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Abstract: In the field of visualization, understanding users’ analytical reasoning is important for eval-
uating the effectiveness of visualization applications. Several studies have been conducted to capture
and analyze user interactions to comprehend this reasoning process. However, few have successfully
linked these interactions to users’ reasoning processes. This paper introduces an approach that
addresses the limitation by correlating semantic user interactions with analysis decisions using an in-
teractive wire transaction analysis system and a visual state transition matrix, both designed as visual
analytics applications. The system enables interactive analysis for evaluating financial fraud in wire
transactions. It also allows mapping captured user interactions and analytical decisions back onto the
visualization to reveal their decision differences. The visual state transition matrix further aids in
understanding users’ analytical flows, revealing their decision-making processes. Classification ma-
chine learning algorithms are applied to evaluate the effectiveness of our approach in understanding
users’ analytical reasoning process by connecting the captured semantic user interactions to their
decisions (i.e., suspicious, not suspicious, and inconclusive) on wire transactions. With the algorithms,
an average of 72% accuracy is determined to classify the semantic user interactions. For classifying
individual decisions, the average accuracy is 70%. Notably, the accuracy for classifying ‘inconclusive’
decisions is 83%. Overall, the proposed approach improves the understanding of users’ analytical
decisions and provides a robust method for evaluating user interactions in visualization tools.

Keywords: visual analytics; semantic user interactions; machine learning

1. Introduction

Numerous visualization applications have been developed to help users solve various
analytical problems. However, understanding the extent to which these systems aid in
solving analytical problems poses a notable research challenge, primarily due to the com-
plexity of interpreting users’ analytical reasoning processes while using the systems. In
the visualization community, researchers have devoted considerable effort to exploring
potential research directions, particularly focusing on understanding users’ rationales (i.e.,
internal reasoning processes) by linking them with user interactions that are carried out.
Among various proposed approaches, eye-tracking devices have emerged as a promising
method for analyzing user interactions and understanding how users process visual ele-
ments. Despite its potential, integrating user interactions with eye-tracking data presents
persistent difficulties, as connecting user interactions directly to the actual eye-tracked data
can often lead to misleading conclusions [1]. As an alternative approach, researchers [2–4]
have explored evaluating semantic data generated from user interactions. Semantic data
extend beyond basic user actions like mouse clicks or movements, providing deeper in-
sights into the context. They assessed how captured interactions reflect users’ reasoning by
analyzing these interactions in conjunction with the corresponding semantic information.
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Furthermore, they emphasize the importance of connecting user interaction logs with the
underlying rationale in the analytical process.

It is known that experts reach different conclusions when solving analytical
problems [5]. This may be because they apply unique analytical strategies based on their
individual experience and knowledge. Similar results may appear when solving complex
analytical problems with visualization applications. Highly interactive visualizations allow
experts to explore data in numerous ways so that it is difficult to unravel how they arrived
at their conclusions. Integrating experts’ diverse analytical steps into visualization would
benefit and advance existing visualization applications by providing insights into how
they reached the agreed or disagreed conclusions. In essence, analyzing users’ interactions
in visualization applications is crucial for understanding their intentions, and ultimately
evaluating the effectiveness of the applications.

This paper presents an approach that aims to support the comprehension of analysts’
user interactions within a visualization system. We analyze semantic user interactions to
gain insights into the users’ analytical processes and decisions. Additionally, we integrate
captured user interactions into the visualization to highlight the performed analytical
procedures. Rather than merely representing the captured user interactions, our emphasis
lies in understanding the interactions. Specifically, we employed Markov Chain [6] to
understand the analysts’ user interactions, treating them as distinct states. An n × n visual
state transition matrix is created to assist in comprehending the flow of user interactions and
their underlying reasoning process. Most importantly, we evaluate the analysts’ semantic
user interactions by directly linking them to their decision-making processes. To validate
the effectiveness of this approach, we utilized five classification algorithms: Multinomial
Naive Bayes, Support Vector Classifier, Random Forest, Logistic Regression, and Gradient
Boosting. These algorithms are employed to confirm the effectiveness of our analysis by
classifying the semantic user interactions according to their corresponding decisions.

The main contributions of this work include the following:

1. We designed a visualization that connects users’ analysis procedures and their deci-
sions within the visualization.

2. We analyzed captured semantic user interactions and their conclusions within
the visualization;

3. We presented an approach to analyze the captured semantic user interactions by
classifying them depending on users’ analytical decisions;

4. To the best of our knowledge, our study is the first to analyze the captured semantic
user interactions with classification machine learning algorithms.

This paper is organized into seven sections. We begin by reviewing previous research
on understanding user interactions within visualization systems. Then, we introduce
the designed visualization system, emphasizing the importance of tracking and utilizing
semantic user interactions. In Section 5, we present our proposed method for visually
representing captured semantic user interactions using a Markov chain model. Following
this, we discuss the results of the classification evaluation conducted to understand these
interactions. Finally, we conclude the paper with a discussion of our findings and directions
for future work.

2. Previous Work

2.1. Using Eye-Tracking Devices to Understand User Interactions in Visualizations

There is growing evidence that user characteristics such as cognitive abilities and
personality traits can significantly impact users’ visualization experience [7,8]. These factors
not only affect overall experience and task performance but also influence how effectively
users can process relevant elements within a visualization. To better assist individual users
during visualization tasks, more recent research has shifted its focus towards user-adaptive
visualization approaches that can dynamically determine relevant user characteristics and
provide appropriate interventions tailored to the characteristics [9–11]. Among different
tools to collect user characteristics, eye-tracking has been widely used to understand various
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aspects of human cognition and human–computer interactions. It has emerged as a valuable
tool to analyze how users perceive and understand visual elements within interactive
visualization systems [12]. Eye-tracking data provide insights into information search
activity, the relevance of search results, and the complexity of the search. They also provide
a valuable metric to infer a user’s intrinsic cognitive processes [7]. Existing research has
leveraged eye-tracking data for a variety of user interactions. For example, Conati et al. [9]
examined whether eye-tracking and interaction data could effectively capture various
cognitive abilities relevant to processing information visualizations. They conducted a
comprehensive comparison of user models based on eye-tracking data, interaction data,
and a combination of both. The findings revealed that eye-tracking data yielded the most
precise predictions, although interaction data still demonstrated the potential to outperform
a baseline. That is, adaptation for interactive visualizations could be facilitated when
eye-tracking is not feasible or when eye-tracking data for a particular user are too noisy.
The study also demonstrated that interaction data exhibited superior predictive accuracy
for several cognitive abilities at the beginning of the task compared to eye-tracking data.
Lastly, they presented the value of multimodal user models by combining eye-tracking
and interaction data together to enhance the prediction of cognitive abilities. Alam and
Jianu [12] introduced a novel approach to collect and analyze eye-tracking information
in data space (what the user is looking at on the screen) rather than image space (where
on the screen users are looking). Most eye-tracking data are gathered and analyzed as
gaze coordinates within the spatial framework of the visual stimuli being observed. These
analyses primarily concentrate on identifying the specific locations on the screen where
users direct their gaze. However, such approaches demand considerable manual effort and
are impractical for studies encompassing numerous subjects and complex visual stimuli.
They demonstrated the effectiveness of this approach in collecting data during extended
sessions involving open-ended tasks and interactive content.

