

1 **Mapping the strain-stiffening behavior of the lung and lung cancer**
2 **at microscale resolution using the crystal ribcage**

3
4 **Robert LeBourdais¹†, Gabrielle N. Grifno¹, Rohin Banerji¹, Kathryn Regan¹, Bela Suki¹,**
5 **and Hadi T. Nia^{1,*}**

6 Department of Biomedical Engineering, Boston University, Boston, MA, USA

7 *** Correspondence:**

8 Hadi T. Nia, Ph.D.

9 htريا@bu.edu

10 **Keywords: Crystal ribcage, elastography, multiscale modeling, ex vivo, finite-element**
11 **analysis, remodeling, cancer, strain-stiffening.**

12 **Abstract**

13 Lung diseases such as cancer substantially alter the mechanical properties of the organ with direct
14 impact on the development, progression, diagnosis, and treatment response of diseases. Despite
15 significant interest in the lung's material properties, measuring the stiffness of intact lungs at sub-
16 alveolar resolution has not been possible. Recently, we developed the crystal ribcage to image
17 functioning lungs at optical resolution while controlling physiological parameters such as air
18 pressure. Here, we introduce a data-driven, multiscale network model that takes images of the lung
19 at different distending pressures, acquired via the crystal ribcage, and produces corresponding
20 absolute stiffness maps. Following validation, we report absolute stiffness maps of the functioning
21 lung at microscale resolution in health and disease. For representative images of a healthy lung
22 and a lung with primary cancer, we find that while the lung exhibits significant stiffness
23 heterogeneity at the microscale, primary tumors introduce even greater heterogeneity into the
24 lung's microenvironment. Additionally, we observe that while the healthy alveoli exhibit strain-
25 stiffening of ~1.75 times, the tumor's stiffness increases by a factor of 6 across the range of
26 measured transpulmonary pressures. While the tumor stiffness is 1.4 times the lung stiffness at a
27 transpulmonary pressure of 3 cmH₂O, the tumor's mean stiffness is nearly five times greater than
28 that of the surrounding tissue at a transpulmonary pressure of 18 cmH₂O. Finally, we report that
29 the variance in both strain and stiffness increases with transpulmonary pressure in both the healthy
30 and cancerous lungs. Our new method allows quantitative assessment of disease-induced stiffness
31 changes in the alveoli with implications for mechanotransduction.

32 **1 Introduction**

33 Altered stiffness is one of the four physical hallmarks of cancer^{1,2}, with implications for the
34 development, progression, diagnosis, and treatment response of solid cancers. Biologically,
35 elevated stiffness promotes proliferation³, invasiveness⁴, and metastasis⁵ through activation of
36 mechanosensitive signaling pathways; clinically, an increase in stiffness is associated with an
37 increased risk of breast cancer⁶ and mortality.⁷ In diagnostics, cellular and extracellular stiffness
38 are traditional markers of cancer^{8,9} and are predictive of a tumor's stage.¹⁰ In therapy, increased
39 stiffness is linked to reduced efficiency of drug delivery.¹¹ Furthermore, determining the stiffness
40

44 of the tumors and their surrounding tissue is an essential precursor for estimating solid mechanical
45 stresses, another physical hallmark of cancer.^{2,11-15} Despite this, the lung's or a lung tumor's
46 stiffness has not been reported under the following conditions: (i) across a range of physiologically
47 relevant pressures, (ii) noninvasively, i.e., without sectioning of the tissue, (iii) under realistic
48 boundary conditions, and (iv) at microscale resolution.

49 Although elastography encompasses a broad range of techniques for assessing the material
50 properties of biological tissues, each method presents limitations when addressing our specific
51 problem.^{7,9,16-25} The gold-standard method for microscale elastography is atomic-force
52 microscopy²⁶, which boasts extremely high-resolution, absolute measurements of stiffness.
53 However, tissue preparation for AFM involves resection and submersion in saline, which disrupts
54 the mechanical integrity of the sample and the alveolar air-liquid interface.²⁷ Though CT and MRI
55 elastography preserve the mechanical environment of the organ, these methods have poor
56 spatiotemporal resolution, and they typically report strain rather than absolute stiffness.^{28,29}
57 Although strain elastography based on modalities like synchrotron microCT³⁰ have near-micron
58 spatial resolution, to our knowledge, these methods lack the control and temporal resolution
59 needed for tracking the same region of interest at alveolar resolution across changes in inflation
60 pressure. Optical elastography^{21,25,31} offers an alternative method for more precisely estimating the
61 displacements throughout a biological sample. For example, recent papers have implemented
62 optical elastography based on digital image correlation (DIC) to quantify the lung's strain³² and
63 stiffness;³³ but in each case, the empirical method does not provide physiologically realistic
64 boundary conditions, and the measurements are not at alveolar resolution. Using optical
65 elastography based on deformable image registration, our group recently mapped the elasticity of
66 resected biological samples at optical resolution either by embedding them in thermo-responsive
67 hydrogels³⁴ or by adhering precision-cut lung slices.³⁵ However, these methods also involve
68 resection of the organ and embedding the sample in saline, which does not preserve the organ's
69 boundary conditions and disrupts the air-liquid interface in the lung.

70 With that goal in mind, we recently developed the crystal ribcage³⁶, which preserves the integrity
71 of the organ and emulates the *in vivo* boundary conditions seen by the lung, while at the same time
72 enabling real-time microscopy of the entire surface during dynamic ventilation at cellular
73 resolution (Fig. S1). Unlike intravital imaging methods³⁷⁻³⁹ wherein the lung is immobilized by
74 vacuum or glue, and which thus compromise the breathing mechanics of the lung at the imaging
75 site, the plasma-treated crystal ribcage provides a lubricious, geometrically realistic boundary
76 condition, allowing mechanical characterization of the lung throughout the breathing cycle in
77 health and disease. While the tissue preparation involves resection of the organ from the mouse's
78 thorax, the *ex vivo* lung, with its pleura intact, is imaged immediately after resection, and the lung
79 can be vascularly perfused with complete media to maintain cell health throughout the course of
80 imaging. Consequently, our platform preserves the *in vivo* physiological conditions of the lung.
81 By developing an optical elastography platform based on the crystal ribcage apparatus, we can
82 assess the mechanical properties of the *ex vivo* lung in health and disease with high spatiotemporal
83 resolution and with physiologically realistic boundary conditions.

84 Here, to accurately estimate the *in vivo* mechanical properties of the lung in health and disease, we
85 adopt a multiscale-modeling approach that couples the microscale displacements estimated
86 through deformable image registration and the mean, strain-dependent stiffnesses estimated using

87 a nonlinear, finite-element model of the lung. We validate the multiscale model against a virtual,
88 finite-element model of the lung with a cancerous tumor, demonstrating that the method is capable
89 of accurately recovering the mechanical properties throughout the domain even in the presence of
90 pathology. Upon applying the model to images of the lung within the crystal ribcage, we find that
91 (i) the stiffness of the lung tissue increases nonlinearly with transpulmonary pressure across the
92 full range of end-expiratory to end-inspiratory pressures; (ii) there is significant heterogeneity in
93 material properties at alveolar resolution; (iii) the intratumor stiffness increasingly exceeds the
94 extratumor stiffness across the entire range of pressures; and finally, (iv) the variance in stiffness
95 increases with strain for both the healthy and cancerous tissue. While the present study
96 characterizes the micromechanics of the healthy lung and the lung with cancerous tumors, the
97 method has the potential to be applied to a wide range of disease states such as fibrosis, COPD,
98 and respiratory infections.

99 **2 Methods**

100 **2.1 Mouse model of lung cancer, crystal ribcage fabrication, and** 101 **imaging**

102 **2.1.1 Animal use ethics**

103 All experiments conformed to the ethical principles and guidelines under protocols set forth and
104 approved by the Boston University Institutional Animal Care and Use Committee (protocol
105 number PROTO201900086). All animal procedures were compliant with ARRIVE guidelines.
106 Mice were housed in ambient temperature and humidity and 12-hour light–dark conditions under
107 pathogen-free conditions at the Boston University Animal Science Center. No housing or handling
108 exceptions were made for this study.

109 **2.1.2 Mice**

110 We used 11- to 23-week-old male and female mice for experimental procedures including healthy
111 lung imaging and generating models of primary cancer, as previously described³⁶. A breeding pair
112 of transgenic B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (JAX, 007676,
113 Jackson Labs)⁴⁰, referred to by the abbreviation “mTmG”, was initially purchased to breed a
114 colony; that colony was the source of all animals for healthy lung and primary cancer experiments.
115 For the present study, which examines two representative mice from this colony, the healthy mouse
116 was 11 weeks old at the time of imaging. The urethane mouse, serving as our model of primary
117 cancer, was 23 weeks at the start of urethane dosing and 54 weeks at the time of imaging. Between
118 these ages, the murine lung’s volume does not change appreciably both in our experience and per
119 development studies.⁴¹

120 **2.1.3 Primary cancer model**

121 We adapted a previously described protocol^{42,43} to induce primary lung cancer in mTmG mouse
122 lungs using urethane (Sigma U2500). A stock solution of urethane was prepared at a working
123 concentration of 200 mg/mL in PBS. Mice were dosed with the urethane solution at 1 mg/g body
124 weight, twice weekly for 5 weeks by intraperitoneal (IP) injection. Mice were sacrificed and lungs
125 harvested for imaging in the crystal ribcage after 6-12 months. The maximum tumor size permitted

127 for the study was 1.5 mm in diameter. Mice were excluded from the study after presenting with
128 labored breathing, hunched posture, or ruffled fur due to tumor progression.
129

130 **2.1.4 Crystal ribcage fabrication**

131 The full development of the crystal ribcage platform is described in our previous work.³⁶ Briefly,
132 microCT scans of C57BL/6 mouse chest cavity (courtesy the Hoffman group at the University of
133 Iowa⁴⁴⁻⁴⁶) were segmented and refined to create the native ribcage geometry. In successive additive
134 manufacturing and fabrication steps the ribcage model was converted into the crystal ribcage mold
135 that was thermoformed over to create the polystyrene crystal ribcage. The internal surface was
136 engineered to be hydrophilic to allow the lung to glide over its surface, as in the native ribcage. A
137 six degree of freedom arm was included to rotate the crystal ribcage about any axis to image across
138 the entire the distal lung surface using either a top-down or bottom-up configured microscope.
139 Because lung volume changes significantly with age,⁴¹ we have fabricated different, age-specific
140 crystal ribcages to accommodate lungs of different sizes.³⁶

141 **2.1.5 Lung preparation**

142 Isolated mouse lungs were ventilated and perfused as previously described^{36,47}. Briefly, the mouse
143 trachea was cannulated and the lungs dynamically ventilated (Kent Physiosuite Mouse Ventilator,
144 Kent Scientific). The lungs were perfused by cannulating the pulmonary artery and left atrium,
145 and perfusing serum-free RPMI cell culture medium (Corning) through the lung vasculature. After
146 cannulating the trachea and mouse heart, the lung–heart block was excised and placed into the
147 crystal ribcage for ex vivo microscopy under variable quasi-static positive air pressures.

148 **2.1.6 Lung microscopy**

149 As previously described³⁶, *ex vivo* lungs, under quasi-static inflation conditions and within the
150 crystal ribcage, were imaged using (i) an upright Nikon stereomicroscope with a 1x objective, and
151 (ii) an upright Nikon CSU X1 spinning-disk confocal microscope with 1x, 2x, 4x and 10x
152 objectives, using NIS-Elements acquisition software and with the environmental temperature
153 control set to 37 °C.

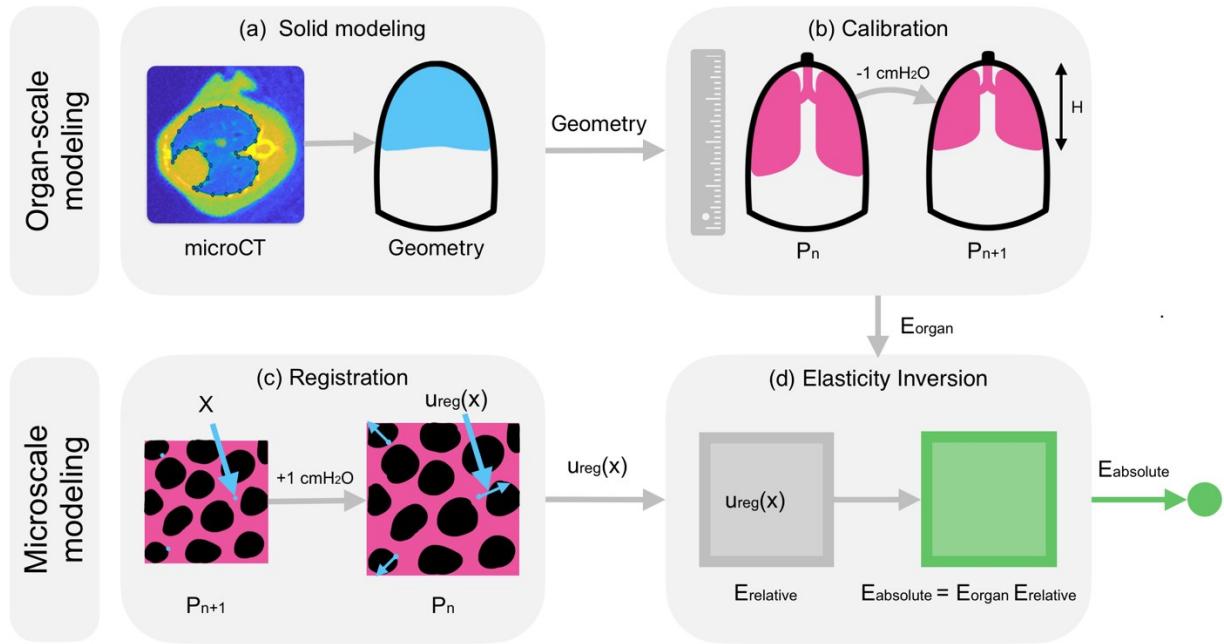
154
155 Z stacks of the diseased and healthy lungs were acquired on the confocal microscope using a 561
156 nm laser at 20-50 ms exposure (50-20 frames per second) per frame. Voxel sizes varied based on
157 objective used, with XY resolution varying from 1-10 μ m and Z step sizes varying from 2.5-12.5
158 μ m. Total Z stack acquisition time was on the order of 6-15 seconds for each positive-end
159 expiratory pressure (PEEP) condition.

160
161 Before imaging, lungs were gradually recruited by slowly raising the intratracheal pressure to 18
162 cmH₂O, measured using custom sensors sensitive to 0.1 cmH₂O, using a water column. The
163 pressure was then reduced in decrements of 1 cmH₂O down to 2 cmH₂O. To allow the lung to
164 relax to its steady-state condition, each pressure was maintained for 1 minute before imaging.
165

166 **2.2 Organ-scale geometry modeling**

167 Fig. 1 summarizes the multiscale model. In short, we (i) segment microCT images of the lung in
168 MATLAB 2022b (The MathWorks, Inc.), (ii) construct a geometric model from the segmentation
169 in SolidWorks 2021 (Dassault Systèmes), (iii) simulate ventilation of the organ-scale model in

170 Abaqus 2022 (Dassault Systèmes) for a range of material coefficients, (iv) determine the
 171 coefficients that optimally reproduce the observed pressure-distension behavior of the lung in the
 172 crystal ribcage, (v) solve the inverse elasticity problem for the distribution of material properties
 173 throughout the microscale domain in arbitrary units, and finally, (vi) rescale these relative
 174 stiffnesses so that the mean value matches the stiffness of the organ-scale model, yielding or goal
 175 of recovering the absolute stiffnesses throughout the microscale domain. Given a three-
 176 dimensional microCT image⁴⁴⁻⁴⁶ of the mouse thorax, we first construct three-dimensional
 177 geometric models (Fig. 1(a)) of the mouse lung and ribcage for finite-element analysis as follows.
 178



179
 180 **Figure 1 | Model description.** (a) A Bayesian classifier segments the geometries of the lung and of the ribcage from
 181 microCT images⁴⁴⁻⁴⁶ of the mouse thorax, and the segmentation is then used to construct a solid geometry in
 182 SolidWorks for finite-element analysis. (b) After recruitment, the height, H , of the organ in the crystal ribcage is
 183 measured as the distending transpulmonary pressure decreases from 18 to 2 cmH₂O in decrements of 1 cmH₂O, with
 184 the pressure at the start of the n^{th} step denoted by P_n , and the material constants of the finite-element model are chosen
 185 to reproduce this pressure-distension curve. (c) Deformable image registration determines how material points, x , within the lung tissue displace with microscale resolution in response to an increment in pressure of 1 cmH₂O,
 186 producing the estimated displacements, $u_{\text{reg}}(x)$, for that step, and (d) the inverse elasticity problem is solved using
 187 an implementation of the Adjoint-Weighted Equation formulation⁴⁸ of the inverse elasticity problem in Fenics,⁴⁹ an
 188 open-source Python framework for numerically solving differential equations in scientific computing applications.
 189 From the measured displacements, we recover an estimate of the elastic modulus in relative units, E_{relative} , having
 190 unity mean. Upon rescaling this estimate so that its mean value matches that of the organ-scale model, E_{organ} , we
 191 recover the absolute stiffness throughout the microscale domain, E_{absolute} .
 192

193

194 2.2.1 Segmenting the lung and ribcage

195 Due to significant variations in the lung's intensity within a microCT volume, segmenting the
 196 organ by thresholding is unreliable. Consequently, we construct a naïve, Bayesian classifier—
 197 trained on a single, two-dimensional slice of the image along with its ground-truth class labels—
 198 to differentiate the lung class L from its surroundings M .⁵⁰ Let $\Omega \subset \mathbb{R}^3$ be the position vectors of
 199 pixels within the domain of the microCT image⁴⁴⁻⁴⁶, so that $\vec{x} \in \Omega$ is the position of a given voxel.

