
PHYSICAL REVIEW RESEARCH 5, 043056 (2023)

All-photonic Gottesman-Kitaev-Preskill–qubit repeater using analog-information-assisted
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Long-distance quantum communication will require the use of quantum repeaters to overcome the exponential
attenuation of signal with distance. One class of such repeaters utilizes quantum error correction to overcome
losses in the communication channel. Here we propose a strategy of using the bosonic Gottesman-Kitaev-Preskill
(GKP) code in a two-way repeater architecture with multiplexing. The crucial feature of the GKP code that
we make use of is the fact that GKP qubits easily admit deterministic two-qubit gates, hence allowing for
multiplexing without the need for generating large cluster states as required in previous all-photonic architectures
based on discrete-variable codes. Moreover, alleviating the need for such clique clusters entails that we are
no longer limited to extraction of at most one end-to-end entangled pair from a single protocol run. In fact,
thanks to the availability of the analog information generated during the measurements of the GKP qubits,
we can design better entanglement swapping procedures in which we connect links based on their estimated
quality. This enables us to use all the multiplexed links so that large number of links from a single protocol
run can contribute to the generation of the end-to-end entanglement. We find that our architecture allows for
high-rate end-to-end entanglement generation and is resilient to imperfections arising from finite squeezing
in the GKP state preparation and homodyne detection inefficiency. In particular we show that long-distance
quantum communication over more than 1000 km is possible even with less than 13 dB of GKP squeezing. We
also quantify the number of GKP qubits needed for the implementation of our scheme and find that for good
hardware parameters our scheme requires around 103−104 GKP qubits per repeater per protocol run.
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I. INTRODUCTION

Quantum repeaters [1,2] are central to the realization of
a vision for the global-scale quantum internet. They can
overcome losses in the communication channel by working
around the limitations imposed by the no cloning theorem [3].
Specifically, this theorem tells us that direct noiseless signal
amplification cannot be realized in the quantum domain, while
it is also known that the type of quantum amplifiers allowed
by quantum mechanics introduce too much noise and that a
quantum amplifier on its own cannot compensate for the chan-
nel losses [4]. A myriad different architectures and designs for
quantum repeaters have been proposed over the years.

A widely-used strategy in quantum repeaters to signifi-
cantly increase the rate of generating long-distance entangled
links is multiplexing. Generally, there exist two types of multi-
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plexing strategies depending on the experimental capabilities
of the quantum memories at the repeaters. Physical platforms
with a single communication qubit with an optical interface
and large number of ancilla memories offer the possibility
of time multiplexing [5]. For this type of multiplexing, one
needs to attempt optical interfacing between adjacent nodes
sequentially due to the limitation of the single communication
qubit. However, one can increase the repetition rate to be lim-
ited only by the local gate time between the communication
qubit and the memories rather than the duration of the sin-
gle entanglement generation attempt limited by the classical
communication time between the nodes. This strategy is par-
ticularly applicable to defects in diamond such as NV or SiV
centres [6] as well as to dual-species trapped ion architectures
[7,8]. Unfortunately, in many of these platforms, such as, e.g.,
NV centres in diamond, a too long two-qubit gate time is still
a strong limiting factor for such multiplexing schemes [6].

On the other hand, physical platforms that offer the pos-
sibility of a parallel transfer of large number of optical
qubits into the quantum memory enable parallel entangle-
ment generation attempts where an end-to-end link can be
established provided that at least one of the multiplexed
links over every elementary segment is successfully generated
[9]. Atomic ensemble platforms are promising candidates for
such multiplexed quantum memories as it has already been
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experimentally demonstrated that they can absorb and store
multiple frequency, spatial, and temporal modes in parallel
[10,11]. However, entanglement swapping in such platforms
still needs to be performed optically, which unfortunately
cannot be performed deterministically.

As an alternative strategy, it has been observed that quan-
tum memories can be emulated using photonic states encoded
in quantum error-correcting codes protecting the state against
photon loss so that the photonic qubits can simply be reli-
ably stored in the optical fiber [12,13]. One such promising
code is the tree code [14], which forms a basis for multiple
repeater proposals [12,13,15]. It has also been shown that by
the so called “time-reversed” entanglement swapping, where
each repeater pregenerates a clique cluster, a deterministic
entanglement swap can be effectively engineered even with
a purely optical system based on dual-rail encoded qubits
[12,13]. Combining the simulated photonic quantum memo-
ries with the “time-reversed” entanglement swapping allows
for efficient multiplexing without the need for any physical
quantum memories at all [12,13]. However, the cost of this
architecture is the necessity of pregenerating a large highly-
entangled cluster with qubits encoded in large tree codes.
Moreover, even for a large number of multiplexing levels, at
most one end-to-end entangled link can be extracted through
this procedure per run of the repeater protocol.

In this paper we propose a two-way all-photonic repeater
architecture with multiplexing, which does not require the
pregeneration of a large clique cluster. It requires much less
optical modes and allows for extraction of entanglement or se-
cret key for the cryptographic task of quantum key distribution
(QKD) [16,17] from all the multiplexed links rather than only
a single link. The crucial component of our scheme, which
enables these features is the use of the bosonic Gottesman-
Kitaev-Preskill (GKP) code [18] as our encoded qubit. This
encoding has been proven to be very efficient against photon
loss [19,20] and has already been introduced as a promising
error-correcting code for quantum repeaters [21,22]. More-
over, the GKP code has certain useful properties that are
particularly relevant in the context of all-optical two-way
repeaters. Firstly, GKP qubits admit deterministic two-qubit
gates [18], which alleviates the need of “time-reversed” en-
tanglement swapping through the generation of the clique
cluster. Secondly, measurement of the GKP qubits generates
additional analog information [23]. This analog information
created during the generation of elementary multiplexed links
(specifically during the heralded Bell state measurements)
enables us to rank all the multiplexed links according to ob-
served reliability of each individual Bell state measurement
(BSM). Then, by a suitable strategy of connecting the ranked
elementary links inside the repeaters, one can efficiently ex-
tract entanglement or secret key from all the links, hence
significantly improving the performance relative to the pre-
vious all-optical repeater architectures.

Moreover, as GKP qubits already offer significant protec-
tion against photon loss and since it has already been shown
that using the GKP analog information can significantly boost
the error-correction capabilities of the concatenated-coded
schemes, here we emulate quantum memories by concate-
nating the GKP code with the [[7,1,3]] Steane code [24].
This concatenation strategy has already been proposed in the

context of one-way repeaters based on GKP qubits [22] where
it was shown that together with the help of the analog informa-
tion, such encoding can probabilistically correct most of the
single- and two-qubit errors on the higher level. On the other
hand in our two-way scheme we implement the [[7,1,3]]-code
correction through entanglement swapping on a logical level,
which is more resilient to hardware imperfections than the
previously considered method of stabilizer measurements us-
ing additional ancilla GKP qubits.

We find that, thanks to the features described above, our
scheme achieves the entanglement/secret-key generation rate
per mode, which for good but at the same time reasonable
hardware parameters can stay above 0.7 for 750 kilometers. To
our knowledge there has been only one other repeater scheme
proposed so far which can achieve such performance [21].
That scheme also utilizes GKP qubits, yet we show here that
our scheme can achieve this performance with a significantly
relaxed requirement on the amount of GKP squeezing relative
to the previous scheme. Moreover, our scheme can reach
much longer distances than comparable previously proposed
GKP-based repeater strategies and can do so with larger inter-
repeater spacing.

Finally, we note that thanks to the [[7,1,3]]-code syn-
drome information obtained at each repeater we can further
significantly boost the achievable distances [25]. While over
these longer distances we might not be able to generate the
amount of entanglement or secret key needed for high-speed
QKD or distributed quantum computing, we show that using
the [[7,1,3]]-code syndrome information we can significantly
extend the distance regime over which the performance of
our scheme stays above the PLOB bound [26], which is the
ultimate limit of repeater-less quantum communication and
corresponds to the two-way assisted capacity of the direct
transmission pure loss channel. In the limit of high losses this
bound scales linearly with the channel transmissivity [27].

Additionally we also analyze the number of GKP qubits
needed for the realization of our scheme. We find that for
reasonable hardware parameters one needs around 103−104

GKP qubits per repeater per single protocol run for 20 multi-
plexed links. This is around four orders of magnitude lower
than the number of single photons needed in the discrete-
variable all-photonic scheme of [13]. Clearly GKP qubits and
single photons correspond to very different type of resources.
Therefore additionally we also provide a high-level discus-
sion of how many Gaussian boson sampling (GBS) circuits
and single-mode squeezers would be needed to generate this
required number of GKP qubits, if that strategy for GKP qubit
generation was used.

Our results have been obtained using numerical Monte
Carlo simulations done in MATLAB. The code used to obtain
these results is freely available [28]. However, we also provide
analytical analysis of some of the features of our scheme.

For the convenience of the reader, we sum up here the main
results of the paper:

(1) We propose a form of multiplexing based on GKP ana-
log information, where parallel entangled links can be ranked
according to their expected quality. This strategy is summa-
rized in Sec. V and its performance evaluated in Sec. IXA.
This broadly applicable technique could also be useful in other
contexts, such as entanglement routing, where different user
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pairs in a network might require different quality entangle-
ment or in measurement-based quantum computation where
the resource states of different quality could be constructed
for different computational tasks.

(2) We propose an all-photonic GKP-based repeater
scheme and develop a broad framework for analyzing its
performance under various hardware imperfections. This
framework is based on numerical simulations but it also in-
cludes an analytical model, which captures specific features
of our scheme (see Sec. XA). Our repeater protocol achieves
high performance and has significantly reduced experimen-
tal requirements relative to the previous concatenated-coded
GKP-based repeater architectures. The relaxation of these
hardware requirements in our scheme include:

(i) Reduced GKP squeezing requirement (see Fig. 8
below).

(ii) Robustness to finite homodyne detection efficiency
(see Fig. 8 below).

(iii) Assumption of perfect GKP-qubit storage only
during the generation of the eight-qubit resource states.
(3) We perform a detailed resource analysis for our re-

peater scheme (see Sec. IX F). Our analysis establishes the
total number of GKP qubits needed to implement our scheme,
i.e., it includes all the GKP qubits that would be discarded
in the postselected fusions during resource state creation. We
also provide simple estimates of the total number of single-
mode squeezers if the GKP qubits were to be prepared using
the Gaussian boson sampling technique (see Sec. XB).

(4) We analyze the trade-off between the scheme perfor-
mance and the required resources (see Sec. IX F). We find that
for a specific choices of hardware parameters, our scheme is
able to generate between 2–8 ebits/secret bits using in total
107−108 GKP qubits per protocol run across the distance of
5000 km. This can be compared against the discrete-variable
all-photonic scheme of [13], which over the same distance
achieves the rate of 0.14 secret bits per protocol run using in
total 1012 single photons.

The paper is structured as follows. In Sec. II we introduce
the GKP code and the GKP stabilizers. In Sec. III we describe
our repeater scheme. In Sec. IV we describe the procedure to
generate the resource state for our repeater scheme. In Sec. V
we provide more details on our multiplexing procedure based
on the ranking of the outer leaves. In Sec. VI we describe the
error-correction procedure for the concatenated-coded inner
leaves and explain how the [[7,1,3]]-code syndrome informa-
tion can boost the achievable distances. In Sec. VII we provide
a high-level description of how we quantify the performance
of our scheme. In Sec. VIII we provide a high-level overview
of our numerical simulation for the repeater performance.
In Sec. IX we describe our findings and results. In Sec. X
we provide further discussion of our scheme. Specifically we
describe a simple analytical model that we develop in order to
attempt to analytically capture and approximate the complex
behavior of our scheme, we discuss how the GKP qubits
can be prepared in the optical regime using Gaussian boson
sampling circuits, we compare our scheme’s performance to
that of certain other proposed repeater schemes and finally we
discuss the requirements of the end nodes of Alice and Bob
depending on the specific communication task in mind. We
conclude in Sec. XI with the future outlook.

II. GKP QUBITS AND GKP ERROR CORRECTION

The single-mode square-lattice-based GKP code [18] is
defined as the simultaneous plus one eigenspace of the two
operators,

Ŝq = exp(i2
√

π q̂), Ŝp = exp(−i2
√

π p̂). (1)

The standard basis states of the GKP code are then defined
as

|0GKP〉 =
∑
n∈Z

|q = 2n
√

π〉,

|1GKP〉 =
∑
n∈Z

|q = (2n + 1)
√

π〉, (2)

while the X -basis states as

|+GKP〉 =
∑
n∈Z

|p = 2n
√

π〉,

|−GKP〉 =
∑
n∈Z

|p = (2n + 1)
√

π〉. (3)

We note that such ideal GKP qubits require infinite amount
of squeezing and therefore are unphysical. We therefore
consider finitely squeezed GKP qubits, which we describe
mathematically in Sec. IV.

The two stabilizers in Eq. (1) allow us to measure dis-
placements in q and p quadratures modulo

√
π . Hence the

GKP code can correct small displacements whose component
along each of the two quadratures has a magnitude smaller
than

√
π/2, i.e., half of the resolution of the stabilizers.

Let us now briefly describe on a high level how a GKP
stabilizer measurement can be performed. We note that there
are different methods for measuring the GKP stabilizers and
performing GKP error correction such as Steane error cor-
rection (Steane EC) or teleportation-based error correction
(TEC). However, all of them require ancilla GKP qubits with
GKP peak spacing of

√
π in the measured quadrature. A

GKP stabilizer measurement should only reveal the stabilizer
value without revealing the encoded information. This can be
realized by making the data qubit interact with the ancilla
in such a way that in the measured quadrature the data and
ancilla information become combined. For example, for the
measurement of Ŝp we apply an interaction that provides us
with p̂data + p̂ancilla on the ancilla qubit to be measured. Then
we measure the ancilla GKP qubit in p quadrature and obtain
outcome p0. We note that since the ancilla had a spacing of
GKP peaks of

√
π , it has masked the encoded information so

that the outcome p0 fundamentally contains no information
whether p̂data was centered at odd or even multiples of

√
π .

The outcome p0 can only tell us about any shifts on p̂data
away from the GKP code space consisting of multiples of

√
π .

Hence let us define a function

Rs(x) = x − s

⌊
x

s
+ 1

2

⌋
, (4)

so that R√
π (.) corresponds to the classical processing

that maps the input value modulo
√

π to the interval
[−√

π/2,
√

π/2). Therefore it is clear that R√
π (p0) pro-

vides us exactly with the measured stabilizer value of Ŝp

on p̂data. If p̂data had an error shift smaller than
√

π/2 then
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FIG. 1. A schematic of the proposed multiplexed two-way all-photonic quantum repeater scheme based on GKP-encoded qubits and the
[[7,1,3]] Steane code. At the beginning repeaters need to prepare the entangled resource states that correspond on the logical level to a Bell
pair between a concatenated-coded qubit and a bare GKP qubit and on the physical level to a cube graph state (up to Hadamards) of eight GKP
qubits. Then remote entanglement generation is performed by sending the bare physical GKP qubits (white/empty circle) towards each other
for Bell state measurement (BSM). The BSMs are ranked according to their reliability estimated from the GKP syndromes obtainable from the
continuous BSM outcomes themselves. The ranking is illustrated by the lines of different color joining outer leafs. This ranking information as
well as logical BSM outcomes are sent to the repeaters, which perform entanglement swapping on the concatenated-coded qubits (blue/filled
circle) based on that ranking information (lines of different color joining inner leafs).

R√
π (p0) would correspond exactly to that shift and hence

the error could be corrected (the specific strategy of how the
GKP syndrome information should be used for correcting
the error depends on the applied GKP error-correction tech-
nique). If the error shift had a magnitude from the interval
[
√

π/2, 3
√

π/2), there would be a
√

π discrepancy between
the error shift and R√

π (p0) leading to the logical error. We
note that a net shift by an even multiple of

√
π along the p

quadrature corresponds exactly to the action of the Ŝp sta-
bilizer under which our state is invariant. Hence the logical
error is caused by any shift belonging to any of the intervals
[(4m + 1)

√
π/2, (4m + 3)

√
π/2] for m ∈ Z, i.e., any interval

centered at an odd multiple of
√

π .
Let us now also briefly describe the TEC, which is the

error-correction strategy used in our repeater scheme. This
strategy effectively allows us to perform a noise-resilient BSM
between the data GKP qubit and an ancillary GKP Bell pair.
Specifically, the two classical outcomes of the BSM are ob-
tained by measuring two GKP qubits, one in each quadrature.
Then these continuous outcomes are discretized into bits by
thresholding them as described in Appendix E. If the error
shift on the input data qubit does not cross this threshold
boundary the BSM outcome is reliable and effectively the
continuous error becomes corrected. This is because it has no
effect on the logical BSM outcome and hence no effect on the
GKP qubit onto which the data become teleported. We note
that, by construction, a logical BSM does not reveal any infor-
mation about the logical state of the data qubit. Additionally
to TEC, in our scheme we also employ EC through a BSM
between two data GKP qubits rather than a single data qubit
and an ancilla Bell pair. More details about these schemes

as well as the analysis of noise affecting these processes is
provided in Appendix F.

III. REPEATER SCHEME

The proposed repeater scheme is illustrated in Fig. 1. The
repeater nodes are assumed to be equipped with GKP qubit
factories that generate approximate GKP qubits at high rep-
etition rates. These “physical” GKP qubits are then suitably
combined to form [[7,1,3]] Steane logical qubits comprised
of seven physical GKP qubits each. These Steane-GKP qubits
are subsequently combined further with physical GKP qubits
to form physical GKP–Steane-GKP Bell states that serve as
the resource states for the repeater scheme. For a multiplexed
repeater scheme of multiplexing level k, each repeater node
generates 2k such resource Bell states per entanglement gen-
eration cycle, i.e., k for the channel segment to the left of the
node and k for the channel segment to the right. The “half”
of each resource Bell state comprised of the bare physical
GKP qubit, which we refer to as the “outer-leaf” qubit, is then
transmitted across the channel segment to optically interface
with the adjacent repeater node. Outer-leaf qubits from a pair
of adjacent repeater nodes are interfered with each other at
the middle of the channel segment connecting the nodes using
a GKP BSM, establishing an “elementary link”. The phys-
ical outcomes of the BSM measurements provide not only
the GKP logical BSM outcomes but also analog information
R√

π (p0) and R√
π (q0) about the reliability of the correspond-

ing logical outcomes. This reliability information from all the
elementary multiplexed links over that segment are compared,
and the links are ranked according to that reliability.
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While the outer-leaf qubits are still in transit towards
their neighboring repeater nodes in the process of elemen-
tary link generation, the “other half” of each resource Bell
state, namely, the [[7,1,3]]-GKP qubits that we refer to as the
“inner-leaf” qubits, are locally retained at the repeater nodes
all optically using fiber spools. Until the information about
the outcomes of the outer-leaf qubit BSMs and the link rank-
ing arrive at the respective repeater nodes, the corresponding
inner leaves at the repeater nodes are periodically GKP-error
corrected in the fiber spools using TEC. When the outer-leaf
BSM outcomes and the ranking information arrive, the outer
links to the left and to the right of the repeater are matched
based on their respective ranking. This is followed by inner-
leaf logical BSMs between each pair of matched links across
the repeater node.

We note that our scheme inherits the benefit of all all-
photonic schemes that the protocol repetition rate is only
limited by the rate of generating the resources. The fact that
no quantummemories are required at the repeater nodes effec-
tively means that we can store as many states in our simulated
fiber-based memories as needed. In our specific case the pro-
tocol repetition rate will be to a large extent dictated by the
rate at which we can prepare GKP qubits.

While GKP qubits have been demonstrated to perform
well against photon loss [19,20], in our scheme two different
strategies of using GKP qubits against photon loss have been
considered. The first one is based on preamplifying the GKP
state with the gain given by the inverse of the transmissivity of
the lossy channel, before sending it through the transmission
channel. In this way the effective channel of phase-insensitive
preamplification followed by the lossy channel with trans-
missivity η is equivalent to a Gaussian random displacement
channel with standard deviation σ = √

1 − η [20,29–31]. The
Gaussian random displacement channel is given by

Ndisp[σ ](ρ) = 1

πσ 2

∫
d2α exp

[
−|α|2

σ 2

]
D̂(α)ρD̂†(α), (5)

where D̂(α) is a displacement operator by α. We use this strat-
egy on all the physical inner-leaf GKP qubits while storing
them in the local fiber, i.e., we preamplify them before every
fiber segment after which we perform GKP TEC on them.

The second strategy can be applied in the specific scenario
when two GKP modes that have both passed through the same
amount of loss are interfered together for error correction
and entanglement swapping. In this case no amplification is
necessary as the outcomes of the homodyne measurements
performed after the interference can simply be rescaled by the
inverse of the square root of the lossy channel transmissivity.
This method has been proposed in [21] and referred to as
CC amplification, where CC stands for “classical computer”,
signifying that no actual physical amplification needs to be
performed on the quantum states themselves. In this case if the
total channel separating the two GKP qubits has transmissivity
η, i.e., the two qubits are sent towards each other each over a
channel with transmissivity

√
η, then the effective channel of

photon loss followed by interference and measurements with
outcome rescaling can be described by a Gaussian random

displacement channel with standard deviation σ =
√

1−√
η√

η

[21]. We use this strategy on outer-leaf GKP qubits when

generating the elementary links as well as on the last fiber
segment for the inner-leaf GKP qubits when there is no sub-
sequent TEC. This is because the final GKP correction for
the inner-leaf qubits is performed together with the [[7,1,3]]
correction through the concatenated-coded BSM between the
matched links.

