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Simulating lossy Gaussian boson sampling with matrix-product operators
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Gaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has
already been experimentally demonstrated and is claimed to surpass the classical simulation capabilities of even
the most powerful supercomputers today. However, whether the current approach limited by photon loss and
noise in such experiments prescribes a scalable path to quantum advantage is an open question. To understand
the effect of photon loss on the scalability of Gaussian boson sampling, we analytically derive the asymptotic
operator entanglement entropy scaling, which relates to the simulation complexity. As a result, we observe that
efficient tensor network simulations are likely possible under the Nout ∝ √

N scaling of the number of surviving
photons Nout in the number of input photons N . We numerically verify this result using a tensor network
algorithm with U(1) symmetry, and we overcome previous challenges due to the large local Hilbert-space
dimensions in Gaussian boson sampling with hardware acceleration. Additionally, we observe that increasing the
photon number through larger squeezing does not increase the entanglement entropy significantly. Finally, we
numerically find the bond dimension necessary for fixed accuracy simulations, providing more direct evidence
for the complexity of tensor networks.

DOI: 10.1103/PhysRevA.108.052604

I. INTRODUCTION

Exact classical simulations of quantum systems are in-
tractable due to the exponential size of the Hilbert space.
As a result, computations using quantum systems have been
proposed to achieve improvement in algorithmic complexities
in tasks such as integer factoring [1], unstructured search [2],
linear algebra [3], Hamiltonian simulations [4–7], and more
[8]. Present-day quantum computational devices, however, are
susceptible to noise and cannot be perfectly controlled. As
a result, numerous approaches based on sampling outputs of
randomly configured devices have been proposed to demon-
strate quantum supremacy, which are especially appealing
considering near-term constraints. For example, boson sam-
pling [9], a process of sampling the photon output patterns
from interferometers, has resulted in numerous experimental
demonstrations of quantum supremacy [10–28].

However, experimental imperfections such as photon loss
can have implications on the computational complexity. The
effects of noise are already examined in various contexts of
quantum computing experiments. For qubits cases, it has long
been known that without error correction, a quantum state
after a large depth with a constant level of depolarizing noise
becomes very close to the maximally mixed state [29], which
enables an efficient approximate simulation. One proxy of
classical simulation complexity is the entanglement entropy
(EE). For pure state simulations, the computational cost using

tensor networks is exponential in the EE of the quantum
system, which implies that systems with logarithmic growth
in the EE can be efficiently simulated. Similarly, it has been
argued that the density operator EE of mixed states implies a
similar computational cost, albeit with some nuances [30–32].
In the context of noisy random circuit sampling (RCS) [33],
it was numerically shown that the density operator EE de-
creases if the circuit depth is too high for one-dimensional
(1D) [30] and two-dimensional [31] systems. Further, the
maximum achievable EE follows area law scaling, suggesting
the possibility of efficient tensor network simulation. More
recently, polynomial time simulation of RCS with constant
depolarizing noise per gate is proven to be possible in an
asymptotic regime for larger than logarithmic depths, denying
the scalability of RCS [34].

Meanwhile, in the context of boson sampling, a similar
study has very recently shown that for a particular noise,
which may not be experimentally relevant, there is an efficient
classical algorithm for noisy boson sampling in an asymp-
totic regime [35]. Thus, the experimental noise might prohibit
scalable quantum advantage in boson sampling, much like in
RCS. However, it still remains possible for noisy boson sam-
pling to be scalable under realistic noises, such as photon loss
[36–39] and partial distinguishability [38,40–43]. Notably,
the effects of photon loss are investigated in several stud-
ies. For single-photon boson sampling (SPBS) [36,37] and
Gaussian boson sampling (GBS) [39,44], when the number

2469-9926/2023/108(5)/052604(16) 052604-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6184-8214
https://orcid.org/0000-0002-0000-9342
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.052604&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1103/PhysRevA.108.052604


LIU, OH, LIU, JIANG, AND ALEXEEV PHYSICAL REVIEW A 108, 052604 (2023)

of photons Nout surviving before measurement scales as the
square root of the number of input photons N (Nout ∝ √

N),
classical state approximation of the output state provides an
efficient method of simulation. However, the approximation
error of these methods is fixed for given parameters and can-
not be controlled with more resources. As a result, quantum
supremacy intermediate-size experiments, where transmission
is not as low as these approximate algorithms require, elude
these methods.

Tensor network methods, on the other hand, allow us
to control the simulation error by tuning time and mem-
ory resources, and have been used to numerically show the
logarithmic scaling of the operator EE when Nout ∝ √

N in
SPBS [32]. However, the probabilistic nature of single-photon
generation renders SPBS unscalable, and the community has
long moved onto other photon sources [45–47]. The most
promising approach is GBS, where no postselection is nec-
essary and classical simulation is hard unless some plausible
complexity-theoretic conjectures are false [48,49]. This al-
lowed recent experimental demonstrations of GBS to claim
quantum supremacy [27,28,50].

In this paper, we investigate the operator EE scaling of
GBS, which is more experimentally relevant. We show analyt-
ically that in the asymptotic limit of large N , the logarithmic
operator EE scaling holds for Nout ∝ √

N . For numerical
verification, simulation of GBS is especially difficult with
tensor networks due to the infinite-dimensional local Hilbert
space for each squeezed mode, which remains high even
under suitable truncation and leads to dramatically increased
computational cost. As a result, we develop a hardware-
accelerated, supercomputing tensor network algorithm that
exploits U(1) symmetry, allowing us to simulate previously
intractable systems such as GBS [51]. We numerically verify
the operator EE scaling of GBS under various loss condi-
tions against the asymptotic estimates, and further observe
that increasing the photon number through higher squeezing
has little impact on EE. Finally, we explicitly calculate the
bond dimension and the computational cost as the most direct
evidence on the complexity. Overall, our paper suggests that
boson sampling with loss higher than the aforementioned
scaling may be efficiently simulated with tensor networks as
the system size grows.

Related work

The first class of methods for simulating Gaussian bo-
son sampling is the class of exact methods, which directly
computes the loop Hafnians to determine the probability am-
plitudes of detection events [52–54]. These methods have
exponential time or space complexity, and do not deal with
lossy states.

Besides exact simulation algorithms, approximate meth-
ods such as tensor network methods have been developed
to reduce the simulation costs. Another approximate algo-
rithm uses polynomial approximation of the marginals of the
outputs, and the complexity is exponential in the order of
approximation k [55]. There is no explicit use of the lossy
nature of GBS. The relation between the required order k and
photon loss is not well understood, and therefore the time
complexity scaling with loss is similarly unknown.

The most relevant class of approximate algorithms that
explicitly exploits photon loss is the aforementioned classical
state approximation approach [39,44]. These methods find a
classical state that approximates the squeeze states as closely
as possible, and the interference outcomes of these classical
states are efficient to simulate. However, this means that once
the classical description is fixed, there is no control to further
decrease the error by any means. It is shown that these meth-
ods can give asymptotically small error when Nout ∝ √

N or
less. The complexity is always polynomial regardless of the
loss scaling, but the error becomes unacceptable for higher
loss. Although an earlier experiment [26] has been found to be
potentially well described by the classical states, more recent
experiments cannot be simulated with classical states. The fact
that finite-size quantum supremacy experiments have low loss
makes this approach unsuitable.

