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Abstract

Lung diseases such as cancer substantially alter the mechanical properties of the organ with direct
impact on the development, progression, diagnosis, and treatment response of diseases. Despite
significant interest in the lung’s material properties, measuring the stiffness of intact lungs at sub-
alveolar resolution has not been possible. Recently, we developed the crystal ribcage to image
functioning lungs at optical resolution while controlling physiological parameters such as air
pressure. Here, we introduce a data-driven, multiscale network model that takes images of the lung
at different distending pressures, acquired via the crystal ribcage, and produces corresponding
absolute stiffness maps. Following validation, we report absolute stiffness maps of the functioning
lung at microscale resolution in health and disease. For representative images of a healthy lung
and a lung with primary cancer, we find that while the lung exhibits significant stiffness
heterogeneity at the microscale, primary tumors introduce even greater heterogeneity into the
lung’s microenvironment. Additionally, we observe that while the healthy alveoli exhibit strain-
stiffening of ~1.75 times, the tumor’s stiffness increases by a factor of 6 across the range of
measured transpulmonary pressures. While the tumor stiffness is 1.4 times the lung stiffness at a
transpulmonary pressure of 3 cmH20, the tumor’s mean stiffness is nearly five times greater than
that of the surrounding tissue at a transpulmonary pressure of 18 cmH:0. Finally, we report that
the variance in both strain and stiffness increases with transpulmonary pressure in both the healthy
and cancerous lungs. Our new method allows quantitative assessment of disease-induced stiffness
changes in the alveoli with implications for mechanotransduction.

1 Introduction

Altered stiffness is one of the four physical hallmarks of cancer'?, with implications for the
development, progression, diagnosis, and treatment response of solid cancers. Biologically,
elevated stiffness promotes proliferation®, invasiveness*, and metastasis® through activation of
mechanosensitive signaling pathways; clinically, an increase in stiffness is associated with an
increased risk of breast cancer® and mortality.” In diagnostics, cellular and extracellular stiffness
are traditional markers of cancer®® and are predictive of a tumor’s stage.'® In therapy, increased
stiffness is linked to reduced efficiency of drug delivery.!! Furthermore, determining the stiffness
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of the tumors and their surrounding tissue is an essential precursor for estimating solid mechanical
stresses, another physical hallmark of cancer.>!!"!> Despite this, the lung’s or a lung tumor’s
stiffness has not been reported under the following conditions: (i) across a range of physiologically
relevant pressures, (ii) noninvasively, i.e., without sectioning of the tissue, (iii) under realistic
boundary conditions, and (iv) at microscale resolution.

Although elastography encompasses a broad range of techniques for assessing the material
properties of biological tissues, each method presents limitations when addressing our specific
problem.”!%25 The gold-standard method for microscale elastography is atomic-force
microscopy®®, which boasts extremely high-resolution, absolute measurements of stiffness.
However, tissue preparation for AFM involves resection and submersion in saline, which disrupts
the mechanical integrity of the sample and the alveolar air-liquid interface.?’” Though CT and MRI
elastography preserve the mechanical environment of the organ, these methods have poor
spatiotemporal resolution, and they typically report strain rather than absolute stiffness.?®*
Although strain elastography based on modalities like synchrotron microCT*’ have near-micron
spatial resolution, to our knowledge, these methods lack the control and temporal resolution
needed for tracking the same region of interest at alveolar resolution across changes in inflation
pressure. Optical elastography?!->>3! offers an alternative method for more precisely estimating the
displacements throughout a biological sample. For example, recent papers have implemented
optical elastography based on digital image correlation (DIC) to quantify the lung’s strain®? and
stiffness;*> but in each case, the empirical method does not provide physiologically realistic
boundary conditions, and the measurements are not at alveolar resolution. Using optical
elastography based on deformable image registration, our group recently mapped the elasticity of
resected biological samples at optical resolution either by embedding them in thermo-responsive
hydrogels** or by adhering precision-cut lung slices.”> However, these methods also involve
resection of the organ and embedding the sample in saline, which does not preserve the organ’s
boundary conditions and disrupts the air-liquid interface in the lung.

With that goal in mind, we recently developed the crystal ribcage®, which preserves the integrity
of the organ and emulates the in vivo boundary conditions seen by the lung, while at the same time
enabling real-time microscopy of the entire surface during dynamic ventilation at cellular
resolution (Fig. S1). Unlike intravital imaging methods*’** wherein the lung is immobilized by
vacuum or glue, and which thus compromise the breathing mechanics of the lung at the imaging
site, the plasma-treated crystal ribcage provides a lubricious, geometrically realistic boundary
condition, allowing mechanical characterization of the lung throughout the breathing cycle in
health and disease. While the tissue preparation involves resection of the organ from the mouse’s
thorax, the ex vivo lung, with its pleura intact, is imaged immediately after resection, and the lung
can be vascularly perfused with complete media to maintain cell health throughout the course of
imaging. Consequently, our platform preserves the in vivo physiological conditions of the lung.
By developing an optical elastography platform based on the crystal ribcage apparatus, we can
assess the mechanical properties of the ex vivo lung in health and disease with high spatiotemporal
resolution and with physiologically realistic boundary conditions.

Here, to accurately estimate the in vivo mechanical properties of the lung in health and disease, we
adopt a multiscale-modeling approach that couples the microscale displacements estimated
through deformable image registration and the mean, strain-dependent stiffnesses estimated using
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a nonlinear, finite-element model of the lung. We validate the multiscale model against a virtual,
finite-element model of the lung with a cancerous tumor, demonstrating that the method is capable
of accurately recovering the mechanical properties throughout the domain even in the presence of
pathology. Upon applying the model to images of the lung within the crystal ribcage, we find that
(1) the stiffness of the lung tissue increases nonlinearly with transpulmonary pressure across the
full range of end-expiratory to end-inspiratory pressures; (ii) there is significant heterogeneity in
material properties at alveolar resolution; (iii) the intratumor stiffness increasingly exceeds the
extratumor stiffness across the entire range of pressures; and finally, (iv) the variance in stiffness
increases with strain for both the healthy and cancerous tissue. While the present study
characterizes the micromechanics of the healthy lung and the lung with cancerous tumors, the
method has the potential to be applied to a wide range of disease states such as fibrosis, COPD,
and respiratory infections.

2 Methods

2.1 Mouse model of lung cancer, crystal ribcage fabrication, and
imaging

2.1.1 Animal use ethics

All experiments conformed to the ethical principles and guidelines under protocols set forth and
approved by the Boston University Institutional Animal Care and Use Committee (protocol
number PROTO201900086). All animal procedures were compliant with ARRIVE guidelines.
Mice were housed in ambient temperature and humidity and 12-hour light—dark conditions under
pathogen-free conditions at the Boston University Animal Science Center. No housing or handling
exceptions were made for this study.

2.1.2 Mice

We used 11- to 23-week-old male and female mice for experimental procedures including healthy
lung imaging and generating models of primary cancer, as previously described®. A breeding pair
of transgenic B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J] (JAX, 007676,
Jackson Labs)*, referred to by the abbreviation “mTmG”, was initially purchased to breed a
colony; that colony was the source of all animals for healthy lung and primary cancer experiments.
For the present study, which examines two representative mice from this colony, the healthy mouse
was 11 weeks old at the time of imaging. The urethane mouse, serving as our model of primary
cancer, was 23 weeks at the start of urethane dosing and 54 weeks at the time of imaging. Between
these ages, the murine lung’s volume does not change appreciably both in our experience and per
development studies.*!