We note that for simplicity of our model we assume that the
classical information about the outer-leaf BSMs is transmitted
back to the repeaters through the same type of fiber as the one
for transmission of outer leaves. This means that the length
of the local fiber acting as quantum memory for the inner-leaf
GKP qubits is the same as inter-repeater spacing L (L/2 is
the “memory distance” until the two outer leaves have met
for BSM and then another L/2 “memory distance” is needed
while waiting for the BSM outcomes and ranking information
to come back). For direct transmission of quantum states
through fiber of length l we model the corresponding channel
transmissivity as η = e−l/L0 , where the channel attenuation
length is L0 = 22 km. Moreover, for simplicity we assume
that fiber loss during all the other local processes such as the
resource state creation at the repeaters is negligible. We also
assume that the GKP qubits are generated directly in the fiber
and all the required linear optics operations are performed
fiber based.

IV. RESOURCE STATE GENERATION

The resource state, which is a Bell state between a bare
physical GKP qubit and a [[7,1,3]] logical qubit comprised
of seven physical GKP qubits, is equivalent to a graph state
of cube topology up to Hadamard gates on four out of the
eight qubits. Here, we briefly describe the generation of this
resource state (see Appendix G for full details).

A. Finite GKP squeezing

First of all, we consider finitely squeezed GKP qubits. We
model the imperfections due to finite squeezing as ideal GKP
states undergoing additional Gaussian random displacement
channel with standard deviation σGKP where the amount of
squeezing in dB s can be linked to σGKP as

s = −10 log10
(
2σ 2

GKP

)
. (6)

This way of modeling the effect of finite GKP squeezing is
widely used, and can be justified as follows [32]. A finitely
squeezed GKP state is given by |ψ�

GKP〉 ∝ exp(−�2n̂)|ψGKP〉,
where |ψGKP〉 is the corresponding ideal GKP state and �

describes the width of each peak in the approximate GKP grid.
Randomly applying displacements along q and p to |ψ�

GKP〉
by any even integer multiple of

√
π according to a uniform

distribution, known as twirling, produces a state

ρGKP[σGKP] = Ndisp[σGKP](|ψGKP〉〈ψGKP|), (7)

where σ 2
GKP = (1 − e−�)/(1 + e−�) [33]. In other words,

adding more noise to it produces a state that is akin to an
ideal GKP state being passed through a Gaussian random
displacement channel with standard deviation σGKP.
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FIG. 2. A modular procedure for resource state generation at the repeaters. The procedure acts on finitely squeezed GKP qubits prepared
in the qunaught |�〉 and |+〉 states. In step a, two |�〉 states are combined on a 50:50 beam splitter followed by a Hadamard gate operation on
one of the two qubits via local oscillator phase delay of π/2, which results in a two-qubit GKP graph state G0. In step b, a CZ gate is applied
between one of the two qubits in the graph state G0 and a fresh GKP qubit in the |+〉 to produce a three-tree graph state G1. In step c, a pair of
G1 states are stitched together via a fusion operation to generate a four-tree graph state G2. In steps (d)–(f), G2 graph states are further stitched
together by successive fusion operations to form increasingly larger graph states culminating in the generation of the cube graph state G5. After
that applying Hadamard gates on four out of the eight constituent qubits results in our desired resource state.

B. Procedure

We consider a modular procedure for the resource state
generation, which is similar to the one used in [21,34]. The
procedure is as illustrated in Fig. 2. Firstly, two-qubit GKP
Bell states are deterministically generated by mixing pairs of
finitely squeezed GKP qubits of displacement noise variance
(also referred to as GKP squeezing variance) σ 2

GKP prepared
in the qunaught state on 50:50 beam splitters, where the ideal
qunaught state is defined as

|�〉 ∝
∞∑

n=−∞
exp(−i

√
2πnp̂)|0〉q

=
∞∑

n=−∞
exp(i

√
2πnq̂)|0〉p.

Note that |�〉 has a periodicity of
√
2π in both q and p

quadratures. The two-qubit GKP Bell states produced have the
same GKP squeezing variance as the input qubits, which are
denoted as gray (lighter shade fill) qubits in Fig. 2. Hadamard
gates that transform the quadratures as q → p and p → −q
acting on one of the two qubits of the GKP Bell states
transform them into two-qubit graph states denoted as G0. A
Hadamard gate can be implemented by introducing a phase
delay of π/2 to the local oscillator.

This is followed by the generation of tree graph states of
size 3 denoted as G1. A G1 state is obtained by the action of

a CZ gate between one of the two qubits in a G0 state and
a third GKP qubit prepared in the |+〉 state, also of GKP
squeezing variance σ 2

GKP, where a CZ gate can be determin-
istically implemented using either inline or off-line squeezers
and linear optics. The CZ gate that transforms the quadratures
of the two participating qubits as q1 → q1, p1 → p1 − q2,
q2 → q2, and p2 → p2 − q1, results in their GKP squeezing
variances to change from (σ 2

GKP, σ
2
GKP) along q and p quadra-

tures, respectively, to (σ 2
GKP, 2σ

2
GKP), which are denoted as

red (darker shade fill) qubits in Fig. 2. Subsequently, pairs
of G1 states are fused through the node qubit of one and the
noisier (red/darker shade fill) of the two-leaf qubits of the
other to generate four-tree graph states denoted as G2, where
a fusion operation involves a Hadamard gate, a beamsplitter
and homodyne detection and is deterministic as described in
Appendix E. Note that we model the homodyne detectors used
in the fusion operations as realistic, lossy detectors with finite
detection efficiencies 0 < ηd < 1.

Pairs of G2 states are then interfused to generate six-qubit
graph states, where G3 and G′

3 denote two different configura-
tions with regard to the squeezing variances of the GKP qubits
participating in the fusion operation, namely, one involving
the noisier (red/dark shade fill) of the three-leaf qubits on both
G2 states being fused (G3), and other involving the noisier
qubit only on one of the G2 states being fused (G′

3). Likewise,
pairs of six-qubit graph states consisting of a G3 and a G′

3 state
are in turn interfused (via two fusion operations) to generate
eight-qubit graph states G4. Finally, pairs of G4 states are
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interfused (via four fusion operations) to generate the cube
graph states G5. Further, four of the eight GKP qubits (denoted
as purple/half filled) in the cube graph state G5 are acted on by
Hadamard gates that flip their q and p quadratures, resulting
in the desired resource state.

It should be noted that the cube graph state could in prin-
ciple be generated all the way by repeated applications of
CZ gates starting from individual GKP qubits prepared in
the |+〉 state. However, in the face of finite GKP squeezing,
such an approach would evidently result in a highly noisy
resource state in terms of the GKP squeezing variances of the
constituent qubits, which would in turn result in an increased
likelihood of logical errors when the qubits are measured. The
modular approach presented above avoids this build up of
noise on the resource state qubits by making minimal use of
CZ gates, and instead relying on fusion operations. One might
also ask why we need to generate different states G3 and G′

3
rather than only generating states G3 and fusing two of them
later into states G4. This is because of the certain correlated
two-qubit logical errors arising during the fusions as discussed
below and in Appendix G. The proposed way of performing
fusions enables us to avoid such correlated errors between the
outer-leaf qubit and any of the inner-leaf qubits.

Unfortunately, the fusion operations also suffer due to fi-
nite GKP squeezing, albeit differently. The problem is the
possibility of logical errors emanating from the homodyne
measurements carried out as part of the fusion operations that
can propagate onto the resource state qubits. The rule for
this error propagation during such fusions is derived in Ap-
pendix A. For the different configurations of the participating
qubits, namely, two red/darker shade fill qubits (fusion 1), or
one gray/lighter shade fill qubit and one red/darker shade fill
qubit (fusion 2), or two gray/lighter shade fill qubits (fusion
3), the two homodyne measurements involved in the fusion
operation deal with noise variance 3σ 2

GKP + (1 − ηd )/ηd each,
or one each of variances 2σ 2

GKP + (1 − ηd )/ηd and 3σ 2
GKP +

(1 − ηd )/ηd , or 2σ 2
GKP + (1 − ηd )/ηd each, respectively. The

greater the noise variance of the homodyne measurements in-
volved, the greater the probability of logical errors. To control
these error probabilities, we use postselection at the expense
of the determinism of the fusion operation. The fusion opera-
tions under postselection thus only succeed probabilistically,
but the probability of success can be boosted by multiplexing
the fusion attempts. The use of postselection and multiplexing
in the resource state generation are discussed next. A detailed
analysis of error propagation after the discussed fusion opera-
tions is provided in Appendix G.

C. Postselected fusions

As mentioned above, during the fusions leading to the gen-
eration of the resource state we apply postselection to increase
the quality of the generated resource conditioned on passing
the postselection.

Here we describe in more detail how such postselection
works. Let us define a parameter v describing the size of the
discard window. This parameter defines a window such that if
the GKP syndrome R√

π (q0) [or R√
π (p0)] is in the interval

−
√

π

2 � R√
π (q0) � −

√
π

2 + v or
√

π

2 − v � R√
π (q0) �

√
π

2 ,
the measurement is deemed unreliable and the state is dis-

carded. The state is only kept if the syndrome satisfies −
√

π

2 +
v < R√

π (q0) <
√

π

2 − v. This means that the probability of
passing the postselection and having a logical error is then
given by

E1(v; σ
2) =

∑
m∈Z

∫ 4m+3
2

√
π−v

4m+1
2

√
π+v

fσ (x)dx, (8)

where

fσ (x) = e− x2

2σ2√
2πσ 2

(9)

is the Gaussian noise distribution. The probability of passing
the postselection without a logical error is then

E0(v; σ
2) =

∑
m∈Z

∫ 4m+1
2

√
π−v

4m−1
2

√
π+v

fσ (x)dx. (10)

We note that∫ − 1
2

√
π−v

− 3
2

√
π+v

fσ (x)dx +
∫ 3

2

√
π−v

1
2

√
π+v

fσ (x)dx

= 2
∫ 3

2

√
π−v

1
2

√
π+v

fσ (x)dx (11)

acts as a lower bound on E1(v; σ 2) and∫ − 1
2

√
π−v

−∞
fσ (x)dx +

∫ ∞

1
2

√
π+v

fσ (x)dx = 2
∫ ∞

1
2

√
π+v

fσ (x)dx

(12)

as an upper bound, i.e.,

2
∫ 3

2

√
π−v

1
2

√
π+v

fσ (x)dx � E1(v; σ
2) � 2

∫ ∞

1
2

√
π+v

fσ (x)dx. (13)

Similarly, we also obtain the following bounds on E0(v; σ 2):∫ 1
2

√
π−v

− 1
2

√
π+v

fσ (x)dx � E0(v; σ
2)

�
∫ 1

2

√
π−v

− 1
2

√
π+v

fσ (x)dx + 2
∫ ∞

3
2

√
π+v

fσ (x)dx. (14)

We find that for the values of σ and v used in this paper these
bounds are numerically tight for our purposes. Specifically
their relative difference given by the upper bound minus lower
bound divided by the upper bound is at most of the order
of 10−4 for E1(v; σ 2) and at most of the order of 10−14 for
E0(v; σ 2). Hence in our simulation and resource analysis we
use the lower bounds, i.e., we define

Ẽ1(v; σ
2) = 2

∫ 3
2

√
π−v

1
2

√
π+v

fσ (x)dx,

Ẽ0(v; σ
2) =

∫ 1
2

√
π−v

− 1
2

√
π+v

fσ (x)dx. (15)

Then the probability of passing postselection and the proba-
bility of having a logical error given that the postselection has
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TABLE I. Success probabilities of fusion operations for different
GKP squeezing variances of the participating qubits. Fusions 1, 2,
and 3 correspond to the cases of the input qubits being two red/darker
shade fill qubits, one gray/lighter shade fill qubit and one red/darker
shade fill qubit, and two gray/lighter shade fill qubits in reference
to Fig. 2, respectively. In our model, the numerical values of these
success probabilities will range from around 0.3 to more than 0.999
depending on the chosen values of σGKP, ηd , and v.

Fusion type Success probability p

Fusion 1 (PPS(v; 3σ 2
GKP + (1 − ηd )/ηd ))2

Fusion 2 PPS(v; 3σ 2
GKP + (1 − ηd )/ηd )

×PPS(0.7v; 2σ 2
GKP + (1 − ηd )/ηd )

Fusion 3 (PPS(0.7v; 2σ 2
GKP + (1 − ηd )/ηd ))2

been passed are given by

PPS(v; σ
2) = Ẽ1(v; σ

2) + Ẽ0(v; σ
2),

EPS(v; σ
2) = Ẽ1(v; σ

2)/(Ẽ1(v; σ
2) + Ẽ0(v; σ

2)). (16)

We note that as discussed in Sec. IVB, our postselected fu-
sions involve measurements of GKP qubits with two different
variances. Some of them have variance σ 2 = 3σ 2

GKP + (1 −
ηd )/ηd and some have variance σ 2 = 2σ 2

GKP + (1 − ηd )/ηd .
For practical purposes it suffices to suppress errors at differ-
ent measurements to roughly the same order of magnitude.
Clearly if we used the same value of v for measurements of
the qubits with both of these variances, the errors for the ones
with the latter variance will be suppressed to much smaller
order of magnitude than the errors after the measurements of
the first variance. This will not provide any observable benefit
but would cost us large number of additional fusion attempts
and hence large number of additional resources. Therefore
based on our numerical investigation for the relevant hardware
parameter regime we have established a high level heuristic
that whenever we use a discard window v for the measure-
ment of a GKP qubit with the first noise variance, for the
corresponding measurement of a GKP qubit with the latter
noise variance we use 0.7v. Hence from now on whenever
we refer to discard window v we always refer to the value of
the discard window we use for the measurements of the GKP
qubits with the first variance. For the corresponding latter one
we always use 0.7 of that value. For a GKP squeezing variance
σ 2
GKP and a discard window size v, the relevant probabilities

are tabulated in Table I.

D. Multiplexed fusions

In spite of the probabilistic, postselected fusion operations
involved in the modular approach, here we show that the
repeaters can still generate the resource states near determin-
istically with the help of multiplexed fusion attempts at each
step along the procedure outlined in Sec. IVB. The idea is to
start with a sufficiently large number of GKP qubits at each
repeater so as to be able to support sufficiently large numbers
of fusion attempts at each successive layer of the flowchart
in Fig. 3 from bottom to top. The end goal is to make the
probability of simultaneously succeeding in generating the
required 2k number of resource states at each repeater (k being

the repeater multiplexing level) along a chain of repeaters be-
tween two end nodes in a repeater-enhanced quantum network
approach 1 during each time step of the repetition cycle of the
repeater protocol.

For a given number of repeaters nrep connecting two end
nodes and for 2n1 number of G1 three-trees per repeater, the
probability of successfully generating the necessary resource
states at all repeaters during each time step pres-gensucc can be
expressed in terms of different number of attempts at the
various kinds of fusions along the layers of the flowchart
Ni ∀i ∈ {1, 2, 3, 4} and N ′

2 as(
pres-gensucc

)1/nrep =
∑

n2,n3,n′
3,n4

P(S5 � 2k|N4 = n4)

× P(S4 = 2n4|N3 = min(n3, n′
3))

× P

(
S′
3 = n′

3|N ′
2 = pG3

pG3 + pG′
3

n2

)

× P

(
S3 = n3|N2 = pG′

3

pG3 + pG′
3

n2

)

× P(S2 = 2n2|N1 = n1), (17)

where, Si ∀i ∈ {2, 3, 4, 5} denote the number of successes in
the different fusions. Note that here we do not count successes
in individual fusions but rather successes in all the fusions
needed to simultaneously succeed in order to successfully
fuse two states Gi into a state Gi+1. Let us refer to all such
fusions as fusion sets. Then the number of successful fusion
sets Si+1 corresponds to the number of successfully generated
states Gi+1. Since at the next level we are fusing pairs of
states Gi+1 into states Gi+2, the maximum number of attempts
Ni+1 that we can perform is equal to half of the number of
successes Si+1. The exception to this are the pairwise fusions
of the states G3 with states G3′ and so N3 is given by the
minimum of the number of available states G3 and states G3′ .
The constituent probabilities P(S|N fusion attempts) can be
evaluated as

P(Si|Ni−1) =
(

Ni−1

Si

)
pSi

Gi
(1 − pGi )

Ni−1−Si , (18)

where pGi is the success probability of a single fusion set
attempt at generating a state Gi. We note that when having
in total n2 attempts of generating the states G3 and G′

3 we use

a fraction
pG′

3
pG3+pG′

3

of that n2 for generating G3 and fraction
pG3

pG3+pG′
3

for generating G′
3. This choice enables for generating

on average an equal number of both states. The quantity
pres-gensucc can be made arbitrarily close to 1 by increasing the
number of GKP qubits N0 = 6n1.

We note that the choice of fusion 1 instances early on in the
procedure of Fig. 2 is not accidental, but to encounter the more
noisy fusion operations earlier in the workflow rather than
later. This is because postselection failures at higher layers
amount to discarding larger number of GKP qubit resources,
which we want to minimize. For the same reason, likewise,
fusions 2 and 3 follow fusion 1s higher up in the resource
generation procedure in that order.
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FIG. 3. A flowchart showing multiplexed fusions for near-deterministic resource state generation as per the procedure described in Fig. 2.

Since analytical evaluation of pres-gensucc is challenging, we
perform a Monte Carlo simulation to evaluate (pres-gensucc )1/nrep

for different numbers of input GKP qubits N0.

V. RANKING OF MULTIPLEXED OUTER LEAVES

A key feature of our scheme, which enables us to achieve
such high performance is the type of multiplexing that offers
the possibility of ranking all the links based on their estimated
quality. The quality estimate of each of the links can be ob-
tained from the GKP analog information generated during the
BSM performed on the two outer-leaf qubits sent from the
left and right. In other words the encoded GKP BSM is error-
protected and the analog value of the outcome provides the
likelihood that we wrongly decode the logical outcome. Based
on these error-likelihoods, we can rank the links according to
their estimated quality.

The specific strategy to rank the links is then as fol-
lows. Firstly for each of the k multiplexed links and k
outer-leaf fused pairs, we evaluate the likelihood of er-
ror in each quadrature separately. Specifically, we evaluate

p[σ ](R√
π (p0)) (which we denote as Pp), the likelihood of

error after the communication channel given the GKP stabi-
lizer Ŝp outcome R√

π (p0). Here σ is the standard deviation
of the Gaussian random displacement channel acting on our
measured GKP qubit, see Appendix H for more details on
evaluating the error likelihood based on the GKP syndrome.

Similarly we evaluate p[σ ](R√
π (q0)) (which we denote as

Pq) for the q quadrature. For a given link, the likelihood that
there was no logical error on the outer-leaf qubit during and
after the BSM is

Pno-error = (1 − Pp)(1 − Pq). (19)

We then rank the links according to Pno-error. Then inside
the repeaters we connect the links based on the ranking infor-
mation. In Appendix C we prove that in order to maximise the
hashing rate (or equivalently a secret-key rate for the one-way
six-state protocol) the optimal entanglement swapping strat-
egy in the regime of small error probabilities is to connect the
best link with the best, second best with the second best etc. in
all the repeaters. We also refer the reader to Appendix H for a
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detailed analysis of all the error processes affecting the outer
leaves.

VI. INNER LEAVES

While the outer leaves are being sent through the fiber for
establishing the elementary links, the inner-leaf logical qubits,
encoded in a concatenation of the GKP and the [[7,1,3]] code
are stored locally in the fiber. We note that each of those
logical qubits needs to be stored in the fiber for a distance
twice longer than the fiber length covered by each of the outer-
leaf qubits, because the inner-leaf qubits need to also be stored
for the time during which the classical information, in par-
ticular the analog ranking information, from the outer leaves
comes back to the repeaters. That is also why we want to offer
more protection to the inner-leaf qubits by encoding them in a
concatenated code. However, thanks to the boosting capability
of the GKP analog information for the higher level code, using
a small [[7,1,3]] code is sufficient as observed and used for
one-way repeaters in [22]. Similarly to the outer leaves, the
BSM/entanglement swapping on the inner leaves is performed
on the encoded level and hence is error protected but this
time on two levels. That means that effectively this BSM
implements both GKP and [[7,1,3]]-code correction but as it
is destructive, it does not require any ancillas that could in-
troduce extra noise. Hence this measurement of the GKP and
[[7,1,3]]-code stabilizers is only limited by the homodyne de-
tection inefficiency. We note that as the [[7,1,3]] code admits
transversal CNOT gates [35], the encoded BSM can actually be
done just using pairwise interference of individual GKP qubits
from two [[7,1,3]]-code logical qubit blocks. This is because
the BSM can be implemented using a CNOT gate followed
by the X and Z measurements. The [[7,1,3]]-code CNOT gate
corresponds to seven pairwise physical CNOT gates between
the two blocks and the logical X and Z measurements can be
implemented by measuring individual physical qubits as the
logical X operator for this code is given by XL = XXXXXXX
and the logical Z operator is given by ZL = ZZZZZZZ . Hence
effectively we just need to perform seven pairwise physical
BSMs, which for GKP qubits can be implemented using a
beamsplitter and two homodyne detections of the opposite
quadratures as done on the outer leaves.

Now, in order to better protect the inner-leaf qubits during
storage we additionally periodically perform TEC-based GKP
correction on each of the seven physical GKP qubits from
each block. Hence effectively we perform multiple rounds of
noisy GKP correction using noisy ancilla Bell pairs followed
at the end by a close to perfect GKP correction and close to
perfect [[7,1,3]]-code stabilizer measurement. Such a simu-
lated quantum memory is itself very similar to the one-way
repeater of [22]. The main difference here is that all but the
last one GKP correction are performed in the TEC-based
fashion and the final GKP correction and the [[7,1,3]]-code
stabilizer measurement is close to perfect, i.e., without using
noisy ancillas. Hence we can use the same strategy as in [22]
of collecting the analog information from all the GKP correc-
tions and then use it to reliably read off and correct the final
logical BSM outcome. Specifically, after measuring the 14
GKP qubits, seven in p̂ quadrature, seven in q̂ quadrature we

firstly perform GKP correction on the measured outcomes by
bringing the measured values to the nearest multiple of

√
π .