200 The image can then be expressed as the scalar field $I(\vec{x}) : \Omega \rightarrow R$. Let $F(\vec{x}) : \Omega \rightarrow R^n$ map from
 201 each of these position vectors to the n-dimensional feature vectors extracted from $I(\vec{x}) : \Omega \rightarrow R$.
 202 In the present study, each feature vector has ten components, $\varphi_i(\vec{x}) : \Omega \rightarrow R$, each corresponding
 203 to a transformation of the image volume by a different neighborhood operation. These components
 204 are listed in Table 1.

205
 206 **Table 1 | Components of the feature vectors extracted from the microCT volume for building the Bayesian**
 207 **classifier.** Each feature vector has ten components, each corresponding to a different transformation of the image
 208 volume. To normalize the components, each component is divided by its standard deviation.

Feature-vector component	Description
φ_1	Sobel filter with threshold 0.1 applied to I
φ_2	Sobel filter with threshold 0.4 applied to I
φ_3	Gaussian filter of variance 2 applied to φ_1
φ_4	Gaussian filter of variance 4 applied to φ_2
φ_5	Laplacian-of-Gaussian filter applied to I
φ_6	Gaussian filter of radius 4 applied to I
φ_7	Gaussian filter of radius 8 applied to I
φ_8	Gaussian filter of radius 16 applied to I
φ_9	The original image I
φ_{10}	Morphological dilation of φ_2

209
 210 Let $\Omega_L \subset \Omega$ be the subset of position vectors from a given slice of the image volume that have
 211 been manually labeled as belonging to the lung, and let $\Omega_M \subset \Omega$ be the remaining position vectors
 212 from the same slice. For the priors, we assume that the prior probability $P(L) = \frac{|\Omega_L|}{|\Omega_L| + |\Omega_M|}$, which
 213 implies by the axiom of normalization that $P(M) = 1 - P(L)$. To estimate the likelihoods,
 214 $P(\vec{x} | L)$ and $P(\vec{x} | M)$, we train Gaussian mixture models on the feature vectors $F(\Omega_L)$ and
 215 $F(\Omega_M)$, respectively. Finally, from these definitions, we apply Bayes' theorem to recover $P(L | \vec{x})$,
 216 the posterior probability that a given pixel belongs to the lung.

217

$$(1) \quad P(L | \vec{x}) = \frac{P(\vec{x} | L)P(L)}{P(\vec{x} | L)P(L) + P(\vec{x} | M)P(M)}$$

218 The lung segmentation $S_L(\vec{x}) : \Omega \rightarrow \{0,1\}$ is then defined as $S_L(\vec{x}) = 1$ if $P(L | \vec{x}) > 0.5$ and
 219 $S_L(\vec{x}) = 0$ otherwise. In the MATLAB implementation, these maps— $I(\vec{x})$, $F(\vec{x})$, $S_L(\vec{x})$, and
 220 $P(L | \vec{x})$ —are represented as matrices.

221 In contrast, the ribcage segmentation $S_R(\vec{x}) : \Omega \rightarrow \{0,1\}$ is defined as $S_R(\vec{x}) = 1$ if and only if the
 222 intensity $I(\vec{x})$ exceeds some constant, volume-dependent threshold. In each case, the resulting
 223 segmentation contains multiple connected components, corresponding to features like the scapula,
 224 humerus, cartilaginous tracheal rings, and tissue outside of the lung; extracting the largest
 225 connected components from these initial segmentations isolates the desired region of interest.

226 2.2.2 Constructing solid models of the lung and ribcage

227 From the lung segmentation $S_L(\vec{x})$, we approximate the surface of the diaphragm as follows. First,
 228 we find $z_{\max}(x, y) = \max \{ z \mid (x, y, z) \in \text{Dom}(S_L) \wedge S_L(x, y, z) = 1 \}$. We then filter the mapping

233 $z_{\max}(x, y)$ using a mode filter. Finally, we resample points from this surface using a thin plate
234 smoothing spline and save the point cloud to a text file.⁵¹

235
236 To construct a point-cloud approximation of the ribcage, we then find the geometric centroid of
237 the lung, \vec{x}_c , from $S_L(\vec{x})$ using the following equation.

238
239 (2)
$$\vec{x}_c = \frac{1}{\sum_{\vec{x} \in \Omega} S_L(\vec{x})} \sum_{\vec{x} \in \Omega} \vec{x} S_L(\vec{x})$$

240
241 For each slice of the volume, we then project rays from the projection of the centroid \vec{x}_c onto the
242 given slice at a dense collection of angles from 0 to 2π until each ray contacts a nonzero pixel on
243 the interior of the ribcage segmentation $S_R(\vec{x})$. A thin plate smoothing spline is then fit to these
244 contact points to produce a surface approximating the ribcage, and a dense collection of points,
245 P_R , are sampled from this surface. Because the ribcage is open near the apex of the lung, these
246 sampled points are artifactually peaked in the neighborhood of the apex. To correct this, the nodes
247 near the apex are flattened by minimizing the following objective function.

248
249 (3)
$$\sum_i (k(z_i - Z_i) - g_z)^2 + \alpha(\nabla_{xy} z_i)^2 + \beta(\nabla_{xy}^2 z_i)^2 + \gamma(\nabla_{xy}(z_i - Z_i))^2 + \delta(\nabla_{xy}^2(z_i - Z_i))^2$$

250
251 In this equation, z_i represents the z-component of the i^{th} node's position vector after correction, Z_i
252 represents the same component before correction, k represents the stiffness of a virtual spring
253 anchoring a point to its original height, and g_z is a body force pulling these points toward the
254 centroid of the ribcage. The remaining terms serve to regularize the optimization, penalizing the
255 first and second derivatives of the height as well as changes in these derivatives. The sum is taken
256 over the points near the apex of the lung. Finally, these point clouds of the lung and ribcage are
257 saved as text files for subsequent import into SolidWorks.

258
259 From these point clouds, we finally construct STEP (Standard for the Exchange of Product model
260 data defined by ISO 10303⁵²) representations of the ribcage and the diaphragm using the
261 ScanTo3D feature in SolidWorks. By cutting the ribcage surface with the diaphragm surface, and
262 filling the space enclosed between them, we recover a simplified model of the lung that is
263 everywhere tangent to the ribcage. The STEP representations of the ribcage and the lung are then
264 exported from SolidWorks.

265
266
267 **2.3 Organ-scale finite-element modeling**

268 **2.3.1 Simulating the healthy lung**

269 To perform finite-element simulations of the organ, these STEP geometries are now imported into
270 Abaqus 2022 (Dassault Systèmes). The ribcage is taken to be a discrete, rigid part and is meshed
271 with rigid, triangular elements. The lung is taken to be a deformable part and is meshed with
272 C3D10 quadratic tetrahedral elements, which are chosen over C3D4 linear tetrahedral elements
273 for their tendency to converge more quickly with coarser mesh resolutions. In simulations of the
274 healthy lung, the lung mesh consists of 34,541 nodes and 21,945 elements; the ribcage mesh
275 consists of 64,093 nodes and 127,697 elements. The simulation was performed on the Boston

276 University Shared Computing Cluster hosted by the Massachusetts Green High-Performance
277 Computing Center distributing the load over 12 processors with 4 GB of RAM per processor, each
278 simulation completed within 7 hours.

279
280 Based on prior studies and on the lung's microstructure and constitutive behavior—which
281 resembles a hyperelastic, tetrakaidekahedral foam whose walls are comprised of elastin, type-I
282 collagen, and type-III collagen—the lung is modeled using the Ogden-Hill model⁵³ of a
283 hyperelastic foam.^{54,55} The general form of the strain-energy density function is thus taken to be
284

$$285 (4) \quad U = \sum_{i=1}^N (2\mu_i/\alpha_i^2)(\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 + \frac{1}{\beta_i}(J^{-\alpha_i\beta_i} - 1)),$$

286
287 where α_i is a dimensionless material parameter determining the nonlinear behavior of the stress-
288 strain relation, β_i is a dimensionless material parameter given by the Poisson's ratio as $\beta_i =$
289 $\nu_i/(1 - 2\nu_i)$, μ_i is a material parameter with units of stress determining the shear modulus during
290 small strains from the reference configuration, λ_i is the i^{th} principal stretch, J is the determinant
291 of the deformation gradient, and N is the number of terms in the model. For simplicity, we assume
292 that the strain-energy density function consists of only one term, reducing the general equation to
293

$$294 (5) \quad U = (2\mu/\alpha^2)(\lambda_1^\alpha + \lambda_2^\alpha + \lambda_3^\alpha - 3 + \frac{1}{\beta}(J^{-\alpha\beta} - 1)).$$

295
296 This strain-energy density function, and consequently the pressure, is linear in the parameter
297 μ and nonlinear in the parameter α . Therefore, if we simulate the distensions for parameters
298 (μ, α) , then the pressures required to produce the same distensions for any other (μ^*, α) are a
299 simple rescaling of those for (μ, α) . In practice, therefore, it is unnecessary to simulate ventilation
300 for the same α but different μ to determine the pressure-distension curve.

301
302 The boundary conditions (Fig. S2) include immobilization of the ribcage, frictionless sliding
303 contact between the lung's upper surface and the ribcage, and negative pressure on the boundary
304 of the lung. Although experiments involve positive-pressure ventilation, the simulation involves
305 applying negative pressure to the external surface of the lung; the explanation for this apparent
306 discrepancy is that the governing equations are symmetric under mutual inversion of the pressure's
307 sign and the surface normal's direction, implying that the model is equally applicable to either
308 mode of ventilation.⁵⁶ Since the parts have been designed *a priori* to be tangent everywhere, initial
309 contact between the surfaces is easy to establish.

310
311 While previous studies^{56,57} have shown that gravity significantly influences the mechanics of the
312 human lung, our model neglects the influence of gravity due to its smaller role in the mouse.
313 Consider the conservation of linear momentum under conditions of static equilibrium, which has
314 been rendered dimensionless⁵⁸ by factoring out the lung density ρ_{lung} , gravitational acceleration
315 g , lung height H_{lung} , and transpulmonary pressure P_{tp} .

$$317 (6) \quad \frac{P_{\text{tp}}}{\rho_{\text{lung}}gH_{\text{lung}}} \nabla^* \cdot P^* + B^* = 0$$

319 Here, ∇^* , P^* , and B^* represent the dimensionless divergence operator, the dimensionless tissue
 320 stress, and the dimensionless gravitational body forces, respectively. The tissue stress is known to
 321 be approximately equal to the transpulmonary pressure.⁵⁹ Consequently, the dimensionless number
 322 $\frac{P_{tp}}{\rho_{lung}gH_{lung}}$ characterizes the magnitude of the tissue stress divergence relative to the magnitude of
 323 gravity. In the human lung, this dimensionless quantity remains below 1 for transpulmonary
 324 pressures up to 20 cmH₂O, indicating the significant role of gravity in governing its mechanics. In
 325 the mouse lung, however, this dimensionless quantity is equal to 1 when the transpulmonary
 326 pressure is 1 cmH₂O, but decreases linearly as the transpulmonary pressure increases; once the
 327 transpulmonary pressure reaches 10 cmH₂O, this dimensionless number increases to 10, indicating
 328 that tensile forces within the tissue greatly exceed gravitational body forces. Based on this
 329 reasoning, we posit that it is reasonable to neglect gravity when modeling the murine lung, with
 330 the approximation improving at higher pressures. Additional reasoning is discussed in the results.
 331

332 Finally, it is important to note that the lung exhibits hysteresis, with its inflation characterized by
 333 one strain-energy density function and its deflation characterized by another.⁵⁵ In this study, we
 334 elect to model the lung's behavior during quasistatic deflation, so that our measurements used to
 335 calibrate the model are taken from states of higher pressure to states of lower pressure in near-
 336 equilibrium. The same approach can easily be repeated to recover a model of the lung's behavior
 337 during inflation.
 338

339 **2.3.2 Simulating the cancerous lung**

340 To simulate the cancerous lung, the same process is repeated, but rather than being constant, the
 341 material field $\mu(\vec{X})$ is defined as
 342

$$343 (7) \quad \mu(\vec{X}) = Ae^{-(\vec{X} - \vec{X}_{tumor})^n/\sigma^2} + B,$$

344 where \vec{X}_{tumor} is the centroid of the spherical tumor in material coordinates, σ determines its width,
 345 n controls the shape of the decay in magnitude with distance, and the coefficients A and B
 346 determine the stiffness in the near and far fields. To illustrate, we note that $\mu(\vec{X})$ approaches $A + B$
 347 as \vec{X} approaches \vec{X}_{tumor} , and that $\mu(\vec{X})$ approaches B as $\|\vec{X} - \vec{X}_{tumor}\|$ approaches infinity.
 348 Consequently, $A + B$ is the stiffness at the tumor's centroid, while B is the stiffness far from the
 349 tumor. This material equation possesses three attractive properties: (i) it is spherically symmetric,
 350 corresponding to our interpretation that the equation represents a spherical tumor, (ii) stiffness
 351 decays with distance from the centroid, reflecting our intent that the tumor is stiffer than its
 352 surroundings, and (iii) it is differentiable and smooth, making it easier to work with during
 353 numerical computations. When $n = 2$, the field is a multidimensional normal distribution, and as
 354 $n \rightarrow \infty$, the field approaches an indicator function for a ball. In our studies, we chose $n = 4$.
 355

356 The ribcage mesh is the same as before, while the lung mesh now consists of 12,679 nodes and
 357 7,766 elements. Adaptive mesh refinement, which was necessary for convergence in the
 358 neighborhood of the tumor, yielded a mesh with fewer elements relative to the simulation of the
 359 healthy lung. The simulation was performed on the Boston University Shared Computing Cluster
 360 hosted by the Massachusetts Green High-Performance Computing Center; distributing the load
 361 over 12 processors with 4 GB of RAM per processor, the simulation completed within 4 hours.
 362

363

364 **2.3.3 Calibrating the organ-scale finite-element model**

365 The finite-element simulation is repeated for different material parameters within a neighborhood
 366 of the values yielding optimal agreement between empirical and *in silico* outcomes. When the
 367 strain-energy density function is restricted to a single term, the parameter μ represents the
 368 material's shear modulus during small strains, as can be shown by a Taylor expansion of the strain-
 369 energy density function about $\lambda = 1$. From the stress-strain curve in the linear regime, when the
 370 strain increases linearly with distending pressure, we can estimate the Young's modulus as the
 371 ratio of the increment in strain to the increment in pressure. From Fig. 2(c), we estimate that
 372 incrementing the pressure from 0 kPa to 5 kPa yields an increment in strain of 0.2. Following this
 373 reasoning, we find that $E \approx 5 \text{ kPa}/0.2 = 2.5 \text{ kPa}$. Assuming a Poisson's ratio of $\nu = 0.2$,⁶⁰ this
 374 value for the Young's modulus corresponds to a shear modulus of $\mu = E/(2(1 + \nu)) \approx 1 \text{ kPa}$.

375

376 Based on these initial estimates, we perform simulations for $\mu = 1 \text{ kPa}$ and the dimensionless
 377 parameter α ranging from 6 to 16. The outcomes of these simulations are then used to construct a
 378 calibration surface $P(\lambda_H, \mu, \alpha)$, where λ_H is the stretch of the finite-element model along the
 379 vertical axis, μ and α are the material parameters mentioned earlier, and P is the transpulmonary
 380 pressure required to distend the finite-element model to this degree of stretch. From the observed
 381 distensions of the lung in the crystal ribcage (Fig. 1(b)) for pressures ranging from 2 to 18 cmH₂O,
 382 (λ_{obs}, P_{obs}) , we then determine the maximum likelihood assignments for μ and α by minimizing
 383 the following objective function.⁵⁰

384

$$385 \quad (8) \quad \sum_{(\lambda_{obs}, P_{obs})} (P(\lambda_{obs}, \mu, \alpha) - P_{obs})^2$$

386

387 This optimization procedure is not computationally intensive; running on a personal laptop with
 388 16 GB of RAM and a typical CPU, for example, the process completes within seconds. The
 389 outcome is a single, point estimate of the coefficients that characterize the organ-scale behavior.
 390 It should be noted that, because the model is linear in the parameter μ , we can in practice simplify
 391 the problem of determining the optimal parameters by transforming the objective function as
 392 follows.

393

$$394 \quad (9) \quad \sum_{(\lambda_{obs}, P_{obs})} (\mu P(\lambda_{obs}, 1, \alpha) - P_{obs})^2$$

395

396 This implies that, rather than sampling the function $P(\lambda_{obs}, \mu, \alpha)$, we only need to sample the
 397 function $P(\lambda_{obs}, 1, \alpha)$ in our finite-element simulations. In contrast, because the model is nonlinear
 398 in α , an analogous transformation is not possible for α ; this is why we limit the constitutive model
 399 to a single term.

