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Plausible claims for quantum advantage have been made using sampling
problems such as random circuit sampling in superconducting qubit

devices, and Gaussian boson sampling in quantum optics experiments.
Now, the major next step is to channel the potential quantum advantage to
solve practical applications rather than proof-of-principle experiments. It
has recently been proposed that a Gaussian boson sampler can efficiently
generate molecular vibronic spectra, which are animportant tool for
analysing chemical components and studying molecular structures. The
best-known classical algorithm for calculating the molecular spectrascales
super-exponentially in the system size. Therefore, an efficient quantum
algorithm could represent a computational advantage. However, here we
propose an efficient quantume-inspired classical algorithm for molecular
vibronic spectra with harmonic potentials. Using our method, the
zero-temperature molecular vibronic spectra problems that correspond
to Gaussian boson sampling can be exactly solved. Consequently, we
demonstrate that those problems are not candidates for quantum
advantage. We then provide a more general molecular vibronic spectra
problem, whichis also chemically well motivated, for which our method
does not work and so might be able to take advantage of aboson sampler.

Quantum computers are believed to solve problems that cannot be
efficiently solved using classical counterparts’. Ultimately, quantum
computers need to be fault tolerant and scalable to solve various prob-
lems, such asinteger factorization® and digital quantum simulation of
thereal-time dynamics of large quantum systems?’. Although the theo-
retical study and experimentalimplementations of quantum error cor-
rectionschemes are developing rapidly, quantum machinesathand are
still noisy intermediate-scale quantum devices. Nevertheless, we have
recently seen the first plausible quantum advantage demonstrations
using noisy intermediate-scale quantum devices, such as a supercon-
ducting qubit system with random circuit sampling** and a quantum
optical system with Gaussian boson sampling®®,

Since quantum advantages from sampling tasks are promising,
there have been proposals for applications for which we can potentially
exploitthe advantages. One suchexampleis the generation of so-called

molecularvibronicspectra’. Due toitsimportancein chemistry, its clas-
sical algorithm has been extensively studied, whereas the best-known
algorithm still scales combinatorially in system size'. Recently, it has
been proposed to employ a quantum simulator, which is a Gaussian
boson sampler”, to efficiently generate the spectra’. Gaussian boson
sampling is a task that is believed to be hard for classical computers
under plausible computational complexity assumptions and that has
been exploited for aquantum advantage demonstration ™, Therefore,
themolecular vibronic spectra problem hasbeentreated asa candidate
for applications of quantum simulators. Indeed, many experiments
have been conducted to generate spectra using a Gaussian boson sam-
pler™ ™. Also, many classical algorithms to simulate Gaussian boson
sampling have been proposed™®*, but the cost is exponential, in general,
inthe systemsize. Thus, resolving the molecular vibronic spectra prob-
lem by simulating Gaussian boson sampling takes exponential costs.
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Meanwhile, the proposed quantum algorithms mightalsoinspire
ustodevelop efficient classical algorithms®. For example, the D-Wave
device has inspired efficient algorithms®**. Some quantum machine
learning algorithms also inspired novel polynomial-scaled classical
algorithms®*?. More recently, it was claimed that there is an efficient
approximate classical algorithm for molecular vibronic spectra,
although details have not been given®.

Inthis work, by using the framework of boson sampling, we estab-
lish the complexity of the molecular vibronic spectra problem. We first
consider the problem corresponding to Fock-state boson sampling
and show that the exact computation of the spectra is computation-
ally hard (#P-hard). However, even running a boson sampler entails
a sampling error, which indicates that an additive error, instead of
exact computation, is the correct target for classical algorithms. To
achieve the target accuracy as efficient as aboson sampler, we devise
an approximate classical algorithm using Fourier transformation.
In particular, we generalize Gurvits’s algorithm to approximate the
Fourier components of general Fock-state molecular vibronic spectra
that include multiphoton input states; furthermore, by using Parse-
val’s relation, we show that the generalized Gurvits’s algorithm and
the inverse Fourier transformation achieve the same accuracy as a
boson sampler in an efficient way. We then generalize the method to
anactual molecular vibronic spectra problem corresponding to Gauss-
ian boson sampling and show that we can even exactly compute the
Fourier components and spectra efficiently. Consequently, we dem-
onstrate that the molecular vibronic spectra problem corresponding
to Fock-state boson sampling or Gaussian boson sampling does not
provide a quantum advantage. By providing a more general type of
molecular vibronic spectra problem, we then show that there exists
achemically well motivated problem that the proposed method does
notsolve as precisely as running a corresponding bosonsampler. Thus,
itsuggests that we might be able to take advantage of boson sampling
tosolve suchaclassically hard problem.