2.1.3 Primary cancer model

We adapted a previously described protocol*** to induce primary lung cancer in mTmG mouse
lungs using urethane (Sigma U2500). A stock solution of urethane was prepared at a working
concentration of 200 mg/mL in PBS. Mice were dosed with the urethane solution at 1 mg/g body
weight, twice weekly for 5 weeks by intraperitoneal (IP) injection. Mice were sacrificed and lungs
harvested for imaging in the crystal ribcage after 6-12 months. The maximum tumor size permitted
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for the study was 1.5 mm in diameter. Mice were excluded from the study after presenting with
labored breathing, hunched posture, or ruffled fur due to tumor progression.

2.1.4 Crystal ribcage fabrication

The full development of the crystal ribcage platform is described in our previous work.*® Briefly,
microCT scans of C57BL/6 mouse chest cavity (courtesy the Hoffman group at the University of
Towa**4%) were segmented and refined to create the native ribcage geometry. In successive additive
manufacturing and fabrication steps the ribcage model was converted into the crystal ribcage mold
that was thermoformed over to create the polystyrene crystal ribcage. The internal surface was
engineered to be hydrophilic to allow the lung to glide over its surface, as in the native ribcage. A
six degree of freedom arm was included to rotate the crystal ribcage about any axis to image across
the entire the distal lung surface using either a top-down or bottom-up configured microscope.
Because lung volume changes significantly with age,*' we have fabricated different, age-specific
crystal ribcages to accommodate lungs of different sizes.

2.1.5 Lung preparation

Isolated mouse lungs were ventilated and perfused as previously described*®*’. Briefly, the mouse
trachea was cannulated and the lungs dynamically ventilated (Kent Physiosuite Mouse Ventilator,
Kent Scientific). The lungs were perfused by cannulating the pulmonary artery and left atrium,
and perfusing serum-free RPMI cell culture medium (Corning) through the lung vasculature. After
cannulating the trachea and mouse heart, the lung—heart block was excised and placed into the
crystal ribcage for ex vivo microscopy under variable quasi-static positive air pressures.

2.1.6 Lung microscopy

As previously described®®, ex vivo lungs, under quasi-static inflation conditions and within the
crystal ribcage, were imaged using (i) an upright Nikon stereomicroscope with a 1x objective, and
(i1) an upright Nikon CSU X1 spinning-disk confocal microscope with 1x, 2x, 4x and 10x
objectives, using NIS-Elements acquisition software and with the environmental temperature
control set to 37 °C.

Z stacks of the diseased and healthy lungs were acquired on the confocal microscope using a 561
nm laser at 20-50 ms exposure (50-20 frames per second) per frame. Voxel sizes varied based on
objective used, with XY resolution varying from 1-10 um and Z step sizes varying from 2.5-12.5
um. Total Z stack acquisition time was on the order of 6-15 seconds for each positive-end
expiratory pressure (PEEP) condition.

Before imaging, lungs were gradually recruited by slowly raising the intratracheal pressure to 18
cmH20, measured using custom sensors sensitive to 0.1 cmH20, using a water column. The
pressure was then reduced in decrements of 1 cmH20 down to 2 cmH20. To allow the lung to
relax to its steady-state condition, each pressure was maintained for 1 minute before imaging.

2.2 Organ-scale geometry modeling

Fig. 1 summarizes the multiscale model. In short, we (i) segment microCT images of the lung in
MATLAB 2022b (The MathWorks, Inc.), (ii) construct a geometric model from the segmentation
in SolidWorks 2021 (Dassault Systemes), (iii) simulate ventilation of the organ-scale model in
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Abaqus 2022 (Dassault Systemes) for a range of material coefficients, (iv) determine the
coefficients that optimally reproduce the observed pressure-distension behavior of the lung in the
crystal ribcage, (v) solve the inverse elasticity problem for the distribution of material properties
throughout the microscale domain in arbitrary units, and finally, (vi) rescale these relative
stiffnesses so that the mean value matches the stiffness of the organ-scale model, yielding or goal
of recovering the absolute stiffnesses throughout the microscale domain. Given a three-
dimensional microCT image*“ of the mouse thorax, we first construct three-dimensional
geometric models (Fig. 1(a)) of the mouse lung and ribcage for finite-element analysis as follows.

) Solid modeling b) Calibration

-1 cmHz0
H
. o

microCT Geometry Pn+1

Organ-scale
modeling

Eorgan

c) Registration (d) Elasticity Inversion
Ureg

+1 cmH20 Ureg(x Eabsolute
Ureg()()

Erelative Eabsolute = Eorgan Erelative
Pn+‘i

Microscale
modeling

Figure 1 | Model description. (a) A Bayesian classifier segments the geometries of the lung and of the ribcage from
microCT images*® of the mouse thorax, and the segmentation is then used to construct a solid geometry in
SolidWorks for finite-element analysis. (b) After recruitment, the height, H, of the organ in the crystal ribcage is
measured as the distending transpulmonary pressure decreases from 18 to 2 cmH,0 in decrements of 1 cmH,0, with
the pressure at the start of the n' step denoted by P,, and the material constants of the finite-element model are chosen
to reproduce this pressure-distension curve. (c) Deformable image registration determines how material points, x,
within the lung tissue displace with microscale resolution in response to an increment in pressure of 1 cmH»O,
producing the estimated displacements, u,¢4(x), for that step, and (d) the inverse elasticity problem is solved using
an implementation of the Adjoint-Weighted Equation formulation*® of the inverse elasticity problem in Fenics,* an
open-source Python framework for numerically solving differential equations in scientific computing applications.
From the measured displacements, we recover an estimate of the elastic modulus in relative units, Ejejative, having
unity mean. Upon rescaling this estimate so that its mean value matches that of the organ-scale model, Eqrgan, We

recover the absolute stiffness throughout the microscale domain, E,psoiute-

2.2.1 Segmenting the lung and ribcage

Due to significant variations in the lung’s intensity within a microCT volume, segmenting the
organ by thresholding is unreliable. Consequently, we construct a naive, Bayesian classifier—
trained on a single, two-dimensional slice of the image along with its ground-truth class labels—
to differentiate the lung class L from its surroundings M.>° Let Q c R3 be the position vectors of
pixels within the domain of the microCT image*, so that x € ( is the position of a given voxel.
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The image can then be expressed as the scalar field I(X) : Q —» R. Let F(x) : Q - R™ map from
each of these position vectors to the n-dimensional feature vectors extracted from I(x) : Q - R.
In the present study, each feature vector has ten components, ¢; (x) : Q = R, each corresponding
to a transformation of the image volume by a different neighborhood operation. These components
are listed in Table 1.

Table 1 | Components of the feature vectors extracted from the microCT volume for building the Bayesian
classifier. Each feature vector has ten components, each corresponding to a different transformation of the image
volume. To normalize the components, each component is divided by its standard deviation.

Feature-vector component | Description
(2 Sobel filter with threshold 0.1 applied to [
¥, Sobel filter with threshold 0.4 applied to [
Q3 Gaussian filter of variance 2 applied to ¢4
Py Gaussian filter of variance 4 applied to ¢,
Qs Laplacian-of-Gaussian filter applied to [
Pe Gaussian filter of radius 4 applied to [
Q- Gaussian filter of radius 8 applied to /
Qg Gaussian filter of radius 16 applied to [
P9 The original image /
P10 Morphological dilation of ¢,

Let Q;, () be the subset of position vectors from a given slice of the image volume that have
been manually labeled as belonging to the lung, and let Q; € Q be the remaining position vectors

|9 ,
——— which
192 1+

implies by the axiom of normalization that P(M) = 1 — P(L). To estimate the likelihoods,
P(x|L) and P(x | M), we train Gaussian mixture models on the feature vectors F(Q;) and
F(Qy), respectively. Finally, from these definitions, we apply Bayes’ theorem to recover P(L | x),
the posterior probability that a given pixel belongs to the lung.

from the same slice. For the priors, we assume that the prior probability P(L) =

P(x | L)P(L)
P(x | L)P(L)+ P(x | M)P(M)

() PLIx)=

The lung segmentation S, (x):Q — {0,1}is then defined as S, (x) =1 if P(L|x) > 0.5 and
S, (x) = 0 otherwise. In the MATLAB implementation, these maps—I(x), F(x),S,(x), and
P(L | x)—are represented as matrices.

