

Article

Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics

Dong Hyun Jeong ^{1,*}, Bong Keun Jeong ² and Soo Yeon Ji ^{3,*}

- Department of Computer Science and Information Technology, University of the District of Columbia, Washington, DC 20759, USA
- Department of Management and Decision Sciences, Coastal Carolina University, Conway, SC 29528, USA; bjeong@coastal.edu
- Department of Computer Science, Bowie State University, Bowie, MD 20715, USA
- * Correspondence: djeong@udc.edu (D.H.J.); sji@bowiestate.edu (S.Y.J.)

Abstract: In the field of visualization, understanding users' analytical reasoning is important for evaluating the effectiveness of visualization applications. Several studies have been conducted to capture and analyze user interactions to comprehend this reasoning process. However, few have successfully linked these interactions to users' reasoning processes. This paper introduces an approach that addresses the limitation by correlating semantic user interactions with analysis decisions using an interactive wire transaction analysis system and a visual state transition matrix, both designed as visual analytics applications. The system enables interactive analysis for evaluating financial fraud in wire transactions. It also allows mapping captured user interactions and analytical decisions back onto the visualization to reveal their decision differences. The visual state transition matrix further aids in understanding users' analytical flows, revealing their decision-making processes. Classification machine learning algorithms are applied to evaluate the effectiveness of our approach in understanding users' analytical reasoning process by connecting the captured semantic user interactions to their decisions (i.e., suspicious, not suspicious, and inconclusive) on wire transactions. With the algorithms, an average of 72% accuracy is determined to classify the semantic user interactions. For classifying individual decisions, the average accuracy is 70%. Notably, the accuracy for classifying 'inconclusive' decisions is 83%. Overall, the proposed approach improves the understanding of users' analytical decisions and provides a robust method for evaluating user interactions in visualization tools.

Keywords: visual analytics; semantic user interactions; machine learning

Citation: Jeong, D.H.; Jeong, B.K.; Ji, S.Y. Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics. *Information* **2024**, *15*, 351. https://doi.org/10.3390/info15060351

Academic Editor: Haridimos Kondylakis

Received: 28 April 2024 Revised: 27 May 2024 Accepted: 8 June 2024 Published: 13 June 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerous visualization applications have been developed to help users solve various analytical problems. However, understanding the extent to which these systems aid in solving analytical problems poses a notable research challenge, primarily due to the complexity of interpreting users' analytical reasoning processes while using the systems. In the visualization community, researchers have devoted considerable effort to exploring potential research directions, particularly focusing on understanding users' rationales (i.e., internal reasoning processes) by linking them with user interactions that are carried out. Among various proposed approaches, eye-tracking devices have emerged as a promising method for analyzing user interactions and understanding how users process visual elements. Despite its potential, integrating user interactions with eye-tracking data presents persistent difficulties, as connecting user interactions directly to the actual eye-tracked data can often lead to misleading conclusions [1]. As an alternative approach, researchers [2-4] have explored evaluating semantic data generated from user interactions. Semantic data extend beyond basic user actions like mouse clicks or movements, providing deeper insights into the context. They assessed how captured interactions reflect users' reasoning by analyzing these interactions in conjunction with the corresponding semantic information. Information 2024, 15, 351 2 of 22

Furthermore, they emphasize the importance of connecting user interaction logs with the underlying rationale in the analytical process.

It is known that experts reach different conclusions when solving analytical problems [5]. This may be because they apply unique analytical strategies based on their individual experience and knowledge. Similar results may appear when solving complex analytical problems with visualization applications. Highly interactive visualizations allow experts to explore data in numerous ways so that it is difficult to unravel how they arrived at their conclusions. Integrating experts' diverse analytical steps into visualization would benefit and advance existing visualization applications by providing insights into how they reached the agreed or disagreed conclusions. In essence, analyzing users' interactions in visualization applications is crucial for understanding their intentions, and ultimately evaluating the effectiveness of the applications.

This paper presents an approach that aims to support the comprehension of analysts' user interactions within a visualization system. We analyze semantic user interactions to gain insights into the users' analytical processes and decisions. Additionally, we integrate captured user interactions into the visualization to highlight the performed analytical procedures. Rather than merely representing the captured user interactions, our emphasis lies in understanding the interactions. Specifically, we employed Markov Chain [6] to understand the analysts' user interactions, treating them as distinct states. An $n \times n$ visual state transition matrix is created to assist in comprehending the flow of user interactions and their underlying reasoning process. Most importantly, we evaluate the analysts' semantic user interactions by directly linking them to their decision-making processes. To validate the effectiveness of this approach, we utilized five classification algorithms: Multinomial Naive Bayes, Support Vector Classifier, Random Forest, Logistic Regression, and Gradient Boosting. These algorithms are employed to confirm the effectiveness of our analysis by classifying the semantic user interactions according to their corresponding decisions.

The main contributions of this work include the following:

- We designed a visualization that connects users' analysis procedures and their decisions within the visualization.
- 2. We analyzed captured semantic user interactions and their conclusions within the visualization;
- 3. We presented an approach to analyze the captured semantic user interactions by classifying them depending on users' analytical decisions;
- 4. To the best of our knowledge, our study is the first to analyze the captured semantic user interactions with classification machine learning algorithms.

This paper is organized into seven sections. We begin by reviewing previous research on understanding user interactions within visualization systems. Then, we introduce the designed visualization system, emphasizing the importance of tracking and utilizing semantic user interactions. In Section 5, we present our proposed method for visually representing captured semantic user interactions using a Markov chain model. Following this, we discuss the results of the classification evaluation conducted to understand these interactions. Finally, we conclude the paper with a discussion of our findings and directions for future work.

2. Previous Work

2.1. Using Eye-Tracking Devices to Understand User Interactions in Visualizations

There is growing evidence that user characteristics such as cognitive abilities and personality traits can significantly impact users' visualization experience [7,8]. These factors not only affect overall experience and task performance but also influence how effectively users can process relevant elements within a visualization. To better assist individual users during visualization tasks, more recent research has shifted its focus towards user-adaptive visualization approaches that can dynamically determine relevant user characteristics and provide appropriate interventions tailored to the characteristics [9–11]. Among different tools to collect user characteristics, eye-tracking has been widely used to understand various

Information 2024, 15, 351 3 of 22

aspects of human cognition and human-computer interactions. It has emerged as a valuable tool to analyze how users perceive and understand visual elements within interactive visualization systems [12]. Eye-tracking data provide insights into information search activity, the relevance of search results, and the complexity of the search. They also provide a valuable metric to infer a user's intrinsic cognitive processes [7]. Existing research has leveraged eye-tracking data for a variety of user interactions. For example, Conati et al. [9] examined whether eye-tracking and interaction data could effectively capture various cognitive abilities relevant to processing information visualizations. They conducted a comprehensive comparison of user models based on eye-tracking data, interaction data, and a combination of both. The findings revealed that eye-tracking data yielded the most precise predictions, although interaction data still demonstrated the potential to outperform a baseline. That is, adaptation for interactive visualizations could be facilitated when eye-tracking is not feasible or when eye-tracking data for a particular user are too noisy. The study also demonstrated that interaction data exhibited superior predictive accuracy for several cognitive abilities at the beginning of the task compared to eye-tracking data. Lastly, they presented the value of multimodal user models by combining eye-tracking and interaction data together to enhance the prediction of cognitive abilities. Alam and Jianu [12] introduced a novel approach to collect and analyze eye-tracking information in data space (what the user is looking at on the screen) rather than image space (where on the screen users are looking). Most eye-tracking data are gathered and analyzed as gaze coordinates within the spatial framework of the visual stimuli being observed. These analyses primarily concentrate on identifying the specific locations on the screen where users direct their gaze. However, such approaches demand considerable manual effort and are impractical for studies encompassing numerous subjects and complex visual stimuli. They demonstrated the effectiveness of this approach in collecting data during extended sessions involving open-ended tasks and interactive content.

Blascheck et al. [13] provided an overview of visualization techniques for eye-tracking data and outlined their functionality. Drawing from an analysis of 90 papers focusing on eye-tracking data visualization, they developed a taxonomy categorizing studies into three primary classes: point-based visualization techniques, areas of interest (AOI)-based visualization techniques, and hybrid visualization techniques combining both. Additionally, they further categorized the papers on a secondary level based on the type of data represented: temporal, spatial, or spatiotemporal. Landesberger et al. [14] also introduced a comprehensive taxonomy within the domain of visual analytics. Visual analytics encompasses various forms of interaction, including information visualization, reasoning, and data processing. However, existing taxonomies for interaction techniques in these fields are separate and fail to cover the entirety of the visual analytics domain. Additionally, they use distinct terminology, complicating the analysis of their scope and overlap. The unified taxonomy addresses these limitations by encompassing all areas of visual analytics (visualization, reasoning, and data processing). Each area consists of two main subcategories: changes in the data and changes in the respective representation. Changes in the data pertain to alterations affecting the presented or underlying dataset, while changes in representation involve other forms of interaction. Changes in the data are further subdivided into two categories: changes affecting the selection of the dataset and changes to the dataset introduced by the user. This taxonomy provides a comprehensive framework for understanding and categorizing interaction techniques in visual analytics. Spiller et al. [7] proposed a computational model to predict users' success in visual search when interacting with an information visualization from sequential eye gaze data. Three deep learning models designed for time series classification were used to analyze data collected from 60 participants engaging with both circular and organizational graph visualizations. They found that MLSTM-FCN (Multivariate Long Short Term Memory Fully Convolutional Network) significantly outperformed than ResNet, Fully Convolutional Network (FCN), and the baseline classifier (Logistic Regression). They also identified that ResNet and FCN did not even demonstrate notably superior performance compared to the baseline classifier.