Blascheck et al. [13] provided an overview of visualization techniques for eye-tracking
data and outlined their functionality. Drawing from an analysis of 90 papers focusing on
eye-tracking data visualization, they developed a taxonomy categorizing studies into three
primary classes: point-based visualization techniques, areas of interest (AOI)-based visual-
ization techniques, and hybrid visualization techniques combining both. Additionally, they
further categorized the papers on a secondary level based on the type of data represented:
temporal, spatial, or spatiotemporal. Landesberger et al. [14] also introduced a comprehen-
sive taxonomy within the domain of visual analytics. Visual analytics encompasses various
forms of interaction, including information visualization, reasoning, and data processing.
However, existing taxonomies for interaction techniques in these fields are separate and
fail to cover the entirety of the visual analytics domain. Additionally, they use distinct
terminology, complicating the analysis of their scope and overlap. The unified taxonomy
addresses these limitations by encompassing all areas of visual analytics (visualization,
reasoning, and data processing). Each area consists of two main subcategories: changes
in the data and changes in the respective representation. Changes in the data pertain to
alterations affecting the presented or underlying dataset, while changes in representation
involve other forms of interaction. Changes in the data are further subdivided into two
categories: changes affecting the selection of the dataset and changes to the dataset intro-
duced by the user. This taxonomy provides a comprehensive framework for understanding
and categorizing interaction techniques in visual analytics. Spiller et al. [7] proposed a
computational model to predict users’ success in visual search when interacting with an
information visualization from sequential eye gaze data. Three deep learning models
designed for time series classification were used to analyze data collected from 60 partici-
pants engaging with both circular and organizational graph visualizations. They found
that MLSTM-FCN (Multivariate Long Short Term Memory Fully Convolutional Network)
significantly outperformed than ResNet, Fully Convolutional Network (FCN), and the
baseline classifier (Logistic Regression). They also identified that ResNet and FCN did not
even demonstrate notably superior performance compared to the baseline classifier.
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An innovative user-adaptive visualization system introduced by Steichen et al. [8] was
found to be capable of predicting various properties of visualization tasks (such as task
type, complexity, and difficulty), user performance (measured by task completion time),
and individual cognitive abilities (including perceptual speed, visual working memory,
and verbal working memory) based on eye gaze behavior. A user study was conducted,
wherein participants were tasked with completing a series of visualization tasks using bar
and radar graphs. Their findings indicated that, across each classification task, predictions
based on gaze behavior outperformed a baseline classifier. This suggests that user eye gaze
behavior offers valuable insights into visualization tasks and cognitive abilities. Interest-
ingly, for most predictions, classification accuracy was significantly higher even in the early
stages of visualization usage, highlighting the potential of eye gaze behavior as an early
indicator of user characteristics and task outcomes. Detailed analysis of each classification
experiment also revealed that different features were mostly informative depending on the
objective of the classification and the characteristics of the task or user. This underscores the
potential of the system to be adapted for evaluating individual differences. Muller et al. [15]
examined the effectiveness of three commonly employed visualization approaches for
comprehension of hierarchical data: treemap, icicle plot, and node–link diagram. They
conducted a laboratory experiment, during which participants were assigned to various
tasks using different visualization techniques. Furthermore, user performance was mea-
sured in terms of correctness, time, and tracked eye movements. The findings suggest
that both the node–link diagram and the icicle plot demonstrated strong performance,
whereas the treemap only surpassed chance level in one relatively straightforward task.
Despite eye-tracking analyses indicating that the treemap effectively draws visual attention
by optimizing screen-space usage, this did not translate into improved user performance.
Blascheck et al. [11] presented a novel approach for assessing interactive visualization sys-
tems by collecting, synchronizing, and analyzing eye tracking, interaction, and think-aloud
data simultaneously. They discussed challenges and potential solutions in triangulating
user behavior using multiple sources of evaluation data. Experiments, utilizing both textual
and visual analyses, indicated that this approach is most effective when data sources are
temporally aligned using eye fixations and Areas of Interest (AOIs).

2.2. Capturing and Analyzing Semantic User Interactions in Visualizations

Semantic user interactions refer to interactions between users and systems where
the system can understand and respond to the meaning or semantics of user actions or
queries [4]. Analyzing these interactions is important as it provides valuable insights into
diverse aspects of user behavior and cognitive processes. This includes understanding their
reasoning, identifying personality traits, and reducing cognitive load. Moreover, semantic
user interactions can facilitate personalization, enabling systems to customize responses
and recommendations according to individual user preferences and requirements [16,17].
Norambuena et al. [18] proposed a mixed multi-model semantic interaction (3MSI) model
designed for narrative maps to support analysts in their sense-making processes. This
method integrates semantic interaction with narrative extraction and visualization to create
an interactive AI narrative sense-making framework capable of learning from analyst inter-
actions. To assess the performance of the 3MSI model, they conducted both a quantitative
simulation-based evaluation and a qualitative evaluation involving case studies and expert
feedback. They found that the proposed model effectively supported incremental formalism
for narrative maps. Additionally, expert feedback suggested that the SI model for narrative
maps held potential value for analysts in their sense-making processes. Batch et al. [19]
introduced uxSENSE, a visual analytics system leveraging machine learning techniques
to extract user behavior from audio and video recordings. The proposed method extracts
multi-modal features of human behavior, including user sentiment, actions, posture, spo-
ken words, and other relevant features, from such recordings. These extracted features are
then utilized to support user experience (UX) and usability professionals in their analysis
of user session data through interactive visualization. They conducted five expert reviews
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where UX professionals utilized the tool to comprehend a usability session. Based on the
feedback received from UX experts, they identified critical interface adjustments while
confirming the importance of machine-learning-supported human–computer interaction.
Endert et al. [4,20] presented a novel design concept, called semantic interaction, which
combines the foraging abilities of statistical models with the spatial synthesis abilities of
analysts. They presented ForceSPIRE, a visual analytics tool, to showcase the implementa-
tion of semantic interaction for visual analytic interaction. Through a use case study, they
illustrated how semantic interaction has the potential to integrate the sense-making loop,
resulting in a smoother analytic process.

While interactive visualizations are becoming increasingly popular for general public
use, little is known about how individuals discover the interactive functionality, such as
what they can do with these visualizations and what interactions are available. In the study
conducted by Blascheck et al. [21], participants engaged in a lab-based experiment where
their eye movements were tracked, interaction logs were recorded, and video and audio
recordings were captured. Through analysis of this comprehensive dataset, they uncovered
various exploration strategies participants employed to discover the functionality of the
visualizations. Understanding these exploration strategies has led to several promising
ideas for improving the discoverability of features in interactive visualizations. These
suggestions include the following: inviting interaction, providing entry points, leveraging
spatial organization, combating oscillation, supporting transitions, and scaffolding complex
interactions. Wall et al. [17] investigated the utilization of visualizing a user’s interaction
history as a means to mitigate potential biases influencing the decision-making process.
They employed the technique of interaction traces. The technique changes the visual
representations based on a user’s own previous interactions with the data. A series of
experiments were conducted to assess the effectiveness of interaction history interventions
on behavior and decision making, with the aim of raising awareness of potential biases;
while the experiments produced varied results, the study concluded that interaction traces,
especially when presented in a summative format, could lead to behavioral changes or
enhance awareness of potential unconscious biases.

Ottley et al. [22] introduced a framework designed to anticipate future interactions
based on past observations. By utilizing clicks as indicators of attention, they utilized
a hidden Markov model to represent evolving attention as a sequence of unobservable
states. This system can automatically infer elements of interest from passive observations
of user clicks, enabling precise predictions of future interactions. To validate their approach,
a user study was conducted using a designed visualization map (called Crime Map). They
showed that the model achieved prediction accuracies ranging from 92% to 97%. Addi-
tionally, further analysis revealed that high prediction accuracy could typically be attained
after just three clicks. Xu et al. [23] conducted an extensive review of research in the data
visualization and visual analytics domain, particularly focusing on the examination of
user interaction and provenance data. They introduced a typology categorizing areas of
application (why), encoding techniques (what), and analysis methodologies (how) of prove-
nance data. Six fundamental motivations for analyzing provenance data were identified:
(1) understanding the user, (2) evaluation of system and algorithms, (3) adaptive systems,
(4) model steering, (5) replication, verification, and re-application, and (6) report generation
and storytelling. Regarding the types of provenance data analyzed, four common encoding
schemes were suggested: (1) sequential, (2) grammatical, (3) model-based, and (4) graphical.
Lastly, They identified five analysis methods commonly applied to analyze provenance
data: (1) classification models, (2) pattern analysis, (3) probabilistic models/prediction,
(4) program synthesis, and (5) interactive visual analysis.

