
Active Learning on Neural Networks through
Interactive Generation of Digit Patterns and Visual

Representation

Dong H. Jeong
Department of Computer Science and Information Technology

University of the District of Columbia
Washington D.C., USA

djeong@udc.edu

Jin-Hee Cho
Department of Computer Science

Virginia Tech.
Falls Church, USA

jicho@vt.edu

Feng Chen
Department of Computer Science

University of Texas at Dallas
Richardson, USA

feng.chen@utdallas.edu

Audun Jøsang
Department of Informatics

University of Oslo
Oslo, Norway

audun.josang@mn.uio.no

Soo-Yeon Ji
Department of Computer Science

Bowie State University
Bowie, USA

sji@bowiestate.edu

Abstract—Artificial neural networks (ANNs) have been broadly
utilized to analyze various data and solve different domain
problems. However, neural networks (NNs) have been consid-
ered a black box operation for years because their underlying
computation and meaning are hidden. Due to this nature, users
often face difficulties in interpreting the underlying mechanism of
the NNs and the benefits of using them. In this paper, to improve
users’ learning and understanding of NNs, an interactive learning
system is designed to create digit patterns and recognize them in
real time. To help users clearly understand the visual differences
of digit patterns (i.e., 0 ∼ 9) and their results with an NN,
integrating visualization is considered to present all digit patterns
in a two-dimensional display space with supporting multiple user
interactions. An evaluation with multiple datasets is conducted to
determine its usability for active learning. In addition, informal
user testing is managed during a summer workshop by asking
the workshop participants to use the system.

Index Terms—Active Learning, Neural Networks, Visualiza-
tion, Digit Patterns

I. INTRODUCTION

Artificial Intelligence (AI) has significant impacts in many

disciplines, such as medicine [1], education [2], and earth-

quake [3], and so forth. AI enables machines to learn data to

perform various tasks to function like humans [4]. Examples of

AI-enabled technologies include abnormal behavior detection

in banking transactions, home protection using camera-based

monitoring and object recognition, customized learning mech-

anisms providing tailored lessons to students, and driving as-

sistance with upgraded and autonomous driving technologies.

AI also has received much attention as a tool in education to

improve students’ learning and knowledge acquisition [5].
Despite the powerful capability of AI and its numerous

applications in our daily lives, AI has been known as a black

This material is based upon work supported by the National Science
Foundation under Grant No. (2107449, 2107450, and 2107451).

box tool because it is not easy to understand the logic behind

its internal computations [6]. This motivated researchers to

design trustworthy and interpretable AI systems [7], [8].

However, it is still difficult to understand AI systems due to the

well-known issue of transparency [9] because machine or deep

learning algorithms used in AI models are highly complex.

For instance, neural networks (NNs) or deep NNs (DNNs)

often include thousands of artificial neurons to learn from

and process large amounts of data. Because of the numerous

neurons and their complex interconnections, it is difficult to

determine how decisions are made [10]. Understanding how

the AI models work and generate resulting predictions is a

critical step in interpreting the meaning of AI’s outcomes. But,

it remains challenging to understand data using a predictive

model that finds patterns from training the data and analyzes

the difference between predictions and the patterns.

This paper aims to integrate AI technologies into learn-

ing through hands-on practices. Specifically, designing an

interactive learning system is considered to assist users in

understanding NNs clearly through multiple learning activities.

To support an interactive learning environment on NNs, we

have designed the system with a pattern generator, where

a user can generate digit patterns. In addition, providing a

visual representation of the patterns is considered to help the

user understand the differences among the generated patterns.

Whenever the user creates patterns, the user can experience

NN training and recognition in real time. To represent the

patterns in a 2D display space, Principal Component Analysis

(PCA) was used to reduce the dimensions of the patterns

and present them in a lower-dimensional space [11], [12].

By interactively navigating the display space, the user can

identify the similarities and differences between the patterns.

To evaluate the system’s effectiveness for active learning,



2400-digit patterns are generated and used to test the system.

A broadly known handwritten digits dataset (called MNIST)

is also used to determine the capability of supporting a real-

time interactive digits analysis. To understand the usefulness

of the system, informal user testing was organized during

a summer workshop by asking the workshop participants to

use the system. We found that they understood NNs well by

initiating active learning with the system.

