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Quantum-inspired classical algorithms for 
molecular vibronic spectra

Changhun Oh    1  , Youngrong Lim    2, Yat Wong    1, Bill Fefferman    3 & 
Liang Jiang    1

Plausible claims for quantum advantage have been made using sampling 
problems such as random circuit sampling in superconducting qubit 
devices, and Gaussian boson sampling in quantum optics experiments. 
Now, the major next step is to channel the potential quantum advantage to 
solve practical applications rather than proof-of-principle experiments. It 
has recently been proposed that a Gaussian boson sampler can efficiently 
generate molecular vibronic spectra, which are an important tool for 
analysing chemical components and studying molecular structures. The 
best-known classical algorithm for calculating the molecular spectra scales 
super-exponentially in the system size. Therefore, an efficient quantum 
algorithm could represent a computational advantage. However, here we 
propose an efficient quantum-inspired classical algorithm for molecular 
vibronic spectra with harmonic potentials. Using our method, the 
zero-temperature molecular vibronic spectra problems that correspond 
to Gaussian boson sampling can be exactly solved. Consequently, we 
demonstrate that those problems are not candidates for quantum 
advantage. We then provide a more general molecular vibronic spectra 
problem, which is also chemically well motivated, for which our method 
does not work and so might be able to take advantage of a boson sampler.

Quantum computers are believed to solve problems that cannot be 
efficiently solved using classical counterparts1. Ultimately, quantum 
computers need to be fault tolerant and scalable to solve various prob-
lems, such as integer factorization2 and digital quantum simulation of 
the real-time dynamics of large quantum systems3. Although the theo-
retical study and experimental implementations of quantum error cor-
rection schemes are developing rapidly, quantum machines at hand are 
still noisy intermediate-scale quantum devices. Nevertheless, we have 
recently seen the first plausible quantum advantage demonstrations 
using noisy intermediate-scale quantum devices, such as a supercon-
ducting qubit system with random circuit sampling4,5 and a quantum 
optical system with Gaussian boson sampling6–8.

Since quantum advantages from sampling tasks are promising, 
there have been proposals for applications for which we can potentially 
exploit the advantages. One such example is the generation of so-called 

molecular vibronic spectra9. Due to its importance in chemistry, its clas-
sical algorithm has been extensively studied, whereas the best-known 
algorithm still scales combinatorially in system size10. Recently, it has 
been proposed to employ a quantum simulator, which is a Gaussian 
boson sampler11, to efficiently generate the spectra9. Gaussian boson 
sampling is a task that is believed to be hard for classical computers 
under plausible computational complexity assumptions and that has 
been exploited for a quantum advantage demonstration11–13. Therefore, 
the molecular vibronic spectra problem has been treated as a candidate 
for applications of quantum simulators14. Indeed, many experiments 
have been conducted to generate spectra using a Gaussian boson sam-
pler15–17. Also, many classical algorithms to simulate Gaussian boson 
sampling have been proposed18–22, but the cost is exponential, in general, 
in the system size. Thus, resolving the molecular vibronic spectra prob-
lem by simulating Gaussian boson sampling takes exponential costs.
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p(m) =
|PerUn,m|2

n!m! , (1)

where Un,m is obtained by repeating the ith row of U by ni times and the 
jth column of U by mj times. We then introduce two more parameters 
that define groups of probabilities: a weight vector ω ∈ ℤM≥0 with each 
element at most polynomially large, that is, ωi ≤ O(poly(M)) for all 
i ∈ [M], and a set of numbers Ω ∈ {0,…, Ωmax}, which represents each 
group of outcomes (the polynomial-size integer weight vector cor-
responds to the polynomially accurate harmonic angular frequency 
in spectroscopy). Methods provides a more detailed discussion on the 
weight vector. We lift this assumption below. Using these parameters, 
we group the output probabilities in a way that we sum them if the inner 
product ω ⋅ m is equal, that is,

G(Ω) ≡
∞
∑
m=0

p(m)δ(Ω −ω ⋅m) = ∑
m∈𝒢𝒢𝒢Ω)

p(m), (2)

where we defined sets 𝒢𝒢(Ω) ≡ {m ∈ ℤM≥0 ∶ ω ⋅m = Ω}  for Ω ∈  
{0,…, Ωmax}. We will call such a grouped probability G(Ω) as the molec-
ular vibronic spectra in a more general sense. Intuitively, computing 
the spectra seems difficult because the probability p(m) is hard to 
compute; furthermore, for each Ω, we need to sum p(m) over expo-
nentially many outcomes. Even if we are able to approximate the indi-
vidual probabilities with a reasonable error, it is non-trivial to 
approximate the grouped probabilities by suppressing the error 
because the number of outcomes are exponentially large.

Meanwhile, a boson sampler enables us to straightforwardly esti-
mate the spectra by collecting the samples and counting the number of 
samples that give Ω after the inner product (Fig. 1). Since the number 
of distinct groups is Ωmax + 1 ≤ O(poly(M)), each grouped probability’s 
magnitude ∣G(Ω)∣ becomes O(1/poly(M)); thus, a reasonable target 
error becomes O(1/poly(M)) as well. By the Chernoff bound, the run-
ning time to achieve the target error ϵ with high probability 1 − δ is 
T = O(poly(M, 1/ε, logδ–1)), that is, at most polynomial in the system 
size and the target accuracy is 1/ϵ. We emphasize that in contrast to 
estimating each probability, which is exponentially small, grouping the 
probabilities into polynomially many groups allows the sampling error 
O(1/poly(M)) obtained with polynomially many samples to become 
still reasonable.