Information 2024, 15, 351 4 of 22

An innovative user-adaptive visualization system introduced by Steichen et al. [8] was found to be capable of predicting various properties of visualization tasks (such as task type, complexity, and difficulty), user performance (measured by task completion time), and individual cognitive abilities (including perceptual speed, visual working memory, and verbal working memory) based on eye gaze behavior. A user study was conducted, wherein participants were tasked with completing a series of visualization tasks using bar and radar graphs. Their findings indicated that, across each classification task, predictions based on gaze behavior outperformed a baseline classifier. This suggests that user eye gaze behavior offers valuable insights into visualization tasks and cognitive abilities. Interestingly, for most predictions, classification accuracy was significantly higher even in the early stages of visualization usage, highlighting the potential of eye gaze behavior as an early indicator of user characteristics and task outcomes. Detailed analysis of each classification experiment also revealed that different features were mostly informative depending on the objective of the classification and the characteristics of the task or user. This underscores the potential of the system to be adapted for evaluating individual differences. Muller et al. [15] examined the effectiveness of three commonly employed visualization approaches for comprehension of hierarchical data: treemap, icicle plot, and node-link diagram. They conducted a laboratory experiment, during which participants were assigned to various tasks using different visualization techniques. Furthermore, user performance was measured in terms of correctness, time, and tracked eye movements. The findings suggest that both the node-link diagram and the icicle plot demonstrated strong performance, whereas the treemap only surpassed chance level in one relatively straightforward task. Despite eye-tracking analyses indicating that the treemap effectively draws visual attention by optimizing screen-space usage, this did not translate into improved user performance. Blascheck et al. [11] presented a novel approach for assessing interactive visualization systems by collecting, synchronizing, and analyzing eye tracking, interaction, and think-aloud data simultaneously. They discussed challenges and potential solutions in triangulating user behavior using multiple sources of evaluation data. Experiments, utilizing both textual and visual analyses, indicated that this approach is most effective when data sources are temporally aligned using eye fixations and Areas of Interest (AOIs).

2.2. Capturing and Analyzing Semantic User Interactions in Visualizations

Semantic user interactions refer to interactions between users and systems where the system can understand and respond to the meaning or semantics of user actions or queries [4]. Analyzing these interactions is important as it provides valuable insights into diverse aspects of user behavior and cognitive processes. This includes understanding their reasoning, identifying personality traits, and reducing cognitive load. Moreover, semantic user interactions can facilitate personalization, enabling systems to customize responses and recommendations according to individual user preferences and requirements [16,17]. Norambuena et al. [18] proposed a mixed multi-model semantic interaction (3MSI) model designed for narrative maps to support analysts in their sense-making processes. This method integrates semantic interaction with narrative extraction and visualization to create an interactive AI narrative sense-making framework capable of learning from analyst interactions. To assess the performance of the 3MSI model, they conducted both a quantitative simulation-based evaluation and a qualitative evaluation involving case studies and expert feedback. They found that the proposed model effectively supported incremental formalism for narrative maps. Additionally, expert feedback suggested that the SI model for narrative maps held potential value for analysts in their sense-making processes. Batch et al. [19] introduced uxSENSE, a visual analytics system leveraging machine learning techniques to extract user behavior from audio and video recordings. The proposed method extracts multi-modal features of human behavior, including user sentiment, actions, posture, spoken words, and other relevant features, from such recordings. These extracted features are then utilized to support user experience (UX) and usability professionals in their analysis of user session data through interactive visualization. They conducted five expert reviews

Information 2024, 15, 351 5 of 22

where UX professionals utilized the tool to comprehend a usability session. Based on the feedback received from UX experts, they identified critical interface adjustments while confirming the importance of machine-learning-supported human–computer interaction. Endert et al. [4,20] presented a novel design concept, called semantic interaction, which combines the foraging abilities of statistical models with the spatial synthesis abilities of analysts. They presented ForceSPIRE, a visual analytics tool, to showcase the implementation of semantic interaction for visual analytic interaction. Through a use case study, they illustrated how semantic interaction has the potential to integrate the sense-making loop, resulting in a smoother analytic process.

While interactive visualizations are becoming increasingly popular for general public use, little is known about how individuals discover the interactive functionality, such as what they can do with these visualizations and what interactions are available. In the study conducted by Blascheck et al. [21], participants engaged in a lab-based experiment where their eye movements were tracked, interaction logs were recorded, and video and audio recordings were captured. Through analysis of this comprehensive dataset, they uncovered various exploration strategies participants employed to discover the functionality of the visualizations. Understanding these exploration strategies has led to several promising ideas for improving the discoverability of features in interactive visualizations. These suggestions include the following: inviting interaction, providing entry points, leveraging spatial organization, combating oscillation, supporting transitions, and scaffolding complex interactions. Wall et al. [17] investigated the utilization of visualizing a user's interaction history as a means to mitigate potential biases influencing the decision-making process. They employed the technique of interaction traces. The technique changes the visual representations based on a user's own previous interactions with the data. A series of experiments were conducted to assess the effectiveness of interaction history interventions on behavior and decision making, with the aim of raising awareness of potential biases; while the experiments produced varied results, the study concluded that interaction traces, especially when presented in a summative format, could lead to behavioral changes or enhance awareness of potential unconscious biases.

Ottley et al. [22] introduced a framework designed to anticipate future interactions based on past observations. By utilizing clicks as indicators of attention, they utilized a hidden Markov model to represent evolving attention as a sequence of unobservable states. This system can automatically infer elements of interest from passive observations of user clicks, enabling precise predictions of future interactions. To validate their approach, a user study was conducted using a designed visualization map (called Crime Map). They showed that the model achieved prediction accuracies ranging from 92% to 97%. Additionally, further analysis revealed that high prediction accuracy could typically be attained after just three clicks. Xu et al. [23] conducted an extensive review of research in the data visualization and visual analytics domain, particularly focusing on the examination of user interaction and provenance data. They introduced a typology categorizing areas of application (why), encoding techniques (what), and analysis methodologies (how) of provenance data. Six fundamental motivations for analyzing provenance data were identified: (1) understanding the user, (2) evaluation of system and algorithms, (3) adaptive systems, (4) model steering, (5) replication, verification, and re-application, and (6) report generation and storytelling. Regarding the types of provenance data analyzed, four common encoding schemes were suggested: (1) sequential, (2) grammatical, (3) model-based, and (4) graphical. Lastly, They identified five analysis methods commonly applied to analyze provenance data: (1) classification models, (2) pattern analysis, (3) probabilistic models/prediction, (4) program synthesis, and (5) interactive visual analysis.

3. Understanding Semantic User Interactions with Visualization

Previously, user studies [2,3] were conducted to investigate the user interaction behaviors of financial analysts using a visual analytics system known as WireVis [24]. Experts were engaged in analysis studies with the system to understand their interaction patterns

Information 2024, 15, 351 6 of 22

while evaluating wire transactions. The system utilized a synthetic dataset that contains multiple suspicious scenarios, including incompatible keywords (e.g., "baby food" and "IT consulting"), the transition of keywords (e.g., from "baby food" to "gems"), unusually high transaction amounts for local stores, continuous money transfer with a small amount, and unexpectedly large transactional amounts transferred over time. The analysts' interactions within the system were captured and analyzed [2]. When an analyst highlights a particular wire transaction or keywords during an investigation, such interactions are recorded as semantic user interactions, indicating specific information observed by the user. At the same time, the analyst's general patterns to investigate financial transactions can be assessed to determine their overall strategy. This includes the frequencies of observing semantic information. For example, if an analyst repeatedly highlights specific keywords, those captured keywords are emphasized to reflect the analyst's focus on those particular activities. The effectiveness of using semantic user interactions to comprehend experts' operational and strategic analyses was assessed by analyzing captured think-aloud transcriptions and semantic user interactions [3].

However, during the evaluation of analysts' user interactions and analysis decisions, we found that they often had contradictory opinions (such as suspicious, not suspicious, or inconclusive) regarding certain wire transactions. As their decisions are based on their experiences, identifying the reasons behind their conclusions becomes challenging. Thus, performing an in-depth analysis of user interactions is crucial for understanding why they lead to divergent opinions (i.e., decisions). We believe that it is possible to gain insights by connecting these interactions to their decisions. To achieve this, we designed a highly interactive wire transaction analysis system (Figure 1). The system consists of two tools—(A) a wire transaction analysis tool and (B) an investigation tracing tool. The wire transaction analysis tool is an extended version of the original financial visual analytics system (WireVis), initially designed to assist analysts in identifying fraudulent financial activities by analyzing financial wire transfers (also known as wire transactions). The wire transaction analysis tool has multiple views: (C) a heatmap view, (D) a strings and beads view, and (E) a keyword relation view. The heatmap view presents a grid-based representation of accounts and keywords, while the strings and beads view illustrates time-based transactions involving accounts or clusters of accounts. Lastly, the keyword relation view depicts relationships among keywords associated with wire transactions. The investigation tracing tool (B) is designed to represent users' decisions regarding wire transactions. It consists of (F) a PCA projection view and (G) a data view. In the PCA projection view, all wire transactions are presented after applying principal component analysis (PCA) [25]. In the view, details about accounts, keywords, and actual accounts are listed in information panels and positioned left, top, and right, respectively. A further explanation of the system's functionality is provided in the following subsections.

3.1. Wire Transaction Analysis

The wire transaction analysis tool is designed to support analysts in conducting interactive analysis on wire transactions. We used the same synthetic dataset used in the studies [2,3] to create the visualization tool. As mentioned above, this dataset includes wire transfers (i.e., wire transactions) representing electronic money transfers from one financial account to another. Wire transfers can occur either domestically, within the same country, or internationally, between different countries. Each transaction leaves traces of funds transferred from one financial account (referred to as account A) to another (referred to as account B). Each wire transaction encompasses details such as the sender and receiver's account information and the amount of money transferred. Additionally, keywords are assigned to each transaction to reflect fundamental information related to the involved accounts. For instance, if account A is associated with a pharmaceutical company, the keyword "pharmaceutical" is tagged to the transaction. Similarly, if the funds are transferred to account B, which belongs to a toy manufacturing company, the keyword "toy" is tagged. The dataset includes 249 wire transactions involving 181 accounts and 29 keywords. Ex-

Information 2024, 15, 351 7 of 22

amples of these keywords include "Raw Materials", "Hardware & Machinery", "South Africa", "Electronics", and "Pharmaceuticals", among others.

