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Abstract 15 

Lung diseases such as cancer substantially alter the mechanical properties of the organ with direct 16 

impact on the development, progression, diagnosis, and treatment response of diseases. Despite 17 

significant interest in the lung’s material properties, measuring the stiffness of intact lungs at sub-18 

alveolar resolution has not been possible. Recently, we developed the crystal ribcage to image 19 

functioning lungs at optical resolution while controlling physiological parameters such as air 20 

pressure. Here, we introduce a data-driven, multiscale network model that takes images of the lung 21 

at different distending pressures, acquired via the crystal ribcage, and produces corresponding 22 

absolute stiffness maps. Following validation, we report absolute stiffness maps of the functioning 23 

lung at microscale resolution in health and disease. For representative images of a healthy lung 24 

and a lung with primary cancer, we find that while the lung exhibits significant stiffness 25 

heterogeneity at the microscale, primary tumors introduce even greater heterogeneity into the 26 

lung’s microenvironment. Additionally, we observe that while the healthy alveoli exhibit strain-27 

stiffening of ~1.75 times, the tumor’s stiffness increases by a factor of 6 across the range of 28 

measured transpulmonary pressures. While the tumor stiffness is 1.4 times the lung stiffness at a 29 

transpulmonary pressure of 3 cmH2O, the tumor’s mean stiffness is nearly five times greater than 30 

that of the surrounding tissue at a transpulmonary pressure of 18 cmH2O. Finally, we report that 31 

the variance in both strain and stiffness increases with transpulmonary pressure in both the healthy 32 

and cancerous lungs. Our new method allows quantitative assessment of disease-induced stiffness 33 

changes in the alveoli with implications for mechanotransduction. 34 

 35 

1 Introduction 36 

Altered stiffness is one of the four physical hallmarks of cancer1,2, with implications for the 37 

development, progression, diagnosis, and treatment response of solid cancers. Biologically, 38 

elevated stiffness promotes proliferation3, invasiveness4, and metastasis5 through activation of 39 

mechanosensitive signaling pathways; clinically, an increase in stiffness is associated with an 40 

increased risk of breast cancer6 and mortality.7 In diagnostics, cellular and extracellular stiffness 41 

are traditional markers of cancer8,9 and are predictive of a tumor’s stage.10 In therapy, increased 42 

stiffness is linked to reduced efficiency of drug delivery.11 Furthermore, determining the stiffness 43 



of the tumors and their surrounding tissue is an essential precursor for estimating solid mechanical 44 

stresses, another physical hallmark of cancer.2,11-15 Despite this, the lung’s or a lung tumor’s 45 

stiffness has not been reported under the following conditions: (i) across a range of physiologically 46 

relevant pressures, (ii) noninvasively, i.e., without sectioning of the tissue, (iii) under realistic 47 

boundary conditions, and (iv) at microscale resolution. 48 

Although elastography encompasses a broad range of techniques for assessing the material 49 

properties of biological tissues, each method presents limitations when addressing our specific 50 

problem.7,9,16-25 The gold-standard method for microscale elastography is atomic-force 51 

microscopy26, which boasts extremely high-resolution, absolute measurements of stiffness. 52 

However, tissue preparation for AFM involves resection and submersion in saline, which disrupts 53 

the mechanical integrity of the sample and the alveolar air-liquid interface.27 Though CT and MRI 54 

elastography preserve the mechanical environment of the organ, these methods have poor 55 

spatiotemporal resolution, and they typically report strain rather than absolute stiffness.28,29 56 

Although strain elastography based on modalities like synchrotron microCT30 have near-micron 57 

spatial resolution, to our knowledge, these methods lack the control and temporal resolution 58 

needed for tracking the same region of interest at alveolar resolution across changes in inflation 59 

pressure. Optical elastography21,25,31 offers an alternative method for more precisely estimating the 60 

displacements throughout a biological sample. For example, recent papers have implemented 61 

optical elastography based on digital image correlation (DIC) to quantify the lung’s strain32 and 62 

stiffness;33 but in each case, the empirical method does not provide physiologically realistic 63 

boundary conditions, and the measurements are not at alveolar resolution. Using optical 64 

elastography based on deformable image registration, our group recently mapped the elasticity of 65 

resected biological samples at optical resolution either by embedding them in thermo-responsive 66 

hydrogels34 or by adhering precision-cut lung slices.35 However, these methods also involve 67 

resection of the organ and embedding the sample in saline, which does not preserve the organ’s 68 

boundary conditions and disrupts the air-liquid interface in the lung.  69 

With that goal in mind, we recently developed the crystal ribcage36, which preserves the integrity 70 

of the organ and emulates the in vivo boundary conditions seen by the lung, while at the same time 71 

enabling real-time microscopy of the entire surface during dynamic ventilation at cellular 72 

resolution (Fig. S1). Unlike intravital imaging methods37-39 wherein the lung is immobilized by 73 

vacuum or glue, and which thus compromise the breathing mechanics of the lung at the imaging 74 

site, the plasma-treated crystal ribcage provides a lubricious, geometrically realistic boundary 75 

condition, allowing mechanical characterization of the lung throughout the breathing cycle in 76 

health and disease. While the tissue preparation involves resection of the organ from the mouse’s 77 

thorax, the ex vivo lung, with its pleura intact, is imaged immediately after resection, and the lung 78 

can be vascularly perfused with complete media to maintain cell health throughout the course of 79 

imaging. Consequently, our platform preserves the in vivo physiological conditions of the lung. 80 

By developing an optical elastography platform based on the crystal ribcage apparatus, we can 81 

assess the mechanical properties of the ex vivo lung in health and disease with high spatiotemporal 82 

resolution and with physiologically realistic boundary conditions. 83 

Here, to accurately estimate the in vivo mechanical properties of the lung in health and disease, we 84 

adopt a multiscale-modeling approach that couples the microscale displacements estimated 85 

through deformable image registration and the mean, strain-dependent stiffnesses estimated using 86 



a nonlinear, finite-element model of the lung. We validate the multiscale model against a virtual, 87 

finite-element model of the lung with a cancerous tumor, demonstrating that the method is capable 88 

of accurately recovering the mechanical properties throughout the domain even in the presence of 89 

pathology. Upon applying the model to images of the lung within the crystal ribcage, we find that 90 

(i) the stiffness of the lung tissue increases nonlinearly with transpulmonary pressure across the 91 

full range of end-expiratory to end-inspiratory pressures; (ii) there is significant heterogeneity in 92 

material properties at alveolar resolution; (iii) the intratumor stiffness increasingly exceeds the 93 

extratumor stiffness across the entire range of pressures; and finally, (iv) the variance in stiffness 94 

increases with strain for both the healthy and cancerous tissue. While the present study 95 

characterizes the micromechanics of the healthy lung and the lung with cancerous tumors, the 96 

method has the potential to be applied to a wide range of disease states such as fibrosis, COPD, 97 

and respiratory infections.  98 

2 Methods 99 

 100 

2.1 Mouse model of lung cancer, crystal ribcage fabrication, and 101 

imaging 102 

2.1.1 Animal use ethics 103 

All experiments conformed to the ethical principles and guidelines under protocols set forth and 104 

approved by the Boston University Institutional Animal Care and Use Committee (protocol 105 

number PROTO201900086). All animal procedures were compliant with ARRIVE guidelines. 106 

Mice were housed in ambient temperature and humidity and 12-hour light–dark conditions under 107 

pathogen-free conditions at the Boston University Animal Science Center. No housing or handling 108 

exceptions were made for this study. 109 

2.1.2 Mice 110 

We used 11- to 23-week-old male and female mice for experimental procedures including healthy 111 

lung imaging and generating models of primary cancer, as previously described36. A breeding pair 112 

of transgenic B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (JAX, 007676, 113 

Jackson Labs)40, referred to by the abbreviation “mTmG”, was initially purchased to breed a 114 

colony; that colony was the source of all animals for healthy lung and primary cancer experiments. 115 

For the present study, which examines two representative mice from this colony, the healthy mouse 116 

was 11 weeks old at the time of imaging. The urethane mouse, serving as our model of primary 117 

cancer, was 23 weeks at the start of urethane dosing and 54 weeks at the time of imaging. Between 118 

these ages, the murine lung’s volume does not change appreciably both in our experience and per 119 

development studies.41 120 

2.1.3 Primary cancer model 121 

We adapted a previously described protocol42,43 to induce primary lung cancer in mTmG mouse 122 

lungs using urethane (Sigma U2500). A stock solution of urethane was prepared at a working 123 

concentration of 200 mg/mL in PBS. Mice were dosed with the urethane solution at 1 mg/g body 124 

weight, twice weekly for 5 weeks by intraperitoneal (IP) injection. Mice were sacrificed and lungs 125 

harvested for imaging in the crystal ribcage after 6-12 months. The maximum tumor size permitted 126 



for the study was 1.5 mm in diameter. Mice were excluded from the study after presenting with 127 

labored breathing, hunched posture, or ruffled fur due to tumor progression.  128 

 129 

2.1.4 Crystal ribcage fabrication 130 

The full development of the crystal ribcage platform is described in our previous work.36 Briefly, 131 

microCT scans of C57BL/6 mouse chest cavity (courtesy the Hoffman group at the University of 132 