Fourier components of molecular vibronic spectra
As evident from the definition of the spectra in equation (2), a direct 
computation or even an approximation does not seem trivial. The key 
idea of our algorithm to circumvent the direct computation of exponen-
tially many probabilities is to consider its Fourier components. First, 
we derive the Fourier components of the molecular vibronic spectra 
(Methods provides the derivation):

G̃(k) ≡ ⟨
M
⊗
i=1
(

∞
∑
mi=0

|mi⟩ ⟨mi|ie−ikθmiωi)⟩ = ⟨e−ikθn̂⋅ωωω⟩ , (3)

G(Ω) = 1
Ωmax + 1

Ωmax

∑
k=0

G̃(k)eikθΩ =
∞
∑
m=0

p(m)δ(Ω −ω ⋅m), (4)

where θ ≡ 2π/(Ωmax + 1), k ∈ {0,…, Ωmax}, and |mi〉〈mi|i is the projector on 
the mi photon state for the ith mode. Note that we did not assume 
Fock-state boson sampling, that is, the relation is applicable to any 
circuit. Hence, in general, the Fourier component is the overlap between 
an output state |ψout〉 and a phase-shifted state e−ikθn̂⋅ω |ψout⟩, and once 
we can efficiently compute the overlap, we obtain the Fourier compo-
nents and recover the spectra by the inverse Fourier transformation 
(Fig. 1). Note that the Fourier components depend only on input pho-
tons n and not on output configurations m.

Meanwhile, the proposed quantum algorithms might also inspire 
us to develop efficient classical algorithms23. For example, the D-Wave 
device has inspired efficient algorithms24,25. Some quantum machine 
learning algorithms also inspired novel polynomial-scaled classical 
algorithms26,27. More recently, it was claimed that there is an efficient 
approximate classical algorithm for molecular vibronic spectra, 
although details have not been given28.

In this work, by using the framework of boson sampling, we estab-
lish the complexity of the molecular vibronic spectra problem. We first 
consider the problem corresponding to Fock-state boson sampling 
and show that the exact computation of the spectra is computation-
ally hard (#P-hard). However, even running a boson sampler entails 
a sampling error, which indicates that an additive error, instead of 
exact computation, is the correct target for classical algorithms. To 
achieve the target accuracy as efficient as a boson sampler, we devise 
an approximate classical algorithm using Fourier transformation. 
In particular, we generalize Gurvits’s algorithm to approximate the 
Fourier components of general Fock-state molecular vibronic spectra 
that include multiphoton input states; furthermore, by using Parse-
val’s relation, we show that the generalized Gurvits’s algorithm and 
the inverse Fourier transformation achieve the same accuracy as a 
boson sampler in an efficient way. We then generalize the method to 
an actual molecular vibronic spectra problem corresponding to Gauss-
ian boson sampling and show that we can even exactly compute the 
Fourier components and spectra efficiently. Consequently, we dem-
onstrate that the molecular vibronic spectra problem corresponding 
to Fock-state boson sampling or Gaussian boson sampling does not 
provide a quantum advantage. By providing a more general type of 
molecular vibronic spectra problem, we then show that there exists 
a chemically well motivated problem that the proposed method does 
not solve as precisely as running a corresponding boson sampler. Thus, 
it suggests that we might be able to take advantage of boson sampling 
to solve such a classically hard problem.

Results
Grouped probability of boson sampling
Before we present our main results for the molecular vibronic spectra 
problem, let us first discuss how to potentially exploit a boson sam-
pling for estimating a computational hard quantity, which provides 
a more general sense of the molecular vibronic problem. One naive 
way of using a boson sampler is to estimate a permanent, which is a 
hard graph-theoretical quantity, because the output probability of 
boson sampling can be expressed as a permanent. A caveat is that in the 
hardness regime, the probability—or the corresponding permanent—is 
exponentially small so that we still need exponentially many samples 
to achieve a reasonable accuracy due to the nature of sampling, even 
without considering experimental imperfections. Such a caveat sug-
gests that if we want to estimate a quantity using a boson sampler, it 
needs to be sufficiently large that the required number of samples is 
at most polynomially many. One way to construct such problems is to 
group the output probabilities and estimate their sum, instead of esti-
mating individual probabilities, so the quantity becomes sufficiently 
large. The molecular vibronic spectra problem is exactly such kind of 
a problem, which will be elaborated in the following section.