3. Understanding Semantic User Interactions with Visualization

Previously, user studies [2,3] were conducted to investigate the user interaction behav-
iors of financial analysts using a visual analytics system known as WireVis [24]. Experts
were engaged in analysis studies with the system to understand their interaction patterns
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while evaluating wire transactions. The system utilized a synthetic dataset that contains
multiple suspicious scenarios, including incompatible keywords (e.g., “baby food” and
“IT consulting”), the transition of keywords (e.g., from “baby food” to “gems”), unusually
high transaction amounts for local stores, continuous money transfer with a small amount,
and unexpectedly large transactional amounts transferred over time. The analysts’ inter-
actions within the system were captured and analyzed [2]. When an analyst highlights
a particular wire transaction or keywords during an investigation, such interactions are
recorded as semantic user interactions, indicating specific information observed by the
user. At the same time, the analyst’s general patterns to investigate financial transactions
can be assessed to determine their overall strategy. This includes the frequencies of ob-
serving semantic information. For example, if an analyst repeatedly highlights specific
keywords, those captured keywords are emphasized to reflect the analyst’s focus on those
particular activities. The effectiveness of using semantic user interactions to comprehend
experts’ operational and strategic analyses was assessed by analyzing captured think-aloud
transcriptions and semantic user interactions [3].

However, during the evaluation of analysts’ user interactions and analysis decisions,
we found that they often had contradictory opinions (such as suspicious, not suspicious,
or inconclusive) regarding certain wire transactions. As their decisions are based on their
experiences, identifying the reasons behind their conclusions becomes challenging. Thus,
performing an in-depth analysis of user interactions is crucial for understanding why
they lead to divergent opinions (i.e., decisions). We believe that it is possible to gain
insights by connecting these interactions to their decisions. To achieve this, we designed
a highly interactive wire transaction analysis system (Figure 1). The system consists
of two tools—(A) a wire transaction analysis tool and (B) an investigation tracing tool.
The wire transaction analysis tool is an extended version of the original financial visual
analytics system (WireVis), initially designed to assist analysts in identifying fraudulent
financial activities by analyzing financial wire transfers (also known as wire transactions).
The wire transaction analysis tool has multiple views: (C) a heatmap view, (D) a strings
and beads view, and (E) a keyword relation view. The heatmap view presents a grid-based
representation of accounts and keywords, while the strings and beads view illustrates
time-based transactions involving accounts or clusters of accounts. Lastly, the keyword
relation view depicts relationships among keywords associated with wire transactions.
The investigation tracing tool (B) is designed to represent users’ decisions regarding wire
transactions. It consists of (F) a PCA projection view and (G) a data view. In the PCA
projection view, all wire transactions are presented after applying principal component
analysis (PCA) [25]. In the view, details about accounts, keywords, and actual accounts
are listed in information panels and positioned left, top, and right, respectively. A further
explanation of the system’s functionality is provided in the following subsections.

3.1. Wire Transaction Analysis

The wire transaction analysis tool is designed to support analysts in conducting in-
teractive analysis on wire transactions. We used the same synthetic dataset used in the
studies [2,3] to create the visualization tool. As mentioned above, this dataset includes wire
transfers (i.e., wire transactions) representing electronic money transfers from one financial
account to another. Wire transfers can occur either domestically, within the same country,
or internationally, between different countries. Each transaction leaves traces of funds
transferred from one financial account (referred to as account A) to another (referred to as
account B). Each wire transaction encompasses details such as the sender and receiver’s
account information and the amount of money transferred. Additionally, keywords are
assigned to each transaction to reflect fundamental information related to the involved
accounts. For instance, if account A is associated with a pharmaceutical company, the key-
word “pharmaceutical” is tagged to the transaction. Similarly, if the funds are transferred
to account B, which belongs to a toy manufacturing company, the keyword “toy” is tagged.
The dataset includes 249 wire transactions involving 181 accounts and 29 keywords. Ex-
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amples of these keywords include “Raw Materials”, “Hardware & Machinery”, “South
Africa”, “Electronics”, and “Pharmaceuticals”, among others.

Figure 1. An interactive wire transaction analysis system consisting of two tools—(A) a wire trans-
action analysis tool and (B) an investigation tracing tool. Similar to the original system (WireVis),
the wire transaction analysis tool consists of multiple views—(C) heatmap view, (D) strings and
beads view, and (E) keyword relation view. The system allows the user to analyze and investigate
wire transactions. The investigation tracing tool has been added to support understanding the
user’s analysis decisions. It has two views (F) a PCA Projection view and (G) a data view. The tool
shows additional information about wire transactions regarding the money flows with keywords
and amounts.

With the wire transaction analysis tool (Figure 1A), analysts can perform interactive
analyses to detect financial frauds on wire transactions across multiple views. In the
heatmap view, users examine patterns in a hierarchical arrangement of bins. Each bin
represents a cluster of grouped accounts, categorized based on keyword frequencies and
transaction occurrences. In the view, keywords are displayed at the top, and transaction
occurrences are shown along the left side of a vertical bar. Highlighting a bin illuminates
the corresponding wire transactions and their associated keywords across all views. By de-
fault, the strings and beads view illustrates general trends in wire transactions as strings.
Highlighting a bin in the heatmap view causes the corresponding transactions to appear as
beads in the strings and beads view. At the same time, related keywords are highlighted
by generating connected lines in the keyword relation view. The basic functionalities of
this tool have been designed by mirroring the WireVis system’s design so that analysts can
initiate multiple user interactions on wire transactions with related financial accounts and
keywords that represent each transaction’s information. For further details, please refer to
the original paper by Chang et al. [24].

3.2. User Investigation Tracing

The investigation tracing tool (Figure 1B) is designed as an ad hoc tool to provide
detailed information about wire transactions and users’ decisions. It consists of two views:
(F) a PCA projection view and (G) a data view. Since the two views are linked, any user
interactions with one view are immediately reflected in another view (brushing and linking)
to support interactive analysis of wire transactions.
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PCA projection view: The PCA projection view displays detailed information about all
wire transactions. In this view, wire transactions are represented as rectangular-shaped
glyphs (i.e., visual objects). To project the transactions, computed two principal com-
ponents (the first and second most dominant eigenvectors) are used to map each wire
transaction onto a 2D space. Detailed information about the transactions is represented in
the information panels—top (keywords), left (accounts), and right (amounts). When the
user highlights a wire transaction, its corresponding information becomes visible in the
information panels as connected polylines. For instance, if a wire transaction is made from
account A to account B, detailed information about the transaction, such as the amount
of money transferred and related keywords, is highlighted to reveal the flow of funds
between the two accounts. Figure 1F shows an example when the user highlights a wire
transaction between accounts 44 and 119. Multiple connected polylines appear to show
related information about the transaction. Each polyline represents the amount of money
transferred and its corresponding keywords, emphasizing its interdependence with other
financial accounts and wire transactions. If multiple wire transactions are made by one
account, all related transactions and their information are highlighted. Information closely
related to the selected wire transaction is highlighted with orange polylines. Additionally,
other wire transactions originating from the same account are highlighted with bluish
polylines to assist the user in understanding the pattern of all wire transactions in that
account. Analyzing wire transactions originating from the same account is important,
particularly when investigating potential fraudulent incidents involving that account. It is
important to display the interconnected links of all wire transactions from the same account
because it helps analysts evaluate the transactional trail between accounts. Since multiple
wire transactions can generate densely connected polylines, users can selectively enable or
disable the relationships among wire transactions by utilizing the checkbox buttons located
beside or above each information panel.

