weekly level to ensure an adequate number of cases for the forecasting
process and to control daily reporting differences between locations. In this analysis, we defined a
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week as Thursday to the following Wednesday to avoid calibrating the model with partial weeks
of case data. We gathered data on the global level and for the countries that experienced the most
significant outbreaks during the initial epidemic wave (e.g. Brazil, Canada, France, Germany, Spain,
the United Kingdom and the United States) from the OWID team [18]. Our team also retrieved United
States case data from the CDC [30] to explore differences in model performance dependent on the data
source used.

2.2. Model calibration and forecasting strategy
Our analysis included 12 models in total: the n-sub-epidemic framework (e.g. top-ranked, second-
ranked, weighted ensemble and unweighted ensemble), the sub-epidemic wave (spatial wave)
framework (e.g. top-ranked, second-ranked, weighted ensemble and unweighted ensemble), a GAM,
an SLR model, ARIMA model, each with an assumption of normality and a Prophet model. Descrip-
tions of the n-sub-epidemic and spatial-wave frameworks, ARIMA model, GAM and Prophet model
methodologies are given below. The SLR model included time as the only predictor; therefore, its
description is not included in further detail.

For each location and model, we conducted and evaluated approximately 112 retrospective weekly
sequential one- to four-week forecasts, with forecasts spanning from the week of 21 July 2022 to
the week of 23 February 2023. Data posted in the week of 3 August 2023 were used to produce
and evaluate all forecasts. We primarily employed 11-week calibration periods for each location,
with the forecast date representing the first day of the week in which the forecast was produced.
However, electronic supplementary material, appendix S2 contains a sensitivity analysis comparing
the forecasting performance for 9- to 11-week calibration periods (electronic supplementary material,
appendix S2).

For 14 July 2022 forecast date, we could not produce forecasts for Canada for the n-sub-epidemic
framework owing to the low case counts during the early phase of the epidemic. We also could not
produce forecasts for the weeks of 14 and 21 July 2022, using the n-sub-epidemic and spatial-wave
frameworks for Brazil owing to low case counts. Similarly, some model calibration periods were
between 8 and 10 weeks long for the n-sub-epidemic and spatial-wave frameworks, as initial zeros
(i.e. any zeros at the start of the calibration period) were truncated until the first non-zero observation
occurred.

2.3. The n-sub-epidemic modelling framework
The n-sub-epidemic framework employs multiple epidemic trajectories modelled as the aggregation of
overlapping and asynchronous sub-epidemics [8,9]. For this analysis, a single sub-epidemic followed
a three-parameter generalized logistic growth model, which has displayed competitive performance
in the context of varying infectious diseases, including Zika, Ebola and COVID-19 [33–36]. Further
details regarding the structure of the three-parameter generalized logistic growth model can be found
in electronic supplementary material, appendix S1, section B.

An n-sub-epidemic trajectory comprises ! overlapping sub-epidemics and is given by the following
system of coupled differential equations:

(2.1)
"#$ %"% = #$′ % = &$ % '$#$($ % 1 −

#$ %)0$ .

The incidence curve of mpox cases is given by "#$ %"% , where #$ %  tracks the cumulative number of mpox
cases for sub-epidemic $. The parameters that characterize the shape of the ith sub-epidemic are given
by '$,($,)0$ , for $ = 1, …,!. The parameter ', the growth rate per unit of time, remains positive, and
parameter )0 represents the final outbreak size. The ‘scaling of growth’ parameter ( ∈ 0,1  allows
the model to capture early sub-exponential and exponential growth patterns. If ( = 0, equation (2.1)
describes a constant number of new cases over time, while ( = 1 indicates that the early growth phase
is exponential. Intermediate values of ( 0 < ( < 1  describe early sub-exponential (e.g. polynomial)
growth dynamics.

Here, ! represents the number of sub-epidemics considered in the epidemic’s trajectory. When! = 1, the sub-epidemic model is equivalent to the three-parameter generalized logistic growth model.
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However, when n > 1 , we employ the indicator variable, &$ % , to model the onset timing of the (i + 1)th
sub-epidemic, where $ + 1 ≤ !. Therefore, the (i + 1)th sub-epidemic is triggered when the cumulative
curve of the ith sub-epidemic exceeds the case threshold value, #%ℎ' (i.e. #thr ≤ K0i). Thus, we have

(2.2)&$ % = 1,       #$ − 1 % > #thr  
0,             Otherwise     *+' $ = 2, … !,

where &1 % = 1 for the first sub-epidemic. Therefore, 3! + 1 parameters are needed to model a !-sub-
epidemic trajectory when ! > 1. This analysis considered a maximum of two sub-epidemics in the
n-sub-epidemic trajectory (! ≤ 2 . The initial number of mpox cases is given by #1 0 = ,0, where ,0 is the
initial number of cases in the observed data. The cumulative curve of the !-sub-epidemic trajectory is
given by

(2.3)#%+% % = ∑$ = 1

! #$ % .

Overall, the n-sub-epidemic modelling framework can be applied to diverse epidemic patterns (e.g.
multiple peaks and high-case level plateaus), such as the observed mpox epidemic trends (figure 1).