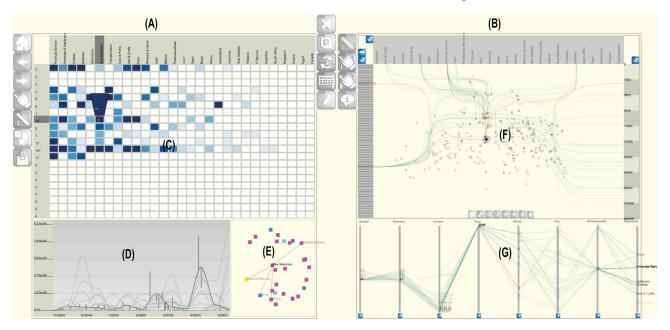


Figure 1. An interactive wire transaction analysis system consisting of two tools—(**A**) a wire transaction analysis tool and (**B**) an investigation tracing tool. Similar to the original system (WireVis), the wire transaction analysis tool consists of multiple views—(**C**) heatmap view, (**D**) strings and beads view, and (**E**) keyword relation view. The system allows the user to analyze and investigate wire transactions. The investigation tracing tool has been added to support understanding the user's analysis decisions. It has two views (**F**) a PCA Projection view and (**G**) a data view. The tool shows additional information about wire transactions regarding the money flows with keywords and amounts.

With the wire transaction analysis tool (Figure 1A), analysts can perform interactive analyses to detect financial frauds on wire transactions across multiple views. In the heatmap view, users examine patterns in a hierarchical arrangement of bins. Each bin represents a cluster of grouped accounts, categorized based on keyword frequencies and transaction occurrences. In the view, keywords are displayed at the top, and transaction occurrences are shown along the left side of a vertical bar. Highlighting a bin illuminates the corresponding wire transactions and their associated keywords across all views. By default, the strings and beads view illustrates general trends in wire transactions as strings. Highlighting a bin in the heatmap view causes the corresponding transactions to appear as beads in the strings and beads view. At the same time, related keywords are highlighted by generating connected lines in the keyword relation view. The basic functionalities of this tool have been designed by mirroring the WireVis system's design so that analysts can initiate multiple user interactions on wire transactions with related financial accounts and keywords that represent each transaction's information. For further details, please refer to the original paper by Chang et al. [24].

3.2. User Investigation Tracing

The investigation tracing tool (Figure 1B) is designed as an ad hoc tool to provide detailed information about wire transactions and users' decisions. It consists of two views: (F) a PCA projection view and (G) a data view. Since the two views are linked, any user interactions with one view are immediately reflected in another view (brushing and linking) to support interactive analysis of wire transactions.

Information 2024, 15, 351 8 of 22

PCA projection view: The PCA projection view displays detailed information about all wire transactions. In this view, wire transactions are represented as rectangular-shaped glyphs (i.e., visual objects). To project the transactions, computed two principal components (the first and second most dominant eigenvectors) are used to map each wire transaction onto a 2D space. Detailed information about the transactions is represented in the information panels—top (keywords), left (accounts), and right (amounts). When the user highlights a wire transaction, its corresponding information becomes visible in the information panels as connected polylines. For instance, if a wire transaction is made from account A to account B, detailed information about the transaction, such as the amount of money transferred and related keywords, is highlighted to reveal the flow of funds between the two accounts. Figure 1F shows an example when the user highlights a wire transaction between accounts 44 and 119. Multiple connected polylines appear to show related information about the transaction. Each polyline represents the amount of money transferred and its corresponding keywords, emphasizing its interdependence with other financial accounts and wire transactions. If multiple wire transactions are made by one account, all related transactions and their information are highlighted. Information closely related to the selected wire transaction is highlighted with orange polylines. Additionally, other wire transactions originating from the same account are highlighted with bluish polylines to assist the user in understanding the pattern of all wire transactions in that account. Analyzing wire transactions originating from the same account is important, particularly when investigating potential fraudulent incidents involving that account. It is important to display the interconnected links of all wire transactions from the same account because it helps analysts evaluate the transactional trail between accounts. Since multiple wire transactions can generate densely connected polylines, users can selectively enable or disable the relationships among wire transactions by utilizing the checkbox buttons located beside or above each information panel.

The PCA projection view supports multiple user interactions such as highlighting, selecting, zooming, and panning. These functionalities are very useful in assisting analysts in building and validating a hypothesis with evidence. For instance, users can select or highlight wire transactions or information displayed in the information panels. If a user wishes to perform an analysis focusing on keyword investigation, they can highlight or select interesting keywords to construct a potential keyword group. This enables the user to investigate financial activities associated with that specific group of keywords. Additionally, users can investigate specific accounts to examine their overall activities using the account information panel. This feature is useful when users want to assess each account's overall transactions as part of a preliminary investigation to identify any potentially fraudulent accounts. With the selection user interaction technique, users can conduct comparative investigations on multiple wire transactions or accounts. For example, if users want to compare the activities of certain accounts, they can enable the selection technique to display their activities as connected polylines. This allows them to directly evaluate similarities and differences by analyzing visual patterns. In this view, numerous wire transactions are represented as small glyphs. Therefore, zooming and panning serve as effective user interaction techniques to examine detailed information about wire transactions. To facilitate these interactions, multiple buttons are arranged at the bottom of the view. The three information panels are closely connected to provide supplementary details about wire transactions. Since PCA is often utilized to identify patterns and possible outliers in various types of data [26], this PCA projection view can help users gain a deeper understanding of wire transactions. The zooming user interaction facilitates the examination of specific wire transactions, allowing users to closely analyze their patterns and trends within the zoomable 2D space. At the same time, users can view their investigation results (e.g., suspicious, not suspicious, or inconclusive) on wire transactions within the view. Specifically, all investigators' results are represented inside each glyph as colored cells. The investigation result is promptly added within the corresponding glyph whenever the user concludes an investigation on a specific wire transaction. This functionality is useful as it enables users

Information 2024, 15, 351 9 of 22

to track the progress of their investigation and view other analysts' conclusions on wire transactions. For a detailed explanation of how the investigation results are embedded in the view, please refer to Section 4.3.

Data view: The data view represents all wire transactions in the dataset using a parallel coordinates visualization. The dataset has eight dimensions, including sending and receiver accounts, the amounts of transactions, date information (year, month, and day), number of keywords, and actual keywords related to each transaction. To reduce the dimensions of the dataset using PCA, all categorical data are converted to possible numerical values. Since PCA assumes linearity across all variables, unwanted discrete variables should be excluded selectively from the principal component analysis calculation especially when datasets contain attributes with both continuous and discrete values. However, in this study, we used all categorical data to capture variations associated with different categories with PCA. This approach is beneficial for understanding data sparsity, particularly when identifying transaction frequencies associated with related keywords at specific times of the day or year. A binary encoding technique is applied to convert categorical variables into binary bit patterns. This generates m binary bit patterns corresponding to the total number of keywords. Initially, all bit patterns are set to "0". Depending on the keywords present in each transaction, the corresponding bit is mapped to a binary number "1". Subsequently, the mapped binary patterns are converted to numbers, representing unique keyword identification numbers; while binary encoding is effective for preserving the information of each categorical variable, it often results in too many feature dimensions. Therefore, we transformed the binary representations to decimal numbers, allowing each categorical variable to be represented by a single numerical value. In the data view, checkboxes are added at the bottom of each variable axis, supporting the option to enable or disable them for inclusion in PCA computation.

4. Tracking Semantic User Interactions

4.1. Initiating User Interactions

The interactive wire transaction analysis system provides multiple menu buttons accompanying each tool, designed to initiate and capture user interactions. These buttons support the interactive analysis of financial data by enabling predefined actions such as selecting or highlighting visual elements representing detailed wire transaction information, activating zoom and pan features, and creating annotations. Table 1 illustrates the available menu buttons and their corresponding meanings. Each menu button enables the initiation of multiple user interactions. The wire transaction analysis tool has twelve menu buttons, facilitating the initiation of new user interactions and tracking internal semantic user interactions. For instance, by enabling the navigation button , the user can navigate through the hierarchical clusters in the heatmap view. The heatmap view provides valuable insights by illustrating hierarchical clusters based on the occurrence of transactions and frequencies of keywords. This allows users to navigate through accounts by assessing the frequencies of transactions and keywords. Due to the relatively small size of the strings and beads view, users often face challenges in accurately evaluating transaction amounts. Therefore, a menu button 🗓 is added to support switching between the heatmap view and the strings and beads view, enabling users to view the representation on a larger scale. If users want to perform a comparative analysis, they can select multiple visual element(s) using selection tools . In particular, is designed to support users to create an arbitrary range of boundaries to select multiple items. When users find suspicious evidence on wire transactions, they can add text 🕮 and drawing 🔼 annotations. Users can enter an investigation decision (either suspicious, not suspicious, or inconclusive) using Subsequently, these entered investigation outcomes are incorporated into the investigation tracing tool.