The PCA projection view supports multiple user interactions such as highlighting,
selecting, zooming, and panning. These functionalities are very useful in assisting analysts
in building and validating a hypothesis with evidence. For instance, users can select or
highlight wire transactions or information displayed in the information panels. If a user
wishes to perform an analysis focusing on keyword investigation, they can highlight or
select interesting keywords to construct a potential keyword group. This enables the user to
investigate financial activities associated with that specific group of keywords. Additionally,
users can investigate specific accounts to examine their overall activities using the account
information panel. This feature is useful when users want to assess each account’s overall
transactions as part of a preliminary investigation to identify any potentially fraudulent
accounts. With the selection user interaction technique, users can conduct comparative
investigations on multiple wire transactions or accounts. For example, if users want to
compare the activities of certain accounts, they can enable the selection technique to display
their activities as connected polylines. This allows them to directly evaluate similarities
and differences by analyzing visual patterns. In this view, numerous wire transactions
are represented as small glyphs. Therefore, zooming and panning serve as effective user
interaction techniques to examine detailed information about wire transactions. To facili-
tate these interactions, multiple buttons are arranged at the bottom of the view. The three
information panels are closely connected to provide supplementary details about wire
transactions. Since PCA is often utilized to identify patterns and possible outliers in various
types of data [26], this PCA projection view can help users gain a deeper understanding
of wire transactions. The zooming user interaction facilitates the examination of specific
wire transactions, allowing users to closely analyze their patterns and trends within the
zoomable 2D space. At the same time, users can view their investigation results (e.g., suspi-
cious, not suspicious, or inconclusive) on wire transactions within the view. Specifically, all
investigators’ results are represented inside each glyph as colored cells. The investigation
result is promptly added within the corresponding glyph whenever the user concludes an
investigation on a specific wire transaction. This functionality is useful as it enables users
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to track the progress of their investigation and view other analysts’ conclusions on wire
transactions. For a detailed explanation of how the investigation results are embedded in
the view, please refer to Section 4.3.

Data view: The data view represents all wire transactions in the dataset using a parallel
coordinates visualization. The dataset has eight dimensions, including sending and receiver
accounts, the amounts of transactions, date information (year, month, and day), number
of keywords, and actual keywords related to each transaction. To reduce the dimensions
of the dataset using PCA, all categorical data are converted to possible numerical values.
Since PCA assumes linearity across all variables, unwanted discrete variables should be
excluded selectively from the principal component analysis calculation especially when
datasets contain attributes with both continuous and discrete values. However, in this
study, we used all categorical data to capture variations associated with different categories
with PCA. This approach is beneficial for understanding data sparsity, particularly when
identifying transaction frequencies associated with related keywords at specific times of the
day or year. A binary encoding technique is applied to convert categorical variables into
binary bit patterns. This generates m binary bit patterns corresponding to the total number
of keywords. Initially, all bit patterns are set to “0”. Depending on the keywords present in
each transaction, the corresponding bit is mapped to a binary number “1”. Subsequently,
the mapped binary patterns are converted to numbers, representing unique keyword
identification numbers; while binary encoding is effective for preserving the information
of each categorical variable, it often results in too many feature dimensions. Therefore,
we transformed the binary representations to decimal numbers, allowing each categorical
variable to be represented by a single numerical value. In the data view, checkboxes are
added at the bottom of each variable axis, supporting the option to enable or disable them
for inclusion in PCA computation.

4. Tracking Semantic User Interactions

4.1. Initiating User Interactions

The interactive wire transaction analysis system provides multiple menu buttons
accompanying each tool, designed to initiate and capture user interactions. These buttons
support the interactive analysis of financial data by enabling predefined actions such as
selecting or highlighting visual elements representing detailed wire transaction information,
activating zoom and pan features, and creating annotations. Table 1 illustrates the available
menu buttons and their corresponding meanings. Each menu button enables the initiation
of multiple user interactions. The wire transaction analysis tool has twelve menu buttons,
facilitating the initiation of new user interactions and tracking internal semantic user
interactions. For instance, by enabling the navigation button , the user can navigate
through the hierarchical clusters in the heatmap view. The heatmap view provides valuable
insights by illustrating hierarchical clusters based on the occurrence of transactions and
frequencies of keywords. This allows users to navigate through accounts by assessing the
frequencies of transactions and keywords. Due to the relatively small size of the strings
and beads view, users often face challenges in accurately evaluating transaction amounts.
Therefore, a menu button is added to support switching between the heatmap view
and the strings and beads view, enabling users to view the representation on a larger
scale. If users want to perform a comparative analysis, they can select multiple visual
element(s) using selection tools . In particular, is designed to support users to
create an arbitrary range of boundaries to select multiple items. When users find suspicious
evidence on wire transactions, they can add text and drawing annotations. Users can
enter an investigation decision (either suspicious, not suspicious, or inconclusive) using .
Subsequently, these entered investigation outcomes are incorporated into the investigation
tracing tool.
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The tool also supports multi-touch user interactions, which are particularly useful
in collaborative multi-touch table environments [27]. Users can create and share multiple
workspaces using the workspace creation and rotation buttons . Although creating
additional workspaces may not always be effective in a desktop environment [27], this
feature can still be valuable for users who need to manage multiple investigation results
in a temporary workspace. It provides a convenient method for handling and tracking
various investigation sessions to increase flexibility in organizing the analysis process.
Moreover, tracing the wire transactions is supported by enabling the toggle button as
multiple wire transactions are often made in each account . The symbol is embedded
in each information panel to allow toggling the representation of connected polylines
for the highlighted wire transaction(s) to accounts, keywords, and transaction amounts.
Figure 1B demonstrates an example of displaying polylines based on the user’s interaction
of highlighting a wire transaction in the PCA projection view. Since this view is designed
as a scalable interface, it enables users to navigate the view freely by initiating zooming

and panning . As previously mentioned, all wire transactions are repre-
sented as small glyphs. Therefore, detailed information about wire transactions becomes
accessible when users interact with the glyphs, for example through highlighting, selecting,
or zooming. However, visual clutter may occur when a high volume of transactions results
in densely packed polylines. This clutter can lead to confusion, making it challenging
for users to understand the meaning of the visual representation clearly. Zooming and
panning interactions are effective in helping users comprehend or interact effectively with
the represented information. The wire transaction analysis tool enables users to classify
each transaction as suspicious, not suspicious, or inconclusive. The symbol highlights
all wire transactions with recorded investigation decisions within the PCA projection view.
Additionally, activating the button displays all recorded investigation results, organizing
them into clusters that emphasize the analysis decisions of each individual user.

Table 1. Menu buttons supported in the system with their meanings.

Button Description Button Description

Going back to the initial state Creating multiple user workspaces

History forward and backward Rotating and closing workspace

Navigating on hierarchical clusters Enabling toggle selection

Canceling of all activated menu buttons Representing wire transactions with polylines

Switching between the heatmap view and the strings
and beds view

Highlighting the wire transactions that have investiga-
tion results marked by analysts

Entering the investigator’s conclusion (suspicious, not
suspicious, or inconclusive)

Representing clusters of investigation results on wire
transactions made by the same users

Enabling text and drawing annotations Initiating zooming (in and out) user interactions

Individual and multiple item sections Initiating panning (left, right, up, and down) user inter-
actions

4.2. Capturing User Interactions

As discussed in Section 2, researchers have extensively explored various ways to
capture user analysis processes in visualizations by utilizing eye-tracking devices or sys-
tematically recording user interactions. Eye-tracking devices often require additional
post-evaluation and analysis procedures to align the captured data with the visualization.
Therefore, researchers in the visualization community have explored capturing both low-
and high-level user interactions [28]. Low-level user interactions represent mouse actions
like clicks, dragging, and scrolling, directly affecting the manipulation of the visualization
interface. On the other hand, high-level user interactions, including zooming, panning,
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and toggling, involve conceptual engagements that connect users’ low-level actions with
visual elements, facilitating a deeper comprehension of these elements. To evaluate users’
intentions while using a visual analytics system, we considered capturing semantic user
interactions, which indicate the meaning of what the user is interacting with. For instance,
if the user wants to investigate the wire transaction involving account number 80 (i.e.,
Account 80 → Account 10, USD 8675.0, 12 April 2015, Financial Service), they might move a
mouse cursor to initiate the highlighting interaction over the transaction, thereby accessing
its detailed information, including the receiver account, keywords, and transaction amount.
This mouse action is captured as a low-level interaction. Simultaneously, its underlying
meaning, “the user highlighted on the transaction (Account 80 → Account 10, USD 8675.0,
12 April 2015)”, is captured as semantic user interaction data.