In contrast, the ribcage segmentation S (x): Q — {0,1} is defined as Sz (x) = 1 if and only if the
intensity I(x) exceeds some constant, volume-dependent threshold. In each case, the resulting
segmentation contains multiple connected components, corresponding to features like the scapula,
humerus, cartilaginous tracheal rings, and tissue outside of the lung; extracting the largest
connected components from these initial segmentations isolates the desired region of interest.

2.2.2 Constructing solid models of the lung and ribcage
From the lung segmentation S; (x), we approximate the surface of the diaphragm as follows. First,
we find z,,,,, (x,y) = max { z | (x,y,z) € Dom(S;) A S.(x,y,z) = 1}. We then filter the mapping
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Zax (X, y) using a mode filter. Finally, we resample points from this surface using a thin plate
smoothing spline and save the point cloud to a text file."!

To construct a point-cloud approximation of the ribcage, we then find the geometric centroid of
the lung, X, from S, (X) using the following equation.

N 1
2 ==
(2) Xe YxeaSL(x)

Yizeq X SL ()

For each slice of the volume, we then project rays from the projection of the centroid X, onto the
given slice at a dense collection of angles from 0 to 2m until each ray contacts a nonzero pixel on
the interior of the ribcage segmentation Sz (x). A thin plate smoothing spline is then fit to these
contact points to produce a surface approximating the ribcage, and a dense collection of points,
Pg, are sampled from this surface. Because the ribcage is open near the apex of the lung, these
sampled points are artifactually peaked in the neighborhood of the apex. To correct this, the nodes
near the apex are flattened by minimizing the following objective function.

() Tulk(z—2) - 9.0 + a(Veyz) +B(Vyz) +7 (Vay(zi— 20) +5 (2 (21 -
Zi))z

In this equation, z; represents the z-component of the i node’s position vector after correction, Z;
represents the same component before correction, k represents the stiffness of a virtual spring
anchoring a point to its original height, and g, is a body force pulling these points toward the
centroid of the ribcage. The remaining terms serve to regularize the optimization, penalizing the
first and second derivatives of the height as well as changes in these derivatives. The sum is taken
over the points near the apex of the lung. Finally, these point clouds of the lung and ribcage are
saved as text files for subsequent import into SolidWorks.

From these point clouds, we finally construct STEP (Standard for the Exchange of Product model
data defined by ISO 10303°%) representations of the ribcage and the diaphragm using the
ScanTo3D feature in SolidWorks. By cutting the ribcage surface with the diaphragm surface, and
filling the space enclosed between them, we recover a simplified model of the lung that is
everywhere tangent to the ribcage. The STEP representations of the ribcage and the lung are then
exported from SolidWorks.

2.3 Organ-scale finite-element modeling
2.3.1 Simulating the healthy lung

To perform finite-element simulations of the organ, these STEP geometries are now imported into
Abaqus 2022 (Dassault Systémes). The ribcage is taken to be a discrete, rigid part and is meshed
with rigid, triangular elements. The lung is taken to be a deformable part and is meshed with
C3D10 quadratic tetrahedral elements, which are chosen over C3D4 linear tetrahedral elements
for their tendency to converge more quickly with coarser mesh resolutions. In simulations of the
healthy lung, the lung mesh consists of 34,541 nodes and 21,945 elements; the ribcage mesh
consists of 64,093 nodes and 127,697 elements. The simulation was performed on the Boston
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University Shared Computing Cluster hosted by the Massachusetts Green High-Performance
Computing Center distributing the load over 12 processors with 4 GB of RAM per processor, each
simulation completed within 7 hours.

Based on prior studies and on the lung’s microstructure and constitutive behavior—which
resembles a hyperelastic, tetrakaidekahedral foam whose walls are comprised of elastin, type-I
collagen, and type-III collagen—the lung is modeled using the Ogden-Hill model®® of a
hyperelastic foam.>**> The general form of the strain-energy density function is thus taken to be

@) U=3L@u/ad)( + 25+ 25 =3+ 5 (7 - 1)),

where ¢; is a dimensionless material parameter determining the nonlinear behavior of the stress-
strain relation, f3; is a dimensionless material parameter given by the Poisson’s ratio as f; =
v;/(1 — 2v;), u; is a material parameter with units of stress determining the shear modulus during
small strains from the reference configuration, A; is the i‘" principal stretch, J is the determinant
of the deformation gradient, and N is the number of terms in the model. For simplicity, we assume
that the strain-energy density function consists of only one term, reducing the general equation to

(5) U= (Qu/a®)(A%+21%+ 1% —3 + %U-“ﬂ ~1)).

This strain-energy density function, and consequently the pressure, is linear in the parameter
u and nonlinear in the parameter a. Therefore, if we simulate the distensions for parameters
(4, @), then the pressures required to produce the same distensions for any other (u*, ) are a
simple rescaling of those for (¢, a). In practice, therefore, it is unnecessary to simulate ventilation
for the same a but different u to determine the pressure-distension curve.

The boundary conditions (Fig. S2) include immobilization of the ribcage, frictionless sliding
contact between the lung’s upper surface and the ribcage, and negative pressure on the boundary
of the lung. Although experiments involve positive-pressure ventilation, the simulation involves
applying negative pressure to the external surface of the lung; the explanation for this apparent
discrepancy is that the governing equations are symmetric under mutual inversion of the pressure’s
sign and the surface normal’s direction, implying that the model is equally applicable to either
mode of ventilation.*® Since the parts have been designed a priori to be tangent everywhere, initial
contact between the surfaces is easy to establish.

While previous studies*®>” have shown that gravity significantly influences the mechanics of the
human lung, our model neglects the influence of gravity due to its smaller role in the mouse.
Consider the conservation of linear momentum under conditions of static equilibrium, which has
been rendered dimensionless®® by factoring out the lung density Plung, gravitational acceleration

g, lung height Hy g, and transpulmonary pressure Py,

6) —2 v .p 4B =0

PlungdHlung
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Here, V*, P*, and B* represent the dimensionless divergence operator, the dimensionless tissue
stress, and the dimensionless gravitational body forces, respectively. The tissue stress is known to

be approximately equal to the transpulmonary pressure.”® Consequently, the dimensionless number
— ™ Characterizes the magnitude of the tissue stress divergence relative to the magnitude of
PlungdHlung

gravity. In the human lung, this dimensionless quantity remains below 1 for transpulmonary
pressures up to 20 cmH20, indicating the significant role of gravity in governing its mechanics. In
the mouse lung, however, this dimensionless quantity is equal to 1 when the transpulmonary
pressure is 1 cmH20, but decreases linearly as the transpulmonary pressure increases; once the
transpulmonary pressure reaches 10 cmH20, this dimensionless number increases to 10, indicating
that tensile forces within the tissue greatly exceed gravitational body forces. Based on this
reasoning, we posit that it is reasonable to neglect gravity when modeling the murine lung, with
the approximation improving at higher pressures. Additional reasoning is discussed in the results.

Finally, it is important to note that the lung exhibits hysteresis, with its inflation characterized by
one strain-energy density function and its deflation characterized by another.* In this study, we
elect to model the lung’s behavior during quasistatic deflation, so that our measurements used to
calibrate the model are taken from states of higher pressure to states of lower pressure in near-
equilibrium. The same approach can easily be repeated to recover a model of the lung’s behavior
during inflation.