Results

Grouped probability of boson sampling

Before we present our main results for the molecular vibronic spectra
problem, let us first discuss how to potentially exploit a boson sam-
pling for estimating a computational hard quantity, which provides
amore general sense of the molecular vibronic problem. One naive
way of using a boson sampler is to estimate a permanent, which is a
hard graph-theoretical quantity, because the output probability of
bosonsampling can be expressed asa permanent. A caveatisthatinthe
hardness regime, the probability—or the corresponding permanent—is
exponentially small so that we still need exponentially many samples
to achieve areasonable accuracy due to the nature of sampling, even
without considering experimental imperfections. Such a caveat sug-
gests that if we want to estimate a quantity using a boson sampler, it
needs to be sufficiently large that the required number of samples is
at most polynomially many. One way to construct such problemsis to
group the output probabilities and estimate their sum, instead of esti-
mating individual probabilities, so the quantity becomes sufficiently
large. The molecular vibronic spectra problem is exactly such kind of
aproblem, which will be elaborated in the following section.

Molecular vibronic spectra

Let usfirst define the problem using the framework of Fock-state boson
sampling and then generalize the problem to the one corresponding
to Gaussian boson sampling, which describes the actual molecular
vibronic spectra (we define the problem from the chemical perspec-
tive” and elaborate on the relation in Methods). Consider an M-mode
Fock-state boson sampling with input state [¢;,) = In), where
n=(ny,..,ny) E Z’go,and anM-mode linear-optical circuit U, charac-
terized by an M x Munitary matrix U. The probability of measuring the
output photon configuration [m) is then written as

|PerUp m|?
pm) = —mr

, o))
where U, is obtained by repeating the ith row of Uby n;times and the
Jth column of Uby m; times. We then introduce two more parameters
that define groups of probabilities: aweight vector @ € z¥, witheach
element at most polynomially large, that is, w; < O(poly(M)) for all
ie[M], and a set of numbers Q €{0,..., Q,,,.}, which represents each
group of outcomes (the polynomial-size integer weight vector cor-
responds to the polynomially accurate harmonic angular frequency
inspectroscopy). Methods provides amore detailed discussion on the
weight vector. We lift this assumption below. Using these parameters,
we group the output probabilitiesin away that we sum themiftheinner
product ® - mis equal, that s,

G)= ), pms2-w-my= > p(m), )

m=0 meg(02)

where we defined sets G(2)={m e Z’go cw-m=0} for Qe
{0,..., O..,,}. Wewill call such agrouped probability G(Q) as the molec-
ular vibronic spectra in a more general sense. Intuitively, computing
the spectra seems difficult because the probability p(m) is hard to
compute; furthermore, for each Q, we need to sum p(m) over expo-
nentially many outcomes. Even if we are able to approximate the indi-
vidual probabilities with a reasonable error, it is non-trivial to
approximate the grouped probabilities by suppressing the error
because the number of outcomes are exponentially large.

Meanwhile, aboson sampler enables us to straightforwardly esti-
mate the spectraby collecting the samples and counting the number of
samples that give Q after the inner product (Fig. 1). Since the number
of distinct groups is Q,,,,, + 1< O(poly(M)), each grouped probability’s
magnitude |G(Q)| becomes O(1/poly(M)); thus, a reasonable target
error becomes O(1/poly(M)) as well. By the Chernoff bound, the run-
ning time to achieve the target error € with high probability 1-§ is
T=0(poly(M, 1/¢,10g6™)), that is, at most polynomial in the system
size and the target accuracy is 1/e. We emphasize that in contrast to
estimating each probability, which is exponentially small, grouping the
probabilities into polynomially many groups allows the sampling error
0(1/poly(M)) obtained with polynomially many samples to become
still reasonable.