4.3. Connecting Investigation Results to User Interactions

When analyzing wire transactions for potential financial fraud, financial analysts
typically classify each transaction as suspicious, not suspicious, or inconclusive based on
the information available during the investigation. The wire transaction analysis tool is
internally linked with the investigation tracing tool, allowing for the immediate display of
investigators’ decisions within the visualization. When an analyst investigates a specific
wire transaction and records the result in the wire transaction analysis tool, this decision is
promptly reflected in the investigation tracing tool. Figure 2 shows analysts’ decisions using
different color attributes: suspicious (brown), (B) not suspicious (blue), or (C) inconclusive
(green). Each visual glyph, represented as a rectangular object, corresponds to a wire
transaction. A rectangle outlined with no colored cells indicates that no investigation has
been conducted on that transaction yet. If analysts have investigated a specific transaction,
its corresponding glyph is depicted as a rectangular grid cell filled with their analysis
decisions. The size of each grid cell varies depending on the number of investigation
results accumulated in the system. Large grid cell size indicates a greater number of results.
Thus, a denser grid cell is generated when numerous investigation results exist. By default,
the investigation tracing tool displays all expert analysts’ decisions and their interaction
logs, including semantic-level interactions, collected from the study [3]. Figure 2 (A) and
(B) show analysis sessions where only one analyst has provided an investigation result,
whereas Figure 2 (C) illustrates a case where two analysts have analyzed a wire transaction
and concluded that it is not suspicious. This functionality plays a crucial role in helping
users understand the different analysis decisions of others, as analysts frequently hold
conflicting opinions. Figure 2 (D) demonstrates a scenario where six analysts evaluated
the same wire transaction and arrived at different conclusions. Three analysts deemed the
transaction suspicious, while the other three considered it inconclusive. These assessments
were based on the data available within the system. Unfortunately, their decisions cannot
be confirmed or refuted due to a lack of ground truth information. However, examining
their approaches is crucial to understanding the distinctive analytical paths that led them
to different conclusions. To facilitate this analysis, we developed a visual state transition
matrix to explore semantic user interactions. Details are provided in Section 5.
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(A)

(B)

(C)

(D)

Figure 2. In the investigation tracing tool, all wire transactions are represented as outlined rectangular
objects. Results from prior investigations are added as colored cells within each rectangular object.
Different color attributes are used to represent the investigation results—(A) suspicious, (B) not suspi-
cious, and (C) inconclusive. (D) Analysts arrive at different conclusions regarding wire transactions
as either suspicious or inconclusive.

5. Analyzing Semantic User Interactions

In the visualization community, researchers have investigated understanding the rela-
tionship between user interactions and their reasoning and thinking processes. The user’s
thinking process is commonly regarded as a cognitive process, wherein users interpret
the meaning of visually represented elements. Users develop various analysis strategies
while engaging in interactive visual analysis to identify potential financial fraud in wire
transactions [29]. These strategies are then tested through continuously generated user
interactions with the system, ultimately leading to conclusions that classify transactions
as suspicious, not suspicious, or inconclusive. Analyzing the captured semantic user in-
teractions helps understand users’ intents during synthesis (hypothesis generation). This
analysis provides valuable insights into their cognitive processes and aids in reconstructing
their internal thinking models.

Semantic user interactions are continuously captured within the visualization system.
To analyze the flow of the interactions, we utilize a Markov chain model [6]. This mathe-
matical model describes sequences of potential events or states, where each future state is
determined solely by the current state, independent of the events that preceded it. In our
study, we hypothesized that future user interactions are primarily influenced by current
or past interactions during visual analysis. We further assumed that each user interaction
represents a distinct state, corresponding to a specific condition or situation within the
analysis. To test this hypothesis, we constructed a visual state transition matrix to illustrate
a sequential model of user interactions. Specifically, we defined a state space by following
Markov chain as a state space, a transition matrix, and an initial state or initial distribution
as follows,

• State Space (S): A set of states that represent the changes in the current visual repre-
sentation generated by user interactions. For example, in our visualization system,
the state space is defined as S = {s1, s2, . . . , sn}. Each state si is created whenever
the user initiates a user interaction. It can be clusters, accounts, keywords, or a
combination of clusters and keywords or accounts.



Information 2024, 15, 351 13 of 22

• Transition Matrix (P): This is defined as a square matrix to describe the probabilities
of moving from one state to another. Depending on the size n of the state space, P
will be n × n matrix, where the entry Pij gives the probability of transitioning from
state i to state j in one step (called transition probabilities).

• Initial State or Initial Distribution (π): This describes the starting (i.e., initial) state of
the analysis. Since each state transition is mapped from one state to another, the prob-
ability distribution over the initial states is set to zero. The transitional distribution is
measured by examining the duration of time the user spends in each state.

With the Markov chain, a n × n transition matrix (P, also known as a stochastic matrix)
is created to represent all possible transitions between states. To represent distinct states,
n binary bits are generated using a binary encoding technique. The size of the transition
matrix P can be represented as P ∈ R

n×n, where R
n×n denotes the set of all real-valued

matrices with dimensions n × n. The dimension n is determined by the sizes of hierarchy
cluster nodes (C), bank accounts (A), keywords (K), and transactions (T), calculated as
n = |C|(1 + |K|) + |K|+ |T|. This arrangement is adopted because all financial data are
organized as cells along the cluster IDs and keywords in the heatmap view. In our dataset,
a 11897 × 11897 transition matrix is created. Each row i of the matrix satisfies the condition
∑n

j=1 Pij = 1, ensuring that the user’s current state transitions to another state in the
next step.

Figure 3 shows a visual state transition matrix, illustrating an analyst’s semantic user
interactions with transitional states. Changes in the transitional states, as reflected by user
interactions, are highlighted with connected spline-curved polylines. Red-colored arrows
are embedded within the polylines to facilitate understanding of transitions within the
matrix. In the matrix, the current and future states are represented along the rows (y-axis)
and the columns (x-axis), respectively. The total time spent, denoted as Δt, in each jth row
(∑n

j=1 tij) and ith column (∑n
i=1 tij) is displayed along the matrix’s edges. A reddish triangle

marks that the analyst began investigating the cell, specifically CID:4 Singapore, in the
heatmap view. An inverted bluish triangle denotes the ending state, indicating that the
analyst has completed investigating the keyword ‘Brazil’ in the keyword relation view.
The transition matrix is designed as a zoomable user interface, supporting zooming and
panning user interactions. This allows the user to navigate the matrix freely by zooming
in and out as needed. The figure shows that the analyst initiated the analysis of wire
transactions from CID:187 (located in the top left corner) and quickly transitioned to explore
related keywords, such as ‘Singapore’, ‘India’, and ‘Minerals & Gems’ (located in the center).
The magnified region in the figure represents the duration the analyst spent analyzing
clusters (CIDs: 178, 187, 193, 199) associated with the keywords—‘Arts & Crafts’, ‘India’,
and ‘Minerals & Gems’. The probability of transitioning from state i to state j is presented
along with the total time the analyst spent within each state. For example, the analyst
spent about 0.55 and 0.98 seconds analyzing CID:187 and CID:193 with the keyword ‘India’,
respectively. Since the analyst only investigated certain states based on their interests, many
states remain unexplored. Due to the large matrix size (11,897 × 11,897), comprehending
the analyst’s transition movements clearly is not easy. Therefore, a hiding feature has been
added to render all unexplored states invisible in the transition matrix.

Figure 4 represents the transition matrix after hiding all unexplored states, making
them disappear from the view. It shows a reduced 35 × 35 transition matrix. This adjust-
ment makes the flow of user interactions much clearer and easier to follow and understand.
This matrix represents that the analyst began the analysis from the cluster associated with
the keyword ‘Singapore’ (indicated by the reddish triangle). By examining the duration
of time spent in each state, we observed that the analyst devoted considerable time to
analyzing wire transactions involving the keywords ‘India’ and ‘Brazil’. In particular,
the analyst spent nearly 984 s (700 s + 284 s) evaluating clusters related to the keyword
‘India’ (as highlighted in the cells on the right side of the matrix). Additionally, the bluish
rectangular cell indicates that the analyst spent the longest duration, approximately 1142 s,
evaluating the wire transactions containing the ‘Brazil’ keyword.