Molecular vibronic spectra
Let us first define the problem using the framework of Fock-state boson 
sampling and then generalize the problem to the one corresponding 
to Gaussian boson sampling, which describes the actual molecular 
vibronic spectra (we define the problem from the chemical perspec-
tive29 and elaborate on the relation in Methods). Consider an M-mode 
Fock-state boson sampling with input state |ψin〉 = |n〉, where 
n ≡ (n1,… ,nM) ∈ ℤM≥0, and an M-mode linear-optical circuit ̂U , charac-
terized by an M × M unitary matrix U. The probability of measuring the 
output photon configuration |m〉 is then written as

http://www.nature.com/naturephysics
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For Fock-state boson sampling, the Fourier components can be 
written as

G̃(k) = ⟨n| ̂U
†
e−ikθn̂⋅ω ̂U |n⟩ ≡ ⟨n| ̂V |n⟩ =

Per(Vn,n)
n! , (5)

where we defined a unitary operator ̂V ≡ ̂U
†
e−ikn̂⋅ωθ ̂U , consisting of ̂U  

and a phase-shift operator e−ikn̂⋅ωθ  and ̂U
†

. Thus, it is a linear-optical 
circuit characterized by a unitary matrix V = U†DU, where 
D ≡ diag(e−ikθω1 ,… , e−ikθωM ) characterizing the phase-shift operator. 
Here such a diagonal form suggests that V is a general form of a unitary 
matrix. Together with this fact, since computing the permanent of an 
arbitrary matrix in multiplicative error is #P-hard and one can embed 
an arbitrary complex matrix into a submatrix of a unitary matrix by 
normalizing the matrix12, computing its Fourier component in multi-
plicative error is also #P-hard. Therefore, it shows that computing the 
Fourier components in multiplicative error is a #P-hard problem, and 
consequently, it proves that the exact computation of the spectra is 
also a #P-hard problem.

In fact, we again emphasize that even if we run a boson sampling 
experiment using a quantum device and reproduce the spectra from 
the sampling outcomes, the resultant spectra has an additive sampling 
error. Therefore, reproducing the spectra within a multiplicative error 
is not expected to be achievable by running a boson sampling circuit 
with polynomially many samples; thus, an additive error is a relevant 
target using a classical simulation to compare with a quantum device. 
Interestingly, there exists a classical algorithm, the so-called Gurvits’s 
algorithm, which can efficiently approximate the permanent of a matrix 
within an additive error12,30. However, this algorithm and its slightly 
generalized version31 are insufficient for general Fock-state boson 
sampling cases where the input and output photons ni contain more 
than a single photon for some i values because the error can increase 
exponentially in system size in that case (Supplementary Section 1). 
We further generalize Gurvits’s algorithm from another work30 using 
a similar technique in ref. 12 to estimate the spectra, which includes 
multiple photons n using the following equality (Supplementary Sec-
tion 1 provides the derivation):

Per(Vn,n)
n! = 𝔼𝔼x∈𝒳𝒳 [

M
∏
i=1

(
̄yi(Vy)i
ni

)
ni

] , (6)

where yi ≡ √nixi , x ∈ 𝒳𝒳 ≡ 𝒳𝒳n1 + 1] ×⋯ ×ℛ[nM + 1] , where 𝒳𝒳 j] is  
the set of jth roots of unity. Thus, by sampling the random variable with 
uniform x ∈ 𝒳𝒳, the randomized algorithm gives an estimate μ of per-
manent of an n × n matrix such that

|||
Per(Vn,n)

n! − μ||| < ϵ ∥ V∥
n (7)

with high probability 1 − δ and running time T = O(poly(n, 1/ε, logδ–1)). 
Here ∥V∥ is the spectral norm of the matrix V, which is always 1 for our 
case because V is a unitary matrix. Thus, the generalized Gurvits’s 
algorithm enables us to efficiently approximate the Fourier com-
ponents within a reasonable additive error even though the com-
putation of the Fourier components in a multiplicative error is hard 
(#P-hard). Note that although a generalized Gurvits’s algorithm might 
be used to approximate the individual probabilities in equation (4), 
it is non-trivial to approximate the sum of exponentially many prob-
abilities, which is enabled by approximating Fourier components 
instead of probabilities.

The remaining challenge is the error propagation of Fourier coef-
ficients to that of the spectra through the inverse Fourier transforma-
tion. Using Parseval’s relation, we prove that as long as we estimate the 
Fourier coefficients with a small error ϵ, the transformed spectra’s error 
is also small as ϵ (Methods provides the proof):

Ωmax

∑
Ω=0

|ΔG(Ω)|2 = 1
Ωmax + 1

Ωmax

∑
k=0

|ΔG̃(k)|2 ≤ ϵ2, (8)

which proves that ∣ΔG(Ω)∣ ≤ ϵ for any Ω, where ΔG and ΔG̃  represent 
the error of spectra and Fourier component estimation, respectively. 
Hence, if there is an efficient algorithm that approximates the Fourier 
components within an error ϵ in a running time T = O(poly(M, 1/ε, logδ–1)),  
the algorithm enables us to achieve the same accuracy as running a 
boson sampling. For the Fock-state boson sampling case, the general-
ized Gurvits’s algorithm is such an algorithm estimating the Fourier 
components. Consequently, we have shown that the molecular vibronic 
spectra problem corresponding to Fock-state boson sampling can be 
efficiently solved by a classical computer as accurately as by running 
a boson sampler, which indicates that there is no quantum advantage 
from this problem.