Fourier components of molecular vibronic spectra

As evident from the definition of the spectrain equation (2), a direct
computation or even anapproximation does not seemtrivial. The key
idea of our algorithm to circumvent the direct computation of exponen-
tially many probabilities is to consider its Fourier components. First,
we derive the Fourier components of the molecular vibronic spectra
(Methods provides the derivation):

=+ \m;=0

1 2max B . 0
G() = P Z;) G(k)eko2 = mZ::Op(m)6(Q —w-m), @

where0=21/(Q,.., +1),k€{0,..., Q.. }, and |m;){(m;is the projector on
the m; photon state for the ith mode. Note that we did not assume
Fock-state boson sampling, that is, the relation is applicable to any
circuit. Hence, ingeneral, the Fourier componentis the overlap between
anoutputstate |y, and a phase-shifted state e 9o |y 3 andonce
we can efficiently compute the overlap, we obtain the Fourier compo-
nents and recover the spectra by the inverse Fourier transformation
(Fig.1). Note that the Fourier components depend only on input pho-
tons nand not on output configurations m.
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Fig.1|Molecular vibronic spectra generation using boson sampling and the
proposed classical algorithm by computing the Fourier components of the
spectra. The Fourier components are described by a circuit diagram whose
expressionis givenin equation (3) by defining ¢, = —kOw,. The operation for each
¢;is the phase-shifting operator e'%i"i,

For Fock-state boson sampling, the Fourier components can be
writtenas

Gk = (n] 0 e 00 n) = (n| V|n) =

Per(Van
M’ (5)

n!

where we defined a unitary operator V= UTe_ikﬁ'meU, consisting of U
and a phase-shift operator e=#-®9 gnd 0. Thus, itis a linear-optical
circuit characterized by a unitary matrix V=U'DU, where
D = diag(e~0@1 _  e~ikBwn) characterizing the phase-shift operator.
Here suchadiagonal formsuggests that Vis ageneral form of aunitary
matrix. Together with this fact, since computing the permanent of an
arbitrary matrix in multiplicative error is #P-hard and one can embed
an arbitrary complex matrix into a submatrix of a unitary matrix by
normalizing the matrix'?, computing its Fourier component in multi-
plicative errorisalso #P-hard. Therefore, it shows that computing the
Fourier componentsin multiplicative erroris a#P-hard problem, and
consequently, it proves that the exact computation of the spectrais
also a#P-hard problem.

In fact, we again emphasize that even if we run aboson sampling
experiment using a quantum device and reproduce the spectra from
the sampling outcomes, the resultant spectrahas an additive sampling
error. Therefore, reproducing the spectrawithinamultiplicative error
is not expected to be achievable by running a boson sampling circuit
with polynomially many samples; thus, an additive error is a relevant
target usinga classical simulation to compare with aquantum device.
Interestingly, there exists a classical algorithm, the so-called Gurvits’s
algorithm, which can efficiently approximate the permanent of amatrix
within an additive error'>*°, However, this algorithm and its slightly
generalized version™ are insufficient for general Fock-state boson
sampling cases where the input and output photons n; contain more
than a single photon for some i values because the error canincrease
exponentially in system size in that case (Supplementary Section 1).
We further generalize Gurvits’s algorithm from another work®® using
asimilar technique in ref. 12 to estimate the spectra, which includes
multiple photons nusing the following equality (Supplementary Sec-
tion1provides the derivation):

Per(Van)

CERT

i=1

IGORS
) ] ®)

L

where y; = \/nix;, X € X = R[n; +1] X --- x R[ny + 1] , where R[] is
the set of jthroots of unity. Thus, by sampling the random variable with
uniform x € X, the randomized algorithm gives an estimate y of per-
manent of an n x n matrix such that

Per(Vyn)
’ n

u‘ <el V" @)

with high probability1- §and running time 7= O(poly(n, 1/¢, log6™)).
Here || V|| is the spectral norm of the matrix V, whichis always1for our
case because Vis a unitary matrix. Thus, the generalized Gurvits’s
algorithm enables us to efficiently approximate the Fourier com-
ponents within a reasonable additive error even though the com-
putation of the Fourier components in a multiplicative error is hard
(#P-hard). Note that although a generalized Gurvits’s algorithm might
be used to approximate the individual probabilities in equation (4),
itisnon-trivial to approximate the sum of exponentially many prob-
abilities, which is enabled by approximating Fourier components
instead of probabilities.

The remaining challengeis the error propagation of Fourier coef-
ficients tothat of the spectrathroughthe inverse Fourier transforma-
tion. Using Parseval’s relation, we prove that aslong as we estimate the
Fourier coefficients withasmall error ¢, the transformed spectra’s error
isalso small as € (Methods provides the proof):

2max 1 2max
AGP = ——— AG(K)? < €2, (8
szo| =5 kgo | |

which proves that |AG(Q)| < e for any Q, where AG and AG represent
the error of spectra and Fourier component estimation, respectively.
Hence, if there is an efficient algorithm that approximates the Fourier
componentswithinanerroreinarunningtime 7= O(poly(M, 1/¢,logé ™)),
the algorithm enables us to achieve the same accuracy as running a
bosonsampling. For the Fock-state boson sampling case, the general-
ized Guryvits’s algorithm is such an algorithm estimating the Fourier
components. Consequently, we have shownthat the molecular vibronic
spectra problem corresponding to Fock-state boson sampling can be
efficiently solved by a classical computer as accurately as by running
abosonsampler, whichindicates that there is no quantum advantage
fromthis problem.