2.3.1. Parameter estimation and model selection

We employed a nonlinear least-squares method [8] to estimate the model parameters by fitting the
model solution to the observed mpox data. Subsequently, we selected the top-ranked sub-epidemic
models using the corrected Akaike information criterion (&,#-) values of the set of best-fit models with
different #%ℎ' values. The &,#- is given in [37,38],

(2.4)&,#- = !".+/ 001 + 22 +
22 2 + 1!" −2 − 1 ,

where 001 = ∑3 = 1
!" * %3,4 − 5%3 2

, 2 is the number of model parameters and !" is the number of
data points. Parameters from equation (2.4) were estimated from the nonlinear least-squares fit,
which implicitly assumes normally distributed errors. Additional information regarding the parameter
estimation process can be found in electronic supplementary material, appendix S1, section C.

2.3.2. Parametric bootstrapping

The n-sub-epidemic framework quantifies parameter uncertainty for the best-fit model, * %,4 , using
a bootstrapping approach, which allows the computation of standard errors and related statistics
without closed-form solutions [39]. Additionally, we ran the calibrated model forward in time to
generate short-term forecasts (i.e. one–four weeks ahead) with quantified uncertainty, employing the
same parametric bootstrapping method presented in [39] and discussed further in electronic supple-
mentary material, appendix S1, section D. For this analysis, we used 300 bootstrap realizations to
thoroughly characterize the parameter and forecasting uncertainty.

2.3.3. Constructing ensemble n-sub-epidemic models

We generated ensemble models from both the unweighted (equally weighted top-ranking models) and
weighted combination of the two highest-ranking sub-epidemic models (i.e. top- and second-ranked)
as deemed by the &,#-$ for the $th ranked model, where &,#-1 ≤⋯ ≤ &,#-, and $ = 1, …, ,. Details
regarding the calculation of the weighted and unweighted ensemble models can be found in electronic
supplementary material, appendix S1, section E. The PIs associated with the ensemble models were
obtained using the bootstrapping approach discussed above.

2.4. Sub-epidemic wave framework (spatial-wave framework)
The sub-epidemic wave, or spatial-wave modelling framework, aggregates linked, overlapping,
synchronous sub-epidemics (waves) to capture complex disease trajectories of differing shapes and
sizes [10,40,41]. Like the n-sub-epidemic framework, the spatial-wave framework has shown past
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success in capturing diverse epidemic waves (e.g. high-level, prolonged epidemic plateaus and
multi-peak trajectories), such as those seen throughout the mpox epidemic (figure 1) [10,40].

The mathematical building block for the spatial-wave model is the same three-parameter general-
ized logistic growth model discussed above. However, a sub-epidemic wave consists of n-overlapping
sub-epidemics employing the following system of coupled differential equations [41]:

(2.5)
"#$ %"% = '&$ − 1 % #$ % ( 1 −

#$ %)$ .

The incidence curve of mpox cases is given by "#$ %"% , where #$ %  is the cumulative number of cases for
sub-epidemic $ at time % and )$ is the size of sub-epidemic $, where $ = 1, …,!. The indicator parameter,&$ % , is the same as given in equation (2.2). Starting from an initial sub-epidemic size, )0, the size of
subsequent sub-epidemics, )$, decline at rate 6 following either an exponential or power-law function
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Figure 1. The epidemic trajectories for each study location of interest. The black solid line is the reported cases as of the week of 3
August 2023. The red-dashed lines are each of the forecasting periods included within the analysis (for all three calibration periods).
Forecasts (one–four weeks) were produced through 23 February 2023, with the last forecast date being the week of 26 January 2023.
Epidemic trajectories for Canada, the United Kingdom, Germany, France, Spain, Brazil, the United States (OWID) and the World are
from the OWID team [18] and from the CDC for the United States (CDC) [30].
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as described in electronic supplementary material, appendix S1, section F. The growth rate per unit of
time is represented by ', and the ‘scaling of growth’ parameter is represented by (. Unlike equation
(2.1), parameters ' and ( do not vary across sub-epidemics, and the value of )$ depends on the decline
rate 6. Hence, a total of five parameters ',(,#%ℎ', 6,)0  for $ = 1, …,! are needed to characterize a
sub-epidemic wave composed of two or more sub-epidemics (! ≥ 2  and four are needed when ! < 2.
This analysis considered a maximum of five sub-epidemics (! ≤ 5  in the epidemic wave trajectory.

The &,#- used in the model selection process is given in equation (2.4). However, for the spatial-
wave framework, 2 = 5 when the number of sub-epidemics is greater than one (! > 1) and 2 = 4
when working with a single sub-epidemic (! = 1). Like the n-sub-epidemic framework, the &,#- for
parameter estimation assumed nonlinear least-squares fit, which implicitly assumes the errors are
normally distributed.

Parameter estimation and bootstrapping, construction of the ensemble models and forecasting
methodologies followed the same procedures explained for the n-sub-epidemic modelling framework.