Information 2024, 15, 351 14 of 22

Figure 3. Visual state transaction matrix representing an analyst’s semantic user interactions. Con-
nected spline-curved polylines represent changes in transitional states, illustrating the flow of seman-
tic user interactions. Red arrows are embedded within the polylines to guide users in understanding
the transitions within the matrix.

Figure 4. Visual state transaction matrix after hiding unexplored states. Each cell represents the
probability of transitioning to each state, along with the amount of time the user spent within the
state. A reddish triangle indicates the beginning state; while an inverted blue triangle denotes the
ending state. The cell where the user spends the most time is highlighted in blue.

6. Evaluating Semantic User Interactions

Evaluating semantic user interactions can be challenging due to their complex and
diverse analytical procedures. For instance, each interaction involves multiple dimensions,
such as the timing, sequence, and context of actions, which can vary greatly from one user
to another. Moreover, designing a standardized framework for analyzing these interactions
is challenging because visualization tools are often tailored to specific domains. We utilized
a machine-learning-based analysis to determine whether these interactions can be classified
and grouped into identifiable clusters based on users’ decisions. Specifically, we used the
semantic user interaction dataset generated as part of the studies [2,3,30]. The dataset was
recorded during a fraud detection analysis conducted by ten experts who have professional
experience as financial analysts. The dataset includes sixty analysis sessions, denoted
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as [di|Si], Si = {si1, si2, . . . , sin}, where each Si represents a distinct analysis session and
sij indicates individual semantic user interactions within that session. Each session, Si,
concludes with a decision, di, categorized as suspicious, not suspicious, or inconclusive.
The series of user interactions within each session consists of textual information that
captures the user’s analytical flow in the visualization. To analyze the interactions, we
applied natural language processing (NLP), treating each interaction as a discrete data
element that emphasizes the user’s action within the visualization.

6.1. Data Vectorization

Since semantic user interactions are predominantly captured in textual form, data
quantization becomes necessary for their analysis using statistical techniques. To achieve
this, two techniques are employed to convert them into numerical representations—Bag-
of-Words (BOW) and Term Frequency–Inverse Document Frequency (TF-IDF) [31]. The
BOW technique generates numerical vectors by counting tokenized semantic data. For
instance, the semantic user interactions, depicted in Figure 4, are quantitatively analyzed
by conducting a frequency analysis as follows:

Accounts = {A31, A43, A51, A61, A81, A1351, A1674, A1785, A18740, A19376, A19425, A19549, A19696, A19915}
Keywords = {K111, K1417, K1688, K188, K194, K206, K221, K231, K2415, K268, K2712, K410, K530, K63, K828}

Beads = {B244615}
Transactions = {AS45 → AR5215}
where the symbols A and K represent the account and keyword, respectively. B indicates
the bead in the string and beads view. AS and AR denote the sender and receiver account
in each wire transaction, accordingly. The numeric number positioned next to each symbol
indicates unique identifiers of semantic information. The power value represents the
frequency of each semantic information generated by each analyst. In detail, A43 indicates
that the analyst evaluated account 4 three times in the heatmap view. K28

8 means that
the keyword identifier K8 was observed by the analyst 28 times. Since each bead in the
string and beads view is connected to a corresponding wire transaction, the same number
of frequencies (observed 15 times) appears in the beads and transactions. Based on this
frequency information, each semantic user interaction is converted into a vector, where each
dimension corresponds to a unique semantic user interaction. The value in each dimension
represents the frequency. It is important to note that not all states in the transition matrix
are traversed by analysts. This results in sparse vectors with many dimensions having
zero values, indicating states that were not visited. By aggregating all captured semantic
user interactions, a vector size of 1135 is created. Since the analysts have made decisions
across the sixty analysis sessions, a vectorized dataset with dimensions 60 × 1136 is
subsequently created.

TF-IDF is also considered because it is widely used in text analysis to compute the
frequency and importance of each term in a document. We employed TF-IDF to convert the
semantic user interactions into numerical feature vectors. Each analyst’s analysis session is
treated as a collection of terms for which TF-IDF values are computed. Thus, each session is
represented as a vector of TF-IDF values corresponding to the terms it contains. Specifically,
Term Frequency (TF) is calculated to determine the frequency of each term within a session
as TF(t, S) = Count(t,S)

∑t′ ∈S
Count(t′ ,S)

, where Count(t, S) denotes the occurrences of term t in each

analysis session S. The denominator, ∑t′ ∈S Count(t
′
, S), indicates the total number of terms

that appear in S. Inverse Document Frequency (IDF) assesses the importance of each term
in all analysis sessions using IDF(t) = log

(
N

DF(t)

)
, where N represents the total number

of analysis sessions (i.e., N = 60 in this study). DF(t) denotes the number of sessions
containing the term t. Then, TF-IDF is calculated by multiplying TF and IDF to represent
the importance of each term in each analysis session as TF-IDF(t, S) = TF(t, S)× IDF(t).
Utilizing TF-IDF is effective because it not only evaluates the frequency of the terms within
each analysis session but also weights them according to their distinctiveness across all
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sessions. This helps to identify terms that are particularly relevant to a specific session and
distinctive within the context of all sessions. Like the BOW technique, TF-IDF generates
feature vectors with the same dimensions 60 × 1136. This similarity in dimensions occurs
because the same set of unique tokens (i.e., terms), representing semantic user interaction
states, is used in both the BOW and TF-IDF techniques.

6.2. Data Oversampling

The dataset is highly imbalanced, consisting of 27 suspicious, 21 not suspicious,
and 12 inconclusive analysis sessions. If machine learning algorithms are applied to
imbalanced data, the result may not be reliable because computation accuracy tends
to be biased towards the majority class. Consequently, the performance in accurately
analyzing the minority class (i.e., inconclusive analysis sessions) can be diminished. If a
machine learning model is designed with imbalanced data, it may exhibit increased false
positives and negatives. To address the imbalance problem, researchers have proposed
various undersampling and oversampling techniques [32]. Although both techniques are
suitable for handling imbalanced data, we utilized an oversampling technique because
of the relatively small size of the dataset. Specifically, Synthetic Minority Over-sampling
Technique (SMOTE) [33] is used to oversample the representation of the minority class
in the vectorized data. SMOTE balances the class distribution by randomly selecting an
instance xi from the minority class Xm. For each selected instance, k nearest neighbors
of an instance are selected as xi1, xi2, . . . , xik. Then, a synthetic instance xnew is created by
following xnew = xi + λ × (xil − xi), where l is randomly chosen from from {1, 2, . . . , k}
and λ is a random value {λ ∈ R : 0 ≤ λ ≤ 1}. With SMOTE, the dataset is balanced to
include an equal total of 27 instances across all analysis sessions.

6.3. Classifying Analysis Sessions

To analyze the semantic user interactions in the analysis sessions, we applied five clas-
sification algorithms [34,35]: Multinomial Naive Bayes (MultinomialNB), Support Vector
Classifier (SVC), Random Forest (RF), Logistic Regression (LR), and Gradient Boosting
(GB). Each algorithm brings unique advantages, allowing for a comprehensive examination
of the data through effective classification.

MultinomialNB is a probabilistic classification algorithm based on Bayes’ theorem. It
operates under the assumption of feature independence, meaning that there is no relation-
ship between features. This algorithm utilizes the multinomial distribution to compute
the probability of observing counts or frequencies of different categories (terms) in a
fixed number of independent trials. Since it is designed to analyze discrete data, it is
broadly used in text data analysis. We utilized MultinomialNB to compute the probability
P(di|Si) ∝ P(di)× P(Si|di) of the vectorized semantic user interactions, where P(di) is the
prior probability of decision di and P(Si|di) is the likelihood of the feature vector Si. Given

an analysis decision dk during training, P(Sk|dk) is computed as P(Sk|dk) = ∏n
i=1 p

Ski
ki

,
where pki

is the probability of observing the i-th term under decision dk. Each term’s
frequency Ski

contributes to the likelihood calculation. Given a new feature vector Sk,
MultinomialNB calculates the posterior probability of each decision dk using Bayes’ theo-
rem as P(dk|Sk) =

P(Sk |dk)×P(dk)
P(Sk)

, where P(Sk) is computed as the sum of the likelihoods of
Sk under each decision weighted by the respective prior probabilities.

