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Hybridizing different degrees of freedom or physical platforms potentially offers various advantages in
building scalable quantum architectures. Here, we introduce a fault-tolerant hybrid quantum computation
by building on the advantages of both discrete-variable (DV) and continuous-variable (CV) systems. In
particular, we define a CV-DV hybrid qubit with a bosonic cat code and a single photon, which is imple-
mentable in current photonic platforms. Due to the cat code encoded in the CV part, the predominant loss
errors are readily correctable without multiqubit encoding, while the logical basis is inherently orthogonal
due to the DV part. We design fault-tolerant architectures by concatenating hybrid qubits and an outer
DV quantum error-correction code such as a topological code, exploring their potential merit in develop-
ing scalable quantum computation. We demonstrate by numerical simulations that our scheme is at least
an order of magnitude more resource efficient compared to all previous proposals in photonic platforms,
allowing us to achieve a record-high loss threshold among existing CV and hybrid approaches. We dis-
cuss the realization of our approach not only in all-photonic platforms but also in other hybrid platforms
including superconducting and trapped-ion systems, which allows us to find various efficient routes toward
fault-tolerant quantum computing.
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I. INTRODUCTION

In working toward fully fault-tolerant quantum com-
puting, various physical platforms, such as photons
[1–3], superconductors [4–6], trapped ions [7,8], nitrogen
vacancies in diamond [9–11], and quantum dots [12,13],
have been explored and considered as the building blocks
for scalable quantum systems. Irrespective of the physi-
cal platforms, information is encoded into qubits defined
with the basis in either discrete-variable (DV) [14–19]
or continuous-variable (CV) [20–34] degrees of freedom,
each of which has its own pros and cons. In recent years,
hybrid approaches integrating different physical degrees
of freedom to overcome the limitations of each platform
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have opened up a new paradigm in quantum technologies.
Hybridization may be quite a natural direction for scala-
bility, since each platform has its own advantage depend-
ing on the circumstances and it is frequently required to
convert quantum information between different platforms
[35–37]. In particular, various CV-DV hybrid protocols
have recently been proposed [38–53] and experimentally
demonstrated [54–63] to combine their advantages in
quantum computing and quantum communications.

Meanwhile, qubits encounter errors due to interactions
with the environment and imperfect operations, which
accumulate and become more severe as the size of the sys-
tem increases. Quantum error correction (QEC) provides
systematic ways to protect qubits from the predominant
errors [64,65] and allows us to achieve fault tolerance in
building scalable quantum architectures. In QEC, infor-
mation is typically encoded in a Hilbert space larger than
a qubit space so that any error can be detected if it
brings the encoded state out of the logical code space.
By restoring the state back to the code space, errors
can be corrected without compromising the encoding of
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logical information. While multiple physical qubits of
finite-dimensional systems are typically used to construct
a single logical qubit in a DV code, a bosonic system
characterized by an infinite-dimensional Hilbert space can
provide a large number of degrees of freedom to encode a
logical qubit in such a CV approach. Several bosonic error-
correction codes, in which a qubit is defined in a single
oscillator, have been proposed, such as the Gottesman-
Kitaev-Preskill (GKP) [66], binomial [67] and the cat code
[21–23,68–71]. These codes are elaborately designed, in
particular, to protect against photon loss [72–74]. Recently,
bosonic error-correction codes have been demonstrated
and exploited for building quantum computing systems in
various experimental platforms [75–96].

In this work, we introduce a hybrid quantum comput-
ing scheme by building on the advantages of both CV and
DV systems toward fault-tolerant quantum computation. In
particular, we define a logical qubit by hybridizing a cat-
code-encoded state with a single photon. Due to the cat
code encoded in the CV part, the effect of loss is read-
ily correctable even without multiqubit encoding, while
its logical basis is inherently orthogonal due to the DV
part, in contrast to other CV qubits [21–23,64,68–71,97].
Such hybrid qubits can be experimentally generated in
current photonic platforms [55,56,61,63]. We then design
quantum computing architectures by concatenating the
hybrid qubits and an outer DV quantum error-correction
code, such as the Steane code [98] or the surface code
[99–101]. Specifically, here we focus on all-photonic
implementations for direct comparison with previous pro-
posals [15,16,41,50,102]. To that end, we define hybrid-
fusion schemes, which are implementable in current exper-
imental platforms with linear optics, as building blocks for
scalable architectures [55,56]. We then numerically simu-
late and analyze the fault tolerance of our hybrid scheme,
showing that it is at least an order of magnitude more
resource efficient compared to all previous proposals in
photonic platforms, owing to the use of the bosonic cat
code in the physical level. Moreover, it is demonstrated
that our scheme allows us to achieve at least 4-times-
higher loss thresholds compared to existing hybrid and CV
approaches [41,50,102]. We stress that our scheme is not
limited to all-photonic platforms but can be implementable
in other hybrid platforms, including superconducting
[75–78,103–107] and trapped-ion systems [62,81,108–
114], which thus allows us to find various routes toward
scalable fault-tolerant quantum computing.

II. HYBRID QUBITS FOR QUANTUM
COMPUTATION

A. Hybrid qubit

We define a hybrid qubit by employing a single-photon
(DV qubit) and a cat-code-encoded state (CV qubit), which
we call the hybrid cat-code (H-cat) qubit. The cat code

is a bosonic QEC code designed to protect qubits against
photon loss, in which qubits are encoded in the subspace
of even-photon-number states, so that a photon loss can
be detected when the parity changes [68,69]. Specifically,
the code space is defined by even cat states

{|C+
α 〉, |C+

iα〉
}
,

where |C+
α 〉 = N+

C (|α〉 + | − α〉) with the normalization
factor N+

C ≡ 1/
√

2(1 + e−2α2
) and |α〉 is a coherent state

with amplitude α. By combining DV and CV qubits, the
basis of the H-cat qubit can then be defined as

{|0L〉 = |+〉|C+
α 〉, |1L〉 = |−〉|C+

iα〉
}

, (1)

where |±〉 = (|H 〉 ± |V〉)/√2 is the polarization of a sin-
gle photon. Note that the logical bases are orthogonal to
each other due to the DV part, in contrast to the bases
{|C+

α 〉, |C+
iα〉} in bosonic quantum computation, which over-

lap each other with finite α and cause inherent errors. We
also consider another type of hybrid qubit [41] for com-
parison, composed of a single photon and a coherent state
in the basis {|+〉|α〉, |−〉| − α〉}, which we call here the
hybrid coherent-state (H-coh) qubit. The hybrid qubits,
i.e., H-cat and H-coh, are illustrated in Fig. 1(a).

Note that hybrid qubits can be generated in current pho-
tonic platforms. CV-DV hybrid entangled states have been
experimentally demonstrated in optical systems [55,56]
and successfully applied to quantum computing and com-
munications in numerous experiments [48,61,63]. In those
experiments, the CV basis is defined by coherent states,

(a)

(b)

(c)

FIG. 1. (a) An illustration of the hybrid qubits. In our H-cat
qubit, DV (red) and CV (blue) qubits are encoded, respectively,
in the polarization degree of freedom and in the even cat states
{|C+

α 〉, |C+
iα〉}, while the CV qubit is encoded in the coherent states

(light blue) in the H-coh qubit. (b) Schemes for the fusion opera-
tions of CV qubits. We employ two separate schemes of cat-code
Bell measurement, which we refer to as the HA scheme [115]
and the SDR scheme [116], respectively. BS and PS represent a
beam splitter and a π/2 phase shifter, respectively. (c) The error
rates PX and PZ for the fusion of hybrid qubits under loss rate
η = 2 × 10−3. The orange curve is for the H-coh scheme and the
blue (purple) curve is for the H-cat scheme, employing the HA
(SDR) scheme. The numbers indicated at each point represent the
corresponding amplitude α. The points marked as stars represent
the optimal encoding amplitude α, which achieves the highest
loss threshold.
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i.e., |α〉 and | − α〉, constituting two-component cat states
in the CV part, so that the generated hybrid entangled states
can be directly used as the H-coh qubit by means of sim-
ple modifications. We can also generate the H-cat qubit by
using H-coh qubits by extending two-component cat states
into four-component cat states using |α〉, |iα〉, | − α〉, and
| − iα〉 in the CV part, e.g., using two H-coh qubits, a beam
splitter, and a photon-number-resolving (PNR) detector,
as proposed in Ref. [117]. We present the scheme for
H-cat-qubit generation in Sec. IV A.

We stress that such CV-DV hybrid entanglement can
also be generated efficiently in other platforms, including
superconducting and trapped-ion systems, which enables
our approach to be more generally implemented in any CV-
DV hybrid platform for quantum computing. We discuss
these implementations further in Sec. IV B.