2.5. Auto-regressive integrated moving average models
ARIMA models are commonly employed in forecasting financial [42] and weather trends [43,44] and
have become a standard benchmark in disease forecasting [9,21,23–26,45]. ARIMA models consist of
three parts: (i) the auto-regression (AR) part involving regressing on the most recent values of the
series, (ii) the moving average (MA) of error terms occurring contemporaneously and at previous
times, and (iii) the integration (I) or differencing to account for the overall trend in the data and to
make the time series stable. Mathematically, an ARIMA ((, ", 6) process is given by

(2.6)7 8 1 − 8 "5% = - + 9 8 :%,
where 5% denotes the number of mpox cases at time % and 8 denotes the backshift operator implying85% = 5% − 1 and 8 85% = 825% = 5% − 2, etc. The auto-regressive model is given by 7 B = 1 – 71B −⋯ − 7(8(,

where ( is the order of the model. The moving average model is given by 9 8 = 1 – 918 −⋯ − 9686
and 6 is the order of the moving average model. Finally, " is the degree of differencing. With this
notation, 7 B 5% = 5% − 715% − 1 −… − 7(5% − (, 9 8 :% = :% − 91 :% − 1 + … + 96 :% − 6 and 1 − 8 " means conducting
the differencing " times. We used the auto.arima function from the R ‘forecast’ package to select orders
and build the model [46], and the forecast function from the same package was used for forecasting
[47]. Additional details regarding their application can be found in [48]. Any negative predicted values
were truncated at zero.

2.6. Generalized additive models
GAMs extend generalized linear models to allow the fitting of nonlinear trends by including a sum of
unknown smooth functions of some covariates while maintaining similar levels of model explainability
and simplicity [49,50]. Specific to our study with time as the only covariate, assuming that 5% follows a
normal distribution, our GAM is given as follows [48,49]:

(2.7)5% = ;0 + < % + :%,
where < .  is an unknown smooth function of time and :% = 0,>2 . We used the GAM function in the
R ‘mgcv’ package to fit this model [51], where the smooth function < .  is represented using basis
functions (i.e. building blocks for creating more complex functions via linear combination). The default
setting in ‘mgcv’ uses basis splines, which are piecewise polynomial functions. Specifically,

(2.8)< % = ∑? = 1
? ;?@? % ,

where { @? . } represent the basis functions, ;?  are the expansion coefficients to be estimated and
k is the number of basis functions [49]. Here, ? varied depending on the length of calibration data
available for a given forecasting period. A discrete penalty was imposed on the basis coefficients
to control the degree of smoothness, and the model was fitted by solving a penalized least square
problem. The generalized cross-validation criterion selected the smoothness tuning parameter. A more
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detailed description of the model fitting methodology can be found in [48,51], and the associated
predict function was used for forecasting [52]. Any negative predicted values were truncated at zero.

2.7. Facebook’s Prophet model
Facebook’s Prophet model [53], initially designed for business-related forecasting, has recently been
applied more frequently across multiple fields, including infectious disease modelling. Specifically,
the model has produced both COVID-19 [45,54,55] and mpox forecasts [21]. The model’s primary
assumption is that it is ‘decomposable’; therefore, 5 % , the main trend, can be decomposed into three
pieces plus an error term. Thus, the model has the following form:

(2.9)5 % = / % + < % + ℎ % + :%,
where g(t) is a non-periodic component used for modelling the overall trend, s(t) is a periodic
component used for modelling the periodic changes over time and h(t) is an irregular events compo-
nent used for modelling the irregular changes (e.g. holidays or similar events). The component ϵt is an
error of the model at time t.

We used the default setting of the R prophet function from the ‘prophet’ package as described
in Taylor [56]. The predict function was used for forecasting from the model fit [52]. Any negative
predicted values were truncated to zero. A more detailed description of the model fitting methodology
can be found in [48,56].

2.8. Model evaluation

2.8.1. Performance metrics

Forecast performance was evaluated for each retrospectively generated one–four weeks ahead forecast
using data downloaded the week of 3 August 2023. Descriptions of the employed metrics, MAE, m.s.e.,
95% PI coverage and WIS, can be found in [8] and in electronic supplementary material, appendix S1,
section G.

2.8.2. Skill scores and Winkler scores

We calculated skill scores to compare the proportion of improvement over the established ARIMA
model (baseline model) for average m.s.e., MAE and WIS, using the n-sub-epidemic and spatial-wave
frameworks as comparison models. Here, average refers to the average metric over all forecasting
periods for each model, location and forecasting horizon. The formula is as follows [57]:

(2.10)8A<B.$!B C+"B. –  #+2(A'$<+! C+"B.8A<B.$!B C+"B. × 100.

For 95% PI coverage, we first calculated Winkler scores to allow for the quantification of the proportion
of improvement over the ARIMA model, using the n-sub-epidemic and spatial-wave frameworks as
comparison frameworks. Winkler scores were calculated as follows [57]:

(2.11)

DE, % =

FE . % − .E, % + 2E .E, % − 5% ,           $* 5% < .E, %FE . % − .E, % ,                                        $* .E, % ≤ 5% ≤ FE, %     FE . % − .E, % +  2E 5% − FE, %          $* 5% > FE, %   
   

where FE, % is the upper bound of the 95% PI interval at time %, .E, % is the lower bound at time t, 5% is
the observed mpox case incidence at %, and E = 0.05 as we were working with 95% PI intervals. We
then calculated the skill scores (equation (2.10)) using the average Winkler scores, where scores were
averaged across all forecasting periods for each model, location and forecasting horizon.