The rest of this paper is structured in six sections. Section II

provides previous studies on designing educational systems

for understanding AI. In Section III, the designed system is

explained. Section III includes a detailed explanation about the

applied neural networks and visual representation. Section V

shows the conducted evaluation of interactive learning on

recognizing digits in real time. After discussing interesting

insights in Section VI, we conclude this paper by providing

possible future work in Section VII.

II. RELATED WORK

Due to high interest in AI, most education institutes, in-

cluding colleges or high schools, have introduced new AI

degree programs [13]. AI has become a powerful paradigm in

scientific research communities due to its diverse applications

in broad and various domains [14]. Due to this popularity,

many students have shown a strong interest in understanding

AI. In particular, they have exposed their high interest in deep

learning (DL) because it has been commonly used to detect

complex patterns in high-dimensional data with little or no

human interventions. However, understanding the underlying

ideas of the output prediction in DL is not trivial due to the

black-box nature of the AI models [15]–[17]. Li and et al.

[18] explored various visualization techniques to understand

the structure of neural loss functions and their effectiveness.

Chatzimparmpas and et al. [19] emphasized how important

information visualization is in understanding machine learning

(ML) models and enhancing trust in ML. Although they high-

lighted the importance of utilizing visualization in ML, their

primary considerations fell into addressing specific domain

problems instead of helping students understand the internal

computation of ML.

Computer science education researchers have developed

various tools to improve students’ knowledge of AI tech-

nologies. Mariescu-Istodor and Jormanainen [20] developed

a web-based tool for high school students to enhance their

knowledge in recognizing objects using ML. They designed

the tool to identify objects using a camera and determine their

object classes in real time based on training samples. In this

tool, when a student gives a wrong answer, the student sees

a question mark rather than a message saying the answer is

wrong. If an object has been misclassified (i.e., the student says

a wrong answer), the tool could fix such a mistake by correctly

training and classifying its class name with additional samples.

The authors aimed to design the tool to motivate students by

improving their class engagement. You and Yin [15] devel-

oped a device (called Omega) to enhance college students’

understanding on NNs by addressing the black box nature

and representing their interactions during NN training steps.

In particular, the device visually presented the weight changes

in hidden layers during the NN training. Lamy and Tsopra

[16] introduced a visual translation of simple NNs to prove

the visual interpretation using rainbow boxes with adding

interactive functionality. Kim and Shim [21] emphasized the

need of providing AI education for non-engineering major

students by creating a visual solution. Although numerous

studies have been conducted to design practical approaches

to improve students’ learning, most studies mainly aimed to

teach users NN training steps.

Unlike the existing approaches explained above, our study

differs in that the proposed interactive learning system enables

users to create input data patterns and train NNs interactively.

This will significantly increase the user’s learning and knowl-

edge gained on NNs because it supports real-time computation

and recognition of the user-generated digit patterns.

III. SYSTEM DESIGN

We hypothesized that supporting real-time interactive data

generation, training, and recognition through NNs could in-

crease users’ understanding of the underlying idea of NNs.

Based on this hypothesis, we have designed an active learn-

ing system (named Neural Network Trainer) to support the

user in generating digit patterns and recognizing them with

NNs. We also designed an additional system (called Neural

Network Tester) to evaluate multiple user-generated patterns

simultaneously. For supporting active learning in the system,

integrating a graphical user interface (GUI) was considered

to address the advancement of users’ understanding of NNs

through direct interactions with the system.

The Neural Network Trainer system consists of two layouts

– Digit Pattern Generator (Figure 1a-left) and Visual Analyzer

(Figure 1a-right). Digit Pattern Generator includes a pattern

grid (Figure 1a-(i)) with multiple control panels (Figure 1a-

(ii) ∼ 1a-(v)). The pattern grid allows the user to create digit

patterns (i.e., 0 ∼ 9) by clicking each cell in the pattern grid.