2.3.2 Simulating the cancerous lung
To simulate the cancerous lung, the same process is repeated, but rather than being constant, the
material field p(X) is defined as

(7) ,U()?) = fle—()_(—)?tumor)n/o'2 + B’

where )?mmor is the centroid of the spherical tumor in material coordinates, o determines its width,
n controls the shape of the decay in magnitude with distance, and the coefficients A and B
determine the stiffness in the near and far fields. To illustrate, we note that /,t()? ) approaches A +
B asX approaches )?tumor, and that ,u()? ) approaches B as ||)? — )?tumor” approaches infinity.
Consequently, A + B is the stiffness at the tumor’s centroid, while B is the stiffness far from the
tumor. This material equation possesses three attractive properties: (i) it is spherically symmetric,
corresponding to our interpretation that the equation represents a spherical tumor, (ii) stiffness
decays with distance from the centroid, reflecting our intent that the tumor is stiffer than its
surroundings, and (iii) it is differentiable and smooth, making it easier to work with during
numerical computations. When n = 2, the field is a multidimensional normal distribution, and as
n — oo, the field approaches an indicator function for a ball. In our studies, we chose n = 4.

The ribcage mesh is the same as before, while the lung mesh now consists of 12,679 nodes and
7,766 elements. Adaptive mesh refinement, which was necessary for convergence in the
neighborhood of the tumor, yielded a mesh with fewer elements relative to the simulation of the
healthy lung. The simulation was performed on the Boston University Shared Computing Cluster
hosted by the Massachusetts Green High-Performance Computing Center; distributing the load
over 12 processors with 4 GB of RAM per processor, the simulation completed within 4 hours.
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2.3.3 Calibrating the organ-scale finite-element model

The finite-element simulation is repeated for different material parameters within a neighborhood
of the values yielding optimal agreement between empirical and in silico outcomes. When the
strain-energy density function is restricted to a single term, the parameter u represents the
material’s shear modulus during small strains, as can be shown by a Taylor expansion of the strain-
energy density function about 4 = 1. From the stress-strain curve in the linear regime, when the
strain increases linearly with distending pressure, we can estimate the Young’s modulus as the
ratio of the increment in strain to the increment in pressure. From Fig. 2(c), we estimate that
incrementing the pressure from 0 kPa to 5 kPa yields an increment in strain of 0.2. Following this
reasoning, we find that E ~ 5 kPa/0.2 = 2.5 kPa. Assuming a Poisson’s ratio of v = 0.2,% this
value for the Young’s modulus corresponds to a shear modulus of 4 = E/(2(1 +v)) = 1 kPa.

Based on these initial estimates, we perform simulations for ¢ = 1 kPa and the dimensionless
parameter « ranging from 6 to 16. The outcomes of these simulations are then used to construct a
calibration surface P(Ay, i, @), where Ay is the stretch of the finite-element model along the
vertical axis, 4 and « are the material parameters mentioned earlier, and P is the transpulmonary
pressure required to distend the finite-element model to this degree of stretch. From the observed
distensions of the lung in the crystal ribcage (Fig. 1(b)) for pressures ranging from 2 to 18 cmH20O,
(Aops) Pops), we then determine the maximum likelihood assignments for y and @ by minimizing
the following objective function.*

(8) Z(ADbS,Pobs)(P(/lobSJ K, a) - Pobs)2

This optimization procedure is not computationally intensive; running on a personal laptop with
16 GB of RAM and a typical CPU, for example, the process completes within seconds. The
outcome is a single, point estimate of the coefficients that characterize the organ-scale behavior.
It should be noted that, because the model is linear in the parameter y, we can in practice simplify
the problem of determining the optimal parameters by transforming the objective function as
follows.

(9) Z(Aobs,Pobs)(ﬂP(AobSI 1, CZ) - Pobs)2

This implies that, rather than sampling the function P(A,, 4, @), we only need to sample the
function P (4., 1, @) in our finite-element simulations. In contrast, because the model is nonlinear
in a, an analogous transformation is not possible for «; this is why we limit the constitutive model
to a single term.

2.4 Inverse elasticity problem at the microscale

2.4.1 Measuring the displacements using image registration

To measure the displacements caused by a change in distending pressure applied to the lung at
cellular resolution, we leverage deformable image registration®! (Fig. 1(c)). To prepare the images
for registration, we perform an optimization to autonomously correct the bulk rotation of the
material due to the natural curvature of the crystal ribcage away from the imaging plane. Because
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the image-registration algorithm does not, in practice, yield good estimates for the displacements
along the shallow depth axis, we project the rotationally corrected images along this axis.

After preprocessing the images, we invoke the image-registration algorithm. This algorithm, which
has been adapted from earlier literature®!, formulates the inverse-elasticity problem as an inference
problem on a Markov Random Field (MRF) to automatically determine the displacements
necessary to match images of the lung at two different pressures. The observable variables of the
Markov Random Field are modality-independent neighborhood descriptors (MIND) extracted
from the image,®” while the latent variables are the displacements necessary to minimize the sum
of squared differences in these descriptors across the two images; edges between the latent
variables of neighboring observables represent the constraint that displacements vary smoothly
throughout the domain. Let O and T be the original and deformed images, respectively.
Furthermore, let W (0, u) be the image produced by warping the image O using the displacements
u. Lastly, let the function D map an image to its MIND representation. Then the registration
algorithm finds the displacements that minimize the objective function

(10)  Yzea(P(W(O,w) - D(T)),

where the sum is taken over the points in the image domain, 1. From these displacements and the
material properties of the calibrated finite-element model, we next find the distribution of
stiffnesses throughout the domain, as described in the next section.

2.4.2 Solving for the shear modulus parameter
To determine the relative stiffnesses of the material throughout the image domain, we leverage a
Python implementation of the Adjoint-Weighted Equation (AWE) formulation of the inverse-

elasticity problem.*® Let Xe Qo © R? be the coordinates of material points of a deformable body
in the reference configuration, and let ¥ € ; © R? be the coordinates of the same material points
after some deformation. Because soft tissues deform continuously, there exists a continuous

function ¥ : R? —» R? such that X = 1[)()? ) Given the registered displacements, u()? ) = 1/)()? ) —
b , along with the definition of the deformation gradient, F ()? ) = szp()? ), we can recover the

deformation gradient tensor in terms of X.5
(1) F(X) =1+ Vzu(X)

From the deformation gradient, we next determine the Cauchy-Green strain tensor field, C ()? ), as
follows.

(12)  €(X) =FX)TF(X)

By the spectral theorem and the manifest symmetry of C ()? ), we subsequently determine the
eigenvalues, A; (X)? and 1,(X)?, of this tensor.

The areal strain, which is a scalar field representing the fractional change in the material’s area
relative to its value in the reference configuration, is then given by
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(13) (X)) = 4, (X (X) — 1.

The whole organ’s stress-strain behavior is well-described by a hyperelastic material law, where
the nominal stress is the derivative of the strain-energy function with respect to the principal
nominal stretches. If we assume that this model holds at all length scales, down to the cellular scale
and for both healthy and diseased tissue, then we can use this same constitutive model when
solving the inverse problem. Therefore, from the same strain-energy function introduced earlier,
we recover the principal components of the first Piola-Kirchhoff stress tensor as follows.

ow 5 2 caa -
(4 P=55 =D O =)

where f = 1_1/7 In evaluating the above expression, we need to compute the Jacobian determinant

J = 414,45, but image registration only yields the stretches tangential to the lung’s surface.
Consequently, we approximate J as | =~ (1;1,)%/?. Finite-element simulations of the whole organ
indicate that this approximation generally holds within 10-15% error (Fig. S2).