We selected the ARIMA model for the baseline model, as it has been frequently evaluated against
other forecasting methodologies in the context of mpox [21,23–26]. Therefore, its inclusion in skill
score calculations provides a more in-depth quantitative evaluation of the forecasting abilities of the
n-sub-epidemic and spatial-wave frameworks against a well-vetted methodology.

R-studio (v. 4.3.1 (Beagle Scouts)) and MATLAB (v. R2022a) were used to produce and evaluate all
forecasts.

7
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240248

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 A

ug
us

t 2
02

4 

file:///Users/elienai/Downloads/royalsocietypublishing.org/journal/rsos


3. Results
3.1. Overall and time-period-specific forecast performance
The n-sub-epidemic framework outperformed the established statistical (i.e. ARIMA, GAM, SLR and
Prophet) and spatial-wave framework models across most locations. Specifically, the n-sub-epidemic
unweighted ensemble was the most successful in Brazil, the United Kingdom, the United States
(OWID) and the World. The model was followed in success by the top-ranked (Brazil) and weigh-
ted ensemble (Canada and Spain) n-sub-epidemic models. Nevertheless, the spatial-wave top-ranked
model performed best overall in Germany, the ARIMA model in France and the GAM in the United
States (CDC). Model performance varied when examining different epidemic phases with the statistical
models performing best most frequently during the ascending period. The ensemble sub-epidemic
frameworks performed best during the remainder of the epidemic. Overall, model performance
improved as case levels declined (electronic supplementary material, appendix S3, figures A–D).

3.2. Country-level performance

3.2.1. Brazil

The n-sub-epidemic framework, specifically the top-ranked and unweighted ensemble models,
performed best overall in Brazil, outperforming other models 44% of the time across performance
metrics and horizons (figures 2–5). The n-sub-epidemic top-ranked and weighted ensemble models
produced the lowest average m.s.e. (range: 16302.0–128915.5) and MAE (range: 86.4–135.0) across most
forecasting horizons (figures 2 and 3). Both models improved between 8.5 and 29.0% over the ARIMA
model regarding average m.s.e. and 21.0–33.2% for average MAE. The n-sub-epidemic top-ranked
model most frequently produced the lowest average WIS (range: 57.4–97.5), improving 23.0–30.2% over
the ARIMA model (figure 4). The n-sub-epidemic unweighted model produced the lowest average
WIS (56.4), m.s.e. (14 240.9) and MAE (85.2) for the one-week forecasting horizon and performed best
across all forecasting horizons regarding 95% PI coverage (range: 93.8–96.3%) (figures 2–5). When
comparing average Winkler scores, the n-sub-epidemic unweighted ensemble improved 2.4–48.0%
over the ARIMA model. Electronic supplementary material, tables A1–A5 contain the tabulation of
skill scores and performance metrics across epidemic phases, models and forecasting horizons for
Brazil (electronic supplementary material, appendix S4).

3.2.2. Canada

The n-sub-epidemic weighted ensemble and top-ranked models performed best overall in Canada,
outperforming other models across forecasting horizons and metrics 69 and 56% of the time, respec-
tively (figures 2–5). Across all forecasting horizons for average m.s.e. (range: 103.2–128.9) and MAE
(range: 6.3–6.6), the n-sub-epidemic top-ranked and weighted ensemble models produced the lowest
values (figures 2 and 3). Both models improved considerably over the ARIMA model regarding
average m.s.e. (range: 83.6–88.2%) and MAE (range: 58.8–67.6%). The success of the n-sub-epidemic
weighted ensemble model continued for average WIS, as the model produced the lowest WIS across
most forecasting horizons (range: 4.3–4.5) and improved between 54.3 and 63.0% over the ARIMA
model (figure 4). However, the ARIMA model performed best and most frequently regarding average
95% PI coverage (range: 94.25–96.55%). Electronic supplementary material, tables B1–B5 contain the
tabulation of skill scores and performance metrics across epidemic phases, models and forecasting
horizons for Canada (electronic supplementary material, appendix S4).

3.2.3. France

Unlike the other countries, the ARIMA model outperformed all other models 94% of the time across
forecasting metrics and horizons, followed by the n-sub-epidemic top-ranked (6%) and weighted
ensemble (6%) models (figures 2–5). The ARIMA model consistently produced the lowest average
m.s.e. (range: 22986.7–24413.1), WIS (range: 61.1–62.3) and closest to 95% PI coverage on average
(range: 89.7–93.1%) across forecasting horizons (figures 2, 3 and 5). Regarding average MAE, the
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ARIMA model performed best across most forecasting horizons (range: 90.5–93.8), albeit the one-week
horizon, where the n-sub-epidemic top-ranked (80.9) and weighted ensemble performed best (80.9)
(figure 3). However, the n-sub-epidemic top-ranked and weighted ensemble models saw minimal
improvement over the ARIMA regarding average MAE (less than 10%). Electronic supplementary
material, tables C1–C5 contain the tabulation of skill scores and performance metrics across epidemic
phases, models and forecasting horizons for France (electronic supplementary material, appendix S4).