Overall, algorithms applicable to finite-size system simula-
tions do not directly use the lossy nature of GBS, and cannot
control the simulation error with full freedom. Tensor network
methods give a direct measure of the simulation complexity in
terms of the bond dimension. This is the precise reason why
we vary experimental parameters such as loss, squeezing, and
system sizes while keeping the approximation error 1 − Tr(ρ)
fixed. This unique ability of fixing the error by varying the
bond dimension allows us to measure the simulation cost as a
function of the experimental parameters. Further, while other
sampling methods only seek to spoof the sampling bench-
marks such as the cross entropy benchmark and low-order
marginals, tensor networks directly approximate the quantum
state, and offer a much richer set of information that can be
potentially investigated for theoretical interest [56].

II. METHOD

Lossless and lossy quantum states in boson sampling can
be represented by matrix-product states (MPSs) and matrix-
product operators (MPOs) [32,57]. More explicitly, a general
M-body pure state with local Hilbert-space dimension d can
be written as

|�〉 =
d−1∑

i1,...,iM=0

ci1,...,iM |i1, . . . , iM〉, (1)

where the tensor ci1,...,iM fully characterizes the state |�〉.
However, tensor c is M dimensional, leading to dM entries in
storage. To reduce the storage cost, the standard MPS ansatz
represents the state in a compressed manner as

ci1,...,iM =
χ−1∑

α0,...,αM=0

�
[1]i1
α0α1

λ[1]
α1

�
[2]i2
α1α2

λ[2]
α2

. . . λ[M−1]
αM−1

�[M]iM
αM−1αM

,

(2)

where χ is the so-called bond dimension, and larger χ

corresponds to a lower approximation error. In the MPS rep-
resentation, each �[ j] tensor contains information about the
jth body, and �

[ j]i j
α j−1α j captures its amplitudes in state i j , con-

ditioned on the states of the left and right neighbors specified
by the α j−1 and α j indices. The λ tensors can be understood
as singular values of Schmidt decomposition, which we show
in more detail in Eq. (6). The MPS represents this large
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tensor as a contraction (sum over the dummy or virtual α in-
dices which capture correlations between particles) of a chain
of tensors. One can observe that the i indices representing
the physical degrees of freedom remain open (unsummed).
The memory complexity of the MPS is O(χ2dM ), and χ can
be adjusted to represent c with the desired accuracy. Further,
one can efficiently perform local unitary operations on the
MPS and calculate expectation values of local observables
with complexity O(d4χ3).

Lossy boson sampling can be simulated using an MPO,
which is essentially an MPS with additional dual indices.
Time evolving the MPO can be accomplished by contracting
it with Kraus operators. Further, in the case where loss is
uniform (equal photon loss at every beam splitter), all losses
can be moved to the initial state since loss commutes with
linear optical transformations. As a result, full Kraus operator-
based simulation of noisy channels is not necessary. We can
represent the initial lossy state using an MPO, vectorize the
MPO, build a tensor network analogous to Eq. (2), and update
the MPO by contracting it with unitaries [57–59]. Specifically,
vectorization of a density operator is defined as

ρ̂ =
∑
k,k′

|k〉ρk,k′ 〈k′|

→ |ρ̂〉〉 =
∑
k,k′

ρk,k′ |k, k′〉 =
∑
K

ρK |K〉, (3)

where K is the combined index for k, k′. Application of the
unitary is also slightly modified since vectorization of U ρ̂Û †

becomes ∑
k,k′

Uj,kρk,k′U †
k′, j′ →

∑
K

UJ,KρK , (4)

where UJ,K = Uj,kU ∗
j′,k′ .

For lossless, pure state systems with large local dimensions
d , the O(d4χ3) computational complexity becomes signif-
icant. For lossy, mixed state simulations with MPOs, the
complexity becomes O(d8χ3), which is especially problem-
atic for systems with large d such as GBS. Fortunately, for
systems with global symmetry, such as particle number or
total spin conservation, another level of reduction is possi-
ble. Symmetry-preserving operators can be expressed as a
direct sum T̂ = ⊕

n T̂n where T̂n preserves the subspace Vn

corresponding to some conserved charge n, and tensors can
be therefore written in a block-diagonal form and stored effi-
ciently [58]. Computations are performed on different blocks
independently, and the time cost also reduces due to the non-
linear polynomial complexity.

An important class of quantum systems has global U(1)
symmetry, which arises when the system has some kind of
conserved charge [58]. Examples of such systems include
the hardcore Bose-Hubbard model [60], the spin-1/2 XXZ
quantum spin chain [61], boson sampling [9], quantum walk
[6,62–65], and monitored quantum circuits [66]. A model is
said to be U(1) symmetric if the Hamiltonian commutes with
the total charge operator [58]:

[Ĥ, N̂] = 0. (5)

As a result, evolution under such Hamiltonians must preserve
the charge number operator. More generally, systems can

preserve a global U(1) symmetry if the applied unitaries pre-
serve the global charge.

In the case of boson sampling, the unitaries preserve the
global photon number. As we discussed earlier, loss can be
commuted to initialization, and time evolution is fully U(1)
symmetric. To exploit the U(1) symmetry, one can define a
so-called charge which is the number of photons to the left
of the bipartition. The overall effect is that the � tensors lose
their i indices corresponding to the physical degree of freedom
(local photon number), reducing the memory complexity by a
factor of d (see Appendix D for more details). This is instead
captured by the size χ 1D charge tensors c. Second, the size
of the matrices that we decompose with singular value decom-
position (SVD) is also reduced to at most χ × χ instead of
χd × χd . Therefore, the use of U(1) symmetry significantly
reduces the memory and time complexity of the algorithm.

The MPS formulation is especially convenient for quanti-
fying entanglement. If we perform the Schmidt decomposition
on the quantum state, which is to express the wave function as
the sum of tensor products of states of two subsystems A and
B,

|�〉 =
∑

α

λα|αA〉|αB〉, (6)

where {|α〉} forms a basis set for each subsystem, we reveal
the entanglement between the two subsystems, and the EE
given by

−
∑

α

λ2
α log2 λ2

α (7)

quantifies how much entanglement there is. Conveniently, if
the subsystems are bipartitions of the MPS at site �, the
Schmidt decomposition singular values λα would be the MPS
singular values λ[�]

α�
, allowing us to compute the MPS EE. For

a mixed state represented by a vectorized MPO, we can for-
mally perform Schmidt decomposition, identify the singular
values λα with λ[�]

α�
of the MPO, and similarly compute the

MPO EE. In both cases, higher EE means more uniformly
distributed singular values, and truncation leads to a higher
approximation error. Larger bond dimensions are necessary to
simulate systems with larger EE to fixed accuracy.

III. RESULTS

A. Supercomputing U(1)-symmetric tensor network algorithm

Details of the numerical protocols of time evolving the
U(1)-symmetric tensor network are available in Appendix D.
CPU based implementations have already been adopted in
single-photon boson sampling simulations, but the compu-
tational cost for Gaussian boson sampling is still too high.
Increasing the parallelism through the use of GPU and multin-
ode parallel computing is necessary. A naive implementation
where each GPU thread computes one tensor entry performs
worse than the CPU implementation due to technical reasons
discussed in Appendix D. However, with the implementa-
tion in this paper, we achieve significant run time reduction.
Table I shows the simulation time in seconds of different im-
plementations for a lossy boson sampling experiment with 12
modes, 10 input squeezed modes, bond dimensions 1024 and
8192, photon loss rate 0.55, and local Hilbert-space dimension
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TABLE I. Simulation time in seconds.