For a hyperelastic material, it is well-known that the eigenvectors of the stress are aligned with the
eigenvectors of the strain. Therefore, if ¥; are the principal directions of the right Cauchy-Green
strain tensor, the first Piola-Kirchhoff stress tensor becomes

(15) P:P151®51+P252®132.

We can simplify the above expression by defining the tensor A()(7 ) = P()? )/ ,u()? ), leading to the
following simplified form.

(16)  P(X) = u(X)AX)

Here, /J()? ) is unknown while A()(7 ) is completely determined by the displacements. At static
equilibrium and in the absence of body forces, the conservation of linear momentum requires that

the divergence of the first Piola-Kirchhoff stress, P()(7 ), with respect to the material coordinates,
X, vanishes.

(17)  Vz-P(X) =0
From our earlier simplified form for P()? ), the condition of static equilibrium becomes

(18) Vg~ w(X)P(X)) =0.

In the AWE formulation of the inverse elasticity problem for a linearly elastic material, we seek a
variational solution for y()? ) to the above differential equation. This yields a map u(X ) of relative
stiffnesses, whose scale is determined by the specified-mean boundary condition.®* After solving
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the inverse problem for u()? ), we rescale ,u()? ) so that the mean stiffness throughout the domain
matches the organ-scale stiffness determined by calibrating the finite-element model.

From Holzapfel’s equation (6.180)%, which is reproduced below as equation (19), along with the
strain-energy function mentioned earlier, we determine the components of the elasticity tensor, C,
at each state of deformation for each position within the domain. In the following equation, S,
Pare the principal values of the second Piola-Kirchoff stress tensor, 1, are the principal stretches,
and N, are the principal directions of the deformation.

3
(19) @:Z 1% g QN ®N,® N,
a,b=1"b 0%

3
SpmSa o o
" Zab:m;cbﬂg—lé (Ng @ Ny, @ Ng @ Np + Ny @ Ny @ Ny @ Ng)

Finally, we perform an iterative optimization to determine the Young’s modulus and Poisson’s
ratio fields that optimally approximate the components this tensor. This Young’s modulus is what
we ultimately report as the lung’s stiffness (Fig. 1(d)).

2.5 Statistical comparison of intergroup and intragroup strains and

stiffnesses

To characterize changes in strain and stress fields with pressure, we discretized the domain by
coherence length into 50x50 pixel patches (See Fig. S5), the dimensions of which were chosen to
minimize the correlation between image patches. We then computed the mean within each patch,
along with the standard deviation across patches within the same domain. With these means and
standard deviations, P-values were computed (i) across image patches within the same field in
order to examine the significance of spatial variations in strain and stiffness and (ii) across
pressures within the same patch in order to examine the significance of pressure-driven changes
in strain and stiffness within a given patch.

3 Results and discussion
3.1 Validating the finite-element model

We begin by describing and assessing the finite-element model of the organ, which constitutes the
first stage of the system. The image classifiers described in the methods yield high-quality
segmentations of the lung and the ribcage. These segmentations are subsequently used to construct
a realistic, though simplified, model of the lung within the crystal ribcage (Fig. 2(a)). We find that
the pressure-stretch curve of the finite-element model changes smoothly with the parameter a of
the hyperelastic foam model; from these curves, we construct a smooth surface approximating the
transpulmonary pressure as a function of stretch A and material parameter a (Fig. 2(b)). Having
characterized how the finite-element model’s response changes with a, we solve for the values of
u and a that maximize the likelihood of observing the distensions that we measure in the crystal
ribcage; for the data collected in the present study, we determine that the optimal value for p is
0.61 kPa and for « is 12.4 (Fig. 2(c)) through the optimization described earlier. The general form
of the hyperelastic foam model consists of multiple additive terms. Although a greater number of
terms should in theory lead to a better approximation of the data, fitting a model with multiple
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terms is complicated by the model’s nonlinearity in the a parameter, so that it is not possible to
reuse the calibration surface to fit successive terms beyond the first. For simplicity and because
the subsequent outcome is adequate for our purposes, we settle for a single term. We observe that
the qualitative distension of the finite-element model matches that of the real lung in the crystal
ribcage (Fig. 2(d)). Despite the finite-element model’s homogeneous material properties, its strains
(Fig. 2(e)) and stresses (Fig. 2(f)) grow increasingly heterogeneous across the lung’s surface as the
pressure increases, with the highest values occurring near the spine.
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Figure 2 | Constructing the finite-element model of the lung from a microCT volume and organ-scale pressure-
distension data. (a) A Bayesian classifier segments the mouse lung and ribcage from a microCT volume*® of the
mouse thorax. From the segmentations, we construct smooth point clouds approximating the interior surfaces of the
ribcage and of the diaphragm. From these point clouds, we construct solid models in SolidWorks and then mesh those
models in Abaqus. (b) Pressure versus vertical stretch, A, is recorded for simulations across a range of values for the
material parameter a. Because the model is linear in the material parameter p, this allows us to produce a predictive
model of transpulmonary pressure versus distension for a wide range of material coefficients based on a limited
number of forward simulations. The parameter @ controls the nonlinearity of the model. The parameter i controls the
initial slope of the model in the small-strain regime. Having characterized the model in (b), we can solve (c) for the
optimal material coefficients from stereomicroscope images of the lung in the crystal ribcage shown in (d). (e, f)
Strains and stresses in the lung throughout the finite-element model.
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3.2 Validating the multiscale model
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After constructing the finite-element model and calibrating its material constants, we proceed to
evaluate the system’s predictive performance. To do so, we modify the calibrated finite-element
model to contain a stiffer inclusion representing a tumor (Fig. 3(a)). From the displacements of
this model over a range of pressures, we solve the inverse elasticity problem in the vicinity of the
tumor. Across the entire range of distending pressures, we find that the total areal strain (Fig. 3(b))
is highly correlated with the ground-truth stiffness (Fig. 3(c)). We further find that the stiffness
estimate produced by our multiscale model (Fig. 3(d)) is well-correlated with the ground truth.
Although the prediction is somewhat biased relative to the ground truth, we find that the mean of
the predicted stiffness is strongly correlated with the mean of the ground truth both inside and
outside the tumor (Fig. 3(e)). In a simpler setting, preliminary studies also indicate that the
nonlinear formulation of the inverse elasticity problem accurately predicts the stiffness distribution
throughout a 2D, hyperelastic membrane (Fig. S4). In contrast, preliminary studies also indicate
that a piecewise-linear formulation of the inverse elasticity problem fails to do so (Fig. S5).
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Figure 3 | End-to-end validation of the whole-organ and microscale models. The validation includes applying the
multiscale model to a finite-element model whose material field contains an inclusion representing a cancerous tumor.
(a) The material field superposed over the deformed geometry of the finite-element model across a range of distending
pressures. (b) The total areal strain at a subset of these same pressures. (c) The ground-truth stiffness distribution
throughout the finite-element model determined from material field, the hyperelastic constitutive equation, and the
state of deformation. (d) The corresponding stiffnesses in absolute units (kPa) throughout the domain determined by
our model based on the simulated displacements. (¢) The cumulative areal strain and the absolute stiffness change
nonlinearly with the distending pressure. (e)(i) The average, nominal areal strain inside the tumor is consistently lower
than the same outside the tumor. (e)(ii) The mean value of the ground-truth stiffness distribution is strongly correlated
with the stiffness distribution predicted by the multiscale model.