B. Hybrid fusion

We now introduce a hybrid fusion, i.e., a CV-DV hybrid
entangling operation, which is performed by the joint work
of Bell-state measurements on CV and DV qubits. A fusion
measurement is typically applied on entangled states to
generate larger-size entangled states such as cluster states
as prerequisites for measurement-based quantum compu-
tation (MBQC) [93,118,119] or also to enable universal
gate operations via teleportation in circuit-based quantum
computation [120].

A hybrid-fusion operation projects a two hybrid qubits
on one of the hybrid Bell states |�±

L 〉 = (|0L〉|1L〉 ±
|1L〉|0L〉)/

√
2 and |�±

L 〉 = (|0L〉|0L〉 ± |1L〉|1L〉)/
√

2. The
logical Bell states of the hybrid qubits given in the basis
of Eq. (1) can be rewritten by separating the CV and DV
parts as (for details, see Appendix A 1)

|�±
L 〉 ∝ |�−

D〉|�̃±
C 〉 + |�−

D〉|�̃∓
C 〉,

|�±
L 〉 ∝ |�+

D〉|�̃±
C 〉 + |�+

D〉|�̃∓
C 〉,

(2)

where |�±
D〉= (|H 〉|V〉 ± |V〉|H 〉)/√2, |�±

D〉= (|H 〉|H 〉 ±
|V〉|V〉)/√2 are the Bell states of the DV qubits, and
|�̃±

C 〉 = |C+
α 〉|C+

iα〉 ± |C+
iα〉|C+

α 〉 and |�̃±
C 〉 = |C+

α 〉|C+
α 〉 ±

|C+
iα〉|C+

iα〉 are the unnormalized Bell states of the CV
qubits.

Therefore, the hybrid-fusion operation can be imple-
mented by applying CV and DV Bell-state measure-
ments—denoted here as BC and BD, respectively—
separately. Its logical outcome can then be discriminated
by combining the results of BC and BD based on Eq. (2).
BC can be implemented by linear optics and PNR detec-
tors, as illustrated in Fig. 1(b). Two schemes have recently
been independently proposed in Refs. [115,116]; we refer
to them as the HA and SDR scheme, respectively (for
details, see Appendix A 2). BC can discriminate the Bell
states through the pattern of the measurement outcomes

as denoted in the tables of Figs. 4(b) and 4(c); while the
logical +/− sign of Bell states can be distinguished with
certainty by counting the total number of photons detected,
there exists ambiguity in discriminating the logical letter�
or� for some measurement outcomes, to which we assign
the X error with rate pX .

In our hybrid scheme, we can remove the ambiguity
through the use of BD. In the photon-polarization encod-
ing, BD can be chosen as a so-called type-II fusion [14]
that distinguishes two Bell states |�±

D〉 out of four with
linear optics [121,122] (see Appendix A 3). Once BD suc-
ceeds, it removes the ambiguity between the letters � and
�. Remarkably, a hybrid-fusion operation is thus able to
distinguish hybrid Bell states with certainty even if only
one of BC and BD succeeds. Otherwise—i.e., in the case
in which BC yields ambiguity and BD fails—the result-
ing state after the hybrid fusion can be represented by
μ|�±

L 〉 + ν|�±
L 〉. So, when |μ| ≥ |ν|, we can take |�±

L 〉
as the outcome and assign an X error with rate PX =
|ν|2/(|μ|2 + |ν|2) and vice versa. We calculate the X error
rate of hybrid fusion employing the HA or SDR scheme as
described in Appendix A.

Moreover, in the presence of photon loss, BC can detect
a single-photon loss in the CV part through detecting the
parity change of the cat state to odd, i.e., when a total odd
number of photons is detected. This is due to the bosonic
cat-code error correction in the CV part. The hybrid-fusion
operation can thus successfully yield an outcome that con-
tains an X error with a rate that is slightly changed from
PX (see Appendix A 2). If two or more photons are lost,
the Z errors remain undetected in the fusion-measurement
outcome, as we analyze in Sec. II C.

C. Error analysis

If more than one photon is lost, the errors can be mod-
eled by applying higher powers of â. In the CV part, the
cat code exhibits a cyclic behavior [70], i.e., the state after
4k + l photon loss has the same form as the state after
l photon loss, where k is a nonnegative integer and l =
0, 1, 2, 3. Since each photon loss induces a parity change,
the CV qubit is in even (odd) space when l is even (odd).
A Z error may occur by multiple-photon loss, as BC only
corrects single-photon loss detected by the parity change.
If two photons are lost (l = 2) at one input port, a Z
error occurs as â2(a|C+

α 〉 + b|C+
iα〉) = (a|C+

α 〉 − b|C+
iα〉) and

it remains undetected because there is no parity change.
When one photon is lost from each CV input port, the
total photon number is even but the parity change may
be distinguishable by some measurement patterns (see
Appendix A 2), which themselves cause no error. If the
parity change is not distinguishable, a Z error remains
undetected. If l = 3, only single-photon loss is corrected
and thus a Z error remains uncorrected as in the case of
l = 2. For the case of higher photon loss, we can make a
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similar error analysis and we summarize it in Appendix C.
On the other hand, if any DV photons are lost, we lose the
phase information, which causes a dephasing error. DV-
photon loss is locatable by counting the total number of
photons detected in BD. To sum up, we denote PZ to be the
overall Z error rate induced by photon loss. We derive the
explicit expressions for the X error rate PX and the Z error
rate PZ in Appendix C.

In Fig. 1(c), we present the X and Z error rates under
loss for the hybrid fusions. Specifically, PX and PZ are
plotted for the fusions of H-cat qubits with HA and SDR,
and the H-coh qubit used in Ref. [41,50,51], by varying
the amplitude α under a fixed loss rate η = 2 × 10−3. This
shows that the effect of loss can be substantially suppressed
in the hybrid fusion of the H-cat compared to the H-coh
due to the bosonic cat-code error correction in the CV
part. As common tendencies, the PX error can be expo-
nentially suppressed as α grows because the basis of the
CV part is more distinguishable, while PZ only increases
linearly with |α|2 because its state becomes more frag-
ile against photon loss. The result clearly shows that PZ
is suppressed by employing the cat-code error correction.
By taking a larger encoding amplitude α, we can always
achieve much smaller PX and PZ in the fusions of H-
cat qubits than H-coh qubits. By comparing two different
types of fusion schemes of H-cat qubits, i.e., HA and
SDR, the HA scheme exhibits lower error rates, whereas
we show that the SDR scheme is advantageous when an
unambiguous discrimination is required without error (see
Appendix A 2).

III. FAULT-TOLERANT QUANTUM
COMPUTATION

A. Hybrid quantum computing architectures

Let us now design quantum computing architectures
based on the hybrid qubits. We can consider both the
circuit-based and MBQC models. In the circuit-based
model, the gate operations for universal quantum computa-
tion can be chosen as the gate set {X̂ , Ẑθ , Ĥ , ĈZ}. The Pauli-
X operation (X̂ ) and arbitrary rotation along the Z axis (Ẑθ )
are implementable only using linear optical elements; X̂
can be implemented by applying bit-flip operations in both
the CV and the DV parts, using a polarization rotator act-
ing as |+〉 ↔ |−〉 and a π/2 phase shifter acting as |C+

α 〉 ↔
|C+

iα〉. Ẑθ can be implemented by a θ phase shifter applied
only as |−〉 → eiθ |−〉 on the DV part. The Hadamard (Ĥ )
and controlled-Z (ĈZ) gates can be performed based on the
gate-teleportation technique [120], using the hybrid-fusion
scheme and entangled resource states. The resource states
as the channel of teleportation for Ĥ and ĈZ are given,
respectively, by |�H 〉 ∝ |0L, 0L〉 + |0L, 1L〉 + |1L, 0L〉 −
|1L, 1L〉 and |�CZ〉 ∝ |0L, 0L, 0L, 0L〉 + |0L, 0L, 1L, 1L〉 +
|1L, 1L, 0L, 0L〉 − |1L, 1L, 1L, 1L〉. We present the scheme for
resource-state generation in Sec. IV A. The measurement

in the Z basis can be performed by the measurement in
the DV part using polarization measurement (for details of
the schemes of hybrid teleportation and measurement, see
Appendix B).

Constructing a fault-tolerant architecture in our hybrid
approach requires us to concatenate the hybrid qubits
incorporating the bosonic cat code and an outer DV quan-
tum error-correction code such as the Calderbank-Shor-
Steane (CSS) [98] and topological codes [99–101]. For a
direct comparison with previous works [15,16,41,50,102],
we construct a circuit-based fault-tolerant model using
the seven-qubit Steane code (see Appendix D), while we
employ the surface code for MBQC as described below.