CPU Single GPU One node Six nodes

χ = 1024 7966 126 60 42
χ = 8192 >259000 2066 1045 322

15. Overall, the fully parallel implementation on six nodes
(four NVIDIA A100 GPUs each) is on the order of 1000 times
faster than the 32-core CPU implementation.

B. Analytic asymptotic entanglement entropy scaling

We provide the asymptotic MPO EE scaling under various
loss conditions. Specifically, we consider cases where the
number of photons surviving before measurement Nout scales
with the number of input photons N , with different scaling
exponents 0 < γ � 1 (Nout = βNγ and the transmission rate
is μ = βNγ /N , where β is a constant). Specifically, γ = 1
corresponds to a constant photon loss rate as the system size
grows, whereas 0 < γ < 1 corresponds to increasing loss
rates as the system size grows. This is a reasonable scaling
because loss should increase with the system size due to
various experimental limitations such as an increase in the
depth of beam splitters required to obtain a sufficiently Haar
random state.

After derivations shown in Appendix B, we obtain the
following scaling for the MPO EE:

S1(|ρ̂〉〉) = O

[
N

(
βNγ

N

)2

log2

(
βNγ

N

)]

= O(N2γ−1 log2 N ). (8)

Similarly, for the Rényi entropy with α < 1, we have

Sα = O(N1−2(1−γ )α ). (9)

For α > 1, we have

Sα = O

(
α

1 − α
N2γ−1

)
. (10)

The MPO EE scaling becomes logarithmic when γ = 1/2.
For an MPS algorithm, a logarithmic scaling of the MPS
EE already rigorously implies a polynomial time complexity
for the tensor network algorithm at fixed two-norm distance
between the ideal and approximate state. This implies ef-
ficient fixed fidelity simulation. The situation for the MPO
algorithm is trickier. The logarithmic MPO EE now implies
efficient simulation for fixed two-norm distance between the
vectorized states, which is also the two-norm distance be-
tween the density operators. However, for fixed fidelity, one
needs to bound the one-norm distance, and the relationship
K||A||2 � ||A||1, where K is the dimension of the Hilbert
space, means that the one norm cannot be efficiently bounded.
In some cases, the MPO EE decreases as the system size
increases, reducing the required bond dimension to bound the
two-norm distance, but the required bond dimension to bound
the one-norm distance may still increase. This is the case for
a sufficiently low γ such as γ = 1

4 .

(a) (b)

(c) (d)

FIG. 1. Operator entanglement entropy vs the number of input
squeezed modes for different photon survival scaling Nout = βNγ at
r = 0.88. (a) γ = 1

4 . (b) γ = 1
2 . (c) γ = 1. (d) Convergence of MPO

EE with increasing nmax for N = 50, β = 1, γ = 1
2 , r = 0.88.

C. Numerical asymptotic estimates of the entanglement entropy

We estimate the asymptotic MPO EE under photon sur-
vival scaling Nout ∝ Nγ with γ = 1

4 ,
1
2 , 1. To make a fair

comparison against SPBS, the squeezing parameter is fixed
at r = 0.88, which averages to approximately one photon
per squeezed mode. Appendix C discusses how we obtain
the estimates for very large system sizes where direct MPO
simulations are impractical.

Figure 1 shows the asymptotic estimates with nmax = 8
(maximum number of photons per density operator ρ j that is
simulated, see Appendix C) for large system sizes. Similar
to what is observed in SPBS simulations, GBS shows MPO
EE reduction when the loss is sufficiently high for γ = 1

4 ,
logarithmic scaling for γ = 1

2 , and linear scaling for γ = 1.
A similar linear increase in MPO EE with β is also observed
in all three cases. Further, we also show the numerical con-
vergence of our asymptotic MPO EE estimates by increasing
the cutoff of the initial maximum photon number nmax for the
squeezed states.

D. Finite-size entanglement entropy from simulations

We further conduct full MPO simulations of GBS and nu-
merically calculate the MPO EE. The MPO EE obtained from
the full simulations and asymptotic estimates agree quanti-
tatively, as shown in Fig. 2. However, we observe that the
quality of agreement is poor when MPO EE is small such as in
many γ = 1

4 data points when the number of input squeezed
states N is small. In the regime of small MPO EE but large
N , we attribute the disagreement to the formal differences
between regular MPOs and MPOs in a U(1) symmetric form.
This is easy to see as even a product state can have nonzero
U(1) symmetric MPO EE simply due to the existence of
different charges. For small N , we expect the quality of the
approximation to be poor because we are no longer in the
asymptotic limit. Further disagreement can also be attributed
to the fact that the U(1) symmetric full simulations are limited
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out= N1/4N out= N1/2N out= NN

0.6
0.4
0.2

FIG. 2. Operator entanglement entropy vs the number of input squeezed modes for different photon survival scaling Nout = βNγ at r =
0.88. Details of experiment configurations can be found in Methods. (a) γ = 1

4 . (b) γ = 1
2 . (c) γ = 1. Dots are results obtained from full

simulations using U(1) symmetry. Dashed lines are estimates using asymptotic assumptions.

by the bond dimension. We ensure that all plotted data points
are simulated to 1 − Tr(ρ̂) < 0.1, which previous work estab-
lished as a good proxy to the fidelity and the total variation
error that is computationally lightweight [31,32].

Lastly, we investigate the effect of squeezing on MPO
EE with our full U(1) symmetric simulations. We choose to
investigate γ = 1

4 for easier simulation. Figure 3 shows an
increase in MPO EE with increasing squeezing parameter
r. It is important to note that the average number of output
photons scales with the average number of input photons
N , not the number of squeezed states. This means that for
the same number of input squeezed states and β, a higher
squeezing parameter has a higher loss. Increasing the average
number of photons per squeezed mode from 1 to 2 and 4 only
moderately increases the MPO EE compared to increasing N .
This observation is similar to the previous finding for Fock
state boson sampling: if the number of input modes stays the
same and the number of photons per mode increases, the MPO
EE grows slowly and can be efficiently simulated [32].

Our numerical findings on the MPO EE growth for dif-
ferent loss scalings have complexity implications, but there
is a lack of rigorous correspondence between MPO EE and
simulation time. To make the statement on simulation com-
plexity more direct, we validate the bond dimension growth
explicitly. This is helpful in particular because the computa-
tional complexity is qubic in the bond dimension, both due

to SVD and matrix multiplication. We show in Fig. 4 the
growth of bond dimension in the system size for fixed ac-
curacy of 1 − Tr(ρ̂ ) = 0.02. Previous work has established
that 1 − Tr(ρ) is a good proxy for the fidelity [31] and the
total variational distance [32], which is the gold standard
benchmark for boson sampling sample quality. It is clear that
constant loss leads to exponential growth in the bond dimen-
sion. In higher loss cases, growth is much more moderate and
appears subexponential. We also validate that increasing the
bond dimension efficiently reduces the simulation error. We
choose three experiments and simulate them with different
bond dimensions.