Finally, we lift the assumption that the weight vector is at most 
polynomially large. In this case, since Ωmax = ω(poly(M)), the standard 
Fourier transformation costs superpolynomial time. However, notice 
that even for the boson sampling case, it costs superpolynomial time 
to estimate all the quantities in a superpolynomial number of bins. 
Thus, let us focus on estimating the largest t = O(poly(M)) elements of 
G(Ω), namely, peaks as large as Ω(1/poly(M)) guaranteeing that a boson 
sampler can provide a reasonable estimate. In this case, we show that 
by using the sparse fast Fourier transformation32, we can efficiently 
approximate the peaks in O(poly(M, 1/ϵ)) with high probability (Sup-
plementary Section 2). Specifically, we show that such a procedure 
with approximated Fourier components by the generalized Gurvits’s 
algorithm still enables us to achieve an accuracy as good as running a 
boson sampler (Methods and Supplementary Section 2).

Exact computation of actual molecular vibronic spectra
As mentioned before and in Methods, actual molecular vibronic spec-
tra problems at zero temperature under harmonic potential approxi-
mation correspond to Gaussian boson sampling. For this case where 
the input state is a product Gaussian state |ψin⟩ = ̂D(α) ̂S(r) |0⟩ and the 
circuit is again a linear-optical circuit ̂U , the Fourier components can 
be written as

G̃(k) = ⟨ψin| ̂U
†
e−ikθn̂⋅ω ̂U |ψin⟩ . (9)

Since only a Gaussian state and Gaussian operations are involved in 
Fourier components, one can easily compute them using the standard 
technique of quantum optics without needing Gurvits’s approximate 
algorithm. More explicitly, we use the positive P representation33 for 
equation (3), motivated by another work34.

Boson sampling

Input
photons

0
2

2

1
1

1

1
1
2

0

Classical algorithm

Inverse
Fourier
transform

Fig. 1 | Molecular vibronic spectra generation using boson sampling and the 
proposed classical algorithm by computing the Fourier components of the 
spectra. The Fourier components are described by a circuit diagram whose 
expression is given in equation (3) by defining ϕi = −kθωi. The operation for each 
ϕi is the phase-shifting operator eiϕi ̂ni.
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Using the positive P representation of single-mode Gaussian 
states35 and the relation for a normal-ordered operator such as 
e−γ ̂n =∶ e ̂n𝒢e−γ−1) ∶ (ref. 36), we can rewrite the Fourier components in 
equation (3) as (Supplementary Section 3)

G̃(k) = ∫
ℝ2M

dxdyPin(x,y) exp [
M
∑
i=1
x′iy

′
i(e

−ikθωi − 1)] , (10)

where Pin(x, y) is the positive P representation of an input squeezed 
state. Here ∶ Ô ∶ is the normal-ordered form of an operator Ô (ref. 37), 
and (x′,y′) = (Ux,U∗y) accounts for the linear-optical unitary opera-
tion. More specifically, when a coherent state goes through an M-mode 
linear-optical circuit ̂U , it transforms as ̂U |x⟩ = |Ux⟩ , where U is the 
corresponding M × M unitary matrix for the circuit. Since G̃(k) is now 
written as a Gaussian integral, it can be analytically obtained as

G̃(k) = 𝒩𝒩 (2π)M

√det (Q)
exp ( 12c

TQ−1c + c0) , (11)

where ϕj ≡ −kθωj,

Q ≡ (
2Γ−1 + M −UTdiag(eiϕj )Mj=1U∗

−U†diag(eiϕj )Mj=1U 2Γ−1 + M

) (12)

and

𝒩𝒩 ≡
M
∏
i=1

√1+γi
πγi

, Γ ≡ diag(γi)
M
i=1, Φ = diag(eiϕj − 1)Mj=1,

c ≡ (aT,bT)T, a ≡ UTΦδ∗

√2
, b ≡ U†Φδ

√2
, c0 ≡

δTΦδ∗

2
.

(13)

Here δ/√2 is a displacement vector of the final state ̂U |ψin⟩. Note that 
Q is a complex symmetric matrix and Re(Q) is positive definite, which 
guarantees that the Gaussian integral converges. Supplementary Sec-
tion 5 provides more details of the derivation and convergence of the 
integral. It implies that the molecular vibronic spectra’s Fourier com-
ponents at zero temperature have an analytic solution, so we can obtain 
the spectra by simply taking the inverse Fourier transform; thus, we 
do not need a quantum simulator to generate the spectra (Fig. 2). Using 
the technique from another work38, such an approach can also solve 
the molecular vibronic spectra problem at a finite temperature (Sup-
plementary Section 6). In contrast to the Fock-state boson sampling 
case, one interesting feature is that although the spectra is still the sum 
of probabilities that are hard to compute (hafnian), the spectra itself 
can be efficiently computed by using the provided method even with-
out approximation.

We emphasize that a similar method that provides an analytical 
expression for vacuum or thermal input states, corresponding to 
Gaussian boson sampling, has already been proposed elsewhere39, 
whereas our method using a positive P representation allows to con-
sider a more general case such as operations mixing position and 
momentum operators, that is, a complex unitary operation. Further-
more, the method shown in the other work39 overlaps only with the 
Gaussian boson sampling cases and cannot recover more general cases 
that we consider, such as the Fock-state boson sampling case, which 
requires a more complicated method.