Then we decode them from the GKP code by reading them
as 0 (1) for the even (odd) multiple of

√
π . Then we apply

the parity check matrix of the [[7,1,3]] code to the resulting
string of seven bits. Each possible nonzero syndrome obtained
from the three checks in X and three checks in Z corresponds
to either a single-qubit error or one of three two-qubit errors
(which are equivalent to each other up to the stabilizers). We
can then decide which of these four cases is most likely based
on the GKP analog information from all the GKP corrections
during storage of the inner-leaf qubits. After estimating the
most-likely error the corresponding bits are flipped and the
logical value of the outcome can be obtained by xor-ing all
the seven bits. This entire procedure is depicted in Fig. 4.

We note that as this last GKP and the [[7,1,3]] correction
is done on the classical level, we are guaranteed that the final
outcome must be in the code space, i.e., after the correction
the measured 7 bits will satisfy all the three parity checks.
Similarly, while the GKP TEC uses noisy ancilla GKP modes
and lossy homodyne detections, it can actually be modelled as
perfect GKP correction with additional noisy channels before
and after the correction, see [21] and Appendix F for details.
We also refer the reader to Appendix I for a detailed anal-
ysis of all the error processes affecting the inner-leaf GKP
qubits.

It is important to contrast the way we use inner leaves
here with the way they are used in the clique-cluster-based
GKP scheme of [21]. That scheme utilizes the inner leaves in
the same way as the discrete-variable all-photonic scheme of
[12] where the inner leaves are also transmitted through the
communication channel. In that case they can be measured
immediately after the outer leaves and so they are effectively
transmitted through a twice shorter lossy channel than in our
case. However, transmitting the inner leaves requires trans-
mission of many more modes per single raw bit or EPR pair.
In our scheme we retain these inner leaves at the repeaters,
which is similar to the scheme of [13] for the discrete-variable
case. As mentioned, the total channel experienced by each
qubit is much longer now but additionally to reducing the
number of transmitted optical modes, retaining these qubits
has two additional benefits that are specific to our scheme.
Firstly it enables us to do GKP correction as frequently as
we want on these qubits. This can compensate for the extra
length of the lossy channel. Secondly, since GKP qubits admit
deterministic two-qubit gates, in this case no clique cluster is
needed at all and the entanglement swapping can be done at
the end rather than in the time-reversed way. Alleviating the
need for the clique cluster significantly reduces the size of the
required resource states.

An additional component that we use that can significantly
increase the distance over which a nonzero performance is
achieved is based on binning the end-to-end links based on the
discrete inner-leaf syndrome as proposed in [25,36]. Specifi-
cally, as mentioned, when measuring the X and Z stabilizers
of the [[7,1,3]] code for each of the two syndromes we can
either obtain a zero syndrome or a nonzero syndrome. If a
zero syndrome is measured, it is very unlikely that we make
an error during the encoded entanglement swapping, because
this undetected error would then need to be a logical error,
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FIG. 4. Storage and error correction of the inner-leaf qubits. The concatenated-coded qubits are stored in the fiber with periodic lower-level
TECGKP corrections nper-km times per km of fiber. Each of those GKP corrections generates analog information that is stored.When the ranking
information arrives, a logical error-protected BSM is performed between the relevant inner-leaf qubits. In the figure γ denotes the photon loss
probability in each segment between two consecutive GKP corrections.

i.e., an error of weight three. On the other hand if we obtain
a nonzero error syndrome it is much more likely that even
using the GKP analog information we incorrectly identify
between the single- and one of three two-qubit errors. Hence
the end-to-end links for which more repeaters measured a
zero-error syndrome during entanglement swapping will be
on average of higher quality than the links for which more
repeaters measured a nonzero error syndrome. In our scheme
the end nodes extract secret key or entanglement separately
from each bin corresponding to different number of nonzero
error syndromes across the whole repeater chain. That is, the
best links will be those for which all repeaters had a zero-
error syndrome for both X and Z stabilizers. Then we will
separately have a bin for which all repeaters had a zero-error
syndrome in X but in Z there was one repeater that had a
nonzero error syndrome. Then there will be a bin with that
single nonzero error syndrome in X , then a bin with a single
nonzero error syndrome in both and so on. This binning gets
then combined with the ranking of the outer links. Hence for
every bin there are actually k separate links of different quality
where k is the number of multiplexing levels. Hence the total
number of different quality links from which we extract secret
key (entanglement) separately is (n + 1)2k, where n is the
total number of repeaters.

An important requirement of our scheme, which we ad-
ditionally need to mention here is that the end nodes of
Alice and Bob will have different requirements depending on
whether the aim is to extract secret key or entanglement. For
secret key, the end nodes do not need to have any inner-leaf
qubits at all. In every protocol run, they just need to be able
to prepare k randomly chosen six-state protocol basis states
within their outer leaves, see the discussion Sec. XD. Hence
for QKD the requirements on the resources of Alice and Bob

are very limited and certainly much less than those on the
required resources of the repeaters.

On the other hand if the goal is to establish long-
distance entanglement, then Alice and Bob require much more
resources in terms of quantum memories. We will discuss this
aspect more in Sec. XD but here we just want to emphasize
that in order for our scheme to work also for remote entangle-
ment generation, we need to assume that Alice and Bob are in
possession of quantum memories that can near-perfectly store
the state for the duration of classical communication between
the end nodes.

VII. END-TO-END ERROR
AND PERFORMANCE METRICS

Let us now put together all the pieces described above and
provide the formulas for calculating the end-to-end perfor-
mance.

We have already pointed out that the convexity of secret
key and entanglement measures with respect to the shared
quantum state means that we can increase the performance
by connecting the outer links according to their ranking. Then
we can extract the key (entanglement) from links of differ-
ent rank separately. We have also explained how to use the
additional information from the inner-leaf discrete syndromes
to further exploit that convexity and increase the performance
even further. Let us now make these ideas more precise math-
ematically.

When performing entanglement swapping on the inner
leaves we use the [[7,1,3]]-code syndrome to group the links.
When measuring each of the X or Z stabilizers, there are two
possible syndromes: The syndrome corresponding to no error,
which we will denote as s = 0 and the one corresponding to
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an error, which we will denote as s = 1. We use that binary
information as follows.

Firstly, the logical error probability over the single link
consists of two pieces, the probability of the logical error on
the inner leaves QX/Z,inner(s) (where we separate between the
s = 0 and s = 1 case) and the probability of the logical error
on the outer leaves for the outer links ranked as j ∈ {1, . . . , k}
(in the order of their estimated quality), for k multiplexed links
QX/Z,outer( j). Then the total error probability over the single
link depending on s and ranking j is

QX/Z (s, j) = QX/Z,inner(s)
(
1 − QX/Z,outer( j)

)
+ (

1 − QX/Z,inner(s)
)
QX/Z,outer( j). (20)

Let n be the total number of inner-leaf repeaters between
Alice and Bob. Let �s ∈ Fn

2 be the binary vector of dimension
2n (bit string of length n) describing which of the n repeaters
had the inner-leaf error syndrome during swapping. Then the
end-to-end error probability for the end-to-end link with j’th
ranking and when m ∈ {0, . . . , n} of the inner leaves had a
nonzero error syndrome is

QX/Z,end(|�sX/Z | = mX/Z , j)

= 1−(1−2QX/Z (s = 1, j))mX/Z (1−2QX/Z (s=0, j))n−mX/Z

2
.

(21)

Here |�sX/Z | denotes the Hamming weight of the bit string �sX/Z .
Let pX/Z (|�sX/Z | = mX/Z ) be the probability that m of the n
repeaters measured the nonzero error syndrome on the inner
leaves. Then the total secret key (entanglement) rate per mode
when distilled separately for different j’s and different m’s is

R = 1

k

∑
j,mX ,mZ

pX (|�sX | = mX )pZ (|�sZ | = mZ )

× r(QX,end(|�sX | = mX , j), QZ,end(|�sZ | = mZ , j)), (22)

where r is the secret-key fraction or a lower bound on distill-
able entanglement.

Note that

pX/Z (|�sX/Z | = mX/Z ) =
(

n

mX/Z

)
t

mX/Z

X/Z (1 − tX/Z )
n−mX/Z , (23)

where tX/Z is the probability of an error syndrome (s = 1) on
the inner leaves and together with QX/Z,inner(s = {0, 1}) and
QX/Z,outer( j = {1, . . . , k}) it is obtained through the simula-
tion.

We note that r describes the repeater performance by
providing a lower bound both on the achievable distillable
entanglement and secret key extractable from the state gen-
erated in our setup. In Appendix B we provide the details of
how the secret key or entanglement is extracted from those
binned links parameterised by {mX , mZ , j} and provide the
formula for r. We also note that in all the above equations in
this section we have assumed the number of repeaters to be
equal to the number of elementary links and labeled both by
n. Clearly the number of elementary links is actually larger
by one than the number of repeaters. We clarify this point in
Sec. XD.

VIII. SIMULATION

In this section we briefly summarize how we numerically
simulate the performance of our repeater setup. On a high-
level our simulation is very similar to that of [32] or [22] in the
sense that we do not simulate evolution of any quantum state
but only the error propagation through the noisy channels and
noisy operations as well as the error correction. The inputs to
our simulation are as follows.

Hardware parameters:
(i) GKP squeezing σGKP of all the GKP qubits used, i.e.,

GKP qubits used to construct each cube and the ancilla GKP
qubits used for TEC on inner-leaf qubits.

(ii) Detector efficiencies during homodyne detection ηd .
These appear in numerous BSMs.

(iii) Number of multiplexing levels k.
(iv) The discard window v used during the resource state

preparation.
Parameters over which we later want to optimize:
(i) Repeater spacing L. We consider five possible values of

L over which we optimize L ∈ {0.5, 1, 2, 2.5, 5} km.
(ii) How often we do GKP TEC on the inner-leaf GKP

qubits nper-km. This parameter describes the number of GKP
TECs we do per 1 km of fiber.

The output of the simulation is
(i) The independent logical X and Z error probability

of each of the outer multiplexed links k, QX/Z,outer( j =
{1, . . . , k}) for a single elementary segment.

(ii) The independent logical X and Z error probability
for the inner leaves QX/Z,inner(s = 0, 1) for the two scenarios
where the logical BSM on the inner leaves produced no-error
syndrome s = 0 or an error syndrome s = 1 for a single ele-
mentary segment.

(iii) The probability tX/Z of inner-leaf logical BSM leading
to the s = 1 error syndrome for both X and Z errors.

The accuracy of our simulations is quantified as described
in Appendix L.

IX. RESULTS

In this section we present the results of our numerical
Monte Carlo simulations. We also present the analytical re-
sults of our resource count estimates.

A. Performance of the outer-leaf-based ranking

To demonstrate the benefit of the ranking strategy, we can
compare its performance against a simpler strategy based on
postselection. In this simpler strategy instead of ranking the
links, a link is kept or discarded after the outer-leaf BSM
depending on whether the measured outcome falls in the
postselection or discard window. Clearly that strategy actually
corresponds to a family of strategies parameterised by the size
of the postselection/discard window v. Let us for a moment
assume that the only source of noise is the communication
channel, while the resource state preparation is perfect (i.e.,
infinite squeezing and perfect homodyne detection). More-
over, let us assume that the storage of the inner-leaf qubits is
also perfect. Under that simplified paradigm the performance
of the postselection-based strategy can be evaluated analyti-
cally for a given window v, number of multiplexed links k
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FIG. 5. Comparison between the proposed ranking strategy vs
postselection strategy based on optimal discard window v that max-
imises the rate. We plot the rate vs number of multiplexed links for
those two strategies. As the purpose of this plot is only to compare
the two strategies, we consider here ideal devices with infinite GKP
squeezing and perfect homodyne detection. Moreover, we assume
that the inner leaves are stored in perfect quantum memories, so that
the only source of noise is the photon loss in the communication
channel. We see that the ranking strategy significantly outperforms
the optimised postselection-based strategy. Moreover, we observe a
strong saturation for the ranking strategy around k = 20 multiplexed
links. The error bars on the numerical data corresponding to the rank-
ing strategy reflect the simulation accuracy described in Appendix L.

and repeater separation L as described in Appendix D. The
size of the window v determines the trade-off between the rate
of generating the raw pairs and their quality/fidelity. For a spe-
cific figure of merit such as secret-key rate or ebit rate we can
optimize that performance metric over the window v. We note
that both the ranking and the postselection strategies allow to
extract multiple end-to-end links from a single protocol run,
in contrast to the previous all-photonic architectures based on
the clique cluster [12,13,21]. For the postselection strategy,
the number of end-to-end extracted links in a single protocol
run is determined by the number of elementary multiplexed
links that pass postselection on the elementary segment with
the smallest number of successfully extracted multiplexed
links. Below we compare the performance of the ranking
strategy, which we evaluate using our numerical simulation
against the postselection-based strategy, which we evaluate
analytically for each v and then numerically optimize over that
parameter. The performance is evaluated under the simplified
model with the only source of noise being the communication
channel and with perfect memories for the inner leaves. We
see from the plot in Fig. 5 that the proposed more complex
ranking strategy significantly outperforms the postselection-
based strategy. Moreover, we also see that the performance per
mode saturates at around k = 20 multiplexed links. In fact, we
observe a similar saturation behavior when including the finite
GKP squeezing, finite efficiency of the homodyne detectors as
well as lossy inner-leaf qubit storage. Therefore from now on
we fix the number of multiplexed levels to k = 20.

B. Discard window for postselection during
resource state preparation

A natural question to ask is what the reasonable value
of the discard window v for the resource state preparation

should be. Clearly the larger the discard window, the more
we can suppress the errors at that stage of the protocol at the
expense of increasing the amount of GKP qubits we need to
generate. However, we find that even from the perspective of
the repeater performance alone, there are diminishing returns
when increasing v beyond a certain threshold, which actually
depends on the repeater spacing L. Here L is the spacing
between the major repeater nodes, i.e., halfway between them
we still need to place the outer-leaf BSM stations. This depen-
dence arises because it is only helpful to decrease the errors
from the resource state generation to just below the order of
magnitude of the errors from the communication channel and
inner-leaf storage channel. At that point the communication
channel or inner-leaf storage channel errors completely domi-
nate the overall error contribution and so there is no benefit in
suppressing the resource errors further, which would actually
cost much more in terms of the required number of GKP
qubits. Since the magnitude of the errors arising from the
communication channel over each elementary link depends
on the repeater separation L, the value of this threshold v will
also depend on L. In particular, the smaller L is, the smaller
the communication channel errors for the single elementary
link and so the larger the threshold discard window will be.
Here we will consider five possible inter-repeater spacings
L ∈ {0.5, 1, 2, 2.5, 5} km. By numerical investigation, we find
that a reasonable choice for the corresponding discard window
v that minimizes the resource state generation errors to close
to maximum level where it has a visible impact on the perfor-
mance is v = {7, 6, 5, 4, 3} × √

π/20 for the five values of L
respectively. Hence, since we use postselection at all stages of
our resource state preparation, denser placement of repeaters
should lead to the best performance. However the use of larger
discard window for these smaller values of L will lead to
much larger resource requirements for the configurations with
dense repeater spacing. We remind the reader that the values
of v discussed here represent the size of the discard window
for the measurements during resource state preparation where
the variance is given by σ 2 = 3σ 2

GKP + (1 − ηd )/ηd . For the
measurements with variance σ 2 = 2σ 2

GKP + (1 − ηd )/ηd we
use 0.7v.

Clearly one could also consider denser repeater spacing
with smaller discard windows in order to reduce the required
resources. However, we believe that this would not be very
efficient because in that case the repeaters would actually
contribute substantial amount of extra noise that would affect
the performance. As mentioned, if one wants to reduce the
amount of required GKP qubits, we believe that it is then
more efficient to just consider larger repeater spacing with
the maximal discard window suitable for that larger repeater
spacing.

C. Inner-leaf-based discrete syndrome information

Similarly as in [25] we observe that while the inner-leaf
discrete syndrome information does not boost the perfor-
mance for short distances, it can significantly improve the
achievable distances, in particular distances over which our
repeater scheme beats the PLOB bound. Specifically, as il-
lustrated in Fig. 6 for a specific parameter choice, without
the inner-leaf information at certain distance the rate rapidly
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FIG. 6. Comparison between the scenario when we use and do
not use the inner-leaf information. We see that the inner-leaf infor-
mation enables us to achieve positive rate for much larger distances.
The yellow line corresponding to the scenario without the inner-leaf
information drops rapidly to zero already around 700 km. The param-
eters L, σGKP, and ηd refer to inter-repeater spacing, GKP squeezing
and homodyne detection efficiency respectively.

drops to zero, while with the information it continues its decay
much more slowly hence maintaining reasonable performance
over much longer distances.

Since the rate formulas are convex in the whole QBER
regime one might wonder why the benefit of using the
inner-leaf information manifests itself vividly only close to
the distance where without this information the rate already
rapidly drops to zero. Our investigation suggests that this is
because it is not the continuous convexity of the secret-key
fraction/achievable entanglement r that matters but rather its
convexity at a kink where r becomes zero, since r actually
takes a form r = max{r̃, 0}. Here r̃ just denotes a continu-
ous convex function, which actually can become negative for
large errors, see Appendix B. Hence the benefit of using the
inner-leaf information becomes visible in the regime where
for some of the bins occurring with high-probability the rate is
already zero. That only happens in the regime, where without
using this discrete-syndrome information the total error is
already so high that the rate starts rapidly dropping to zero. We
also investigate the contribution of all the different inner-leaf
information bins on the final rate using the tools of typical
sequences. Here the sequences of interest are the sequences
of bits �sX/Z describing the syndromes in the inner leaves. We
find that when using the inner-leaf information the gradual
decay of the rate, which stays positive yet reaches very small
values, is dictated by how the number of the sequences corre-
sponding to the bins with positive rate change with distance,
see Appendix J for more details.

D. Achievable distances

Having understood the role of the outer-leaf multiplexing
and inner-leaf discrete syndrome, we can now proceed to in-
vestigate the achievable distances of our scheme. The different
parameters that we vary are different homodyne detection
efficiencies ηd and different values for GKP squeezing during
the GKP state preparation σGKP. We note that the depen-
dence on GKP squeezing manifests itself not only through
the squeezing of the GKP qubits being part of the resource

state preparation but also through the squeezing of the GKP
qubits used to create an ancillary Bell pair for GKP TEC. Sim-
ilarly homodyne detection is used throughout the fusion gates
during resource state creation, during GKP TEC and during
outer-leaf and inner-leaf BSMs. We optimize the achievable
distance over five possible inter-repeater spacings L, which,
as mentioned before, correspond to L ∈ {0.5, 1, 2, 2.5, 5} km.
For each of them we consider a specific discard window, as
explained in Sec. IXB. The frequency of the GKP TEC on
the inner leaves is described by the parameter nper-km, the
number of GKP corrections during inner-leaf storage per km
of fiber (this includes the final perfect destructive GKP correc-
tion during entanglement swapping). Here we fix nper-km = 4.
However, we have also done some exploratory simulation runs
with nper-km = 2 and found that nper-km = 4 leads to much
better performance for almost all the parameters. Only for bad
squeezing and bad homodyne detection efficiency for which
the achievable distance is already very low, of the order of
at most 100 or 200 km, it might be better to use nper-km = 2
as then adding additional GKP TECs can actually ruin the
performance by adding more very noisy operations. Therefore
all the results presented here are based on the data obtained for
nper-km = 4.

Our final results in terms of achievable distances are shown
in Fig. 7. We provide two tables, one showing the largest
distance in km for which the repeater rate stays above 10−6

and one for describing the largest distance for which our
repeater outperforms the PLOB bound, the ultimate limit of
repeaterless communication. For the first table the choice of
10−6 is motivated by the fact that if the repetition rate of
our protocol could be in the regime of at least 1 MHz, then
our scheme with k = 20 multiplexing levels could generate
at least 20 Bell pairs/bits of secret key per second for these
distances (generation of Bell pairs is counted based on asymp-
totic entanglement distillation). For the second table we also
introduce a cut-off in terms of maximum value, i.e., we only
consider distances for which the performance stays above
10−30 even if going below 10−30 still maintains the rate above
the PLOB bound.

As mentioned for all these parameter settings we per-
form optimization over the inter-repeater spacing L ∈
{0.5, 1, 2, 2.5, 5} km. For each parameter set the value of L
that maximises the performance is quoted in brackets. Note
that the largest possible achievable distance we consider is
10 000 km. If this distance can be achieved for different values
of L we quote the largest one, based on the assumption that
it is always cheaper to consider larger inter-repeater spacing.
Note that this does not take into account the actual value of the
rate in the sense that it is possible that a smaller inter-repeater
spacing actually achieves higher rate.

Finally we use color-coding to help the reader see the
pattern of the data. We color the parameter sets for which the
achievable distance is below 100 km as red, those for which
the achievable distance is between 100 and 1000 km as yellow
and those with achievable distance above 1000 km as green.

We see that small improvements in the parameters can
significantly increase the achievable distance. In particular,
we see that the achievable distances are very sensitive to the
efficiency of the homodyne detection for the parameter varia-
tion steps chosen here. This can be explained by the fact that
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FIG. 7. Achievable distances in km for different amount of GKP squeezing and homodyne detection efficiency. The left table shows the
largest distances for which the rate stays above 10−6, while the right table shows the largest distances for which the rate stays above 10−30 and
beats the PLOB bound. Red entries correspond to distances below 100 km, yellow to distances 100 km to 950 km and green to distances of
1000 km and above. Each entry depicts the largest distance optimised over five possible repeater spacings of L = 0.5 km, L = 1 km, L = 2 km,
L = 2.5 km, L = 5 km. The optimal repeater spacing for the given configuration is stated in brackets after the achievable distance. If for any of
the repeater spacings the achievable distance is above 10 000 km, we list in brackets for that configuration the largest spacing that still achieves
10 000 km distance.

we expect the dominant contribution to the rate to be coming
from the first few best ranked links, for which the outer-leaf
error is suppressed below the level of the inner-leaf error. The
dominating inner-leaf error channels are affected by the GKP
squeezing through terms 2σ 2

GKP or 3σ 2
GKP, see Table VI in

Appendix I. A decrease in σ 2
GKP by 0.01 leads to a smaller

change in those terms than the change of the terms contain-
ing the contribution of the detection noise (1 − ηd )/ηd and
(1 − ηηd )/(ηηd ), when ηd is increased by 0.01. Moreover, as
expected, we see that for all the parameter configurations for
which the achievable distance is below 10 000 km, the optimal
repeater spacing is L = 0.5 km, which stays in agreement
with the fact that with our optimised discard windows v the
resource generation always contributes local noise below the
level of the channel noise and so it is always best to put re-
peaters as densely as possible if performance is the considered
figure of merit.