Information 2024, 15, 351 10 of 22

The tool also supports multi-touch user interactions, which are particularly useful in collaborative multi-touch table environments [27]. Users can create and share multiple workspaces using the workspace creation and rotation buttons 🔟 🗉 🔯 Although creating additional workspaces may not always be effective in a desktop environment [27], this feature can still be valuable for users who need to manage multiple investigation results in a temporary workspace. It provides a convenient method for handling and tracking various investigation sessions to increase flexibility in organizing the analysis process. Moreover, tracing the wire transactions is supported by enabling the toggle button as multiple wire transactions are often made in each account . The symbol \(\subseteq \) is embedded in each information panel to allow toggling the representation of connected polylines for the highlighted wire transaction(s) to accounts, keywords, and transaction amounts. Figure 1B demonstrates an example of displaying polylines based on the user's interaction of highlighting a wire transaction in the PCA projection view. Since this view is designed as a scalable interface, it enables users to navigate the view freely by initiating zooming 🖭 🔄 and panning 🚭 🔁 🖸 💟. As previously mentioned, all wire transactions are represented as small glyphs. Therefore, detailed information about wire transactions becomes accessible when users interact with the glyphs, for example through highlighting, selecting, or zooming. However, visual clutter may occur when a high volume of transactions results in densely packed polylines. This clutter can lead to confusion, making it challenging for users to understand the meaning of the visual representation clearly. Zooming and panning interactions are effective in helping users comprehend or interact effectively with the represented information. The wire transaction analysis tool enables users to classify each transaction as suspicious, not suspicious, or inconclusive. The symbol 2 highlights all wire transactions with recorded investigation decisions within the PCA projection view. Additionally, activating the button displays all recorded investigation results, organizing them into clusters that emphasize the analysis decisions of each individual user.

Table 1. Menu buttons supported in the system with their meanings.

Button	Description	Button	Description
	Going back to the initial state	ET .	Creating multiple user workspaces
	History forward and backward		Rotating and closing workspace
3	Navigating on hierarchical clusters	✓	Enabling toggle selection
	Canceling of all activated menu buttons	*	Representing wire transactions with polylines
	Switching between the heatmap view and the strings and beds view	(3)	Highlighting the wire transactions that have investigation results marked by analysts
C te	Entering the investigator's conclusion (suspicious, not suspicious, or inconclusive)		Representing clusters of investigation results on wire transactions made by the same users
	Enabling text and drawing annotations	Q Q	Initiating zooming (in and out) user interactions
	Individual and multiple item sections		Initiating panning (left, right, up, and down) user interactions

4.2. Capturing User Interactions

As discussed in Section 2, researchers have extensively explored various ways to capture user analysis processes in visualizations by utilizing eye-tracking devices or systematically recording user interactions. Eye-tracking devices often require additional post-evaluation and analysis procedures to align the captured data with the visualization. Therefore, researchers in the visualization community have explored capturing both lowand high-level user interactions [28]. Low-level user interactions represent mouse actions like clicks, dragging, and scrolling, directly affecting the manipulation of the visualization interface. On the other hand, high-level user interactions, including zooming, panning,

Information 2024, 15, 351 11 of 22

and toggling, involve conceptual engagements that connect users' low-level actions with visual elements, facilitating a deeper comprehension of these elements. To evaluate users' intentions while using a visual analytics system, we considered capturing semantic user interactions, which indicate the meaning of what the user is interacting with. For instance, if the user wants to investigate the wire transaction involving account number 80 (i.e., Account $80 \rightarrow$ Account 10, USD 8675.0, 12 April 2015, Financial Service), they might move a mouse cursor to initiate the highlighting interaction over the transaction, thereby accessing its detailed information, including the receiver account, keywords, and transaction amount. This mouse action is captured as a low-level interaction. Simultaneously, its underlying meaning, "the user highlighted on the transaction (Account $80 \rightarrow$ Account 10, USD 8675.0, 12 April 2015)", is captured as semantic user interaction data.

4.3. Connecting Investigation Results to User Interactions

When analyzing wire transactions for potential financial fraud, financial analysts typically classify each transaction as suspicious, not suspicious, or inconclusive based on the information available during the investigation. The wire transaction analysis tool is internally linked with the investigation tracing tool, allowing for the immediate display of investigators' decisions within the visualization. When an analyst investigates a specific wire transaction and records the result in the wire transaction analysis tool, this decision is promptly reflected in the investigation tracing tool. Figure 2 shows analysts' decisions using different color attributes: suspicious (brown), (B) not suspicious (blue), or (C) inconclusive (green). Each visual glyph, represented as a rectangular object, corresponds to a wire transaction. A rectangle outlined with no colored cells indicates that no investigation has been conducted on that transaction yet. If analysts have investigated a specific transaction, its corresponding glyph is depicted as a rectangular grid cell filled with their analysis decisions. The size of each grid cell varies depending on the number of investigation results accumulated in the system. Large grid cell size indicates a greater number of results. Thus, a denser grid cell is generated when numerous investigation results exist. By default, the investigation tracing tool displays all expert analysts' decisions and their interaction logs, including semantic-level interactions, collected from the study [3]. Figure 2 (A) and (B) show analysis sessions where only one analyst has provided an investigation result, whereas Figure 2 (C) illustrates a case where two analysts have analyzed a wire transaction and concluded that it is not suspicious. This functionality plays a crucial role in helping users understand the different analysis decisions of others, as analysts frequently hold conflicting opinions. Figure 2 (D) demonstrates a scenario where six analysts evaluated the same wire transaction and arrived at different conclusions. Three analysts deemed the transaction suspicious, while the other three considered it inconclusive. These assessments were based on the data available within the system. Unfortunately, their decisions cannot be confirmed or refuted due to a lack of ground truth information. However, examining their approaches is crucial to understanding the distinctive analytical paths that led them to different conclusions. To facilitate this analysis, we developed a visual state transition matrix to explore semantic user interactions. Details are provided in Section 5.

Information 2024, 15, 351 12 of 22

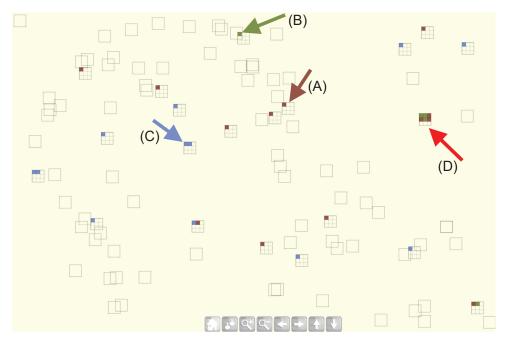


Figure 2. In the investigation tracing tool, all wire transactions are represented as outlined rectangular objects. Results from prior investigations are added as colored cells within each rectangular object. Different color attributes are used to represent the investigation results—(A) suspicious, (B) not suspicious, and (C) inconclusive. (D) Analysts arrive at different conclusions regarding wire transactions as either suspicious or inconclusive.

5. Analyzing Semantic User Interactions

In the visualization community, researchers have investigated understanding the relationship between user interactions and their reasoning and thinking processes. The user's thinking process is commonly regarded as a cognitive process, wherein users interpret the meaning of visually represented elements. Users develop various analysis strategies while engaging in interactive visual analysis to identify potential financial fraud in wire transactions [29]. These strategies are then tested through continuously generated user interactions with the system, ultimately leading to conclusions that classify transactions as suspicious, not suspicious, or inconclusive. Analyzing the captured semantic user interactions helps understand users' intents during synthesis (hypothesis generation). This analysis provides valuable insights into their cognitive processes and aids in reconstructing their internal thinking models.

Semantic user interactions are continuously captured within the visualization system. To analyze the flow of the interactions, we utilize a Markov chain model [6]. This mathematical model describes sequences of potential events or states, where each future state is determined solely by the current state, independent of the events that preceded it. In our study, we hypothesized that future user interactions are primarily influenced by current or past interactions during visual analysis. We further assumed that each user interaction represents a distinct state, corresponding to a specific condition or situation within the analysis. To test this hypothesis, we constructed a visual state transition matrix to illustrate a sequential model of user interactions. Specifically, we defined a state space by following Markov chain as a state space, a transition matrix, and an initial state or initial distribution as follows,

• State Space (S): A set of states that represent the changes in the current visual representation generated by user interactions. For example, in our visualization system, the state space is defined as $S = \{s_1, s_2, \dots, s_n\}$. Each state s_i is created whenever the user initiates a user interaction. It can be clusters, accounts, keywords, or a combination of clusters and keywords or accounts.

Information **2024**, 15, 351

• Transition Matrix (\mathcal{P}): This is defined as a square matrix to describe the probabilities of moving from one state to another. Depending on the size n of the state space, \mathcal{P} will be $n \times n$ matrix, where the entry \mathcal{P}_{ij} gives the probability of transitioning from state i to state j in one step (called *transition probabilities*).

• Initial State or Initial Distribution (π): This describes the starting (i.e., initial) state of the analysis. Since each state transition is mapped from one state to another, the probability distribution over the initial states is set to zero. The transitional distribution is measured by examining the duration of time the user spends in each state.

With the Markov chain, a $n \times n$ transition matrix (P, also known as a stochastic matrix) is created to represent all possible transitions between states. To represent distinct states, n binary bits are generated using a binary encoding technique. The size of the transition matrix P can be represented as $P \in \mathbb{R}^{n \times n}$, where $\mathbb{R}^{n \times n}$ denotes the set of all real-valued matrices with dimensions $n \times n$. The dimension n is determined by the sizes of hierarchy cluster nodes (C), bank accounts (A), keywords (K), and transactions (T), calculated as n = |C|(1+|K|) + |K| + |T|. This arrangement is adopted because all financial data are organized as cells along the cluster IDs and keywords in the heatmap view. In our dataset, a 11897 \times 11897 transition matrix is created. Each row i of the matrix satisfies the condition $\sum_{j=1}^n P_{ij} = 1$, ensuring that the user's current state transitions to another state in the next step.