400

401 **2.4 Inverse elasticity problem at the microscale**402 **2.4.1 Measuring the displacements using image registration**

403 To measure the displacements caused by a change in distending pressure applied to the lung at
 404 cellular resolution, we leverage deformable image registration⁶¹ (Fig. 1(c)). To prepare the images
 405 for registration, we perform an optimization to autonomously correct the bulk rotation of the
 406 material due to the natural curvature of the crystal ribcage away from the imaging plane. Because

407 the image-registration algorithm does not, in practice, yield good estimates for the displacements
408 along the shallow depth axis, we project the rotationally corrected images along this axis.
409

410 After preprocessing the images, we invoke the image-registration algorithm. This algorithm, which
411 has been adapted from earlier literature⁶¹, formulates the inverse-elasticity problem as an inference
412 problem on a Markov Random Field (MRF) to automatically determine the displacements
413 necessary to match images of the lung at two different pressures. The observable variables of the
414 Markov Random Field are modality-independent neighborhood descriptors (MIND) extracted
415 from the image,⁶² while the latent variables are the displacements necessary to minimize the sum
416 of squared differences in these descriptors across the two images; edges between the latent
417 variables of neighboring observables represent the constraint that displacements vary smoothly
418 throughout the domain. Let \mathbf{O} and \mathbf{T} be the original and deformed images, respectively.
419 Furthermore, let $W(\mathbf{O}, \mathbf{u})$ be the image produced by warping the image \mathbf{O} using the displacements
420 \mathbf{u} . Lastly, let the function D map an image to its MIND representation. Then the registration
421 algorithm finds the displacements that minimize the objective function
422

423 (10)
$$\sum_{\vec{x} \in \Omega} (D(W(\mathbf{O}, \mathbf{u})) - D(\mathbf{T}))^2,$$

424

425 where the sum is taken over the points in the image domain, Ω . From these displacements and the
426 material properties of the calibrated finite-element model, we next find the distribution of
427 stiffnesses throughout the domain, as described in the next section.
428

429 2.4.2 Solving for the shear modulus parameter

430 To determine the relative stiffnesses of the material throughout the image domain, we leverage a
431 Python implementation of the Adjoint-Weighted Equation (AWE) formulation of the inverse-
432 elasticity problem.⁴⁸ Let $\vec{X} \in \Omega_0 \subset \mathbf{R}^2$ be the coordinates of material points of a deformable body
433 in the reference configuration, and let $\vec{x} \in \Omega_1 \subset \mathbf{R}^2$ be the coordinates of the same material points
434 after some deformation. Because soft tissues deform continuously, there exists a continuous
435 function $\psi : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ such that $\vec{x} = \psi(\vec{X})$. Given the registered displacements, $\mathbf{u}(\vec{X}) = \psi(\vec{X}) -$
436 \vec{X} , along with the definition of the deformation gradient, $\mathbf{F}(\vec{X}) = \nabla_{\vec{X}}\psi(\vec{X})$, we can recover the
437 deformation gradient tensor in terms of \vec{X} .⁶³
438

439 (11)
$$\mathbf{F}(\vec{X}) = \mathbf{I} + \nabla_{\vec{X}}\mathbf{u}(\vec{X})$$

440

441 From the deformation gradient, we next determine the Cauchy-Green strain tensor field, $\mathbf{C}(\vec{X})$, as
442 follows.
443

444 (12)
$$\mathbf{C}(\vec{X}) = \mathbf{F}(\vec{X})^T \mathbf{F}(\vec{X})$$

445

446 By the spectral theorem and the manifest symmetry of $\mathbf{C}(\vec{X})$, we subsequently determine the
447 eigenvalues, $\lambda_1(\vec{X})^2$ and $\lambda_2(\vec{X})^2$, of this tensor.
448

449 The areal strain, which is a scalar field representing the fractional change in the material's area
450 relative to its value in the reference configuration, is then given by

451
452 (13) $\varepsilon_A(\vec{X}) = \lambda_1(\vec{X})\lambda_2(\vec{X}) - 1.$
453
454 The whole organ's stress-strain behavior is well-described by a hyperelastic material law, where
455 the nominal stress is the derivative of the strain-energy function with respect to the principal
456 nominal stretches. If we assume that this model holds at all length scales, down to the cellular scale
457 and for both healthy and diseased tissue, then we can use this same constitutive model when
458 solving the inverse problem. Therefore, from the same strain-energy function introduced earlier,
459 we recover the principal components of the first Piola-Kirchhoff stress tensor as follows.
460

461 (14) $P_i = \frac{\partial W}{\partial \lambda_i} = \mu(\vec{X})\left(\frac{2}{\alpha\lambda_i}(\lambda_i^\alpha - J^{-\alpha\beta})\right)$
462
463 where $\beta = \frac{\nu}{1-2\nu}$. In evaluating the above expression, we need to compute the Jacobian determinant
464 $J = \lambda_1\lambda_2\lambda_3$, but image registration only yields the stretches tangential to the lung's surface.
465 Consequently, we approximate J as $J \approx (\lambda_1\lambda_2)^{3/2}$. Finite-element simulations of the whole organ
466 indicate that this approximation generally holds within 10-15% error (Fig. S2).
467

468 For a hyperelastic material, it is well-known that the eigenvectors of the stress are aligned with the
469 eigenvectors of the strain. Therefore, if \vec{v}_i are the principal directions of the right Cauchy-Green
470 strain tensor, the first Piola-Kirchhoff stress tensor becomes
471

472 (15) $\mathbf{P} = P_1\vec{v}_1 \otimes \vec{v}_1 + P_2\vec{v}_2 \otimes \vec{v}_2.$
473

474 We can simplify the above expression by defining the tensor $\mathbf{A}(\vec{X}) = \mathbf{P}(\vec{X})/\mu(\vec{X})$, leading to the
475 following simplified form.
476

477 (16) $\mathbf{P}(\vec{X}) = \mu(\vec{X})\mathbf{A}(\vec{X})$
478

479 Here, $\mu(\vec{X})$ is unknown while $\mathbf{A}(\vec{X})$ is completely determined by the displacements. At static
480 equilibrium and in the absence of body forces, the conservation of linear momentum requires that
481 the divergence of the first Piola-Kirchhoff stress, $\mathbf{P}(\vec{X})$, with respect to the material coordinates,
482 \vec{X} , vanishes.
483

484 (17) $\nabla_{\vec{X}} \cdot \mathbf{P}(\vec{X}) = 0$
485

486 From our earlier simplified form for $\mathbf{P}(\vec{X})$, the condition of static equilibrium becomes
487

488 (18) $\nabla_{\vec{X}} \cdot (\mu(\vec{X})\mathbf{A}(\vec{X})) = 0.$
489

490 In the AWE formulation of the inverse elasticity problem for a linearly elastic material, we seek a
491 variational solution for $\mu(\vec{X})$ to the above differential equation. This yields a map $\mu(\vec{X})$ of relative
492 stiffnesses, whose scale is determined by the specified-mean boundary condition.⁶⁴ After solving

493 the inverse problem for $\mu(\vec{X})$, we rescale $\mu(\vec{X})$ so that the mean stiffness throughout the domain
494 matches the organ-scale stiffness determined by calibrating the finite-element model.

495
496 From Holzapfel's equation (6.180)⁶³, which is reproduced below as equation (19), along with the
497 strain-energy function mentioned earlier, we determine the components of the elasticity tensor, \mathbb{C} ,
498 at each state of deformation for each position within the domain. In the following equation, S_a
499 Pare the principal values of the second Piola-Kirchoff stress tensor, λ_a are the principal stretches,
500 and \hat{N}_a are the principal directions of the deformation.

501

$$(19) \quad \mathbb{C} = \sum_{a,b=1}^3 \frac{1}{\lambda_b} \frac{\partial S_a}{\partial \lambda_b} \hat{N}_a \otimes \hat{N}_a \otimes \hat{N}_b \otimes \hat{N}_b + \sum_{a,b=1, a \neq b}^3 \frac{S_b - S_a}{\lambda_b^2 - \lambda_a^2} (\hat{N}_a \otimes \hat{N}_b \otimes \hat{N}_a \otimes \hat{N}_b + \hat{N}_a \otimes \hat{N}_b \otimes \hat{N}_b \otimes \hat{N}_a)$$

502
503
504 Finally, we perform an iterative optimization to determine the Young's modulus and Poisson's
505 ratio fields that optimally approximate the components this tensor. This Young's modulus is what
506 we ultimately report as the lung's stiffness (Fig. 1(d)).

507 **2.5 Statistical comparison of intergroup and intragroup strains and 508 stiffnesses**

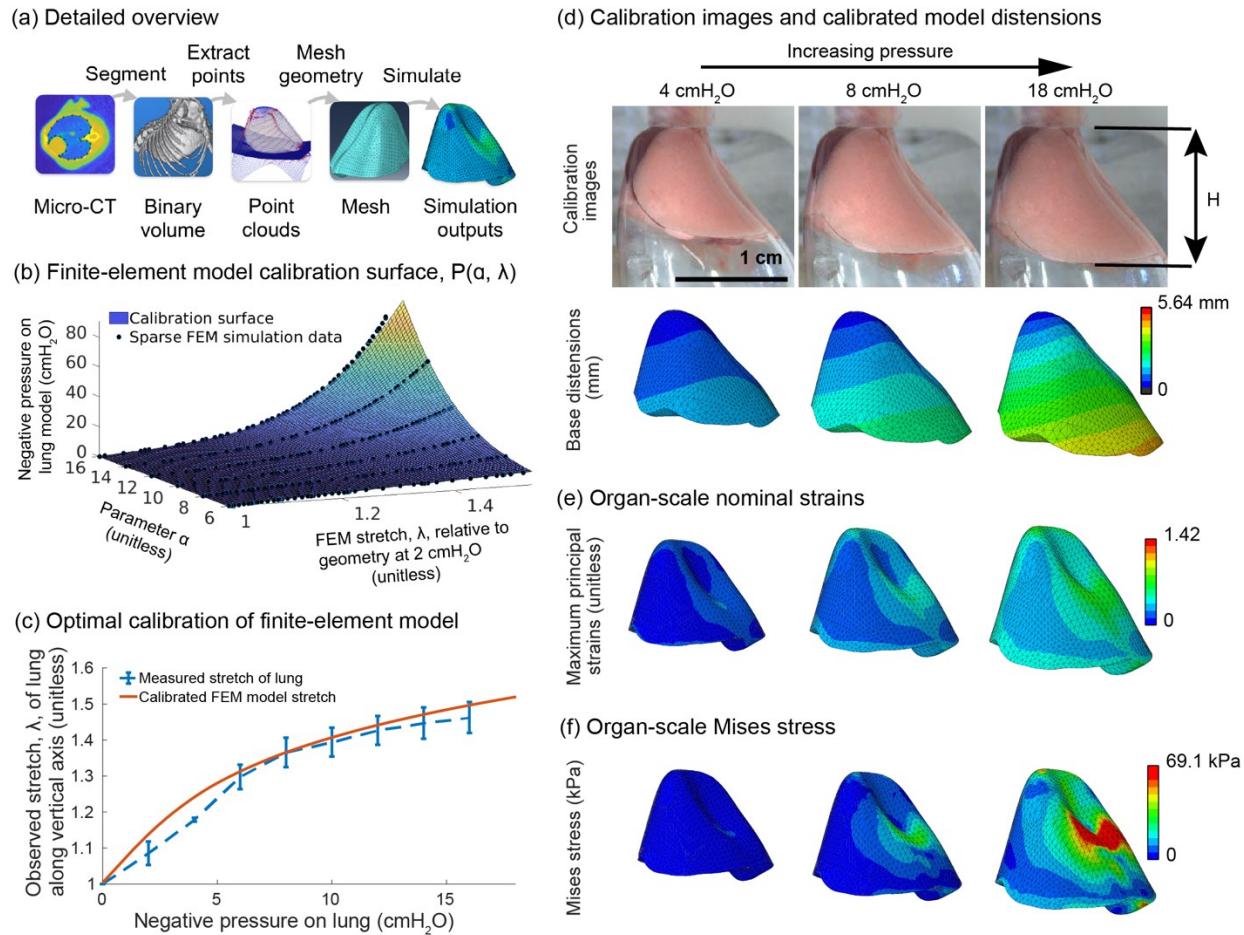
509 To characterize changes in strain and stress fields with pressure, we discretized the domain by
510 coherence length into 50x50 pixel patches (See Fig. S5), the dimensions of which were chosen to
511 minimize the correlation between image patches. We then computed the mean within each patch,
512 along with the standard deviation across patches within the same domain. With these means and
513 standard deviations, P-values were computed (i) across image patches within the same field in
514 order to examine the significance of spatial variations in strain and stiffness and (ii) across
515 pressures within the same patch in order to examine the significance of pressure-driven changes
516 in strain and stiffness within a given patch.

517 **3 Results and discussion**

518 **3.1 Validating the finite-element model**

519 We begin by describing and assessing the finite-element model of the organ, which constitutes the
520 first stage of the system. The image classifiers described in the methods yield high-quality
521 segmentations of the lung and the ribcage. These segmentations are subsequently used to construct
522 a realistic, though simplified, model of the lung within the crystal ribcage (Fig. 2(a)). We find that
523 the pressure-stretch curve of the finite-element model changes smoothly with the parameter α of
524 the hyperelastic foam model; from these curves, we construct a smooth surface approximating the
525 transpulmonary pressure as a function of stretch λ and material parameter α (Fig. 2(b)). Having
526 characterized how the finite-element model's response changes with α , we solve for the values of
527 μ and α that maximize the likelihood of observing the distensions that we measure in the crystal
528 ribcage; for the data collected in the present study, we determine that the optimal value for μ is
529 0.61 kPa and for α is 12.4 (Fig. 2(c)) through the optimization described earlier. The general form
530 of the hyperelastic foam model consists of multiple additive terms. Although a greater number of
531 terms should in theory lead to a better approximation of the data, fitting a model with multiple
532 terms is challenging due to the non-convex nature of the optimization problem. We therefore
533 choose to use a small number of terms, which provides a good balance between accuracy and
534 computational efficiency.

535 terms is complicated by the model's nonlinearity in the α parameter, so that it is not possible to
 536 reuse the calibration surface to fit successive terms beyond the first. For simplicity and because
 537 the subsequent outcome is adequate for our purposes, we settle for a single term. We observe that
 538 the qualitative distension of the finite-element model matches that of the real lung in the crystal
 539 ribcage (Fig. 2(d)). Despite the finite-element model's homogeneous material properties, its strains
 540 (Fig. 2(e)) and stresses (Fig. 2(f)) grow increasingly heterogeneous across the lung's surface as the
 541 pressure increases, with the highest values occurring near the spine.
 542



543
 544 **Figure 2 | Constructing the finite-element model of the lung from a microCT volume and organ-scale pressure-
 545 distension data.** (a) A Bayesian classifier segments the mouse lung and ribcage from a microCT volume⁴⁴⁻⁴⁶ of the
 546 mouse thorax. From the segmentations, we construct smooth point clouds approximating the interior surfaces of the
 547 ribcage and of the diaphragm. From these point clouds, we construct solid models in SolidWorks and then mesh those
 548 models in Abaqus. (b) Pressure versus vertical stretch, λ , is recorded for simulations across a range of values for the
 549 material parameter α . Because the model is linear in the material parameter μ , this allows us to produce a predictive
 550 model of transpulmonary pressure versus distension for a wide range of material coefficients based on a limited
 551 number of forward simulations. The parameter α controls the nonlinearity of the model. The parameter μ controls the
 552 initial slope of the model in the small-strain regime. Having characterized the model in (b), we can solve (c) for the
 553 optimal material coefficients from stereomicroscope images of the lung in the crystal ribcage shown in (d). (e, f)
 554 Strains and stresses in the lung throughout the finite-element model.