Iowa44-46) were segmented and refined to create the native ribcage geometry. In successive additive 133 

manufacturing and fabrication steps the ribcage model was converted into the crystal ribcage mold 134 

that was thermoformed over to create the polystyrene crystal ribcage. The internal surface was 135 

engineered to be hydrophilic to allow the lung to glide over its surface, as in the native ribcage. A 136 

six degree of freedom arm was included to rotate the crystal ribcage about any axis to image across 137 

the entire the distal lung surface using either a top-down or bottom-up configured microscope. 138 

Because lung volume changes significantly with age,41 we have fabricated different, age-specific 139 

crystal ribcages to accommodate lungs of different sizes.36 140 

2.1.5 Lung preparation 141 

Isolated mouse lungs were ventilated and perfused as previously described36,47. Briefly, the mouse 142 

trachea was cannulated and the lungs dynamically ventilated (Kent Physiosuite Mouse Ventilator, 143 

Kent Scientific). The lungs were perfused by cannulating the pulmonary artery and left atrium, 144 

and perfusing serum-free RPMI cell culture medium (Corning) through the lung vasculature. After 145 

cannulating the trachea and mouse heart, the lung–heart block was excised and placed into the 146 

crystal ribcage for ex vivo microscopy under variable quasi-static positive air pressures. 147 

2.1.6 Lung microscopy 148 

As previously described36, ex vivo lungs, under quasi-static inflation conditions and within the 149 

crystal ribcage, were imaged using (i) an upright Nikon stereomicroscope with a 1x objective, and 150 

(ii) an upright Nikon CSU X1 spinning-disk confocal microscope with 1x, 2x, 4x and 10x 151 

objectives, using NIS-Elements acquisition software and with the environmental temperature 152 

control set to 37 °C.  153 

 154 

Z stacks of the diseased and healthy lungs were acquired on the confocal microscope using a 561 155 

nm laser at 20-50 ms exposure (50-20 frames per second) per frame. Voxel sizes varied based on 156 

objective used, with XY resolution varying from 1-10 μm and Z step sizes varying from 2.5-12.5 157 

μm. Total Z stack acquisition time was on the order of 6-15 seconds for each positive-end 158 

expiratory pressure (PEEP) condition. 159 

 160 

Before imaging, lungs were gradually recruited by slowly raising the intratracheal pressure to 18 161 

cmH2O, measured using custom sensors sensitive to 0.1 cmH2O, using a water column. The 162 

pressure was then reduced in decrements of 1 cmH2O down to 2 cmH2O. To allow the lung to 163 

relax to its steady-state condition, each pressure was maintained for 1 minute before imaging. 164 

 165 

2.2 Organ-scale geometry modeling  166 

Fig. 1 summarizes the multiscale model. In short, we (i) segment microCT images of the lung in 167 

MATLAB 2022b (The MathWorks, Inc.), (ii) construct a geometric model from the segmentation 168 

in SolidWorks 2021 (Dassault Systèmes), (iii) simulate ventilation of the organ-scale model in 169 



Abaqus 2022 (Dassault Systèmes) for a range of material coefficients, (iv) determine the 170 

coefficients that optimally reproduce the observed pressure-distension behavior of the lung in the 171 

crystal ribcage, (v) solve the inverse elasticity problem for the distribution of material properties 172 

throughout the microscale domain in arbitrary units, and finally, (vi) rescale these relative 173 

stiffnesses so that the mean value matches the stiffness of the organ-scale model, yielding or goal 174 

of recovering the absolute stiffnesses throughout the microscale domain. Given a three-175 

dimensional microCT image44-46 of the mouse thorax, we first construct three-dimensional 176 

geometric models (Fig. 1(a)) of the mouse lung and ribcage for finite-element analysis as follows.  177 

 178 

 179 
Figure 1 | Model description. (a) A Bayesian classifier segments the geometries of the lung and of the ribcage from 180 
microCT images44-46 of the mouse thorax, and the segmentation is then used to construct a solid geometry in 181 
SolidWorks for finite-element analysis. (b) After recruitment, the height, 𝐻, of the organ in the crystal ribcage is 182 
measured as the distending transpulmonary pressure decreases from 18 to 2 cmH2O in decrements of 1 cmH2O, with 183 
the pressure at the start of the nth step denoted by 𝑃𝑛, and the material constants of the finite-element model are chosen 184 
to reproduce this pressure-distension curve. (c) Deformable image registration determines how material points, 𝑥, 185 
within the lung tissue displace with microscale resolution in response to an increment in pressure of 1 cmH2O, 186 
producing the estimated displacements, 𝑢𝑟𝑒𝑔(𝑥), for that step, and (d) the inverse elasticity problem is solved using 187 
an implementation of the Adjoint-Weighted Equation formulation48 of the inverse elasticity problem in Fenics,49 an 188 
open-source Python framework for numerically solving differential equations in scientific computing applications. 189 
From the measured displacements, we recover an estimate of the elastic modulus in relative units, 𝐸relative, having 190 
unity mean. Upon rescaling this estimate so that its mean value matches that of the organ-scale model, 𝐸organ, we 191 
recover the absolute stiffness throughout the microscale domain, 𝐸absolute.  192 

 193 

2.2.1 Segmenting the lung and ribcage 194 

Due to significant variations in the lung’s intensity within a microCT volume, segmenting the 195 

organ by thresholding is unreliable. Consequently, we construct a naïve, Bayesian classifier—196 

trained on a single, two-dimensional slice of the image along with its ground-truth class labels—197 

to differentiate the lung class 𝐿 from its surroundings 𝑀.50 Let Ω ⊂ R3 be the position vectors of 198 

pixels within the domain of the microCT image44-46, so that 𝑥⃑ ∈ Ω is the position of a given voxel. 199 



The image can then be expressed as the scalar field 𝐼(𝑥⃑) ∶ Ω → 𝑅. Let 𝐹(𝑥⃑) ∶ Ω → 𝑅𝑛 map from 200 

each of these position vectors to the n-dimensional feature vectors extracted from 𝐼(𝑥⃑) ∶ Ω → 𝑅. 201 

In the present study, each feature vector has ten components, 𝜑𝑖(𝑥⃑) ∶ Ω → 𝑅, each corresponding 202 

to a transformation of the image volume by a different neighborhood operation. These components 203 

are listed in Table 1. 204 

 205 
Table 1 | Components of the feature vectors extracted from the microCT volume for building the Bayesian 206 
classifier. Each feature vector has ten components, each corresponding to a different transformation of the image 207 
volume. To normalize the components, each component is divided by its standard deviation. 208 

Feature-vector component Description 

𝜑1 Sobel filter with threshold 0.1 applied to 𝐼 

𝜑2 Sobel filter with threshold 0.4 applied to 𝐼 

𝜑3 Gaussian filter of variance 2 applied to 𝜑1  

𝜑4 Gaussian filter of variance 4 applied to 𝜑2 

𝜑5 Laplacian-of-Gaussian filter applied to 𝐼 

𝜑6 Gaussian filter of radius 4 applied to 𝐼 

𝜑7 Gaussian filter of radius 8 applied to 𝐼 

𝜑8 Gaussian filter of radius 16 applied to 𝐼 

𝜑9 The original image 𝐼 

𝜑10 Morphological dilation of 𝜑2 

 209 

Let ΩL ⊂ Ω be the subset of position vectors from a given slice of the image volume that have 210 

been manually labeled as belonging to the lung, and let ΩM ⊂ Ω be the remaining position vectors 211 

from the same slice. For the priors, we assume that the prior probability 𝑃(𝐿) =
|Ω𝐿|

|Ω𝐿|+|Ω𝑀|
, which 212 

implies by the axiom of normalization that 𝑃(𝑀) = 1 − 𝑃(𝐿). To estimate the likelihoods, 213 

𝑃(𝑥⃑ | 𝐿) and 𝑃(𝑥⃑ | 𝑀), we train Gaussian mixture models on the feature vectors 𝐹(Ω𝐿) and 214 

𝐹(Ω𝑀), respectively. Finally, from these definitions, we apply Bayes’ theorem to recover 𝑃(𝐿 | 𝑥⃑), 215 

the posterior probability that a given pixel belongs to the lung. 216 

 217 

(1) 𝑃(𝐿 | 𝑥⃑) =
𝑃(𝑥⃑ | 𝐿)𝑃(𝐿)

𝑃(𝑥⃑ | 𝐿)𝑃(𝐿)+ 𝑃(𝑥⃑ | 𝑀)𝑃(𝑀)
 218 

 219 

The lung segmentation 𝑆𝐿(𝑥⃑): Ω → {0,1} is then defined as 𝑆𝐿(𝑥⃑) = 1 if 𝑃(𝐿 | 𝑥⃑) > 0.5 and 220 

𝑆𝐿(𝑥⃑) = 0 otherwise. In the MATLAB implementation, these maps—𝐼(𝑥⃑), 𝐹(𝑥⃑), 𝑆𝐿(𝑥⃑), and 221 

𝑃(𝐿 | 𝑥⃑)—are represented as matrices.  222 

 223 

In contrast, the ribcage segmentation 𝑆𝑅(𝑥⃑): Ω → {0,1} is defined as 𝑆𝑅(𝑥⃑) = 1 if and only if the 224 

intensity 𝐼(𝑥⃑) exceeds some constant, volume-dependent threshold. In each case, the resulting 225 

segmentation contains multiple connected components, corresponding to features like the scapula, 226 

humerus, cartilaginous tracheal rings, and tissue outside of the lung; extracting the largest 227 

connected components from these initial segmentations isolates the desired region of interest.  228 