In MBQC, we construct a Raussendorf-Harrington-
Goya (RHG) lattice embedding the surface code as shown
in Fig. 2(a). We first prepare three-qubit micro cluster
states by using hybrid qubits as element resources, as we
describe in Sec. IV A, which we refer to as three-qubit
micro H-cluster states. We then merge such micro H-
cluster states using hybrid fusion to construct an RHG
lattice. In step 1, three micro H-cluster states are merged
by two hybrid fusions to form a five-qubit star H-cluster
state with one central qubit and four side qubits. In step 2,
we pile star H-cluster states in the form of an RHG lattice,
where the central hybrid qubits become vertices of cluster
states and the side qubits are consumed by hybrid fusion
to create edges between adjacent vertices. We note that the
deterministic nature of hybrid fusion enables a resource-
efficient construction of the RHG lattice. Moreover, photon
loss can be corrected to some extent by implementing the
hybrid fusion so that higher loss thresholds can be reached,
which we will discuss in Sec. III B.

In the RHG lattice, each x-y plane is called a layer and
the t axis represents the simulated time. The size of the
RHG lattice is characterized by the code distance d. A layer
is primal (dual) if it is located at even (odd) t and primal
(dual) qubits reside on faces (edges) of the primal lattice.
The stabilizer of a primal unit cell is given by the prod-
uct of six Pauli-X operations on primal qubits located on
the faces. The error patterns matching the stabilizer mea-
surement can be corrected and the remaining error chain
connecting two primal boundaries causes a logical error.
Note that here we only simulate Z errors in primal lattices,
because error corrections are done separately on the primal
and dual lattice and qubits are measured in the X basis for
stabilizer measurements.

B. Fault-tolerance analysis

We investigate the fault tolerance of quantum computa-
tion with H-cat and H-coh qubits and compare the result
with previous works. Here, we focus on analyzing and
simulating the fault tolerance of MBQC, which is suit-
able for photonic platforms. For the circuit-based model,
we employ the telecorrection [128] and the Steane code
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(a) (b)

(c)

Step 1

Step 2

FIG. 2. (a) A schematic to build an RHG lattice by means of hybrid qubits. Step 1: one central micro H-cluster state |Cc
3〉 and two side

micro H-cluster states |Cs
3〉 are merged using two hybrid fusions to create a star H-cluster state |C∗

5〉. The micro cluster states differ by
Hadamard gates, which are applied on the qubits shaded with yellow, from typical cluster states. Step 2: in a unit cell of an RHG lattice,
qubits are located at each face and edge. Star H-cluster states are placed on each location and merged by hybrid fusion on side qubits.
(b) The loss thresholds obtained by simulation in an RHG lattice with different schemes. Points marked as stars represent the highest
loss threshold. The inset represents the comparison of optimal thresholds, including previous approaches with the Steane code. (c) A
comparison of the resource overheads of existing photonic quantum computing proposals to achieve the logical error rate pL = 10−6.
Hybrid quantum computing with H-cat qubits requires 13 times less resource compared to H-coh qubits when the H-coh pair is
chosen to be the common resource state. We also compare with other existing photonic schemes: parity-encoding-based topological
quantum computing (PTQC) [123], multiphoton-qubit-based topological quantum computing (MTQC) [124], topological photonic
quantum computing (TPQC) [16], hybrid-qubit-based quantum computing (HQQC) [41], coherent-state quantum computing (CSQC)
[102], error-detecting quantum state transfer (EDQC) [125], multiphoton qubit quantum computing (MQQC) [126], parity-state linear
optical quantum computing (PLOQC) [127], and optical cluster-state quantum computing (OCQC) [15].

in simulation equivalently with the works using H-coh
and CV qubits [41,102] for a direct comparison, details of
which are presented in Appendix D.

In the RHG lattice, errors that occur in the hybrid fusion
propagate to adjacent qubits (see Appendix C 3), so that
a corresponding error rate is assigned to each individual
qubit on the lattice. Based on assigned error rates, we can
find the error pattern matching the syndrome measurement
using weighted minimum-weight perfect matching [129]
in the PyMatching package [130] and then count remaining
error chains connecting two primal boundaries and deter-
mine whether a logical error occurs. We perform a Monte
Carlo simulation to find the logical error rate pL for differ-
ent code distances d and then investigate whether the errors
are accumulated, i.e., pL increases or not with increasing
d. The fault-tolerance noise thresholds can then be deter-
mined as the maximum physical error rates by which the
logical errors are not accumulated with d (for details, see
Appendix D).

We present the loss thresholds of photonic MBQC based
on H-cat and H-coh qubits in Fig. 2(b) by changing
the encoding amplitude α in the CV part. Note that the
previous estimation of H-coh in Ref. [50] has employed a

slightly different error model and thus we resimulate the
result under the same error model assigned to H-cat for a
fair comparison. We also depict the loss thresholds of the
circuit-based model with hybrid and CV qubits estimated
based on Steane codes for comparison.

This shows that hybrid MBQC with H-cat qubits
achieves the highest loss thresholds compared to other
approaches including MBQC with H-coh qubits as well
as all hybrid and CV approaches in circuit-based models.
The loss threshold of quantum computing with the H-cat,
0.89%, is about 4 times larger than the maximum 0.22%
estimated with the H-coh [50]. Hybrid fusion with the HA
scheme yields a higher threshold than the SDR scheme, as
the former exhibits lower error rates than the latter.

The highest thresholds can be reached by an optimized
encoding of α marked by stars in Figs. 2(b) and 1(c);
α ≈ 2.93 for the H-cat with the HA scheme and α ≈ 1.37
for H-coh qubits. The threshold curves of the H-cat and
H-coh qubits show a common tendency in that they rapidly
increase up to the peak and decrease gradually. This is
because enlarging the encoding amplitude α can reduce
PX but enhance PZ , so that at some point further increase
of α eventually degrades the thresholds. As exhibited in
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Fig. 1(c), the enhancement of the loss thresholds can be
achieved with H-cat qubits, as PX can be significantly
reduced further while suppressing PZ by increasing α, due
to the inherent bosonic error correction in the CV part.

C. Resource overhead

To investigate the resource overhead, we estimate the
number of unit resources, referred to as NpL , to achieve the
target logical error rate pL. We choose the H-coh pair as a
unit resource for a fair comparison with the resource esti-
mation in previous works [41,50]. We propose a scheme
to generate an H-cat pair consuming eight H-coh pairs as
illustrated in Fig. 3(a), details of which are also explained
in Sec. IV A. Two H-coh pairs can be merged by apply-
ing BI on DV and beam-splitter interaction followed by
photon-number counting on CV qubits. The resulting state
can be postselected with a probability of approximately
1/4 of obtaining an H-cat pair. Thus, here we estimate that
an H-cat pair is 8 times as expensive as an H-coh pair.

We find that with H-cat qubits, a target logical error rate
can be achieved even with a very small code distance d.
For example, to achieve pL = 10−6, only d = 4 is suffi-
cient with H-cat qubits, due to the suppressed errors caused
by the bosonic cat code in the CV part of the physical
level, while d = 15 is required with H-coh qubits [50]. As

(a) (b)

(c) (d)

(e)
CZ

FIG. 3. (a) Generation scheme of an H-cat pair. Red circles
represent DV qubits and its polarization bases are represented
as arrows. Blue circles represent cat-code qubits using four
components of coherent states and light blue circles represent
coherent-state qubits using two components of coherent states.
(b) Generation scheme of a DV-coherent-cat triple |ψT〉. Another
type of triple |ψ ′

T〉 can be obtained by rotating the DV basis of H-
coh pair from H/V to +/−. By merging hybrid triples and hybrid
pairs, we can generate off-line resource states such as (c) three-
qubit H-cluster state |Cc

3〉, (d) Hadamard resource |�H 〉, and (e)
CZ resource |�CZ〉.

a result, we can estimate that the resource overhead for
the hybrid MBQC with H-cat qubits is N10−6 = 2.7 × 104,
which is 13 times more efficient compared to the over-
head for the MBQC with H-coh qubits, N10−6 = 3.6 ×
105. Remarkably, employing H-cat qubits can reduce the
resource cost by an order of magnitude compared to the
approach with H-coh qubits.

In Fig. 2(c), we present the resource-cost estimation
of the proposed hybrid quantum computing schemes with
H-cat and H-coh qubits. We also compare the resource
efficiencies of the proposed schemes with existing MBQC
photonic schemes based on direct encoding [16], repeti-
tion codes [124], and parity encoding of multiple pho-
tons [123], as well as circuit-based photonic schemes
[15,102,125–127] (for resource analysis of other schemes,
see Refs. [51,124]). This shows that our hybrid approach
is at least an order of magnitude more resource efficient
compared to all the other photonic proposals with respect
to the cost of the resources, while the direct comparison is
not straightforward due to the different types of resource
states. The improved resource efficiency is achieved in our
scheme due to the deterministic nature of the proposed
hybrid fusion and the loss tolerance of the resource states
due to the inherently encoded bosonic cat code.