555
 556 **3.2 Validating the multiscale model**

557 After constructing the finite-element model and calibrating its material constants, we proceed to
558 evaluate the system's predictive performance. To do so, we modify the calibrated finite-element
559 model to contain a stiffer inclusion representing a tumor (Fig. 3(a)). From the displacements of
560 this model over a range of pressures, we solve the inverse elasticity problem in the vicinity of the
561 tumor. Across the entire range of distending pressures, we find that the total areal strain (Fig. 3(b))
562 is highly correlated with the ground-truth stiffness (Fig. 3(c)). We further find that the stiffness
563 estimate produced by our multiscale model (Fig. 3(d)) is well-correlated with the ground truth.
564 Although the prediction is somewhat biased relative to the ground truth, we find that the mean of
565 the predicted stiffness is strongly correlated with the mean of the ground truth both inside and
566 outside the tumor (Fig. 3(e)). In a simpler setting, preliminary studies also indicate that the
567 nonlinear formulation of the inverse elasticity problem accurately predicts the stiffness distribution
568 throughout a 2D, hyperelastic membrane (Fig. S4). In contrast, preliminary studies also indicate
569 that a piecewise-linear formulation of the inverse elasticity problem fails to do so (Fig. S5).
570

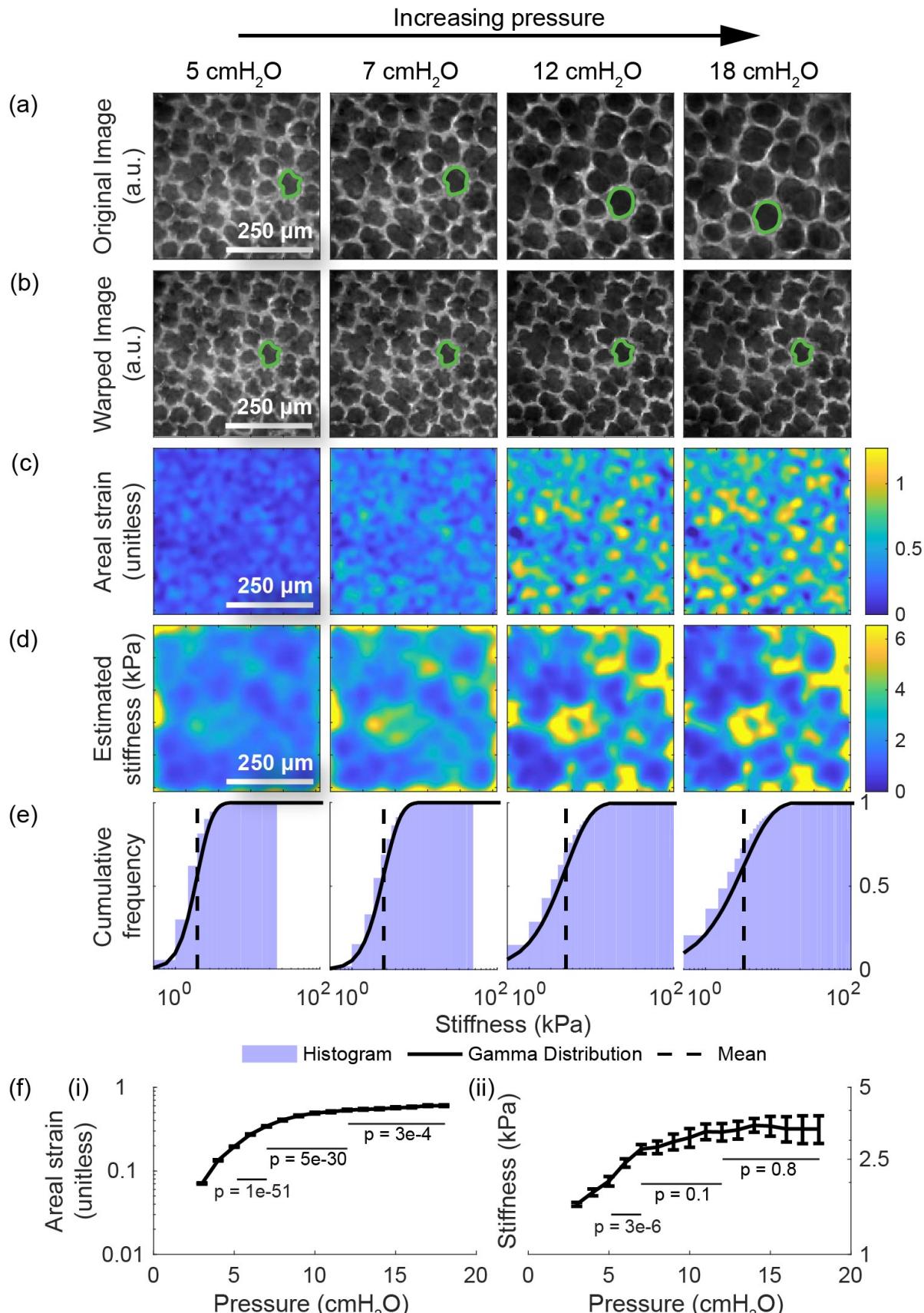


571
572
573
574
575
576
577
578
579
580
581
582

Figure 3 | End-to-end validation of the whole-organ and microscale models. The validation includes applying the multiscale model to a finite-element model whose material field contains an inclusion representing a cancerous tumor. (a) The material field superposed over the deformed geometry of the finite-element model across a range of distending pressures. (b) The total areal strain at a subset of these same pressures. (c) The ground-truth stiffness distribution throughout the finite-element model determined from material field, the hyperelastic constitutive equation, and the state of deformation. (d) The corresponding stiffnesses in absolute units (kPa) throughout the domain determined by our model based on the simulated displacements. (e) The cumulative areal strain and the absolute stiffness change nonlinearly with the distending pressure. (e)(i) The average, nominal areal strain inside the tumor is consistently lower than the same outside the tumor. (e)(ii) The mean value of the ground-truth stiffness distribution is strongly correlated with the stiffness distribution predicted by the multiscale model.

583 3.3 Lung stiffness at alveolar resolution

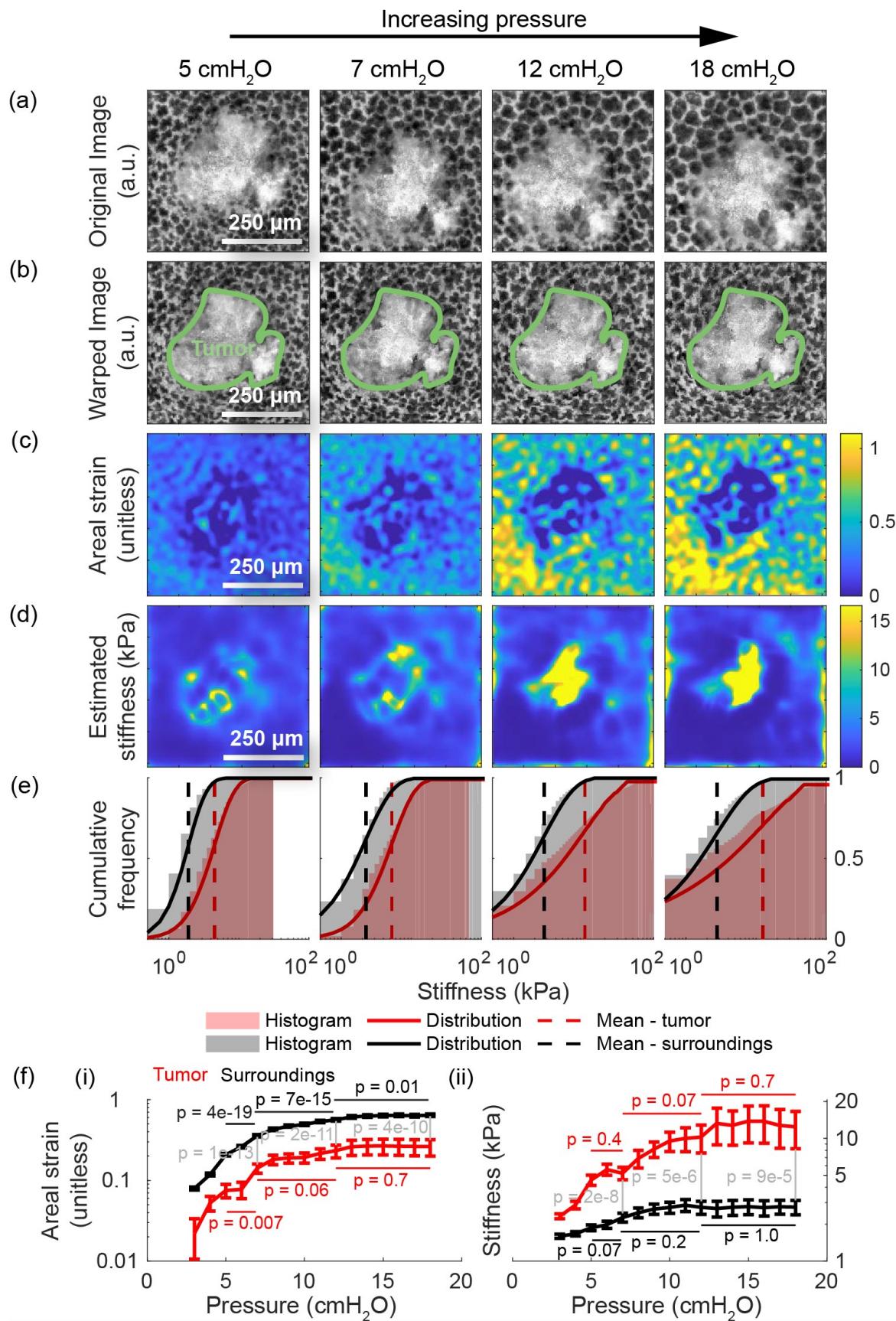
584 After validating the model, we next apply the model to real images of the lung in the crystal ribcage
585 to measure the stiffness of the lung in absolute units and at alveolar resolution. First, we apply the
586 model to images of the same region of interest in the healthy lung over a range of distending
587 pressures (Fig. 4(a)). To demonstrate the accuracy of the registration, we warp them back to the
588 reference configuration at 2 cmH₂O (Fig. 4(b)). We observe that the areal strain varies substantially
589 on the length scale of an individual alveolus, with airspaces stretching much more than the septum
590 (Fig. 4(c)). Likewise, we see that the stiffness varies on a similar length scale, and we report for
591 the first time, a noninvasive measurement of the absolute stiffness of the lung's surface both in the
592 airspace and in the septum; stiffnesses within the airspace are close to 1-2 kPa, while stiffnesses
593 in the septum commonly reach as high as 15 kPa at higher pressures (Fig. 4(d)). These values are
594 consistent with measurements taken using other techniques like atomic-force microscopy (AFM),
595 for which estimates for the lung's shear modulus commonly range from 0.5 to 3 kPa.^{65,66} Another
596 study⁶⁷ predicted that the Young's modulus of the septum ranges from 12 kPa at low
597 transpulmonary pressures to 140 kPa at high transpulmonary pressures; the lower bound is very
598 close to our estimate, while the upper bound is of the same magnitude as ours (Fig. 4(d)). Perhaps
599 most significantly, we observe that the pattern of stiffnesses throughout the domain is conserved
600 across the entire range of pressures. Finally, we note that the mean stiffness of the tissue rises
601 linearly up to 7 cmH₂O, and then the stiffness quickly plateaus with increasing transpulmonary
602 pressure (Fig. 4(e-f)). Based on the scheme previously described in the methods (Fig. S6), P-values
603 computed using Student's t-test indicate that the change in strain across pressures is statistically
604 significant with $p < 0.05$ from 5-7 cmH₂O, 7-12 cmH₂O, and 12-18 cmH₂O (Fig. 4(f)). On the
605 other hand, the change in stiffness is only statistically significant at lower pressures, owing to
606 higher variance in the stiffness and its apparent plateau at higher pressures. We also predict that
607 the variance in the lung's stiffness increases with distension (Fig. 4(f)); this prediction is consistent
608 with our previous, independent measurement of the lung's strain-stiffening behavior from manual
609 measurements of alveolar areas across different pressures.³⁶ To our knowledge, this is the first
610 time that the lung's stiffness, and its change with distension, has been measured under *ex vivo*
611 conditions with physiologically realistic boundary conditions in absolute units and at alveolar
612 resolution.



614 **Figure 4 | Providing the alveolus-scale stiffness map during the full breathing cycle in the healthy lung.** (a) The
615 same region of interest within a healthy lung from a transgenic, mTmG mouse expressing the tdTomato fluorescent
616 label at four different distending pressures. (b) The result of computationally deforming these images back to the
617 lung's geometry at 2 cmH₂O using the registered displacements. The displacement maps used to deform these images
618 were subsequently used as inputs to the multiscale model to determine the distribution of stiffnesses throughout the
619 healthy tissue. (c) The areal strain relative to the geometry at 2 cmH₂O. We observe that the qualitative pattern in the
620 computed strains is largely conserved across all pressures. Row (d) depicts the corresponding stiffnesses in absolute
621 units throughout the domain determined by applying our model to these images. As with the areal strain maps, the
622 stiffness maps are qualitatively similar across the whole range of pressures. (e) The histogram and corresponding
623 Gamma distribution of the stiffnesses throughout the domain, demonstrating that the mean and the heterogeneity in
624 the lung's stiffness increase with distension. (f) The nonlinear change in mean strain and mean stiffness with the
625 distending pressure. The error bars represent the standard error from the mean, computed by discretizing the domain
626 into a coherence length of 50x50 pixel patches (See Fig. S6). Computed using Student's t-test, P-values are shown for
627 the change in strain (and for the change in stiffness) from 5-7 cmH₂O, 7-12 cmH₂O, and 12-18 cmH₂O; the strains are
628 consistently statistically significant, while the stiffnesses are begin statistically significant and then decrease in
629 significance. We further observe that the variance in the stiffness increases with transpulmonary pressure, which is
630 consistent with our previous finding on relative stiffness.³⁶

631
632 Having applied the model to the healthy lung, we do the same for images of the lung with cancer
633 (Fig. 5(a)) to characterize the effect of cancer on the lung's material properties. As with the
634 previous figure, the second row (Fig. 5(b)) shows the result of deforming these images back to the
635 geometry of the lung at 2 cmH₂O using the registered displacements. Here, we observe that the
636 strain inside the tumor is substantially lower than the strain outside the tumor across all measured
637 pressures (Fig. 5(c)). Consistent with these observations, the estimated stiffness inside the tumor
638 is substantially higher than the stiffness outside at lower pressures (Fig. 5(d)). Whereas the
639 majority of stiffnesses in the healthy lung are below 5 kPa at pressures up to 10 cmH₂O, a large
640 fraction of the tumor exceeds these stiffnesses at these same pressures (Fig. 5(f)). Using the method
641 described previously (Fig. S6), P-values computed using Student's t-test indicate that the change
642 in strain across pressures within the lung tissue is statistically significant with $p < 0.05$ from 5-7
643 cmH₂O, 7-12 cmH₂O, and 12-18 cmH₂O, while changes in the strain within the tumor are
644 insignificant at 7-12 cmH₂O and 12-18 cmH₂O (Fig. 5(f)). Once again, in both types of tissue, the
645 change in stiffness decays in significance with increasing pressure. On the other hand, at the same
646 pressure, the difference in strain and stiffness across groups (i.e. lung or tumor) is statistically
647 significant with $p < 0.05$ across all pressures.

648
649 Relative to the healthy case, we also observe that the stiffness of the tissue outside the tumor is
650 depressed by about 20%, suggesting that the tumor may remodel the lung even in regions that are
651 not visible by light microscopy alone; whether that remodeling is due to the tumor visible in the
652 images or due to other tumors that are below the lung's surface is not clear. Moreover, while the
653 mean stiffness of the lung tissue increases in nonlinear fashion as in the case of the healthy lung,
654 the mean stiffness of the tumor increases much more quickly (Fig. 5(e)). In summary, this
655 measurement represents the first measurement of the absolute stiffness of a lung tumor under
656 physiologically realistic boundary conditions and at alveolar resolution, and we see evidence of
657 remodeling beyond the visible bounds of the tumor. Supplemental figures (Fig. S7-S9) depict these
658 same maps across the entire range of transpulmonary pressures.



660 **Figure 5 | Applying the model to the lung with cancer.** (a) The same region of interest within a lung presenting with
661 primary cancer from a transgenic, mTmG mouse expressing the tdTomato fluorescent label at four different distending
662 pressures. These images were used as inputs to the multiscale model to determine the distribution of stiffnesses
663 throughout the tumor and its surroundings. (b) The result of computationally deforming these images back to the
664 geometry at 2 cmH₂O using the registered displacements. (c) The corresponding areal strain, relative to the geometry
665 at 2 cmH₂O, induced by the given increase in transpulmonary pressure. As with healthy tissue, the range of areal
666 strains decreases with increasing transpulmonary pressure, indicating an increase in tissue stiffness. Unlike healthy
667 tissue, the tumor clearly exhibits much lower stretch than the surroundings. (d) The corresponding stiffnesses in
668 absolute units throughout the domain determined by applying our model to these images. At lower pressures, the
669 tumor is significantly stiffer than its surroundings. The intratumor and extratumor stiffnesses both increase with
670 transpulmonary pressure. (e) The stiffness distributions show that the tumor is consistently stiffer surrounding tissue
671 across all pressures, with tumors having higher maximum stiffness and greater variability in stiffness. (f) Compared
672 to surrounding tissue, the tumor deforms less with increasing transpulmonary pressure ((f)(i)); stiffens more ((f)(ii)),
673 notably being 4.8 times stiffer at 18 cmH₂O; and exhibits greater variance in stiffness, mirroring trends seen in earlier
674 figures. Computed using Student's t-test, P-values are shown for the change in strain (and for the change in stiffness)
675 from 5-7 cmH₂O, 7-12 cmH₂O, and 12-18 cmH₂O. Additionally, P-values are shown comparing the strain and stiffness
676 of the lung tissue versus the tumor tissue at pressures 7 cmH₂O, 12 cmH₂O, and 18 cmH₂O; the differences between
677 classes are statistically significant for all pressure changes.
678

679 **3.4 A hypothesis explaining the experimental data**

680 To explain the preceding observations, we briefly reflect on the biochemical structures and
681 physical principles that determine the material properties of the lung and solid tumors. The primary
682 load-bearing elements of the extracellular matrix are elastin, collagen type-1, and collagen type-3.⁵⁶
683 Although two isolated collagen helices with the same geometric configuration should exhibit
684 identical material properties, determined by the interplay between intramolecular and
685 intermolecular forces between monomeric subunits of the triple helix⁶⁸, it is well-known that
686 collagen arranges itself into more complex, hierarchical structures.⁶⁹ Within these structures,
687 greater cross-linking between individual collagen helices increases the stiffness at the tissue
688 scale.⁶⁹ Furthermore, given that entropic effects largely dominate in determining the material
689 properties of rubber-like polymer networks, the current geometric configuration of a polymer
690 network influences its current stiffness.⁷⁰⁻⁷⁴ Finally, recalling that networks of parallel springs are
691 stiffer than networks of springs in series,⁶⁸ we observe that the stiffness of such a network largely
692 depends on its topology. Variations in any of these three contributors can therefore lead to
693 variations in tissue stiffness at cellular, alveolar, and organ length scales.
694

695 Based on the biochemical structure of the extracellular matrix, there are thus four obvious reasons
696 why the tumor should be stiffer than the surrounding tissue. First, unlike the healthy lung which
697 contains airspaces, solid tumors are generally aggregates of cells and extracellular matrix lacking
698 holes or gaps at the cellular length scale; their simply connected structure therefore elevates their
699 stiffness relative to the multiply connected structure of the healthy parenchyma. Second, even if
700 we ignore the airspaces, pathologically elevated deposition of extracellular matrix within the tumor
701 increases the matrix's density compared to healthy tissue, and greater density is naturally
702 associated with elevated stiffness essentially because there are more load-bearing elements at the
703 molecular level.¹ Third, pathologically elevated cross-linking also increases the stiffness of the
704 extracellular matrix. Fourth, while the polyhedral topology of the parenchyma essentially forces
705 the alignment of collagen fibrils within the mid-plane of the septum and reduces the entropy of the
706 extracellular matrix, the collagen fibrils within solid tumors can be arranged in arbitrary
707 orientations; stretching a solid tumor by the same distance should therefore affect the quantity of
708 work required to produce the same stretch.