It has 12 × 8 grid cells representing a digit pattern. Each cell

holds binary information as 1 or 0. It shows the size of NNs,

including nodes in input, hidden, and output layers (Figure

1a-(ii)). Two list boxes have been added to keep all created

digit patterns and the total number of patterns representing

each digit in Figure 1a-(iii) and 1a-(iv), respectively. Real-

time training and testing of NNs are handled with the control

buttons (Figure 1a-(v)). The result of the recognized digit pat-

tern with NN appears with probability distributions (Figure 1a-

(vi)). Visual Analyzer represents user-generated digit patterns

in a 2D display space by applying PCA computation.

The Neural Network Tester system supports evaluating

multiple user-generated NNs with various testing datasets.

The primary purpose of having the system was to help the

workshop participants understand the performances of their

generated NNs in recognizing digits competitively with others.

Figure 1b demonstrates the evaluation of three NNs created by

three groups of users. Similar to the digit pattern generator,

it has a pattern grid (Figure 1b-(i)) with multiple control



(a) (b)

Fig. 1: Two systems are designed as (A) neural network trainer and (B) neural networks tester. The neural network trainer

system consists of two layouts – digit pattern generator (left) and visual analyzer(right). The digit pattern generator supports

the user in generating digit patterns and training neural networks. The visual analyzer represents user-generated digit patterns

on a PCA projection space. The neural networks tester system evaluates multiple user-generated patterns with testing datasets.

panels (Figure 1b-(ii) ∼ 1b-(iv)). A list box (Figure 1b-(iii))

shows the loaded user-generated NNs. With a testing dataset, it

evaluates the NNs showing overall accuracies (Figure 1b-(iii))

and probability estimation (Figure 1b-(iv)). The probability

estimation indicates how each pattern is recognized with each

NN. If a digit is recognized correctly, a reddish bar graph is

represented. If not, a bluish bar graph is displayed to denote

incorrect recognition.

IV. DESIGN OF NEURAL NETWORKS

To support real-time digit pattern generation and recogni-

tion, a three-layered NN based on the backpropagation method

[22] was used. It feeds error rates back to NNs to optimize

weights with optimal values. The input layer has 96 nodes to

be matched to the cells of each digit pattern. The output layer

has 10 nodes to represent digits 0 through 9. Although one

or more hidden layers are often utilized in designing NNs,

we have used one hidden layer consisting of 48 nodes in the

system for speedy computation. For performance optimization,

a gradient descent method was used because it could allow

a parameter update of the weights. The sum of the squared

error (SSE) was applied as the gradient of loss function L to

determine the difference between the predicted (ŷi) and actual

inputs (yi) by:

L = − 1

N

N∑

o=0

C∑

j=0

(yo,j − ŷo,j)
2 (1)

where N is the length of digit samples, C is the number of

classes, and yo,j is an observation yo with a class j.

To run NNs, momentum (γ) and learning rate (η) are

defined to accelerate the training speed and accuracy of NNs.

Momentum is a method that expedites the gradient descent by

increasing the step size toward global minima. It is critical to

find an optimal momentum value because a too-large value

may skip global minima, or a too-small value may face

local minimum issues. The learning rate controls how quickly

a model adapts to the problem of training digit patterns.

However, similar to tuning the momentum value, using an

optimal learning rate is critical because it impacts the speed

of the convergence to a solution and whether we can reach

global optima. ΔWij and ΔW t−1
ij represents weight changes

in current and previous training iterations. They are given by:

ΔWij = γΔW t−1
ij − η

σL

σWij
, (2)

where σL
σWij

denotes the partial derivative of the loss function

L to decent update weights with learning rate η with a

multiplication of -1 to move towards global minima. The

values of γ and η are determined based on empirical analysis

for performance optimization in training data [23].

To activate nodes in the NNs, various activation functions

are available, such as Sigmoid, ReLU (Rectified Linear Unit),

Tanh, or hyperbolic tangent Activation Function. ReLU is

a broadly used activation function in convolutional neural

networks (CNNs) or deep learning because it supports faster

training [24]. However, it often causes a dying ReLU Prob-

lem [25] that decreases the ability of training data due to

negative values becoming zero. Thus, the Sigmoid function,

σ = 1
1+exp−x , is used in our system. It transforms the weighted

sum of nodes to represent the probability of a value x that

belongs to a certain class. Although the Sigmoid activation

function requires more computation than ReLU, it supports

well for training a NN model in our designed system because it

consists of a single hidden layer NN. To train NNs, termination

condition ε is defined as ε < 0.05, which reduces the cost

function L to become below the threshold. OpenMP API [26]

is used to speed up the computation of NNs using multi-

processors (i.e., multi-core processors).