IV. PHYSICAL IMPLEMENTATIONS

A. Resource-state generation

We introduce an H-coh pair (|+〉|α〉 + |−〉| − α〉)/√2,
which is employed as a logical qubit in previous hybrid
approaches [41,50], as a unit resource. It can be pre-
pared by the scheme of Refs. [56,61,63], where DV-CV
entanglement is heralded by the detection of a single
photon after a weak beam-splitter interaction between
the CV and DV modes. Since this scheme employs the
CV basis using two coherent states, |α〉 and | − α〉, we
have to extend it to a four-component cat code using
|α〉, |iα〉, | − α〉, and | − iα〉. The generation of a four-
component cat state has been proposed in Ref. [117],
where a pair of two-component cat states in different
phases have been mixed by a beam-splitter interaction
followed by photon-number counting on one of the out-
put modes. Here, we propose the generation of an H-cat
pair following the scheme described in Fig. 3(a). We
begin with two H-coh pairs, (|+〉|ωα〉 + |−〉| − ωα〉)⊗
(|+〉| − iωα〉 + |−〉|iωα〉), where ω = eiπ/4. For conve-
nience, we omit the normalization factors. The DV qubits
are merged by a type-I fusion operation, BI, and the
coherent-state qubits are mixed by a 50:50 beam split-
ter, resulting in the state |H 〉 (|α〉|iα〉 + | − α〉| − iα〉)+
|V〉 (|iα〉|α〉 + | − iα〉| − α〉). We count the photon num-
ber on one of the CV modes and postselect even photon
detection to rule out odd cat states. Then, we have the
state in|H 〉|C+

α 〉 + |V〉|C+
iα〉 and the phase in can be compen-

sated by a Z gate when n = 4k + 2. Note that the DV basis
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can be freely interchanged between H/V and +/− using
a wave plate. The success probability of BI is 50% and
the probability of detecting even photons is approximately
50% when α � 1. Therefore, we need approximately eight
H-coh pairs on average to generate an H-cat pair. Note that
any imperfections and loss during the process result in an
additional cost of a few more H-cat qubits on average. If
we also take into account such additional errors during the
generation process of H-cat qubits, the loss thresholds can
be slightly degraded, as in Fig. 2(b).

To generate cluster states of hybrid qubits, we employ
ancilla qubits, which will be merged by the fusion oper-
ation. Here, we choose coherent-state qubits as ancillas
and therefore we prepare DV-cat-coherent triples |ψT〉 =
|+〉|C+

α 〉|β〉 + |−〉|C+
iα〉| − β〉 using the scheme shown in

Fig. 3(b). The amplitude of the coherent-state qubit β does
not need to be the same as the amplitude of the cat-code
qubit α but β � 1 is required to suppress the failure prob-
ability of the fusion operation. We merge an H-cat pair,
|H 〉|C+

α 〉 + |V〉|C+
iα〉, with an H-coh pair, |H 〉|β〉 + |V〉| −

β〉, using BI and obtain the state |ψT〉. In the generation of
|ψT〉, we need 2 × (8 + 1) = 18 H-coh pairs on average. In
our scheme, we need resource states that are equivalent to
cluster states with Hadamard gates applied on some qubits.
For that purpose, we prepare a different type of triple
state, |ψ ′

T〉 = |+〉|C+
α 〉(|β〉 + | − β〉)+ |−〉|C+

iα〉(|β〉 − | −
β〉), which can be obtained by rotating the DV basis of
a H-coh pair from H/V to +/−. Coherent-state qubits are
consumed by the fusion operation when generating off-line
resource states. The fusion operation is performed by the
Bell measurement Bα , which can be implemented using
one beam splitter and two PNR detectors [41,131]. It fails
if both PNR detectors click on no photon, which occurs
with a probability of pα = exp(−2|β|2).

In the construction of the RHG lattice, we use two
kinds of three-qubit micro H-cluster states, |Cc

3〉 and
|Cs

3〉. Typical three-qubit cluster states can be rep-
resented as |C3〉123 = ĈZ12ĈZ23|+1, +2, +3〉. The micro
cluster states used in our scheme differ by Hadamard
gates from typical cluster states. A central micro cluster
state is given by |Cc

3〉102 = Ĥ1Ĥ2|C3〉102 = (|01, 00, 02〉 +
|11, 10, 12〉)/

√
2 and a side micro cluster state is

given by |Cs
3〉 = Ĥ1|C3〉102 = (|01, 00, 02〉 + |11, 10, 02〉 +

|01, 00, 12〉 − |11, 10, 12〉)/2. The qubit denoted by the sub-
script 0 in |Cc

3〉 serves as the data qubit or the ver-
tex of the RHG lattice, while the others will be con-
sumed by the hybrid fusion. The generation of |Cc

3〉 is
described in Fig. 3(c). We prepare three hybrid triples,
|ψT〉, where the second one has two coherent-state qubits
that can be obtained by splitting a larger coherent-state
qubit with amplitude

√
2β. Then, we perform Bell mea-

surements Bα on the coherent-state qubits to merge the
three hybrid qubits. We postselect on successful Bell
measurements only, so that no error is induced on off-line
resource states. The desired state |Cc

3〉 is obtained after

applying the appropriate Pauli corrections according to
the measurement outcome of Bα . The generation scheme
of |Cs

3〉 is almost the same but one needs to replace
the last triple state with |ψ ′

T〉. The average number of
unit resources to generate a three-qubit cluster state is
54(1 − pα)−2.

The generation of resource states for gate teleportation,
|�H 〉 and |�CZ〉, is described in Figs. 3(d) and 3(e), respec-
tively. The Hadamard resource |�H 〉 can be generated by
merging |ψT〉 and |ψ ′

T〉 using Bα . For the CZ resource
|�CZ〉, we need to prepare another type of resource that
has two coherent-state ancillas with different bases. To pre-
pare such a state, we merge a triple |H 〉|C+

α 〉(|β〉 + | −
β〉)+ |V〉|C+

iα〉(|β〉 − | − β〉) and an H-coh pair, |H 〉|β〉 +
|V〉| − β〉, using BI. Once BI is successful, we merge the
state with three |ψT〉’s using Bα . The average number of
unit resources to generate |�H 〉 and |�CZ〉 is, respectively,
36(1 − pα)−1 and (18 × 3 + (18 + 1)× 2)(1 − pα)−3 =
92(1 − pα)−3.

B. Implementation in other platforms

A DV-CV hybrid entangled pair is employed in our
approach as the basic building block of hybrid quan-
tum computation. In the CV part, a bosonic cat-code
state needs to be implemented and entangled with a DV
qubit such as a single photon. While we focus on all-
optical implementation in our analysis, we also emphasize
that our hybrid approach is applicable to other platforms.
CV qubits in cat states have been successfully demon-
strated in superconducting circuits [75–78,103–107],
ion traps [62,81,108–114], and circuit acoustic devices
[132–134]. In particular, error correction using the cat code
has been demonstrated in a superconducting circuit system
[76]. Another line of efforts in the superconducting cir-
cuit system is a stabilized cat qubit by two-photon driven
dissipation [75,77,135,136] or Kerr nonlinear interaction
[78,137–141]. By stabilizing the cat-code subspace, a bit-
flip error rate is exponentially suppressed, so that it suffices
to correct phase-flip error using a simple error-correction
code with low overhead [84–86,88,142]. In those schemes,
the implementation of a universal gate set preserving the
error bias enables hardware-efficient fault-tolerant quan-
tum error correction [84,86,139]. In the presence of CV
qubits, any interaction strong enough to entangle the CV
qubits with other DV qubits can produce the hybrid qubits.
For example, H-cat qubits can be generated by applying a
cross-Kerr interaction between DV and CV qubits, acting
as (|+〉 + |−〉)|C+

α 〉 → |+〉|C+
α 〉 + |−〉|C+

iα〉 = |+L〉.
While the required nonlinearity is also within the reach

of the current photonic technology [143,144], in other plat-
forms, strong nonlinear interactions between DV and CV
qubits are readily available. In trapped-ion systems, a vari-
ety of hybrid gate operations have been demonstrated,
coupling the internal states of atoms and the phonon modes
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[62,108,145,146]. In superconducting circuit QED, univer-
sal control of the oscillator mode in a microwave cavity has
been demonstrated using nonlinear interaction between the
oscillator mode and the transmon qubit [81,109,110,147].
Although those works have restricted the role of the
DV mode to the control qubit for manipulating the CV
mode, the coupling between the CV mode and a reliable
DV qubit will provide us a resource for hybrid quantum
computation.