IV. DISCUSSION

We show analytically that the matrix-product operator en-
tanglement entropy of boson sampling scales logarithmically
under high loss, which we numerically verify using U(1)
symmetric tensor networks. We also numerically observe that
increasing the photon number by squeezing has little im-
pact compared to increasing the number of input squeezed
modes. The computational complexity is also directly studied
by calculating the bond dimension. This extends the pre-
vious entanglement entropy results for single-photon boson
sampling to the more experimentally relevant Gaussian bo-
son sampling, and extends the efficient simulation results

FIG. 3. Operator entanglement entropy vs the number of input squeezed modes for different squeezing parameters r. Dashed lines are
guides to the eye. (a) r = 0.88, averaging approximately one photon per mode. (b) r = 1.146, averaging approximately two photons per mode.
(b) r = 1.44, averaging approximately four photons per mode.
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Data
Mean

(a)

(b)

FIG. 4. Analysis of bond dimension, system size, and error.
Details can be found in Methods. (a) Bond dimension needed to
reach accuracy 1 − Tr(ρ̂ ) = 0.02 vs the number of input squeezed
modes’ photon survival scaling Nout = 0.4Nγ at r = 0.88. Dots are
individual estimates of the bond dimension obtained from full sim-
ulations using U(1) symmetry. Dashed lines are the means. Traces
have higher estimated bond dimensions in ascending order in γ .
(b) Reduction in 1 − Tr(ρ̂) error as bond dimension increases for
three different experimental configurations.

using classical state approximation algorithms to an algorithm
with controllable error, a necessary condition for simulat-
ing intermediate-size experiments with practical transmission
rates. As a result, our analysis is more relevant to current
quantum supremacy boson sampling experiments.

Although the MPO formalism intrinsically assumes a 1D
architecture of the interferometer, the fact that we are sim-
ulating Haar random unitaries means that our findings are
architecture independent. However, if we want to simulate
high-dimensional low depth systems that are not Haar random
[28,67], one potential direction to move forward is to adopt
more exotic tensor networks such as projected entanglement
pair states, and U(1) symmetric forms of generic tensor net-
works can be constructed in principle [58].

Data used to generate the figures are available upon request
from the authors. The code used to generate the data and
figures is available in the GitHub repository [68].
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APPENDIX A: DETAILS OF NUMERICAL EXPERIMENTS

We carry out our GPU numerical simulations using the
Polaris system at the Argonne Leadership Computing Facility
(ALCF). Each node has a single 2.8-GHz AMD EPYC Milan
7543P 32-core CPU with 512 GB of DDR4 RAM and four
Nvidia A100 GPUs connected via NVLink. We perform our
CPU numerical simulations using the Bebop system at ALCF.
Each node has a single 2.10-GHz Intel Xeon E5-2695v4 32-
core CPU with 128 GB of DDR4 RAM.

All full U(1) symmetric MPO simulations have M =
max(20, 4N ) modes, and the local Hilbert-space dimension
d is chosen such that < %1 of the probability is truncated.
Because the leftmost charge is the sum of all photons, the
required d is higher for higher squeezing parameters r and
higher numbers of input squeezed states. Global Haar random
interferometers are used and constructed using an M-layer
array [69].
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For Figs. 2 and 3, we simulate the system until there is no
MPO EE increase for at least ten layers. This is reasonable
since we only care about the maximum MPO EE throughout
simulation which captures the computational cost, and the
MPO EE generically increases as more depths are simulated
until saturation, after which the MPO EE decreases slowly.
All data points of MPO EE are obtained by only a single ex-
periment, as we observe that no significant noise is present in
our results because we only extract the maximum. We ensure
that all plotted data points are simulated to 1 − Tr(ρ̂) < 0.1,
which previous work established as a good proxy to the total
variation error that is computationally lightweight. The largest
simulation is for linear scaling simulations with d = 18, β =
0.4,N = 15,M = 60, χ = 16 384 ran on ten Polaris nodes
with 40 GPUs in total.

For Fig. 4, the full depth of the interferometer is simulated.
This is because simulating each layer produces additional
error, and therefore affects the required bond dimension. For
each configuration in Fig. 4(a), the bond dimension starts with
a small value and doubles if the error exceeds 0.02. Once
the bond dimension is large enough to exceed the desired
accuracy, the bond dimension is refined a few more times
to obtain a more precise estimate. For linear scaling and
seven input squeezed states, the simulation is expensive and
we verified that setting χ = 15 296 produced 1 − Tr(ρ̂) =
0.020, 0.022, 0.021, 0.021, 0.019 across five different experi-
ments and used 15 296 as the estimated bond dimension. The
three experiments for Fig. 4(b) are M = 10, 15, 20 and μ =
0.2, 0.15, 0.1, respectively, and each data point is obtained
from one simulation.

APPENDIX B: PROOF OF ASYMPTOTIC
ENTANGLEMENT ENTROPY SCALING

In this section, we discuss the derivation of the operator EE
scaling. We consider boson sampling where N independent
input optical modes are sent into a linear optical interferom-
eter. The interferometer has M modes, which can be larger
than N , making M − N modes at the input vacuum states. As
photons interact throughout the interferometer, the quantum
state gets transformed according to a unitary matrix describing
the interferometer, and photons eventually exit the M optical
modes with nontrivial correlation. For boson sampling, the
claim is that this process is hard to simulate for a sufficiently
random unitary describing the interferometer.

Formally, the quantum state of N independent and identical
modes can be written as

|ψin〉 = ⊗N
j=1|ψ〉 j = ⊗N

j=1

( ∞∑
n=0

cn
â†nj√
n!

)
|0〉, (B1)

where â†j is the input creation operator for mode j. The corre-
sponding density operator is

ρ̂in = ⊗N
j=1|ψ〉 j〈ψ | j = ⊗N

j=1ρ̂ j,in, (B2)

where the single input mode density operator is

ρ̂ j,in =
∞∑

n,m=0

cnc
∗
m|n〉 j〈m| j . (B3)

The action of an M-mode beam splitter array is to trans-
form input creation operators:

â†j → b̂†j =
M∑
k=1

Ujkâ
†
k, (B4)

where b̂†j is the output creation operator for mode j. To study
the entanglement entropy between bipartitions separated at
the lth mode, we can define the normalized up and down
bipartition creation operators B̂†

u, j, B̂
†
d, j as

cos θ j B̂
†
u, j =

l∑
k=1

Ujkâ
†
k, sin θ j B̂

†
d, j =

M∑
k=l+1

Ujkâ
†
k, (B5)

with normalizations

cos2 θ j =
l∑

k=1

|Ujk|2, sin2 θ j =
M∑

k=l+1

|Ujk|2. (B6)

In the collision-free cases where M � N2, the bipartition cre-
ation operators satisfy the canonical commutation relations

[B̂u, j, B̂
†
u,k] = δ jk, [B̂d, j, B̂

†
d,k] = δ jk,

[B̂u, j, B̂d,k] = 0, [B̂u, j, B̂
†
d,k] = 0. (B7)

As a result, one can define the mutually orthogonal bipartition
number states:

B̂†k
side, j |0〉 = |k〉side, j√

k!
, side ∈ {u,d}. (B8)

The above formalism, described in [32], allows us to cal-
culate the MPO EE without explicitly constructing the output
state given the unitary representing the interferometer. Specifi-
cally, the details of the unitary matrix are hidden in the |k〉side, j
states constructed to satisfy orthogonality.