Fig. 2: Examples of user-generated digit patterns from the

2400-digit pattern dataset. Each pattern is created using the

clickable pattern grid in the Neural Network Trainer system.

A. Pattern Generation

To generate digit patterns, the user can enable or disable

each cell using a computer mouse or a touch monitor screen

(if available). As mentioned earlier, the initial cell region

has 12 × 8 size that supports creating up to 212×8 possible

digit patterns. However, the overall number of patterns will

be less because preprocessing generates duplicates by making

each pattern fit into the cell region boundary. The applied

preprocessing consists of three steps: (1) Determining the

boundary of each pattern to find an object-bounding box; (2)

Moving the pattern to the top-left corner; and (3) Applying

scaling to make it fit the cell region. For scaling, a Nearest

Neighbor Interpolation algorithm [27] is used because it

requires very litter calculations. Since each digit pattern has a

binary color attribute (i.e., 0 or 1), each cell is marked if the

interpolation satisfies the condition I(x) > 0.5. To help the

user understand the internal preprocessing steps, intermediate

outcomes become available only if a tracking option is enabled

in the system.

The system supports saving user-generated digit patterns to

a file and loading previously generated ones. To validate the

effectiveness of the system, 2400-digit patterns are generated.

Figure 2 shows samples of the 2400-digit patterns. When

loading the previously generated digit patterns from a file, the

system detects duplicated patterns and removes them if they

exist.

Fig. 3: Conversion of the MNIST handwritten digits from the

original images (28 × 28 gray color) to two-tone colored

images (12 × 8 binary color). The converted dataset is named

TT-MNIST.

A handwritten digits dataset, MNIST [28], is also used to

evaluate the system. It includes 70,000 grayscale images of

handwritten digits with 60,000 training images and 10,000

testing images. Each digit sample is centered at a fixed-size

image of 28 × 28 pixels. To make the images usable in our

system, color conversion is applied to make them follow a

binary color scheme using two-tone colors, black and white.

Then, image size conversion is utilized to scale the image size

down to 12 × 8 to make them fit into the clickable pattern

grid in the designed system. Figure 3 shows examples before

and after applying the image conversion. Both gray color

attribute conversion and image scaling are applied by using

nearest neighbor interpolation with referencing neighbor color

attributes. If the interpolated value meets the condition, i.e.,

I(x) < δ, 0 ≤ δ ≤ 255, the corresponding color attributes are

changed to 0 when I(x) < δ and 1 when I(x) ≥ δ.We em-

pirically determined an optimal value (δ = 85) for converting

MNIST digits to gray-colored images. For convenience, we

call the user-generated 2400-digit samples and the converted

two-tone colored MNIST images DS-2400 and TT-MNIST,

respectively, in the rest of this paper. The two datasets are used

to conduct a performance evaluation of the designed system.

A detailed explanation about the conducted evaluation study

is included in the evaluation section.

B. Visual Representation

As mentioned above, a visualization representation is added

to show all digit patterns to help users understand the differ-

ence between digits (see Figure 1a-right). Since each digit

pattern consists of 96 cells, a dimension reduction technique,

PCA is applied to project it in a PCA projection space (i.e.,

2D display space). By default, the first and second principal

components are used to display each digit pattern along the

x- and y-axis.

The system supports basic navigational user interactions

(i.e., zooming and panning) to help the user can navigate freely



Fig. 4: Zooming and panning user interaction techniques are

supported to navigate the PCA projection space. The user

performed the zooming user interaction to see the region with

the digit “7” patterns (located at the bottom of the space).