Figure 3 shows a visual state transition matrix, illustrating an analyst's semantic user interactions with transitional states. Changes in the transitional states, as reflected by user interactions, are highlighted with connected spline-curved polylines. Red-colored arrows are embedded within the polylines to facilitate understanding of transitions within the matrix. In the matrix, the current and future states are represented along the rows (y-axis) and the columns (x-axis), respectively. The total time spent, denoted as Δt , in each jth row $(\sum_{i=1}^{n} t_{ij})$ and ith column $(\sum_{i=1}^{n} t_{ij})$ is displayed along the matrix's edges. A reddish triangle marks that the analyst began investigating the cell, specifically CID:4 Singapore, in the heatmap view. An inverted bluish triangle denotes the ending state, indicating that the analyst has completed investigating the keyword 'Brazil' in the keyword relation view. The transition matrix is designed as a zoomable user interface, supporting zooming and panning user interactions. This allows the user to navigate the matrix freely by zooming in and out as needed. The figure shows that the analyst initiated the analysis of wire transactions from CID:187 (located in the top left corner) and quickly transitioned to explore related keywords, such as 'Singapore', 'India', and 'Minerals & Gems' (located in the center). The magnified region in the figure represents the duration the analyst spent analyzing clusters (CIDs: 178, 187, 193, 199) associated with the keywords—'Arts & Crafts', 'India', and 'Minerals & Gems'. The probability of transitioning from state i to state j is presented along with the total time the analyst spent within each state. For example, the analyst spent about 0.55 and 0.98 seconds analyzing CID:187 and CID:193 with the keyword 'India', respectively. Since the analyst only investigated certain states based on their interests, many states remain unexplored. Due to the large matrix size (11,897 \times 11,897), comprehending the analyst's transition movements clearly is not easy. Therefore, a hiding feature has been added to render all unexplored states invisible in the transition matrix.

Figure 4 represents the transition matrix after hiding all unexplored states, making them disappear from the view. It shows a reduced 35×35 transition matrix. This adjustment makes the flow of user interactions much clearer and easier to follow and understand. This matrix represents that the analyst began the analysis from the cluster associated with the keyword 'Singapore' (indicated by the reddish triangle). By examining the duration of time spent in each state, we observed that the analyst devoted considerable time to analyzing wire transactions involving the keywords 'India' and 'Brazil'. In particular, the analyst spent nearly 984 s (700 s + 284 s) evaluating clusters related to the keyword 'India' (as highlighted in the cells on the right side of the matrix). Additionally, the bluish rectangular cell indicates that the analyst spent the longest duration, approximately 1142 s, evaluating the wire transactions containing the 'Brazil' keyword.

Information 2024, 15, 351 14 of 22

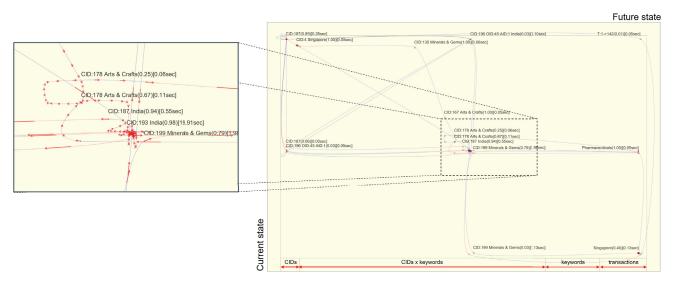


Figure 3. Visual state transaction matrix representing an analyst's semantic user interactions. Connected spline-curved polylines represent changes in transitional states, illustrating the flow of semantic user interactions. Red arrows are embedded within the polylines to guide users in understanding the transitions within the matrix.

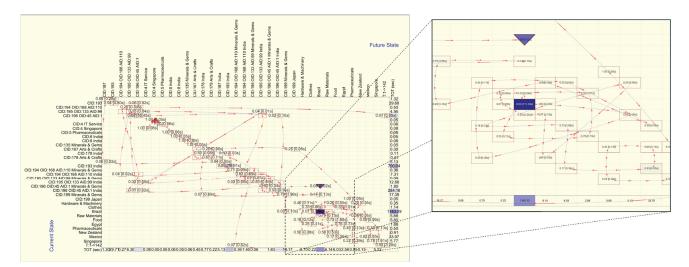


Figure 4. Visual state transaction matrix after hiding unexplored states. Each cell represents the probability of transitioning to each state, along with the amount of time the user spent within the state. A reddish triangle indicates the beginning state; while an inverted blue triangle denotes the ending state. The cell where the user spends the most time is highlighted in blue.

6. Evaluating Semantic User Interactions

Evaluating semantic user interactions can be challenging due to their complex and diverse analytical procedures. For instance, each interaction involves multiple dimensions, such as the timing, sequence, and context of actions, which can vary greatly from one user to another. Moreover, designing a standardized framework for analyzing these interactions is challenging because visualization tools are often tailored to specific domains. We utilized a machine-learning-based analysis to determine whether these interactions can be classified and grouped into identifiable clusters based on users' decisions. Specifically, we used the semantic user interaction dataset generated as part of the studies [2,3,30]. The dataset was recorded during a fraud detection analysis conducted by ten experts who have professional experience as financial analysts. The dataset includes sixty analysis sessions, denoted

Information **2024**, 15, 351 15 of 22

as $[d_i|S_i]$, $S_i = \{s_{i1}, s_{i2}, \ldots, s_{in}\}$, where each S_i represents a distinct analysis session and s_{ij} indicates individual semantic user interactions within that session. Each session, S_i , concludes with a decision, d_i , categorized as suspicious, not suspicious, or inconclusive. The series of user interactions within each session consists of textual information that captures the user's analytical flow in the visualization. To analyze the interactions, we applied natural language processing (NLP), treating each interaction as a discrete data element that emphasizes the user's action within the visualization.

6.1. Data Vectorization

Since semantic user interactions are predominantly captured in textual form, data quantization becomes necessary for their analysis using statistical techniques. To achieve this, two techniques are employed to convert them into numerical representations—Bagof-Words (BOW) and Term Frequency–Inverse Document Frequency (TF-IDF) [31]. The BOW technique generates numerical vectors by counting tokenized semantic data. For instance, the semantic user interactions, depicted in Figure 4, are quantitatively analyzed by conducting a frequency analysis as follows:

```
\begin{aligned} &\text{Accounts} = \{A3^1, A4^3, A5^1, A6^1, A8^1, A135^1, A167^4, A178^5, A187^{40}, A193^{76}, A194^{25}, A195^{49}, A196^{96}, A199^{15}\} \\ &\text{Keywords} = \{K11^1, K14^{17}, K16^{88}, K18^8, K19^4, K20^6, K22^1, K23^1, K24^{15}, K26^8, K27^{12}, K4^{10}, K5^{30}, K6^3, K8^{28}\} \\ &\text{Beads} = \{B2446^{15}\} \\ &\text{Transactions} = \{A_S45 \rightarrow A_R52^{15}\} \end{aligned}
```

where the symbols A and K represent the account and keyword, respectively. B indicates the bead in the string and beads view. A_S and A_R denote the sender and receiver account in each wire transaction, accordingly. The numeric number positioned next to each symbol indicates unique identifiers of semantic information. The power value represents the frequency of each semantic information generated by each analyst. In detail, A4³ indicates that the analyst evaluated account 4 three times in the heatmap view. K_8^{28} means that the keyword identifier K₈ was observed by the analyst 28 times. Since each bead in the string and beads view is connected to a corresponding wire transaction, the same number of frequencies (observed 15 times) appears in the beads and transactions. Based on this frequency information, each semantic user interaction is converted into a vector, where each dimension corresponds to a unique semantic user interaction. The value in each dimension represents the frequency. It is important to note that not all states in the transition matrix are traversed by analysts. This results in sparse vectors with many dimensions having zero values, indicating states that were not visited. By aggregating all captured semantic user interactions, a vector size of 1135 is created. Since the analysts have made decisions across the sixty analysis sessions, a vectorized dataset with dimensions 60 × 1136 is subsequently created.

TF-IDF is also considered because it is widely used in text analysis to compute the frequency and importance of each term in a document. We employed TF-IDF to convert the semantic user interactions into numerical feature vectors. Each analyst's analysis session is treated as a collection of terms for which TF-IDF values are computed. Thus, each session is represented as a vector of TF-IDF values corresponding to the terms it contains. Specifically, Term Frequency (TF) is calculated to determine the frequency of each term within a session as $\mathrm{TF}(t,S) = \frac{\mathrm{Count}(t,S)}{\sum_{t' \in S} \mathrm{Count}(t',S)}$, where $\mathrm{Count}(t,S)$ denotes the occurrences of term t in each analysis session S. The denominator, $\sum_{t' \in S} \mathrm{Count}(t',S)$, indicates the total number of terms that appear in S. Inverse Document Frequency (IDF) assesses the importance of each term in all analysis sessions using $\mathrm{IDF}(t) = log\left(\frac{N}{\mathrm{DF}(t)}\right)$, where N represents the total number of analysis sessions (i.e., N=60 in this study). $\mathrm{DF}(t)$ denotes the number of sessions containing the term t. Then, TF-IDF is calculated by multiplying TF and IDF to represent the importance of each term in each analysis session as $\mathrm{TF-IDF}(t,S) = \mathrm{TF}(t,S) \times \mathrm{IDF}(t)$. Utilizing TF-IDF is effective because it not only evaluates the frequency of the terms within

each analysis session but also weights them according to their distinctiveness across all

Information **2024**, 15, 351

sessions. This helps to identify terms that are particularly relevant to a specific session and distinctive within the context of all sessions. Like the BOW technique, TF-IDF generates feature vectors with the same dimensions 60×1136 . This similarity in dimensions occurs because the same set of unique tokens (i.e., terms), representing semantic user interaction states, is used in both the BOW and TF-IDF techniques.

6.2. Data Oversampling

The dataset is highly imbalanced, consisting of 27 suspicious, 21 not suspicious, and 12 inconclusive analysis sessions. If machine learning algorithms are applied to imbalanced data, the result may not be reliable because computation accuracy tends to be biased towards the majority class. Consequently, the performance in accurately analyzing the minority class (i.e., inconclusive analysis sessions) can be diminished. If a machine learning model is designed with imbalanced data, it may exhibit increased false positives and negatives. To address the imbalance problem, researchers have proposed various undersampling and oversampling techniques [32]. Although both techniques are suitable for handling imbalanced data, we utilized an oversampling technique because of the relatively small size of the dataset. Specifically, Synthetic Minority Over-sampling Technique (SMOTE) [33] is used to oversample the representation of the minority class in the vectorized data. SMOTE balances the class distribution by randomly selecting an instance x_i from the minority class X_m . For each selected instance, k nearest neighbors of an instance are selected as $x_{i1}, x_{i2}, \dots, x_{ik}$. Then, a synthetic instance x_{new} is created by following $x_{new} = x_i + \lambda \times (x_{il} - x_i)$, where *l* is randomly chosen from $\{1, 2, \dots, k\}$ and λ is a random value $\{\lambda \in \mathbb{R} : 0 \le \lambda \le 1\}$. With SMOTE, the dataset is balanced to include an equal total of 27 instances across all analysis sessions.