Finally, we lift the assumption that the weight vector is at most
polynomially large. In this case, since Q,,,, = w(poly(M)), the standard
Fourier transformation costs superpolynomial time. However, notice
that even for the boson sampling case, it costs superpolynomial time
to estimate all the quantities in a superpolynomial number of bins.
Thus, let us focus on estimating the largest ¢ = O(poly(M)) elements of
G(Q),namely, peaks as large as Q(1/poly(M)) guaranteeing that aboson
sampler can provide areasonable estimate. In this case, we show that
by using the sparse fast Fourier transformation®, we can efficiently
approximate the peaks in O(poly(M, 1/¢€)) with high probability (Sup-
plementary Section 2). Specifically, we show that such a procedure
with approximated Fourier components by the generalized Gurvits’s
algorithm still enables us to achieve an accuracy as good as running a
boson sampler (Methods and Supplementary Section 2).

Exact computation of actual molecular vibronic spectra

As mentioned before and in Methods, actual molecular vibronic spec-
tra problems at zero temperature under harmonic potential approxi-
mation correspond to Gaussian boson sampling. For this case where
the input state is a product Gaussian state |¢;,) = D(e)S(r) |0) and the
circuitis again a linear-optical circuit U, the Fourier components can
be written as

G(K) = (] U e k00 gy ©)

Since only a Gaussian state and Gaussian operations are involved in
Fourier components, one can easily compute them using the standard
technique of quantum optics without needing Gurvits’s approximate
algorithm. More explicitly, we use the positive Prepresentation® for
equation (3), motivated by another work®*.
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Using the positive P representation of single-mode Gaussian
states™ and the relation for a normal-ordered operator such as
e =: eMe’-D :(ref. 36), we can rewrite the Fourier components in
equation (3) as (Supplementary Section 3)

M
Gk) = f dxdyP;,(x,y) exp [Z X,y (e kowi — l)} . (10)
R2M i=1

where P, (X, y) is the positive Prepresentation of an input squeezed
state. Here: O :isthe normal-ordered form of an operator O (ref. 37),
and (x',y’) = (Ux, U*y) accounts for the linear-optical unitary opera-
tion. More specifically, when acoherent state goes through an M-mode
linear-optical circuit U, it transforms as U|x) = |Ux), where Uis the
corresponding M x M unitary matrix for the circuit. Since G(k) is now
written as a Gaussian integral, it can be analytically obtained as

Gk = Nﬂ exp GCTQ‘IC +c ) (65))
Vdet(@@  \2 A
where ¢, = -kbw,,
2rt+ 1y —UTdiag(ei‘Pf)inlU*
Q= oM (12)
~Uidiag(e®),U  2I''+ 1y
and
il m "
N=I1 , I = diag(y)l,, ® = diag(e'® — Dy,
i=1 (13)
T BTN o UTest _ UTes | _ §Tes
c=(a',b") A= b= 5=

Here 8/v/2isa displacement vector of the final state U|;,). Note that
Qis acomplex symmetric matrix and Re(Q) is positive definite, which
guaranteesthat the Gaussianintegral converges. Supplementary Sec-
tion 5 provides more details of the derivation and convergence of the
integral. Itimplies that the molecular vibronic spectra’s Fourier com-
ponents at zero temperature have an analytic solution, so we can obtain
the spectra by simply taking the inverse Fourier transform; thus, we
donotneed aquantumsimulator to generate the spectra (Fig. 2). Using
the technique from another work?®, such an approach can also solve
the molecular vibronic spectra problem at a finite temperature (Sup-
plementary Section 6). In contrast to the Fock-state boson sampling
case, oneinteresting feature is that although the spectrais still the sum
of probabilities that are hard to compute (hafnian), the spectraitself
canbe efficiently computed by using the provided method even with-
out approximation.