within the 2D display space to see the relationship among

the digit patterns (see Figure 4). It helps users understand the

similarities between the digit patterns and the logic of recog-

nizing them through NNs. Digit patterns maintaining similar

cell outlines might appear nearby within the PCA projection

space. As shown at the bottom of the visual representation,

a digit 7’s all patterns appear in a region. However, some

digit 1’s patterns appear near digit 7’s patterns because they

maintain similar markers, including vertical down-strokes with

distinctive up-strokes on the top. Since digit 1’s patterns do not

always include the distinctive up-strokes, they appear in mul-

tiple regions. Similarly, different digit’s patterns often appear

in the same regions. The hidden layer outputs from trained

NNs are used as additional features in PCA computation to

create separable projections of digit patterns. Figure 5 shows

examples with the DS-2400 and TT-MNIST datasets. To help

understand the usefulness of using the hidden layer outputs,

randomly selected 940 digit patterns from the DS-2400 dataset

are used to generate the projection with and without using the

hidden layer outputs as additional features (see Figures 5a and

5b). It shows the benefit of using the hidden layout outputs

by forming separated clusters among different digit patterns.

With the TT-MNIST dataset, we observed a clear difference

in Figures 5c and 5d. For instance, digit “6” patterns were

observed in several locations in the PCA space (see Figure

5c). But, with the integration of the hidden layout outputs,

the digit patterns were positioned in the same region (see the

arrow in Figure 5d).

V. EVALUATION OF THE INTERACTIVE LEARNING SYSTEM

A. Interactive Learning

As discussed earlier, understanding how NNs work is not

easy because of the complex nature of computing and updating

its underlying structures continuously. The designed system

may help users understand how it trains NNs and recognizes

digit patterns. The system does not fully unveil its underlying

structure of how the NN model changes its weights over time.

However, we can conjecture that it supports interactive learn-

ing on NNs. More specifically, interactive learning manages

three steps of the learning process: generating digit samples,

training a NN model with the samples, and recognizing user-

entered digits with the model. Generating digit patterns is es-

sential to understand the effectiveness of NNs because it helps

the user to identify how the NNs are trained to recognize digits.

However, since it is not easy to create data, most studies have

utilized existing datasets (e.g., MNIST, MS-COCO, ImageNet,

Fashion-MNIST) to design new NN algorithms and evaluate

their performances.

To support the user in creating digit patterns interactively,

we used cell-based digit pattern generation to design simplified

data digit samples using a computer mouse. The system allows

training NNs whenever the user generates digit pattern(s).

Unlike conventional approaches using numerous data samples,

our system can train NNs with a small number of digit samples

(e.g., < 10). For instance, if a digit sample (denoting digit

“one”) is applied to train NNs, the same result (resulting digit

“one”) will be determined. Instead, if two distinctive digit

samples (e.g., “one” and “two”) are used to train NNs, the

system correctly recognizes their differences. For example, if

the user tries to recognize a new input pattern (similar to “one”

or “two” digit patterns), the system correctly recognizes it as

either one or two. Figure 6 shows an example of recognizing

a new digit pattern with four digit samples. Even though only

four-digit patterns are used to train NNs, it correctly recognizes

the new pattern with a high probability (0.93). The user can

continuously add new digit patterns to improve the perfor-

mance of recognizing digits interactively. This interactive digit

pattern generation and recognition initiate active learning to

help the user understand the logic behind NNs. For showing

the probability, the probability distribution over all predicted

classes is measured using a softmax function. It converts a

vector of K values in the output layer to probability values.

To show a normalized probability [0, 1] from the output value,

the softmax function (σ) applies the exponential function.

σ(�xi) =
exi

∑K
j=1 e

xj

(3)

where �xi indicates the values in the NN output layer, exi and

exj denote standard exponential function for output vector,

respectively.

B. Performance Evaluation

To support interactive learning, it is vital to maintain real-

time training of NNs with the system while maintaining high

accuracy. We performed an evaluation with Intel i9-9980HK

Processor, 2.4 GHz, 8 cores. Figure 7 shows that training time

with the DS-2400 dataset was about 8.14 ± 1.89 seconds.

With the DS-2400 dataset, the average training time was

maintained to be less than 0.5 seconds. At the same time,



(a) (b) (c) (d)

Fig. 5: Visual representations of 940 digit patterns from the DS-2400 dataset in (a) and (b) and TT-MNIST dataset in (c) and

(d). (a) and (c) show PCA projections using all digit patterns. (b) and (d) use hidden layer outputs as additional features.