 229 

2.2.2 Constructing solid models of the lung and ribcage 230 

From the lung segmentation 𝑆𝐿(𝑥⃑), we approximate the surface of the diaphragm as follows. First, 231 

we find 𝑧max(𝑥, 𝑦) = max { 𝑧 | (𝑥, 𝑦, 𝑧) ∈ Dom(𝑆𝐿) ⋀ 𝑆𝐿(𝑥, 𝑦, 𝑧) = 1}. We then filter the mapping 232 



𝑧max(𝑥, 𝑦) using a mode filter. Finally, we resample points from this surface using a thin plate 233 

smoothing spline and save the point cloud to a text file.51 234 

 235 

To construct a point-cloud approximation of the ribcage, we then find the geometric centroid of 236 

the lung, 𝑥⃑𝑐, from 𝑆𝐿(𝑥⃑) using the following equation. 237 

 238 

(2) 𝑥⃑𝑐 =
1

∑ 𝑆𝐿(𝑥⃑)𝑥⃑⃑⃑∈Ω

∑ 𝑥⃑ 𝑆𝐿(𝑥⃑)𝑥⃑∈Ω  239 

 240 

For each slice of the volume, we then project rays from the projection of the centroid 𝑥⃑𝑐 onto the 241 

given slice at a dense collection of angles from 0 to 2𝜋 until each ray contacts a nonzero pixel on 242 

the interior of the ribcage segmentation 𝑆𝑅(𝑥⃑). A thin plate smoothing spline is then fit to these 243 

contact points to produce a surface approximating the ribcage, and a dense collection of points, 244 

𝑃𝑅, are sampled from this surface. Because the ribcage is open near the apex of the lung, these 245 

sampled points are artifactually peaked in the neighborhood of the apex. To correct this, the nodes 246 

near the apex are flattened by minimizing the following objective function. 247 

 248 

(3) ∑ (𝑘(𝑧𝑖 − 𝑍𝑖) − 𝑔𝑧)2 + 𝛼(∇𝑥𝑦𝑧𝑖)
2

+ 𝛽(∇𝑥𝑦
2 𝑧𝑖)

2
+ 𝛾 (∇𝑥𝑦(𝑧𝑖 − 𝑍𝑖))

2
+ 𝛿 (∇𝑥𝑦

2 (𝑧𝑖 −𝑖249 

𝑍𝑖))
2
 250 

 251 

In this equation, 𝑧𝑖 represents the z-component of the ith node’s position vector after correction, 𝑍𝑖 252 

represents the same component before correction, 𝑘 represents the stiffness of a virtual spring 253 

anchoring a point to its original height, and 𝑔𝑧 is a body force pulling these points toward the 254 

centroid of the ribcage. The remaining terms serve to regularize the optimization, penalizing the 255 

first and second derivatives of the height as well as changes in these derivatives. The sum is taken 256 

over the points near the apex of the lung. Finally, these point clouds of the lung and ribcage are 257 

saved as text files for subsequent import into SolidWorks. 258 

 259 

From these point clouds, we finally construct STEP (Standard for the Exchange of Product model 260 

data defined by ISO 1030352) representations of the ribcage and the diaphragm using the 261 

ScanTo3D feature in SolidWorks. By cutting the ribcage surface with the diaphragm surface, and 262 

filling the space enclosed between them, we recover a simplified model of the lung that is 263 

everywhere tangent to the ribcage. The STEP representations of the ribcage and the lung are then 264 

exported from SolidWorks. 265 

 266 

2.3 Organ-scale finite-element modeling 267 

2.3.1 Simulating the healthy lung 268 

To perform finite-element simulations of the organ, these STEP geometries are now imported into 269 

Abaqus 2022 (Dassault Systèmes). The ribcage is taken to be a discrete, rigid part and is meshed 270 

with rigid, triangular elements. The lung is taken to be a deformable part and is meshed with 271 

C3D10 quadratic tetrahedral elements, which are chosen over C3D4 linear tetrahedral elements 272 

for their tendency to converge more quickly with coarser mesh resolutions. In simulations of the 273 

healthy lung, the lung mesh consists of 34,541 nodes and 21,945 elements; the ribcage mesh 274 

consists of 64,093 nodes and 127,697 elements. The simulation was performed on the Boston 275 



University Shared Computing Cluster hosted by the Massachusetts Green High-Performance 276 

Computing Center distributing the load over 12 processors with 4 GB of RAM per processor, each 277 

simulation completed within 7 hours. 278 

 279 

Based on prior studies and on the lung’s microstructure and constitutive behavior—which 280 

resembles a hyperelastic, tetrakaidekahedral foam whose walls are comprised of elastin, type-I 281 

collagen, and type-III collagen—the lung is modeled using the Ogden-Hill model53 of a 282 

hyperelastic foam.54,55 The general form of the strain-energy density function is thus taken to be 283 

 284 

(4) 𝑈 = ∑ (2𝜇𝑖/𝛼𝑖
2)(𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3 +
1

𝛽𝑖
(𝐽−𝛼𝑖𝛽𝑖 − 1))𝑁

𝑖=1 , 285 

 286 

where 𝛼𝑖 is a dimensionless material parameter determining the nonlinear behavior of the stress-287 

strain relation, 𝛽𝑖 is a dimensionless material parameter given by the Poisson’s ratio as 𝛽𝑖 =288 

𝜈𝑖/(1 − 2𝜈𝑖), 𝜇𝑖 is a material parameter with units of stress determining the shear modulus during 289 

small strains from the reference configuration, 𝜆𝑖 is the 𝑖𝑡ℎ principal stretch, 𝐽 is the determinant 290 

of the deformation gradient, and 𝑁 is the number of terms in the model. For simplicity, we assume 291 

that the strain-energy density function consists of only one term, reducing the general equation to 292 

 293 

(5) 𝑈 = (2𝜇/𝛼2)(𝜆1
𝛼 + 𝜆2

𝛼 + 𝜆3
𝛼 − 3 +

1

𝛽
(𝐽−𝛼𝛽 − 1)). 294 

 295 

This strain-energy density function, and consequently the pressure, is linear in the parameter 296 

𝜇 and nonlinear in the parameter 𝛼. Therefore, if we simulate the distensions for parameters 297 

(𝜇, 𝛼), then the pressures required to produce the same distensions for any other (𝜇∗, 𝛼) are a 298 

simple rescaling of those for (𝜇, 𝛼). In practice, therefore, it is unnecessary to simulate ventilation 299 

for the same 𝛼 but different 𝜇 to determine the pressure-distension curve.  300 

 301 

The boundary conditions (Fig. S2) include immobilization of the ribcage, frictionless sliding 302 

contact between the lung’s upper surface and the ribcage, and negative pressure on the boundary 303 

of the lung. Although experiments involve positive-pressure ventilation, the simulation involves 304 

applying negative pressure to the external surface of the lung; the explanation for this apparent 305 

discrepancy is that the governing equations are symmetric under mutual inversion of the pressure’s 306 

sign and the surface normal’s direction, implying that the model is equally applicable to either 307 

mode of ventilation.56 Since the parts have been designed a priori to be tangent everywhere, initial 308 

contact between the surfaces is easy to establish. 309 

 310 

While previous studies56,57 have shown that gravity significantly influences the mechanics of the 311 

human lung, our model neglects the influence of gravity due to its smaller role in the mouse. 312 

Consider the conservation of linear momentum under conditions of static equilibrium, which has 313 

been rendered dimensionless58 by factoring out the lung density 𝜌lung, gravitational acceleration 314 

𝑔, lung height 𝐻lung, and transpulmonary pressure 𝑃tp. 315 

 316 

(6) 
𝑃tp

𝜌lung𝑔𝐻lung
∇∗ ⋅ 𝑃∗ + 𝐵∗ = 0 317 

 318 



Here, ∇∗, P∗, and B∗ represent the dimensionless divergence operator, the dimensionless tissue 319 

stress, and the dimensionless gravitational body forces, respectively. The tissue stress is known to 320 

be approximately equal to the transpulmonary pressure.59 Consequently, the dimensionless number 321 
𝑃tp

𝜌lung𝑔𝐻lung
 characterizes the magnitude of the tissue stress divergence relative to the magnitude of 322 

gravity. In the human lung, this dimensionless quantity remains below 1 for transpulmonary 323 

pressures up to 20 cmH2O, indicating the significant role of gravity in governing its mechanics. In 324 

the mouse lung, however, this dimensionless quantity is equal to 1 when the transpulmonary 325 

pressure is 1 cmH2O, but decreases linearly as the transpulmonary pressure increases; once the 326 

transpulmonary pressure reaches 10 cmH2O, this dimensionless number increases to 10, indicating 327 

that tensile forces within the tissue greatly exceed gravitational body forces. Based on this 328 

reasoning, we posit that it is reasonable to neglect gravity when modeling the murine lung, with 329 

the approximation improving at higher pressures. Additional reasoning is discussed in the results. 330 