In this picture, the action of the unitary is to transform the
input basis in the following way:

|n〉 j →
n∑

k j=0

√(
n

k j

)
cosk j θ j sin

n−k j θ j |k j〉u, j |n − k j〉d, j,

(B9)

and, therefore (omitting the j index),

〈ku, kd |U |n〉 =
√(

n

ku

)
cosku θ sinkd θδ(ku + kd − n). (B10)

If we apply this basis transform due to the unitary to the
input lossless density operator ρ̂int, each single mode input
density operator ρ̂ j,in in Eq. (B2) would transform indepen-
dently. The full density operator remains a product of input
modes in the new basis, and we have

ρ̂out = ⊗N
j ρ̂ j,out. (B11)

Although each ρ̂ j,out can be identified with an input mode j,
ρ̂ j,out is no longer a single mode state, and is instead supported
over all modes. Each ρ̂ j,out has some EE because it describes
a state over both partitions, and the full system EE is additive
in j due to the tensor product structure of ρ̂out. Therefore, the
system EE scales linearly with the number of input modes N ,
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and classical simulation of lossless boson sampling is always
inefficient in N .

We can extend this analysis to lossy cases. Assuming that
loss is uniform throughout the interferometer, loss commutes
with all linear optical transforms and can be applied to the
initial pure state. The basis transform (B9) due to the unitary
is still independent on j, and the total output density operator
is still in a product form with

ρ̂ j,out = UEloss(ρ̂ j,in )U
†. (B12)

Therefore, the linear scaling of EE in N remains, and MPO
simulation of lossy boson sampling is also inefficient in N .

However, as the number of input modes N increases, the
complexity of the interferometer must grow as well in order to
maintain reasonable randomness in the interferometer unitary
and hardness of classical simulation. As a result, the depth
of the interferometer should scale with the N , which leads
to scaling of the transmission rate μ in N . The entangle-
ment entropy for each ρ̂ j,out decreases as N increases, leading
to an overall entanglement entropy that grows sublinearly,
potentially allowing efficient simulation. To understand the
scaling in loss and transmission, consider the Kraus operators
corresponding to the single input state photon loss channel in
the limit of small μ (from now on we ignore the mode index
j):

ρ̂lossy = Eloss(ρ̂in) =
nmax∑

nloss=0

K (nloss )ρ̂inK
(nloss )†, (B13)

K (nloss ) =
nmax∑

nout,nin=0

K (nloss )
nout,nin |nout〉〈nin|, (B14)

K (nloss )
nout,nin =

{√( nin
nout

)
μnout (1 − μ)nloss if nin − nout = nloss

0 otherwise,
(B15)

whereK (nloss ) ∈ Cnmax+1,nmax+1 captures processes that lose nloss
photons, and we limit the maximum photon number to nmax.
The lossy density operator can be given in the input |n〉 basis
in index notation:

ρlossym,n =
nmax∑

nloss=0

∑
k,l

K (nloss )
m,k ρink,lK

(nloss )†
l,n

=
nmax∑

nloss=0

O
(
μ

m
2
)
ρinm+nloss,n+nlossO

(
μ

n
2
)

= O
(
μ

m+n
2
)
, (B16)

where the second line is due to the requirement that k − m =
nloss and l − n = nloss from nonzero Kraus operator elements.

We can now apply the basis transform due to the unitary as
described in Eq. (B9):

ρ̂out = U ρ̂lossyU
† = U

⎛
⎝ nmax∑

m,n=0

|m〉ρlossym,n〈n|
⎞
⎠U †. (B17)

In index notation in the bipartition number state basis,

ρoutku,kd ;k′
u,k

′
d

= 〈ku, kd |ρ̂out|k′
u, k

′
d〉

=
nmax∑

m,n=0

〈ku, kd |U |m〉ρlossym,n〈n|U †|k′
u, k

′
d〉.

(B18)

Substituting Eqs. (B10) and (B16) into the above expression
yields

ρoutku,kd ;k′
u,k

′
d

=
nmax∑

nloss=0

ρinku+kd+nloss,k′
u+k′

d+nlossO
(
μ

ku+kd+k′u+k′d
2

)
.

(B19)

To compute the contribution to the full system MPO entan-
glement entropy from ρ̂ j,out, we need to vectorize the density
operator to obtain |ρ̂ j,out〉〉 so that we can pretend it is a pure
state and compute its entanglement entropy. The standard
procedure of computing the entanglement entropy of a pure
state is to obtain the density operator by taking the outer prod-
uct, obtain the reduced density operator by taking the partial
trace over one subsystem, find the reduced density operator’s
eigenvalues, and take the log average of the eigenvalues. The
only difference for the MPO entanglement entropy is that our
“pure” state is actually a vectorized density operator, and the
eigenvalues may not be normalized since the vectorized state
is not L2 normalized.

Vectorization of the density operator, which corresponds to
flattening of the matrix and changing bras into kets, is defined
as

ρ̂out =
∑

ku,kd ,k′
u,k

′
d

|ku, kd〉ρoutku,kd ;k′
u,k

′
d
〈k′

u, k
′
d |

→ |ρ̂out〉〉 =
∑

ku,kd ,k′
u,k

′
d

ρoutku,kd ;k′
u,k

′
d
|ku, kd ; k′

u, k
′
d〉

=
∑
Ku,Kd

ρoutKu,Kd |Ku,Kd〉, (B20)

where Kside is defined as the combined index of kside and k′
side.

Next, we take the partial trace of its outer product over one
bipartition to obtain ρ̂ ′ = tru(|ρ̂ j,out〉〉〈〈ρ̂ j,out|), yielding

ρ ′
Kd ,K̄d

=
∑
Ku

ρoutKu,Kdρ
∗
outKu,K̄d

=
∑
ku,k′

u

O
(
μ

ku+kd+k′u+k′d
2

)
O
(
μ

ku+k̄d+k′u+k̄′d
2

)

= O
(
μ

kd+k′d+k̄d+k̄′d
2

)
, (B21)

where K̄ is the dual of K , and ku, k′
u = 0 terms are dominant.

The above analysis is general and independent of the in-
put states. From now on, we will use the fact that the input
state is a squeezed state. In GBS, ρinm,n = 0 if either m or
n is odd. Therefore, looking at Eq. (B19), ku + kd + nloss
and k′

u + k′
d + nloss (or, more concisely, ku + kd and k′

u + k′
d )

must have the same parity for ρinku+kd+nloss,k′
u+k′

d+nloss to be
nonzero. This means that we do not have to consider terms like
ρout0,0;0,1, ρout1,0;0,0, etc. As a result, no half-integer powers of
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μ occur in any terms of the output density operator ρ̂out or the
reduced density operator ρ̂ ′ of the vectorized state.