We emphasize that a similar method that provides an analytical
expression for vacuum or thermal input states, corresponding to
Gaussian boson sampling, has already been proposed elsewhere®,
whereas our method using a positive P representation allows to con-
sider a more general case such as operations mixing position and
momentum operators, that is, acomplex unitary operation. Further-
more, the method shown in the other work*® overlaps only with the
Gaussianboson sampling cases and cannot recover more general cases
that we consider, such as the Fock-state boson sampling case, which
requires amore complicated method.

Potential quantum advantage from molecular vibronic
spectra

So far, we have shown that the molecular vibronic spectra problem
corresponding to Fock-state or Gaussian boson sampling is efficiently
solvable using a classical algorithm as accurately as running boson
samplers. The key property we exploit to solve the problemis that the
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Fig. 2| Molecular vibronic spectra of formic acid (CH,0,, 1'A’>1°A’) generated
by directly computing all the probabilities and by the solution obtained
using an equation in the main text. The resolution for the spectrais set to be
200 cm™. We first compute the Fourier components using equation (11) and

take the inverse Fourier transform to obtain the spectra. The corresponding
transformation is obtained from another work’.

Fourier coefficients are efficiently approximable using generalized
Guryvits’s algorithm or exactly computable.

We finally consider amore general case, which might potentially
provide a quantum advantage. Here we set the initial state to be a dis-
placed squeezed Fock state D(e)S(ry) [n), which can be thought of as
a hybrid state of the two previous cases. We emphasize that such a
problem is well motivated in chemistry in that it is required when a
spectrum from specific vibronic levels needs to be analysed, instead
of a thermal distribution or a ground state*’, for example, optical
processes including the single-vibronic-level fluorescence and the
resonance Ramanscattering**>.Indeed, aquantum simulation of such
aprocess has also been experimentally implemented for various pho-
toelectron processes such as the photodetachment of ozone anion”.
Inthis case, its Fourier components are written as

G(k) = 0[S (ro)D' (@)U e * om0 UP()S(ro) Im)
=(n|W|n),

(14)

whereW = SAJF(ro)ﬁf(a)lfe“keﬁ'”UD(a)f(ro) isageneral Gaussian uni-
tary operationincluding squeezing, instead of a linear-optical opera-
tion, whichis different from the Fock-state boson sampling case. Using
Bloch-Messiah decomposition*?, we can decompose the Gaussian
unitary operationas W = D(€)UjinyS(t)Ujin1, where Uy and Uy, repre-
sent linear-optical circuits, which are characterized by M x M unitary
matrices U;,,; and Uj;,,, respectively.

InSupplementary Section 8, we show that the Fourier components
canbe written as aloop hafnian of amatrix** as

~ lhaf(2,)
G(k) = h7 (15)
where
Uiinz tanh rUj, Uyinz sechrUsin
= . . (16)
U, sechrl; , —U,  tanhrUjp
isa2M x 2M complex symmetric matrix,
< —Uinp tanhrU; - € + E) -
= 17
T T s«
Ullnl sech rUlm2 e

is a2M-dimensional vector and
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Table 1| Computational complexity of exactly computing Fourier components of molecular vibronic spectra and
approximability within an 1/poly(n) additive error for different setups

Vacuum or thermal input with Fock state Fock state with squeezing Fock state with squeezing and
squeezing displacement

Related quantity Gaussian integral* Permanent* Hafnian* Loop hafnian*

Complexity P* #P-hard" #P-hard'>* #P-hard">*’

Approximability Exactly computable* Approximable* (generalized Approximable for large Not known

Gurvits)

squeezing*

*Derived in the present work. Specifically, in the present work, we find that the Fourier components of the molecular vibronic spectra are related to the Gaussian integral, permanent, hafnian
and loop hafnian for different cases, and show that the Fock-state cases can be solved by a generalized Gurvits’s algorithm and Fock state with squeezing by another generalized Gurvits's

algorithm (hafnian) for some regime.

e’£T (Viinz tanh v U], )-€

\/ HZI coshr;

is the normalization factor, which is the same as the Fourier compo-
nents of the molecular vibronic spectra at zero temperature. Here X,
isobtained by first replacing the diagonal elements of 2 by { to obtain
X and repeating the ith row and column of each block matrix of £n;
times; thus, itisann x nmatrixwithn = EZI n;. Therefore, computing
the Fourier components reduces to computing the loop hafnians of
n x ncomplex symmetric matrices.