V. DISCUSSION

We have introduced a scheme for fault-tolerant quantum
computing based on hybrid qubits combining both CV and
DV qubits. We have developed a fault-tolerant architec-
ture in photonic platforms by concatenating CV and DV
quantum error-correction codes. A hybrid qubit (H-cat) is
defined in the physical level by employing the bosonic
cat code in the CV part and a single photon in the DV
part. The effect of photon loss is readily correctable via
the cat code in each H-cat qubit and the error caused by
nonorthogonality is removed. We have proposed two types
of hybrid-fusion schemes as the building blocks for both
circuit-based and measurement-based quantum computing,
to design fault-tolerant architecture based on an outer DV
quantum error-correction code such as the Steane [98] and
surface codes [99–101], implemented in the RHG lattice.
We have shown that the proposed hybrid approach allows
us to achieve 4-times-higher loss thresholds than exist-
ing CV and hybrid approaches and is at least an order of
magnitude more resource efficient compared to previous
proposals in photonic platforms.

Bosonic encoding with coherent or cat states in CV
qubits generally exhibits a trade-off between the X error
and Z error rates, which are induced predominantly from
the ambiguity of the logical basis and photon loss, respec-
tively. Note that any cat states are more fragile to photon
loss, i.e., the Z error rate increases as the amplitude α
gets larger, while the bases become more distinguishable to
each other, i.e., the X error rate decreases [41,50,102,124].
In this circumstance, the proposed hybrid scheme aims
to reduce the X error rate significantly by increasing the
amplitude α while suppressing the increase of the Z error
rate by means of the bosonic cat-code encoding on the
physical level. This is how our scheme achieves the record-
high loss thresholds among the schemes using cat-state
encoding or their hybrid. Moreover, although the H-cat
qubit is 8 times as expensive as the H-coh qubit in photonic
platforms, as estimated in Sec. IV A, we have demon-
strated that employing the bosonic cat code in the physical
level (the H-cat) can also improve the resource efficiency
by about a factor of 13 compared to only coherent- or
cat-state encoding (the H-coh) in hybrid quantum comput-
ing. The resource efficiency of our scheme is due to the
fact that H-cat qubits inherit the benefit of bosonic CV

quantum error correction. In this sense, a comparison of
our scheme with the MBQC with the cat code only is to
be expected in further work; this has not been rigorously
studied so far and is currently being investigated in the
photonic platform [148].

In our analysis of the thresholds, the error model in
the physical level has been estimated mainly based on
the effect of photon loss, which is the predominant source
of error in the photonic platform. We note that other
types of errors, such as phase shifting, are hardly caused
by hybrid-fusion operations, i.e., in beam splitters and
photon-number-counting detectors. On the other hand,
the phase error that may occur in logical gate opera-
tions is detrimental and should be suppressed. A set of
bias-preserving gate operations can be considered to pre-
vent further propagation of errors to other hybrid qubits
[84,86,139]. A controlled rotation can be also employed
to suppress phase error if sufficient nonlinear interac-
tion is available, as illustrated in Ref. [91]. Further, in
the fault-tolerance architecture, any errors in the logical
level caused as a result of physical-level or universal gate
operations are handled by outer quantum error-correction
codes, e.g., in our simulation, the surface code in the RHG
lattice.

To realize full fault-tolerant quantum computing with H-
cat qubits, encoding with amplitude α � 2 in the CV part
is required, while its maximum performance is achieved
with α ≈ 2.93, as presented in Fig. 2(b). Despite still being
challenging in photonic platforms, there has been a lot of
progress in generating cat states with large amplitude both
experimentally [97,149,150] and theoretically [151–154].
The PNR detector is another requirement in the realization
of our scheme. The maximum performance of our scheme
requires the resolution n̄ = α2 ≈ 8.58, which is within the
reach of currently available detectors with a resolution of
up to 16 photons and 98% efficiency [155]. We thus expect
that our hybrid scheme will be available with current and
near-term devices.

While we have discussed mainly hybrid quantum com-
putation in all-photonic platforms, we emphasize again
that our scheme is generally applicable to other hybrid plat-
forms including superconducting and trapped-ion systems,
details of which are discussed in Sec. IV B. Furthermore, it
may be valuable to extend our scheme to combine with the
fault-tolerant architecture concatenated with the bosonic
cat code in superconducting systems [86]. Considering the
biased errors under loss in cat-state encoding in the CV
part, other DV quantum error-correction codes may be also
useful for concatenation in architecture, such as repetition
[84,86,142] and XZZX [156–158] codes to enhance the
loss thresholds, as well as the resource efficiency, further.
Another interesting method to pursue is to explore hybrid
encoding using squeezed-cat qubits [107,159–161], which
has favorable error-bias properties with a reduced excita-
tion number and the partial correction of excitation loss
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errors. As the thresholds have been widely investigated
for stabilized cat qubits [86,88,142,157] and for GKP
qubits [89,90,92,96] in superconducting systems, a hybrid
approach incorporating DV qubits would be expected to
improve their performance. For hybridization between
the CV and DV qubits, nonlinear interactions, which are
readily available in superconducting or trapped-ion sys-
tems [62,81,108–110,145–147], can play an important
role. A hybrid architecture compromising GKP qubits and
squeezed vacuum states can be also considered in the
photonic platform [94].

The hybrid approach using CV-DV hybrid qubits is
also generally useful and can be extended further for
other quantum information-processing tasks, e.g., quan-
tum communications or sensing, which we leave as future
work. We believe that our approach opens up a novel
way to bring about a synergy between CV and DV
hybrid platforms toward scalable fault-tolerant quantum
computing.
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APPENDIX A: HYBRID FUSION

The hybrid-fusion operation is a key ingredient of
our hybrid quantum computation, which also implements
photon-loss correction. In this appendix, we present the
details of hybrid fusion. The fusion is composed of two
Bell measurements, one for DV qubits and the other for
cat-code qubits.

1. Hybrid-fusion operation

The hybrid-fusion operation can be done by performing
Bell measurement on CV qubits and DV qubits, i.e., BC and
BD, respectively. Hybrid Bell states can be represented, in
the basis of Bell states of CV and DV qubits, as

|�±
L 〉 = 1√

2

(|+, C+
α 〉|−, C+

iα〉 ± |−, C+
iα〉|+, C+

α 〉)

= 1
2

[
(|�−

D〉 + |�−
D〉)

(
|�+

C 〉
2N B+

C

+ |�−
C 〉

2N B−
C

)

± (|�−
D〉 − |�−

D〉)
(

|�+
C 〉

2N B+
C

− |�−
C 〉

2N B−
C

)]

= 1
2

(
|�−

D〉|�̃±
C 〉 + |�−

D〉|�̃∓
C 〉
)

(A1)

and, similarly,

|�±
L 〉 = 1

2

(
|�+

D〉|�̃±
C 〉 + |�+

D〉|�̃∓
C 〉
)

. (A2)

Let us first consider that the CV Bell state is determined
without ambiguity. Then, the letter of the hybrid Bell state
is determined in the same way as that of the CV part. To
determine the sign, we only need the letter information of
the DV Bell state, i.e., the sign of the CV part and the
hybrid is the same (flipped) if the letter of the DV part is�
(�). Even though the DV Bell measurement BD fails, the
letter of the DV part is perfectly distinguished and there-
fore we can always determine the hybrid Bell state without
ambiguity.

If there is a letter ambiguity in the CV Bell mea-
surement, the ambiguity is removed if we have the sign
information of the DV part, i.e., BD succeeds. The ambi-
guity only remains when BC has an ambiguity and BD
fails and it causes an X error with the rate PX = 1

2 pX .
We summarize the outcome decision of hybrid fusion in
Fig. 4(d).

2. Fusion in the CV part

The cat code is designed to protect qubits against photon
loss [68,69], which is the predominant type of error in opti-
cal systems. The key idea of the four-component cat code
is that we encode qubits in the subspace of even-photon-
number states and an error is detected when the parity
changes. Specifically, the code space is defined by even cat
states

{|C+
α 〉, |C+

iα〉
}
, where |C+

α 〉 = N+
C (|α〉 + | − α〉), with

the normalization factor N+
C ≡ 1/

√
2(1 + e−2α2

), and |α〉
is a coherent state with amplitude α. A photon loss can be
modeled by application of the annihilation operator, so that
the state evolves into the odd cat states as â|C+

α 〉 ∝ |C−
α 〉 =

N−
C (|α〉 − | − α〉), where N−

C ≡ 1/
√

2(1 − e−2α2
) is the

normalization factor. Further, photon loss induces a phase
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(a) (d)

(b)

(c)

B B B B

FIG. 4. (a) Schemes of type-I fusion operation BI and type-II fusion operation BD: PBS, polarizing beam splitter; QWP, quarter-
wave plate; HWP, half-wave plate. On-off detectors suffice for Bell measurements in ideal cases, while detectors are required to resolve
up to two photons in order to distinguish photon-loss cases. (b) The scheme for the Bell measurement of cat-code qubits using one
beam splitter (BS) and two PNR detectors [115]. The measurement outcome is determined by following the table. (c) The scheme
for the Bell measurement of cat-code qubits using four BSs, one π/2 phase shifter (PS), and four PNR detectors [116]. Two ancilla
modes, A′ and C′, are prepared in vacuum. The decision of the measurement outcome is summarized in the table. We explicitly indicate
nj , where j ∈ {A, C, A′, C′}, other than 0 if the detector clicks on at least one photon. (d) The outcome decision of the hybrid-fusion
operation. The decision is made by collecting the information of BC and BD .

shift on |C+
iα〉, i.e., â|C+

iα〉 ∝ i|C−
iα〉, which may cause a Z

error unless the parity change is detected by the mea-
surement. Thus a parity measurement can play the role
of syndrome measurement to detect a photon-loss event.
Such a measurement has been demonstrated in the super-
conducting circuit system via nonlinear interaction with an
ancilla transmon qubit [76].