 331 

Finally, it is important to note that the lung exhibits hysteresis, with its inflation characterized by 332 

one strain-energy density function and its deflation characterized by another.55 In this study, we 333 

elect to model the lung’s behavior during quasistatic deflation, so that our measurements used to 334 

calibrate the model are taken from states of higher pressure to states of lower pressure in near-335 

equilibrium. The same approach can easily be repeated to recover a model of the lung’s behavior 336 

during inflation.  337 

 338 

2.3.2 Simulating the cancerous lung 339 

To simulate the cancerous lung, the same process is repeated, but rather than being constant, the 340 

material field 𝜇(𝑋⃑) is defined as  341 

 342 

(7) 𝜇(𝑋⃑) = 𝐴𝑒−(𝑋⃑⃑−𝑋⃑⃑tumor)
𝑛

/𝜎2
+ 𝐵, 343 

 344 

where 𝑋⃑tumor is the centroid of the spherical tumor in material coordinates, 𝜎 determines its width, 345 

𝑛 controls the shape of the decay in magnitude with distance, and the coefficients 𝐴 and 𝐵 346 

determine the stiffness in the near and far fields. To illustrate, we note that 𝜇(𝑋⃗) approaches 𝐴 +347 

𝐵 as 𝑋⃗ approaches 𝑋⃗tumor, and that 𝜇(𝑋⃗) approaches 𝐵 as ‖𝑋⃗ − 𝑋⃗tumor‖ approaches infinity. 348 

Consequently, 𝐴 + 𝐵 is the stiffness at the tumor’s centroid, while 𝐵 is the stiffness far from the 349 

tumor. This material equation possesses three attractive properties: (i) it is spherically symmetric, 350 

corresponding to our interpretation that the equation represents a spherical tumor, (ii) stiffness 351 

decays with distance from the centroid, reflecting our intent that the tumor is stiffer than its 352 

surroundings, and (iii) it is differentiable and smooth, making it easier to work with during 353 

numerical computations. When 𝑛 = 2, the field is a multidimensional normal distribution, and as 354 

𝑛 → ∞, the field approaches an indicator function for a ball. In our studies, we chose 𝑛 = 4.  355 

 356 

The ribcage mesh is the same as before, while the lung mesh now consists of 12,679 nodes and 357 

7,766 elements. Adaptive mesh refinement, which was necessary for convergence in the 358 

neighborhood of the tumor, yielded a mesh with fewer elements relative to the simulation of the 359 

healthy lung. The simulation was performed on the Boston University Shared Computing Cluster 360 

hosted by the Massachusetts Green High-Performance Computing Center; distributing the load 361 

over 12 processors with 4 GB of RAM per processor, the simulation completed within 4 hours. 362 



 363 

2.3.3 Calibrating the organ-scale finite-element model 364 

The finite-element simulation is repeated for different material parameters within a neighborhood 365 

of the values yielding optimal agreement between empirical and in silico outcomes. When the 366 

strain-energy density function is restricted to a single term, the parameter 𝜇 represents the 367 

material’s shear modulus during small strains, as can be shown by a Taylor expansion of the strain-368 

energy density function about 𝜆 = 1. From the stress-strain curve in the linear regime, when the 369 

strain increases linearly with distending pressure, we can estimate the Young’s modulus as the 370 

ratio of the increment in strain to the increment in pressure. From Fig. 2(c), we estimate that 371 

incrementing the pressure from 0 kPa to 5 kPa yields an increment in strain of 0.2. Following this 372 

reasoning, we find that 𝐸 ≈ 5 kPa/0.2 = 2.5 kPa. Assuming a Poisson’s ratio of 𝜈 = 0.2,60 this 373 

value for the Young’s modulus corresponds to a shear modulus of 𝜇 = 𝐸/(2(1 + 𝜈)) ≈ 1 𝑘𝑃𝑎. 374 

 375 

Based on these initial estimates, we perform simulations for 𝜇 = 1 kPa and the dimensionless 376 

parameter 𝛼 ranging from 6 to 16. The outcomes of these simulations are then used to construct a 377 

calibration surface 𝑃(𝜆𝐻 , 𝜇, 𝛼), where 𝜆𝐻 is the stretch of the finite-element model along the 378 

vertical axis, 𝜇 and 𝛼 are the material parameters mentioned earlier, and 𝑃 is the transpulmonary 379 

pressure required to distend the finite-element model to this degree of stretch. From the observed 380 

distensions of the lung in the crystal ribcage (Fig. 1(b)) for pressures ranging from 2 to 18 cmH2O, 381 
(𝜆𝑜𝑏𝑠, 𝑃𝑜𝑏𝑠), we then determine the maximum likelihood assignments for 𝜇 and 𝛼 by minimizing 382 

the following objective function.50  383 

 384 

(8) ∑ (𝑃(𝜆𝑜𝑏𝑠, 𝜇, 𝛼) − 𝑃𝑜𝑏𝑠)2
(𝜆𝑜𝑏𝑠,𝑃𝑜𝑏𝑠)  385 

 386 

This optimization procedure is not computationally intensive; running on a personal laptop with 387 

16 GB of RAM and a typical CPU, for example, the process completes within seconds. The 388 

outcome is a single, point estimate of the coefficients that characterize the organ-scale behavior. 389 

It should be noted that, because the model is linear in the parameter 𝜇, we can in practice simplify 390 

the problem of determining the optimal parameters by transforming the objective function as 391 

follows. 392 

 393 

(9) ∑ (𝜇𝑃(𝜆𝑜𝑏𝑠, 1, 𝛼) − 𝑃𝑜𝑏𝑠)2
(𝜆𝑜𝑏𝑠,𝑃𝑜𝑏𝑠)  394 

 395 

This implies that, rather than sampling the function 𝑃(𝜆𝑜𝑏𝑠, 𝜇, 𝛼), we only need to sample the 396 

function 𝑃(𝜆𝑜𝑏𝑠, 1, 𝛼) in our finite-element simulations. In contrast, because the model is nonlinear 397 

in 𝛼, an analogous transformation is not possible for 𝛼; this is why we limit the constitutive model 398 

to a single term. 399 

 400 

2.4 Inverse elasticity problem at the microscale 401 

2.4.1 Measuring the displacements using image registration 402 

To measure the displacements caused by a change in distending pressure applied to the lung at 403 

cellular resolution, we leverage deformable image registration61 (Fig. 1(c)). To prepare the images 404 

for registration, we perform an optimization to autonomously correct the bulk rotation of the 405 

material due to the natural curvature of the crystal ribcage away from the imaging plane. Because 406 



the image-registration algorithm does not, in practice, yield good estimates for the displacements 407 

along the shallow depth axis, we project the rotationally corrected images along this axis. 408 

 409 

After preprocessing the images, we invoke the image-registration algorithm. This algorithm, which 410 

has been adapted from earlier literature61, formulates the inverse-elasticity problem as an inference 411 

problem on a Markov Random Field (MRF) to automatically determine the displacements 412 

necessary to match images of the lung at two different pressures. The observable variables of the 413 

Markov Random Field are modality-independent neighborhood descriptors (MIND) extracted 414 

from the image,62 while the latent variables are the displacements necessary to minimize the sum 415 

of squared differences in these descriptors across the two images; edges between the latent 416 

variables of neighboring observables represent the constraint that displacements vary smoothly 417 

throughout the domain. Let 𝑶 and 𝑻 be the original and deformed images, respectively. 418 

Furthermore, let 𝑊(𝑶, 𝒖) be the image produced by warping the image 𝑶 using the displacements 419 

𝒖. Lastly, let the function 𝐷 map an image to its MIND representation. Then the registration 420 

algorithm finds the displacements that minimize the objective function 421 

 422 

(10) ∑ (𝐷(𝑊(𝑶, 𝒖)) −  𝐷(𝑻))
2

𝑥⃑∈Ω , 423 

 424 

where the sum is taken over the points in the image domain, Ω. From these displacements and the 425 

material properties of the calibrated finite-element model, we next find the distribution of 426 

stiffnesses throughout the domain, as described in the next section. 427 

 428 

2.4.2 Solving for the shear modulus parameter 429 

To determine the relative stiffnesses of the material throughout the image domain, we leverage a 430 

Python implementation of the Adjoint-Weighted Equation (AWE) formulation of the inverse-431 

elasticity problem.48 Let 𝑋⃑ ∈ 𝛀𝟎 ⊂ 𝑹𝟐 be the coordinates of material points of a deformable body 432 

in the reference configuration, and let 𝑥⃑ ∈ 𝛀𝟏 ⊂ 𝑹𝟐 be the coordinates of the same material points 433 

after some deformation. Because soft tissues deform continuously, there exists a continuous 434 

function 𝝍 ∶ 𝑹𝟐 → 𝑹𝟐 such that 𝑥⃑ = 𝝍(𝑋⃑). Given the registered displacements, 𝒖(𝑋⃑) = 𝝍(𝑋⃑) −435 