6.3. Classifying Analysis Sessions

To analyze the semantic user interactions in the analysis sessions, we applied five classification algorithms [34,35]: Multinomial Naive Bayes (MultinomialNB), Support Vector Classifier (SVC), Random Forest (RF), Logistic Regression (LR), and Gradient Boosting (GB). Each algorithm brings unique advantages, allowing for a comprehensive examination of the data through effective classification.

MultinomialNB is a probabilistic classification algorithm based on Bayes' theorem. It operates under the assumption of feature independence, meaning that there is no relationship between features. This algorithm utilizes the multinomial distribution to compute the probability of observing counts or frequencies of different categories (terms) in a fixed number of independent trials. Since it is designed to analyze discrete data, it is broadly used in text data analysis. We utilized MultinomialNB to compute the probability $P(d_i|S_i) \propto P(d_i) \times P(S_i|d_i)$ of the vectorized semantic user interactions, where $P(d_i)$ is the prior probability of decision d_i and $P(S_i|d_i)$ is the likelihood of the feature vector S_i . Given an analysis decision d_k during training, $P(S_k|d_k)$ is computed as $P(S_k|d_k) = \prod_{i=1}^n p_{k_i}^{S_{k_i}}$, where p_{k_i} is the probability of observing the i-th term under decision d_k . Each term's frequency S_{k_i} contributes to the likelihood calculation. Given a new feature vector S_k , MultinomialNB calculates the posterior probability of each decision d_k using Bayes' theorem as $P(d_k|S_k) = \frac{P(S_k|d_k) \times P(d_k)}{P(S_k)}$, where $P(S_k)$ is computed as the sum of the likelihoods of S_k under each decision weighted by the respective prior probabilities.

SVC identifies support vectors as an optimal hyperplane separating the feature space classes. Although it is computationally intensive, it is good for analyzing large, complex data [36]. For the given vectorized data, it finds a hyperplane in n-dimensional space as $W \cdot X + b = 0$, W is the normal vector to the hyperplane. X and B are feature vector and bias, respectively. As a constrained optimized problem, it maximizes margin $\frac{2}{\|W\|}$ while minimizing classification errors. To find the optimal decision boundary for vectorized semantic user interaction data, Radial Basis Function (RBF) kernel $K(x, x') = \exp(-\gamma \|x - x'\|^2)$ is used to determine the nonlinear decision boundary, where γ is a

Information 2024, 15, 351 17 of 22

parameter for the RBF kernel used to define the influence of a single data point in each training. In our study, $\gamma = \frac{1}{2 \times 1136}$ is used.

As an ensemble technique, RF is a computationally intensive algorithm because it constructs multiple decision trees to determine optimal classification. It uses bootstrapping aggregation to generate random samples to decrease the variance of a model. Thus, it provides better results compared to a traditional decision tree algorithm (i.e., creating a single decision tree). However, the complexity of combining multiple decision trees makes the interpretation of results more challenging. As a binary classification technique, LR uses a logistic function to evaluate an instance by calculating its probabilities. Since our dataset has three decisions as classes, we used multinomial LR. It predicts the probability with softmax function $P(y=d_i|S_i)=\frac{e^{\beta_d i \cdot S_i}}{\sum_{i=1}^K e^{\beta_i \cdot S_i}}$ that a given observation belongs to each

 d_i decision class, where β_{d_i} is the coefficient vector for class and S_i is the feature vector. The log-likelihood function is used to estimate the coefficient vector β_{d_i} for all classes to find the optimal best fit for the function. Lastly, as an ensemble learning technique, GB builds a sequence of weak models (decision trees) and combines them to form a strong model iteratively. It minimizes loss to the target value as $F(S) = \arg\min \sum_{i=1}^n L(r_i, \gamma)$, L is the

loss function applied to gradients r_i and γ is the predicted value. For the loss function, we used a logarithmic loss function to perform the classification with the vectorized features.

Table 2 shows classification performances with the five classification algorithms. Because the dataset is small, 5-fold cross-validation was employed to assess the performances. This cross-validation method ensures robust and reliable performance metrics by reducing the risk of overfitting and providing a more comprehensive assessment of the model's generalization capabilities. Overall, we observed similar results across different vectorized data. This might be attributed to the repeated patterns in the captured semantic user interaction data. Although TF-IDF assigns weights to the semantic user interaction states based on their TF and IDF values, the presence of numerous repeated patterns results in the outcomes from the TF-IDF vectorized data closely resembling those from the BOW vectorized data. Among the five algorithms, MultinomialNB demonstrated better performances across all metrics—accuracy, precision, recall, and F1-score. In contrast, GB exhibited relatively lower performance with minor variances in the measured scores.

We also evaluated performance differences depending on the analysis decisions of suspicious (S), not suspicious (N), and inconclusive (I) (see Table 3). Average performance differences were evaluated to understand the effectiveness of classifying analysts' decisions. With MultinomialNB and GB, we found higher scores in all metrics for classifying I decisions. However, other classification algorithms showed distinctive results. With SVC, we found that accuracy and recall scores were high in classifying the S decisions. However, precision and F1-score exhibited high scores in I decisions. Similar to the results with SVC, we observed high precision and F1-score for classifying I decisions with RF. Furthermore, I0 decisions showed high accuracy and recall scores. When utilizing LR, accuracy, recall, and F1-score showed high performances for I1 decisions. However, precision scores showed high performances for classifying I2 decisions. Thus, if classification accuracy is important for understanding the analysts' I3 decisions, utilizing MultinomianalNB, LR, and GB should be considered. Since most analysts' goal is to determine if analyzed wire transactions become suspicious (I2) or not suspicious (I3), using SVC and RF become the most effective classification algorithms for evaluating captured semantic user interactions.

Information 2024, 15, 351

Table 2. Classification performances (mean \pm standard deviation) using two vectorized data (BOW
and TF-IDF).

Data Type	Metric	MultinomialNB	SVC	RF	LR	GB
	Accuracy	0.79 ± 0.11	0.67 ± 0.09	0.74 ± 0.08	0.74 ± 0.12	0.64 ± 0.04
DOM	Precision	0.80 ± 0.11	0.77 ± 0.08	0.76 ± 0.08	0.75 ± 0.13	0.65 ± 0.05
BOW	Recall	0.79 ± 0.11	0.66 ± 0.09	0.74 ± 0.07	0.74 ± 0.12	0.64 ± 0.04
	F1-score	0.79 ± 0.11	0.64 ± 0.11	0.74 ± 0.07	0.72 ± 0.13	0.64 ± 0.05
	Accuracy	0.79 ± 0.11	0.67 ± 0.09	0.69 ± 0.11	0.74 ± 0.12	0.63 ± 0.04
TE IDE	Precision	0.80 ± 0.11	0.77 ± 0.08	0.73 ± 0.10	0.75 ± 0.13	0.65 ± 0.05
TF-IDF	Recall	0.79 ± 0.11	0.66 ± 0.09	0.69 ± 0.10	0.74 ± 0.12	0.63 ± 0.04
	F1-score	0.79 ± 0.11	0.64 ± 0.11	0.67 ± 0.11	0.72 ± 0.13	0.63 ± 0.05

Table 3. Classification performances (mean \pm standard deviation) using BOW and TF-IDF vectorized data on analysis decisions. The highest performance scores among analysis decisions are highlighted in bold.