We note that even for the best considered parameters, the
configurations with the repeater separation of L = 5 km can
never achieve 10 000 km. However, they might still be useful
for communication over shorter distances, since placing re-
peaters further away is economically cheaper, and, as we will
see, these configurations require significantly less resources.
Therefore we additionally include the achievable distances for
L = 5 km in Fig. 8 for the configurations of the better param-
eters. We see that if we had access to hardware with such
good parameters and if our goal was only to communicate
over shorter to medium distances, then we could still achieve
this goal with repeaters spaced so much more apart, which

FIG. 8. Achievable distances in km for different amount of GKP
squeezing and homodyne detection efficiency for repeater separation
of L = 5 km.

we assume would be more appealing from the implementation
perspective.

We see that for this large repeater separation and for the
very good parameters, the achievable distance with respect to
the rate being above 10−6 and being above the PLOB bound
is not that much different. This is due to the fact that for this
scenario the probabilities of the best sequences �s (describing
the inner-leaf syndromes), which contribute to the nonzero
rate at the critical distances are generally much larger than
for configurations with smaller values of L. This leads to a
fast drop of the rate to 0 from 10−6 for slightly larger distance
when the given sequences do not contribute any positive rate
anymore. This contrasts with the case of more densely place
repeaters where the sequences �s will be in general longer,
leading to much smaller probabilities of individual strings and
hence more fine-graining to the level significantly smaller than
10−6 allowing for a more gradual decay of the rate. For more
detailed discussion of this phenomenon, see Appendix J.

E. Rate vs distance

Having already established the general dependence of
the achievable distances when we vary the amount of GKP
squeezing and homodyne detection efficiency, we can now
pick some of these parameter sets to plot the performance rate
vs distance.

In Fig. 9 we plot the rate versus distance for different
squeezing and homodyne detection efficiencies where the re-
peater spacing for each curve is the one quoted in the tables in
Fig. 7. We see that, as expected, better hardware parameters
allow to achieve larger rates for larger distances. However, for
shorter distances we see that it is not only the hardware param-
eters that matter but also the repeater spacing L. In particular,
we see that for certain configurations actually a higher rate
can be obtained with worse parameters and smaller repeater
spacing than for better parameters with larger repeater spac-
ing. This leads to the fact that we see multiple curves crossing
each other on the plot.

We also choose specific hardware parameter sets for which
we plot the rate vs distance for all the considered values of
L, see Fig. 10. We see that the configuration with L = 0.5
achieves the highest rate for all the distances. We see that
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FIG. 9. Rate vs distance for different hardware parameter
configurations. The corresponding repeater separation for each con-
figuration is the one listed in the table in Fig. 7.

the rate is also very sensitive to the homodyne detection effi-
ciency. In particular, in Fig. 10 we chose a specific parameter
configuration of σGKP = 0.13 and ηd = 0.98 and then investi-
gated the improvement when we improve GKP squeezing by
reducing σGKP by 0.01 or we increase homodyne detection ef-
ficiency by 0.01. We see that the latter leads to more dramatic
improvement of the rate than the former.

Finally it is important to comment on the values of the
achievable rates. We see on the bottom plot of Fig. 10 that
with the considered parameters we can achieve the rate per
mode as large as 0.7 for all the distances up to 750 km. We
discuss in Sec. XC how these rates compare to the rates of
other repeater schemes.

F. Optimizing resources

For the resource state generation based on multiplexed
fusions along the various steps of the procedure shown in
Fig. 3, we analyze the number of GKP qubits required at
each repeater for near-deterministic generation of the required
number of resource states at all repeaters. We observe that
the success probability pres-gensucc as a function of the number of
GKP qubit resources per repeater undergoes a phase transition
where it sharply turns from 0 to 1. Moreover, for the hardware
parameters considered here in our investigation, we find that
we need around 103−104 GKP qubits per repeater. The results
are elaborated below.

1. Resource count

We note that our resource count consists of three com-
ponents. The first component relates to the number of GKP
qubits that each repeater needs in order to build the cube re-
source state. As building of the cube involves postselection, to
a given number of GKP qubits per repeater one can associate
a corresponding probability that all the repeaters simultane-
ously successfully generate all the required cube resource
states pres-gensucc as described by Eq. (17). Specifically, for k
multiplexing levels, each repeater needs to be able to generate
2k such cube resource states. We will see that similarly to
the case of the resource generation for the discrete-variable
all-photonic scheme of [13], when increasing the number of
GKP qubits per repeater there will be a transition point where
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FIG. 10. Rate as a function of distance for three hardware pa-
rameter sets where for each set we plot all the considered repeater
spacing scenarios.

provided that a certain amount of GKP qubits is supplied per
repeater, the probability that all the repeaters will be able to
generate all the cube resource states approaches one. Clearly
that required amount of GKP qubits per repeater depends on
the chosen discard window v. Since in our case the choice of
v is associated with a given repeater spacing L, the smaller
L the more resources we will need per repeater. Of course
the total number of resources needed to generate all the cube
resource states for the whole protocol run in all the repeaters
depends not only on the required resources per repeater but
also on the repeater density. Hence we see that from the
perspective of number of resources for the generation of the
cube states, configurations with larger repeater spacing will be
more favorable.

043056-16



ALL-PHOTONIC GOTTESMAN-KITAEV-PRESKILL–QUBIT … PHYSICAL REVIEW RESEARCH 5, 043056 (2023)

3 3.2 3.4 3.6 3.8 4 4.2 4.4
0

0.2

0.4

0.6

0.8

1

FIG. 11. Resource generation probability pres-gensucc as a function
of the number of GKP qubits per repeater for different inter-
repeater spacings for given hardware parameters and total end-to-end
distance.

The second component of our resource count are the GKP
qubits needed for TEC. The number of these resources is fixed
as there is no associated postselection. Each TEC requires
two ancillary GKP qubits. In our scheme we perform TEC
on each of the seven physical GKP qubits of the inner-leaf
logical qubit every 250 m until the final GKP correction after
the last 250 m, which is done on the classical level together
with the BSM (CC amplification). Taking into account that
for each multiplexing level we store two concatenated-coded
qubits, the total number of GKP qubits per repeater needed for
the implementation of these TECs is 28k × (4L − 1). Clearly
this number is actually larger the larger L is. Moreover, even
for a fixed total end-to-end distance, the total number of GKP
qubits in all the repeaters needed to implement all the TECs
is slightly larger for the configurations with larger repeater
spacings because of the minus one term, accounting for the
fact that the final correction in each repeater is always done
on the BSM level and hence does not require any ancilla
qubits.

The final component contributing only to the end-to-end
resource count are the GKP qubits required by the end nodes
of Alice and Bob. As we discuss later in Sec. XD here we
assume that Alice and Bob need only to prepare k GKP qubits
each so this additional component involves only additional 2k
GKP qubits. Note that the total number of repeaters is given
by nrep = Ltot

L − 1.
Firstly, considering only the first component, in Fig. 11 we

plot pres-gensucc , the probability that given the specified amount
of GKP qubits per repeater, the repeaters are successful in
generating all the required cube resource states. The chosen
multiplexing value is again k = 20 and we plot this prob-
ability for different repeater spacings for the total distance
of Ltot = 500 km, GKP squeezing standard deviation σGKP =
0.12 and homodyne detection efficiency ηd = 0.99. We see
that the probability of successfully generating the required
number of cube resource states at all the repeaters end-to-end
jumps up to 1 when sufficiently large number of GKP qubits
are available at each repeater. We notice that the shorter the
repeater spacing, the larger the number of GKP qubits per
repeater that are required for successful resource generation
at all the repeaters.
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FIG. 12. Resource generation probability pres-gensucc as a function of
the number of GKP qubits per repeater for two hardware parameter
configurations with corresponding total distances for a fixed inter-
repeater spacing.

Additionally in Fig. 12 we plot the corresponding probabil-
ity also for two specific hardware parameter configurations.
One with very good squeezing and bad homodyne detection
efficiency (σGKP = 0.12 and ηd = 0.96) and the other vice
versa (σGKP = 0.16 and ηd = 0.99). For the two curves we
consider the distances equal to the achievable distances from
the left table in Fig. 7 for these parameters. We only plot the
scenario with L = 0.5 km since for these distances a positive
rate can only be achieved with this most dense repeater spac-
ing (see the achievable distances tables in Appendix K).

By comparing the two curves in Fig. 12 with the curve
corresponding to L = 0.5 km in Fig. 11, we see that for bet-
ter hardware parameters the required resources are generally
significantly smaller. Moreover, in Fig. 12 we also see that the
effect of hardware parameters is much stronger than the effect
of the total distance Ltot, since the configuration corresponding
to larger total distance actually requires less resources than
the configuration corresponding to the almost twice smaller
distance.

When the second component, i.e., resources required for
TEC at the repeaters, is also included, the necessary re-
source count per repeater is no longer monotonic in the
repeater spacing. This is because the larger the repeater
spacing, the larger the resources required for TEC per
repeater. To quote numbers corresponding to the differ-
ent repeater spacing configurations in Fig. 11 where the
success probabilities jump to 1 and adding to them the
required TEC resources, the number of GKP qubits per re-
peater necessary for L = {0.5, 1, 2, 2.5, 5} km are given by
{15351, 7434, 7308, 7670, 12931}, respectively. We note that
for our Monte Carlo simulation of (pres-gensucc )1/nrep we generate
107 simulation runs for each considered number of input GKP
qubits. This means that our simulation cannot capture failures
occurring with probability of order 10−8. For the largest con-
sidered total distances of 10 000 km and for repeater spacing
of L = 0.5 km these can correspond to failure probabilities
of the order of 10−4 for the entire repeater chain. Hence here
we define the number of resources needed for deterministic
resource generation as the smallest number of GKP qubits for
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FIG. 13. Optimal repeater spacing L that minimises cost function
C for different hardware parameters.

which pres-gensucc > 1−10−3, since that threshold should remain
unaffected by our simulation inaccuracy.

Now we can establish the total number of GKP qubits
needed end-to-end by multiplying these resources by the
corresponding number of repeaters and adding the required
20 GKP qubits for each of the two end nodes. This gives
the total required resources as {1.5336×107, 3.7098×106,
1.8198×106, 1.5264×106, 1.2802×106}, restoring again the
monotonic behavior.

2. Resource-performance trade-off

As we have already seen the densest repeater configu-
rations achieve the best performance but require the most
resources. Moreover, for worse hardware parameters the dens-
est repeater configurations might actually be necessary in
order to maintain nonzero rate. Here we mathematically quan-
tify the trade-off between the performance and the required
resources by introducing a cost function

C = no. of GKP qubits used end-to-end

R
. (24)

Here we specifically count the number of GKP qubits per
protocol run. For chosen hardware parameters for every
distance we minimize this cost function over the five con-
sidered repeater spacing configurations in order to optimize
the performance-cost trade-off. We perform this task for
the three hardware parameter configurations for which we
have plotted the rates in Fig. 10. We note that this choice of
the cost function can be seen as somehow arbitrary. One could
always define a different cost function that puts more weight
on minimizing resources by taking resources to some higher
power or one that puts more emphasis on maximising the rate,
by taking R to some higher power.

In Fig. 13 we plot the optimised repeater spacing. We
see that the larger the total distance the more densely we
should place our repeaters. However, we see that the two
better configurations can maintain larger repeater spacing for
longer total distances and the worse considered configuration
with σGKP = 0.13 and ηd = 0.98 requires actually to reduce
repeater spacing to L = 0.5 km already below 4000 km.

In Fig. 14 we plot the corresponding end-to-end resources.
We see that for smaller distances all the parameter configura-
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FIG. 14. Total number of GKP qubits needed for a single pro-
tocol run across all the repeater and end-stations that minimizes the
cost function C for different hardware parameters.

tions require similar amount of resources. However, for larger
distances the configurations with worse hardware parameters
require much more resources. In particular the most dramatic
increase in the required resources occurs for the worst config-
uration at the distance where it needs to reduce the repeater
spacing to L = 0.5 km. Overall, however, we see that all
curves follow a similar pattern and the difference in resources
between the three hardware configurations is always less than
an order of magnitude.

Some more interesting conclusions can be drawn from
Fig. 15 where we plot the corresponding resources per re-
peater. The first observation is that the resources per repeater
never decrease with distance. This tells us that in the com-
petition between the resources in cube creation, which are
larger the smaller the repeater spacing and the resources due
to TEC on the inner leaves, which increase with L, the changes
in the resources due to cube generation dominate. Moreover,
the most dramatic increase in resources per repeater occurs
when decreasing L to L = 0.5 km for the worst configuration.
Furthermore, the plot in Fig. 15 also shows that when the
repeater spacing L remains fixed, the number of resources
per repeater has almost negligible dependence on the total
distance. Specifically, it can be seen that over the intervals

102 103 104

1

1.5

2

2.5

3
3.5

104

FIG. 15. Number of GKP qubits needed per repeater, i.e., for
near-deterministically building the cube resource states (across all
the repeaters) and for TEC on the inner leaves that minimises the
cost function C for different hardware parameters.
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FIG. 16. Optimized rate R that minimises the cost function C for
different hardware parameters.

where L stays fixed in Fig. 15, all the curves stay almost flat.
This is due to the rapid transition of the probability pres-gensucc as
observed in Figs. 11 and 12. Finally, we see in Fig. 15 that the
number of needed GKP qubits per repeater for our scheme is
generally of the order of 103−104. This is around four orders
of magnitude less than the number of single photons needed
for the discrete-variable all-photonic scheme of [13].

To make a more detailed comparison with the single-
photon resource count of the scheme of [13] such that we also
take into account the inter repeater spacing, let us consider
a specific total communication distance of 5000 km. In [13]
the authors report that they can achieve communication over
that distance with 1.2×108 single photons per repeater with
12 411 repeaters in total. This gives us 1.5×1012 single pho-
tons needed in total for a single protocol run. On the other
hand we see in Fig. 14 that for 5000 km our scheme requires
of the order of 107−108 GKP qubits in total per protocol run.
We also refer the reader to the discussion in Sec. XB where
we estimate the resources in terms of single-mode squeezers
needed to generate this number of GKP qubits.

Moreover, with the mentioned number of single photons,
the number of secret bits per protocol run that the scheme of
[13] can generate drops to 0.14 for 5000 km. On the other
hand, we see in Fig. 16 where we plot the achievable rate
vs communication distance for the optimised scenario of our
scheme, that our scheme is able to generate around 2–8 secret-
bits per protocol run for that distance (rate R multiplied by
k = 20 modes per protocol run). In Fig. 16 we also see that
for the third weakest configuration the optimised rate decays
much faster than for the other two and the switches to denser
repeater placing occur for much smaller distances than for the
other hardware parameter configurations.

X. DISCUSSION

In this section we propose an analytical model for the
logical error rate of our scheme, we discuss how we envision
to generate the optical GKP qubits used in our scheme, we
compare the performance of our scheme with other repeater
schemes and finally we discuss the resource requirements on
the end nodes of Alice and Bob depending on whether the
intended task is remote entanglement or secret key generation.

A. Analytical model of the error rate

One can see in Fig. 9 that the rate curves corresponding
to L = 0.5 km all appear to have a similar trend. This raises
the question whether the effect of changing the amount of
GKP squeezing or the efficiency of the homodyne detection
on the rate could possibly be modeled just by shifting these
horizontally. In this section we attempt to provide a simple
analytical error model for our repeater scheme that could
explain this behavior visible in Fig. 9.

Our repeater scheme has three main sources of errors.
These are errors arising during resource state preparation, er-
rors on the inner leaves during storage and errors on the outer
links from the channel transmission. As explained, the errors
arising at the stage of resource state generation are suppressed
below the level of the leading error by using a suitable discard
window v and hence have a negligible effect on the rate.
The errors due to the outer leaves are most challenging to
model analytically as that would require us to model the effect
of the ranking, i.e., be able to establish an error probability
conditioned on being ranked as ith link among k multiplexed
links. However, we expect that the dominant contribution to
the rate will come from the best few links for which the
dominant source of error is the inner-leaf error. Therefore here
we attempt to model and approximate the total error rate of
our scheme by just considering the errors arising on the inner
leaves.

These inner-leaf errors are themselves not easy to model
analytically, because the analog information used for the
[[7,1,3]]-code correction enables us to probabilistically cor-
rect most of single- and two-qubit errors, but the probability of
correcting two-qubit errors seems to have a nontrivial relation
to the actual amount of noise in the channel.

Nevertheless, we can still attempt to construct a simple
approximate error model as follows. Let erfc(x) be the com-
plementary error function defined as

erfc(x) = 1 − 2√
π

∫ x

0
e−t2dt ≈ e−x2

x
√

π
, (25)

where the last approximation is valid for large x. In our case
we can approximate the probability of a logical GKP error
when no postselection is used as

E1(v = 0; σ 2) ≈ erfc

( √
π

2
√
2σ

)
≈ 2

√
2σ

π
e−(

√
π

2
√
2σ

)2
. (26)

Although in our case
√

π

2
√
2σ

will not necessarily be large,
for our estimation purposes we will only consider this leading
order term. Moreover, in our approximate error model we will
assume that the error rate is the same for both X and Z errors.

In all the considered configurations we perform inner-leaf
GKP TEC every 250 m and then we perform the final GKP
correction through a BSM and CC amplification on the two
GKP qubits from two different resource cubes. Hence, taking
into account that there is a single [[7,1,3]]-code correction per
two [[7,1,3]]-code encoded qubits, the total number of GKP
corrections preceding the [[7,1,3]]-code correction is given by
2×(4L − 1) + 1 = 8L − 1.

The [[7,1,3]]-code correction with GKP analog informa-
tion generally suppresses almost all single-qubit errors and
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most of two-qubit errors as already observed in [22]. Nev-
ertheless, our investigation suggests that the leading order
errors are still the uncorrected two-qubit errors. There are
21 possible two-qubit errors. The complex behavior of the
correction of these two-qubit errors using analog information
is reflected in the fact that the fraction of these errors that can
be corrected depends itself on the physical error probability as
well as the amount of the analog information available. Based
on our investigation we approximate the fraction of uncor-
rectable two-qubit errors for a noise process with error rate p
as pf (p,λ), where λ denotes the amount of available GKP ana-
log information. Since the leading-order errors are still some
of the uncorrected two-qubit errors, we have that f (p, λ) ∈
(0, 1). In fact here for simplicity we will take f (p, λ) to be a
constant.

Putting this together, we can write our approximation for
a logical error probability on the pair of inner-leaf logical
qubits for each of the X and Z errors for a single repeater
as

p̃error = 21

(
(8L − 1)

2
√
2σ

π
e−(

√
π

2
√
2σ

)2
)c

, (27)

where now c is a constant such that c ∈ (2, 3). The final ques-
tion is what value of σ we should use in our approximation.
Here we want to use a single value of σ for all the channels
between all the inner-leaf GKP corrections. Based on the error
channels for which we do not use postselection from Table VI
in Appendix I and including averaging over X and Z channels,
the average value of σ can be approximated as

σ =
√

a × σ 2
GKP + 1 − η + 1 − ηd , (28)

where η = e− 1
4×Latt . Here we have used an approxima-

tion that (1 − ηd )/ηd ≈ 1 − ηd and (1 − ηηd )/(ηηd ) ≈ 1 −
ηηd ≈ 1 − η + 1 − ηd , which holds for η and ηd being close
to one. Moreover, the coefficient a corresponds to the average
weight of the σ 2

GKP term over all the relevant channels and is
given by

a = 3×2 + 2×(4 + 4×(4L − 2))
2 + (4 + 4×(4L − 2))

= 32L − 2

16L − 2
. (29)

We test our numerical model against a simulation data for
a couple of configurations. Specifically, we only consider
repeater spacing up to L = 2.5 km since for these shorter
spacing the inner-leaf information, which we model here is
the leading order error for at least the first few best-ranked
links. For the simulation data we consider the case without the
inner-leaf information, which as we have seen is only helpful
in the regime of low rates. Moreover, we only consider the
error rate for the single best of the k = 20 ranked links as
for that link the outer-leaf error does not contribute to the
overall error. Finally we average the error rate over the X
and Z error. The results are presented in Fig. 17 where the
parameter configurations are labeled in Table II. The data from
the analytical model have been obtained by setting c = 2.45.
We see a relatively good agreement between the simulation
data and the model, though the visible deviations between the
two suggest that a single value of the parameter c for all these
configurations might be an oversimplification. Nevertheless,

2 4 6 8 10 12 14 16

10-6

10-4

10-2
simulation
analytical model

FIG. 17. Average error rates per a pair of logical inner-leaf qubits
per repeater obtained through our analytical model and through
the simulation. The relevant parameter configurations are listed in
Table II. For the analytical model the coefficient c from Eq. (27) is
set to c = 2.45 for all configurations.

the fact that the model is in principle able to reproduce the
simulated error rates shows that it should provide a reliable
performance estimate of the repeater protocol of [22], since
all the noise processes and EC operations of that scheme are
effectively the same as the corresponding operations on the
inner-leaf qubits for our scheme.