709

710 Next, we discuss the physical source of strain stiffening. First, we note that statistical
 711 thermodynamics predicts that single polymer molecules exhibit strain-stiffening behavior; as the
 712 molecule stretches, the number of available geometric configurations decreases, the change in
 713 entropy between successive states of elongation increases, and thus the force required to produce
 714 the same distension monotonically increases with stretch.^{71,72,74,75} Indeed, recent Steered
 715 Molecular Dynamics simulations of individual collagen helices predicted that these polymers
 716 exhibit strain-stiffening, with their stiffnesses ranging from 5 kPa to 15 kPa.⁶⁸ At higher levels of
 717 organization, AFM studies confirm that individual collagen fibrils also grow stiffer with strain^{76,77},
 718 and that collagen-based biomaterials likewise exhibit the same behavior.^{69,77} Most likely, then, the
 719 strain-stiffening behavior at the tissue scale directly follows from the strain-stiffening behavior of
 720 individual collagen helices at the molecular scale. This is, essentially, the central hypothesis
 721 underpinning classical derivations of constitutive equations for hyperelastic materials, and it
 722 motivates our choice of a hyperelastic material law.^{55,70}

723

724 The theory of percolation⁷⁸, which predicts that stretch produces gradual straightening and
 725 alignment of initially wavy collagen fibers, may seem to imply that the lung's stiffness should
 726 grow increasingly homogeneous with increasing stretch. But our observation that stiffness
 727 heterogeneity increases with pressure, an effect referred to as heteroscedasticity in the statistics
 728 literature⁵⁰, directly contradicts this hypothesis. Several studies agree with our prediction across
 729 multiple length scales. First, studies on the strain-stiffening behavior of individual collagen fibrils
 730 have also reported that the variance in fibril stiffness increases with strain^{76,77}. Second, at the
 731 alveolar length scale, both spring-network studies^{79,80} and finite-element analysis studies⁸¹ have
 732 consistently predicted an increase in septal stiffness heterogeneity with pressure. Finally, at the
 733 organ scale, registration-based studies^{82,83} have reported the same. However, one recent multiscale,
 734 AFM study⁶⁵ measured heteroscedasticity in macroscopic slices of decellularized lung tissue, but
 735 that same study did not observe the same trend for microscopic slices. One possible explanation
 736 for this disagreement is that tissue resection disrupts this phenomenon. Another possible
 737 explanation is that our method computes the variance over the stiffness both in the airspace and in
 738 the septum, but that does not explain why the aforementioned studies have reported the same
 739 phenomenon. Although we cannot discount that the geometric configuration of the individual
 740 polymers within the network somehow contributes to this behavior, the heteroscedasticity at the
 741 tissue scale may arise, at least in part, from the heteroscedasticity of the individual collagen fibrils
 742 comprising the extracellular matrix.

743

744 **3.5 Addressing assumptions in our model**

745 Although these findings represent a significant advance in our ability to quantify the lung's
 746 mechanical properties at cellular resolution in both health and disease, the model makes several
 747 simplifying assumptions that we should acknowledge. These assumptions, which vary in the
 748 magnitude of their potential impacts, include (i) approximating the Jacobian as $(\lambda_1\lambda_2)^{1.5}$ when
 749 solving the inverse elasticity problem, (ii) adopting the same constitutive equation at the alveolar
 750 and organ length scales, (iii) assuming that the Poisson ratio is 0.2 at both length scales, (iv)
 751 neglecting higher-order features of the lung, such as interlobular fissures and airways, when
 752 constructing the finite-element model's geometry, (v) assuming that the lung's stiffness is
 753 generally homogeneous at the organ scale, (vi) treating the airspace as a tensile element when

754 solving the inverse problem, (vii) assuming isotropicity when solving for the Young's modulus,
755 and (viii) neglecting the influence of gravity on the lung's deformation.

756
757 In Fig. S8, assumption (i) was shown to exert a relatively minor effect, typically introducing less
758 than 10% error into our approximation of the Jacobian determinant. To address assumption (ii),
759 we observe that the extracellular matrix is the primary determinant of the lung's material properties
760 across all length scales. While studies have shown that the lung's macroscale stiffness is
761 significantly less than the stiffness of individual lung cells⁸⁴, owing to the porosity of the tissue,
762 our approach ensures that the average stiffness, computed across many alveoli over both the
763 airspace and the septum, matches the organ-scale stiffness. As the number of alveoli in the
764 calculation approach the total number of alveoli in the lung, this average must approach the whole
765 lung's average stiffness. Consequently, we argue it is reasonable to enforce equality between these
766 quantities. This same reasoning also justifies assumption (iii).

767
768 Assumption (iv) is, in part, justified on the basis that parenchyma comprises over 95% of the lung's
769 total volume⁸⁵, which implies that the effect of stiffer airways on the deformation should be small
770 in the distal parts of the lung. On the other hand, evidence suggests⁸⁶ that the interlobular fissures
771 relieve stress that may develop on the surface of the lung in their absence. This assumption,
772 therefore, may affect the accuracy depending on the proximity to a fissure.

773
774 Assumption (v) is challenged by MRE studies⁸⁷ that reveal significant regional variation in lung
775 compliance at the organ scale. For healthy individuals, this study reported that the mean shear
776 modulus was 0.849 ± 0.250 kPa at residual volume and 1.33 ± 0.195 kPa at total lung capacity.
777 Consequently, the standard deviation decreases from about 30% of the mean value at residual
778 volume to about 15% of the mean at total lung capacity. Consequently, we may expect our stiffness
779 maps to incur similar errors due to this assumption. Because our images are collected within
780 microns of the pleural surface, we suspect that the airspace region in the images effectively exhibits
781 some resistance to deformation, justifying assumption (vi); even if the airspace lacks effective
782 stiffness, that should be reflected by a low value in the stiffness mapping, which is exactly what is
783 shown in Fig. 4 and Fig. 5. Finally, in support of assumption (vii), we performed simulations of
784 the finite-element model with an embedded inclusion, and we found that assuming isotropicity
785 (Fig. S10) led to similar results as assuming orthotropicity (Fig. S11), with both models in
786 reasonable agreement with the ground truth (Fig. S12).

787
788 Assumption (viii), the decision to neglect gravity in modeling the lung, was addressed previously
789 in the methods. Briefly, although previous studies^{56,57} have shown that gravity significantly
790 influences the mechanics of the human lung, similar studies have not been done in the mouse. We
791 offer two arguments, however, in support of our position. First, these previous studies on the
792 human lung suggest that gravity is insignificant to the solid mechanics of the mouse lung. One
793 recent theoretical analysis⁵⁶ on the human lung distilled the influence of gravity on alveolar
794 mechanics to the weight of tissue below a given alveolus; consequently, the study found that the
795 effects of gravity are more significant near the apex than the base. Because the weight of the mouse
796 lung is about 1 gram, and because the stiffness of the mouse lung is similar to that of the human
797 lung, its weight according to this model should not significantly influence its mechanical behavior.
798 Using CT images to measure regional variations in lung density, another study⁵⁷ showed that
799 gravity causes the density of the human lung to increase linearly with vertical displacements

800 toward the Earth; critically, the study showed that lung density only changes by a few percent of
801 the mean with displacements near 1 cm. Because the density and stiffness of the mouse lung is
802 similar to that of the human lung, we likewise expect gravity to have only a modest influence on
803 tissue density in the mouse. Second, as described earlier in the methods, dimensional analysis⁵⁸
804 reveals that the stresses developed within the mouse lung are significantly larger than the
805 hydrostatic stresses arising due to gravity.

806

807 **4 Conclusion**

808 We have built the first model capable of measuring the absolute stiffness of the lung at microscale
809 resolution and under physiologically realistic boundary conditions. We have shown that our model
810 can measure the nonlinear stiffening of the lung with increasing stretch, and that the relative
811 stiffness distribution throughout the domain is, at least in the case of the healthy lung, largely
812 conserved across a range of pressures, giving further confidence that our prediction corresponds
813 to reality since these stiffness maps have been produced by completely different displacement
814 maps. Furthermore, we have shown that our model's quantitative predictions are consistent with
815 state-of-the-art measurements based on AFM. Finally, we have demonstrated the capability of our
816 model to identify and measure the stiffness of tumors within the lung tissue. Here, we have shown,
817 for the first time, that the tumor exhibits similar strain-stiffening behavior to the lung tissue itself,
818 but that the tumor stiffens more substantially than the surroundings; in the state of greatest
819 distension, for example, the tumor's mean stiffness is 4.8 times greater than that of the
820 surroundings. Additionally, because the variance in the stiffness increases with transpulmonary
821 pressure, we have shown that the heterogeneity in the stiffness distribution likewise increases with
822 pressure, with greater heterogeneity in the tumor than in the surroundings.

823

824 **Author Contributions**

825 RL jointly conceived the approach, built the model, validated the model, applied the model,
826 analysed the results, and wrote the manuscript. HTN jointly conceived the approach and wrote the
827 manuscript. GG collected high-resolution microscopy images of the lung in health and disease,
828 along with low-resolution stereomicroscope images of the lung for calibrating the organ-scale
829 model, and contributed to the manuscript's empirical methods. RB built the crystal ribcage
830 platform and described its construction in the methods. KR collaborated on the development of
831 the inverse solver and edited the manuscript. BS provided valuable feedback and edited the
832 manuscript.

833

834 **Acknowledgements**

835 A. Coats from the Hoffman laboratory at the University of Iowa provided the microCT image
836 datasets used to fabricate the crystal ribcage. Any opinion, findings and conclusions or
837 recommendations expressed in this material are those of the authors and do not necessarily reflect
838 the views of the National Science Foundation. H.T.N. discloses support for the research described
839 in this study from the National Institutes of Health R21EB031332 and DP2HL168562, a Beckman
840 Young Investigator Award, an NSF CAREER Award, Kilachand Fund, Boston University Center
841 for Multiscale and Translational Mechanobiology and a Dean's Catalyst Award and the American
842 Cancer Society Institutional Fund at Boston University. This material is also based upon work
843 supported by the National Science Foundation and G.N.G. acknowledges support from the NSF
844 Graduate Research Fellowship, grant no. 2234657. The funders had no role in study design, data

845 collection and analysis, decision to publish or preparation of the manuscript. We also thank P.
846 Barbone for his valuable guidance on developing the inverse-elasticity software.

847 **References**

- 848 1 Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. *Science* **370**, eaaz0868
849 (2020). <https://doi.org:doi:10.1126/science.aaz0868>
- 850 2 Zhang, S. *et al.* The peritumor microenvironment: physics and immunity. *Trends in
851 Cancer* **9**, 609-623 (2023). <https://doi.org:10.1016/j.trecan.2023.04.004>
- 852 3 Ulrich, T. A., De Juan Pardo, E. M. & Kumar, S. The Mechanical Rigidity of the
853 Extracellular Matrix Regulates the Structure, Motility, and Proliferation of Glioma Cells.
854 *Cancer Research* **69**, 4167-4174 (2009). <https://doi.org:10.1158/0008-5472.can-08-4859>
- 855 4 Tse, J. M. *et al.* Mechanical compression drives cancer cells toward invasive phenotype.
856 *Proceedings of the National Academy of Sciences* **109**, 911-916 (2012).
857 <https://doi.org:10.1073/pnas.1118910109>
- 858 5 Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of
859 physical interactions and mechanical forces in metastasis. *Nature Reviews Cancer* **11**,
860 512-522 (2011). <https://doi.org:10.1038/nrc3080>
- 861 6 Boyd, N. F. *et al.* Evidence That Breast Tissue Stiffness Is Associated with Risk of
862 Breast Cancer. *PLoS ONE* **9**, e100937 (2014).
863 <https://doi.org:10.1371/journal.pone.0100937>
- 864 7 Evans, A. *et al.* Differentiating benign from malignant solid breast masses: value of shear
865 wave elastography according to lesion stiffness combined with greyscale ultrasound
866 according to BI-RADS classification. *British Journal of Cancer* **107**, 224-229 (2012).
867 <https://doi.org:10.1038/bjc.2012.253>
- 868 8 Cochlin, D., Ganatra, R. H. & Griffiths, D. F. R. Elastography in the Detection of
869 Prostatic Cancer. *Clinical radiology*. **57**, 1014-1020 (2002).
870 <https://doi.org:10.1053/crad.2002.0989>
- 871 9 Goenezen, S. *et al.* Linear and Nonlinear Elastic Modulus Imaging: An Application to
872 Breast Cancer Diagnosis. *IEEE Transactions on Medical Imaging* **31**, 1628-1637 (2012).
873 <https://doi.org:10.1109/tmi.2012.2201497>
- 874 10 Panzetta, V. *et al.* Mechanical phenotyping of cells and extracellular matrix as grade and
875 stage markers of lung tumor tissues. *Acta Biomaterialia* **57**, 334-341 (2017).
876 <https://doi.org:10.1016/j.actbio.2017.05.002>
- 877 11 Nia, H. T., Munn, L. L. & Jain, R. K. Mapping Physical Tumor Microenvironment and
878 Drug Delivery. *Clinical Cancer Research* **25**, 2024-2026 (2019).
879 <https://doi.org:10.1158/1078-0432.ccr-18-3724>
- 880 12 Nia, H. T. *et al.* In vivo compression and imaging in mouse brain to measure the effects
881 of solid stress. *Nature Protocols* **15**, 2321-2340 (2020). <https://doi.org:10.1038/s41596-020-0328-2>
- 883 13 Nia, H. T. *et al.* Quantifying solid stress and elastic energy from excised or in situ
884 tumors. *Nature Protocols* **13**, 1091-1105 (2018). <https://doi.org:10.1038/nprot.2018.020>
- 885 14 Nia, H. T. *et al.* Solid stress and elastic energy as measures of tumour mechanopathology.
886 *Nature Biomedical Engineering* **1**, 0004 (2016). <https://doi.org:10.1038/s41551-016-0004>
- 887 15 Zhang, S. *et al.* Intravital measurements of solid stresses in tumours reveal length-scale
888 and microenvironmentally dependent force transmission. *Nature Biomedical Engineering*
889 **7**, 1473-1492 (2023). <https://doi.org:10.1038/s41551-023-01080-8>

890 16 Seidl, D. T., Van Bloemen Waanders, B. G. & Wildey, T. M. Simultaneous inversion of
891 shear modulus and traction boundary conditions in biomechanical imaging. *Inverse*
892 *Problems in Science and Engineering* **28**, 256-276 (2020).
893 <https://doi.org/10.1080/17415977.2019.1603222>

894 17 Ghiuchici, A.-M. *et al.* Is There a Place for Elastography in the Diagnosis of
895 Hepatocellular Carcinoma? *Journal of Clinical Medicine* **10**, 1710 (2021).
896 <https://doi.org/10.3390/jcm10081710>

897 18 De, S., Guilak, F., Mofrad R K, M., Barbone, P. E. & Oberai, A. A. A Review of the
898 Mathematical and Computational Foundations of Biomechanical Imaging. *Computational*
899 *Modeling in Biomechanics*, 375-408 (2010). https://doi.org:info:doi/10.1007/978-90-481-3575-2_13

900 19 Costa, K. D. Single-Cell Elastography: Probing for Disease with the Atomic Force
901 Microscope. *Disease Markers* **19**, 139-154 (2004). <https://doi.org:10.1155/2004/482680>

903 20 Garra, B. S. Elastography: history, principles, and technique comparison. *Abdominal*
904 *Imaging* **40**, 680-697 (2015). <https://doi.org:10.1007/s00261-014-0305-8>

905 21 Kennedy, B. F., Kennedy, K. M. & Sampson, D. D. A Review of Optical Coherence
906 Elastography: Fundamentals, Techniques and Prospects. *IEEE journal of selected topics*
907 *in quantum electronics : a publication of the IEEE Lasers and Electro-optics Society*. **20**,
908 272-288 (2014). <https://doi.org:10.1109/JSTQE.2013.2291445>

909 22 Kuo, Y.-W. *et al.* Application of transthoracic shear-wave ultrasound elastography in
910 lung lesions. *European Respiratory Journal* **57**, 2002347 (2021).
911 <https://doi.org:10.1183/13993003.02347-2020>

912 23 Schregel, K. *et al.* Characterization of glioblastoma in an orthotopic mouse model with
913 magnetic resonance elastography. *NMR in Biomedicine* **31**, e3840 (2018).
914 <https://doi.org:10.1002/nbm.3840>

915 24 Silva, L. D. C. M. D. *et al.* Ultrasound elastography in patients with fatty liver disease.
916 *Radiologia Brasileira* **53**, 47-55 (2020). <https://doi.org:10.1590/0100-3984.2019.0028>

917 25 Wang, C. *et al.* Optical coherence elastography and its applications for the biomechanical
918 characterization of tissues. *Journal of Biophotonics* **16** (2023/12/01).
919 <https://doi.org:10.1002/jbio.202300292>

920 26 Krieg, M. *et al.* Atomic force microscopy-based mechanobiology. *Nature Reviews*
921 *Physics* **1**, 41-57 (2018). <https://doi.org:10.1038/s42254-018-0001-7>

922 27 Liu, F. & Tschumperlin, D. J. Micro-Mechanical Characterization of Lung Tissue Using
923 Atomic Force Microscopy. *Journal of Visualized Experiments* (2011).
924 <https://doi.org:10.3791/2911>

925 28 Barbone, P. E. & Gokhale, N. H. Elastic modulus imaging: on the uniqueness and
926 nonuniqueness of the elastography inverse problem in two dimensions. *Inverse problems*
927 **20**, 283 (2004).