𝑋⃑, along with the definition of the deformation gradient, 𝑭(𝑋⃑) = ∇𝑋⃑⃑𝝍(𝑋⃑), we can recover the 436 

deformation gradient tensor in terms of 𝑋⃑.63 437 

 438 

(11) 𝑭(𝑋⃑) = 𝑰 + 𝛁𝑋⃑⃑𝒖(𝑋⃑) 439 

 440 

From the deformation gradient, we next determine the Cauchy-Green strain tensor field, 𝑪(𝑋⃑), as 441 

follows. 442 

 443 

(12) 𝑪(𝑋⃑) = 𝑭(𝑋⃑)𝑻𝑭(𝑋⃑) 444 

 445 

By the spectral theorem and the manifest symmetry of 𝑪(𝑋⃑), we subsequently determine the 446 

eigenvalues, 𝜆1(𝑋⃑)2 and 𝜆2(𝑋⃑)2, of this tensor.  447 

 448 

The areal strain, which is a scalar field representing the fractional change in the material’s area 449 

relative to its value in the reference configuration, is then given by 450 



 451 

(13) 𝜀𝐴(𝑋⃑) = 𝜆1(𝑋⃑)𝜆2(𝑋⃑) − 1. 452 

 453 

The whole organ’s stress-strain behavior is well-described by a hyperelastic material law, where 454 

the nominal stress is the derivative of the strain-energy function with respect to the principal 455 

nominal stretches. If we assume that this model holds at all length scales, down to the cellular scale 456 

and for both healthy and diseased tissue, then we can use this same constitutive model when 457 

solving the inverse problem. Therefore, from the same strain-energy function introduced earlier, 458 

we recover the principal components of the first Piola-Kirchhoff stress tensor as follows. 459 

 460 

(14) 𝑃𝑖 =
𝜕𝑊

𝜕𝜆𝑖
= 𝜇(𝑋⃑)(

2

𝛼𝜆𝑖
(𝜆𝑖

𝛼 − 𝐽−𝛼𝛽)) 461 

 462 

where 𝛽 =
𝜈

1−2𝜈
. In evaluating the above expression, we need to compute the Jacobian determinant 463 

𝐽 = 𝜆1𝜆2𝜆3, but image registration only yields the stretches tangential to the lung’s surface. 464 

Consequently, we approximate 𝐽 as 𝐽 ≈ (𝜆1𝜆2)3/2. Finite-element simulations of the whole organ 465 

indicate that this approximation generally holds within 10-15% error (Fig. S2). 466 

 467 

For a hyperelastic material, it is well-known that the eigenvectors of the stress are aligned with the 468 

eigenvectors of the strain. Therefore, if 𝑣⃑𝑖 are the principal directions of the right Cauchy-Green 469 

strain tensor, the first Piola-Kirchhoff stress tensor becomes 470 

 471 

(15) 𝑷 = 𝑃1𝑣⃑1 ⊗ 𝑣⃑1 + 𝑃2𝑣⃑2 ⊗ 𝑣⃑2. 472 

 473 

We can simplify the above expression by defining the tensor 𝑨(𝑋⃑) = 𝑷(𝑋⃑)/𝜇(𝑋⃑), leading to the 474 

following simplified form. 475 

 476 

(16) 𝑷(𝑋⃑) = 𝜇(X⃑⃑⃑)𝑨(𝑋⃑) 477 

 478 

Here, 𝜇(𝑋⃑) is unknown while 𝑨(𝑋⃑) is completely determined by the displacements. At static 479 

equilibrium and in the absence of body forces, the conservation of linear momentum requires that 480 

the divergence of the first Piola-Kirchhoff stress, 𝑷(𝑋⃑), with respect to the material coordinates, 481 

𝑋⃑, vanishes.  482 

 483 

(17) ∇𝑋⃑⃑ ⋅ 𝑷(𝑋⃑) = 0 484 

 485 

From our earlier simplified form for 𝑷(𝑋⃗), the condition of static equilibrium becomes 486 

 487 

(18) ∇𝑋⃑⃑ ⋅ (𝜇(𝑋⃑)𝑷(𝑋⃑)) = 0. 488 

 489 

In the AWE formulation of the inverse elasticity problem for a linearly elastic material, we seek a 490 

variational solution for 𝜇(𝑋⃗) to the above differential equation. This yields a map 𝜇(𝑋⃑) of relative 491 

stiffnesses, whose scale is determined by the specified-mean boundary condition.64 After solving 492 



the inverse problem for 𝜇(𝑋⃑), we rescale 𝜇(𝑋⃑) so that the mean stiffness throughout the domain 493 

matches the organ-scale stiffness determined by calibrating the finite-element model.  494 

 495 

From Holzapfel’s equation (6.180)63, which is reproduced below as equation (19), along with the 496 

strain-energy function mentioned earlier, we determine the components of the elasticity tensor, ℂ, 497 

at each state of deformation for each position within the domain. In the following equation, 𝑆𝑎 498 

Pare the principal values of the second Piola-Kirchoff stress tensor, 𝜆𝑎 are the principal stretches, 499 

and 𝑁̂𝑎 are the principal directions of the deformation. 500 

 501 

(19) ℂ = ∑
1

𝜆𝑏

3

𝑎,𝑏=1

𝜕𝑆𝑎

𝜕𝜆𝑏
𝑁̂𝑎 ⊗ 𝑁̂𝑎 ⊗ 𝑁̂𝑏 ⊗ 𝑁̂𝑏 502 

+ ∑
𝑆𝑏−𝑆𝑎

𝜆𝑏
2−𝜆𝑎

2 (𝑁̂𝑎 ⊗ 𝑁̂𝑏 ⊗ 𝑁̂𝑎 ⊗ 𝑁̂𝑏

3

𝑎,𝑏=1,𝑎≠𝑏
+ 𝑁̂𝑎 ⊗ 𝑁̂𝑏 ⊗ 𝑁̂𝑏 ⊗ 𝑁̂𝑎) 503 

 504 

Finally, we perform an iterative optimization to determine the Young’s modulus and Poisson’s 505 

ratio fields that optimally approximate the components this tensor. This Young’s modulus is what 506 

we ultimately report as the lung’s stiffness (Fig. 1(d)). 507 

 508 

2.5 Statistical comparison of intergroup and intragroup strains and 509 

stiffnesses 510 

To characterize changes in strain and stress fields with pressure, we discretized the domain by 511 

coherence length into 50x50 pixel patches (See Fig. S5), the dimensions of which were chosen to 512 

minimize the correlation between image patches. We then computed the mean within each patch, 513 

along with the standard deviation across patches within the same domain. With these means and 514 

standard deviations, P-values were computed (i) across image patches within the same field in 515 

order to examine the significance of spatial variations in strain and stiffness and (ii) across 516 

pressures within the same patch in order to examine the significance of pressure-driven changes 517 

in strain and stiffness within a given patch.  518 

 519 

3 Results and discussion 520 

3.1 Validating the finite-element model 521 

We begin by describing and assessing the finite-element model of the organ, which constitutes the 522 

first stage of the system. The image classifiers described in the methods yield high-quality 523 

segmentations of the lung and the ribcage. These segmentations are subsequently used to construct 524 

a realistic, though simplified, model of the lung within the crystal ribcage (Fig. 2(a)). We find that 525 

the pressure-stretch curve of the finite-element model changes smoothly with the parameter 𝛼 of 526 

the hyperelastic foam model; from these curves, we construct a smooth surface approximating the 527 

transpulmonary pressure as a function of stretch 𝜆 and material parameter 𝛼 (Fig. 2(b)). Having 528 

characterized how the finite-element model’s response changes with 𝛼, we solve for the values of 529 

𝜇 and 𝛼 that maximize the likelihood of observing the distensions that we measure in the crystal 530 

ribcage; for the data collected in the present study, we determine that the optimal value for 𝜇 is 531 

0.61 kPa and for 𝛼 is 12.4 (Fig. 2(c)) through the optimization described earlier. The general form 532 

of the hyperelastic foam model consists of multiple additive terms. Although a greater number of 533 

terms should in theory lead to a better approximation of the data, fitting a model with multiple 534 



terms is complicated by the model’s nonlinearity in the 𝛼 parameter, so that it is not possible to 535 

reuse the calibration surface to fit successive terms beyond the first. For simplicity and because 536 

the subsequent outcome is adequate for our purposes, we settle for a single term. We observe that 537 

the qualitative distension of the finite-element model matches that of the real lung in the crystal 538 

ribcage (Fig. 2(d)). Despite the finite-element model’s homogeneous material properties, its strains 539 

(Fig. 2(e)) and stresses (Fig. 2(f)) grow increasingly heterogeneous across the lung’s surface as the 540 

pressure increases, with the highest values occurring near the spine. 541 

 542 

 543 
Figure 2 | Constructing the finite-element model of the lung from a microCT volume and organ-scale pressure-544 
distension data. (a) A Bayesian classifier segments the mouse lung and ribcage from a microCT volume44-46 of the 545 
mouse thorax. From the segmentations, we construct smooth point clouds approximating the interior surfaces of the 546 
ribcage and of the diaphragm. From these point clouds, we construct solid models in SolidWorks and then mesh those 547 
models in Abaqus. (b) Pressure versus vertical stretch, λ, is recorded for simulations across a range of values for the 548 
material parameter 𝛼. Because the model is linear in the material parameter 𝜇, this allows us to produce a predictive 549 
model of transpulmonary pressure versus distension for a wide range of material coefficients based on a limited 550 
number of forward simulations. The parameter 𝛼 controls the nonlinearity of the model. The parameter 𝜇 controls the 551 
initial slope of the model in the small-strain regime. Having characterized the model in (b), we can solve (c) for the 552 
optimal material coefficients from stereomicroscope images of the lung in the crystal ribcage shown in (d). (e, f) 553 
Strains and stresses in the lung throughout the finite-element model. 554 
 555 