Potential quantum advantage from molecular vibronic 
spectra
So far, we have shown that the molecular vibronic spectra problem 
corresponding to Fock-state or Gaussian boson sampling is efficiently 
solvable using a classical algorithm as accurately as running boson 
samplers. The key property we exploit to solve the problem is that the 

Fourier coefficients are efficiently approximable using generalized 
Gurvits’s algorithm or exactly computable.

We finally consider a more general case, which might potentially 
provide a quantum advantage. Here we set the initial state to be a dis-
placed squeezed Fock state ̂D(α) ̂S(r0) |n⟩, which can be thought of as 
a hybrid state of the two previous cases. We emphasize that such a 
problem is well motivated in chemistry in that it is required when a 
spectrum from specific vibronic levels needs to be analysed, instead 
of a thermal distribution or a ground state40, for example, optical 
processes including the single-vibronic-level fluorescence and the 
resonance Raman scattering41,42. Indeed, a quantum simulation of such 
a process has also been experimentally implemented for various pho-
toelectron processes such as the photodetachment of ozone anion17. 
In this case, its Fourier components are written as

G̃(k) = ⟨n| ̂S
†
(r0) ̂D

†
(α) ̂U

†
e−ikθn̂⋅ω ̂U ̂D(α) ̂S(r0) |n⟩

≡ ⟨n| Ŵ |n⟩ ,
(14)

where Ŵ ≡ ̂S
†
(r0) ̂D

†
(α) ̂U

†
e−ikθn̂⋅ω ̂U ̂D(α) ̂S(r0) is a general Gaussian uni-

tary operation including squeezing, instead of a linear-optical opera-
tion, which is different from the Fock-state boson sampling case. Using 
Bloch–Messiah decomposition43, we can decompose the Gaussian 
unitary operation as Ŵ = ̂D(ξ) ̂Ulin2 ̂S(r) ̂Ulin1, where ̂Ulin1 and ̂Ulin2 repre-
sent linear-optical circuits, which are characterized by M × M unitary 
matrices Ulin1 and Ulin2, respectively.

In Supplementary Section 8, we show that the Fourier components 
can be written as a loop hafnian of a matrix44 as

G̃(k) = lhaf(Σ̃n)
n!Z , (15)

where

Σ ≡ (
Ulin2 tanh rUTlin2 Ulin2 sechrUlin1
UTlin1 sechrU

T
lin2 −UTlin1 tanh rUlin1

) (16)

is a 2M × 2M complex symmetric matrix,

ζ ≡ (
−Ulin2 tanh rUTlin2 ⋅ ξ

∗ + ξ

−UTlin1 sech rU
T
lin2 ⋅ ξ

∗
) (17)

is a 2M-dimensional vector and

Wavenumber (cm–1)

Vibronic spectra

Analytic solution
Direct computing

0 2,000 4,000 6,000 8,000 10,000

0.10

0.05

0

0.15

0.20

0.25

FC
 p

ro
fil

es

Fig. 2 | Molecular vibronic spectra of formic acid (CH2O2, 11A′→12A′) generated 
by directly computing all the probabilities and by the solution obtained 
using an equation in the main text. The resolution for the spectra is set to be 
200 cm−1. We first compute the Fourier components using equation (11) and 
take the inverse Fourier transform to obtain the spectra. The corresponding 
transformation is obtained from another work9.
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Z−1 ≡ ⟨0| ̂V |0⟩ = e
1
2 ξ

T⋅(Ulin2 tanh rUTlin2)⋅ξ

√∏M
i=1 cosh ri

(18)

is the normalization factor, which is the same as the Fourier compo-
nents of the molecular vibronic spectra at zero temperature. Here Σ̃n 
is obtained by first replacing the diagonal elements of Σ by ζ to obtain 
Σ̃  and repeating the ith row and column of each block matrix of Σ̃ni 
times; thus, it is an n × n matrix with n ≡ ∑M

i=1 ni. Therefore, computing 
the Fourier components reduces to computing the loop hafnians of 
n × n complex symmetric matrices.

The loop hafnian is a quantity related to the perfect matchings of 
a graph including loops (hafnian does not allow loops)44. The 
best-known algorithm’s computational cost of computing a loop 
hafnian is O(n32n/2) (ref. 44), where n is the matrix size. Thus, if one tries 
to directly compute the probability of each outcome m in equation (2), 
which is written as a loop hafnian of a matrix whose size is n + m 
(m ≡ ∑M

i=1mi) (ref. 45) and then obtain the spectra, the complexity of 
computing a single probability already costs exponential in (n + m)/2. 
On the other hand, the complexity of computing the Fourier compo-
nents relies on the input photons n and not on the output photons m 
and the system size, that is, the proposed method is efficient as long 
as n is small enough. Furthermore, we prove that the redundancy of 
rows and columns for ni ≥ 2 does not increase the complexity of com-
puting a loop hafnian as a hafnian20,44,46 because it does not increase 
the rank of the matrix (Supplementary Section 7). Thus, the important 
factor for complexity is the number of non-zero elements of n.