In this case, it turns out that ρ̂ ′ has exactly one constant-
order eigenvalue, it has no first-order eigenvalues, and all
other eigenvalues are at least second order. To show this, it
is sufficient to find all eigenvalues to the first order. Let us
write down the form of ρ̂ ′ to the first order, with the first
row corresponding to Kd = kd = k′

d = 0 and the first column
corresponding to K̄d = k̄d = k̄′

d = 0:

ρ̂ ′ =

⎡
⎢⎢⎢⎢⎢⎣

ρ̂ ′
1,1 ρ̂ ′

1,2 ρ̂ ′
1,3 · · ·

ρ̂ ′∗
1,2 0 0

...

ρ̂ ′∗
1,3 0 0

...

... · · · · · · . . .

⎤
⎥⎥⎥⎥⎥⎦, (B22)

which has eigenvalues

λ2 = 1

2

⎛
⎜⎝ρ̂ ′

1,1 ±
√√√√ρ̂ ′2

1,1 + 4
(nmax+1)2∑

n=2

|ρ̂ ′
1,n|2

⎞
⎟⎠, (B23)

and all other eigenvalues are zero. Note that we denote the
singular values of the Schmidt decompositions λ and the
eigenvalues of the reduced density matrices λ2. However,
|ρ̂ ′

1,n|2 is at leastO(μ2), and the Taylor expansion of the square
root will be dominated by the constant- and first-order con-
tributions from ρ̂ ′

1,1. Therefore, the only nonzero first-order
eigenvalue is λ2

1 = ρ̂ ′
1,1, which is O(1).

The above analysis shows that to the second order, the
eigenvalues are

{a + bμ + cμ2,O(μ2),O(μ2),O(μ2), · · · }. (B24)

After normalization of the eigenvalues, the entropy contribu-
tion due to λ2

1 is

− a + bμ + c1μ2

C
log

a + bμ + c1μ2

C

= (d − c1)μ2

a ln 2
+ O(μ3) = O(μ2), (B25)

where ci is the second-order coefficient of λ2
i , d = ∑

i ci, and
C = a + bμ + dμ2 is the normalization that must be treated
explicitly and not as as a constant. Contribution of other
eigenvalues is

−ciμ2

C
log2

ciμ2

C
= O(−μ2 log2 μ). (B26)

Overall, the entanglement entropy scales as O(μ2 logμ). We
would like to understand the scaling of the MPO EE under
various loss scalings with the number of input optical modes.
Generically, one can consider the situation where the num-
ber of surviving photons scales as Nout ∝ Nγ , making the
transmission rate μ = βNγ /N . Since the total entanglement
entropy is the sum of all N input modes, we obtain

S1(|ρ̂〉〉) = O

[
N

(
βNγ

N

)2

log2

(
βNγ

N

)]

= O(N2γ−1 log2 N ). (B27)

Similarly, for the Rényi entropy, contribution from a single
ρ̂ j,out is

1

1 − α
log2

⎡
⎣(a + bμ + c1μ2

C

)α

+
∑
i �=1

(
ciμ2

C

)α
⎤
⎦

≈ 1

(1 − α) ln 2

⎛
⎝−d − c1

a
αμ2 + 1

a

∑
i �=1

cα
i μ

2α

⎞
⎠. (B28)

Therefore, for α < 1, the second term dominates, and we have
the familiar

Sα = O(N1−2(1−γ )α ). (B29)

Similarly, for α > 1, the first term dominates, and we have

Sα = O

(
α

1 − α
N2γ−1

)
. (B30)

APPENDIX C: METHOD OF ESTIMATING
ASYMPTOTIC MPO EE

For our numerical estimates of GBS operator EE for very
large system sizes where direct MPO simulations are imprac-
tical, we use the input wave function for a single squeezed
mode,

|ψin〉 = 1√
cosh r

nmax/2∑
n=0

tanhn r

2nn!
â†2n|0〉, (C1)

follow the steps discussed above to compute the EE contribu-
tion from a single ρ̂ j,out, and multiply by the number of input
modes. Specifically, numerically we apply the photon loss
Kraus operators defined earlier to this state (both the Kraus
operators and the state are truncated to local Hilbert-space
dimension nmax). We then apply the basis transform due to
Eq. (B9), and the operator is numerically stored in the biparti-
tion {|k〉u, |k〉d} basis. This transforms an nmax × nmax matrix
into a 2nmax × 2nmax matrix. This is then followed by vector-
ization, taking the partial trace of the outer product, finding
the normalized eigenvalues, and computing the entropy.

The coefficients cos θ j, sin θ j related to the unitary can also
be simply approximated as 1/

√
2 in the asymptotic limit of

largeM if l is chosen to beM/2 as can be seen from Eq. (B6).
This choice of bipartition is justifiable because we are only
interested in the largest EE bipartition since it implies a high
simulation cost.

APPENDIX D: U(1) SYMMETRIC TENSOR NETWORK

In an MPS, the probability amplitude tensor ci1,...,iM can be
represented as

ci1,...,iM =
χ−1∑

α0,...,αM=0

�[1]i1
α0α1

λ[1]
α1

�[2]i2
α1α2

λ[2]
α2

. . . λ[M−1]
αM−1

�[M]iM
αM−1αM

,

(D1)

where χ is a free parameter called the bond dimension, which
determines the accuracy of the approximate representation.
For systems with higher entanglement, the required bond di-
mension to achieve a certain fidelity is higher. Overall, the
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memory complexity of the MPS is determined by the M �

matrix which has O(χ2) complexity. This results in an overall
memory complexity that is linear in M, contrary to the expo-
nential cost of the exact state vector.

Intuitively speaking, the physical index ik of �[k] cap-
tures the physical degree of freedom of particle k. Further,
neighboring �[k] and �[k+1] tensors share a dummy index αk

which is contracted, capturing the entanglement between the
two neighboring particles. The λ tensors correspond to the
Schmidt coefficients if a Schmidt decomposition is performed
on the wave function, and therefore capture entanglement.
To apply a local unitary update on particle k and k + 1, the
unitary matrix needs to be contracted with the wave function
at the physical indices, leading to the resulting tensor

� jk , jk+1
αk−1αk+1

=
d−1∑

ik ,ik+1=0

χ−1∑
αk=0

U jk , jk+1
ik ,ik+1

λ[k−1]
αk−1

�[k]ik
αk−1αk

λ[k]
αk

�[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

,

(D2)

where the lower and upper indices of U represent input and
output degrees of freedom, respectively.

The result of this computation is a single tensor of size
d2χ2, which should be used in the new representation of the
wave function to replace λ[k−1], �[k]ik , λ[k], �[k+1]ik+1 , λ[k+1].
However, this is no longer in the form of an MPS. To restore
the MPS form, SVD is performed on � to produce

� jk , jk+1
αk−1αk+1

=
dχ−1∑
βk=0

V( jk ,αk−1 ),βk λ̃
[k]
βk
Wβk ,( jk+1,αk+1 ). (D3)

By retaining only the χ largest singular values, we can identity
new � tensors as

�̃[k]ik
αk−1αk

= V( jk ,αk−1 ),βk/λ
[k−1]
αk−1

, (D4)

�̃[k+1]ik+1
αkαk+1

= Wβk ,( jk+1,αk+1 )/λ
[k+1]
αk+1

, (D5)

which restores the MPS form.
Although MPS can efficiently represent many-body sys-

tems with controlled entanglement, it does not utilize any
symmetry to further reduce the computational cost. To effi-
ciently simulate U(1) symmetric systems, we need to modify
the MPS formalism [32,57,59].