3.2.4. Germany

The spatial wave top-ranked model outperformed the other models 69% of the time across forecast-
ing horizons and performance metrics, followed by the n-sub-epidemic (38%) unweighted ensemble
model (figures 2–5). The spatial-wave top-ranked model produced the lowest average m.s.e. in the
one- (559.9) and two-week (514.2) forecasting horizons and across all forecasting horizons regarding
average MAE (range: 11.0–11.4) and WIS (range: 7.9–8.3) (figures 2–4). We also noted considerable
improvement in average m.s.e. (range: 80.0–86.3%), MAE (range: 59.1–72.7%) and WIS (range: 55.1–
70.8%) over the ARIMA model. The n-sub-epidemic unweighted ensemble produced the lowest
average m.s.e. during the three- (563.06) and four-week (504.64) forecasting horizons, improving
90.1–94.0% over the ARIMA model (figure 2). Similarly, the n-sub-epidemic unweighted ensemble
performed best most frequently regarding average 95% PI coverage (89.7%), improving 30.7–65.9%
over the ARIMA model in average Winkler scores (figure 5). Electronic supplementary material, tables

one-week

Brazil

(a)

(c) (d)

(b)

4.21 4.47

2.03

4.75

2.73

4.03

3.47

5.68

5.00

5.33 5.69 5.33 5.63 5.35 5.39 5.37 5.90 5.58 6.38 6.385.17

4.95 5.00 4.94 5.16 5.17 5.17 5.17 5.48 5.35 5.97 5.97

7.32 5.68 5.84 5.68 5.68 5.68 5.11 5.01 5.83 5.835.69

4.45 3.47 3.45 3.49 3.50 3.50 3.49 3.83 3.77 3.98 3.98

4.03 4.22 4.08 4.06 4.07 4.06 4.24 4.58 4.66 4.664.72

3.02 2.73 2.72 2.71 2.73 2.73 2.73 3.57 3.25 4.11 4.11

5.52 4.75 5.32 4.81 4.77 4.79 4.78 4.38 4.93 4.42 4.43

2.65 2.03 2.44 2.32 2.32 2.38 2.35 2.85 2.52 3.10 3.10

4.97 4.47 4.56 4.52 4.51 4.51 4.51 4.61 4.79 4.88 4.88

2.02

4.49

2.75

3.96

3.49

4.74

4.58

5.05

4.74

2.07

5.09 5.42 5.09 5.28 5.19

2.80 2.07 2.58 2.56 2.55 2.52 2.52 2.96 2.75 3.24 3.24

5.27 4.74 4.96 4.78 4.77 4.78 4.76 4.78 4.96 4.99 4.99

5.56 5.05 5.07 5.56 5.06 5.18 5.11 5.67 5.38 6.22 6.22

4.58 4.50 4.99 4.99 4.99 4.99 5.27 5.15 5.84 5.844.60

6.90 4.74 5.05 5.00 4.97 4.98 4.98 4.68 4.51 5.68 5.68

4.64 3.49 3.48 3.51 3.52 3.52 3.51 3.75 3.80 3.88 3.88

4.49 3.96 4.12 4.00 3.99 3.99 3.99 4.08 4.44 4.51 4.51

3.17 2.75 2.80 2.75 2.77 2.77 2.77 3.45 3.19 3.95 3.95

5.27 4.49 4.96 4.52 4.52 4.53 4.52 4.37 4.77 4.41 4.41

2.02 2.26 2.36 2.35 2.38 2.33 2.80 2.55 2.96 2.962.48

4.51 4.21 4.15 4.27 4.27 4.28 4.27 4.35 4.41 4.73 4.73

Canada

France

Germany

Spain

United Kingdom

United States (CDC)

United States (OWID)

World

two-weeks

three-weeks four-weeks

Brazil

Canada

France

Germany

Spain

United Kingdom

United States (CDC)

United States (OWID)

World

S
E

-r
an

k
ed

(1
)

S
E

-r
an

k
ed

(2
)

S
W

-r
an

k
ed

(1
)

S
W

-r
an

k
ed

(2
)

S
E

-e
n
se

m
b
le

(2
)-

W

S
E

-e
n
se

m
b
le

(2
)-

U
W

S
W

-e
n
se

m
b
le

(2
)-

W

S
W

-e
n
se

m
b
le

(2
)-

U
W

G
A

M

A
R

IM
A

S
L

R

P
ro

p
h
et

S
E

-r
an

k
ed

(1
)

S
E

-r
an

k
ed

(2
)

S
E

-e
n
se

m
b
le

(2
)-

W

S
E

-e
n
se

m
b
le

(2
)-

U
W

S
W

-r
an

k
ed

(1
)

S
W

-r
an

k
ed

(2
)