SVC identifies support vectors as an optimal hyperplane separating the feature space
classes. Although it is computationally intensive, it is good for analyzing large, complex
data [36]. For the given vectorized data, it finds a hyperplane in n-dimensional space
as W · X + b = 0, W is the normal vector to the hyperplane. X and b are feature vector
and bias, respectively. As a constrained optimized problem, it maximizes margin 2

‖W‖
while minimizing classification errors. To find the optimal decision boundary for the
vectorized semantic user interaction data, Radial Basis Function (RBF) kernel K(x, x′) =
exp(−γ‖x − x′‖2) is used to determine the nonlinear decision boundary, where γ is a
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parameter for the RBF kernel used to define the influence of a single data point in each
training. In our study, γ = 1

2×1136 is used.
As an ensemble technique, RF is a computationally intensive algorithm because it

constructs multiple decision trees to determine optimal classification. It uses bootstrapping
aggregation to generate random samples to decrease the variance of a model. Thus, it
provides better results compared to a traditional decision tree algorithm (i.e., creating a
single decision tree). However, the complexity of combining multiple decision trees makes
the interpretation of results more challenging. As a binary classification technique, LR
uses a logistic function to evaluate an instance by calculating its probabilities. Since our
dataset has three decisions as classes, we used multinomial LR. It predicts the probability

with softmax function P(y = di|Si) =
e

βdi
·Si

∑K
j=1 eβj ·Si

that a given observation belongs to each

di decision class, where βdi
is the coefficient vector for class and Si is the feature vector.

The log-likelihood function is used to estimate the coefficient vector βdi
for all classes to find

the optimal best fit for the function. Lastly, as an ensemble learning technique, GB builds
a sequence of weak models (decision trees) and combines them to form a strong model
iteratively. It minimizes loss to the target value as F(S) = arg min

γ
∑n

i=1 L(ri, γ), L is the

loss function applied to gradients ri and γ is the predicted value. For the loss function, we
used a logarithmic loss function to perform the classification with the vectorized features.

Table 2 shows classification performances with the five classification algorithms. Be-
cause the dataset is small, 5-fold cross-validation was employed to assess the performances.
This cross-validation method ensures robust and reliable performance metrics by reducing
the risk of overfitting and providing a more comprehensive assessment of the model’s
generalization capabilities. Overall, we observed similar results across different vectorized
data. This might be attributed to the repeated patterns in the captured semantic user
interaction data. Although TF-IDF assigns weights to the semantic user interaction states
based on their TF and IDF values, the presence of numerous repeated patterns results in
the outcomes from the TF-IDF vectorized data closely resembling those from the BOW
vectorized data. Among the five algorithms, MultinomialNB demonstrated better per-
formances across all metrics—accuracy, precision, recall, and F1-score. In contrast, GB
exhibited relatively lower performance with minor variances in the measured scores.

We also evaluated performance differences depending on the analysis decisions of
suspicious (S), not suspicious (N), and inconclusive (I) (see Table 3). Average performance
differences were evaluated to understand the effectiveness of classifying analysts’ deci-
sions. With MultinomialNB and GB, we found higher scores in all metrics for classifying I
decisions. However, other classification algorithms showed distinctive results. With SVC,
we found that accuracy and recall scores were high in classifying the S decisions. However,
precision and F1-score exhibited high scores in I decisions. Similar to the results with SVC,
we observed high precision and F1-score for classifying I decisions with RF. Furthermore,
N decisions showed high accuracy and recall scores. When utilizing LR, accuracy, recall,
and F1-score showed high performances for I decisions. However, precision scores showed
high performances for classifying N decisions. Thus, if classification accuracy is important
for understanding the analysts’ I decisions, utilizing MultinomianalNB, LR, and GB should
be considered. Since most analysts’ goal is to determine if analyzed wire transactions
become suspicious (S) or not suspicious (N), using SVC and RF become the most effective
classification algorithms for evaluating captured semantic user interactions.
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Table 2. Classification performances (mean ± standard deviation) using two vectorized data (BOW
and TF-IDF).

Data Type Metric MultinomialNB SVC RF LR GB

BOW

Accuracy 0.79 ± 0.11 0.67 ± 0.09 0.74 ± 0.08 0.74 ± 0.12 0.64 ± 0.04

Precision 0.80 ± 0.11 0.77 ± 0.08 0.76 ± 0.08 0.75 ± 0.13 0.65 ± 0.05

Recall 0.79 ± 0.11 0.66 ± 0.09 0.74 ± 0.07 0.74 ± 0.12 0.64 ± 0.04

F1-score 0.79 ± 0.11 0.64 ± 0.11 0.74 ± 0.07 0.72 ± 0.13 0.64 ± 0.05

TF-IDF

Accuracy 0.79 ± 0.11 0.67 ± 0.09 0.69 ± 0.11 0.74 ± 0.12 0.63 ± 0.04

Precision 0.80 ± 0.11 0.77 ± 0.08 0.73 ± 0.10 0.75 ± 0.13 0.65 ± 0.05

Recall 0.79 ± 0.11 0.66 ± 0.09 0.69 ± 0.10 0.74 ± 0.12 0.63 ± 0.04

F1-score 0.79 ± 0.11 0.64 ± 0.11 0.67 ± 0.11 0.72 ± 0.13 0.63 ± 0.05

Table 3. Classification performances (mean ± standard deviation) using BOW and TF-IDF vectorized
data on analysis decisions. The highest performance scores among analysis decisions are highlighted
in bold.