Theloop hafnianis a quantity related to the perfect matchings of
a graph including loops (hafnian does not allow loops)**. The
best-known algorithm’s computational cost of computing a loop
hafnianis O(n*2"?) (ref. 44), where nis the matrix size. Thus, if one tries
todirectly compute the probability of each outcome minequation (2),
which is written as a loop hafnian of a matrix whose size is n + m
(m= Zfil m;) (ref. 45) and then obtain the spectra, the complexity of
computingasingle probability already costs exponentialin (n + m)/2.
Onthe other hand, the complexity of computing the Fourier compo-
nents relies on the input photons n and not on the output photons m
and the system size, that is, the proposed method is efficient as long
as nis small enough. Furthermore, we prove that the redundancy of
rows and columns for n; > 2 does not increase the complexity of com-
puting a loop hafnian as a hafnian*****° because it does not increase
the rank of the matrix (Supplementary Section 7). Thus, theimportant
factor for complexity is the number of non-zero elements of n.

Meanwhile, since the loop hafnian is more general than the per-
manent (Supplementary Section 8), computing the loop hafnian is
also #P-hard™*. Itimplies that computing the Fourier components of
general molecular vibronic spectrawith Fock-state inputs and squeez-
ing is also #P-hard. Noting that the Fourier components reduce to a
hafnian and permanent when there is no displacement or squeezing,
respectively, we summarize the complexity in Table 1.

Again, for our purpose, it suffices to find an efficient classical algo-
rithm to additively approximate the Fourier components, which are
loop hafnian, to determine if we can efficiently approximate the spectra
asaccurately asabosonsampler. Infact,in contrastto the permanent,
there is no known efficient classical algorithm that approximates the
loop hafnian as accurately as Guryvits’s algorithm, to the best of our
knowledge. Thus, one obvious step is to generalize Gurvits’s algorithm
to beapplicable toaloop hafnian. For simplicity, let usassume that the
displacementis zero; the loop hafnianin equation (15) thenreduces to
a hafnian. Similar to Gurvits’s algorithm, we construct a randomized
algorithm to estimate a hafnian of ann x ncomplex symmetric matrix
JusingKan’s formula*®

Z1=(0|V|0)y = 18)

n/2

haf(X) = E (—1) Tt (n/2)'(hT h) 19)

ve{0,1}"

where E,[-]is the average over v € {0, 1}" with uniform distribution,
h=@1/2-v,...,1/2-v,)" and nis even (otherwise, the hafnian is zero).

Therefore, by uniformly sampling v € {0, 1}" and averaging over the
samples, we estimate the hafnian. Together with the fact that ||| =
from equation (16), the bound of error for estimate g of a Fourier com-
ponentis given by

2
e < ze—NeZ/2
nnz

haf(Zn)

“Zn! (20)

r\/

Pr“q—

where Z =/, coshr; and Nis the number of samples. Thus, if
H, ,coshr; > e”, the estimation error is smaller than € with an expo-
nentially small failure probability if we choose the number of samples
as N=0(1/€%. Therefore, it suggests that if the condition is satisfied,
classically estimating the Fourier components and taking the inverse
Fourier transformation efficiently renders the same scaling of precision
asabosonsampler.

However, when the conditionis not satisfied, the estimation error
of the proposed classical algorithm with the generalized Gurvits’s
algorithm grows exponentially due to the factor e”2. Therefore, if
we cannot find a classical algorithm to approximate the hafnian, for
example, which approximates

(21)

- <o

inrunning time 7= poly(n, 1/¢, logs™), aboson sampler might provide
apotential advantage for solving this molecular vibronic spectra and
give evidence of the quantum advantage of aboson sampler for practi-
cal problems. If we find such an algorithm, it can eventually solve the
problem as accurately as aboson sampler.

For non-zero displacement and loop hafnian, although thereis a
similar equality as in equation (19), the resultant error bound is more
complicated than a hafnian (Supplementary Section 9). Although we
did not find a regime where the approximation error is sufficiently
small, it would be an important future work to identify the regime to
characterize parameters for which running a boson sampling circuit
may be advantageous than the classical algorithm. We summarize the
well-known or derived complexity of the approximation of the molecu-
lar vibronic spectra’s Fourier components in Table 1.

Discussion

Although we have recently seen the first plausible quantum advantage
demonstration experiments using sampling tasks*®, the present work
leaves an open question to find a practically useful task of quantum
sampling problems. Our results imply that although grouping the prob-
abilities and estimating the grouped probability would be a natural
and potential way of exploiting a boson sampler, an efficient classi-
cal counterpart might exist due to coarse graining. In particular, our
results suggest that the molecular vibronic spectra corresponding to
the Fock-state or Gaussian boson sampling may not be the candidate
for which the power of aquantum sampler can boost the computational
performance beyond classical means. We also note that our method
can be easily generalized to certain non-Condon effects*, coherent
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driving of molecular vibronic spectra generation®® and dynamics of
the vibrational state of molecules®.