Data Type	Metric	Decision *	MultinomialNB	SVC	RF	LR	GB
	Accuracy	I	$\textbf{0.96} \pm \textbf{0.08}$	0.64 ± 0.25	0.81 ± 0.11	$\textbf{0.93} \pm \textbf{0.09}$	$\textbf{0.81} \pm \textbf{0.02}$
-		N	0.77 ± 0.15	0.43 ± 0.21	$\textbf{0.81} \pm \textbf{0.13}$	0.81 ± 0.13	0.67 ± 0.07
		S	0.64 ± 0.19	$\textbf{0.92} \pm \textbf{0.16}$	0.37 ± 0.11	0.47 ± 0.22	0.45 ± 0.16
	Precision	I	$\textbf{0.83} \pm \textbf{0.09}$	$\textbf{0.96} \pm \textbf{0.08}$	$\textbf{0.75} \pm \textbf{0.17}$	0.74 ± 0.1	$\textbf{0.80} \pm \textbf{0.12}$
		N	0.79 ± 0.19	0.80 ± 0.27	0.66 ± 0.11	$\textbf{0.76} \pm \textbf{0.21}$	0.63 ± 0.2
BOW		S	0.79 ± 0.13	0.55 ± 0.09	0.72 ± 0.28	0.75 ± 0.17	0.54 ± 0.05
_	Recall	I	$\textbf{0.96} \pm \textbf{0.08}$	0.64 ± 0.25	0.81 ± 0.11	$\textbf{0.93} \pm \textbf{0.09}$	$\textbf{0.81} \pm \textbf{0.02}$
		N	0.77 ± 0.15	0.43 ± 0.21	$\textbf{0.81} \pm \textbf{0.13}$	0.81 ± 0.13	0.67 ± 0.07
		S	0.64 ± 0.19	$\textbf{0.92} \pm \textbf{0.16}$	0.37 ± 0.11	0.47 ± 0.22	0.45 ± 0.16
_	F1-score	I	$\textbf{0.88} \pm \textbf{0.07}$	$\textbf{0.73} \pm \textbf{0.18}$	$\textbf{0.77} \pm \textbf{0.09}$	$\textbf{0.82} \pm \textbf{0.09}$	$\textbf{0.80} \pm \textbf{0.06}$
		N	0.78 ± 0.16	0.52 ± 0.21	0.71 ± 0.06	0.77 ± 0.14	0.63 ± 0.08
		S	0.69 ± 0.13	0.68 ± 0.09	0.49 ± 0.16	0.56 ± 0.19	0.48 ± 0.12
		I	$\textbf{0.96} \pm \textbf{0.08}$	0.64 ± 0.25	$\textbf{0.85} \pm \textbf{0.08}$	$\textbf{0.93} \pm \textbf{0.09}$	$\textbf{0.81} \pm \textbf{0.02}$
	Accuracy	N	0.77 ± 0.15	0.43 ± 0.21	$\textbf{0.85} \pm \textbf{0.08}$	0.81 ± 0.13	0.63 ± 0.13
		S	0.64 ± 0.19	$\textbf{0.92} \pm \textbf{0.16}$	0.44 ± 0.17	0.47 ± 0.22	0.41 ± 0.14
_		I	$\textbf{0.83} \pm \textbf{0.09}$	$\textbf{0.96} \pm \textbf{0.08}$	$\textbf{0.78} \pm \textbf{0.19}$	0.74 ± 0.1	$\textbf{0.79} \pm \textbf{0.13}$
	Precision	N	0.79 ± 0.19	0.80 ± 0.27	0.72 ± 0.17	$\textbf{0.76} \pm \textbf{0.21}$	0.57 ± 0.09
TF-IDF		S	0.79 ± 0.13	0.55 ± 0.09	0.72 ± 0.16	0.75 ± 0.17	0.52 ± 0.07
-		I	$\textbf{0.96} \pm \textbf{0.08}$	0.64 ± 0.25	$\textbf{0.85} \pm \textbf{0.08}$	$\textbf{0.93} \pm \textbf{0.09}$	$\textbf{0.81} \pm \textbf{0.02}$
	Recall	N	0.77 ± 0.15	0.43 ± 0.21	$\textbf{0.85} \pm \textbf{0.08}$	0.81 ± 0.13	0.63 ± 0.13
		S	0.64 ± 0.19	$\textbf{0.92} \pm \textbf{0.16}$	0.44 ± 0.17	0.47 ± 0.22	0.41 ± 0.14
_		I	$\textbf{0.88} \pm \textbf{0.07}$	$\textbf{0.73} \pm \textbf{0.18}$	$\textbf{0.80} \pm \textbf{0.11}$	$\textbf{0.82} \pm \textbf{0.09}$	$\textbf{0.79} \pm \textbf{0.07}$
	F1-score	N	0.78 ± 0.16	0.52 ± 0.21	0.76 ± 0.09	0.77 ± 0.14	0.58 ± 0.07
		S	0.69 ± 0.13	0.68 ± 0.09	0.54 ± 0.18	0.56 ± 0.19	0.45 ± 0.11

 $[\]ensuremath{^{*}}$ I: Inconclusive, N: not suspicious, and S: Suspicious.

The classification results indicate that we can successfully classify the user interactions based on their decisions. Most importantly, MultinomianalNB showed the highest accuracy (about 96%) to classify I decisions. SVC and RF demonstrated strong performances in classifying S and N decisions, achieving the accuracies of 92% and 81%, respectively. Based on the F1-scores, it is apparent that MultinomianalNB will be the most important classification algorithm to analyze semantic user interactions, especially when the dataset is

Information **2024**, 15, 351

imbalanced. These results emphasize the potential of utilizing semantic user interactions to understand users' analytical processes in their decision making. Furthermore, integrating the captured user interactions into a visualization can assist users in solving analytical problems more effectively.

7. Discussion

By classifying the semantic interaction data, we achieved an average training accuracy of 0.99 ± 0.02 with 5-fold cross-validation. The average testing accuracy was 0.71 ± 0.05 . Specifically, we observed an accuracy of 0.83 ± 0.12 in classifying I decisions. However, the classification accuracies for S and N decisions were somewhat lower, at 0.57 ± 0.20 and 0.70 ± 0.16 , respectively. This discrepancy can be attributed to the use of SMOTE oversampling for "not suspicious" and "inconclusive" sessions. Since SMOTE generates synthetic samples based on Euclidean distances, it led to a higher accuracy for I decisions due to significant feature overlap between the classes.

As shown in Table 3, we found variations in classification performance depending on analysis decisions. Each classification algorithm is designed to handle different types of noisy data, leading to varying performance outcomes. For instance, MultinomialNB assumes feature independence, indicating that the presence of one feature does not influence others [37]. This simplification allows each term to be treated as an independent feature. Thus, we found slightly higher performance scores with MultinomialNB. Conversely, SVC with a nonlinear RBF kernel is designed to manage correlated features by prioritizing margin maximization between classes [38]. Since the vectorized data tend to be sparse, SVC with the RBF kernel may not perform well. To address this limitation, Huang et al. [39] proposed Sparse Support Vector Classification that can be considered to analyze the vectorized semantic interaction data. RF creates multiple decision trees to reduce the impact of any single feature's correction. Thus, it is less susceptible to multicollinear effects where multiple independent variables are correlated [40]. However, since the data are sparse and high dimensional, creating many decision trees may be inefficient for analyzing the semantic user interactions. GB effectively captures complex nonlinear relationships through sequential tree-building that corrects the errors of previous ones, making it particularly effective for nonlinear data. However, it also has a limitation of handling sparse data. LR, being inherently a linear model, may face challenges in identifying nonlinear relationships. However, it is good for analyzing sparse data. As a result, the performance scores with LR were higher than those of RF and GB (see Table 3). Furthermore, when dealing with an imbalanced dataset, evaluating F1-scores is crucial. Although oversampling helps mitigate the data imbalance problem, measuring F1-scores is important because some degree of imbalance may persist [33]. The F1-scores (see Tables 2 and 3) in our study reveal that SVC and GB produced poor performances compared to the others, while RF and LR showed similar results. Notably, MultinomialNB achieved the highest F1 scores across all decisions, highlighting its superior performance in classifying semantic user interactions.

The captured semantic user interactions are formatted as textual information. Thus, it is logical to leverage text data analysis methods. We employed the BOW and TF-IDF techniques to convert them to numerical formats. TF-IDF generally offers better performance in text data classification tasks due to its balanced feature representation [41–43]. However, we observed no significant difference between the two techniques in our analysis. This result may stem from the high proportion of common terms within the semantic interactions, which prevents TF-IDF from effectively converting the terms into meaningful vectors. Therefore, it is necessary to develop a new technique specifically tailored to convert semantic user interaction data into more suitable vectors for enhanced classification performance.

As discussed above, capturing semantic user interactions is essential for understanding users' analytical reasoning processes. However, achieving this in existing visualization applications requires extensive modifications. Specifically, the applications need to capture low-level user interactions (e.g., mouse actions) and determine their corresponding semantic information. This process often requires significant additional effort because

Information 2024, 15, 351 20 of 22

each visualization application uses a different dataset and is designed to address a specific domain problem, leading to different internal mappings between the interactions and their semantic meanings. Analyzing semantic user interactions also presents a research challenge. Although several approaches have been proposed to analyze these interactions, their applicability across various visualization applications is limited. In this paper, we present an approach to analyzing semantic user interactions using classification algorithms. However, continuous research is essential in enhancing the proposed approach, particularly by evaluating it with a large amount of semantic user interaction data captured using diverse visualization applications.

8. Conclusions and Future Works

In this paper, we explored semantic user interactions within a visualization system designed for analyzing financial fraud in wire transactions. Since financial analysts can utilize this system to assess whether transactions are suspicious, understanding the procedures they employ during their analysis is crucial for gaining insights into their decision-making processes. By capturing and examining semantic user interactions, we can better understand the analysts' analytical processes and the reasoning behind their decisions. This understanding is essential for evaluating the effectiveness of the visualization tools and enhancing decision support in financial fraud analysis. Since financial analysts' decisions are diverse and occasionally contradict each other, tracing their user interactions is vital for understanding their reasoning and assessing the effectiveness of the visualization tools employed. To analyze captured semantic user interactions, we utilized a Markov chain model to create a visual state transition matrix. It supports tracing each user's performed analytical approaches to their decisions. To explore the possibility of linking user interactions to decision-making processes, we applied five classification algorithms. The results, with an average classification accuracy of about 72%, demonstrated the effectiveness of our method in clarifying analysts' analytical decisions through the analysis of semantic interactions. Overall, this study proposes a potential future research direction for enhancing the effectiveness of integrating semantic user interactions to improve users' performance in visual analytical tasks.

For future works, we plan to test our proposed approach by collecting more semantic user interaction data. Additionally, we plan to assess the significance of incorporating both low- and high-level user interactions to deepen our understanding of users' analytical procedures when utilizing visualization applications to solve analytical problems. We also intend to employ a deep learning technique, RNN (Recurrent Neural Network) [44]. It handles sequential data more effectively, such as text, speech, and time series. Since the captured user interactions are sequential data generated by each user, RNN would be useful for effectively analyzing the interaction data. Furthermore, we plan to extend our research to include the integration of captured user interactions into the visualization tools and evaluate the impact of such integration on the tools' effectiveness in assisting users with solving analytical problems.

Author Contributions: Conceptualization, D.H.J.; methodology, D.H.J. and S.Y.J.; software, D.H.J.; validation, D.H.J., B.K.J. and S.Y.J.; formal analysis, D.H.J., B.K.J. and S.Y.J.; writing—original draft preparation D.H.J., B.K.J. and S.Y.J.; writing—review and editing, D.H.J., B.K.J. and S.Y.J.; visualization, D.H.J.; funding acquisition, D.H.J. and S.Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This material is based upon work supported by the Army Research Office (Grant No. W911NF-23-1-0217) and the National Science Foundation (Grant No. 2107451). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the National Science Foundation, the Army Research Office, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Institutional Review Board Statement: Not applicable.