3.3 Lung stiffness at alveolar resolution
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After validating the model, we next apply the model to real images of the lung in the crystal ribcage
to measure the stiffness of the lung in absolute units and at alveolar resolution. First, we apply the
model to images of the same region of interest in the healthy lung over a range of distending
pressures (Fig. 4(a)). To demonstrate the accuracy of the registration, we warp them back to the
reference configuration at 2 cmH20 (Fig. 4(b)). We observe that the areal strain varies substantially
on the length scale of an individual alveolus, with airspaces stretching much more than the septum
(Fig. 4(c)). Likewise, we see that the stiffness varies on a similar length scale, and we report for
the first time, a noninvasive measurement of the absolute stiffness of the lung’s surface both in the
airspace and in the septum; stiffnesses within the airspace are close to 1-2 kPa, while stiffnesses
in the septum commonly reach as high as 15 kPa at higher pressures (Fig. 4(d)). These values are
consistent with measurements taken using other techniques like atomic-force microscopy (AFM),
for which estimates for the lung’s shear modulus commonly range from 0.5 to 3 kPa.%>%% Another
study®’ predicted that the Young’s modulus of the septum ranges from 12 kPa at low
transpulmonary pressures to 140 kPa at high transpulmonary pressures; the lower bound is very
close to our estimate, while the upper bound is of the same magnitude as ours (Fig. 4(d)). Perhaps
most significantly, we observe that the pattern of stiffnesses throughout the domain is conserved
across the entire range of pressures. Finally, we note that the mean stiffness of the tissue rises
linearly up to 7 cmH20, and then the stiffness quickly plateaus with increasing transpulmonary
pressure (Fig. 4(e-f)). Based on the scheme previously described in the methods (Fig. S6), P-values
computed using Student’s t-test indicate that the change in strain across pressures is statistically
significant with p < 0.05 from 5-7 cmH20, 7-12 cmH20, and 12-18 cmH20 (Fig. 4(f)). On the
other hand, the change in stiffness is only statistically significant at lower pressures, owing to
higher variance in the stiffness and its apparent plateau at higher pressures. We also predict that
the variance in the lung’s stiffness increases with distension (Fig. 4(f)); this prediction is consistent
with our previous, independent measurement of the lung’s strain-stiffening behavior from manual
measurements of alveolar areas across different pressures.*® To our knowledge, this is the first
time that the lung’s stiffness, and its change with distension, has been measured under ex vivo
conditions with physiologically realistic boundary conditions in absolute units and at alveolar
resolution.
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Figure 4 | Providing the alveolus-scale stiffness map during the full breathing cycle in the healthy lung. (a) The
same region of interest within a healthy lung from a transgenic, mTmG mouse expressing the tdTomato fluorescent
label at four different distending pressures. (b) The result of computationally deforming these images back to the
lung’s geometry at 2 cmH,O using the registered displacements. The displacement maps used to deform these images
were subsequently used as inputs to the multiscale model to determine the distribution of stiffnesses throughout the
healthy tissue. (c) The areal strain relative to the geometry at 2 cmH>O. We observe that the qualitative pattern in the
computed strains is largely conserved across all pressures. Row (d) depicts the corresponding stiffnesses in absolute
units throughout the domain determined by applying our model to these images. As with the areal strain maps, the
stiffness maps are qualitatively similar across the whole range of pressures. (e) The histogram and corresponding
Gamma distribution of the stiffnesses throughout the domain, demonstrating that the mean and the heterogeneity in
the lung’s stiffness increase with distension. (f) The nonlinear change in mean strain and mean stiffness with the
distending pressure. The error bars represent the standard error from the mean, computed by discretizing the domain
into a coherence length of 50x50 pixel patches (See Fig. S6). Computed using Student’s t-test, P-values are shown for
the change in strain (and for the change in stiffness) from 5-7 cmH,0, 7-12 cmH,0, and 12-18 cmH,0O; the strains are
consistently statistically significant, while the stiffnesses are begin statistically significant and then decrease in
significance. We further observe that the variance in the stiffness increases with transpulmonary pressure, which is
consistent with our previous finding on relative stiffness.*

Having applied the model to the healthy lung, we do the same for images of the lung with cancer
(Fig. 5(a)) to characterize the effect of cancer on the lung’s material properties. As with the
previous figure, the second row (Fig. 5(b)) shows the result of deforming these images back to the
geometry of the lung at 2 cmH20 using the registered displacements. Here, we observe that the
strain inside the tumor is substantially lower than the strain outside the tumor across all measured
pressures (Fig. 5(c)). Consistent with these observations, the estimated stiffness inside the tumor
is substantially higher than the stiffness outside at lower pressures (Fig. 5(d)). Whereas the
majority of stiffnesses in the healthy lung are below 5 kPa at pressures up to 10 cmH20, a large
fraction of the tumor exceeds these stiffnesses at these same pressures (Fig. 5(f)). Using the method
described previously (Fig. S6), P-values computed using Student’s t-test indicate that the change
in strain across pressures within the lung tissue is statistically significant with p < 0.05 from 5-7
cmH20, 7-12 cmH20, and 12-18 ¢cmH20, while changes in the strain within the tumor are
insignificant at 7-12 cmH20 and 12-18 cmH20 (Fig. 5(f)). Once again, in both types of tissue, the
change in stiffness decays in significance with increasing pressure. On the other hand, at the same
pressure, the difference in strain and stiffness across groups (i.e. lung or tumor) is statistically
significant with p < 0.05 across all pressures.

Relative to the healthy case, we also observe that the stiffness of the tissue outside the tumor is
depressed by about 20%, suggesting that the tumor may remodel the lung even in regions that are
not visible by light microscopy alone; whether that remodeling is due to the tumor visible in the
images or due to other tumors that are below the lung’s surface is not clear. Moreover, while the
mean stiffness of the lung tissue increases in nonlinear fashion as in the case of the healthy lung,
the mean stiffness of the tumor increases much more quickly (Fig. 5(e)). In summary, this
measurement represents the first measurement of the absolute stiffness of a lung tumor under
physiologically realistic boundary conditions and at alveolar resolution, and we see evidence of
remodeling beyond the visible bounds of the tumor. Supplemental figures (Fig. S7-S9) depict these
same maps across the entire range of transpulmonary pressures.
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Figure 5| Applying the model to the lung with cancer. (a) The same region of interest within a lung presenting with
primary cancer from a transgenic, mTmG mouse expressing the tdTomato fluorescent label at four different distending
pressures. These images were used as inputs to the multiscale model to determine the distribution of stiffnesses
throughout the tumor and its surroundings. (b) The result of computationally deforming these images back to the
geometry at 2 cmH,O using the registered displacements. (c) The corresponding areal strain, relative to the geometry
at 2 cmH,0, induced by the given increase in transpulmonary pressure. As with healthy tissue, the range of areal
strains decreases with increasing transpulmonary pressure, indicating an increase in tissue stiffness. Unlike healthy
tissue, the tumor clearly exhibits much lower stretch than the surroundings. (d) The corresponding stiffnesses in
absolute units throughout the domain determined by applying our model to these images. At lower pressures, the
tumor is significantly stiffer than its surroundings. The intratumor and extratumor stiffnesses both increase with
transpulmonary pressure. () The stiffness distributions show that the tumor is consistently stiffer surrounding tissue
across all pressures, with tumors having higher maximum stiffness and greater variability in stiffness. (f) Compared
to surrounding tissue, the tumor deforms less with increasing transpulmonary pressure ((f)(i)); stiffens more ((f)(ii)),
notably being 4.8 times stiffer at 18 cmH,0O; and exhibits greater variance in stiffness, mirroring trends seen in earlier
figures. Computed using Student’s t-test, P-values are shown for the change in strain (and for the change in stiffness)
from 5-7 cmH,0, 7-12 ecmH,0, and 12-18 cmH,0O. Additionally, P-values are shown comparing the strain and stiffness
of the lung tissue versus the tumor tissue at pressures 7 cmH>0, 12 cmH»0, and 18 cmH,O; the differences between
classes are statistically significant for all pressure changes.