In optical systems, two separate works have recently
proposed schemes for Bell measurement of the four-
component cat code [115,116], which also detects single-
photon loss. The cat-code Bell measurement distinguishes
four Bell states, |�±

C 〉 = N B±
C (|C+

α 〉|C+
iα〉 ± |C+

iα〉|C+
α 〉) and

|�±
C 〉 = N B±

C (|C+
α 〉|C+

α 〉 ± |C+
iα〉|C+

iα〉), with the normaliza-

tion factor N B±
C = coshα2/

√
2(cosh2 α2 ± cos2 α2). The

schemes only use linear optical elements and PNR

detectors, as depicted in Figs. 4(b) and 4(c). Measure-
ment patterns on PNR detectors differ by the parity of
the input ports. In what follows, we will use the notation
{even(odd), even(odd)} to represent the photon-number
parity of input modes A and C and define N to be the total
number of photons detected.

a. Scheme of Hastrup and Andersen [115]

The scheme proposed by Hastrup and Andersen (HA) is
composed of one beam splitter and two PNR detectors, as
depicted in Fig. 4(b). The transformation of coherent states
by a beam splitter is described as

|αA〉A|αC〉C →
∣∣∣
αA + αC√

2

〉

A

∣∣∣
αA − αC√

2

〉

C
. (A3)
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The PNR detectors count the photon numbers of modes A
and C, which we denote by nA and nC, respectively. If the
input state is a superposition of |C+

α 〉|C+
α 〉 and |C+

iα〉|C+
iα〉,

where every term in the coherent-state basis is given by
either αA = αC or αA = −αC, at least one of the detectors
must click on no photon. In other words, if nA = 0 or nC =
0, we guess that the letter of the input Bell state is � and,
otherwise, we guess that the letter is �. On the other hand,
the sign can be distinguished by the total number of photon
detected, N . In the ideal case without photon loss, where
the input parity is {even, even}, a simple calculation yields
that the sign is determined as + for N = 4k and − for N =
4k + 2, where k is a nonnegative integer.

Let us consider the case in which a single photon is
lost from one of the modes A or C, where the input par-
ity becomes {odd, even} or {even,odd}. The photon loss
only changes the relative phase between superposed coher-
ent states but does not change the amplitude of coherent
states in phase space. Therefore, we can apply the same
letter-decision strategy. Due to the single-photon loss, the
sign is determined as + for N = 4k + 3 and − for N =
4k + 1. The outcome decision is summarized in the table
of Fig. 4(b), for the photon-loss case as well as for the ideal
case.

If a single photon is lost from each input port so that
the input parity is {odd, odd}, we follow the outcome deci-
sion of the ideal case because N is even. A Z error is
induced by a phase shift on |C+

iα〉 and it can be corrected
only if the measurement pattern distinguishes whether the
input parity is {even, even} or {odd, odd}. In the case in
which both nA and nC are nonzero, a straightforward cal-
culation yields that nC = nA (mod 4) for {even, even} input
and nC = nA + 2 (mod 4) for {odd, odd} input and thus
the Z error is correctable. Otherwise, the Z error remains
undetected, the probability of which is given by

pZ|OO(α) = 1
2

+ 1
2

csch2 α2(coshα2 − cosα2), (A4)

where the subscript OO represents the fact that the Z error
occurs for {odd, odd} input.

There exists a small probability of misidentifying � as
� because a no-photon click can occur for a coherent state
with nonzero amplitude. Once we obtain the measurement
pattern with nA = 0 or nC = 0, we have an ambiguity in
the letter, which causes an X error. We can locate such

an X error and denote by ploc and pX , respectively, the
probability of locating the X error and the total X error
rate. In general, the probability depends on the input state
but in our hybrid quantum computation, it suffices to cal-
culate the probability for the basis states |C±

α 〉 and |C±
iα〉,

because they are accompanied by orthogonal DV qubit
states |+〉 and |−〉, respectively. Even though the DV qubit
is lost, the CV qubit remains in a mixture of |C±

α 〉 and
|C±

iα〉 due to dephasing. We assume that the input state is
equally distributed among |C±

α 〉|C±
α 〉, |C±

α 〉|C±
iα〉, |C±

iα〉|C±
α 〉,

and |C±
iα〉|C±

iα〉. A direct calculation yields that the locatable
error probability is given by

ploc|EE(α) = 1
2

+ 1
2

sech2 α2(coshα2 − sinα2),

ploc|EO(α) = 1
2

+ 1
2

sech2,

ploc|OO(α) = 1
2

+ 1
2

csch2 α2(coshα2 − cosα2),

(A5)

where the subscripts EE, EO, and OO denote, respectively,
the input parities {even, even}, {even, odd}, and {odd, odd}.
Further, the total X error rate is written as

pX |EE(α) = 1
2

sech2 α2(coshα2 − sinα2),

pX |EO(α) = 1
2

sech2,

pX |OO(α) = 1
2

csch2 α2(coshα2 − cosα2).

(A6)

It is straightforward to observe that ploc = 1
2 + pX for any

input parity, where the term 1
2 represents the fact that input

states |C±
α 〉|C±

α 〉 and |C±
iα〉|C±

iα〉 always fall into unambigu-
ous measurement patterns and the latter term represents the
probability of misidentifying � as �.

b. Scheme of Su et al. [116]

The scheme proposed by Su, Dhand, and Ralph (SDR)
is composed of two ancilla modes prepared in vac-
uum, four beam splitters, one phase shifter, and four
PNR detectors, as depicted in Fig. 4(c). The transfor-
mation of coherent states by linear optical elements is
described as

|αA〉A|αC〉C|vac〉A′ |vac〉C′ →
∣∣∣
αA + αC

2

〉

A

∣∣∣
αA − αC

2

〉

C

∣∣∣
−1 + i

2
√

2
αA + 1 + i

2
√

2
αC

〉

A′

∣∣∣
1 + i

2
√

2
αA + −1 + i

2
√

2
αC

〉

C′ , (A7)

where |vac〉 represents a vacuum state. The PNR detectors count the photon numbers of modes A, C, A′, and C′, which
we denote by nA, nC, nA′ , and nC′ , respectively. In the basis of the four-headed cat code, at least one of the detectors must
click on no-photon, such that
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nA = 0, if αC = −αA,
nC = 0, if αC = αA,
nA′ = 0, if αC = −iαA,
nC′ = 0, if αC = iαA.

(A8)

Thus, if we obtain a measurement pattern with nA′ = 0 or
nC′ = 0, we guess that the input state is a superposition of
|C+
α 〉|C+

iα〉 and |C+
α 〉|C+

iα〉, i.e., the letter of the Bell state is
�. Similarly, if nA = 0 or nC = 0, we guess that the letter
of the input Bell state is �. The sign is determined as +
for N = 4k and − for N = 4k + 2 in the ideal case. In the
case of single-photon loss, the letter is determined in the
same way and the sign is determined as + for N = 4k + 3
and − for N = 4k + 1. The decision of the measurement
outcome is summarized in the table of Fig. 4(c).

The Z error induced from an {odd, odd} input is cor-
rectable by a few measurement patterns. For the measure-
ment pattern with nA > 0, nC > 0, and nA′ = nC′ = 0, nA
and nC are related by nA = nC (mod 4) for {even, even}

input, while nA = nC + 2 (mod 4) for {odd, odd} input. For
the measurement pattern with nA = nC = 0, nA′ > 0, and
nC′ > 0, we can distinguish the input parity in a similar
way.