We denote the total number of particles to the right of po-
sition k corresponding to bond αk as c[k]αk

, then the probability
amplitude tensor can be expressed as

ci1,...,iM =
χ−1∑

α0,...,αM=0

�[1]
α0α1

λ[1]
α1

�[2]
α1α2

. . . λ[M−1]
αM−1

�[M]
αM−1αM

×
M∏
k=1

δ
(
c[k−1]
αk−1

− c[k]αk
− ik

)
. (D6)

The δ function essentially determines the correct local particle
number based on the charge value difference. Updating the
wave function according to the unitary can be done with the
following procedure. We first realize that a local two-site
update does not change the charges at k − 1 or k + 1, and
we can therefore compute the results for different resulting
values of c[k]. For each chosen value of c[k], c[k−1] � c[k],
and c[k+1] � c[k], we can select a subset of bonds αk−1 ∈

Ak−1, αk ∈ Ak, αk+1 ∈ Ak+1 that satisfy the conditions on the
three charges. We can then obtain the � tensor similar to the
normal MPS algorithm:

�αk−1αk+1 (c
[k] )

=
d−1∑

ik ,ik+1=0
jk , jk+1=0

∑
αk∈Ak

U ik ,ik+1
jk , jk+1

λ[k−1]
αk−1

�[k]
αk−1αk

λ[k]
αk

�[k+1]
αkαk+1

λ[k+1]
αk+1

× δ
(
c[k−1]
αk−1

− c[k]αk
− jk

)
δ
(
c[k]αk

− c[k+1]
αk+1

− jk+1
)

× δ
(
c[k−1]
αk−1

− c[k] − ik
)
δ
(
c[k] − c[k+1]

αk+1
− ik+1

)
, (D7)

where 0 � c[k] � N and the δ function determines which en-
try of the unitary matrix to look up. Additionally, examining
the U(1) symmetric MPS tells us that the � tensors lost their i
indices corresponding to the physical degree of freedom (local
particle number), reducing the memory complexity by a factor
of d . This is instead captured by the size χ 1D charge tensors
c. Second, the size of the � matrices that we decompose with
SVD is also reduced to at most χ × χ instead of χd × χd .

We similarly need to compress the new two-site tensor and
restore the MPS representation as in the regular algorithm.
The full � matrix capturing the result of the contraction
should be a block-diagonal matrix with �(c[k] ) as composing
blocks. Therefore, performing SVD on the full matrix can
be achieved by decomposing individual �(c[k] ), which is the
source of the computational complexity reduction of the U(1)
symmetric algorithm. Our algorithm performs SVD on all
�(c[k] ) and keeps the χ largest singular values.

State-of-the-art simulations using tensor networks typi-
cally employ hardware acceleration, including the use of
novel hardware platforms such as GPUs [70–73]. However,
symmetry-preserving tensor network algorithms [57–59] are
highly specialized and require data-dependent array entry
lookup for the unitary matrix. This is an unusual requirement
that is not commonly needed in normal tensor operations such
as contraction, reshaping, index permutation, etc. As a result,
no highly optimized hardware acceleration is readily available
for our algorithm. In this paper, we aim to bridge this gap
in hardware acceleration for the algorithm by optimizing a
subroutine on GPU, and also target our implementation to
supercomputing resources.

It is hard to improve SVD as it is a well-researched and
optimized routine. The naive implementation of computing
� also requires looping over all possible values of c[k−1]

and c[k+1], which introduces an additional O(d2) complexity
compared to SVD. Therefore, we focus our discussion on the
� computation subroutine and how we optimize it.

1. CPU implementation

For a given center charge c[k], the CPU-based implemen-
tation loops through all possible left and right charge values
c[k−1] and c[k+1] and selects a subset of left and right bonds
αk−1 and αk+1 that satisfy the charge requirement. Since
c[k] is fixed for each �(c[k] ) submatrix, the only term that
the delta function affects given the charges is U through
jk, jk+1, ik, ik+1. With the correct unitary matrix value identi-
fied, the remaining computation is simply tensor contraction.
Each iteration partially fills the �(c[k] ) matrix at bonds
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(a) (b)

FIG. 5. Algorithms for computing � matrices. (a) CPU-based
implementation. A subset of bonds is selected from �[k], �[k+1] that
have the correct selected charge values c[k−1], c[k+1]. A subset of �

is computed. (b) GPU-based implementation. All bonds are used and
the entire � matrix is computed at once.

αk−1, αk+1. Iterating over all possible left and right charges
fills the entire matrix.

For large total particle number d , theO(d2) complexity due
to the nested loop can significantly increase the computational
time. Tensor contraction calculations that would otherwise be
parallel have to be broken down into pieces. Therefore, the
ability to parallelize across different left and right charges and
unitary matrix entries is highly desirable, which is exactly
what our GPU algorithm accomplishes. The differences be-
tween the CPU and GPU implementations are illustrated in
Fig. 5.

2. Hierarchical GPU implementation

A naive parallel implementation of � matrix computation
would assign the computation of a single array entry to a
single thread. For example, the �i, j can be calculated by a
single thread that computes the inner product between the
ith row of the first matrix and the jth column of the second
matrix. However, this approach has several limitations, and a
nontrivial hierarchical algorithm is used in reality for matrix
multiplication. For a pedagogical introduction to the hierar-
chical approach in the context of matrix multiplication, see
the work by Kerr et al. [74].

Consider multiplication of A ∈ CM×K and B ∈ CK×N . The
two matrices are stored in the global memory of the GPU,
which every thread can access at any time. During inner
product calculation of a single thread, the thread needs to
read the global memory 2K times to complete the row and
column vectors. Computing the whole matrix requires 2MNK
reads of global memory, which turns out to be a limiting
factor. Global memory is physically located far away from
the compute cores of the GPU, and only a limited amount of
memory can be fetched per second. The naive implementation
would actually starve the compute cores due to a lack of data,
leaving them idling most of the time.

Alternatively, we can replace elementwise inner products
with the accumulation of outer products to reduce the memory
read requirement, and Fig. 6 illustrates the differences be-
tween the two approaches. If a whole row or column of A or B
is saved in some memory that is closer to the compute cores
but has less capacity, all the threads can accumulate Ai,kBk, j

once with an outer product. This can be repeated K times to

(a)

(b)

FIG. 6. Matrix multiplication with (a) inner products and
(b) outer products.

complete matrix multiplication. On a GPU, this closer mem-
ory is called shared memory, which is shared by threads in its
thread block of at most 2048 threads. Each thread block has its
own shared memory. Each outer product requires transfer of
data from global to shared memory withM + N global reads,
and the entire algorithm only needs K (M + N ) global reads
and 2MNK shared memory reads. In reality, since a thread
block has a limited number of threads and shared memory, we
cannot fit everything in a single block and must compute the
entire output matrix by sub-blocks.

The strategy of shifting the need for high memory access
from large capacity broad access slowmemory to small capac-
ity local access fast memory can be repeated on lower levels.
At the lowest level, a single thread actually computes multiple
entries of the matrix, where data are stored in registers which
are the fastest memory available and are private to each thread.
Our GPU algorithm for the � computation subroutine only
differs from matrix multiplication by U and λ value lookup.
Therefore, our implementation adopts all the techniques men-
tioned above to maximize performance.