Meanwhile, since the loop hafnian is more general than the per-
manent (Supplementary Section 8), computing the loop hafnian is 
also #P-hard12,47. It implies that computing the Fourier components of 
general molecular vibronic spectra with Fock-state inputs and squeez-
ing is also #P-hard. Noting that the Fourier components reduce to a 
hafnian and permanent when there is no displacement or squeezing, 
respectively, we summarize the complexity in Table 1.

Again, for our purpose, it suffices to find an efficient classical algo-
rithm to additively approximate the Fourier components, which are 
loop hafnian, to determine if we can efficiently approximate the spectra 
as accurately as a boson sampler. In fact, in contrast to the permanent, 
there is no known efficient classical algorithm that approximates the 
loop hafnian as accurately as Gurvits’s algorithm, to the best of our 
knowledge. Thus, one obvious step is to generalize Gurvits’s algorithm 
to be applicable to a loop hafnian. For simplicity, let us assume that the 
displacement is zero; the loop hafnian in equation (15) then reduces to 
a hafnian. Similar to Gurvits’s algorithm, we construct a randomized 
algorithm to estimate a hafnian of an n × n complex symmetric matrix 
Σ using Kan’s formula48

haf(Σ) = 𝔼𝔼v∈{0,1}n [(−1)
∑n
i=1 vi 2n/2

(n/2)! (h
T
Σh)n/2] , (19)

where 𝔼𝔼v𝒳⋅] is the average over v ∈ {0, 1}n with uniform distribution, 
h = (1/2 – v1,…, 1/2 – vM)T and n is even (otherwise, the hafnian is zero). 

Therefore, by uniformly sampling v ∈ {0, 1}n and averaging over the 
samples, we estimate the hafnian. Together with the fact that ∥Σ∥ = 1 
from equation (16), the bound of error for estimate q of a Fourier com-
ponent is given by

Pr [|||q −
haf (Σn)
Zn!

||| ≳ ϵ
en/2

√πnZ
] ≤ 2e−Nϵ2/2, (20)

where Z = √∏n
i=1 cosh ri  and N is the number of samples. Thus, if 

∏n
i=1 cosh ri > en, the estimation error is smaller than ϵ with an expo-

nentially small failure probability if we choose the number of samples 
as N = O(1/ϵ2). Therefore, it suggests that if the condition is satisfied, 
classically estimating the Fourier components and taking the inverse 
Fourier transformation efficiently renders the same scaling of precision 
as a boson sampler.

However, when the condition is not satisfied, the estimation error 
of the proposed classical algorithm with the generalized Gurvits’s 
algorithm grows exponentially due to the factor en/2. Therefore, if 
we cannot find a classical algorithm to approximate the hafnian, for 
example, which approximates

Pr [|||q −
haf (Σn)
Zn!

||| ≥ ϵ] ≤ δ (21)

in running time T = poly(n, 1/ε, logδ–1), a boson sampler might provide 
a potential advantage for solving this molecular vibronic spectra and 
give evidence of the quantum advantage of a boson sampler for practi-
cal problems. If we find such an algorithm, it can eventually solve the 
problem as accurately as a boson sampler.

For non-zero displacement and loop hafnian, although there is a 
similar equality as in equation (19), the resultant error bound is more 
complicated than a hafnian (Supplementary Section 9). Although we 
did not find a regime where the approximation error is sufficiently 
small, it would be an important future work to identify the regime to 
characterize parameters for which running a boson sampling circuit 
may be advantageous than the classical algorithm. We summarize the 
well-known or derived complexity of the approximation of the molecu-
lar vibronic spectra’s Fourier components in Table 1.

Discussion
Although we have recently seen the first plausible quantum advantage 
demonstration experiments using sampling tasks4–8, the present work 
leaves an open question to find a practically useful task of quantum 
sampling problems. Our results imply that although grouping the prob-
abilities and estimating the grouped probability would be a natural 
and potential way of exploiting a boson sampler, an efficient classi-
cal counterpart might exist due to coarse graining. In particular, our 
results suggest that the molecular vibronic spectra corresponding to 
the Fock-state or Gaussian boson sampling may not be the candidate 
for which the power of a quantum sampler can boost the computational 
performance beyond classical means. We also note that our method 
can be easily generalized to certain non-Condon effects49, coherent 

Table 1 | Computational complexity of exactly computing Fourier components of molecular vibronic spectra and 
approximability within an 1/poly(n) additive error for different setups

Vacuum or thermal input with 
squeezing

Fock state Fock state with squeezing Fock state with squeezing and 
displacement

Related quantity Gaussian integral* Permanent* Hafnian* Loop hafnian*

Complexity P* #P-hard12 #P-hard12,47 #P-hard12,47

Approximability Exactly computable* Approximable* (generalized 
Gurvits)

Approximable for large 
squeezing*

Not known

*Derived in the present work. Specifically, in the present work, we find that the Fourier components of the molecular vibronic spectra are related to the Gaussian integral, permanent, hafnian 
and loop hafnian for different cases, and show that the Fock-state cases can be solved by a generalized Gurvits’s algorithm and Fock state with squeezing by another generalized Gurvits’s 
algorithm (hafnian) for some regime.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02308-9

driving of molecular vibronic spectra generation50 and dynamics of 
the vibrational state of molecules51.