We can distinguish one of four Bell states with cer-
tainty if the no-photon click occurs only on one side of
detectors {A, C} or {A′, C′}. However, in some cases, a
no-photon click may occur on both sides of the detec-
tors, because there is chance of a no-photon click on
other modes in coherent states with nonzero amplitude.
In such cases, we have an ambiguity on the letter of the
Bell state. For example, for the measurement pattern with
nA = nA′ = 0, nC > 0, and nC′ > 0, the projected state is
2−nC/2|�±

C 〉 + 2−nC′/2|�±
C 〉. If nC′ > nC, we take the state

with higher probability |�±
C 〉, assigning an X error rate

pX = 2−nC′ /(2−nC + 2−nC′ ) and vice versa. If nC = nC′ , we
randomly choose one of two states |�±

C 〉 or |�±
C 〉, assign-

ing an X error rate pX = 1
2 . The same strategy is applied

for the other measurement patterns as well.
The probability of an uncorrectable Z error is given by

pZ|OO(α) = csch2 α2
(

1
2 cosh(2α2)− coshα2 + 2 cosh α2

2 − 2 cos α
2

2 + 1
2

)
. (A9)

The probability of obtaining measurement patterns with an X error is written as

ploc|EE(α) = sech2 α2
(

cosh 3α2

2 − 1
2 coshα2 + cos α

2

2 − 1
2

)
,

ploc|EO(α) = sech
α2

2
+ 1

2
sechα2

(
sech2 α

2

2
− 1

)
,

ploc|OO(α) = csch2 α2
(

cosh 3α2

2 − 1
2 coshα2 − cos α

2

2 + 1
2

)
.

(A10)

Since the explicit calculation of the total X error rate pX
is not straightforward, we perform a numerical calculation
instead.

In Fig. 5, we plot the locatable error rate ploc and the X
error rate pX for both the HA scheme and the SDR scheme.
The error rates are slightly different for different input par-
ities but they almost overlap, especially when α > 2. It is
shown that the total X error rate exponentially decreases
for both schemes, while the HA scheme exhibits much a
lower error rate. On the other hand, the probability of locat-
ing the error is much lower for the SDR scheme, while it is
almost constant for the HA scheme even for large α. That
is because the measurement patterns to detect � always
have an ambiguity of misidentifying � even though the
actual error rate is very small. Therefore, the SDR scheme
is beneficial in the case in which we need an unambiguous
discrimination of the Bell state without error, while the HA
scheme works better when we need to suppress the actual
error rate without postselection.

FIG. 5. The error rates in the Bell measurement of cat-code
qubits using the HA scheme (blue) and the SDR scheme (purple).
The solid curves represent the total X error rate and the dashed
curves represent the probability of locating the X error. Each
curve is an overlap of three curves representing different input
parities, while they are almost the same for large α.
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3. Fusion in the DV part

For the polarization qubit, we employ two types of Bell
measurements, called the type-I fusion operation and the
type-II fusion operation [14], depicted in Fig. 4(a). The
type-I fusion operation BI performs a partial Bell measure-
ment that outputs one qubit from a two-qubit input. If only
one is detected, the operation is described as |+〉〈H |〈H | −
|−〉〈V|〈V| for an H click or as |H 〉〈H |〈H | + |V〉〈V|〈V| for a
V click. If two photons or no photons are detected, the mea-
surement fails, which occurs with probability 1/2. This
operation plays a role of connecting qubits in two sep-
arate cluster states. In the resource generation described
in Sec. IV A, BI is employed to merge hybrid entangled
states.

The type-II fusion operation BII, or BD in this paper, per-
forms an incomplete Bell measurement that distinguishes
only two of four Bell states. If one detector from the
upper two and another from the lower two click at the
same time, the measurement succeeds, yielding the results
|�+

D〉 = 1√
2
(|H 〉|V〉 + |V〉|H 〉) for (H , V) or (V, H) clicks

and |�−
D〉 = 1√

2
(|H 〉|V〉 − |V〉|H 〉) for (H , H) or (V, V)

clicks. If two photons are detected simultaneously at upper
or lower detectors, the measurement fails, but we can
obtain the information that the state is one of two Bell
states |�±

D〉 = 1√
2
(|H 〉|H 〉 ± |V〉|V〉), i.e., the sign is �. In

an ideal case, the failure occurs with probability 1/2. If any
of the DV photons are lost, BD can only detect one photon
or no photons and the information on the input DV Bell
state is completely lost. To distinguish between the photon
loss and the failure, detectors are required to resolve up to
two photons.

APPENDIX B: GATE OPERATIONS OF HYBRID
QUBITS

In this appendix, we present gate operations of hybrid
qubits, required for universal quantum computation. In
order to perform universal quantum computation, we
choose the gate set {X̂ , Ẑθ , Ĥ , ĈZ}. X̂ and Ẑθ can be imple-
mented only using linear optical elements, as depicted in
Fig. 6(a). The Pauli-X can be implemented by applying
bit-flip operations on both CV and DV qubits, using a
polarization rotator acting as |+〉 ↔ |−〉 and a π/2 phase
shifter acting as |C+

α 〉 ↔ |C+
iα〉. The arbitrary rotation along

the Z axis, Ẑθ , can be done by applying the θ phase shift
only on the DV qubit as |+〉 → |+〉, |−〉 → eiθ |−〉, imple-
mented by a half-wave plate sandwiched by two quarter-
wave plates. To perform Hadamard (Ĥ ) and controlled-Z
(ĈZ) gates, we employ the gate-teleportation technique.

The essential ingredients for the teleportation are an
entangled state and the Bell measurement, as depicted in
Fig. 6(b). The hybrid Bell measurement is done by the
fusion operation that we have described in Appendix A.
We accomplish the teleportation by applying appropriate

(a) (b)

FIG. 6. (a) The optical implementation of single-qubit-rotation
gates. X̂ can be implemented using a half-wave plate (HWP) on
the DV qubit and a π phase shifter (PS) on the CV qubit. Ẑθ can
be implemented using an HWP sandwiched by two quarter-wave
plates (QWPs), where the rotation angle θ is adjusted by rotat-
ing the HWP. (b) The schematics for the teleportation of hybrid
qubits. The measurement outcome of hybrid fusion is sent via the
classical channel and is used for Pauli correction.

Pauli correction according to the measurement outcome of
the hybrid fusion. In fact, we do not need to physically
perform Pauli operations; they can be done by updating
the Pauli frame [15]. The gate teleportation can be done by
employing an appropriate entangled channel. For instance,
the Hadamard gate Ĥ can be performed using the resource
state |�H 〉 ∝ |0L, 0L〉 + |0L, 1L〉 + |1L, 0L〉 − |1L, 1L〉 and
the ĈZ gate can be performed with two teleportation
circuits using |�CZ〉 ∝ |0L, 0L, 0L, 0L〉 + |0L, 0L, 1L, 1L〉 +
|1L, 1L, 0L, 0L〉 − |1L, 1L, 1L, 1L〉. The generation scheme of
the resource states is presented in Sec. IV A.

The measurement in the Z basis can be performed by
the measurement on the DV qubit using a polarization
measurement. The phase measurement on the CV qubit
may also accomplish the Z-basis measurement but requires
nonlinear operations [91]. The heterodyne measurement
can be a candidate for the cat-code measurement, taking
practical advantages at the cost of a high probability of
misreading.

APPENDIX C: ERROR MODEL

1. State evolution under lossy channel

Photon losses are major obstacles in optical quantum
computing. The interaction with the lossy environment is
described by the master equation [162]

dρ
dt

= γ
∑

j

(
âj ρâ†

j −
1
2

â†
j âj ρ − 1

2
ρâ†

j âj

)
, (C1)

where j runs over the DV and CV modes and the loss
rate is given by η = 1 − exp(−γ t). We introduce the for-
mula for the evolution in the coherent-state basis, written
as [162]

|α〉〈β| → 〈β|α〉η|
√

1 − ηα〉〈
√

1 − ηβ|. (C2)
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With this formula, a straightforward calculation leads to
the expression for the evolution of an arbitrary hybrid
qubit, |ψ〉 = a|+〉|C+

α 〉 + b|+〉|C+
iα〉, written as

ρ = (1 − η)

3∑

l=0

Al|ψ ′
(l)〉〈ψ ′

(l)| + η
(
B0τ(0) + B1τ(1)

)
,

(C3)

where

|ψ ′
(0)〉 = a|+〉|C+

α′ 〉 + b|−〉|C+
iα′ 〉,

|ψ ′
(1)〉 = a|+〉|C−

α′ 〉 + ib|−〉|C−
iα′ 〉,

|ψ ′
(2)〉 = a|+〉|C+

α′ 〉 − b|−〉|C+
iα′ 〉,

|ψ ′
(3)〉 = a|+〉|C−

α′ 〉 − ib|−〉|C−
iα′ 〉,

τ(0) = |vac〉〈vac| ⊗ (|a|2|C+
α′ 〉〈C+

α′ | + |b|2|C+
iα′ 〉〈C+

iα′ |
)

,

τ(1) = |vac〉〈vac| ⊗ (|a|2|C−
α′ 〉〈C−

α′ | + |b|2|C−
iα′ 〉〈C−

iα′ |
)

.
(C4)

Note that the amplitude of the coherent states is reduced to
α′ = √

1 − ηα. The coefficients are explicitly given by

A0 = coshα′2

2 coshα2

{
cosh(ηα2)+ cos(ηα2)

}
,

A1 = sinhα′2

2 coshα2

{
sinh(ηα2)+ sin(ηα2)

}
,

A2 = coshα′2

2 coshα2

{
cosh(ηα2)− cos(ηα2)

}
,

A3 = sinhα′2

2 coshα2

{
sinh(ηα2)− sin(ηα2)

}
,

B0 = coshα′2 cosh(ηα2)

2 coshα2 ,

B1 = sinhα′2 sinh(ηα2)

2 coshα2 .