3.2 Validating the multiscale model 556 



After constructing the finite-element model and calibrating its material constants, we proceed to 557 

evaluate the system’s predictive performance. To do so, we modify the calibrated finite-element 558 

model to contain a stiffer inclusion representing a tumor (Fig. 3(a)). From the displacements of 559 

this model over a range of pressures, we solve the inverse elasticity problem in the vicinity of the 560 

tumor. Across the entire range of distending pressures, we find that the total areal strain (Fig. 3(b)) 561 

is highly correlated with the ground-truth stiffness (Fig. 3(c)). We further find that the stiffness 562 

estimate produced by our multiscale model (Fig. 3(d)) is well-correlated with the ground truth. 563 

Although the prediction is somewhat biased relative to the ground truth, we find that the mean of 564 

the predicted stiffness is strongly correlated with the mean of the ground truth both inside and 565 

outside the tumor (Fig. 3(e)). In a simpler setting, preliminary studies also indicate that the 566 

nonlinear formulation of the inverse elasticity problem accurately predicts the stiffness distribution 567 

throughout a 2D, hyperelastic membrane (Fig. S4). In contrast, preliminary studies also indicate 568 

that a piecewise-linear formulation of the inverse elasticity problem fails to do so (Fig. S5). 569 

 570 



 571 
Figure 3 | End-to-end validation of the whole-organ and microscale models. The validation includes applying the 572 
multiscale model to a finite-element model whose material field contains an inclusion representing a cancerous tumor. 573 
(a) The material field superposed over the deformed geometry of the finite-element model across a range of distending 574 
pressures. (b) The total areal strain at a subset of these same pressures. (c) The ground-truth stiffness distribution 575 
throughout the finite-element model determined from material field, the hyperelastic constitutive equation, and the 576 
state of deformation. (d) The corresponding stiffnesses in absolute units (kPa) throughout the domain determined by 577 
our model based on the simulated displacements. (e) The cumulative areal strain and the absolute stiffness change 578 
nonlinearly with the distending pressure. (e)(i) The average, nominal areal strain inside the tumor is consistently lower 579 
than the same outside the tumor. (e)(ii) The mean value of the ground-truth stiffness distribution is strongly correlated 580 
with the stiffness distribution predicted by the multiscale model. 581 
 582 

3.3 Lung stiffness at alveolar resolution 583 



After validating the model, we next apply the model to real images of the lung in the crystal ribcage 584 

to measure the stiffness of the lung in absolute units and at alveolar resolution. First, we apply the 585 

model to images of the same region of interest in the healthy lung over a range of distending 586 

pressures (Fig. 4(a)). To demonstrate the accuracy of the registration, we warp them back to the 587 

reference configuration at 2 cmH2O (Fig. 4(b)). We observe that the areal strain varies substantially 588 

on the length scale of an individual alveolus, with airspaces stretching much more than the septum 589 

(Fig. 4(c)). Likewise, we see that the stiffness varies on a similar length scale, and we report for 590 

the first time, a noninvasive measurement of the absolute stiffness of the lung’s surface both in the 591 

airspace and in the septum; stiffnesses within the airspace are close to 1-2 kPa, while stiffnesses 592 

in the septum commonly reach as high as 15 kPa at higher pressures (Fig. 4(d)). These values are 593 

consistent with measurements taken using other techniques like atomic-force microscopy (AFM), 594 

for which estimates for the lung’s shear modulus commonly range from 0.5 to 3 kPa.65,66 Another 595 

study67 predicted that the Young’s modulus of the septum ranges from 12 kPa at low 596 

transpulmonary pressures to 140 kPa at high transpulmonary pressures; the lower bound is very 597 

close to our estimate, while the upper bound is of the same magnitude as ours (Fig. 4(d)). Perhaps 598 

most significantly, we observe that the pattern of stiffnesses throughout the domain is conserved 599 

across the entire range of pressures. Finally, we note that the mean stiffness of the tissue rises 600 

linearly up to 7 cmH2O, and then the stiffness quickly plateaus with increasing transpulmonary 601 

pressure (Fig. 4(e-f)). Based on the scheme previously described in the methods (Fig. S6), P-values 602 

computed using Student’s t-test indicate that the change in strain across pressures is statistically 603 

significant with p < 0.05 from 5-7 cmH2O, 7-12 cmH2O, and 12-18 cmH2O (Fig. 4(f)). On the 604 

other hand, the change in stiffness is only statistically significant at lower pressures, owing to 605 

higher variance in the stiffness and its apparent plateau at higher pressures. We also predict that 606 

the variance in the lung’s stiffness increases with distension (Fig. 4(f)); this prediction is consistent 607 

with our previous, independent measurement of the lung’s strain-stiffening behavior from manual 608 

measurements of alveolar areas across different pressures.36 To our knowledge, this is the first 609 

time that the lung’s stiffness, and its change with distension, has been measured under ex vivo 610 

conditions with physiologically realistic boundary conditions in absolute units and at alveolar 611 

resolution.  612 



 613 



Figure 4 | Providing the alveolus-scale stiffness map during the full breathing cycle in the healthy lung. (a) The 614 
same region of interest within a healthy lung from a transgenic, mTmG mouse expressing the tdTomato fluorescent 615 
label at four different distending pressures. (b) The result of computationally deforming these images back to the 616 
lung’s geometry at 2 cmH2O using the registered displacements. The displacement maps used to deform these images 617 
were subsequently used as inputs to the multiscale model to determine the distribution of stiffnesses throughout the 618 
healthy tissue. (c) The areal strain relative to the geometry at 2 cmH2O. We observe that the qualitative pattern in the 619 
computed strains is largely conserved across all pressures. Row (d) depicts the corresponding stiffnesses in absolute 620 
units throughout the domain determined by applying our model to these images. As with the areal strain maps, the 621 
stiffness maps are qualitatively similar across the whole range of pressures. (e) The histogram and corresponding 622 
Gamma distribution of the stiffnesses throughout the domain, demonstrating that the mean and the heterogeneity in 623 
the lung’s stiffness increase with distension. (f) The nonlinear change in mean strain and mean stiffness with the 624 
distending pressure. The error bars represent the standard error from the mean, computed by discretizing the domain 625 
into a coherence length of 50x50 pixel patches (See Fig. S6). Computed using Student’s t-test, P-values are shown for 626 
the change in strain (and for the change in stiffness) from 5-7 cmH2O, 7-12 cmH2O, and 12-18 cmH2O; the strains are 627 
consistently statistically significant, while the stiffnesses are begin statistically significant and then decrease in 628 
significance. We further observe that the variance in the stiffness increases with transpulmonary pressure, which is 629 
consistent with our previous finding on relative stiffness.36 630 
 631 

Having applied the model to the healthy lung, we do the same for images of the lung with cancer 632 

(Fig. 5(a)) to characterize the effect of cancer on the lung’s material properties. As with the 633 

previous figure, the second row (Fig. 5(b)) shows the result of deforming these images back to the 634 

geometry of the lung at 2 cmH2O using the registered displacements. Here, we observe that the 635 

strain inside the tumor is substantially lower than the strain outside the tumor across all measured 636 

pressures (Fig. 5(c)). Consistent with these observations, the estimated stiffness inside the tumor 637 

is substantially higher than the stiffness outside at lower pressures (Fig. 5(d)). Whereas the 638 

majority of stiffnesses in the healthy lung are below 5 kPa at pressures up to 10 cmH2O, a large 639 

fraction of the tumor exceeds these stiffnesses at these same pressures (Fig. 5(f)). Using the method 640 

described previously (Fig. S6), P-values computed using Student’s t-test indicate that the change 641 

in strain across pressures within the lung tissue is statistically significant with p < 0.05 from 5-7 642 

cmH2O, 7-12 cmH2O, and 12-18 cmH2O, while changes in the strain within the tumor are 643 

insignificant at 7-12 cmH2O and 12-18 cmH2O (Fig. 5(f)). Once again, in both types of tissue, the 644 

change in stiffness decays in significance with increasing pressure. On the other hand, at the same 645 

pressure, the difference in strain and stiffness across groups (i.e. lung or tumor) is statistically 646 

significant with p < 0.05 across all pressures. 647 

 648 

Relative to the healthy case, we also observe that the stiffness of the tissue outside the tumor is 649 

depressed by about 20%, suggesting that the tumor may remodel the lung even in regions that are 650 

not visible by light microscopy alone; whether that remodeling is due to the tumor visible in the 651 

images or due to other tumors that are below the lung’s surface is not clear. Moreover, while the 652 

mean stiffness of the lung tissue increases in nonlinear fashion as in the case of the healthy lung, 653 

the mean stiffness of the tumor increases much more quickly (Fig. 5(e)). In summary, this 654 

measurement represents the first measurement of the absolute stiffness of a lung tumor under 655 

physiologically realistic boundary conditions and at alveolar resolution, and we see evidence of 656 

remodeling beyond the visible bounds of the tumor. Supplemental figures (Fig. S7-S9) depict these 657 