(a)

(b)

Fig. 6: An example of NN training with four-digit patterns (a)

and recognizing a new digit with the trained NN (b).

the training accuracy was above 97%. This indicates that

the system supports users in performing real-time interactive

analysis on digit recognition by training NNs. With the TT-

MNIST dataset, we found that the training accuracy was

maintained above 96%. The training time gradually increases

as the size of the samples grows. Approximately 70 seconds

have been taken to train 60,000-digit patterns. Overall, the

proposed system takes less than 2 seconds to train up to

10,000 digit patterns (training with MSE < 0.05, resulting in a

training accuracy of 0.98). Since the system supports real-time

training on user-generated digit patterns, we can consider the

system effectively helps the user understand how NNs work

to effectively recognize the digits.

VI. DISCUSSION

As we mentioned above, the system is helpful for users

to understand the logic behind NNs in recognizing digits. To

understand how effective the system is in enhancing users’

learning on NNs, we utilized the system during the workshop
1 for community college students. Most of the students do

not have any knowledge or experience using NNs or related

applications. They showed high interest in creating digit

patterns and training NNs to recognize digits. Three groups

were formed. They created patterns spending about 10 minutes

(see Table I). To understand the effectiveness of user-generated

digit patterns, we tested the user-generated NNs using both

the DS-2400 and TT-MNIST datasets. Although the testing

accuracy was not high, we found that the trained NN by

Group2 (using only 40 digit patterns) showed about 0.5 testing

accuracy for the DS-2400 dataset.

TABLE I: Testing the NNs created by workshop participants

with the two datasets (i.e., DS-2400 and TT-MNIST).

Group1 Group2 Group3
Generated Patterns 29 40 13
Testing Accuracy (with DS-2400) 0.29 0.50 0.32
Testing Accuracy (with TT-MNIST) 0.26 0.30 0.20

The students commented that the system was highly inter-

active and useful for them to understand the underlying idea

of NNs. They also reported the importance of utilizing both

interactive pattern generation and visualization to upgrade their

knowledge of NNs. Since the evaluation through workshop

participants is purely informal user testing, it is essential to

conduct formal user testing to examine the system’s effective-

ness in enhancing the user’s understanding levels. Therefore,

we plan to extend our study to conduct a formal user evaluation

to validate the usefulness of the developed system.

Although the system is useful for advancing users’ un-

derstanding of NNs through interactive learning, it has a

limitation of not showing the connection weights in NNs.

Although representing the weight changes does not deliver ad-

ditional information about understanding the internal changes

of NNs, many researchers have emphasized the effectiveness

of showing them [15], [29]. Thus, designing an effective

visual representation technique to show the connection weight

changes in NNs is critical for advancing the users’ knowledge

1NSF funded 2022 Artificial Intelligence Awareness summer workshop:
https://csit.udc.edu/mudl/



0

0.1

0.2

0.3

0.4

0.5

0.6

10 11
0

21
0

31
0

41
0

51
0

61
0

71
0

81
0

91
0

10
10

11
10

12
10

13
10

14
10

15
10

16
10

17
10

18
10

19
10

20
10

21
10

22
10

23
10

Tr
ai

ni
ng

 T
im

e 
(s

ec
on

ds
)

Number of Digit Samples

(a)

90
91
92
93
94
95
96
97
98
99
100

10 11
0

21
0

31
0

41
0

51
0

61
0

71
0

81
0

91
0

10
10

11
10

12
10

13
10

14
10

15
10

16
10

17
10

18
10

19
10

20
10

21
10

22
10

23
10

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

)

Number of Digit Samples

(b)

0

10

20

30

40

50

60

70

80

10
00

40
00

70
00

10
00
0

13
00
0

16
00
0

19
00
0

22
00
0

25
00
0

28
00
0

31
00
0

34
00
0

37
00
0

40
00
0

43
00
0

46
00
0

49
00
0

52
00
0

60
00
0

Tr
ai

ni
ng

 T
im

e 
(s

ec
on

ds
)

Number of Digit Samples

(c)

90
91
92
93
94
95
96
97
98
99
100

10
00

40
00

70
00

10
00
0

13
00
0

16
00
0

19
00
0

22
00
0

25
00
0

28
00
0

31
00
0

34
00
0

37
00
0

40
00
0

43
00
0

46
00
0

49
00
0

52
00
0

60
00
0

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

)

Number of Digit Samples

(d)

Fig. 7: Training time (seconds) and accuracy with different sizes of training data with (a) and (b) the DS-2400 dataset and (c)

and (d) the TT-MNIST dataset. The x−axis shows the training digit sample size. (a) and (c) represent training time (seconds)

and (b) and (d) show training accuracy.

of what information is effective in recognizing digits by NNs.