3. Memory alignment in GPU implementation

The charge data-dependent access of U poses difficulties
in efficient GPU parallelization. In optimized numerical rou-
tines, threads access memory in an aligned manner, where
consecutive threads access consecutive memory addresses,
which allows data to be sent in chunks. Sending data chunks
allows multiple units of data to be sent in a single clock cycle,
otherwise only one unit of data is sent in a given cycle. In a
GPU, this can lead to a 32-fold memory bandwidth reduction.
If the charge values are completely unpredictable, the memory
address ofU that needs to be accessed will not be aligned.

This issue can be easily addressed by sorting the bonds
according to the charge values. This leads to aligned mem-
ory access as illustrated in Fig. 7 and significantly improves
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FIG. 7. Memory access pattern (a) without sorting and (b) with
sorting.

performance. Additionally, since each thread calculates mul-
tiple entries, it might need to access multiple unitary values
even after sorting. Due to the limited number of registers
available to each thread, we cannot afford to store redundant
unitary values. Therefore, we insert empty bonds to ensure
that only one value of the unitary matrix corresponding to a
single charge c and physical state i value is stored per thread.
This scheme is illustrated in Fig. 8.

Additionally, bond indices are sorted such that c[k]αk
only

increases as the bond index increases. For small d , this means
that c[k]αk

is the same for many consecutive indices. This elimi-
nates the need for threads to look up new U elements, except
at boundaries where c[k]αk

changes. This further reduces the
need for memory access and reduces latency.

4. High-level parallelization

Besides the numerical parallelization of individual SVD
and � matrix computations through the use of GPUs,

FIG. 8. Illustration of insertion of empty bonds. (a) Worst case
scenario of charge value changes within a single fragment without
empty bond insertion. The thread has to store 16 values of the unitary.
(b) Generic case of a fragment at a charge change boundary. Less
than 16 values need to be stored, but this is not known a priori and
16 values of the unitary still need to be stored. (c) With empty bond
insertion, each thread only needs one unitary value.

U1 U2 U3

Θ(1) Θ(2) Θ(3)... ...

... ...

......

FIG. 9. High-level parallelization. Independent unitary gate up-
dates are distributed to different nodes. Within each unitary update,
�(c[k] )’s are computed and decomposed with SVD independently on
different GPUs.

additional parallelization is explicitly implemented on the
algorithmic level. Further, for systems with large bond dimen-
sions, storing the entire tensor network on a single GPU or
even a single node may become prohibitive. We distribute the
storage of individual � tensors to different nodes.

First, we parallelize independent two-site unitary updates.
A host node identifies all parallel local unitary updates and
keeps track of a list of available and busy nodes. Local unitary
updates are allocated as soon as a node is available. During
allocation, the compute process of the computational node
requests the needed �, λ, c tensors from the storage processes
of the corresponding storage nodes. Similar communication
takes place after the computation to update the stored tensors.
Second, for a single beam splitter MPO update, the overall �

matrix is broken up into �(c[k] ), which we compute and de-
compose in parallel. After the computation node receives the
data needed, the data needed for each �(c[k] ) are distributed
to individual GPUs.

With the high-level parallelization discussed above and
illustrated in Fig. 9, the algorithm can be easily scaled to
supercomputers with multiple nodes and GPUs, especially
when the system size is large. However, there are smaller
systems that do not require multinode parallelization, and
we provide implementations with intermediary parallelism as
well to avoid the communication overhead of the fully parallel
algorithm. On the lowest level, only one GPU is considered,
and no distributed memory or computation is used. On the
second level, all memory is managed by a single node, and
unitary updates are distributed to individual GPUs instead of
nodes.

5. Run time reduction

We evaluate the performance of our GPU supercomputing
algorithm against the CPU-only implementation at the ALCF.
All CPU simulations are performed with a single node of
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CPU GPU d
6
8

10
12
14
16

O(10) reduction

(a) d=8(b)

FIG. 10. (a) CPU and GPU simulation time. Traces have higher
simulation time in ascending order in d . (b) Contribution to the CPU
simulation time from subroutines.

the Bebop system with a 2.10-GHz Intel Xeon E5-2695v4
32-core CPU, and GPU simulations are performed on the
Polaris system. A single node of the Polaris system has four
Nvidia A100 GPUs. Table I shows the simulation time in sec-
onds of different implementations for a lossy boson sampling
experiment with 12 modes, twn input squeezed modes, bond
dimensions 1024 and 8192, photon loss rate 0.55, and local
Hilbert-space dimension 15. Increasing the bond dimension χ

increases the simulation accuracy and time. Moreover, lossy
boson sampling requires the density matrix instead of the state
vector, and the generalized algorithm is described in detail in
by Oh et al. [32] The consequence of the density matrix gen-
eralization is that each charge can take on 152 = 225 values
instead of only 15, which means that the CPU-based algorithm
needs to perform 2252 = 50 625 iterations to fill the � matrix.
On the other hand, our GPU algorithm computes all entries of
� in parallel.

For the small χ experiment, we are able to simulate using
only CPUs in a reasonable amount of time for comparison.
Encouragingly, the single-GPU algorithm achieves a dramatic
63-time speedup even with a single-GPU. We further test
the unitary-level parallel algorithm on one node and observe
a further twofold speedup. Lastly, we use the fully parallel
algorithm on six nodes, observing an additional 43% increase
in the computational speed. We observe that the gain in
computational speed by switching from less parallelized to
highly parallelized implementation is less than the increase in
computational resources. Higher-level parallelism incurs sig-
nificant overhead, which indicates that there is still significant
room for optimization.

χ=4096 d=14(a) (b)

FIG. 11. Contribution to simulation time of the GPU algorithm
from subroutines. (a) Bond dimension χ = 4096. (b) Local Hilbert-
space size d = 14.

Fortunately, this payoff in higher parallelism is more pro-
nounced in the setting of larger system sizes. The CPU
implementation failed to complete the simulation within
the maximum allowed wall time of 72 h. This means that
our single-GPU implementation achieves at least a 125-fold
speedup. The computational time is further reduced twofold
when going from the single-GPU implementation to the
unitary-level parallel algorithm on one node, similar to the
small bond dimension case. However, changing to the fully
parallelized algorithm with six nodes further reduces the time
more than threefold compared to a fractional reduction in
the small bond dimension case. Overall, the fully parallel
implementation on six nodes is on the order of 1000 times
faster than the 32-core CPU implementation.

The exact speed-up depends on the system size, so we
show more experiments with different configurations. All
the following experiments are performed with N = 5,M =
32, μ = 0.5, r = 0.88 on a single 32-core CPU or a single
A100 GPU. We show the CPU and GPU simulation time
for various systems in Fig. 10(a). For system sizes that the
CPU can reasonably complete, we observe over 10 times
speed up on a single GPU. Further, Fig. 10(b) shows that
tensor contraction time dominates the overall run time due
to the highly inefficient double nested loop. Figure 11 shows
contributions to the GPU simulation time from subroutines.
We see that the contribution from the tensor contraction step
is minimal compared to the total simulation time thanks to the
efficient custom kernel. Further, SVD takes up the majority
of the simulation time, meaning that the overhead of tensor
sorting, alignment, and storage is acceptable.
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