Ontheother hand, we have presented amolecular vibronic spec-
traproblem that might provide a potential quantum advantage and is
chemically well motivated. For this problem, to the best of our knowl-
edge, the performance of a classical algorithm computing the spectra
by approximatingits Fourier componentsis not as sufficiently accurate
as running a boson sampler. It leaves an interesting open question of
finding a classical algorithmto solve this problemor proving the hard-
ness toidentify the potential quantum advantage. We also note that the
way we group the probabilities is based on the simple inner product
between the outcome and a given weight vector, which is translated
as phase shiftersin Fourier basis. Thus, generalizing the way of group-
ing the probabilities, which makes the Fourier component to contain
anon-trivial nonlinear operation, and establishing the complexity
would be animportant open question to find the power or limitation
of'the present method.

Finally, since we assume the harmonic potential for our results,
incorporating the anharmonicity of potentials®*~* into our results
is an important future work. In Supplementary Section 10, we
present a way in which we can embed a bounded-error quantum
polynomial-time-complete problem, which is essentially equivalent
to simulating a universal quantum computing circuit, intoa molecular
vibronic spectraproblem containing nonlinear effects beyond Gauss-
ian operations, which might be necessary to incorporate the anhar-
monicity. Thus, the molecular vibronic spectra problem including
nonlinear effects can be difficult to efficiently simulate using classical
computers evenin anadditive approximation.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41567-023-02308-9.
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Methods

Molecular vibronic spectra problem

Inthis section, we define the molecular vibronic spectra problemfroma
chemical perspective and showits equivalence to the presented defini-
tionfromaboson sampling perspective in the main text. The molecular
vibronic spectrais afundamental property of molecules, which allows
us to extract molecular structural changes. An electronic transition
of a molecule changes the nuclei configuration, which introduces
anew set of vibronic modes. Specifically, the transition probability
between an initial vibronic mode and a certain final vibronic mode is
called the Franck-Condon (FC) factor. One may obtain the FC profiles
by computing many FC factors corresponding to a given vibrational
transition frequency (Q). The FC factor is obtained with the initial
vibrational state [¢;,) as

FCP(2) = > |(m| Upo [thin) 26 (2 — @' - m), (22)
m=0
where the Doktorov transformation Up,, is given by*
Opex = DON2)S (2 0pS(2). 23)

where 6(-) is the delta function and m = (m,, ..., m,,) is the final vibra-
tional modes’ excitation vector. Here Q@' and Q" are given by

i = diag(\/ @i, ...y / @}, OF = diag(y/ @, ...,\/ @),

where @' = (@}, ..., ®})) and @f = (&f, ..., f)) account for the initial and
final harmonic angular frequencies, respectively.

In particular, the FC factor at zero temperature is obtained with
the initial vacuum state |¢;,) = |0). In this case, using the Bloch-Mes-
siah decomposition, we can rewrite the Doktorov transformation as

(24)

Upok = UhD(@)S(Q") U, (25)
where U, and U, are rotations, that is, described by linear-optical cir-
cuits. Since U, |0) = |0), the final state after the Doktorov transformation
isgiven by

Upox 10) = U,D(@)S(Q") |0), (26)

which is exactly the same as the output state of Gaussian boson sam-
pling with arbitrary pure product Gaussian states. It shows the direct
relation between the molecular vibronic spectra at zero temperature
and Gaussian boson sampling.

Inthe main text, we also study the molecular vibronic spectrafrom
asinglevibroniclevel, where the input stateis nolonger avacuum state
but a Fock state |n). In this case, the output state is given by Up,, [n).
Especially when we consider the molecular vibronic spectra problem
corresponding to Fock-state boson sampling, the Doktorov transfor-
mationis simply arotation without any squeezing and displacement.

Let us further discuss the relation between the frequency vector
and weight vector w. First, since we only consider a Fock-state or a
vacuum-stateinput, the initial energy is always fixed; thus, itis merely
an offset, which we can omit. Hence, the relation is between the final
frequency vector @ and w. Although the frequency vector @ does not
necessarily have to be aninteger vector, the resolution of @‘is limited
in practical molecular vibronic spectra problems. Hence, practically,
the frequency vector can be written as floating-point numbers up to the
resolution. Therefore, by multiplying a sufficiently large number, we
cantransformthe actual frequency into a weight vector thatisaninte-
ger vector. Here the magnitude of the final weight vector depends on
the resolution of the frequencies. For example, if we have a polynomial
resolution onthe frequencies, we only need to multiply apolynomially
large number to transform the vector into an integer weight vector.