Information 2024, 15, 351 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

- 1. Valtakari, N.V.; Hooge, I.T.C.; Viktorsson, C.; Nyström, P.; Falck-Ytter, T.; Hessels, R.S. Eye tracking in human interaction: Possibilities and limitations. *Behav. Res. Methods* **2021**, *53*, 1592–1608. [CrossRef] [PubMed]
- Jeong, D.H.; Dou, W.; Lipford, H.; Stukes, F.; Chang, R.; Ribarsky, W. Evaluating the relationship between user interaction and financial visual analysis. In Proceedings of the 2008 IEEE Symposium on Visual Analytics Science and Technology, VAST '08, Columbus, OH, USA, 19–24 October 2008; pp. 83–90.
- 3. Dou, W.; Jeong, D.H.; Stukes, F.; Ribarsky, W.; Lipford, H.R.; Chang, R. Recovering reasoning processes from user interactions. *IEEE Comput. Graph. Appl.* **2009**, 29, 52–61. [CrossRef] [PubMed]
- 4. Endert, A.; Fiaux, P.; North, C. Semantic interaction for visual text analytics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 473–482.
- 5. Jeong, D.H.; Ji, S.Y.; Ribarsky, W.; Chang, R. A state transition approach to understanding users' interactions. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), Providence, RI, USA, 23–28 October 2011; pp. 285–286. . [CrossRef]
- 6. Meyn, S.; Tweedie, R. Markov Chains and Stochastic Stability, 1st ed.; Springer: New York, NY, USA, 1996.
- 7. Spiller, M.; Liu, Y.H.; Hossain, M.Z.; Gedeon, T.; Geissler, J.; Nürnberger, A. Predicting Visual Search Task Success from Eye Gaze Data as a Basis for User-Adaptive Information Visualization Systems. *ACM Trans. Interact. Intell. Syst.* **2021**, *11*, 14. [CrossRef]
- 8. Steichen, B.; Conati, C.; Carenini, G. Inferring Visualization Task Properties, User Performance, and User Cognitive Abilities from Eye Gaze Data. *ACM Trans. Interact. Intell. Syst.* **2014**, *4*, 11. [CrossRef]
- 9. Conati, C.; Lallé, S.; Rahman, M.A.; Toker, D. Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks. *ACM Trans. Interact. Intell. Syst.* **2020**, *10*, 12. [CrossRef]
- 10. Blascheck, T.; Ertl, T. Towards analyzing eye tracking data for evaluating interactive visualization systems. In Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, Paris, France, 10 November 2014; pp. 70–77.
- 11. Blascheck, T.; John, M.; Koch, S.; Bruder, L.; Ertl, T. Triangulating user behavior using eye movement, interaction, and think aloud data. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, SC, USA, 14–17 March 2016; pp. 175–182.
- 12. Alam, S.S.; Jianu, R. Analyzing Eye-Tracking Information in Visualization and Data Space: From Where on the Screen to What on the Screen. *IEEE Trans. Vis. Comput. Graph.* **2017**, *23*, 1492–1505. [CrossRef] [PubMed]
- 13. Blascheck, T.; Kurzhals, K.; Raschke, M.; Burch, M.; Weiskopf, D.; Ertl, T. Visualization of Eye Tracking Data: A Taxonomy and Survey. *Comput. Graph. Forum* **2017**, *36*, 260–284. [CrossRef]
- 14. von Landesberger, T.; Fiebig, S.; Bremm, S.; Kuijper, A.; Fellner, D.W. Interaction Taxonomy for Tracking of User Actions in Visual Analytics Applications. In *Handbook of Human Centric Visualization*; Springer: New York, NY, USA, 2014.
- 15. Muller, N.H.; Liebold, B.; Pietschmann, D.; Ohler, P.; Rosenthal, P. Visualizations for Hierarchical Data: Analyzing User Behavior and Performance with Eye Tracking. *Int. J. Adv. Softw.* **2017**, *10*, 385–396.
- 16. Dai, H.; Mobasher, B. Integrating Semantic Knowledge with Web Usage Mining for Personalization. In *Intelligent User Interfaces: Adaptation and Personalization Systems and Technologies*; IGI Global: Hershey, PA, USA, 2009.
- 17. Wall, E.; Narechania, A.; Coscia, A.J.; Paden, J.; Endert, A. Left, Right, and Gender: Exploring Interaction Traces to Mitigate Human Biases. *IEEE Trans. Vis. Comput. Graph.* **2021**, *28*, 966–975. [CrossRef]
- 18. Keith Norambuena, B.F.; Mitra, T.; North, C. Mixed Multi-Model Semantic Interaction for Graph-based Narrative Visualizations. In Proceedings of the 28th International Conference on Intelligent User Interfaces, Sydney, Australia, 27–31 March 2023; pp. 866–888.
- 19. Batch, A.; Ji, Y.; Fan, M.; Zhao, J.; Elmqvist, N. uxSense: Supporting User Experience Analysis with Visualization and Computer Vision. *IEEE Trans. Vis. Comput. Graph.* **2023**, 1–15. . [CrossRef]
- 20. Endert, A.; Fiaux, P.; North, C. Semantic Interaction for sense-making: Inferring Analytical Reasoning for Model Steering. *IEEE Trans. Vis. Comput. Graph.* **2012**, *18*, 2879–2888. [CrossRef] [PubMed]
- 21. Blascheck, T.; Vermeulen, L.M.; Vermeulen, J.; Perin, C.; Willett, W.; Ertl, T.; Carpendale, S. Exploration Strategies for Discovery of Interactivity in Visualizations. *IEEE Trans. Vis. Comput. Graph.* **2019**, 25, 1407–1420. [CrossRef] [PubMed]
- 22. Ottley, A.; Wan, R.G.R. Follow The Clicks: Learning and Anticipating Mouse Interactions During Exploratory Data Analysis. *Comput. Graph. Forum* **2019**, *38*, 41–52. [CrossRef]
- 23. Xu, K.; Ottley, A.; Walchshofer, C.; Streit, M.; Chang, R.; Wenskovitch, J. Survey on the Analysis of User Interactions and Visualization Provenance. *Comput. Graph. Forum* **2020**, *39*, 757–783. [CrossRef]

Information 2024, 15, 351 22 of 22

24. Chang, R.; Ghoniem, M.; Kosara, R.; Ribarsky, W.; Yang, J.; Suma, E.; Ziemkiewicz, C.; Kern, D.; Sudjianto, A. WireVis: Visualization of Categorical, Time-Varying Data from Financial Transactions. In Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology, VAST '07, Sacramento, CA, USA, 30 October–1 November 2007; pp. 155–162.

- 25. Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002. . [CrossRef]
- 26. Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.D.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal Component Analysis: A Natural Approach to Data Exploration. *ACM Comput. Surv.* **2021**, *54*, 70. [CrossRef]
- 27. Jeong, D.H.; Ji, S.Y.; Suma, E.A.; Yu, B.; Chang, R. Designing a collaborative visual analytics system to support users' continuous analytical processes. *Hum.-Centric Comput. Inf. Sci.* **2015**, *5*, 5. [CrossRef]
- 28. Endert, A.; Chang, R.; North, C.; Zhou, M. Semantic Interaction: Coupling Cognition and Computation through Usable Interactive Analytics. *IEEE Comput. Graph. Appl.* 2015, 35, 94–99. [CrossRef]
- 29. Jeong, D.H.; Ziemkiewicz, C.; Fisher, B.; Ribarsky, W.; Chang, R. iPCA: An Interactive System for PCA-based Visual Analytics. *Comput. Graph. Forum* **2009**, *28*, 767–774. [CrossRef]
- 30. Lipford, H.R.; Stukes, F.; Dou, W.; Hawkins, M.E.; Chang, R. Helping users recall their reasoning process. In Proceedings of the 2010 IEEE Symposium on Visual Analytics Science and Technology, Salt Lake City, UT, USA, 25–26 October 2010; pp. 187–194. [CrossRef]
- 31. Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Traditional to Deep Learning. *ACM Trans. Intell. Syst. Technol.* **2022**, *13*, 31. [CrossRef]
- 32. He, H.; Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications, 1st ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2013.
- 33. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. *J. Artif. Int. Res.* **2002**, *16*, 321–357. [CrossRef]
- 34. Aggarwal, C. Data Classification: Algorithms and Applications; Chapman & Hall/CRC Data Mining and Knowledge Discovery Series; CRC Press: Boca Raton, FL, USA, 2014.
- 35. Hastie, T.; Tibshirani, R.; Friedman, J. *The Elements of Statistical Learning: Data Mining, Inference and Prediction*, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009.
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods; Cambridge University Press: Cambridge, UK, 2000.
- 37. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008.
- 38. Vapnik, V.N. Statistical Learning Theory; Wiley-Interscience: Hoboken, NJ, USA, 1998.
- 39. Huang, K.; Zheng, D.; Sun, J.; Hotta, Y.; Fujimoto, K.; Naoi, S. Sparse learning for support vector classification. *Pattern Recognit. Lett.* **2010**, *31*, 1944–1951. . [CrossRef]
- 40. Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. *Am. Stat.* **2009**, 63, 308–319. [CrossRef]
- 41. Alanazi, A.H.; Cradock, A.; Rainford, L. Development of lumbar spine MRI referrals vetting models using machine learning and deep learning algorithms: Comparison models vs healthcare professionals. *Radiography* **2022**, *28*, 674–683. [CrossRef] [PubMed]
- 42. Kim, S.W.; Gil, J.M. Research paper classification systems based on TF-IDF and LDA schemes. *Hum.-Centric Comput. Inf. Sci.* **2019**, 9, 30. [CrossRef]
- 43. Zhao, Z. A Comparison Study: Comparison between Different Classifiers for Emotion Classification Using Real Human-to-Human Chat Log Dataset. Master's Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2019. [CrossRef]
- 44. Lalapura, V.S.; Amudha, J.; Satheesh, H.S. Recurrent Neural Networks for Edge Intelligence: A Survey. *ACM Comput. Surv.* **2021**, 54, 91. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.