S
W

-e
n
se

m
b
le

(2
)-

W

S
W

-e
n
se

m
b
le

(2
)-

U
W

G
A

M

A
R

IM
A

S
L

R

P
ro

p
h
et

5.14 5.16 5.17 4.37 5.11 4.48 4.48

2.78 3.14 2.78 2.75 2.77 2.79 2.79 2.79 3.75 3.37 4.23 4.23

4.06 5.10 4.06 4.23 4.11 4.09 4.09 4.09 4.36 4.65 4.81 4.81

3.52 4.00 3.52 3.39 3.54 3.56 3.54 3.55 3.91 3.75 4.10 4.10

6.32 7.75 6.32 6.46 6.30 6.30 6.30 6.29 5.42 5.31 5.96 5.96

5.31 5.28 5.31 5.25 5.37 5.38 5.38 5.37 5.72 5.62 6.08 6.08

5.64 5.92 5.64 5.43 5.82 5.66 5.69 5.68 6.21 5.89 6.51 6.51

5.11 5.74 5.11 5.43 5.15 5.13 5.14 5.14 4.97 5.15 5.09 5.09

2.11 2.92 2.11 2.67 2.65 2.65 2.70 2.71 3.04 2.84 3.36 3.36

5.50 5.30 5.50 5.11 5.63 5.57 5.58 5.60 4.39 5.26 4.54 4.55

2.74 3.16 2.74 2.70 2.72 2.74 2.74 2.74 3.92 3.52 4.35 4.35

4.09 5.60 4.09 4.26 4.13 4.11 4.11 4.11 4.46 4.73 4.93 4.93

3.66 3.95 3.66 3.47 3.69 3.71 3.70 3.70 4.03 3.93 4.20 4.20

6.84 8.16 6.84 6.99 6.82 6.83 6.83 6.84 5.66 5.55 6.07 6.07

5.47 5.41 5.47 5.39 5.49 5.50 5.50 5.50 5.92 5.85 6.18 6.18

5.90 6.10 5.90 5.64 6.02 5.91 5.93 5.93 6.40 6.10 6.63 6.63

Figure 2. (a–d) Average m.s.e. for each location, model and forecasting horizon (weeks of 21 July 2022–23 February 2023).
Approximately 1008 forecasts were produced for each model. The graph is shown on the log10 scale. Lighter colours indicate lower
average m.s.e. scores, and darker blues indicate higher average m.s.e. scores. The black boxes indicate the best-performing model(s)
for a given location and forecasting horizon. The n-sub-epidemic framework performed best most frequently across forecasting
horizons and locations regarding average m.s.e.
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D1–D5 contain the tabulation of skill scores and performance metrics across epidemic phases, models
and forecasting horizons for Germany (electronic supplementary material, appendix S4).

3.2.5. Spain

The n-sub-epidemic framework performed superiorly in Spain, with the most success noted for the
weighted ensemble model (69%) across forecasting periods and metrics (figures 2–5). Regarding
average m.s.e. (range: 9020.3–12286.1) and MAE (range: 46.3–52.4), the n-sub-epidemic top-ranked
and weighted ensemble models produced the lowest values across all forecasting horizons (figures
2 and 3). Similarly, both models improved considerably over the ARIMA model regarding average
m.s.e. (range: 25.7–57.4%) and MAE (range: 33.2–45.9%). The n-sub-epidemic weighted ensemble
produced the lowest average WIS (range: 33.7–35.4) most frequently across forecasting horizons,
improving 19.9–41.6% over the ARIMA model (figure 4). The n-sub-epidemic second-ranked model
performed well regarding average 95% PI coverage, producing the closest to 95% coverage across
most forecasting horizons (range: 94.3–94.8%) (figure 5). However, the ARIMA model outperformed
the n-sub-epidemic second-ranked model across all forecasting horizons regarding Winkler scores.
Electronic supplementary material, tables E1–E5 contain the tabulation of skill scores and performance
metrics across epidemic phases, models and forecasting horizons for Spain (electronic supplementary
material, appendix S4).
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Figure 3. (a–d) Average MAE for each location, model and forecasting horizon (weeks 21 July 2022–23 February 2023).
Approximately 1008 forecasts were produced for each model. The graph is shown on the log10 scale. Lighter colours indicate lower
average MAE scores, and darker blues indicate higher average MAE scores. The black boxes indicate the best-performing model(s) for
a given location and forecasting horizon. The n-sub-epidemic framework performed best most frequently across forecasting horizons
and locations regarding average MAE.
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3.2.6. United Kingdom

Overall, the n-sub-epidemic unweighted ensemble model outperformed other models 56% of the time
across forecasting horizons and metrics, followed in success by the top-ranked (25%) and weighted
(25%) ensemble models (figures 2–5). The n-sub-epidemic unweighted ensemble model produced
the lowest average m.s.e. (range: 2454.9–3012.8) across all forecasting horizons and for the three-
(21.5) and four-week (22.8) horizons regarding average MAE (figures 2 and 3). However, the model
saw considerable success over the ARIMA model across all horizons in average m.s.e. (range: 45.9–
72.1%) and average MAE (range: 32.1–56.6%). The n-sub-epidemic top-ranked and weighted ensemble
produced the lowest average MAE in the one- (24.7) and two-week (22.9) horizons and saw split
success across forecasting horizons regarding average WIS (figures 3 and 4). The n-sub-epidemic
unweighted ensemble performed superiorly across most forecasting horizons for average 95% PI
coverage (figure 5). Electronic supplementary material, tables F1–F5 contain the tabulation of skill
scores and performance metrics across epidemic phases, models and forecasting horizons for the
United Kingdom (electronic supplementary material, appendix S4).