The next question is whether one can use just the error
model for the inner leaves to try to capture the performance
of the first few best ranked links. Here we investigate this
question by making an attempt to interpret our numerical
simulation data, which includes the effect of the noise on
both the inner and outer leaves, using our inner-leaf error
model. Specifically, the total end-to-end error rate for X and
Z according to our model is given by e = Ltot

L p̃error. Hence,
we could convert the rate vs distance plots from the previous
section into rate vs total error rate plots by rescaling the
curves horizontally through multiplication of the total distance

TABLE II. Parameter configurations for data presented in Fig. 17.

Parameter configurations for data in Fig. 17

Parameter
configuration

Squeezing
σGKP

Homodyne
efficiency ηd

Repeater
separation L

1 0.13 0.97 0.5 km
2 0.13 0.99 0.5 km
3 0.14 0.97 0.5 km
4 0.14 0.99 0.5 km
5 0.13 0.97 1 km
6 0.13 0.99 1 km
7 0.14 0.97 1 km
8 0.14 0.99 1 km
9 0.13 0.97 2 km
10 0.13 0.99 2 km
11 0.14 0.97 2 km
12 0.14 0.99 2 km
13 0.13 0.97 2.5 km
14 0.13 0.99 2.5 km
15 0.14 0.97 2.5 km
16 0.14 0.99 2.5 km

043056-20



ALL-PHOTONIC GOTTESMAN-KITAEV-PRESKILL–QUBIT … PHYSICAL REVIEW RESEARCH 5, 043056 (2023)

10-4 10-3 10-2 10-1 100
0

0.2

0.4

0.6

0.8

1

FIG. 18. Rate R vs estimated error rate e for various parameter
configurations when only the single best out of k = 20 outer links
is postselected. Due to that postselection, the rate R would be upper
bounded by 1/20 so we rescale it here by a factor of 20 so that it
is again upper bounded by one. The data for rate R are based on
the simulation but the corresponding error rate e is based on our
analytical model that includes only the errors of the inner leaves.
Additionally the dashed curve marked as “theoretical” describes
the rate that truly corresponds to the given error rate (but without
any postselection). For the analytical model the coefficient c from
Eq. (27) is set to c = 2.45 for all configurations.

by p̃error
L . If the performance for all the considered parameter

configurations was to be affected mainly by the noise on the
inner leaves we would expect the curves plotted as a function
of a universal error rate to have a significant level of overlap.

We start by considering the scenario when we always post-
select only the best outer link out of the k = 20 links. We
have already seen in Fig. 17 that our model reliably predicts
the error rate for this scenario when the outer link does not
contribute to the total error. Therefore we expect all the curves
on our performance plot for this case to strongly overlap. We
plot the results in Fig. 18 for various parameter configurations,
where for all configurations we keep the coefficient c from
Eq. (27) set to c = 2.45. For clarity we rescale the rate by 20
on the plot so that it is still upper bounded by 1 rather than
1/20. Additionally we also plot the rate R that truly corre-
sponds to the given error rate e, i.e., it is the rate obtained by
directly substituting the error rate e into the rate formula given
in Appendix B. We see that the curves overlap very well with
each other and they also overlap closely with the dashed blue
curve as expected. Hence our model can indeed reliably pre-
dict the behavior when only the best outer link is postselected.
When looking at the curves in more detail, we see that the
curves that are shifted to the right of the blue dashed curve cor-
respond to the configurations for which the analytical model
overestimates the error in Fig. 17 (although note that not all
parameter configurations shown in Fig. 18 are also shown
in Fig. 17). Specifically the yellow curve corresponds to the
parameter configuration 2 for which the relative difference
between the error due to the analytical model and due to the
simulation is very large. The opposite is true for the dark blue
curve corresponding to the parameter configuration 10 for
which the analytical model underestimates the error. Hence
that curve is shifted significantly to the left of the blue dashed
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FIG. 19. Rate R vs estimated error rate e for various parameter
configurations for all the k = 20 multiplexed links. The data for rate
R are based on the simulation but the corresponding error rate e is
based on our analytical model that includes only the errors of the
inner leaves. Additionally the dashed curve marked as “theoretical”
describes the rate that truly corresponds to the given error rate. For
the analytical model the coefficient c from Eq. (27) is set to c = 2.45
for all configurations.

curve. We expect that the curves could be made to overlap
even better if we allowed to vary the parameter c between
the different curves. Finally, we note that the kink occurring
around e = 0.07 is due to the fact that our rate R corresponds
to the maximum of two distinct protocols, see Appendix B.

Now, if we start including more outer links, our
entanglement/secret-key rate will of course increase relative
to the best-link rate upper bounded by 1/20, but as the non-
modeled errors of the worse links will start limiting the rate
R, we no longer expect all the curves to overlap so well. We
plot the results for the case when all the k = 20 multiplexed
links are included in Fig. 19. Indeed we see that the curves do
not overlap so well anymore. There is a significant overlap of
the curves with moderate homodyne detection efficiency, but
the curves corresponding to ηd = 0.99 clearly do not match
the other curves. Clearly the overlap of these specific curves
of course only suggests that the outer-leaf behavior for these
configurations is similar, but is clearly not modeled here and
actually has a significant impact on the rate. This can be seen
by the fact that although our secret-key/entanglement rate is
now upper bounded by one, all the curves based on the model
are significantly below the dashed blue curve. This is because
the worse ranked outer leaves experience much higher er-
rors than the modeled error of the inner leaves and many of
them do not contribute to the performance rate R. Moreover,
the number of them that actually contributes significantly to
R depends on the actual error rate for the different links.
Nevertheless, the plot gives us an indication that the curve
corresponding to the configuration with L = 2 km has much
smaller number of outer links with a negligible outer-leaf error
relative to the inner-leaf error. This is because that curve is
significantly below all the other curves. That manifests a sig-
nificant level of outer-leaf error, which, if somehow included
in the model, would shift that curve to the right to match with
all the other ones. All of these complex phenomena cannot
be captured by our simple model that only models the effect
of the errors in the inner leaves. Yet the fact that many of the
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plotted curves do overlap suggests that the fraction of the outer
links that contribute to the overall performance rate R follows
a similar behavior for many of the considered parameter con-
figurations.

B. GKP resource state preparation via Gaussian boson sampling

Bosonic quantum error correction is already an experimen-
tally advanced field. This is reflected by the recent bosonic
demonstrations where for the first time the lifetime of a logical
qubit has been extended beyond the break-even point [37,38].
One of these demonstrations utilized precisely the GKP en-
coding [38]. Nevertheless, the GKP qubit is still challenging
to realize in practice. After nearly 20 years of its invention, it
has been demonstrated in trapped ion motional modes [39,40]
and in superconducting circuits in microwave cavities [38,41].
It remains challenging to prepare the GKP qubit in the pho-
tonic domain. Among different possible proposals to realize
GKP qubits in the photonic domain, a promising approach
is via the Gaussian boson sampling (GBS) paradigm [42],
where squeezers, multimode linear optical interferometers,
and photon number detectors can be used to herald a state that
is arbitrarily close to a GKP qubit state in fidelity [43]. For
example, a GKP qubit in the |0〉 state with GKP squeezing of
10 dB (σ = 0.224) can be generated with 99.7% fidelity using
a three-mode GBS circuit with 3 squeezers each generating
12 dB squeezed vacuum by heralding 5 and 7 photons in two
out of the three modes, where the probability of heralding the
pattern is ≈0.11% [44]. For a total communication distance
of 5000 km and repeater hardware configuration given by
GKP squeezing of 14.7 dB and realistic homodyne detection
efficiencies around ηd = 0.99, for the repeater spacing that
minimizes the cost function of Eq. (24), our repeater scheme
requires 5×107 GKP qubits in total end-to-end for near-
deterministic generation of the cube resource graph states at
all the repeaters (i.e., 40 graph states of cube topology to
support k = 20 multiplexing on either elementary links as-
sociated with each repeater). Notwithstanding that the GKP
squeezing required is higher than the example GBS-based
generation scheme mentioned above, assuming that a sim-
ilar success probability of heralding similarly high fidelity
GKP qubits (in the |+〉 and |�〉 states) may be achieved
with a better GBS hardware of higher homodyne detection
efficiencies, we draw a conservative estimate of the number
of squeezers required to near-deterministically generate the
necessary number of GKP qubits end-to-end. By considering
multiplexed three-mode GBS generation attempts, where each
GBS succeeds in heralding the desired GKP qubit with prob-
ability p0 ≈ 10−3, we find that with ≈3×104 GBS circuits, a
single GKP qubit may be successfully generated with a failure
probability under 10−13. If the said number of GBS circuits
are dedicated for each GKP qubit generation, which amounts
to ≈1.5×1012 GBS circuits, i.e., ≈4.5×1012 squeezers and
≈3×1012 photon number resolving detectors with resolution
up to 7 photons, then generating all the required 5×107 GKP
qubits at once would succeed with a probability exceeding
1 − 3×10−6.

We note that GBS is just one way of preparing the optical
GKP qubits. There are many other proposals for how this
task could be achieved. One possible technique would be to

operate on microwave GKP qubits [38,41] and then transduce
them into the optical regime [45–49]. Another proposed
strategy is to utilize interactions between light and free
electrons to achieve the nonlinearity needed to prepare optical
GKP qubits [50].

C. Comparison with other repeater schemes

Here we compare our scheme to other repeater proposals
separately in terms of achievable rates and achievable dis-
tances.

1. Achievable rates

We have seen that the rate per mode observed for some of
the parameters of our scheme can stay as high as 0.7 for up to
750 km. Up to our knowledge only one other repeater scheme
can achieve such a performance [21]. That scheme also makes
use of GKP qubits, yet requires significantly more squeezing.
Below we provide short justifications why such high rates per
mode cannot be achieved by other types of repeater schemes
and discuss in more detail the other scheme that can achieve
such a rate.

(i) Two-way repeaters based on discrete-variable dual-
rail encoded photons and heralded entanglement generation.
Generally such schemes require large number of attempts in
order to generate the elementary links, which makes the rate
per channel use and per mode small. Here we use a simple
calculation to show that, fundamentally, a rate higher than
0.26 for practically relevant distances is impossible for these
schemes. We note that since these schemes use two modes
(such as two orthogonal polarization or two time-bin modes),
the rate per mode is upper bounded by 0.5 for these schemes.
Moreover, we know that a single attempt over each elementary
link will not be enough to establish end-to-end entanglement
as that probability corresponds to the probability of direct
transmission and decays exponentially with distance. Hence
over at least one of the elementary links more than one attempt
will be needed. Using more than one attempt over at least one
of the elementary links can be counted as having more than
one channel use over end-to-end channel since the number of
channel uses can be counted as the maximum over the number
of channel uses over all the elementary links, see e.g., [51,52].
Hence, assuming perfect devices with perfect memories and
assuming arbitrary close repeater placement, the probability
of success in a single attempt is upper bounded by e−Ltot/L0 .
This means that the total rate is upper bounded by

R < 0.5 × (e−Ltot/L0 × 1 + (1 − e−Ltot/L0 ) × 0.5)

< 0.5 × e−Ltot/L0 + 0.25 < 0.26 (30)

for distances above Ltot > 90 km. Here the first term in the
sum corresponds to the case where all links succeed in the
single attempt and so over one end-to-end channel use and
the second term corresponds to the case where at least two
attempts are needed over at least one elementary link, which
in the best scenario would correspond to exactly two attempts.
Additionally we include a factor of 0.5 due to two modes
being used for the encoding. Of course in practice these rates
would be much lower as one would generally need much more
than two attempts to generate elementary link entanglement
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but the above expression provides a clear upper bound to this
rate. We note that this bound also applies to schemes that
include any type of multiplexing for these dual-rail-encoding-
based schemes. In particular it also applies to the two-way
all-photonic repeaters where multiplexing is achieved through
local use of the clique clusters at the repeaters.

(ii) Two-way repeaters based on discrete-variable single-
rail encoded photons and heralded entanglement genera-
tion. A promising alternative to the heralded schemes based
on dual-rail encoding are the schemes based on single-rail
encoding such as the single-photon scheme [53,54]. For these
schemes the probability of success for the elementary link
generation scales with the square root of the inter-repeater
transmissivity, i.e., it scales as e−L/2L0 . However, this protocol
does not produce a perfect Bell state and in order to increase
the quality of the generated state one needs to decrease the
emission probability, which effectively reduces the probability
of success of each generation round. Generally, that extra
emission probability will need to be reduced below pem = 0.2
in order to extract entanglement of reasonable quality [54,55].
This means that the rate for these schemes is also limited. We
can see this as follows. Generally, we would expect repeaters
to be placed at a distance at which the channel losses are
at least as large as the additional reduction of the emission
probability. Otherwise repeaters would be adding more effec-
tive losses rather than overcoming them. Let us consider the
transmissivity of e−L/2L0 = 0.2 for around L = 70 km. Then
considering a total distance of 140 km and two elementary
links we can bound the rate as follows. With probability (1 −
(1 − pem×e−L/2L0 )3)2 both links will succeed within three
attempts and with the complementary probability at least one
link will need at least four attempts. Hence we can upper
bound the rate as

R < (1 − (1 − pem × e−L/2L0 )3)2 × 1

+ [1 − (1 − (1 − pem × e−L/2L0 )3)2] × 0.25

≈ 0.26. (31)

Here the first term assumes the optimistic scenario that
within the initial three rounds we actually succeed in the first
round while the second terms assumes that with the proba-
bility of needing more than three rounds, we will actually
only need four rounds. This idealised case already leads to
the upper bound of 0.26. Again, if the total distance is larger
than 140 km the rate will need to be even smaller.

(iii) One-way repeaters based on discrete-variable codes.
For strategies that use discrete-variable codes to overcome
transmission losses, up to our knowledge most of the so-far
proposed repeater schemes encode one logical qubit in large
number of physical qubits, often of the order of few hundred
[15,56]. One exception to this are the schemes based on the
[[4,2,2]] code, [[7,1,3]] code, [[48,6,8]] code, and [[3, 1, 2]]3
code [57–59]. For these schemes the individual physical pho-
tons are normally also considered to utilize dual-rail encoding
(or three-rail encoding for the [[3, 1, 2]]3 qutrit code). Hence,
even in the case of the smallest of these codes, the [[4,2,2]]
code, the rate per mode is upper bounded by 25%. The
same bound applies to the code that uses smallest number
of modes and can correct photon-loss, which is the [[4,1,2]]
code that can approximately correct amplitude damping noise

FIG. 20. Rates vs distance for the all-optical scheme based on
distribution of GKP Bell pairs introduced in [21]. The rates are
optimized over the discard window.

and hence the physical qubits can be single-rail encoded
in that case [60]. Note that the discussed limitations also
apply to the concatenated-coded schemes with bosonic codes
at the lower level and discrete-variable codes at the higher
level, i.e., the proposed one-way schemes based on the GKP
code and the [[4,1,2]] or [[7,1,3]] code of [22] as well as
the clique-cluster-based scheme with tree codes of [21]. This
again shows that we would not expect rates above 25% for
such one-way repeaters.

(iv) Two-way all-optical repeaters based on GKP Bell-
pair distribution and connection using CC amplification. As
discussed, bosonic codes such as the GKP code can make
better use of the bosonic nature of the pure-loss channel. One
efficient strategy is the scheme of [21] based on individual
GKP Bell pairs and CC amplification. This strategy is up to
our knowledge one of the most efficient ways of using single-
mode GKP qubits without higher-level error correction, that
has been proposed in the context of quantum repeaters. In this
scenario each repeater generates a GKP Bell pair by preparing
two qunaught GKP states [see Eq. (8)] and passing them
through a beamsplitter. Then each half of the Bell pair is sent
towards the two other repeaters in the opposite directions. In
the middle between neighboring repeaters one performs GKP
BSMs. These measurements can involve postselection based
on the obtained continuous GKP syndromes and the end-to-
end Bell pair is obtained only if the postselection is passed
in both quadratures and at all heralding stations in the same
round. Similarly as in the case of our scheme we consider two
sources of imperfection for that strategy, the finitely squeezed
GKP qubits and lossy homodyne detections. We plot the rates
for a few hardware parameter sets in Fig. 20, where for each
distance we already perform an optimization over the discard
window and repeater spacing with L = 0.5 km being the min-
imum allowed value. Here, similarly as for our scheme, L is
defined as the distance between the major nodes that generate
GKP qubits, i.e., one needs to place additional optical BSM
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FIG. 21. Achievable distances for the two-way all-optical repeaters based on GKP Bell-pair distribution and connection using CC
amplification proposed in [21].

stations half-way in between. Not surprisingly we find that the
optimal repeater spacing for all the considered parameters is
0.5 km for all the distances. By comparing these results with
the L = 0.5 curves on the plots in Fig. 10, we see that our
scheme significantly outperforms the scheme based on single
GKP Bell pairs. However, we find that this scheme can also
achieve rates as high as 0.7 for up to around 750 km with the
same repeater spacing as for our scheme of L = 0.5 km. Nev-
ertheless, this requires ηd = 0.99 and σGKP = 0.105 (16.6 dB)
for that scheme, while our scheme can achieve that with
ηd = 0.99 and σGKP = 0.13 (14.7 dB). Hence our scheme can
achieve this performance with almost 2 dB of GKP squeez-
ing less than the scheme of [21]. Therefore, we see that our
scheme becomes especially appealing if one finds that there is
a specific hardware limitation with regard to GKP squeezing,
such that there is a certain maximum value that cannot be
exceeded in an experiment.

Finally, we note that our discussion above has been focused
only on the achievable rate per optical mode. From practical
perspective another figure of interest will be throughput, i.e.,
the number of generated secret-key bits/EPR pairs per second.
Here we note that our scheme shares the feature of all all-
photonic schemes in that the repetition rate of the protocol is
only limited by the repetition rate of the sources. This means
that if we can deterministically generate GKP qubits at 1-MHz
rate, with k = 20 we can actually achieve a throughput of 20
entangled pairs/secret bits per second even at distances where
R is of the order of 10−6.

2. Achievable distances

We can also compare the performance of our scheme in
terms of achievable distances. Since hardware parameters for
the heralded repeaters based on discrete-variable dual- and
single-rail encoding and for the repeaters based on discrete-
variable codes are very different than for the GKP-based
repeaters, here we will focus only on the comparison with
specific other GKP-based repeater schemes:

(i) Two-way all-optical repeaters based on GKP Bell-pair
distribution and connection using CC amplification. We show
the achievable distances for that scheme in Fig. 21 where we
perform optimization over both the discard window and the
repeater spacing. We see that for most considered hardware
parameters our scheme achieves much larger distances than
the simpler GKP repeater chain.

(ii) One-way repeaters based on concatenated GKP and
[[7,1,3]] code. In [22] achievable distances for this scheme
are quoted depending on the amount of GKP squeezing and

repeater coupling efficiency. While the considered threshold
rate there is 10−2, we have found that increasing the threshold
to the value of 10−6 considered here increases the achiev-
able distances quoted there by about 20–25%. Moreover, we
need to take into account two more differences between the
conditions of the two schemes. Firstly, for our scheme we
model lossy homodyne detection, while for the scheme of
[22] only in-out repeater coupling efficiency is considered
with perfect homodyne detection. Clearly the noise model
for our scheme is more stringent as both schemes require
large number of homodyne measurements per repeater while
in-out coupling efficiency is applied only once per repeater.
Secondly the scheme of [22] considers the more advanced
advantage distillation procedure of [61], which produces more
secret key than the protocol considered here. The reason for
using a weaker advantage distillation here is that it is not
known whether it is also possible to extract entanglement at
the rate corresponding to this more advanced advantage dis-
tillation. Taking these into account and comparing achievable
distances of our scheme with ηd = 0.99 with the achievable
distances of the scheme of [22] based on the concatenation
of the GKP code with the [[7,1,3]] code with repeater in-out
coupling efficiency of η0 = 0.99, we see that both schemes
can achieve similar distances, but our scheme can achieve
them with GKP squeezing reduced by more than 1 dB. The
fact that our scheme has better performance in terms of
achievable distances relative to the scheme of [22] might seem
surprising. After all for that scheme, the multi-qubit type A
repeaters are L distance apart (with L being at least 250 m)
and we can place type B GKP repeaters as dense as every
250 m in between. Then the total elementary link involves
transmission of a concatenated-coded state over distance L
with the help of those GKP repeaters in between. On the
other hand, for our scheme with repeaters being separated
by distance L (where now the smallest considered value is
L = 0.5 km) for a single elementary link we have both the
outer-leaf qubits and the inner-leaf qubits. Specifically, for
each pair of the connected outer-leaf qubits we then also
have the two concatenated-coded inner-leaf qubits that are
then interfered for error correction through a logical BSM.
Hence there seems to be much more losses contributing to
the single elementary link of distance L in this case. This
is because even if we choose the best ranked outer link, the
BSM on the inner leaves effectively performs [[7,1,3]]-code
correction on a qubit that was stored for distance 2L (again
with intermediate GKP corrections every 250 m). Hence the
total amount of contributed loss on the concatenated-coded
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qubits corresponds to a channel at least twice longer than
in the case of the scheme of [22]. However, we believe that
the key advantage of our scheme is that the stabilizers of the
[[7,1,3]] code are now measured destructively during BSM,
without the need for any ancilla GKP qubits. This contrasts
with the way the higher level stabilizers are measured in the
scheme of [22]. Despite the use of additional techniques such
as implementing additional intermediate GKP corrections and
repeating the measurement of each stabilizer in [22] it seems
that obtaining the higher-level stabilizer information through
a BSM is much more reliable. This also suggests that the
stabilizer measurements in the scheme of [22] could be im-
proved, e.g., by using TEC both for the inner and outer code as
discussed in [62]. However, that would require us to be able to
prepare a logical Bell pair on the [[7,1,3]]-code level, requir-
ing a resource of 14 entangled GKP qubits, so significantly
larger than our cube resource of eight entangled GKP qubits
for the proposed scheme. An additional difference between
our scheme and the scheme of [22] is that while the latter
requires much less resources per repeater, the GKP repeaters
need to be placed very densely. In our scheme the inner leaves
are stored locally so we can keep performing GKP correction
on them every 250 m even if we would like to place repeaters
much further apart.