It is important to note that PCA has an inherent ambiguity in

the signs of resulting principal components. Thus, it generated

multiple sign-flipped visual representations (see Figure 8).

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed an interactive learning system

to help users understand how neural networks perform digit

recognition. The developed interactive learning system allows

users to generate digit patterns and train them to recog-

nize them in real time. To support real-time training and

recognition, we introduced a simplified neural network with

backpropagation to the system. Most importantly, we applied

a visualization technique to show the difference among the

digit patterns in a PCA projection space. In our experiments,

we demonstrated the computational speed of training neural

networks to evaluate the system’s effectiveness. The key

findings from this study are: (1) The developed interactive

learning system took a short training time, which is critical

for users to learn and understand NNs in real time; (2) The

training accuracy was high (e.g., 96 ∼ 97%) that validates the

accuracy of the developed system as a tool to train NNs; and

(3) Through our informal user testing based on the responses

from community college students participated in the summer

AI workshop, we received highly positive feedbacks although

the number of the participants was fairly small (about ten

participants).

For future work, we plan to conduct formal user testing

to determine the system’s effectiveness in terms of how much

the user can understand the principle of neural networks. Since

the system has been designed as a stand-alone application, a

conversion of the system to a web-based application will be

performed to make it become broadly available and accessi-

ble through a web browser. We will also extend the visual

representation of digit samples with different dimensional

reduction techniques, such as t-distributed stochastic neighbor

embedding (t-SNE) [30] or Uniform Manifold Approximation

and Projection (UMAP) [31]. The complete codes and a

pre-compiled executable are available at https://github.com/

drjeong/DigitPerceptron

REFERENCES

[1] D. D. Miller and E. W. Brown, “Artificial intelligence in medical
practice: the question to the answer?” The American journal of medicine,
vol. 131, no. 2, pp. 129–133, 2018.

[2] B. du Boulay, “Recent meta-reviews and meta–analyses of aied systems,”
International Journal of Artificial Intelligence in Education, vol. 26,
no. 1, pp. 536–537, 2016.

[3] E. Karasözen and B. Karasözen, “Earthquake location methods,” GEM-
International Journal on Geomathematics, vol. 11, no. 1, pp. 1–28, 2020.

[4] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for
decision making in the era of big data–evolution, challenges and research
agenda,” International journal of information management, vol. 48, pp.
63–71, 2019.

[5] S. A. D. Popenici and S. Kerr, “Exploring the impact of artificial
intelligence on teaching and learning in higher education,” Research
and Practice in Technology Enhanced Learning, vol. 12, no. 1, p. 22,
Nov 2017.

[6] F. Wang, R. Kaushal, and D. Khullar, “Should health care demand
interpretable artificial intelligence or accept “black box” medicine?” pp.
59–60, 2020.

[7] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[8] A. Holzinger, M. Dehmer, F. Emmert-Streib, R. Cucchiara, I. Augen-
stein, J. D. Ser, W. Samek, I. Jurisica, and N. Dı́az-Rodrı́guez, “Infor-
mation fusion as an integrative cross-cutting enabler to achieve robust,
explainable, and trustworthy medical artificial intelligence,” Information
Fusion, vol. 79, pp. 263–278, 2022.

[9] K. Haresamudram, S. Larsson, and F. Heintz, “Three levels of ai
transparency,” Computer, vol. 56, no. 2, pp. 93–100, 2023.

[10] Y. Bathaee, “The artificial intelligence black box and the failure of intent
and causation,” Harvard Journal of Law & Technology, vol. 31, p. 889,
2018.

[11] S. Roweis, “Em algorithms for pca and spca,” Advances in neural
information processing systems, vol. 10, 1997.