3.2.7. United States (CDC)

Unlike the other countries, the GAM model performed best in the United States (CDC), outperforming
the other models 69% of the time, followed in success by the spatial-wave framework models (25%)
across forecasting horizons and metrics (figures 2–5). The GAM produced the lowest average m.s.e.
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Figure 4. (a–d) Average WIS for each location, model and forecasting horizon (weeks of 21 July 2022–23 February 2023).
Approximately 1008 forecasts were produced for each model. The graph is shown on the log10 scale. Lighter colours indicate lower
average WIS, and darker blues indicate higher average WIS. The black boxes indicate the best-performing model(s) for a given location
and forecasting horizon. The n-sub-epidemic framework performed best most frequently across forecasting horizons and locations
regarding average WIS.
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(range: 32070.5–352246.3) and MAE (range: 95.0–291.3) across all forecasting horizons and the one-
week to three-week forecasting horizons for average WIS (range: 74.9–179.0) (figures 2–4). However, all
spatial-wave framework models performed superiorly across all forecasting horizons for average 95%
PI coverage (range: 93.1–95.7%), albeit the one-week horizon, where the n-sub-epidemic unweighted
ensemble model performed equally well (93.1%) (figure 5). Nevertheless, the ARIMA model outper-
formed the spatial-wave framework and the n-sub-epidemic unweighted ensemble model across all
forecasting horizons regarding average Winkler scores. Electronic supplementary material, tables G1–
G5 contain the tabulation of skill scores and performance metrics across epidemic phases, models and
forecasting horizons for the United States (CDC) (electronic supplementary material, appendix S4).

3.2.8. United States (OWID)

The n-sub-epidemic unweighted ensemble model performed best across all forecasting horizons
regarding average m.s.e., MAE and WIS and across most horizons regarding average 95% PI cover-
age, outperforming other models 94% of the time (figures 2–5). Regarding average m.s.e., the model
produced values ranging from 31 944.2 to 246 467.4, a 66.0–82.9% improvement over the ARIMA
model (figure 2). We also observed considerable improvements over the ARIMA model in average
MAE (range: 50.6–60.9%) and WIS (range: 45.4–60.8%). The n-sub-epidemic unweighted ensemble
model produced superior average 95% PI coverage across most forecasting horizons (range: 87.1–
88.5%), improving 27.5–70.6% over the ARIMA model in average Winkler scores (figure 5). Electronic
supplementary material, tables H1–H5 contain the tabulation of skill scores and performance metrics
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Figure 5. (a–d) Average 95% PI coverage for each location, model and forecasting horizon (weeks of 21 July 2022–23 February 2023).
Approximately 1008 forecasts were produced for each model. Lighter colours indicate lower average 95% PI coverage, and darker blues
indicate higher 95% PI coverage. The black boxes indicate the best-performing model(s) for a given location and forecasting horizon.
The n-sub-epidemic unweighted ensemble performed best and most frequently across forecasting horizons and locations regarding
average 95% PI coverage.
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across epidemic phases, models and forecasting horizons for the United States (OWID) (electronic
supplementary material, appendix S4).

3.3. World
The n-sub-epidemic unweighted ensemble model, followed by the spatial-wave second-ranked model,
outperformed other models across forecasting horizons and metrics 56 and 31% of the time,
respectively (figures 2–5). The n-sub-epidemic unweighted ensemble model produced the lowest
average m.s.e. (range: 147 046.3–435 707.3) and MAE (range: 286.3–362.3) across the two- to four-week
forecasting horizons, improving considerably over the ARIMA model (greater than 47%) (figures 2 and
3). Similarly, the model performed superior regarding average 95% PI coverage most frequently across
forecasting horizons (range: 93.1–96.6%), albeit the two-week forecasting horizon where the
n-sub-epidemic top-ranked model performed best (94.8%) (figure 5). The n-sub-epidemic unweighted
ensemble model improved 42.4–56.3% over the ARIMA model regarding average Winkler scores.
However, the spatial-wave second-ranked model performed best across most forecasting horizons
regarding average WIS (range: 166.5–297.6), improving 53.5–59.7% over the ARIMA model (figure 4).
Electronic supplementary material, tables I1–I5 contain the tabulation of skill scores and performance
metrics across epidemic phases, models and forecasting horizons for the World (electronic supplemen-
tary material, appendix S4).

4. Discussion
In the context of the global emergency posed by the 2022–2023 mpox epidemic, we have systematically
investigated the short-term forecasting performance of multiple models that have shown competitive
performance during epidemics and pandemics, and rely on minimal data of the epidemic’s trajec-
tory [7,9,10]. Overall, the n-sub-epidemic framework, specifically the unweighted ensemble model,
followed by the spatial-wave framework, ARIMA model and GAM, performed best most frequently
across locations and forecasting horizons compared with the other established modelling techniques
(e.g. SLR and Prophet).