928 29 Barbone, P. E. & Bamber, J. C. Quantitative elasticity imaging: what can and cannot be
929 inferred from strain images. *Physics in Medicine & Biology* **47**, 2147 (2002).

930 30 Cercos-Pita, J.-L. *et al.* Lung tissue biomechanics imaged with synchrotron phase
931 contrast microtomography in live rats. *Scientific Reports* **12** (2022).
932 <https://doi.org:10.1038/s41598-022-09052-9>

933 31 Kennedy, B. F., Wijesinghe, P. & Sampson, D. D. The emergence of optical elastography
934 in biomedicine. *Nature Photonics* **11**, 215-221 (2017).
935 <https://doi.org:10.1038/nphoton.2017.6>

936 32 Nelson, T. M. *et al.* Diseased and healthy murine local lung strains evaluated using
937 digital image correlation. *Scientific Reports* 2023 **13**:1 **13** (2023-03-20).
938 <https://doi.org/10.1038/s41598-023-31345-w>

939 33 Maghsoudi-Ganjeh, M., Mariano, C. A., Sattari, S., Arora, H. & Eskandari, M.
940 Developing a Lung Model in the Age of COVID-19: A Digital Image Correlation and
941 Inverse Finite Element Analysis Framework. *Frontiers in Bioengineering and*
942 *Biotechnology* **9** (2021). <https://doi.org/10.3389/fbioe.2021.684778>

943 34 Regan, K. *et al.* Multiscale elasticity mapping of biological samples in 3D at optical
944 resolution. *Acta biomaterialia*. (2023). <https://doi.org/10.1016/j.actbio.2023.12.036>

945 35 Kim, J. H. *et al.* Multiscale stiffness of human emphysematous precision cut lung slices.
946 *Science Advances* **9** (2023). <https://doi.org/10.1126/sciadv.adf2535>

947 36 Banerji, R. *et al.* Crystal ribcage: a platform for probing real-time lung function at
948 cellular resolution. *Nature Methods* (2023). <https://doi.org/10.1038/s41592-023-02004-9>

949 37 Looney, M. R. & Bhattacharya, J. Live Imaging of the Lung. *Annual Review of*
950 *Physiology* **76**, 431-445 (2014). <https://doi.org/10.1146/annurev-physiol-021113-170331>

951 38 Looney, M. R. *et al.* Stabilized imaging of immune surveillance in the mouse lung.
952 *Nature Methods* **8**, 91-96 (2011). <https://doi.org/10.1038/nmeth.1543>

953 39 Entenberg, D. *et al.* A permanent window for the murine lung enables high-resolution
954 imaging of cancer metastasis. *Nature Methods* **15**, 73-80 (2018).
955 <https://doi.org/10.1038/nmeth.4511>

956 40 Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-
957 fluorescent Cre reporter mouse. *Genesis : the journal of genetics and development*. **45**,
958 593-605 (2007). <https://doi.org/10.1002/dvg.20335>

959 41 Schulte, H., Mühlfeld, C. & Brandenberger, C. Age-Related Structural and Functional
960 Changes in the Mouse Lung. *Frontiers in Physiology* **10** (2019).
961 <https://doi.org/10.3389/fphys.2019.01466>

962 42 Janker, F., Weder, W., Jang, J.-H. & Jungraithmayr, W. Preclinical, non-genetic models
963 of lung adenocarcinoma: a comparative survey. *Oncotarget* **9**, 30527-30538 (2018).
964 <https://doi.org/10.18632/oncotarget.25668>

965 43 Sozio, F., Schioppa, T., Sozzani, S. & Del Prete, A. Urethane-induced lung
966 carcinogenesis. *Methods in cell biology*. **163**, 45-57 (2021).
967 <https://doi.org/10.1016/bs.mcb.2020.09.005>

968 44 Kizhakke Puliyakote, A. S. *et al.* Morphometric differences between central vs. surface
969 acini in A/J mice using high-resolution micro-computed tomography. *Journal of Applied*
970 *Physiology* **121**, 115-122 (2016). <https://doi.org/10.1152/japplphysiol.00317.2016>

971 45 Thiesse, J. *et al.* Lung structure phenotype variation in inbred mouse strains revealed
972 through in vivo micro-CT imaging. *Journal of applied physiology*. **109**, 1960-1968
973 (2010). <https://doi.org/10.1152/japplphysiol.01322.2009>

974 46 Vasilescu, D. M. *et al.* Assessment of morphometry of pulmonary acini in mouse lungs
975 by nondestructive imaging using multiscale microcomputed tomography. *Proceedings of*
976 *the National Academy of Sciences* **109**, 17105-17110 (2012).
977 <https://doi.org/10.1073/pnas.1215112109>

978 47 Vanderpool, R. R. & Chesler, N. C. Characterization of the Isolated, Ventilated, and
979 Instrumented Mouse Lung Perfused with Pulsatile Flow. *Journal of Visualized*
980 *Experiments* (2011). <https://doi.org/10.3791/2690>

981 48 Barbone, P. E. *et al.* Adjoint-weighted variational formulation for the direct solution of
982 inverse problems of general linear elasticity with full interior data. *International journal*
983 *for numerical methods in engineering* **81**, 1713-1736 (2010).

984 49 DOLFINx: The next generation FEniCS problem solving environment. (2023).

985 50 Bishop, C. M. Machine Learning. *Machine learning* **128** (2006).

986 51 Hastie, T., Tibshirani, R. & Friedman, J. H. *The Elements of Statistical Learning: Data*
987 *Mining, Inference, and Prediction*. (Springer, 2009).

988 52 Pratt, M. J. Introduction to ISO 10303—the STEP Standard for Product Data Exchange.
989 *Journal of Computing and Information Science in Engineering* **1**, 102-103 (2001).
990 <https://doi.org:10.1115/1.1354995>

991 53 Berezvai, S. & Kossa, A. Closed-form solution of the Ogden–Hill’s compressible
992 hyperelastic model for ramp loading. *Mechanics of Time-Dependent Materials* **21**, 263-
993 286 (2017). <https://doi.org:10.1007/s11043-016-9329-5>

994 54 Andrikakou, P., Vickraman, K. & Arora, H. On the behaviour of lung tissue under
995 tension and compression. *Scientific Reports* **6**, 36642 (2016).
996 <https://doi.org:10.1038/srep36642>

997 55 Vawter, D., Fung, Y. & West, J. Constitutive equation of lung tissue elasticity. (1979).

998 56 Shi, L. *et al.* Modeling the influence of gravity and the mechanical properties of elastin
999 and collagen fibers on alveolar and lung pressure–volume curves. *Scientific Reports* **12**
1000 (2022). <https://doi.org:10.1038/s41598-022-16650-0>

1001 57 Tawhai, M. H., Nash, M. P., Lin, C.-L. & Hoffman, E. A. Supine and prone differences
1002 in regional lung density and pleural pressure gradients in the human lung with constant
1003 shape. *Journal of Applied Physiology* **107**, 912-920 (2009).

1004 58 Munson, B. R., Rothmayer, A. P. & Okiishi, T. H. *Fundamentals of Fluid Mechanics*, 7th
1005 Edition. (Wiley, 2012).

1006 59 Mead, J., Takishima, T. & Leith, D. Stress distribution in lungs: a model of pulmonary
1007 elasticity. *Journal of applied physiology* **28**, 596-608 (1970).

1008 60 Concha, F., Sarabia-Vallejos, M. & Hurtado, D. E. Micromechanical model of lung
1009 parenchyma hyperelasticity. *Journal of the mechanics and physics of solids*. **112**, 126-144
1010 (2018). <https://doi.org:10.1016/j.jmps.2017.11.021>

1011 61 Heinrich, M. P., Jenkinson, M., Brady, S. M. & Schnabel, J. A. in *Medical Image*
1012 *Computing and Computer-Assisted Intervention – MICCAI 2012* 115-122 (Springer
1013 Berlin Heidelberg, 2012).

1014 62 Heinrich, M. P. *et al.* MIND: Modality independent neighbourhood descriptor for multi-
1015 modal deformable registration. *Medical image analysis*. **16**, 1423-1435 (2012).
1016 <https://doi.org:info:doi/10.1016/j.media.2012.05.008>

1017 63 Holzapfel, G. A. *Nonlinear Solid Mechanics: A Continuum Approach for Engineering*.
1018 (Wiley, 2000).

1019 64 Albocher, U., Oberai, A. A., Barbone, P. E. & Harari, I. Adjoint-weighted equation for
1020 inverse problems of incompressible plane-stress elasticity. *Computer methods in applied*
1021 *mechanics and engineering* **198**, 2412-2420 (2009).
1022 <https://doi.org:10.1016/j.cma.2009.02.034>

1023 65 Jorba, I. *et al.* Nonlinear elasticity of the lung extracellular microenvironment is regulated
1024 by macroscale tissue strain. *Acta Biomaterialia* **92**, 265-276 (2019).
1025 <https://doi.org:10.1016/j.actbio.2019.05.023>

1026 66 Polio, S. R. *et al.* Cross-platform mechanical characterization of lung tissue. *PLOS ONE*
1027 13, e0204765 (2018). <https://doi.org/10.1371/journal.pone.0204765>

1028 67 Perlman, C. E. & Wu, Y. In situ determination of alveolar septal strain, stress and
1029 effective Young's modulus: an experimental/computational approach. *American Journal*
1030 *of Physiology-Lung Cellular and Molecular Physiology* **307**, L302-L310 (2014).
1031 <https://doi.org/10.1152/ajplung.00106.2014>

1032 68 In'T Veld, P. J. & Stevens, M. J. Simulation of the Mechanical Strength of a Single
1033 Collagen Molecule. *Biophysical Journal* **95**, 33-39 (2008).
1034 <https://doi.org/10.1529/biophysj.107.120659>

1035 69 Fratzl, P. Collagen: Structure and Mechanics, an Introduction. (2008).
1036 https://doi.org/10.1007/978-0-387-73906-9_1

1037 70 Boyce, M. C. & Arruda, E. M. Constitutive Models of Rubber Elasticity: A Review.
1038 *Rubber chemistry and technology* **73**, 504-523 (2000). <https://doi.org/10.5254/1.3547602>

1039 71 Holzapfel, G. A. & Simo, J. C. Entropy elasticity of isotropic rubber-like solids at finite
1040 strains. *Computer methods in applied mechanics and engineering* **132**, 17-44 (1996).
1041 [https://doi.org/10.1016/0045-7825\(96\)01001-8](https://doi.org/10.1016/0045-7825(96)01001-8)

1042 72 Treloar, L. R. G. The mechanics of rubber elasticity. *Journal of polymer science*. **48**, 107-
1043 123 (1974). <https://doi.org/10.1002/polc.5070480110>

1044 73 Treloar, L. R. G. *The physics of rubber elasticity*. 3rd edn, (Clarendon Press, 2005).

1045 74 James, H. M. & Guth, E. Theory of the Elasticity of Rubber. *Journal of Applied Physics*
1046 **15** (1944/04/01). <https://doi.org/10.1063/1.1707432>

1047 75 Beatty, M. F. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and
1048 biological tissues—with examples. (1987).

1049 76 Halvorsen, S., Wang, R. & Zhang, Y. Contribution of Elastic and Collagen Fibers to the
1050 Mechanical Behavior of Bovine Nuchal Ligament. *Annals of Biomedical Engineering* **51**,
1051 2204-2215 (2023). <https://doi.org/10.1007/s10439-023-03254-6>

1052 77 Sherman, V. R., Yang, W. & Meyers, M. A. The materials science of collagen. *Journal of*
1053 *the mechanical behavior of biomedical materials*. **52**, 22-50 (2015).
1054 <https://doi.org/10.1016/j.jmbbm.2015.05.023>

1055 78 Suki, B. & Bates, J. H. T. Lung tissue mechanics as an emergent phenomenon. *Journal of*
1056 *applied physiology*. **110**, 1111-1118 (2011).
1057 <https://doi.org/10.1152/japplphysiol.01244.2010>

1058 79 Maksym, G. N., Fredberg, J. J. & Bates, J. H. T. Force heterogeneity in a two-
1059 dimensional network model of lung tissue elasticity. *Journal of applied physiology*. **85**,
1060 1223-1229 (1998). <https://doi.org/10.1152/jappl.1998.85.4.1223>

1061 80 Cavalcante, F. S. A. *et al.* Mechanical interactions between collagen and proteoglycans:
1062 implications for the stability of lung tissue. *Journal of applied physiology*. **98**, 672-679
1063 (2005). <https://doi.org/10.1152/japplphysiol.00619.2004>

1064 81 Sarabia-Vallejos, M. A., Zuñiga, M. & Hurtado, D. E. The role of three-dimensionality
1065 and alveolar pressure in the distribution and amplification of alveolar stresses. *Scientific*
1066 *reports*. **9** (2019). <https://doi.org/10.1038/s41598-019-45343-4>

1067 82 Mariano, C. A. *et al.* Novel Mechanical Strain Characterization of Ventilated ex vivo
1068 Porcine and Murine Lung using Digital Image Correlation. *Frontiers in Physiology* **11**
1069 (2020). <https://doi.org/10.3389/fphys.2020.600492>

1070 83 Mariappan, Y. K. *et al.* Estimation of the absolute shear stiffness of human lung
1071 parenchyma using ^1H spin echo, echo planar MR elastography. *Journal of*
1072 *Magnetic Resonance Imaging* **40**, 1230-1237 (2014). <https://doi.org/10.1002/jmri.24479>

1073 84 Sicard, D. *et al.* Aging and anatomical variations in lung tissue stiffness. *American*
1074 *Journal of Physiology-Lung Cellular and Molecular Physiology* **314**, L946-L955 (2018).
1075 <https://doi.org/10.1152/ajplung.00415.2017>

1076 85 West, J. B. & Luks, A. M. *West's Respiratory Physiology*. (Lippincott Williams &
1077 Wilkins, 2020).

1078 86 Lee, G. C., Tseng, N. T. & Yuan, Y. M. Finite element modeling of lungs including
1079 interlobar fissures and the heart cavity. *Journal of biomechanics*. **16**, 679-690 (1983).
1080 [https://doi.org/10.1016/0021-9290\(83\)90078-7](https://doi.org/10.1016/0021-9290(83)90078-7)

1081 87 Marinelli, J. P. *et al.* Quantitative assessment of lung stiffness in patients with interstitial
1082 lung disease using MR elastography. *Journal of Magnetic Resonance Imaging* **46**, 365-
1083 374 (2017). <https://doi.org/10.1002/jmri.25579>

1084

Supplementary Materials

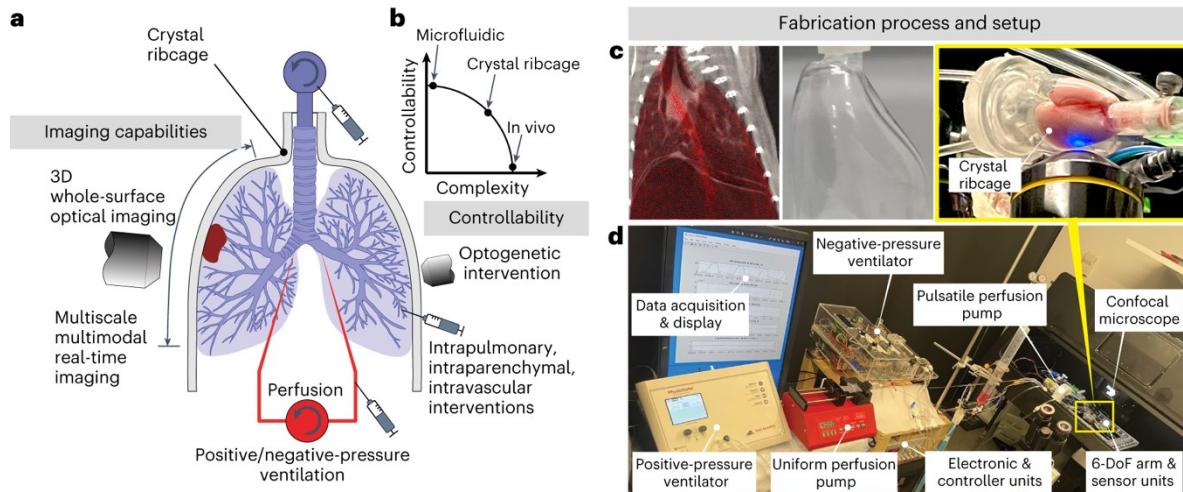
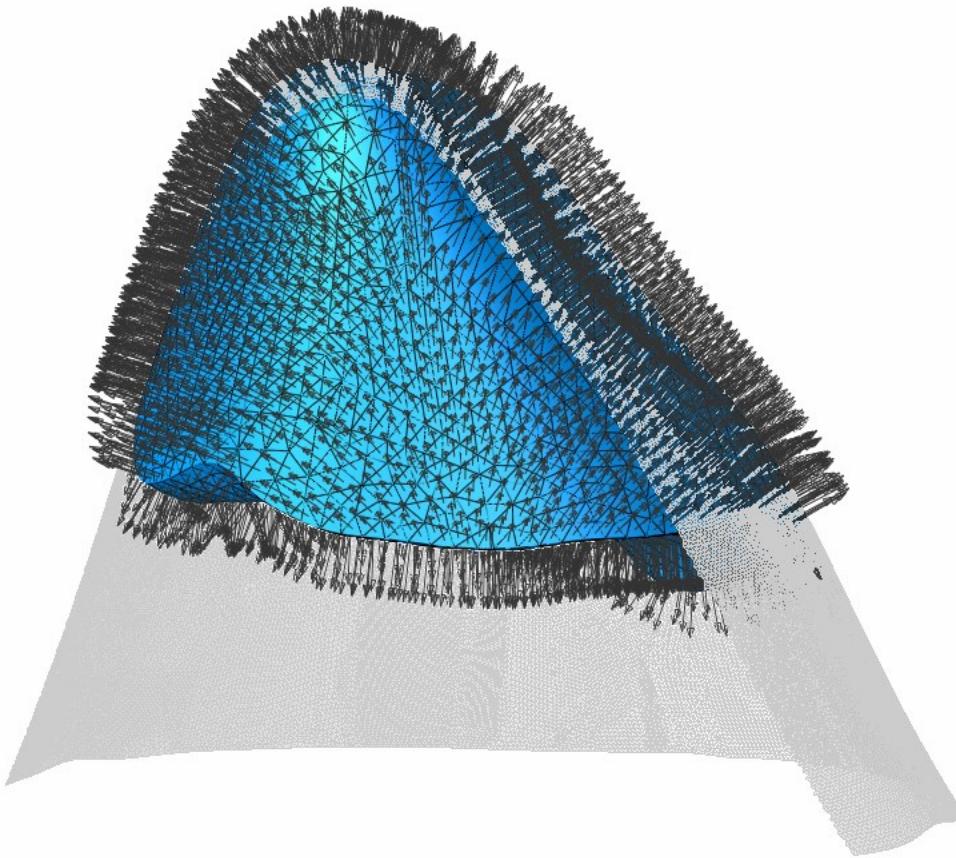
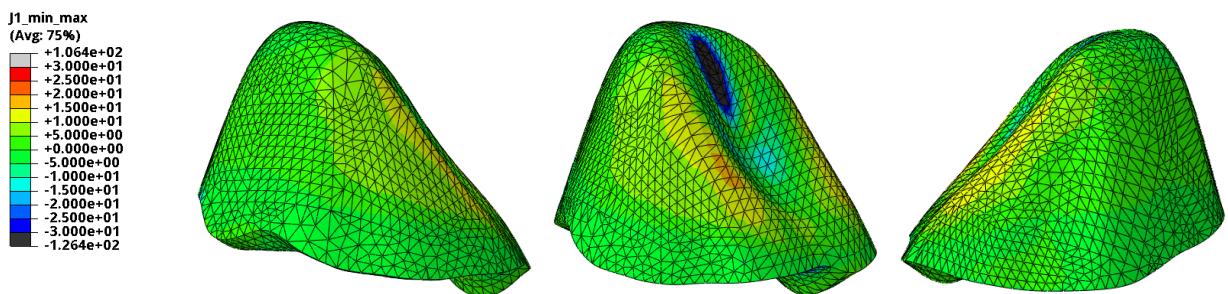