3.4 A hypothesis explaining the experimental data

To explain the preceding observations, we briefly reflect on the biochemical structures and
physical principles that determine the material properties of the lung and solid tumors. The primary
load-bearing elements of the extracellular matrix are elastin, collagen type-1, and collage type-3.%°
Although two isolated collagen helices with the same geometric configuration should exhibit
identical material properties, determined by the interplay between intramolecular and
intermolecular forces between monomeric subunits of the triple helix®, it is well-known that
collagen arranges itself into more complex, hierarchical structures.®” Within these structures,
greater cross-linking between individual collagen helices increases the stiffness at the tissue
scale.®” Furthermore, given that entropic effects largely dominate in determining the material
properties of rubber-like polymer networks, the current geometric configuration of a polymer
network influences its current stiffness.”’’* Finally, recalling that networks of parallel springs are
stiffer than networks of springs in series,®® we observe that the stiffness of such a network largely
depends on its topology. Variations in any of these three contributors can therefore lead to
variations in tissue stiffness at cellular, alveolar, and organ length scales.

Based on the biochemical structure of the extracellular matrix, there are thus four obvious reasons
why the tumor should be stiffer than the surrounding tissue. First, unlike the healthy lung which
contains airspaces, solid tumors are generally aggregates of cells and extracellular matrix lacking
holes or gaps at the cellular length scale; their simply connected structure therefore elevates their
stiffness relative to the multiply connected structure of the healthy parenchyma. Second, even if
we ignore the airspaces, pathologically elevated deposition of extracellular matrix within the tumor
increases the matrix’s density compared to healthy tissue, and greater density is naturally
associated with elevated stiffness essentially because there are more load-bearing elements at the
molecular level.! Third, pathologically elevated cross-linking also increases the stiffness of the
extracellular matrix. Fourth, while the polyhedral topology of the parenchyma essentially forces
the alignment of collagen fibrils within the mid-plane of the septum and reduces the entropy of the
extracellular matrix, the collagen fibrils within solid tumors can be arranged in arbitrary
orientations; stretching a solid tumor by the same distance should therefore affect the quantity of
work required to produce the same stretch.
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Next, we discuss the physical source of strain stiffening. First, we note that statistical
thermodynamics predicts that single polymer molecules exhibit strain-stiffening behavior; as the
molecule stretches, the number of available geometric configurations decreases, the change in
entropy between successive states of elongation increases, and thus the force required to produce
the same distension monotonically increases with stretch.”"’>’*7 Indeed, recent Steered
Molecular Dynamics simulations of individual collagen helices predicted that these polymers
exhibit strain-stiffening, with their stiffnesses ranging from 5 kPa to 15 kPa.%® At higher levels of
organization, AFM studies confirm that individual collagen fibrils also grow stiffer with strain’®"7,
and that collagen-based biomaterials likewise exhibit the same behavior.®>”” Most likely, then, the
strain-stiffening behavior at the tissue scale directly follows from the strain-stiffening behavior of
individual collagen helices at the molecular scale. This is, essentially, the central hypothesis
underpinning classical derivations of constitutive equations for hyperelastic materials, and it
motivates our choice of a hyperelastic material law.>>7°

The theory of percolation’®, which predicts that stretch produces gradual straightening and
alignment of initially wave collagen fibers, may seem to imply that the lung’s stiffness should
grow increasingly homogeneous with increasing stretch. But our observation that stiffness
heterogeneity increases with pressure, an effect referred to as heteroscedasticity in the statistics
literature®®, directly contradicts this hypothesis. Several studies agree with our prediction across
multiple length scales. First, studies on the strain-stiffening behavior of individual collagen fibrils
have also reported that the variance in fibril stiffness increases with strain’®”’. Second, at the
alveolar length scale, both spring-network studies”** and finite-element analysis studies®' have
consistently predicted an increase in septal stiffness heterogeneity with pressure. Finally, at the
organ scale, registration-based studies®>** have reported the same. However, one recent multiscale,
AFM study® measured heteroscedasticity in macroscopic slices of decellularized lung tissue, but
that same study did not observe the same trend for microscopic slices. One possible explanation
for this disagreement is that tissue resection disrupts this phenomenon. Another possible
explanation is that our method computes the variance over the stiffness both in the airspace and in
the septum, but that does not explain why the aforementioned studies have reported the same
phenomenon. Although we cannot discount that the geometric configuration of the individual
polymers within the network somehow contributes to this behavior, the heteroscedasticity at the
tissue scale may arise, at least in part, from the heteroscedasticity of the individual collagen fibrils
comprising the extracellular matrix.

3.5 Addressing assumptions in our model

Although these findings represent a significant advance in our ability to quantify the lung’s
mechanical properties at cellular resolution in both health and disease, the model makes several
simplifying assumptions that we should acknowledge. These assumptions, which vary in the
magnitude of their potential impacts, include (i) approximating the Jacobian as (1;4,)'> when
solving the inverse elasticity problem, (ii) adopting the same constitutive equation at the alveolar
and organ length scales, (iii) assuming that the Poisson ratio is 0.2 at both length scales, (iv)
neglecting higher-order features of the lung, such as interlobular fissures and airways, when
constructing the finite-element model’s geometry, (v) assuming that the lung’s stiffness is
generally homogeneous at the organ scale, (vi) treating the airspace as a tensile element when
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solving the inverse problem, (vii) assuming isotropicity when solving for the Young’s modulus,
and (viii) neglecting the influence of gravity on the lung’s deformation.

In Fig. S8, assumption (i) was shown to exert a relatively minor effect, typically introducing less
than 10% error into our approximation of the Jacobian determinant. To address assumption (ii),
we observe that the extracellular matrix is the primary determinant of the lung’s material properties
across all length scales. While studies have shown that the lung’s macroscale stiffness is
significantly less than the stiffness of individual lung cells®*, owing to the porosity of the tissue,
our approach ensures that the average stiffness, computed across many alveoli over both the
airspace and the septum, matches the organ-scale stiffness. As the number of alveoli in the
calculation approach the total number of alveoli in the lung, this average must approach the whole
lung’s average stiffness. Consequently, we argue it is reasonable to enforce equality between these
quantities. This same reasoning also justifies assumption (iii).

Assumption (iv) is, in part, justified on the basis that parenchyma comprises over 95% of the lung’s
total volume®, which implies that the effect of stiffer airways on the deformation should be small
in the distal parts of the lung. On the other hand, evidence suggests® that the interlobular fissures
relieve stress that may develop on the surface of the lung in their absence. This assumption,
therefore, may affect the accuracy depending on the proximity to a fissure.

Assumption (v) is challenged by MRE studies®’ that reveal significant regional variation in lung
compliance at the organ scale. For healthy individuals, this study reported that the mean shear
modulus was 0.849 + 0.250 kPa at residual volume and 1.33 + 0.195 kPa at total lung capacity.
Consequently, the standard deviation decreases from about 30% of the mean value at residual
volume to about 15% of the mean at total lung capacity. Consequently, we may expect our stiffness
maps to incur similar errors due to this assumption. Because our images are collected within
microns of the pleural surface, we suspect that the airspace region in the images effectively exhibits
some resistance to deformation, justifying assumption (vi); even if the airspace lacks effective
stiffness, that should be reflected by a low value in the stiffness mapping, which is exactly what is
shown in Fig. 4 and Fig. 5. Finally, in support of assumption (vii), we performed simulations of
the finite-element model with an embedded inclusion, and we found that assuming isotropicity
(Fig. S10) led to similar results as assuming orthotropicity (Fig. S11), with both models in
reasonable agreement with the ground truth (Fig. S12).