[12] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang,
“ipca: An interactive system for pca-based visual analytics,” Computer
Graphics Forum, vol. 28, no. 3, pp. 767–774, 2009.

[13] W. Tyson, R. Lee, K. M. Borman, and M. A. Hanson, “Science,
technology, engineering, and mathematics (stem) pathways: High school
science and math coursework and postsecondary degree attainment,”
Journal of Education for Students placed at risk, vol. 12, no. 3, pp.
243–270, 2007.

[14] Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu,
F. Dong, C.-W. Qiu, J. Qiu, K. Hua, W. Su, J. Wu, H. Xu, Y. Han,
C. Fu, Z. Yin, M. Liu, R. Roepman, S. Dietmann, M. Virta, F. Kengara,
Z. Zhang, L. Zhang, T. Zhao, J. Dai, J. Yang, L. Lan, M. Luo, Z. Liu,
T. An, B. Zhang, X. He, S. Cong, X. Liu, W. Zhang, J. P. Lewis, J. M.
Tiedje, Q. Wang, Z. An, F. Wang, L. Zhang, T. Huang, C. Lu, Z. Cai,
F. Wang, and J. Zhang, “Artificial intelligence: A powerful paradigm for
scientific research,” The Innovation, vol. 2, no. 4, p. 100179, 2021.

[15] M. You and J. Yin, “Real-time visualization of neural network training
to supplement machine learning education,” in 2019 IEEE Integrated
STEM Education Conference (ISEC). IEEE, 2019, pp. 371–374.



(a) n = 10 (b) n = 50 (c) n = 100 (d) n = 200 (e) n = 300

(f) n = 400 (g) n = 500 (h) n = 600 (i) n = 700 (j) n = 800

(k) n = 900 (l) n = 1000 (m) n = 1200 (n) n = 1300 (o) n = 1400

(p) n = 1500 (q) n = 1600 (r) n = 1700 (s) n = 1800 (t) n = 1900

(u) n = 2000 (v) n = 2100 (w) n = 2200 (x) n = 2300 (y) n = 2400

Fig. 8: Visual representations of n numbers of digit patterns from the DS-2400 dataset.

[16] J.-B. Lamy and R. Tsopra, “Visual explanation of simple neural net-
works using interactive rainbow boxes,” in 2019 23rd International
Conference Information Visualisation (IV). IEEE, 2019, pp. 50–55.

[17] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, aug 2018.

[18] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 6391–6401.

[19] A. Chatzimparmpas, R. M. Martins, I. Jusufi, and A. Kerren, “A survey
of surveys on the use of visualization for interpreting machine learning
models,” Information Visualization, vol. 19, no. 3, pp. 207–233, 2020.

[20] R. Mariescu-Istodor and I. Jormanainen, “Machine learning for high
school students,” in Proceedings of the 19th Koli calling international
conference on computing education research, 2019, pp. 1–9.

[21] J. Kim and J. Shim, “Development of an ar-based ai education app for
non-majors,” IEEE Access, vol. 10, pp. 14 149–14 156, 2022.

[22] R. Rojas, Neural Networks - A Systematic Introduction. Berlin:
Springer-Verlag, 1996.

[23] Y. Bengio, Practical Recommendations for Gradient-Based Training of
Deep Architectures. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 437–478.

[24] C.-N. Chou, C.-K. Shie, F.-C. Chang, J. Chang, and E. Y. Chang,
Representation Learning on Large and Small Data. John Wiley &
Sons, Ltd, 2019, ch. 1, pp. 1–28.

[25] L. Lu, Y. Shin, and G. E. Karniadakis, “Dying relu and initialization:
Theory and numerical examples,” Communications in Computational
Physics, vol. 28, no. 5, pp. 1671–1706, 2020.

[26] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.

[27] R. C. Gonzalez and R. E. Woods, Digital image processing. Upper
Saddle River, N.J.: Prentice Hall, 2008.

[28] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[29] O. Deperlioglu and U. Kose, “An educational tool for artificial neural
networks,” Computers & Electrical Engineering, vol. 37, no. 3, pp. 392–
402, 2011.

[30] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[31] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.