On the other hand, we have presented a molecular vibronic spec-
tra problem that might provide a potential quantum advantage and is 
chemically well motivated. For this problem, to the best of our knowl-
edge, the performance of a classical algorithm computing the spectra 
by approximating its Fourier components is not as sufficiently accurate 
as running a boson sampler. It leaves an interesting open question of 
finding a classical algorithm to solve this problem or proving the hard-
ness to identify the potential quantum advantage. We also note that the 
way we group the probabilities is based on the simple inner product 
between the outcome and a given weight vector, which is translated 
as phase shifters in Fourier basis. Thus, generalizing the way of group-
ing the probabilities, which makes the Fourier component to contain 
a non-trivial nonlinear operation, and establishing the complexity 
would be an important open question to find the power or limitation 
of the present method.

Finally, since we assume the harmonic potential for our results, 
incorporating the anharmonicity of potentials52–54 into our results 
is an important future work. In Supplementary Section 10, we 
present a way in which we can embed a bounded-error quantum 
polynomial-time-complete problem, which is essentially equivalent 
to simulating a universal quantum computing circuit, into a molecular 
vibronic spectra problem containing nonlinear effects beyond Gauss-
ian operations, which might be necessary to incorporate the anhar-
monicity. Thus, the molecular vibronic spectra problem including 
nonlinear effects can be difficult to efficiently simulate using classical 
computers even in an additive approximation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02308-9.
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Methods
Molecular vibronic spectra problem
In this section, we define the molecular vibronic spectra problem from a 
chemical perspective and show its equivalence to the presented defini-
tion from a boson sampling perspective in the main text. The molecular 
vibronic spectra is a fundamental property of molecules, which allows 
us to extract molecular structural changes. An electronic transition 
of a molecule changes the nuclei configuration, which introduces 
a new set of vibronic modes. Specifically, the transition probability 
between an initial vibronic mode and a certain final vibronic mode is 
called the Franck–Condon (FC) factor. One may obtain the FC profiles 
by computing many FC factors corresponding to a given vibrational 
transition frequency (Ω). The FC factor is obtained with the initial 
vibrational state |ψin〉 as

FCP(Ω) =
∞
∑
m=0

| ⟨m| ̂UDok |ψin⟩ |2δ (Ω −ωf ⋅m) , (22)

where the Doktorov transformation ̂UDok is given by29

̂UDok = ̂D(δ/√2) ̂S
†
(Ωf) ̂UR ̂S(Ωi), (23)

where δ(⋅) is the delta function and m = (m1, …, mM) is the final vibra-
tional modes’ excitation vector. Here Ωi and Ωf are given by

Ωi ≡ diag(√ωi1,… ,√ωiM), Ω
f ≡ diag(√ωf1,… ,√ωfM), (24)

where ωi ≡ (ωi1,… ,ωiM) and ωf ≡ (ωf1,… ,ωfM) account for the initial and 
final harmonic angular frequencies, respectively.

In particular, the FC factor at zero temperature is obtained with 
the initial vacuum state |ψin〉 = |0〉. In this case, using the Bloch–Mes-
siah decomposition, we can rewrite the Doktorov transformation as

̂UDok = ̂U2 ̂D(α) ̂S(Ω′′) ̂U1, (25)

where ̂U1 and ̂U2 are rotations, that is, described by linear-optical cir-
cuits. Since ̂U1 |000⟩ = |000⟩, the final state after the Doktorov transformation 
is given by

̂UDok |0⟩ = ̂U2 ̂D(α) ̂S(Ω′′) |0⟩ , (26)

which is exactly the same as the output state of Gaussian boson sam-
pling with arbitrary pure product Gaussian states. It shows the direct 
relation between the molecular vibronic spectra at zero temperature 
and Gaussian boson sampling.

In the main text, we also study the molecular vibronic spectra from 
a single vibronic level, where the input state is no longer a vacuum state 
but a Fock state |n〉. In this case, the output state is given by ̂UDok |n⟩. 
Especially when we consider the molecular vibronic spectra problem 
corresponding to Fock-state boson sampling, the Doktorov transfor-
mation is simply a rotation without any squeezing and displacement.

Let us further discuss the relation between the frequency vector 
and weight vector ω. First, since we only consider a Fock-state or a 
vacuum-state input, the initial energy is always fixed; thus, it is merely 
an offset, which we can omit. Hence, the relation is between the final 
frequency vector ωf and ω. Although the frequency vector ω does not 
necessarily have to be an integer vector, the resolution of ωf is limited 
in practical molecular vibronic spectra problems. Hence, practically, 
the frequency vector can be written as floating-point numbers up to the 
resolution. Therefore, by multiplying a sufficiently large number, we 
can transform the actual frequency into a weight vector that is an inte-
ger vector. Here the magnitude of the final weight vector depends on 
the resolution of the frequencies. For example, if we have a polynomial 
resolution on the frequencies, we only need to multiply a polynomially 
large number to transform the vector into an integer weight vector.  

If we have an exponential resolution on the frequencies, we need to 
multiply an exponentially large number. Therefore, assuming the 
weight vector to be an integer does not lose generality.