The n-sub-epidemic framework outperformed other models in Brazil, Canada, Spain, the United
Kingdom, the United States (OWID) and the World, whereas the spatial-wave framework did best
in Germany. However, France and the United States (CDC) behaved uniquely compared with other
countries with the ARIMA model and GAM, respectively, performing best across forecasting hori-
zons. Excluding France and the United States (CDC), the spatial-wave and n-sub-epidemic models
frequently improved considerably in each metric, including in average Winkler scores, over the
ARIMA model. Overall, our findings further support the sub-epidemic and ensemble frameworks for
forecasting emerging infectious diseases, especially in the face of limited epidemiological data [9,10].

Although each included location experienced unique epidemic trajectories throughout the mpox
epidemic, the consistent success of the n-sub-epidemic and spatial-wave frameworks highlights the
utility of the aggregated sub-epidemic approach in capturing and producing short-term forecasts for
a wide variety of epidemic trends. For example, the epidemic trajectories of the mpox epidemic in
Canada, the United Kingdom and the United States (OWID) differ considerably (figure 1). Canada saw
multiple peaks in cases throughout the ascending and declining phases of the epidemic. In contrast,
the United Kingdom experienced a relatively smooth ascending phase with a prominent peak during
the descending phase, and the United States (OWID) saw a mostly smooth epidemic trajectory without
drastic peaks during the ascending or descending phases. Although different, the n-sub-epidemic
unweighted ensemble model performed best across forecasting horizons for all three locations. Similar
observations hold for Germany, Brazil, Spain and the World.

France and the United States (CDC) behaved differently from the other locations, with the ARIMA
performing best in France and the GAM in the United States (CDC). The mpox epidemic in France did
not follow a unimodal epidemic disease trajectory as seen in other study areas; instead, they experi-
enced two prominent case peaks with slow ascending and descending phases (figure 1). However,
throughout the outbreak, large stretches of the epidemic’s trajectory appear to form linear trends
(i.e. ascending, between peaks and tail-end). As the ARIMA model inherently assumes linearity, the
linear-like trajectory of mpox in France may explain the success of the ARIMA model in capturing
and forecasting the disease’s trajectory [58]. Unlike France, the United States (CDC) had minimal
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week-to-week fluctuation, forming a smooth, unimodal epidemic trajectory (figure 1). The GAM,
which performed best in the United States (CDC), captures common nonlinear trends, such as seen for
the United States (CDC) epidemic trajectory [49]. Therefore, similar to France, epidemic data following
distinctive trajectories may explain the success seen by the ARIMA and GAM models in France and the
United States (CDC).

The model performance also differed when looking at specific epidemic phases (e.g. ascending,
peak, descending and tail-end of the epidemic). For example, across locations, the established statistical
models outperformed other models most frequently during the ascending phase of the epidemic.
However, there were multiple epidemic phases with few forecasting periods available, limiting the
ability to examine country-specific epidemic phase performance in greater detail.

Finally, the significant success of the n-sub-epidemic unweighted and weighted ensemble models
highlights the continued utility of ensemble modelling in short-term forecasting [59–66]. Ensemble
modelling has also shown considerable success against individual top-ranking sub-epidemic and other
statistical models in past mpox short-term forecasting efforts [7], along with that of COVID-19 [9,61,67],
seasonal influenza [62,64] and Zika [68]. Each ensemble model (e.g. weighted and unweighted)
included within the analysis performed competitively at various forecasting horizons and for different
areas. However, the unweighted ensemble n-sub-epidemic model outperformed all other included
models for most locations, demonstrating the continued competitiveness of ensemble modelling in
short-term mpox forecasting.

Our study is not exempt from limitations. We used two sources for weekly time-series laboratory-
confirmed mpox cases, each using varying approaches to compile and disseminate case information.
Similarly, the reporting patterns for countries varied as well. Therefore, the trends noted above may
be a function of reporting delays rather than true case fluctuations. However, to account for the effect
of reporting differences on the observed epidemic trajectories, we aggregated cases weekly to adjust
for within-week reporting delays. Owing to the unprecedented nature of the epidemic and the limited
epidemic data available, we examined forecasts derived from the second-ranked spatial wave and
n-sub-epidemic models. Frequently, there was little statistical support for the second-ranked models
relative to the top-ranked model for both frameworks. The spatial-wave and ensemble n-sub-epidemic
frameworks are semi-mechanistic and provide insight into the natural processes that formed the
observed epidemic trends from the aggregated sub-epidemics. Nevertheless, both frameworks do
not account for explicit mechanisms of reactive behavioural modification and interventions, which
probably played a significant role in controlling the epidemic at local and global levels [13,69]. Finally,
current models are not responsive to seasonal or event-specific risk behaviours, which limits their
application to short-term forecasts.

5. Conclusion
In conclusion, our findings further support the competitive performance of the aggregated
sub-epidemic methodologies in producing short-term forecasts within the context of mpox, along with
the utility of ensemble modelling therein producing short-term forecasts. However, the frameworks
could be expanded to other disease types as they have shown utility in short-term forecasting for
epidemiologically different diseases (e.g. COVID-19 and Ebola). Finally, short-term forecasting tools
requiring minimal data inputs are essential in the face of unprecedented pandemics and epidemics.
Therefore, further evaluation and refinements of the ensemble sub-epidemic frameworks could be
achieved via comparison with other models since all the forecasting results are publicly available to the
community.
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