(iii) All-optical repeaters based on GKP qubits with clique
clusters. In [21] the authors proposed how to modify the
discrete-variable all-photonic scheme of Azuma et al. where
the individual qubits are replaced with GKP qubits. The inner
leaves are then encoded in a concatenation of the GKP and the
tree code. In their scheme, similarly as in the Azuma scheme,
the inner leaves are sent out together with the outer leaves.
This means that the inner leaves experience overall the losses
corresponding to only half of the distance as in our scheme
(since if the inner leaves are also sent to the BSM stations,
then they can be measured immediately after the BSMwithout
the need for the classical information to come back). However,
this also means that it is necessary to pregenerate the clique
cluster even when using GKP qubits on the first level and the
inner leaves cannot be periodically corrected, which is easy
to do in our case where the inner leaves are retained at the
repeater nodes. In [21] the authors plot the achievable secret-
key rate vs distance for different fixed numbers of repeaters
for 15 dB of GKP squeezing and with perfect homodyne
detection. This is different from our analysis where we fix the
inter-repeater spacing. However, we can still make a compar-
ison by noting that for 500 repeaters the rate of the scheme
of [21] drops to zero just below 2100 km. For our scheme
with 14.7 dB of squeezing and perfect homodyne detection
for L = 5 km we observe a rate of 0.0014 at 2500 km. This
shows us that with 500 repeaters our scheme can definitely
achieve a distance larger than 2500 km, hence outperforming
the scheme of [21].

D. Requirements on the nodes of Alice and Bob

We have already described that the simulation output is the
estimate of the error over a single elementary segment and this
elementary error can then be put together to establish the end-
to-end error probability. This is done by effectively estimating
a probability of odd number of X and Z error flips over a

chain of n repeaters, taking into account the inner-leaf binning
information and the outer-leaf ranking information. Here we
note that every repeater is the same and generates a pair of
eight-qubit cubes for each multiplexing level. Specifically the
first cube involves an outer-leaf qubit sent to the left and the
inner-leaf GKP + [[7,1,3]]-code qubit stored in the repeater.
The second cube involves the same leaf structure but now for
sending to the right. However, Alice’s and Bob’s system can
in fact be much simpler because they only need to connect
with links on one side.

Here we argue that the performance evaluated through our
simulation that assumes that all nodes are exactly the same
is still a valid lower bound for the real scenario involving
Alice’s and Bob’s modified setups when considering secret-
key generation. For it to represent a reliable lower bound on
remote entanglement generation we need to impose additional
assumptions on the additional memory capabilities of Alice
and Bob.

Firstly, we note that as described before, each simulated
link can be interpreted as describing errors in a single repeater
together with a single outer link, say, to the right of that
repeater. We note that the total number of repeaters is one
less than the number of links as mentioned in Sec. IX F where
we set nrep = Ltot

L − 1 for the calculation of the number of
required resources. Moreover, we additionally consider there
the nonrepeater nodes of Alice and Bob. On the other hand
the number of repeaters n that we use for the performance
simulation, as defined in Sec. VII is actually made equal to the
number of links and is given by n = nrep + 1. Here we argue
that using the data from a single simulated link to establish
performance over n such homogeneous hops can be seen as
a lower bound on the actual scenario where we have n links,
nrep repeaters and two additional stations of Alice and Bob.We
will argue here that for the purpose of QKD each of the sta-
tions of Alice and Bob do not require to produce any inner-leaf
qubits and so do not introduce any noise at all apart from the
finite squeezing of the outer-leaf GKP qubit. For the purpose
of entanglement generation we will make additional assump-
tions about quantummemory capabilities of Alice’s and Bob’s
stations. Within these frameworks, the errors introduced by
nrep repeaters together with Alice’s and Bob’s stations can
be upper bounded by the errors introduced by n repeaters for
both QKD and entanglement generation. Let us examine these
cases separately for key and entanglement generation.

1. Key generation

In the case of key generation the required capabilities of
Alice’s and Bob’s stations are very limited. Specifically it
is sufficient for Alice and Bob to just send the individual
outer-leaf GKP qubits in one of the six-state QKD protocol
basis states. One can then think that effectively through the
whole repeater chain the two most outer repeaters generate
k ranked Bell pairs that they share between each other, see
Fig. 22. At the same time they locally generate Bell pairs
whose outer leaves are sent for a BSM with the qubits sent
by Alice and Bob. These BSMs effectively teleport the qubits
of Alice and Bob into those outermost repeaters. The tele-
portation BSM has also generated analog information, which
ranks the teleported states according to their expected quality
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FIG. 22. Repeater setup for QKD with minimal resource on the sides of Alice and Bob. The scheme can effectively be viewed as
Measurement Device Independent (MDI) QKD setup where Alice and Bob only require sources of GKP qubits and do not need to perform
any measurements. Specifically Alice and Bob send GKP qubits in protocol basis states towards the neighboring BSM stations where they
become effectively teleported to their neighboring repeaters. These two repeaters effectively establish entanglement with each other through the
repeater chain. Moreover, they hold ranking information about the long-distance links that they share and about the elementary-link teleported
states from Alice and Bob. They then perform BSMs between the teleported states of Alice and Bob and their two respective qubits of the
long-distance entangled pair according to the ranking information. This effectively implements a BSM between the two states sent by Alice
and Bob as in MDI QKD protocols.

and hence determines which of the teleported qubits should
be connected to which of the long-distance links. This con-
nection of the qubits of Alice and Bob through BSMs to a
long-distance entangled resource effectively realises a BSM
between the qubits of Alice and Bob. Hence the whole setup
can be seen as the measurement device independent (MDI)
QKD implementation [63] where Alice and Bob need to trust
their preparation of the six-state protocol basis states, but all
the resources generated inside the repeaters as well as all the
measurements taking place in this protocol can be untrusted.

As mentioned, in this case Alice and Bob do not require
to generate, store, and measure any of the inner-leaf qubits.
Since no resource cube generation on their part is needed
not only will there be no inner-leaf errors (since there are no
inner leaves for them) but the outer-leaf errors are also smaller.
Clearly in that case simulating errors over a chain of n links
consisting of n outer links and n repeaters upper bounds the
errors arising in our real scenario from n outer links with two
of those links having smaller errors and nrep repeaters.

2. Entanglement generation

In the case of entanglement generation the capabilities of
the nodes of Alice and Bob need to be larger than in the case
of key generation. Specifically in this case Alice and Bob
need to be able to error-protect their qubits while attempting
to entangle them with each other through the repeater chain.
One issue that is of crucial importance is for how long Alice
and Bob need to store their qubits. Our repeater is based on
Bell measurements so in order to know which Bell pair Alice
and Bob hold, they would need to wait for the information
from all repeaters about the overall Pauli frame. Fortunately,
the information about end-to-end link ranking based on all the
rankings of all the outer links is available to Alice and Bob
immediately with the information about the local rankings
from the nearest outer-link connections. This is because all
the repeaters preserve the local rankings by always connecting
the links of the same rank. However, the ranking based on
inner-leaf syndromes, i.e., based on the value of |�sX/Z | re-
quires also for additional classical communication time from

all repeaters to Alice and Bob. The ranking information is
needed in order for Alice and Bob to be able to group their
links into bins where from each bin they later extract/distill
entanglement separately. Hence these two requirements, the
need for communication of the Pauli frame and the need
for communication of the inner-leaf syndromes means that
Alice and Bob need to be able to preserve their qubits for
the duration of the end-to-end classical communication. Re-
garding the Pauli frame information, we note that one could
argue that depending on the application of that raw end-to-end
entanglement one can already start distilling/processing that
entanglement before the Pauli frame information arrives. This
could be possible if the initial part of the application only
requires certain deterministic operations, since any adaptive
step of the protocol that requires any kind of measurements
and interpretation of the measured data can only be performed
when the Pauli frame is already known to Alice and Bob.
However, the second part related to inner-leaf ranking imposes
more constraints in this case as, e.g., in order to distill better
Bell pairs within the bins, Alice and Bob need to know which
pairs belong to which bins before even starting the distillation
protocol. This implies that the waiting requirement cannot be
alleviated in our case. Therefore in this paper we assume that
our performance metric provides a reliable lower bound on
the entanglement generation rate only under the assumption
that Alice and Bob are each in possession of k (multiplexing
levels) perfect quantum memories that are able to perfectly
store the state for the duration of the entire repeater protocol,
i.e., for the time scaling linearly with and lower bounded by
the total communication time over the whole repeater chain.
Then they locally generate Bell pairs where one of the qubit
of each Bell pair is the outer-leaf qubit encoded in the GKP
code and sent over for entanglement swapping, while the other
qubit of that Bell pair is simply loaded into that perfect mem-
ory where it is stored until the Pauli frame and the inner-leaf
ranking information is communicated. In that scenario we can,
similarly to the QKD scenario, argue that simulating errors
over a chain of n links consisting of n outer links and n
repeaters upper bounds the errors arising in our real scenario
from n outer links with two of those links possibly having
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smaller errors (as Alice and Bob do not need to generate full
cubes as they have perfect memories), nrep repeaters and two
end nodes with perfect memories.

XI. CONCLUSIONS

We have proposed a type of multiplexing for quantum
repeaters based on the GKP code. We have then analyzed
the performance of the corresponding repeater scheme using
a numerical Monte Carlo simulation whose code is freely
available at [28]. Our model includes a detailed analysis of
the preparation of the resource state used for the repeater pro-
tocol and takes into account imperfect experimental hardware,
i.e., imperfect finitely squeezed GKP qubits as well as lossy
homodyne detectors. We have shown that our repeater scheme
can sustain high entanglement and secret-key rates per mode
as large as R = 0.7 for distances as large as 750 km. Since
this is the rate for k = 20 multiplexed modes, it corresponds
to the rate of 14 ebits/secret-key bits per protocol run. Due to
the all-photonic nature of our scheme, its throughput is only
limited by the protocol repetition rate, which in our case is
dictated by the rate of generating the GKP qubits. Assuming
our deterministic GKP sources can operate at a rate of at
least 1 MHz, this corresponds to 1.4×107 ebits/secret-key
bits per second. Our scheme can also achieve high distances
both in terms of the rate per mode and in terms of overcom-
ing the PLOB bound, the fundamental limit of repeaterless
quantum communication. The performance of our scheme
can be achieved with significantly relaxed hardware require-
ments relative to the previously proposed repeater schemes
based on GKP qubits. We have also performed a detailed
analysis of the number of GKP qubits needed to realize our
scheme. Although that number is significantly higher than
for the GKP-based schemes with only one level of encod-
ing and one-way GKP-DV concatenated-coded schemes, the
much higher performance and relaxed requirement on GKP
squeezing make our scheme particularly promising if due
to experimental reasons one encounters certain squeezing
thresholds establishing the maximum amount of squeezing
attainable in practical scenarios.

We also need to mention that apart from the requirement
of GKP qubits, most operations required for our protocol
involve only beamsplitters, homodyne detectors, and rotations
and displacements in phase space. However, during the re-
source state preparation one also requires CZ gates for GKP
qubits, which require additional squeezing resource. In prin-
ciple these operations can be performed using only off-line
squeezing, as demonstrated experimentally in [64]. Our model
could be extended to provide a more detailed description of
such two-mode gates as in this paper we have assumed those
gates to be perfect.

Another issue related to squeezing is the possibility of
using this resource or some form of phase sensitive ampli-
fication to overcome homodyne detection inefficiency. The
benefit of such a strategy, which aims to amplify/antisqueeze
the measured quadrature with adding no or minimal amount
of noise has already been demonstrated experimentally in the
scenarios where the intrinsic homodyne detection efficiency
was low [65,66]. This technique could potentially increase
homodyne detection efficiencies beyond 99%.

Finally, we note that although the CC amplification strat-
egy of [21] offers significant gain over the before considered
preamplification strategy, we know that much better strategies
of using the GKP code against photon loss exist [19,20].
However, the existence of these improved strategies have been
proven using semidefinite programs, which make it hard to
extract the corresponding decoding procedure. More research
is needed to extract the optimal decoding strategies for GKP
code against photon loss as the results of [19] suggest that if
the optimal strategy could potentially correspond to a scheme
realizable experimentally, then long-distance communication
with GKP qubits with relaxed squeezing requirement could
potentially be possible without the need for code concatena-
tion.

ACKNOWLEDGMENTS

We would like to thank Rafael N. Alexander, Debayan
Bandyopadhyay, Prajit Dhara, Kosuke Fukui, Kenneth Good-
enough, Michael Hatridge, Eneet Kaur, Gideon Lee, Gláucia
Murta, Changhun Oh, Ashlesha Patil, Nithin Raveendran,
Narayanan Rengaswamy, Hassan Shapourian, Qian Xu, Pei
Zeng, and Changchun Zhong for helpful discussions. We
would also like to thank Prajit Dhara, Kenneth Good-
enough, and Gláucia Murta for useful feedback on the
manuscript. We acknowledge support from the ARO (Grant
No. W911NF-23-1-0077), ARO MURI (Grant No. W911NF-
21-1-0325), AFOSR MURI (Grants No. FA9550-19-1-0399,
No. FA9550-21-1-0209), AFRL (Grant No. FA8649-21-P-
0781), DoE Q-NEXT, NSF (Grants No. OMA-1936118,
No. ERC-1941583, No. OMA-2137642, No. CCF-2204985),
ONR (Grant No. N00014-19-1-2189), NTT Research, and
the Packard Foundation (2020-71479). The authors are also
grateful for the support of the University of Chicago Research
Computing Center for assistance with the numerical simula-
tions carried out in this work.

APPENDIX A: ERROR PROPAGATION DURING FUSION

In this Appendix we use properties of graph states to de-
scribe the rules of error propagation during graph state BSM
(fusion). Specifically, we describe how Pauli X and Z errors
on the qubits involved in the BSM propagate onto the outcome
graph state.

The BSM or fusion for graph states is implemented by
first applying a CZ gate between the relevant qubits and then
measuring them both in the X basis. Note that the graph state
BSM is rotated with respect to the standard BSM in the sense
that if |φi j〉 denotes the four canonical Bell states, then the
graph state fusion projects on the two-qubit basis defined as
H ⊗ I|φi j〉. In order to see that the BSM for graph states
can be implemented as described above and in order to see
the rules of error propagation during such a graph state BSM
we will use here the framework of graph state operations. In
particular, the Z and X basis measurements affect the graph as
follows [68]:

P(a)
Z,±|G〉 = |Z,±〉(a) ⊗ U (a)

Z,±|G − a〉,
P(a)

X,±|G〉 = |X,±〉(a) ⊗ U (a)
X,±|τb0 (τa ◦ τb0 (G) − a)〉, (A1)
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FIG. 23. Fusing two four-tree clusters through their leaves. The
first step involves a CZ gate between the leaves.

where

U (a)
Z,+ = I,

U (a)
Z,− =

∏
b∈Na

Z (b),

U (a)
X,+ =

√
iY (b0 )

∏
b∈Na−Nb0−b0

Z (b),

U (a)
X,− =

√
−iY (b0 )

∏
b∈Nb0−Na−a

Z (b), (A2)

and P(a)
i,± for i = {Z, X } denotes a projection onto one of the

i-basis eigenstates |i,±〉 corresponding to the two outcomes
+ and − on the qubit a. Here, G denotes the original graph, a
the measured vertex of the graph, b0 any chosen neighboring
vertex of a (different choice of b0 result in different outcome
graphs that are equivalent up to local Clifford operations), and
τi denotes local complementation at vertex i. A local com-
plementation at vertex i is a graph operation, which connects
all the unconnected neighbors of i and disconnects all its
connected neighbors. Moreover, note that

√±iY = e±i π
4 Y . (A3)

To see the propagation of errors, let us illustrate the action
of such a graph BSM in a simple scenario occurring during
the generation of our resource state when we fuse two four-
trees through their leaves. Firstly we apply a CZ gate between
the leaves as shown in Fig. 23. Then we shall perform the X
measurement on the leaf qubit marked a, with b0 being the
chosen neighbor of a as shown in Fig. 24. Following the rules
of graph state evolution, after the measurement the state of
the graph evolves as shown in Fig. 24 up to the unitary U (a)

X,±,
depending on the measurement outcome. Now we need to
apply (U (a)

X,±)
† to bring the state to the graph state shown. This

requires us to apply Z on qubits labeled 1 or 2 in the outcome
graph of Fig. 24, depending on the measurement outcome and
(
√±iY )† = √∓iY = exp(∓π

4Y ) on qubit b0.

FIG. 24. Fusing two four-tree clusters through their leaves. Fol-
lowing the CZ gate between the leaves, the vertex labeled a is
measured in the X basis. The outcome graph state is depicted graph-
ically by tracking the measurement as described in Eq. (A1).

FIG. 25. Fusing two four-tree clusters through their leaves. Fol-
lowing the CZ gate between the leaves, X measurement of vertex a
and conditional correction operations, the vertex b0 is measured out.

Clearly after bringing the state to the above form the final
step would be to remove the vertex b0 by measuring it in the Z
basis and applying UZ,± to bring the state to the final desired
fused form as shown in Fig. 25. However, note that

P(b0 )
Z,±
√

−iY (b0 ) =
√

−iY (b0 )P(b0 )
X,∓,

P(b0 )
Z,±

√
iY (b0 ) =

√
iY (b0 )P(b0 )

X,± . (A4)

Hence, since we do not care about the final state of the b0
qubit, we can actually perform an X measurement on that
qubit and then interpret the outcome as if we have applied the√±iY (b0 ) correction first followed by a Z measurement after.
Therefore after that we need to undo the U (b0 )

Z,± to go back to
the graph state.

Now let us consider an error on the b0 qubit. Specifically,
we will consider an X or Z error arising after the CZ gate, i.e.,
after the GKP quadrature residual shifts from qubit a have
already propagated onto b0 through that gate. We note that a
Y error can be expressed as a simultaneous X and Z error.
Clearly an X error has no effect on our state as qubit b0 is
then measured in the X basis, i.e., that error can be commuted
through the measurement and therefore it does not affect the
final state of the remaining graph state. A Z error on the other
hand will flip the measurement outcome, which will lead us to
the wrong decision whether the final correction to be applied
should be (U (b0 )

Z,+ )† or (U (b0 )
Z,− )†. These two unitaries differ by Z

operation on the neighbors of b0 hence leading in our case to
a Z error on qubit 1 in Fig. 25.

In Figs. 26 and 27 we illustrate the error propagation for the
other case occurring in our resource state creation, where we
fuse a leaf of a three-tree with a node of another three-tree.
We see, as before, than a Z error on b0 propagates as a Z
error to all the initial neighbors of qubit a. In Fig. 26 we
illustrate the transformation of the graph corresponding to
the X measurement on qubit a. Since a had originally two
neighbors, after that X measurement b0 has two neighbors. In
Fig. 27 we see the effect of removing the b0 qubit, which leads
to the correlated Z error on two neighbors of b0, which were
original neighbors of a.

This result can be generalized to a rule, according to which
a Z error after the CZ gate on one of the two qubits involved
in the graph state BSM, will propagate as a correlated Z error
to all the initial neighbors of the other qubit involved. An X
error after the CZ gate will not affect the resulting state.

APPENDIX B: SECRET-KEY FRACTION
AND ENTANGLEMENT-DISTILLATION RATE

In this Appendix we provide the formulas for achievable
entanglement and secret-key rates that we use to quantify
the performance of our scheme. The lower bound on the
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FIG. 26. Fusion between two three-tree clusters by connecting a leaf of one (vertex b0) with the node of the other (vertex a). Transformation
of the graph following the X measurement on a. Here b0 has a Z error marked by a cross after the CZ gate. This error could have been there
from the beginning, it could originate from the X error on qubit a that has propagated to b0 through the CZ gate or in the case of GKP qubits,
it could arise due to the accumulation of the continuous shifts in p quadrature beyond the critical value on qubit b0 after the CZ gate.

secret-key rate that we consider is based on the six-state QKD
protocol [69]. We consider two variants of this protocol. In the
low-noise regime we consider the fully asymmetric (i.e., one
of the three bases is chosen for key generation and that basis is
chosen with a probability approaching one) one-way six-state
protocol for which the achievable secret fraction is given by
[70–72]

rsix-state,one-way = 1 − H (ρ). (B1)

Here H is the von Neumann entropy and ρ is the unique Bell
diagonal state consistent with the observed quantum bit error
rate (QBER). We note that as our repeater protocol distributes
logical Bell diagonal states (as on the logical level we only
have Pauli errors), in our case the state ρ is exactly the state
distributed by the repeater protocol, i.e., the parameter esti-
mation step of the QKD protocol enables Alice and Bob to
exactly reconstruct the density matrix of the shared state. We
note that this achievable rate of the one-way six-state QKD
protocol is independent of which basis is chosen to generate
the key.

In the high-noise regime we supplement our six-state pro-
tocol with two-bit advantage distillation [73–75]. In this case

FIG. 27. Fusion between two three-tree clusters by connecting a
leaf of one with the node of the other. Final measurement of vertex
b0 in accordance with Eq. (A4) followed by conditional correction
operations. A Z-type error in vertex b0 results in correlated Z errors
on vertices that were originally neighbors of a.

before proceeding with information reconciliation and error
correction, Alice and Bob divide their raw key bits in groups
of two and publicly announce and compare the xor of the two
bits from each group. If the bits match they keep the first bit in
each group, otherwise they discard both bits from the group.
This procedure enables for significant suppression of errors at
the expense of the two-way classical communication, which
we can assume to be free, and at the expense of needing to
discard at least 50% of the initial raw bits.