(C5)

The coefficients A0 + A2 = B0 and A1 + A3 = B1 represent
the probability that the CV qubit resides in the even and
odd space, respectively.

When l photons are lost from the CV qubit, the state
evolves into |ψ ′

(l)〉 ∝ (I ⊗ âl)|ψ ′
(0)〉. Because the state after

four-photon subtraction returns to the original state, i.e.,
|ψ ′

(4)〉 and |ψ ′
(0)〉 are equivalent up to normalization, the

state evolves cyclically into four states with l = 0, 1, 2, 3. If
a DV photon is lost, we lose the phase information, which
results in the mixed state τ(m), where m = 0 (1) if even
(odd) photons are lost from the CV qubit.

2. Error analysis

In Sec. A 2, we discuss the X error rate pX that occurs
in BC for different parities of the input states. Using the

weight of the even (odd) parity state after the loss channel,
B0 (B1), we obtain the failure probability of BC for noisy
input states, written as

p ′
X (α

′) = B2
0pX |EE(α

′)+ B2
1pX |OO(α

′)+ 2B0B1pX |EO(α
′).

(C6)

The X error rate of hybrid fusion becomes 1
2 p ′

X (α
′) if both

DV photons are detected during BD. That is because we
can remove the ambiguity in the Bell measurement once
BI succeeds. If any of the input DV photons are lost, the X
error rate is just given by p ′

X (α
′), because we cannot obtain

any information from the DV photon. Therefore, the total
X error rate of hybrid fusion after loss is written as

PX = (1 − η)2
p ′

X (α
′)

2
+ (2η − η2)p ′

X (α
′)

= 1 + 2η − η2

2
p ′

X (α
′). (C7)

Phase errors occur due to the photon loss. Let us first
assume that lA photons are lost at CV mode A and that no
photon is lost at CV mode C. As discussed in Sec. A 2, no
error occurs when lA = 0, 1 (mod 4) and an unlocatable Z
error occurs when lA = 2, 3 (mod 4), where the modulo 4 is
taken due to the cyclic behavior of the cat code. The same
analysis can be made if lC photons are lost at CV mode C
and no photon is lost at CV mode A. If photons are lost at
both CV modes, by taking the phase shift induced on both
modes into consideration, an unlocatable Z error occurs
when lA + lC = 2, 3 (mod 4). Once we recognize that the
input parity is changed to {odd, odd} from the measurement
pattern of BC , we apply a Z gate to correct the phase error.
It corrects the error properly when lA + lC = 2 (mod 4) but
it induces an unwanted error when lA + lC = 0 (mod 4).
Taking all of this together, the unlocatable Z error rate is
written as

PZ(unloc) = (1 − η)2
[
2(A0 + A1)(A2 + A3)

+ (A1 − A3)
2pZ|OO(α

′)
]
, (C8)

where the first term (1 − η)2 represents the fact that nei-
ther of the DV photons are lost. On the other hand, if
we detect that any of the DV photons are lost, a dephas-
ing error occurs, which is modeled by a locatable Z error
with probability 1/2. The rate of the locatable Z error is
written as

PZ(loc) = 1
2
[
1 − (1 − η)2

]
. (C9)

3. Error propagation by fusion operation

To understand error propagation in the cluster state, we
briefly introduce the stabilizer formalism. In typical clus-
ter states, stabilizers are given by the tensor product of
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(a) (b)

FIG. 7. The propagation of errors from (a) step-1 fusion and
(b) step-2 fusion. We only track error propagation resulting in Z
errors on data qubits. Note that qubits with Hadamard gates are
shaded with yellow.

the Pauli-X operator of a qubit and the Pauli-Z opera-
tors of its adjacent qubits. The micro cluster states used in
our scheme differ from typical cluster states by Hadamard
gates, which exchange the role of the X and Z operators.
For example, in the central micro cluster state |Cc

3〉102 =
H1H2|C3〉102, where Hadamard gates are applied on the
side qubits 1 and 2, the stabilizers are given by Z1Z0, Z0Z2,
and X1X0X2. If an error occurs on a qubit, it is propa-
gated into adjacent qubits in such a way that the stabilizer
statistics are preserved [123]. By following the stabilizer
formalism, we find a simple propagation rule for micro
cluster states: when a qubit is measured by a fusion opera-
tion, the error in the fusion, X or Z, induces the same type
of error on its adjacent qubit if the two qubits are in dif-
ferent Hadamard configurations and otherwise, the type of
error is changed.

In our simulation, we track only Z errors of data qubits
because we only simulate errors on primal lattices and
X errors are not detected by Pauli-X measurements. We
show error propagation during RHG-lattice construction
in Fig. 7. In step 1, two fusion operations are performed,
respectively, on the side qubits of |Cc

3〉. A Z error in the
fusion causes a Z error on the data qubit and an X error
causes errors on the side qubits of |C∗

5〉. Errors on the side
qubits further propagate to the adjacent data qubits, caus-
ing Z errors in the next step. In step 2, a Z(X ) error in the
fusion propagates, causing a Z error on the data qubit in
the direction with (without) the Hadamard gate, following
to the propagation rule.

APPENDIX D: SIMULATION DETAILS

1. RHG lattice

Here, we describe the simulation details of the RHG
lattice. We perform a Monte Carlo simulation to find the
logical error rate and the sequence of each trial is as
follows:

(1) We assign the Z error rate to each primal qubit
j on the lattice and denote it by qZ,j . The error
rate includes the propagated one from the fusion
operation as well as the Z error due to photon losses.

(2) The errors on qubits are randomly sampled accord-
ing to the error rate. We determine the value of the
syndrome measurement on each cell using the errors
of the qubits located on faces of the cell.

(3) The syndromes are decoded to find the error
pattern using weighted minimum-weight perfect
matching [129] in the PyMatching package [130],
where the weight for each qubit is given by
log

[
(1 − qZ,j )/qZ,j

]
.

(4) Once we remove the detected errors, the remain-
ing error chains connect two opposite x boundaries,
which are primal. If the number of remaining error
chains is odd, we identify a logical error.

By repeating the trial 3 × 105 times, we decide the logical
error rate pL. The logical error rates are calculated with
code distances d = 3, 5 while varying the loss rate η. The
loss threshold ηth is obtained by finding the largest η such
that pL decreases with d.

2. Steane code

For circuit-based quantum computation, we simulate a
telecorrection circuit of a seven-qubit Steane code with
several levels of concatenation. The circuit is composed
of the preparation of |+L〉, CZ-gate, H -gate, and X -basis
measurement. In our simulation, we postselect the success-
ful gate teleportation without error to prevent errors from
propagating further. Therefore, only unlocatable errors
remain: one is due to photon loss and the other is from
the Z error of the fusion operation. In the H -gate telepor-
tation, a Z error of the fusion operation induces an X error
on the output qubit because the Hadamard gate is applied
on the output qubit. In the CZ-gate teleportation, a Z error
of each fusion operation induces a Z error on one of the
output qubits. When qubits are stored in quantum memory,
photon loss induces a Pauli-Z error.

We find the logical error rate of locatable and unlocat-
able errors using the Monte Carlo method. In the first level
of concatenation, we use the error rates of H-cat qubits
with the loss rate η and the amplitude α. The resulting
error rates are used for the next level of concatenation.
If the error rates tend to decrease for further levels of
concatenation, we ensure that error correction works in a
fault-tolerant way with the given value of η and α. We
repeat the simulation while varying η and α and obtain the
loss threshold curve as shown in Fig. 8.

It is shown that the HA scheme achieves a slightly
higher threshold than the SDR scheme. However, in the
circuit-based error correction, the HA scheme is not effi-
cient because we postselect the successful gate telepor-
tation without error and the located error rate of the
HA scheme is of constant order, as shown in Fig. 5.
Rather, the SDR scheme is more appropriate due to the
near-deterministic success probability of fusion operation.
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FIG. 8. The threshold curve for the Steane-code simulation
with the HA and SDR schemes. Points marked as stars rep-
resent the highest loss threshold. In the inset, we present the
way of determining the threshold curve. From a Monte Carlo
simulation with parameters η and α, we decide if parameters
are accepted (rejected) for fault-tolerant computation, which are
marked as blue (orange). The threshold curve is determined to be
the boundary between two regions.
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