Data Type Metric Decision * MultinomialNB SVC RF LR GB

BOW

Accuracy
I 0.96 ± 0.08 0.64 ± 0.25 0.81 ± 0.11 0.93 ± 0.09 0.81 ± 0.02

N 0.77 ± 0.15 0.43 ± 0.21 0.81 ± 0.13 0.81 ± 0.13 0.67 ± 0.07

S 0.64 ± 0.19 0.92 ± 0.16 0.37 ± 0.11 0.47 ± 0.22 0.45 ± 0.16

Precision
I 0.83 ± 0.09 0.96 ± 0.08 0.75 ± 0.17 0.74 ± 0.1 0.80 ± 0.12

N 0.79 ± 0.19 0.80 ± 0.27 0.66 ± 0.11 0.76 ± 0.21 0.63 ± 0.2

S 0.79 ± 0.13 0.55 ± 0.09 0.72 ± 0.28 0.75 ± 0.17 0.54 ± 0.05

Recall
I 0.96 ± 0.08 0.64 ± 0.25 0.81 ± 0.11 0.93 ± 0.09 0.81 ± 0.02

N 0.77 ± 0.15 0.43 ± 0.21 0.81 ± 0.13 0.81 ± 0.13 0.67 ± 0.07

S 0.64 ± 0.19 0.92 ± 0.16 0.37 ± 0.11 0.47 ± 0.22 0.45 ± 0.16

F1-score
I 0.88 ± 0.07 0.73 ± 0.18 0.77 ± 0.09 0.82 ± 0.09 0.80 ± 0.06

N 0.78 ± 0.16 0.52 ± 0.21 0.71 ± 0.06 0.77 ± 0.14 0.63 ± 0.08

S 0.69 ± 0.13 0.68 ± 0.09 0.49 ± 0.16 0.56 ± 0.19 0.48 ± 0.12

TF-IDF

Accuracy
I 0.96 ± 0.08 0.64 ± 0.25 0.85 ± 0.08 0.93 ± 0.09 0.81 ± 0.02

N 0.77 ± 0.15 0.43 ± 0.21 0.85 ± 0.08 0.81 ± 0.13 0.63 ± 0.13

S 0.64 ± 0.19 0.92 ± 0.16 0.44 ± 0.17 0.47 ± 0.22 0.41 ± 0.14

Precision
I 0.83 ± 0.09 0.96 ± 0.08 0.78 ± 0.19 0.74 ± 0.1 0.79 ± 0.13

N 0.79 ± 0.19 0.80 ± 0.27 0.72 ± 0.17 0.76 ± 0.21 0.57 ± 0.09

S 0.79 ± 0.13 0.55 ± 0.09 0.72 ± 0.16 0.75 ± 0.17 0.52 ± 0.07

Recall
I 0.96 ± 0.08 0.64 ± 0.25 0.85 ± 0.08 0.93 ± 0.09 0.81 ± 0.02

N 0.77 ± 0.15 0.43 ± 0.21 0.85 ± 0.08 0.81 ± 0.13 0.63 ± 0.13

S 0.64 ± 0.19 0.92 ± 0.16 0.44 ± 0.17 0.47 ± 0.22 0.41 ± 0.14

F1-score
I 0.88 ± 0.07 0.73 ± 0.18 0.80 ± 0.11 0.82 ± 0.09 0.79 ± 0.07

N 0.78 ± 0.16 0.52 ± 0.21 0.76 ± 0.09 0.77 ± 0.14 0.58 ± 0.07

S 0.69 ± 0.13 0.68 ± 0.09 0.54 ± 0.18 0.56 ± 0.19 0.45 ± 0.11

* I: Inconclusive, N: not suspicious, and S: Suspicious.

The classification results indicate that we can successfully classify the user interactions
based on their decisions. Most importantly, MultinomianalNB showed the highest accuracy
(about 96%) to classify I decisions. SVC and RF demonstrated strong performances in
classifying S and N decisions, achieving the accuracies of 92% and 81%, respectively.
Based on the F1-scores, it is apparent that MultinomianalNB will be the most important
classification algorithm to analyze semantic user interactions, especially when the dataset is
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imbalanced. These results emphasize the potential of utilizing semantic user interactions to
understand users’ analytical processes in their decision making. Furthermore, integrating
the captured user interactions into a visualization can assist users in solving analytical
problems more effectively.

7. Discussion

By classifying the semantic interaction data, we achieved an average training accuracy
of 0.99 ± 0.02 with 5-fold cross-validation. The average testing accuracy was 0.71 ± 0.05.
Specifically, we observed an accuracy of 0.83 ± 0.12 in classifying I decisions. However,
the classification accuracies for S and N decisions were somewhat lower, at 0.57 ± 0.20
and 0.70 ± 0.16, respectively. This discrepancy can be attributed to the use of SMOTE
oversampling for “not suspicious” and “inconclusive” sessions. Since SMOTE generates
synthetic samples based on Euclidean distances, it led to a higher accuracy for I decisions
due to significant feature overlap between the classes.

As shown in Table 3, we found variations in classification performance depending on
analysis decisions. Each classification algorithm is designed to handle different types of
noisy data, leading to varying performance outcomes. For instance, MultinomialNB as-
sumes feature independence, indicating that the presence of one feature does not influence
others [37]. This simplification allows each term to be treated as an independent feature.
Thus, we found slightly higher performance scores with MultinomialNB. Conversely, SVC
with a nonlinear RBF kernel is designed to manage correlated features by prioritizing
margin maximization between classes [38]. Since the vectorized data tend to be sparse, SVC
with the RBF kernel may not perform well. To address this limitation, Huang et al. [39]
proposed Sparse Support Vector Classification that can be considered to analyze the vector-
ized semantic interaction data. RF creates multiple decision trees to reduce the impact of
any single feature’s correction. Thus, it is less susceptible to multicollinear effects where
multiple independent variables are correlated [40]. However, since the data are sparse
and high dimensional, creating many decision trees may be inefficient for analyzing the
semantic user interactions. GB effectively captures complex nonlinear relationships through
sequential tree-building that corrects the errors of previous ones, making it particularly
effective for nonlinear data. However, it also has a limitation of handling sparse data. LR,
being inherently a linear model, may face challenges in identifying nonlinear relationships.
However, it is good for analyzing sparse data. As a result, the performance scores with LR
were higher than those of RF and GB (see Table 3). Furthermore, when dealing with an
imbalanced dataset, evaluating F1-scores is crucial. Although oversampling helps mitigate
the data imbalance problem, measuring F1-scores is important because some degree of
imbalance may persist [33]. The F1-scores (see Tables 2 and 3) in our study reveal that SVC
and GB produced poor performances compared to the others, while RF and LR showed
similar results. Notably, MultinomialNB achieved the highest F1 scores across all decisions,
highlighting its superior performance in classifying semantic user interactions.

The captured semantic user interactions are formatted as textual information. Thus, it
is logical to leverage text data analysis methods. We employed the BOW and TF-IDF tech-
niques to convert them to numerical formats. TF-IDF generally offers better performance
in text data classification tasks due to its balanced feature representation [41–43]. However,
we observed no significant difference between the two techniques in our analysis. This
result may stem from the high proportion of common terms within the semantic interac-
tions, which prevents TF-IDF from effectively converting the terms into meaningful vectors.
Therefore, it is necessary to develop a new technique specifically tailored to convert semantic
user interaction data into more suitable vectors for enhanced classification performance.

As discussed above, capturing semantic user interactions is essential for understand-
ing users’ analytical reasoning processes. However, achieving this in existing visualization
applications requires extensive modifications. Specifically, the applications need to cap-
ture low-level user interactions (e.g., mouse actions) and determine their corresponding
semantic information. This process often requires significant additional effort because
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each visualization application uses a different dataset and is designed to address a specific
domain problem, leading to different internal mappings between the interactions and
their semantic meanings. Analyzing semantic user interactions also presents a research
challenge. Although several approaches have been proposed to analyze these interactions,
their applicability across various visualization applications is limited. In this paper, we
present an approach to analyzing semantic user interactions using classification algorithms.
However, continuous research is essential in enhancing the proposed approach, particu-
larly by evaluating it with a large amount of semantic user interaction data captured using
diverse visualization applications.

8. Conclusions and Future Works

In this paper, we explored semantic user interactions within a visualization system de-
signed for analyzing financial fraud in wire transactions. Since financial analysts can utilize
this system to assess whether transactions are suspicious, understanding the procedures
they employ during their analysis is crucial for gaining insights into their decision-making
processes. By capturing and examining semantic user interactions, we can better under-
stand the analysts’ analytical processes and the reasoning behind their decisions. This
understanding is essential for evaluating the effectiveness of the visualization tools and
enhancing decision support in financial fraud analysis. Since financial analysts’ decisions
are diverse and occasionally contradict each other, tracing their user interactions is vital
for understanding their reasoning and assessing the effectiveness of the visualization tools
employed. To analyze captured semantic user interactions, we utilized a Markov chain
model to create a visual state transition matrix. It supports tracing each user’s performed
analytical approaches to their decisions. To explore the possibility of linking user interac-
tions to decision-making processes, we applied five classification algorithms. The results,
with an average classification accuracy of about 72%, demonstrated the effectiveness of
our method in clarifying analysts’ analytical decisions through the analysis of semantic
interactions. Overall, this study proposes a potential future research direction for enhancing
the effectiveness of integrating semantic user interactions to improve users’ performance in
visual analytical tasks.

For future works, we plan to test our proposed approach by collecting more semantic
user interaction data. Additionally, we plan to assess the significance of incorporating
both low- and high-level user interactions to deepen our understanding of users’ analytical
procedures when utilizing visualization applications to solve analytical problems. We also
intend to employ a deep learning technique, RNN (Recurrent Neural Network) [44]. It
handles sequential data more effectively, such as text, speech, and time series. Since the
captured user interactions are sequential data generated by each user, RNN would be
useful for effectively analyzing the interaction data. Furthermore, we plan to extend our
research to include the integration of captured user interactions into the visualization tools
and evaluate the impact of such integration on the tools’ effectiveness in assisting users
with solving analytical problems.
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