We note that throughout the work, we assume the harmonic poten-
tial for vibrational modes, whereas we emphasize that the effect of 
anharmonicity is important for more general cases52–54.

Derivation of Fourier coefficient
Here we derive the expression of Fourier coefficients G̃(k) of the spectra 
G(Ω) in equation (3).

G̃(k) ≡
Ωmax

∑
Ω=0

G(Ω)e−ikθΩ (27)

=
Ωmax

∑
Ω=0

∞
∑
m=0

p(m)δ(Ω −ω ⋅m)e−ikθΩ (28)

= 1
Ωmax + 1

Ωmax

∑
Ω=0

∞
∑
m=0

p(m)
Ωmax

∑
l=0

eilθ𝒢Ω−ω⋅m)−ikθΩ (29)

= 1
Ωmax + 1

Ωmax

∑
l=0

∞
∑
m=0

p(m)e−ilθω⋅m
Ωmax

∑
Ω=0

eiθΩ𝒢l−k) (30)

=
∞
∑
m=0

p(m)e−ikθω⋅m (31)

=
∞
∑
m=0

⟨ψout|m⟩ ⟨m|ψout⟩ e−ikθω⋅m (32)

= ⟨
M
⊗
i=1
(

∞
∑
mi=0

|mi⟩ ⟨mi| e−ikθωimi)⟩ (33)

= ⟨e−ikθω⋅n̂⟩. (34)

Also, the Fourier relation implies that

G(Ω) = 1
Ωmax + 1

Ωmax

∑
k=0

G̃(k)eikθΩ , (35)

which is equation (4).

Error propagation from inverse Fourier transformation
We present the relation between the approximation error in Fourier 
basis and the one in spectra using Parseval’s relation. Let us assume 
that we have obtained the Fourier components G̃(k) within an error ϵ, 
that is, |ΔG̃(k)| ≤ ϵ. After taking the inverse Fourier transform ℱ−1, we 
obtain G(Ω) with an error ΔG(Ω):

G(Ω) + ΔG(Ω) = ℱ−1𝒳G̃(k) + ΔG̃(k)] (36)

and

|ΔG(Ω)| = |ℱ−1𝒳ΔG̃(k)]|. (37)

Using Parseval’s relation, we have

∑
Ω

|ΔG(Ω)|2 = 1
K + 1∑k

|ΔG̃(k)|2 ≤ ϵ2, (38)

which shows ∣ΔG(Ω)∣ ≤ ϵ for all Ω. Therefore, if we estimate the Fourier 
components within an error ϵ for each, then the error for the spectra 
is smaller than ϵ.
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Sparse fast Fourier transformation
As stated in the main text, we exploit the sparse fast Fourier transfor-
mation32 for the case where the weight vectors are superpolynomially 
large, so that the total number of bins is Ωmax + 1 = ω(poly(n)), and show 
how it enables us to classically efficiently solve the problem.

The sparse fast Fourier transformation runs as follows (more 
details are available elsewhere32). (1) By randomly permuting the bins 
and hashing the bins, obtain a smaller number of bins, each of which 
contains at most a single peak from the initial distribution with high 
probability. (2) Locate the peaks from the hashed bins. (3) Estimate a 
large constant fraction of the peaks with good precision and high prob-
ability. (4) Subtract the obtained estimates, which makes the distribu-
tion sparser. (5) Iterate the procedure from (1) to (4). The algorithm 
takes running time O(t/εlog(Ωmax/t)log(Ωmax/ẟ)) and succeeds with 
high probability, where ϵ and δ determine the error.

The sparse fast Fourier transformation is already sufficient to solve 
the molecular vibronic spectra problem corresponding to Gaussian 
boson sampling. For the problem corresponding to Fock-state boson 
sampling, we need to be more careful because we can only approximate 
the Fourier coefficients. In Supplementary Section 2, we show that the 
approximation error does not change the position of the peaks, that is, 
it does not delete or produce peaks, with high probability, which guar-
antees that the sparse fast Fourier transformation with the generalized 
Gurvits’s algorithm efficiently solves the problem.

Generalized and positive P representation
The generalized P representation of an M-mode quantum optical 
state is one of the quasi-probability distributions of a bosonic state33,37  
(Supplementary Section 3):

ρ̂ = ∫
ℂ2M
P(α,β) ̂Λ(α,β)dαdβ, ̂Λ(α,β) ≡

|α⟩ ⟨β∗||
⟨β∗|α⟩

, (39)

where |α〉 = |α1〉⊗⋯⊗|αM〉 is an M-mode coherent state. An important 
property of the generalized P representation is that the distribution 
P(α, β) can always be chosen to be non-negative (we call this a positive P 
representation), and the expectation value of a normal-ordered opera-
tor can be readily computed33. Especially, the positive P representation 
for a single-mode squeezed state can be chosen as33–35 (Supplementary 
Section 4)

P(x, y) =
√1 + γ
πγ e−𝒢x2+y2)𝒢γ−1+1/2)+xy, (40)

where x and y are real numbers (not complex numbers as general cases 
in equation (39)) and γ ≡ e2r − 1 for a squeezing parameter r > 0.
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