It has been shown in [76] that the largest amount of key
with advantage distillation can be extracted if the key basis is
the basis with largest QBER. For CSS codes this is theY basis
and therefore we consider extraction of key in the Y basis.
To provide an expression for the corresponding secret key we
need to introduce some notation. Let

|ψ (x, z)〉 = 1√
2

(|0〉|0 + x〉 + (−1)z|1〉|1 + x (mod 2)〉),

(B2)

for x, z ∈ {0, 1}. We can then write the Bell-diagonal state
as

ρAB =
∑

x,z∈{0,1}
pxz|ψ (x, z)〉〈ψ (x, z)|. (B3)

The four coefficients pxz define the probability distribution
PXZ. These Bell-diagonal coefficients can be expressed in
terms of QX,end(|�sX | = mX , j), QZ,end(|�sZ | = mZ , j) as stated
in Eq. (C11). For the fully asymmetric six-state protocol with
key extraction in the Y basis, together with the two-way ad-
vantage distillation, the corresponding secret-key fraction is
[71,75]

rsix-state,AD = PX̄(0)

2
[1 − H (P′

XZ)], (B4)
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where

PX̄(0) = (p00 + p11)
2 + (p10 + p01)

2,

PX̄(1) = 2(p00 + p11)(p10 + p01),

p′
00 = p200 + p211

(p00 + p11)2 + (p10 + p01)2
,

p′
01 = 2p00p11

(p00 + p11)2 + (p10 + p01)2
,

p′
10 = p210 + p201

(p00 + p11)2 + (p10 + p01)2
,

p′
11 = 2p10p01

(p00 + p11)2 + (p10 + p01)2
, (B5)

and H (PXZ) is the Shannon entropy of the distribution PXZ.
Here PX̄(0) is the probability that the advantage distillation
succeeds and the factor 1/2 takes into account the fact that
even in the case of success Alice and Bob keep only the first
bit from each group.

In our protocol we calculate the secret-key fraction as

rsix-state = max{rsix-state,one-way, rsix-state,AD, 0}. (B6)

Now we note that the formula in Eq. (B1) also describes
the achievable rate of distilling entanglement through one-
way hashing from a Bell diagonal state ρ [77]. Moreover,
it was shown in [76] that performing advantage distillation
in the most noisy basis is equivalent to performing the DE-
JMPS entanglement distillation protocol [78] with additional
prerotations that maximise the fidelity of the output state con-
ditioned on success. The formula in Eq. (B4) hence provides
the rate of distilling entanglement from a Bell diagonal state
ρ through a procedure involving first the DEJMPS protocol
checking for the Y ⊗ Y parity followed by one-way hashing
distillation. The distribution P′

XZ describes the improved Bell
diagonal state, which we obtain conditioned on the success of
the DEJMPS protocol, which succeeds with probability PX̄(0).
This output state described by P′

XZ is the one to which we now
apply the one-way hashing. Similarly the factor 1/2 describes
the fact that DEJMPS distillation requires us to sacrifice the
target copy. Hence the figure of merit that we use here is

r = rentdist = rQKD = rsix-state. (B7)

APPENDIX C: STRATEGIES FOR CONNECTING LINKS

In this Appendix we justify our specific strategy of con-
necting the links in the repeaters based on the ranking
information. Specifically we will show that connecting best
links with each other, second best links with each other etc., is
the optimal strategy, while the strategy of connecting the links
randomly without using the ranking information would lead
to the worst performance. We first prove this statement for the
depolarising channel and then extend the proof to our case of
independent noise in X and Z errors under the constraint that
the errors remain small, even for the end-to-end links.

The secret-key rate generated through different QKD pro-
tocols is convex with respect to quantum bit error rate
(QBER). The same applies to different bounds on distillable
entanglement. As an example let us consider the entanglement
hashing rate, which also describes the secret-key fraction of

the one-way six-state QKD protocol. As a function of the
QBER e for a depolarising channel, it can be written as

r(e) = max

[
1 − e − (1 − e)h

(
1 − 3

2e

2 − e

)
− h(e), 0

]
. (C1)

Here h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary
entropy function. Clearly, in the physically meaningful regime
of e ∈ [0, 1/2], r(e) is a convex function of e.

The QBER for a depolarized EPR pair

ρ = (1 − q)|
〉〈
| + q
I

4
(C2)

is e = q/2. The end-to-end depolarized EPR pair with depo-
larising parameter qend would be established by connecting
elementary depolarized pairs for which we will use the param-
eter q. By applying entanglement swapping to n depolarized
EPR pairs we obtain a final state with qend = 1 − (1 − q)n ≈
nq, assuming that q was small.

Now, let us assume that over the chain of n elementary links
that we want to connect together, we actually consider k mul-
tiplexing levels. Hence let qi denote a depolarising parameter
over a single elementary link ranked as i’th for i ∈ {1, . . . , k}
according to the analog information. Let j ∈ {1, . . . , k} de-
note the j’th end-to-end link established by connecting n
elementary links according to some chosen strategy. Also, let
α

j
i be a fraction in [0,1] associated with each end-to-end link

j, which tells us what fraction of the n connected elementary
links consists of elementary links ranked as i’th. Then the
j’th end-to-end link or j’th path between Alice and Bob
through different multiplexed links will consist of α

j
i n i’th

ranked links. Since the total number of elementary links in
each end-to-end path is n we have that

k∑
i=1

α
j
i = 1. (C3)

Moreover, since each elementary segment contributes one
multiplexed link of each ranking i, the total number of links
of ranking i over all paths must also sum up to n. Hence

k∑
j=1

α
j
i = 1. (C4)

Therefore a total hashing rate r over a single path or single
end-to-end link labelled j with the corresponding QBER e j

and established using a specific swapping strategy defined by
{α j

i }i, j is

r(e j ) = r

(
q j
end

2

)
≈ r

(
k∑

i=1

α
j
i n

qi

2

)
, (C5)

where we have assumed qi to be small for all i, so that we
could use

q j
end = 1 −

k∏
i=1

(1 − qi )
α

j
i n ≈

k∑
i=1

α
j
i nqi, (C6)
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for all j. Now the total rate per mode established over k
multiplexed links is

R = 1

k

k∑
j=1

r(e j ) ≈ 1

k

k∑
j=1

r

(
k∑

i=1

α
j
i n

qi

2

)
. (C7)

Now by convexity of r(e),

R � 1

k

k∑
j=1

k∑
i=1

α
j
i r
(

n
qi

2

)
= 1

k

k∑
i=1

r
(

n
qi

2

)
. (C8)

Clearly the upper bound can be achieved by a strategy cor-
responding to α

j
i = δi, j . This is a strategy where a path j

corresponds to connecting all elementary links of rank j, i.e.,
best with the best, second best with the second best etc. This
indicates that this strategy maximises the hashing rate, one-
way secret-key fraction obtained through a six-state protocol
but in fact also other distillable entanglement and secret-key
bounds, which are also convex with respect to QBER as men-
tioned before.

As a side note we note that by convexity

R � r

⎛
⎝1

k

k∑
j=1

k∑
i=1

α
j
i n

qi

2

⎞
⎠ = r

(
n
1

2

k∑
i=1

qi

k

)
. (C9)

Note that this value can be achieved by setting α
j
i = 1/k, i.e.,

by making all the paths the same and each consisting of equal
number of elementary links of each ranking. This is in fact
equivalent to the strategy of randomly connecting the links,
i.e., without using the analog information at all. This can be
seen by noting that

∑k
i=1

qi

k = qav, where qav is the average
depolarising parameter for a single elementary link averaged
over all the multiplexed ranked links with equal distribution.
Hence the strategy of randomly connecting the links without
using the analog information leads to the worst performance,
as one might intuitively expect.

It is important to note here that the depolarising parameters
qi are statistical properties of the ranked links that effectively
arise as a consequence of the ranking. This means that it is
not the case that each link has an a priori defined depolarising
parameter qi but we just do not know their order over the k
links and the goal of analog information is to just discover
which link has which parameter. Rather depending on what
information is used to rank the links, the values of the arising
depolarising parameters will be different. This can be best
explained through an example. Let us consider only a bit
flip channel for simplicity and let us assume that in total
we have data from N attempts to generate elementary link
entanglement. In each protocol run we have assigned one link
to the class “best link” based on some specific type of analog
information called analog1. We find that out of those links
in the “best link” bin, Nflip links have a bit flip. This means
that for ranking based on analog1, the bit flip probability for
the channel describing the “best link” is given by Nflip/N . If
we rank the links according to some other information, say
analog2, we might find a different number of links having
a flip in that bin, say N ′

flip leading to a different bit-flip rate
N ′
flip/N . The bit-flip rate Nflip/N could be the smallest out of all

k bit-flip rates when using analog1 and the bit-flip rate N ′
flip/N

could be the smallest out of all k bit-flip rates when using
analog2 if both analog1 and analog2 are reliable. However,
the fact that they are different depending on the information
that we use to rank the links shows that ranking itself effec-
tively creates the depolarising parameters.

Hence, clearly it is important that the ranking itself is done
based on reliable information. One could imagine ranking
based on completely unreliable information where in every
protocol run the links are assigned distinct identifiers i com-
pletely at random leading to their statistical property qi being
the same for every i so that qi = q for every i. In that case the
two bounds in Eqs. (C8) and (C9) would become the same.
Hence the high performance of our scheme is an evidence
that the GKP analog information reliably predicts the uncor-
rectable errors.

Clearly the argument presented here applies to a depo-
larising channel where the ranking and the hashing rate is a
function of a single parameter e = qend

2 . In the case of our con-
catenated CSS codes, we do not have a depolarising channel,
but rather our error rate is characterized by two parameters QX

and QZ describing the probability of an independent X flip and
Z flip respectively. Similarly as before we can define QX/Z,i for
an elementary link and

Q j
X/Z,end = 1 −∏k

i=1(1 − 2QX/Z,i )α
j
i n

2
(C10)

as the total probability of X/Z flip over the end-to-end link for
a path j where an end-to-end flip occurs for and odd number
of elementary flips. Then we can use Q j

X/Z,end to define the
probability of X , Z , and Y error for the j’th path as

pj
10,end = Q j

X,end

(
1 − Q j

Z,end

)
,

pj
01,end = Q j

Z,end

(
1 − Q j

X,end

)
,

pj
11,end = Q j

Z,endQ j
X,end,

(C11)

where X error occurs if there is an X flip but not a Z flip
and vice versa for the Z error. The Y error occurs if both
X and Z flip occur and hence is quadratically suppressed
for the CSS codes. Here the coefficients p01, p10, p11, and
p00 = 1 − p01 − p10 − p11 are the Bell diagonal coefficients
of the resulting state according to Eq. (B3).

As mentioned before the probabilities QX/Z,i arise as a
consequence of our ranking. Let us also assume here that we
are in a regime in which both Q j

X,end and Q j
X,end are small for

all j. We can then perform the following approximation:

pj
10,end ≈ Q j

X,end,

pj
01,end ≈ Q j

Z,end,

pj
11,end = Q j

Z,endQ j
X,end. (C12)
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Now, the secret-key fraction/entanglement hashing rate for the corresponding Bell diagonal state satisfies

r − p00 log2(p00) = 1 − H (ρ) − p00 log2(p00)

= 1 + Q j
X,end log2

(
Q j

X,end

)+ Q j
Z,end log2

(
Q j

Z,end

)+ Q j
X,endQ j

Z,end log2
(
Q j

X,endQ j
Z,end

)
= 1 + Q j

X,end log2
(
Q j

X,end

)+ Q j
Z,end log2

(
Q j

Z,end

)+ Q j
X,endQ j

Z,end log2
(
Q j

X,end

)+ Q j
X,endQ j

Z,end log2
(
Q j

Z,end

)
≈ 1 + Q j

X,end log2
(
Q j

X,end

)+ Q j
Z,end log2

(
Q j

Z,end

)
. (C13)

Also

p00 log2(p00) = (
1 − Q j

X,end − Q j
Z,end − Q j

X,endQ j
Z,end

)
log2

(
1 − Q j

X,end − Q j
Z,end − Q j

X,endQ j
Z,end

)
≈ (

1 − Q j
X,end − Q j

Z,end

)
log2

(
1 − Q j

X,end − Q j
Z,end

)
. (C14)

Hence

r ≈ 1 + Q j
X,end log2

(
Q j

X,end

)+ Q j
Z,end log2

(
Q j

Z,end

)+ (
1 − Q j

X,end − Q j
Z,end

)
log2

(
1 − Q j

X,end − Q j
Z,end

)
. (C15)

Therefore we see that our secret-fraction/entanglement rate
can be approximated by the corresponding rate extractable
from a Bell diagonal state with

pj
10,end = Q j

X,end,

pj
01,end = Q j

Z,end, (C16)

pj
11,end = 0.

Moreover, note that

Q j
X/Z,end ≈

k∑
i=1

α
j
i nQX/Z,i. (C17)

Hence we have effectively linearized all the relations be-
tween the probabilities of Pauli flips over elementary links
and end-to-end links as well as the Bell diagonal coefficients
of the resulting Bell diagonal states. Therefore we can define
p10,end,i = nQX,i, p01,end,i = nQZ,i, p11,end,i = 0 and p00,end,i =
1 − p10,end,i − p01,end,i − p11,end,i as approximate Bell diago-
nal coefficients of the end-to-end Bell diagonal state obtained
by connecting all the links of the same ranking. Then we see
that

pj
10,end ≈

k∑
i=1

α
j
i p10,end,i,

pj
01,end =

k∑
i=1

α
j
i p01,end,i,

pj
11,end =

k∑
i=1

α
j
i p01,end,i,

pj
00,end = 1 − pj

10,end − pj
01,end − pj

11,end

=
k∑

i=1

α
j
i (1 − p10,end,i − p01,end,i − p11,end,i )

=
k∑

i=1

α
j
i p00,end,i. (C18)

Hence we have that

R = 1

k

k∑
j=1

r
({

pj
00,end, pj

01,end, pj
10,end, pj

11,end

})

= 1

k

k∑
j=1

r

(
k∑

i=1

α
j
i {p00,end,i, p01,end,i, p10,end,i, p11,end,i}

)

� 1

k

k∑
j=1

k∑
i=1

α
j
i r({p00,end,i, p01,end,i, p10,end,i, p11,end,i})

= 1

k

k∑
i=1

r({p00,end,i, p01,end,i, p10,end,i, p11,end,i}). (C19)

We again see that the upper bound is achievable for the
ranking strategy described by α

j
i = δi, j corresponding to con-

necting links of the same ranking.
We also find a lower bound

R � r

⎛
⎝1

k

k∑
j=1

k∑
i=1

α
j
i {p00,end,i, p01,end,i, p10,end,i, p11,end,i}

⎞
⎠

= r

(
1

k

k∑
i=1

{p00,end,i, p01,end,i, p10,end,i, p11,end,i}
)

, (C20)

which is achievable by setting α
j
i = 1/k, which corresponds

to uniform connections such that each end-to-end link is the
same. Hence we see that the same ranking strategy is also
optimal for the noise channel with independent X and Z er-
rors in the regime where not only the elementary-link error
probabilities, but also the end-to-end error probabilities are
small.

Again, it is important to rank the links based on reliable
information. Here the situation is slightly more challenging
than for depolarising noise. This is because in our case ranking
generates two statistical properties of the ranked links given
by the error probabilities QX,i and QZ,i. Nevertheless, we see
from our repeater performance that the GKP analog infor-
mation serves as a good measure for establishing different
bins of different quality links, which leads to high overall
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performance rate. Clearly the GKP analog information is also
generated separately for X and Z errors. In Appendix H and
Sec. V we describe how we combine these two pieces of
information into a single quantity dictating the ranking of the
links.

APPENDIX D: ELEMENTARY LINK
POSTSELECTION STRATEGY

1. With multiplexing

While the multiplexing strategy considered in this paper
based on ranking of the elementary links is hard to model
analytically, the reference strategy based on postselection
depicted in Fig. 5 can be easily modelled analytically. The
important difference in this case is that the links are not gen-
erated deterministically. Therefore we need to first establish
the probability distribution for the number of end-to-end links
that can be generated.

Let us assume that p is the probability of passing the
postselection test for a single link in a single quadrature, i.e.,
p = PPS(v; σ 2) as defined in Eq. (16) for some noise variance
σ 2 and discard window v. We attempt on k multiplexed levels
and therefore the probability that we successfully generate
X = m elementary links out of k is given by

pelem(X = m) =
(

k

m

)
p2m(1 − p2)k−m. (D1)

Here we include p2 as a single link is successfully generated
only if we pass the postselection test in both quadratures for
that link. Now the probability of generating exactly Y = m
end-to-end links corresponds to the probability that over all
n elementary links we generated at least m links and over at
least one of the elementary links we generated exactly m links

pend(Y = m) =
n∑

l=1

(
n

l

)
pelem(X = m)l pelem(X > m)n−l .

(D2)

Then we can calculate the average number of successfully
generated end-to-end links as

〈Y 〉 =
k∑

m=0

mpend(Y = m). (D3)

After establishing the average QBER for the postselected
links, we can calculate the rate as

R = 〈Y 〉
k

r (D4)

where r is the secret-key fraction/lower bound on distillable
entanglement for a single successfully postselected end-to-
end link. Clearly both 〈Y 〉 and r depend on the postselection
window during GKP syndrome measurement leading to a
trade-off between the two.

2. Without multiplexing

Here we describe the rate corresponding to the single-mode
strategy without multiplexing based on CC amplification,
which up to our knowledge is the best known strategy of
using only bare square-lattice, single-mode GKP qubits for

repeaters. We note that this strategy effectively corresponds
to the above described strategy based on multiplexing with
postselection for k being restricted to 1 in the case where
we only consider the noise on the outer leaves. Then the
rate just becomes R = p2Ltot/L×r. Here the secret-key frac-
tion/entanglement rate r can be calculated in terms of the
flip probability QX/Z,end = Qend where Qend can be calcu-
lated using Eq. (C10) with k = 1 and j = 1, QX/Z,1 = Q =
EPS(v; σ 2), and α1

1 = 1. Moreover, the probability of passing
postselection in each quadrature is given by p = PPS(v; σ 2).
We note the dependence on the discard window v while the
noise standard deviation σ , including lossy channel, imperfect
GKP qubits and lossy detectors is then given by

σ =
√
1 − ηdet exp ( − L/(2L0))

ηdet exp ( − L/(2L0))
+ 2σ 2

GKP. (D5)

APPENDIX E: GKP BELL STATE MEASUREMENT

In our repeater architecture three types of BSM occur. The
first one is the GKP BSM, which occurs either during TEC
on the GKP qubits or during GKP entanglement swapping on
the outer leaves. We already know from [21,79] that such a
BSM can be implemented using a beamsplitter followed by
a homodyne measurement of one mode in the q quadrature
and the other in the p quadrature. Finally the outcomes need
to be rescaled by

√
2 to compensate for the rescaling due

to the beamsplitter. This procedure effectively corresponds
to measuring q1 + q2 on one of the modes and p1 − p2 on
the other. The logical GKP outcomes are read by establishing
whether the measured value is closer to an even (logical zero)
or odd (logical one) multiple of

√
π .

The second BSM is a logical BSM on the Steane code level
used for entanglement swapping on the inner leaves. Since the
Steane code admits transversal CNOT gates, this BSM amounts
to seven parallel CNOT gates followed by measurement of
seven modes in the q quadrature and the other seven modes
in the p quadrature. Again, we can then use the argument
from [21] to implement each of these seven blocks using a
beamsplitter followed by a homodyne measurement of one
output mode in the q quadrature, the other in the p quadrature
and then rescaling the outcomes by

√
2 as before.

The final BSM is again on the GKP level, but it is a graph
state BSM, which is rotated relative to the standard BSM. As
already discussed it corresponds to a CZ gate followed by the
measurement of both qubits in the X basis. This procedure
can also be decomposed into a purely optical implementation
using again the result of [21] that

(Mp ⊗ Mq) ◦ CNOT =
√
2(Mq ⊗ Mp) ◦ BS (E1)

where BS denotes the 50-50 beamsplitter. Specifically, we can
then show that for the GKP encoding

(MX ⊗ MX ) ◦ CZ = (MX ⊗ MX ) ◦ (I ⊗ H ) CNOT (I ⊗ H )†

= (MX ⊗ MZ ) ◦ CNOT (I ⊗ H )†

= (Mp ⊗ Mq) ◦ CNOT ◦ (I ⊗ H )†

=
√
2(Mq ⊗ Mp) ◦ BS ◦ (I ⊗ H )†. (E2)
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FIG. 28. Optical circuit for TEC showing how the noise due to finitely squeezed GKP ancillas and due to lossy detectors can be moved
into the communication channel.

Hence we see that this measurement can be implemented in
the same way as the standard BSM using a beamsplitter and
two homodyne measurements with an initial extra Hadamard
transformation on qubit 2.

To see the effect of this measurement note that

H p̂H† = −q̂,

Hq̂H† = p̂,

H† p̂H = q̂,

H†q̂H = −p̂. (E3)

Hence H† on mode 2 followed by the the CNOT leads to the
following transformation:⎛
⎜⎜⎜⎝

q̂1

p̂1
q̂2
p̂2

⎞
⎟⎟⎟⎠ → (I ⊗ H†) →

⎛
⎜⎜⎜⎝

q̂1
p̂1

−p̂2

q̂2

⎞
⎟⎟⎟⎠ → CNOT →

⎛
⎜⎜⎜⎝

q̂1
p̂1 − q̂2
q̂1 − p̂2

q̂2

⎞
⎟⎟⎟⎠.

(E4)

Finally, the two homodyne measurements read off p̂1 − q̂2

on the first mode and q̂1 − p̂2 on the second mode.

APPENDIX F: MODELLING NOISY GKP
BELL MEASUREMENTS

Now that we have established how to perform different
types of BSMs using only beamsplitters and homodyne de-
tectors, we shall now discuss how we can model the effect
of noisy BSMs on our encoded qubits. While the main type
of noise arising in the context of quantum communication is
photon loss in the fiber, here we consider additional two im-
perfections, namely imperfect finitely squeezed GKP ancillas
and lossy detectors.