If we have an exponential resolution on the frequencies, we need to
multiply an exponentially large number. Therefore, assuming the
weight vector to be aninteger does not lose generality.

We note that throughout the work, we assume the harmonic poten-
tial for vibrational modes, whereas we emphasize that the effect of
anharmonicity isimportant for more general cases®>*.

Derivation of Fourier coefficient
Here we derive the expression of Fourier coefficients G(k)of the spectra
G(Q)inequation (3).

Do
Gl = Y G(e)eko2 -
2=0
Omax
=D, Y pm)§(2 — @ - meko 28)
2=0m=0
1 Omax
T e+ 1 z >, p(m) Z ilb(2—w-m)-ik0s2 29)
max ~om=0
Omax
= —+l Z Z p(m)e-ildwm Z eif020-k) 30)
max =0 m=o
z p(m)e—nkﬁwm a1
m=0
= Z (Wouc|m) <m|([)0ut>e—ik9m~m 32)
m=0
M A
= ®1 Z |m;) (mi|e—|k6wim, 33)
i=1\ =0
= (e—ikﬁlmﬁ). (34)
Also, the Fourier relation implies that
G(2) = ;-}-1 Z Gkl 35)
max

whichisequation (4).

Error propagation from inverse Fourier transformation

We present the relation between the approximation error in Fourier
basis and the one in spectra using Parseval’s relation. Let us assume
that we have obtained the Fourier components G(k) within anerrore,
that s, |AG(K)| < e. After taking the inverse Fourier transform 71, we
obtain G(Q) with an error AG(Q):

G(2) + AG(2) = FGK) + AG(K)] (36)
and
IAG($2)| = |7 AGK)]I. 37)
Using Parseval’s relation, we have
TGP = 1z T ACKI? < €2 (38)
L] k

whichshows |AG(Q)| < efor all Q. Therefore, if we estimate the Fourier
components within an error € for each, then the error for the spectra
issmaller thane.
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Sparse fast Fourier transformation

As stated in the main text, we exploit the sparse fast Fourier transfor-
mation® for the case where the weight vectors are superpolynomially
large, so that the totalnumber of binsis Q,,,, + 1= w(poly(n)), and show
how it enables us to classically efficiently solve the problem.

The sparse fast Fourier transformation runs as follows (more
details are available elsewhere®). (1) By randomly permuting the bins
and hashing the bins, obtain a smaller number of bins, each of which
contains at most a single peak from the initial distribution with high
probability. (2) Locate the peaks from the hashed bins. (3) Estimate a
large constant fraction of the peaks withgood precisionand high prob-
ability. (4) Subtract the obtained estimates, which makes the distribu-
tion sparser. (5) Iterate the procedure from (1) to (4). The algorithm
takes running time O(¢/€log(Q,,,/)10g(Q..,/8)) and succeeds with
high probability, where e and 6 determine the error.

The sparse fast Fourier transformationis already sufficient to solve
the molecular vibronic spectra problem corresponding to Gaussian
boson sampling. For the problem corresponding to Fock-state boson
sampling, we need to be more careful because we can only approximate
the Fourier coefficients. In Supplementary Section 2, we show that the
approximation error does not change the position of the peaks, that s,
itdoes not delete or produce peaks, with high probability, which guar-
anteesthat the sparse fast Fourier transformation with the generalized
Guryvits’s algorithm efficiently solves the problem.

Generalized and positive Prepresentation

The generalized P representation of an M-mode quantum optical
state is one of the quasi-probability distributions of abosonic state®*’
(Supplementary Section 3):

|a) (B*]

: (39)
(B*a)

p= / P(a, B)A(a, B)dadB, Aa,B) =
CZM

where |a) = |a;)®---®|a,,) is an M-mode coherent state. An important
property of the generalized P representation is that the distribution
P(a, B) can always be chosen to be non-negative (we call this a positive P
representation), and the expectation value of anormal-ordered opera-
tor canbereadily computed™®. Especially, the positive Prepresentation
forasingle-mode squeezed state canbe chosen as®* (Supplementary
Section4)

VitVece 2D+

1
Px,y) = Ty (40)

wherexandyarereal numbers (not complex numbers as general cases
in equation (39)) and y = ¥ - 1for asqueezing parameter r > 0.
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