Figure S1 | Illustration of the crystal ribcage platform. This figure reproduces panels (a-d) from Figure 1 in our earlier work³⁶ and depicts the details of the crystal ribcage platform. The panels are as follows: (a) Schematic of the lung within the crystal ribcage, depicting the imaging, controllability, and intervention capabilities of the platform, (b) The crystal ribcage supports the same imaging capabilities and controllability of organ-on-chip models, while maintaining the complex environment of *in vivo* lungs, (c) Age- and strain-specific microCT scans are used to fabricate the crystal ribcage through a multistep fabrication process, in which the geometry is derived from microCT images, and (d) The portable platform to maintain, monitor and record the lung physiological condition during real-time imaging.



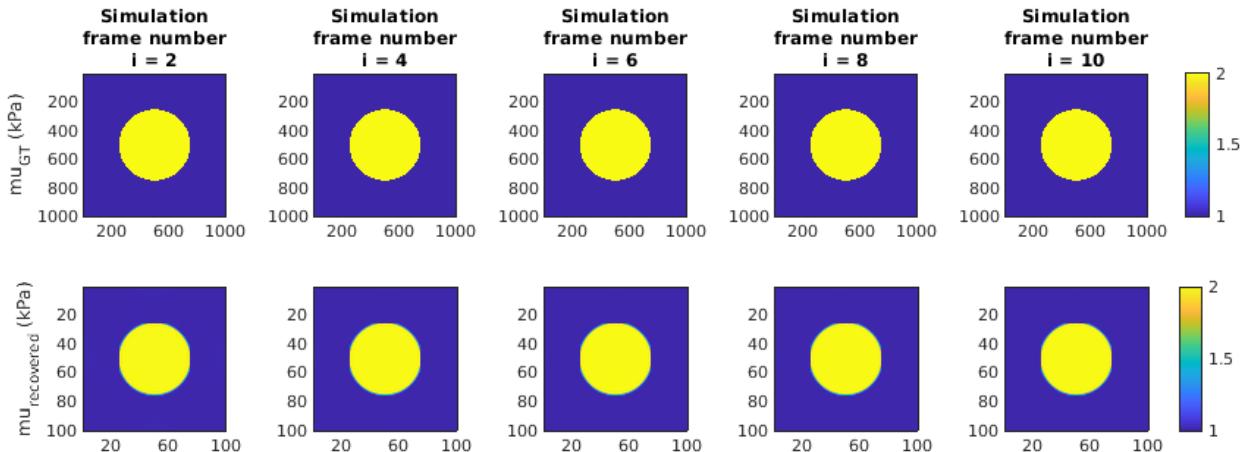
1097
1098
1099
1100
1101
1102

Figure S2 | The boundary conditions on the finite-element model. In the simulation, the lung (blue part) is constrained to slide frictionlessly along the surface of the rigid ribcage (gray surface). A negative pressure load (black vectors) is applied to the surface of the lung in order to emulate negative transpulmonary pressure. Part of the virtual ribcage has been visually hidden to show the lung below.



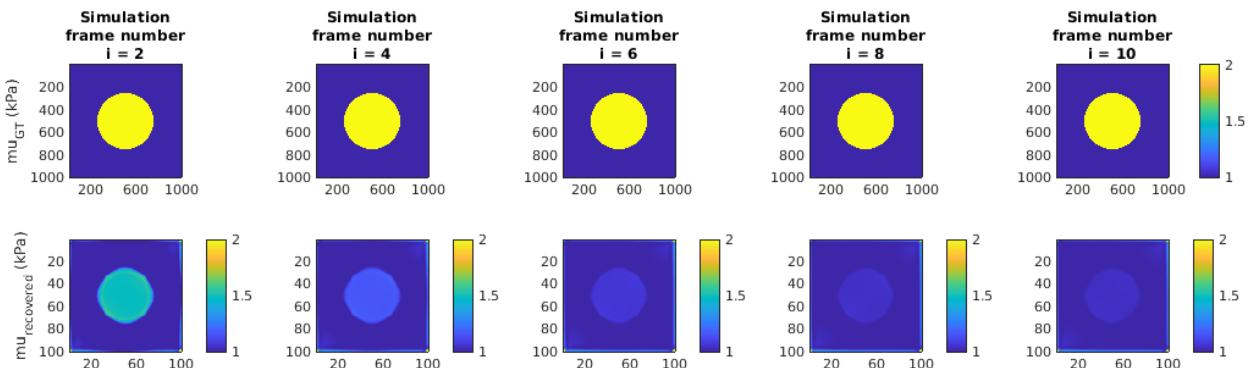
1103
1104
1105
1106
1107
1108
1109

Figure S3 | Demonstrating the percent error in our pseudo-3D approximation of the Jacobian determinant when solving the inverse problem. These panels show the percent error of $(\lambda_1 \lambda_2)^{1.5}$ relative to the true Jacobian $\lambda_1 \lambda_2 \lambda_3$. We see that the approximation is generally accurate to within 5-15% error across the majority of the lung's surface.



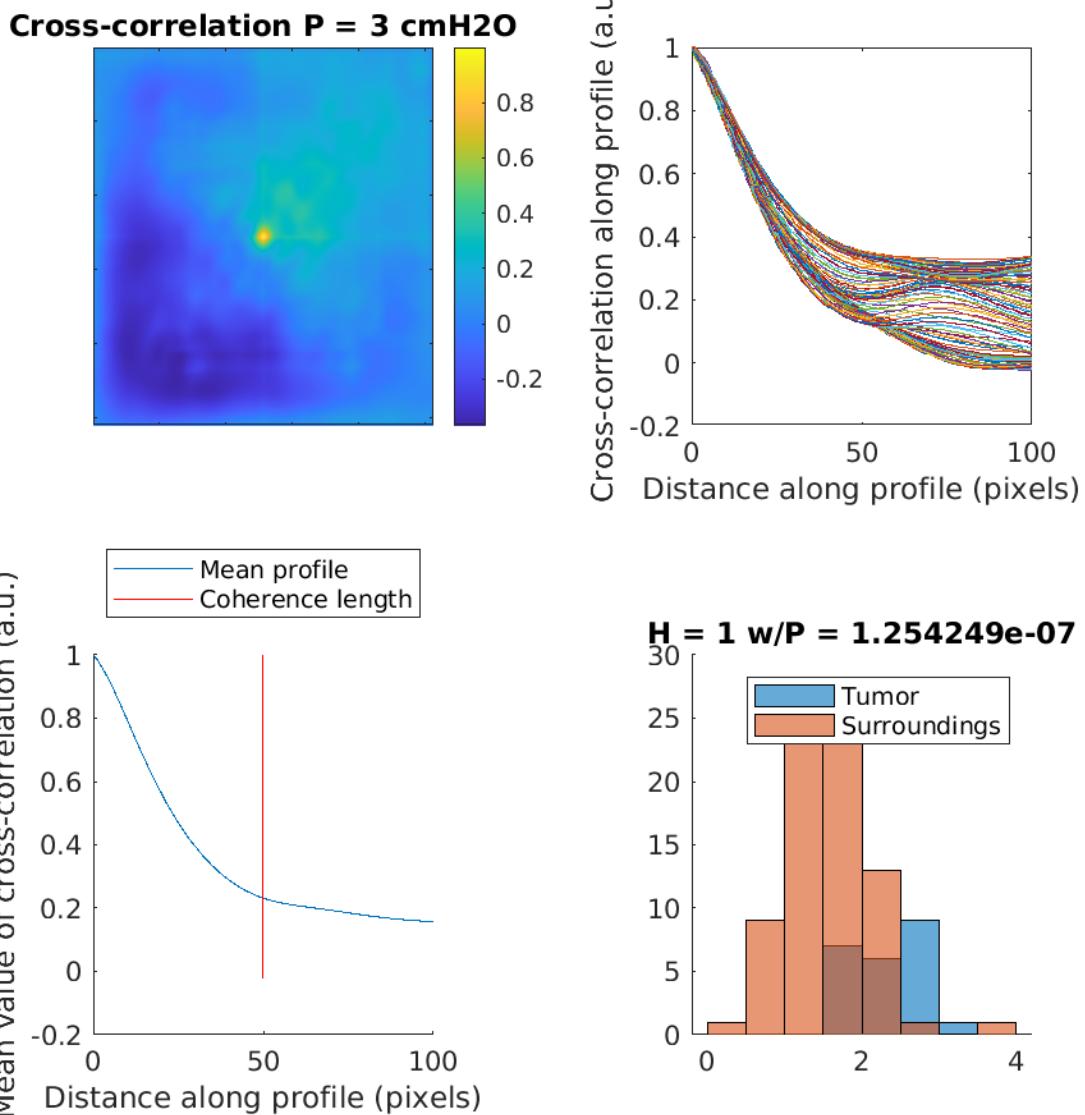
1110
1111
1112
1113
1114
1115
1116
1117

Figure S4 | Validating the nonlinear inverse solver on a simple, pseudo-3D, hyperelastic foam membrane. In Abaqus, we construct a 2D, hyperelastic foam membrane having a shear modulus of 2 kPa within a circular inclusion and having a shear modulus of 1 kPa outside the inclusion. We then stretch the model by 10% along the two directions parallel to the edges of the domain. The first row shows the ground-truth shear modulus distribution, while the second row provides the shear-modulus distribution estimated from the simulated total displacements and the nonlinear formulation of the inverse solver.



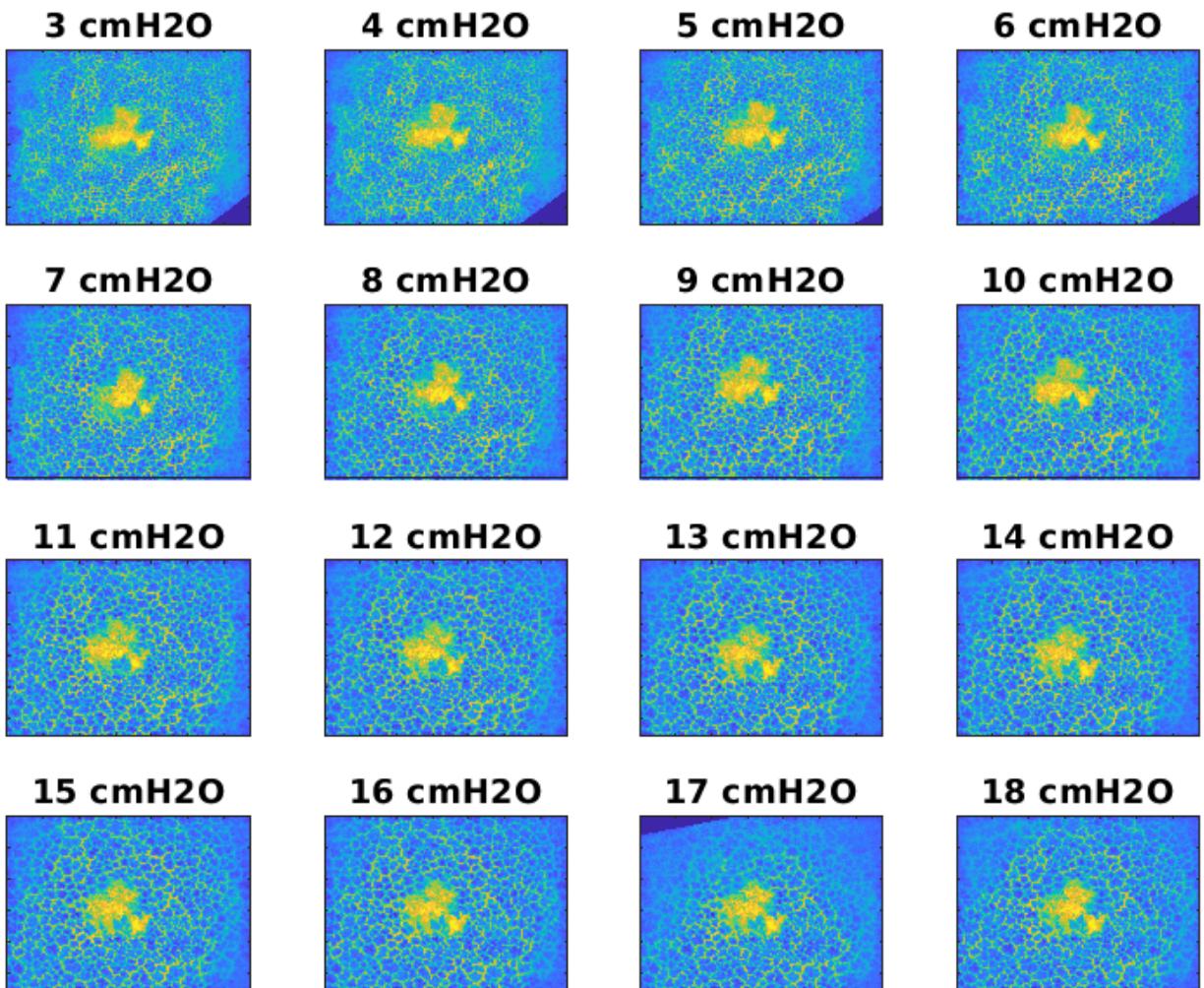
1118
1119
1120
1121
1122
1123
1124

Figure S5 | Assessing the piecewise-linear inverse solver on a simple, pseudo-3D, hyperelastic foam membrane. In Abaqus, we construct a 2D, hyperelastic foam membrane having a shear modulus of 2 kPa within a circular inclusion and having a shear modulus of 1 kPa outside the inclusion. We then stretch the model by 10% along the two directions parallel to the edges of the domain. The first row shows the ground-truth shear modulus distribution, while the second row provides the shear-modulus distribution estimated from the simulated incremental displacements and the piecewise-linear formulation of the inverse solver.