same maps across the entire range of transpulmonary pressures. 658 



 659 



Figure 5 | Applying the model to the lung with cancer. (a) The same region of interest within a lung presenting with 660 
primary cancer from a transgenic, mTmG mouse expressing the tdTomato fluorescent label at four different distending 661 
pressures. These images were used as inputs to the multiscale model to determine the distribution of stiffnesses 662 
throughout the tumor and its surroundings. (b) The result of computationally deforming these images back to the 663 
geometry at 2 cmH2O using the registered displacements. (c) The corresponding areal strain, relative to the geometry 664 
at 2 cmH2O, induced by the given increase in transpulmonary pressure. As with healthy tissue, the range of areal 665 
strains decreases with increasing transpulmonary pressure, indicating an increase in tissue stiffness. Unlike healthy 666 
tissue, the tumor clearly exhibits much lower stretch than the surroundings. (d) The corresponding stiffnesses in 667 
absolute units throughout the domain determined by applying our model to these images. At lower pressures, the 668 
tumor is significantly stiffer than its surroundings. The intratumor and extratumor stiffnesses both increase with 669 
transpulmonary pressure. (e) The stiffness distributions show that the tumor is consistently stiffer surrounding tissue 670 
across all pressures, with tumors having higher maximum stiffness and greater variability in stiffness. (f) Compared 671 
to surrounding tissue, the tumor deforms less with increasing transpulmonary pressure ((f)(i)); stiffens more ((f)(ii)), 672 
notably being 4.8 times stiffer at 18 cmH2O; and exhibits greater variance in stiffness, mirroring trends seen in earlier 673 
figures. Computed using Student’s t-test, P-values are shown for the change in strain (and for the change in stiffness) 674 
from 5-7 cmH2O, 7-12 cmH2O, and 12-18 cmH2O. Additionally, P-values are shown comparing the strain and stiffness 675 
of the lung tissue versus the tumor tissue at pressures 7 cmH2O, 12 cmH2O, and 18 cmH2O; the differences between 676 
classes are statistically significant for all pressure changes.  677 
 678 

3.4 A hypothesis explaining the experimental data 679 

To explain the preceding observations, we briefly reflect on the biochemical structures and 680 

physical principles that determine the material properties of the lung and solid tumors. The primary 681 

load-bearing elements of the extracellular matrix are elastin, collagen type-1, and collage type-3.56 682 

Although two isolated collagen helices with the same geometric configuration should exhibit 683 

identical material properties, determined by the interplay between intramolecular and 684 

intermolecular forces between monomeric subunits of the triple helix68, it is well-known that 685 

collagen arranges itself into more complex, hierarchical structures.69 Within these structures, 686 

greater cross-linking between individual collagen helices increases the stiffness at the tissue 687 

scale.69 Furthermore, given that entropic effects largely dominate in determining the material 688 

properties of rubber-like polymer networks, the current geometric configuration of a polymer 689 

network influences its current stiffness.70-74 Finally, recalling that networks of parallel springs are 690 

stiffer than networks of springs in series,68 we observe that the stiffness of such a network largely 691 

depends on its topology. Variations in any of these three contributors can therefore lead to 692 

variations in tissue stiffness at cellular, alveolar, and organ length scales. 693 

 694 

Based on the biochemical structure of the extracellular matrix, there are thus four obvious reasons 695 

why the tumor should be stiffer than the surrounding tissue. First, unlike the healthy lung which 696 

contains airspaces, solid tumors are generally aggregates of cells and extracellular matrix lacking 697 

holes or gaps at the cellular length scale; their simply connected structure therefore elevates their 698 

stiffness relative to the multiply connected structure of the healthy parenchyma. Second, even if 699 

we ignore the airspaces, pathologically elevated deposition of extracellular matrix within the tumor 700 

increases the matrix’s density compared to healthy tissue, and greater density is naturally 701 

associated with elevated stiffness essentially because there are more load-bearing elements at the 702 

molecular level.1 Third, pathologically elevated cross-linking also increases the stiffness of the 703 

extracellular matrix. Fourth, while the polyhedral topology of the parenchyma essentially forces 704 

the alignment of collagen fibrils within the mid-plane of the septum and reduces the entropy of the 705 

extracellular matrix, the collagen fibrils within solid tumors can be arranged in arbitrary 706 

orientations; stretching a solid tumor by the same distance should therefore affect the quantity of 707 

work required to produce the same stretch.  708 



 709 

Next, we discuss the physical source of strain stiffening. First, we note that statistical 710 

thermodynamics predicts that single polymer molecules exhibit strain-stiffening behavior; as the 711 

molecule stretches, the number of available geometric configurations decreases, the change in 712 

entropy between successive states of elongation increases, and thus the force required to produce 713 

the same distension monotonically increases with stretch.71,72,74,75 Indeed, recent Steered 714 

Molecular Dynamics simulations of individual collagen helices predicted that these polymers 715 

exhibit strain-stiffening, with their stiffnesses ranging from 5 kPa to 15 kPa.68 At higher levels of 716 

organization, AFM studies confirm that individual collagen fibrils also grow stiffer with strain76,77, 717 

and that collagen-based biomaterials likewise exhibit the same behavior.69,77 Most likely, then, the 718 

strain-stiffening behavior at the tissue scale directly follows from the strain-stiffening behavior of 719 

individual collagen helices at the molecular scale. This is, essentially, the central hypothesis 720 

underpinning classical derivations of constitutive equations for hyperelastic materials, and it 721 

motivates our choice of a hyperelastic material law.55,70 722 

 723 

The theory of percolation78, which predicts that stretch produces gradual straightening and 724 

alignment of initially wave collagen fibers, may seem to imply that the lung’s stiffness should 725 

grow increasingly homogeneous with increasing stretch. But our observation that stiffness 726 

heterogeneity increases with pressure, an effect referred to as heteroscedasticity in the statistics 727 

literature50, directly contradicts this hypothesis. Several studies agree with our prediction across 728 

multiple length scales. First, studies on the strain-stiffening behavior of individual collagen fibrils 729 

have also reported that the variance in fibril stiffness increases with strain76,77. Second, at the 730 

alveolar length scale, both spring-network studies79,80 and finite-element analysis studies81 have 731 

consistently predicted an increase in septal stiffness heterogeneity with pressure. Finally, at the 732 

organ scale, registration-based studies82,83 have reported the same. However, one recent multiscale, 733 

AFM study65 measured heteroscedasticity in macroscopic slices of decellularized lung tissue, but 734 

that same study did not observe the same trend for microscopic slices. One possible explanation 735 

for this disagreement is that tissue resection disrupts this phenomenon. Another possible 736 

explanation is that our method computes the variance over the stiffness both in the airspace and in 737 

the septum, but that does not explain why the aforementioned studies have reported the same 738 

phenomenon. Although we cannot discount that the geometric configuration of the individual 739 

polymers within the network somehow contributes to this behavior, the heteroscedasticity at the 740 

tissue scale may arise, at least in part, from the heteroscedasticity of the individual collagen fibrils 741 

comprising the extracellular matrix. 742 

 743 

3.5 Addressing assumptions in our model 744 

Although these findings represent a significant advance in our ability to quantify the lung’s 745 

mechanical properties at cellular resolution in both health and disease, the model makes several 746 

simplifying assumptions that we should acknowledge. These assumptions, which vary in the 747 

magnitude of their potential impacts, include (i) approximating the Jacobian as (𝜆1𝜆2)1.5 when 748 

solving the inverse elasticity problem, (ii) adopting the same constitutive equation at the alveolar 749 

and organ length scales, (iii) assuming that the Poisson ratio is 0.2 at both length scales, (iv) 750 

neglecting higher-order features of the lung, such as interlobular fissures and airways, when 751 

constructing the finite-element model’s geometry, (v) assuming that the lung’s stiffness is 752 

generally homogeneous at the organ scale, (vi) treating the airspace as a tensile element when 753 



solving the inverse problem, (vii) assuming isotropicity when solving for the Young’s modulus, 754 

and (viii) neglecting the influence of gravity on the lung’s deformation. 755 

 756 

In Fig. S8, assumption (i) was shown to exert a relatively minor effect, typically introducing less 757 

than 10% error into our approximation of the Jacobian determinant. To address assumption (ii), 758 

we observe that the extracellular matrix is the primary determinant of the lung’s material properties 759 

across all length scales. While studies have shown that the lung’s macroscale stiffness is 760 

significantly less than the stiffness of individual lung cells84, owing to the porosity of the tissue, 761 

our approach ensures that the average stiffness, computed across many alveoli over both the 762 

airspace and the septum, matches the organ-scale stiffness. As the number of alveoli in the 763 

calculation approach the total number of alveoli in the lung, this average must approach the whole 764 

lung’s average stiffness. Consequently, we argue it is reasonable to enforce equality between these 765 

quantities. This same reasoning also justifies assumption (iii). 766 

 767 

Assumption (iv) is, in part, justified on the basis that parenchyma comprises over 95% of the lung’s 768 

total volume85, which implies that the effect of stiffer airways on the deformation should be small 769 

in the distal parts of the lung. On the other hand, evidence suggests86 that the interlobular fissures 770 

relieve stress that may develop on the surface of the lung in their absence. This assumption, 771 

therefore, may affect the accuracy depending on the proximity to a fissure.  772 

 773 

Assumption (v) is challenged by MRE studies87 that reveal significant regional variation in lung 774 

compliance at the organ scale. For healthy individuals, this study reported that the mean shear 775 

modulus was 0.849 ± 0.250 kPa at residual volume and 1.33 ± 0.195 kPa at total lung capacity. 776 