Assumption (viii), the decision to neglect gravity in modeling the lung, was addressed previously
in the methods. Briefly, although previous studies’®’ have shown that gravity significantly
influences the mechanics of the human lung, similar studies have not been done in the mouse. We
offer two arguments, however, in support of our position. First, these previous studies on the
human lung suggest that gravity is insignificant to the solid mechanics of the mouse lung. One
recent theoretical analysis®® on the human lung distilled the influence of gravity on alveolar
mechanics to the weight of tissue below a given alveolus; consequently, the study found that the
effects of gravity are more significant near the apex than the base. Because the weight of the mouse
lung is about 1 gram, and because the stiffness of the mouse lung is similar to that of the human
lung, its weight according to this model should not significantly influence its mechanical behavior.
Using CT images to measure regional variations in lung density, another study’’ showed that
gravity causes the density of the human lung to increase linearly with vertical displacements
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toward the Earth; critically, the study showed that lung density only changes by a few percent of
the mean with displacements near 1 cm. Because the density and stiffness of the mouse lung is
similar to that of the human lung, we likewise expect gravity to have only a modest influence on
tissue density in the mouse. Second, as described earlier in the methods, dimensional analysis>®
reveals that the stresses developed within the mouse lung are significantly larger than the
hydrostatic stresses arising due to gravity.

4 Conclusion

We have built the first model capable of measuring the absolute stiffness of the lung at microscale
resolution and under physiologically realistic boundary conditions. We have shown that our model
can measure the nonlinear stiffening of the lung with increasing stretch, and that the relative
stiffness distribution throughout the domain is, at least in the case of the healthy lung, largely
conserved across a range of pressures, giving further confidence that our prediction corresponds
to reality since these stiffness maps have been produced by completely different displacement
maps. Furthermore, we have shown that our model’s quantitative predictions are consistent with
state-of-the-art measurements based on AFM. Finally, we have demonstrated the capability of our
model to identify and measure the stiffness of tumors within the lung tissue. Here, we have shown,
for the first time, that the tumor exhibits similar strain-stiffening behavior to the lung tissue itself,
but that the tumor stiffens more substantially than the surroundings; in the state of greatest
distension, for example, the tumor’s mean stiffness is 4.8 times greater than that of the
surroundings. Additionally, because the variance in the stiffness increases with transpulmonary
pressure, we have shown that the heterogeneity in the stiffness distribution likewise increases with
pressure, with greater heterogeneity in the tumor than in the surroundings.
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Figure S1 | Illustration of the crystal ribcage platform. This figure reproduces panels (a-d) from Figure 1 in our
earlier work®® and depicts the details of the crystal ribcage platform. The panels are as follows: (a) Schematic of the
lung within the crystal ribcage, depicting the imaging, controllability, and intervention capabilities of the platform, (b)
The crystal ribcage supports the same imaging capabilities and controllability of organ-on-chip models, while
maintaining the complex environment of in vivo lungs, (c) Age- and strain-specific microCT scans are used to fabricate
the crystal ribcage through a multistep fabrication process, in which the geometry is derived from microCT images,
and (d) The portable platform to maintain, monitor and record the lung physiological condition during real-time
imaging.
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Figure S2 | The boundary conditions on the finite-element model. In the simulation, the lung (blue part) is
constrained to slide frictionlessly along the surface of the rigid ribcage (gray surface). A negative pressure load (black
vectors) is applied to the surface of the lung in order to emulate negative transpulmonary pressure. Part of the virtual
ribcage has been visually hidden to show the lung below.
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Figure S3 | Demonstrating the percent error in our pseudo-3D approximation of the Jacobian determinant
when solving the inverse problem. These panels show the percent error of (1;1,)' relative to the true Jacobian

A14543. We see that the approximation is generally accurate to within 5-15% error across the majority of the lung’s
surface.
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Figure S4 | Validating the nonlinear inverse solver on a simple, pseudo-3D, hyperelastic foam membrane. In
Abaqus, we construct a 2D, hyperelastic foam membrane having a shear modulus of 2 kPa within a circular inclusion
and having a shear modulus of 1 kPa outside the inclusion. We then stretch the model by 10% along the two directions
parallel to the edges of the domain. The first row shows the ground-truth shear modulus distribution, while the second

row provides the shear-modulus distribution estimated from the simulated total displacements and the nonlinear
formulation of the inverse solver.
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Figure S5 | Assessing the piecewise-linear inverse solver on a simple, pseudo-3D, hyperelastic foam membrane.
In Abaqus, we construct a 2D, hyperelastic foam membrane having a shear modulus of 2 kPa within a circular
inclusion and having a shear modulus of 1 kPa outside the inclusion. We then stretch the model by 10% along the two
directions parallel to the edges of the domain. The first row shows the ground-truth shear modulus distribution, while

the second row provides the shear-modulus distribution estimated from the simulated incremental displacements and
the piecewise-linear formulation of the inverse solver.
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Figure S6 | Determining the coherence length for statistically comparing mappings. (Top left) Normalized
autocorrelation of the estimated stiffnesses for the lung with cancer (Fig. 5). (Top right) 100 profiles of the
autocorrelation decay with the magnitude of the displacement of the copy of the original mapping. (Bottom left) The
mean profile begins to plateau when the distance between the field and its displaced copy reaches 50 pixels, indicating
that 50x50 patches within the image are mutually independent. (Bottom right) The histogram of the stiffnesses within
the tumor and the surroundings after discretization of the stiffness mapping into 50x50 pixel patches. The difference
between these distributions is statistically significant with a p-value of 1.25e-7.



1134
1135

1136
1137
1138

4 cmH20 5 cmH20 6 cmH20

10 cmH20

11 cmH20 12 cmH20 13 cmH20 14 cmH20

15 cmH20 16 cmH20 17 cmH20 18 cmH20

Figure S7 | Images of the lung from 2 cmH20 to 18 cmH20. During the course of our experiments, we collect
images of the lung at pressures incrementing from 2 cmH,O to 18 cmH,O in increments of 1 cmH,0.
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Figure S8 | Strain maps from 2 cmH:O to 18 cmH20. We register images of the lung between consecutive pressures
and then compose the resulting displacement mappings. From the composed displacement mappings, we compute the
total areal strain throughout the domain at each pressure.
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1145  Figure S9 | Stiffness maps from 2 emHzO to 18 cmH:0. From the registered displacements, we also solve the
1146  inverse elasticity problem for the stiffnesses throughout the domain at each pressure.
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1149  Figure S10 | The ground-truth, orthotropic stiffness of the finite-element model at 18 emH:O. As shown in Fig.
1150 3, we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor.
1151 Here, we show the ground-truth coefficients characterizing the elasticity tensor at 18 cmH>O for comparison to the
1152 stiffness maps in S10 and S11. Units of the elasticity moduli and the shear moduli are in Pascals, while the Poisson
1153 ratios are unitless.
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1156  Figure S11 | The isotropic stiffness of the finite-element model at 18 cmH20. As shown in Fig. 3, we simulated
1157 distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here, we show the
1158 estimates isotropic coefficients approximating the elasticity tensor at 18 cmH>O. Units of the elastic modulus are
1159  Pascals, while the Poisson ratio is unitless.
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Figure S12 | The estimated, orthotropic stiffness of the finite-element model at 18 cmH:0. As shown in Fig. 3,
we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here,
we show the estimated orthotropic coefficients of the elasticity tensor at 18 cmH»O. Units of the elastic moduli and

the shear moduli are in Pascals, while the Poisson ratios are unitless.
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