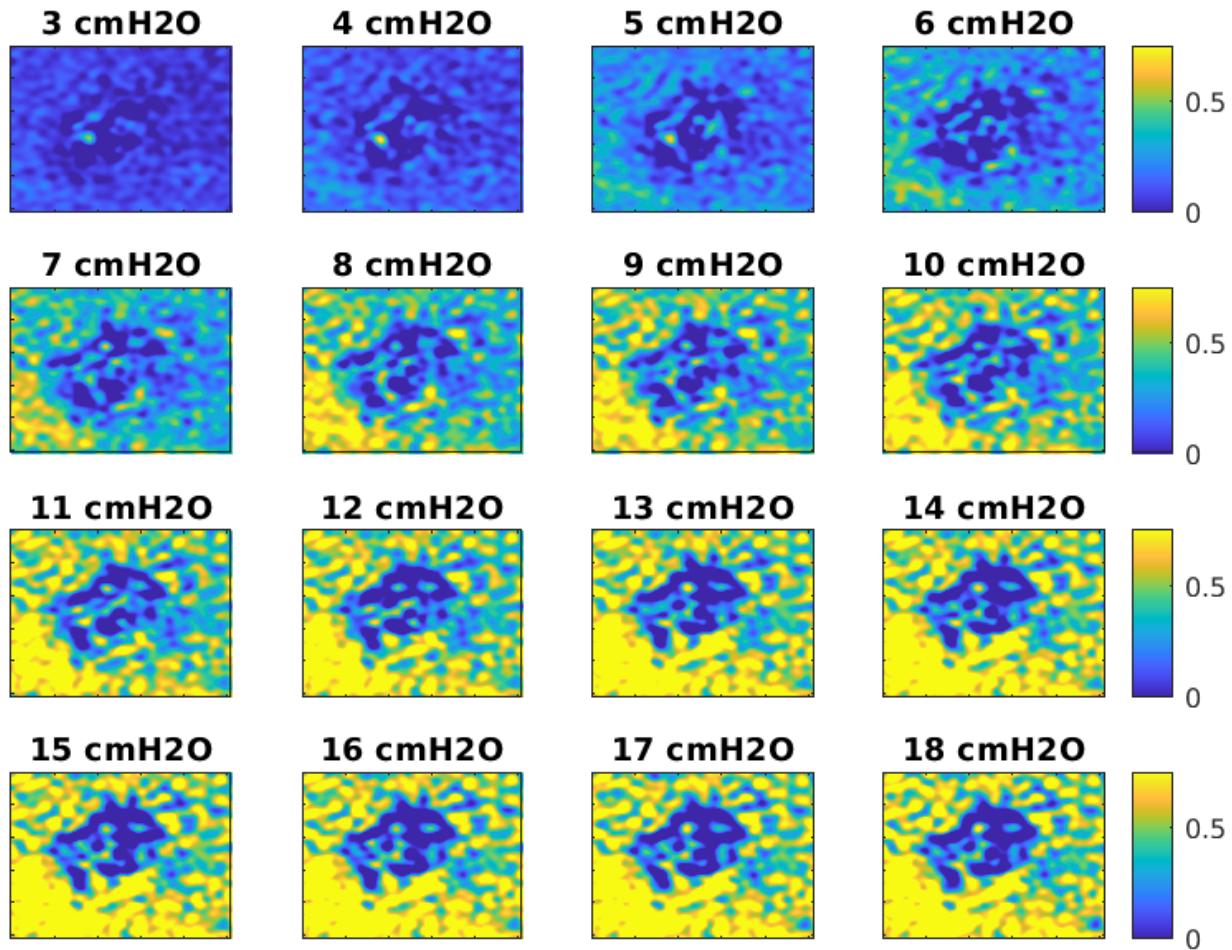
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure S6 | Determining the coherence length for statistically comparing mappings. (Top left) Normalized autocorrelation of the estimated stiffnesses for the lung with cancer (Fig. 5). (Top right) 100 profiles of the autocorrelation decay with the magnitude of the displacement of the copy of the original mapping. (Bottom left) The mean profile begins to plateau when the distance between the field and its displaced copy reaches 50 pixels, indicating that 50x50 patches within the image are mutually independent. (Bottom right) The histogram of the stiffnesses within the tumor and the surroundings after discretization of the stiffness mapping into 50x50 pixel patches. The difference between these distributions is statistically significant with a p-value of 1.25e-7.

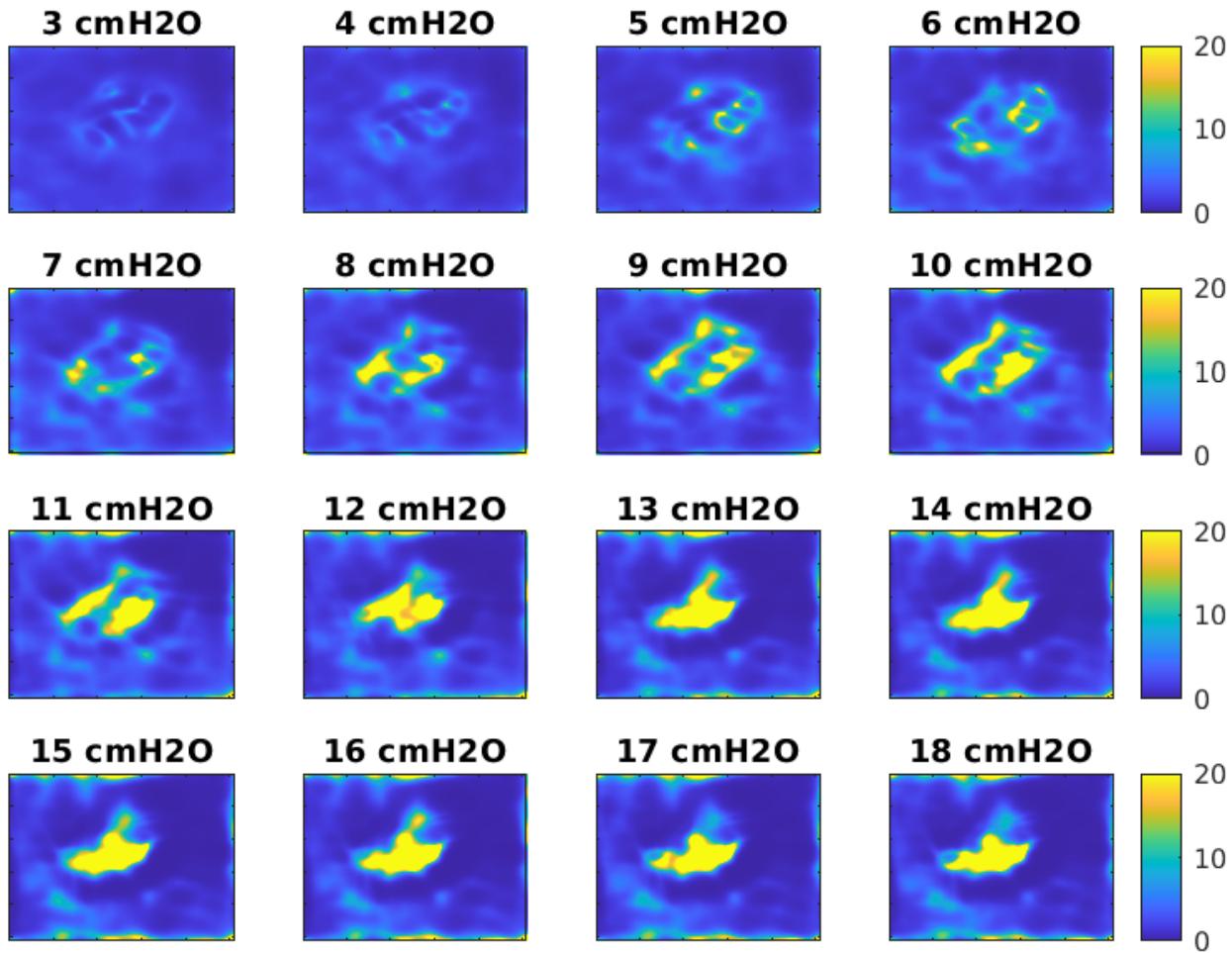


1134
1135
1136
1137
1138

Figure S7 | Images of the lung from 2 cmH₂O to 18 cmH₂O. During the course of our experiments, we collect images of the lung at pressures incrementing from 2 cmH₂O to 18 cmH₂O in increments of 1 cmH₂O.



1139
 1140 **Figure S8 | Strain maps from 2 cmH₂O to 18 cmH₂O.** We register images of the lung between consecutive pressures
 1141 and then compose the resulting displacement mappings. From the composed displacement mappings, we compute the
 1142 total areal strain throughout the domain at each pressure.
 1143



1144
1145
1146

Figure S9 | Stiffness maps from 2 cmH₂O to 18 cmH₂O. From the registered displacements, we also solve the inverse elasticity problem for the stiffnesses throughout the domain at each pressure.

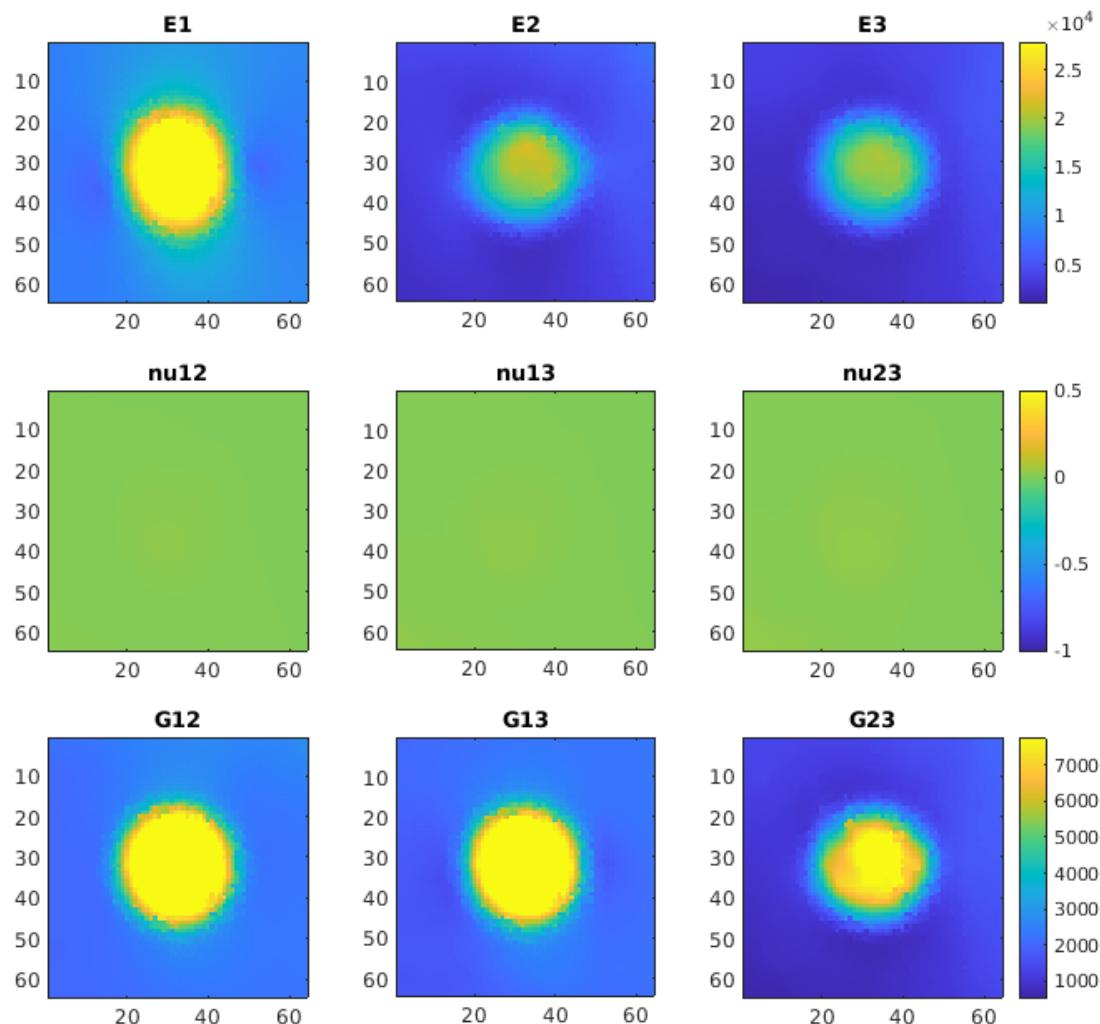
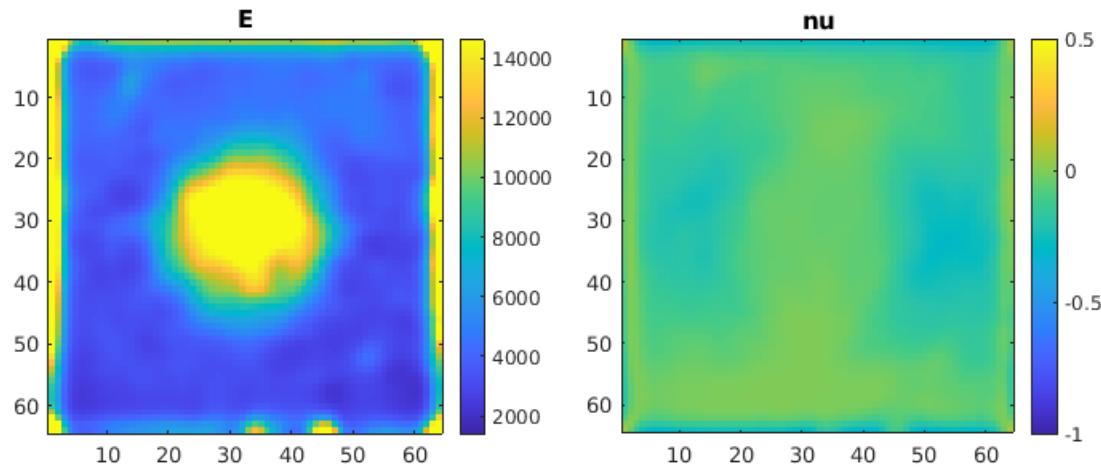
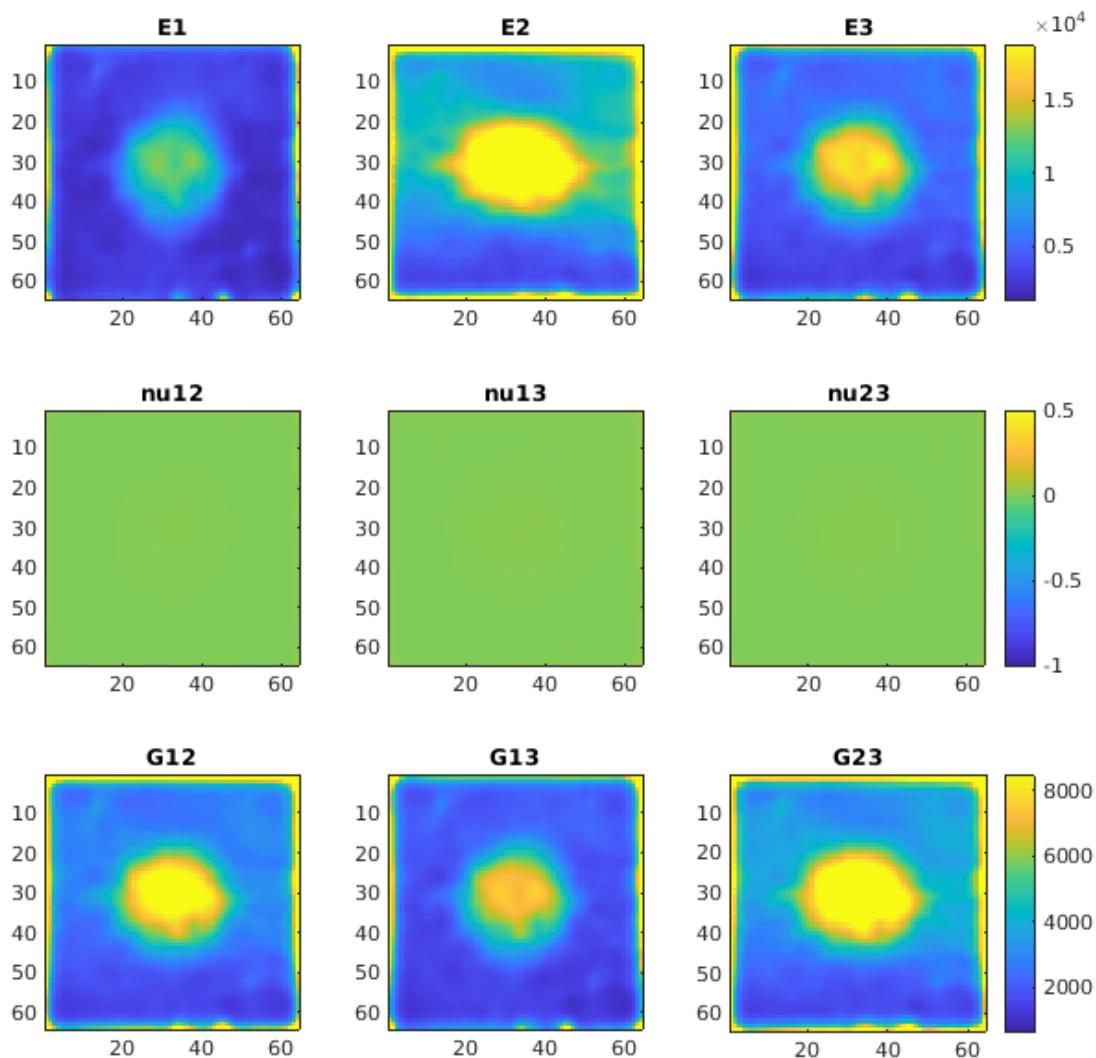


Figure S10 | The ground-truth, orthotropic stiffness of the finite-element model at 18 cmH₂O. As shown in Fig. 3, we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here, we show the ground-truth coefficients characterizing the elasticity tensor at 18 cmH₂O for comparison to the stiffness maps in S10 and S11. Units of the elasticity moduli and the shear moduli are in Pascals, while the Poisson ratios are unitless.



1155
1156
1157
1158
1159
1160

Figure S11 | The isotropic stiffness of the finite-element model at 18 cmH₂O. As shown in Fig. 3, we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here, we show the estimates isotropic coefficients approximating the elasticity tensor at 18 cmH₂O. Units of the elastic modulus are Pascals, while the Poisson ratio is unitless.



1161
1162
1163
1164
1165

Figure S12 | The estimated, orthotropic stiffness of the finite-element model at 18 cmH₂O. As shown in Fig. 3, we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here, we show the estimated orthotropic coefficients of the elasticity tensor at 18 cmH₂O. Units of the elastic moduli and the shear moduli are in Pascals, while the Poisson ratios are unitless.