Consequently, the standard deviation decreases from about 30% of the mean value at residual 777 

volume to about 15% of the mean at total lung capacity. Consequently, we may expect our stiffness 778 

maps to incur similar errors due to this assumption. Because our images are collected within 779 

microns of the pleural surface, we suspect that the airspace region in the images effectively exhibits 780 

some resistance to deformation, justifying assumption (vi); even if the airspace lacks effective 781 

stiffness, that should be reflected by a low value in the stiffness mapping, which is exactly what is 782 

shown in Fig. 4 and Fig. 5. Finally, in support of assumption (vii), we performed simulations of 783 

the finite-element model with an embedded inclusion, and we found that assuming isotropicity 784 

(Fig. S10) led to similar results as assuming orthotropicity (Fig. S11), with both models in 785 

reasonable agreement with the ground truth (Fig. S12). 786 

 787 

Assumption (viii), the decision to neglect gravity in modeling the lung, was addressed previously 788 

in the methods. Briefly, although previous studies56,57 have shown that gravity significantly 789 

influences the mechanics of the human lung, similar studies have not been done in the mouse. We 790 

offer two arguments, however, in support of our position. First, these previous studies on the 791 

human lung suggest that gravity is insignificant to the solid mechanics of the mouse lung. One 792 

recent theoretical analysis56 on the human lung distilled the influence of gravity on alveolar 793 

mechanics to the weight of tissue below a given alveolus; consequently, the study found that the 794 

effects of gravity are more significant near the apex than the base. Because the weight of the mouse 795 

lung is about 1 gram, and because the stiffness of the mouse lung is similar to that of the human 796 

lung, its weight according to this model should not significantly influence its mechanical behavior. 797 

Using CT images to measure regional variations in lung density, another study57 showed that 798 

gravity causes the density of the human lung to increase linearly with vertical displacements 799 



toward the Earth; critically, the study showed that lung density only changes by a few percent of 800 

the mean with displacements near 1 cm. Because the density and stiffness of the mouse lung is 801 

similar to that of the human lung, we likewise expect gravity to have only a modest influence on 802 

tissue density in the mouse. Second, as described earlier in the methods, dimensional analysis58 803 

reveals that the stresses developed within the mouse lung are significantly larger than the 804 

hydrostatic stresses arising due to gravity. 805 

 806 

4 Conclusion 807 

We have built the first model capable of measuring the absolute stiffness of the lung at microscale 808 

resolution and under physiologically realistic boundary conditions. We have shown that our model 809 

can measure the nonlinear stiffening of the lung with increasing stretch, and that the relative 810 

stiffness distribution throughout the domain is, at least in the case of the healthy lung, largely 811 

conserved across a range of pressures, giving further confidence that our prediction corresponds 812 

to reality since these stiffness maps have been produced by completely different displacement 813 

maps. Furthermore, we have shown that our model’s quantitative predictions are consistent with 814 

state-of-the-art measurements based on AFM. Finally, we have demonstrated the capability of our 815 

model to identify and measure the stiffness of tumors within the lung tissue. Here, we have shown, 816 

for the first time, that the tumor exhibits similar strain-stiffening behavior to the lung tissue itself, 817 

but that the tumor stiffens more substantially than the surroundings; in the state of greatest 818 

distension, for example, the tumor’s mean stiffness is 4.8 times greater than that of the 819 

surroundings. Additionally, because the variance in the stiffness increases with transpulmonary 820 

pressure, we have shown that the heterogeneity in the stiffness distribution likewise increases with 821 

pressure, with greater heterogeneity in the tumor than in the surroundings.  822 
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Supplementary Materials 1085 

 1086 

 1087 
Figure S1 | Illustration of the crystal ribcage platform. This figure reproduces panels (a-d) from Figure 1 in our 1088 
earlier work36 and depicts the details of the crystal ribcage platform. The panels are as follows: (a) Schematic of the 1089 
lung within the crystal ribcage, depicting the imaging, controllability, and intervention capabilities of the platform, (b) 1090 
The crystal ribcage supports the same imaging capabilities and controllability of organ-on-chip models, while 1091 
maintaining the complex environment of in vivo lungs, (c) Age- and strain-specific microCT scans are used to fabricate 1092 
the crystal ribcage through a multistep fabrication process, in which the geometry is derived from microCT images, 1093 
and (d) The portable platform to maintain, monitor and record the lung physiological condition during real-time 1094 
imaging. 1095 

 1096 



 1097 
Figure S2 | The boundary conditions on the finite-element model. In the simulation, the lung (blue part) is 1098 
constrained to slide frictionlessly along the surface of the rigid ribcage (gray surface). A negative pressure load (black 1099 
vectors) is applied to the surface of the lung in order to emulate negative transpulmonary pressure. Part of the virtual 1100 
ribcage has been visually hidden to show the lung below. 1101 
 1102 

 1103 
Figure S3 | Demonstrating the percent error in our pseudo-3D approximation of the Jacobian determinant 1104 
when solving the inverse problem. These panels show the percent error of (𝜆1𝜆2)1.5 relative to the true Jacobian 1105 
𝜆1𝜆2𝜆3. We see that the approximation is generally accurate to within 5-15% error across the majority of the lung’s 1106 
surface. 1107 
 1108 

 1109 



 1110 
Figure S4 | Validating the nonlinear inverse solver on a simple, pseudo-3D, hyperelastic foam membrane. In 1111 
Abaqus, we construct a 2D, hyperelastic foam membrane having a shear modulus of 2 kPa within a circular inclusion 1112 
and having a shear modulus of 1 kPa outside the inclusion. We then stretch the model by 10% along the two directions 1113 
parallel to the edges of the domain. The first row shows the ground-truth shear modulus distribution, while the second 1114 
row provides the shear-modulus distribution estimated from the simulated total displacements and the nonlinear 1115 
formulation of the inverse solver. 1116 
 1117 

 1118 
Figure S5 | Assessing the piecewise-linear inverse solver on a simple, pseudo-3D, hyperelastic foam membrane. 1119 
In Abaqus, we construct a 2D, hyperelastic foam membrane having a shear modulus of 2 kPa within a circular 1120 
inclusion and having a shear modulus of 1 kPa outside the inclusion. We then stretch the model by 10% along the two 1121 
directions parallel to the edges of the domain. The first row shows the ground-truth shear modulus distribution, while 1122 
the second row provides the shear-modulus distribution estimated from the simulated incremental displacements and 1123 
the piecewise-linear formulation of the inverse solver. 1124 



 1125 
Figure S6 | Determining the coherence length for statistically comparing mappings. (Top left) Normalized 1126 
autocorrelation of the estimated stiffnesses for the lung with cancer (Fig. 5). (Top right) 100 profiles of the 1127 
autocorrelation decay with the magnitude of the displacement of the copy of the original mapping. (Bottom left) The 1128 
mean profile begins to plateau when the distance between the field and its displaced copy reaches 50 pixels, indicating 1129 
that 50x50 patches within the image are mutually independent. (Bottom right) The histogram of the stiffnesses within 1130 
the tumor and the surroundings after discretization of the stiffness mapping into 50x50 pixel patches. The difference 1131 
between these distributions is statistically significant with a p-value of 1.25e-7. 1132 
 1133 



 1134 
Figure S7 | Images of the lung from 2 cmH2O to 18 cmH2O. During the course of our experiments, we collect 1135 
images of the lung at pressures incrementing from 2 cmH2O to 18 cmH2O in increments of 1 cmH2O. 1136 
 1137 
 1138 



 1139 
Figure S8 | Strain maps from 2 cmH2O to 18 cmH2O. We register images of the lung between consecutive pressures 1140 
and then compose the resulting displacement mappings. From the composed displacement mappings, we compute the 1141 
total areal strain throughout the domain at each pressure. 1142 
 1143 



 1144 
Figure S9 | Stiffness maps from 2 cmH2O to 18 cmH2O. From the registered displacements, we also solve the 1145 
inverse elasticity problem for the stiffnesses throughout the domain at each pressure. 1146 



 1147 

 1148 
Figure S10 | The ground-truth, orthotropic stiffness of the finite-element model at 18 cmH2O. As shown in Fig. 1149 
3, we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. 1150 
Here, we show the ground-truth coefficients characterizing the elasticity tensor at 18 cmH2O for comparison to the 1151 
stiffness maps in S10 and S11. Units of the elasticity moduli and the shear moduli are in Pascals, while the Poisson 1152 
ratios are unitless. 1153 
 1154 



 1155 
Figure S11 | The isotropic stiffness of the finite-element model at 18 cmH2O. As shown in Fig. 3, we simulated 1156 
distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here, we show the 1157 
estimates isotropic coefficients approximating the elasticity tensor at 18 cmH2O. Units of the elastic modulus are 1158 
Pascals, while the Poisson ratio is unitless. 1159 
 1160 



 1161 
Figure S12 | The estimated, orthotropic stiffness of the finite-element model at 18 cmH2O. As shown in Fig. 3, 1162 
we simulated distension of the finite-element model containing a stiff inclusion representing a cancerous tumor. Here, 1163 
we show the estimated orthotropic coefficients of the elasticity tensor at 18 cmH2O. Units of the elastic moduli and 1164 
the shear moduli are in Pascals, while the Poisson ratios are unitless. 1165 