1. Teleportation-based error correction (TEC)

Let us start by considering the teleportation-based GKP
error correction [21,79]. We start by noting that under the
twirled-GKP model, the ancilla GKP states can be modelled
as initially perfect and then subjected to a Gaussian random
displacement channel with standard deviation σGKP. The ef-
fect of lossy detectors on the other hand can be modelled by
lossy channel before perfect detection, where we try to com-
pensate for the loss by rescaling the measurement outcomes
by the inverse of the square root of the detector efficiency ηd

as shown in Fig. 28(a).
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As shown in Fig. 28(b) the two Gaussian random displace-
ment channels can be commuted through the beamsplitter.
Moreover, rescaling the measurement outcomes to compen-
sate for detector losses is equivalent to actually assuming that
before perfect detection we apply single-mode squeezing by√

ηd , where the quadrature to be measured is the antisqueezed
one [21]. Specifically, we define here the action of squeezing
operator Ŝ(λ) as

Ŝ(λ)q̂Ŝ†(λ) = λq̂,

Ŝ(λ)p̂Ŝ†(λ) = 1

λ
p̂. (F1)

A lossy channel followed by the corresponding antisqueez-
ing of a quadrature to be measured immediately after, is
equivalent to a Gaussian random displacement channel with

σ =
√

1−ηd

2ηd
as shown in Fig. 28(c). This shows that by rescal-

ing the measurement outcome rather than supplementing
the lossy channel by phase insensitive amplification we can
roughly decrease the variance by a factor of 2. This is because
we only have the contribution of Gaussian noise from the
lossy channel, while the rescaling, equivalent to a single-mode
squeezing, does not introduce extra Gaussian noise in contrast
to amplification. We note that rescaling actually amplifies the
Gaussian noise contributed by loss, which is why the above
expression for σ has a factor ηd in the denominator.

It is also worth noting that in principle one could aim to
completely remove the effect of lossy homodyne detection by
using a strong squeezer/phase sensitive amplification before
the homodyne detection as demonstrated experimentally in
[65,66]. The action of such a squeezer can be decomposed into
two effects. Firstly, it would again convert the action of the
subsequent lossy channel into a Gaussian random displace-

ment, now with standard deviation σ =
√

1−ηd

2 . Secondly, if
the squeezing/antisqueezing factor λ is larger than

√
ηd , then

this process would also transform the square GKP lattice into
a rectangular lattice, hence increasing the lattice size along the
measured direction. This would provide a further robustness
against the effective Gaussian random displacement noise
added by the detector and in the limit of large squeezing
could completely mitigate the effect of that noise. This is
because with a larger lattice the probability of that random
displacement leading to a logical error after measurement
can be made completely negligible. However, the feasibility
of this strategy in the limit where our homodyne detection
already has 99% efficiency is unclear, given that such phase-
sensitive amplification could actually also add non-negligible
amount of noise in this regime. Therefore we only consider
the rescaling strategy. Moreover, we note that with regard to
squeezing, in our scheme we make use only of processes that
require easier off-line squeezing. Specifically the two-mode
CZ gate can be implemented using ancillary squeezed vacuum
modes.

The two Gaussian random displacement channels just
before the detectors can then be commuted through the beam-
splitter as shown in Fig. 28(d). The two Gaussian random
displacement channels on the middle mode can be combined
into one channel. Moreover, the beamsplitter followed by the
two homodyne measurements is equivalent to a displacement

on the top mode followed by the beamsplitter and the projec-
tion on squeezed vacuum q = 0 on the top mode and p = 0
on the middle mode as shown in Fig. 28(e). The beamsplitter
followed by the projections on the two vacuums corresponds
to a projection onto a two-mode squeezed vacuum, i.e., a CV
EPR pair. Such a CV EPR pair exhibits the same feature as its
DV counterpart, i.e., U ⊗ I|
〉 = I ⊗ U T |
〉. Note that the
transpose map of a Gaussian random displacement channel
is ET = E and so we can simply bounce the noise from the
middle mode to the top one. Then we can commute it through
the displacement operator and combine with the other noise on
the top mode as shown in Fig. 28(f). Hence we obtain a perfect
GKP error correction, which is preceded by the Gaussian
random displacement channel with σ 2 = σ 2

GKP + 1−ηd

ηd
and

followed by another such channel with σ = σGKP as shown
in Fig. 28(g). Now, let η be the transmissivity of the fiber
between two consecutive GKP corrections. Hence, if we trans-
form this fiber loss into Gaussian random displacement using
preamplification, then the total Gaussian random displace-
ment channel between two consecutive TECs, as occurring on
the inner GKP qubits while being stored inside the repeater,
has σ 2 = 1 − η + 2σ 2

GKP + 1−ηd

ηd
.

Finally, let us describe briefly how the measurement out-
comes q0 and p0 are processed to obtain the GKP logical
BSM outcomes. The two classical bits corresponding to the
ZZ and XX parity can be obtained according to the following
rule:

S(q0) =
{
0, for |R2

√
π (q0)| <

√
π/2,

1, for |R2
√

π (q0)| �
√

π/2.
(F2)

for the bit corresponding to the ZZ parity and similarly for the
S(p0) denoting the bit describing the XX parity. Moreover, the
two GKP stabilizer values, which we store for [[7,1,3]]-code
correction (inner leaves) correspond to R√

π (q0) and R√
π (p0)

respectively.

2. CC amplification

The second BSM process that we want to consider is the
CC amplification with lossy detectors [21]. In this case each
mode is affected before the beamsplitter by the lossy channel
of transmissivity η modelling the fiber and by a lossy channel
with transmissivity ηd after the beamsplitter, which models
lossy detectors. Now the measurement outcomes are rescaled
by 1/

√
ηηd . By a similar argument all the lossy channels

followed by the rescaling of the measurement outcomes can
be mapped onto a Gaussian random displacement channel on
one mode with σ 2 = 1−ηηd

ηηd
, no noise on the other mode and

BSM with loss-less detectors as shown in Fig. 29. The rules
for extracting the two classical BSM outcomes and the GKP
stabilizer values are the same as for the TEC.

APPENDIX G: RESOURCE STATE GENERATION

In this Appendix, we describe the entangled resource state
and its generation. The resource state is a maximally entan-
gled state (1/

√
2)(|00〉 + |11〉) between a concatenated-coded

[[7,1,3]]-GKP logical qubit and a physical GKP qubit. That
is, for qubits numbered 1−8, with the first seven qubits in the
Steane code and the eighth qubit as the physical qubit, the
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FIG. 29. Optical circuit for the CC amplification showing how the noise due to lossy detectors can be moved into the communication
channel.

generators of the stabilizer group associated with the resource
state are given by

S1 = X1X3X5X7 S5 = Z1Z3Z5Z7,

S2 = X2X3X6X7 S6 = Z2Z3Z6Z7,

S3 = X4X5X6X7 S7 = Z4Z5Z6Z7,

S4 = X1X2X3X8 S8 = Z1Z2Z3Z8,

(G1)

where the generators S4 and S8 are the stabilizers of the Bell
state, while the others are of the [[7,1,3]]-Steane code. The
resource state is local-Clifford equivalent to the graph state
[68] associated with a cube topology as shown in Fig. 30. To
see this, consider the stabilizer generators of the graph state,

8 3

2 5

1 6

7 4

FIG. 30. Resource state used in the proposed repeater scheme is
a Bell state between a bare physical GKP qubit and a [[7,1,3]]-logical
qubit comprised of seven physical GKP qubits. Up to Hadamard
gates on four out of the eight qubits it corresponds to the depicted
cube graph state.

namely,

G1 = X1Z6Z7Z8 G5 = X5Z2Z3Z4,

G2 = X2Z5Z7Z8 G6 = X6Z1Z3Z4,

G3 = X3Z5Z6Z8 G7 = X7Z1Z2Z4,

G4 = X4Z5Z6Z7 G8 = X8Z1Z2Z3.

(G2)

When qubits 1−4 are rotated by a Hadamard, the above stabi-
lizer generators transform as

G1 → G′
1 = Z1Z6Z7Z8 G5 → G′

5 = X2X3X4X5,

G2 → G′
2 = Z2Z5Z7Z8 G6 → G′

6 = X1X3X4X6,

G3 → G′
3 = Z3Z5Z6Z8 G7 → G′

7 = X1X2X4X7,

G4 → G′
4 = Z4Z5Z6Z7 G8 → G′

8 = X1X2X3X8,

(G3)

which can easily be seen to be equivalent to products of the
generators of the stabilizer group of the resource state. For
example, G′

1 = S6S8, G′
2 = S5S8, G′

3 = S5S6S8, G′
4 = S7.

The procedure we use to generate the resource state is
depicted in Fig. 2. It involves a suite of operations acting on
finitely squeezed GKP qubits prepared in the qunaught and
|+〉 states that include the CZ gate, GKP fusion operation,
postselected homodyne measurements, and rotations in phase
space (Hadamard gate), which all have been discussed before
in this manuscript. We characterize the quality of the resource
states in terms of the GKP squeezing variance and the logical
error probabilities on the individual GKP qubits that constitute
the resource state. The latter arise from the homodyne detec-
tions that are performed as part of the fusion operations and
depend on both the GKP squeezing as well as the homodyne
detection inefficiency.

The squeezing variances of the GKP qubits involved in
the generation procedure in Fig. 2 at different stages of the
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procedure are indicated by the color/shade of filling of the
qubits. The qubits that finally constitute the resource state
have their squeezing variances given by (σ 2

GKP, 2σ
2
GKP). This

is because these qubits underwent a CZ gate (that transforms
the gray/lighter shade filled qubit to the red/darker shade
fill qubit), and in the case of the purple qubits, additionally,
Hadamard gates that cause the q and p variances to be inter-
changed. These so-called native shifts will later add up with
the shifts due to transmission through lossy fiber and lead to
potential logical GKP errors after subsequent GKP EC.

The logical error probabilities associated with the resource
state GKP qubits reflect the errors propagated and accrued
from the measurements involved in the fusion operations in
the resource state preparation procedure. Below, we describe
the probabilities of X and Z errors on the red qubits of the
resource state, which also correspond to probabilities of Z and
X errors, respectively, for the purple qubits.

The fusion operation in step c involves two red qubits, i.e.,
both with GKP squeezing variance of (σ 2

GKP, 2σ
2
GKP) (denoted

as fusion 1 in the main text). The homodyne measurements
as part of the fusion, which are measurements of p̂1 − q̂2

and q̂1 − p̂2 are characterized by noise with variance 3σ 2
GKP +

1+ηd

ηd
each. Since these are X measurements of the two par-

ticipating qubits, they introduce Z errors in the immediate
neighborhood of the qubits. To be precise, the measurement
of the node qubit of the one three-tree graph state produces a
Z error on the node qubit (red) of the other three-tree graph
state (as derived in Appendix A), which make up one of the
qubits in the final resource state, with probability given by

PFusion,c
Z = EPS

(
v; 3σ 2

GKP + 1 + ηd

ηd

)
. (G4)

Likewise, the measurement of the leaf qubit of the second
three-tree graph state produces correlated Z errors on the
two-leaf qubits of the first three-tree graph state, also with
probability given by

P′Fusion,c
Z = EPS

(
v; 3σ 2

GKP + 1 + ηd

ηd

)
. (G5)

The fusion operation in step d involves fusion between two
red qubits (fusion-1), and thus introduces Z-type errors on

their immediate neighboring qubits with probability given by

PFusion,d
Z = EPS

(
v; 3σ 2

GKP + 1 + ηd

ηd

)
. (G6)

These are the node qubits of the participating four-tree graph
states, which eventually end up in the resource state. On the
other hand, the fusion operation in step d’ involves one red
and one gray qubits (fusion-2), and thus introduces Z-type
errors on their immediate neighboring qubits, i.e., on the node
qubits of the participating four-tree clusters, which similarly
to step d eventually end up in the resource state. The prob-
ability of these errors occurring, however, are not the same
on the two qubits, but instead one of them has a probability
given by PFusion,d′

Z = EPS(v; 3σ 2
GKP + 1+ηd

ηd
), and the other by

P′Fusion,d′
Z = EPS(0.7v; 2σ 2

GKP + 1+ηd

ηd
). The fusion operations

in steps e and f similarly result in Z-type errors on the re-
source state qubits with similar probabilities associated with
either noise variance 3σ 2

GKP + 1+ηd

ηd
or 2σ 2

GKP + 1+ηd

ηd
. For the

numbering of the resource state qubits in Fig. 30, we tabulate
in Table III the maximum number of possible uncorrelated
logical Z-type errors on the individual qubits before the final
Hadamard gates (i.e., for the red qubits) along with the associ-
ated probabilities of each error occurring that may arise from
all the fusion operations in steps c through f. Additionally,
recall that the fusion operation in step c gave rise to correlated
Z errors between a red and a gray-leaf qubits. These errors
propagate through subsequent fusion operations and settle as
possible correlated errors between the resource state qubits,
see Fig. 31. We tabulate these additional propagated Z errors
on the resource state qubits (red qubits before the action of the
final Hadamards) in Table IV.

APPENDIX H: ERROR CHANNEL
FOR THE OUTER LEAVES

In this section we discuss all the noise processes that lead
to errors when creating outer links. The noisy processes af-
fecting the GKP qubits sent from the left and right to meet
in the middle heralding station are marked in Fig. 32. Again
using the properties of the GKP optical BSM, which can be
decomposed into a displacement on one mode followed by a
projection on a two-mode squeezed vacuum, we can bounce

TABLE III. Possible independent Z errors arising from fusion steps c through f on the resource state qubits at the end of step f (before the
final Hadamard gates) of the resource state generation procedure of Fig. 2. For the two possible error probabilities, the table shows the steps
that may contribute to the corresponding error, and maximum total count of each type of error.

Z-type errors with PPS(v; 3σ 2
GKP + 1+ηd

ηd
) Z-type errors with PPS(0.7v; 2σ 2

GKP + 1+ηd
ηd

)

Qubit number Contributing steps Max. total count Contributing steps Max. total count

1 c,d’ 2 e,f 2
2 c,d 2 e,f 2
3 c,d,e 3 f 1
4 c 1 d’,e,f 3
5 c,d’ 2 e,f 2
6 c,d 2 e,f 2
7 c,d,e 3 f 1
8 c 1 d’,e,f 3
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FIG. 31. (Left) Fusion step c of the resource state generate procedure described in Fig. 2 and the origin of possible correlated Z-type errors
on the leaf qubits of the lower three-tree graph state. The pairs of similar pattern fillings (between a red and a gray qubit) indicate correlated
Z-type errors. Absence of tiling indicates absence of errors from step c. (Right) The correlated Z-type errors from step c may then propagate
to the resource state qubits via the subsequent fusion operations that are pictured here.

all the noise processes from the right GKP qubit onto the
left. This enables us to see the whole process as having a
perfect GKP qubit from the left, which then undergoes all
the noise processes corresponding to noisy state preparation,
noisy transmission and noisy BSM followed by a perfect BSM
with a perfect GKP qubit from the right as also shown in
Fig. 32.

Now we will describe in detail all the noise channels con-
tained in the overall noise process N . These noise processes
can be divided into two categories. The first one consists of
the error processes for which we collect analog information
during error correction. This analog information is then used
for ranking the outer links. The second error processes are
those for which we use postselection during error correction.

FIG. 32. Description of the error processes affecting the outer leaves. (a) Outer leaves are affected by possible errors during the preparation
of the cube resource state. The noisy outer leaves are then sent through lossy fibers towards a BSM station, which performs a GKP encoded
BSM using lossy homodyne detection modules. As described and depicted in Fig. 28 all the noise channels can be bounced through the
BSM onto one qubit, so that effectively we can model the entire process as perfect with a single noise channel affecting the left qubit.
(b) Decomposition of the noise channel affecting the left outer-leaf qubit. The orange and green boxes describe noise channels, which involve
GKP stabilizer measurement and GKP error correction. This stabilizer GKP analog information is used in orange channels for postselection.
The analog information from green channels is used for the ranking of the outer links. The Gaussian channel N nat

b can be combined with the
Gaussian channel inNcom followed by GKP EC to obtain a single GKP logical Pauli channel.
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TABLE IV. Possible correlated Z errors in the resource state at
the end of step f of the resource state generation procedure of Fig. 2
arising and propagated from step c. The table shows the possible
qubit pairs (numbered as in Fig. 30) that could carry these correlated
errors and their maximum counts, where each correlated error occurs
with probability P′Fusion,c

Z of Eq. (G5).

Max. total count
Correlated Z errors (on each pair)

(1,2); (5,6) 2
(1,3); (2,3); (5,7); (6,7) 1

For these processes we do not store the analog information if
the postselection is passed. This means that we do not store
any information about the likelihood of a possible logical
error, that can arise even if the postselection is passed, for
the later ranking of the links. All these error channels are
described in Table V and represented graphically in Fig. 32.

We start with errors arising during the preparation of the
“cube state” resource, as discussed in Appendix G and affect-
ing the outer-leaf qubit. Here we follow the labelling of the
specific operations using the steps marked in Fig. 2 and the
outer-leaf qubit is the qubit located in the position marked as
“8” in Fig. 30. Firstly, after the CZ gate in step b our root qubit
also ends up with a native error. In our case of combining the
errors from both the left and right qubit onto the left qubit, the
native error in p quadrature corresponds to a Gaussian channel
with σ 2

n = 4σ 2
GKP while in q quadrature it corresponds to a

Gaussian channel with σ 2
n = 2σ 2

GKP.
Then during the fusion in step c the logical error when

measuring the red root qubit will lead to the Z error on our
outer leaf. This is modeled by the channel N s

c with logical
error probability given in Eq. (G4). Again this channel appears
twice corresponding to the possible error on both the left
and the right qubit. We note that the possible logical error
when measuring the other red-leaf qubit in that step does not
propagate to the outer-leaf qubit but in step d’ propagates to
one of the inner-leaf qubits.

Then we have the possible errors in steps d’, e, and f
marked by theNd ′,e, f channel. This corresponds to the Z error
that can arise on the outer-leaf qubit if there is a Z error
during one of the three fusions of the adjacent grey qubits.

This is because a logical error during the measurement of the
grey qubit as part of one of these three fusions, specifically
the grey qubit that was not originally part of the graph with
the outer-leaf root, will cause a logical Z error on the outer-
leaf qubit as derived in Appendix A. In total this channel
Nd ′,e, f adds this error six times because of three fusions neigh-
bouring the left outer leaf and three fusions neighbouring
the right outer leaf. The logical error probability for each
of these measurements is EPS(0.7v; 2σ 2

GKP + 1+ηd

ηd
). For these

steps that involve postselection, in the simulation we simply
sample from the Bernoulli distribution and then either do
nothing or add a shift by

√
π to the p quadrature of the outer

leaf.
The final channel to consider is the Nc−c channel de-

scribing the errors due to the fiber losses in long-distance
communication when bringing the two outer leaves for swap-
ping using CC amplification. We proceed by sampling the q
and p shifts from the Gaussian distribution with σ 2

cc = 1−ηηd

ηηd
,

where η = exp(−L/2L0) with the repeater separation L. We
then add the shifts to the accumulated native error shifts.
Finally the BSM is performed between our GKP qubit from
the left that has accumulated all the noise and the perfect GKP
qubit from the right. A logical X (Z ) error happens in the form
of a flip of a BSM outcome at this stage if the accumulated
q (p) quadrature error q0 (p0) has an odd multiple of

√
π shift

relative to R√
π (q0) (R√

π (p0)).
We then proceed to rank the links according to the analog

information obtained during the last step. We note that the
analog information, i.e., the information about the likelihood
of error is always contained in the GKP stabilizer value,
i.e., the measurement outcome modulo

√
π . To evaluate the

likelihood of error we additionally need the information about
the standard deviation of the Gaussian random displacement
channel that resulted in the given syndrome. Then the error
likelihood for that syndrome measurement R√

π (q0) is [32]

p[σ ](R√
π (q0))

=
∑

n∈Z exp[−(R√
π (q0) − (2n + 1)

√
π )2/(2σ 2)]∑

n∈Z exp[−(R√
π (q0) − n

√
π )2/(2σ 2)]

. (H1)

We note that in our scheme we have two categories of chan-
nels. ChannelsN a

c andNd ′,e, f are effectively logical channels
acting on our outer leaf, i.e., these channels either do nothing

TABLE V. Error processes affecting outer leaves.

Logical error channels per outer-leaf pair

Logical
channel Description Z or X error Standard deviation σ No. of times Postselection

Analog
info for
ranking

N s
c Single-qubit error propagating

from the fusion in step c
Z σ 2

Z = 3σ 2
GKP + 1−ηd

ηd
2 Yes No

Nd ′,e, f Single-qubit errors propagating
from fusions in steps d’, e, and f

Z σ 2
Z = 2σ 2

GKP + 1−ηd
ηd

6 Yes No

Ncom ◦ N nat
b Outer-leaf BSM EC, correcting

native errors after CZ gate in
step b and the communication

channel noise

Z and X σ 2
Z = 4σ 2

GKP + 1−ηηd
ηηd

,

σ 2
X = 2σ 2

GKP + 1−ηηd
ηηd

,
where
η = exp(−L/(2L0))

1 No Yes
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TABLE VI. Error processes affecting inner leaves.

Logical error channels per each physical GKP inner-leaf qubit

Logical
channel Description

Z or
X err. Standard deviation σ No. of times Postselect.

Analog info
for [[7,1,3]]

corr.

N s
c Single-qubit error propagating

from the fusion in step c.
Z σ 2

Z = 3σ 2
GKP + 1−ηd

ηd
1 Yes No

N corr
c Correlated error between

inner-leaf qubits propagating
from the fusion in step c.

Z σ 2
Z = 3σ 2

GKP + 1−ηd
ηd

see Table IV Yes No

Nd,d ′,e, f Single-qubit errors propagating
from fusions in steps d, d’, e,

and f.

Z σ 2
Z = 3σ 2

GKP + 1−ηd
ηd

or

σ 2
Z = 2σ 2

GKP + 1−ηd
ηd

see Table III Yes No

NT EC ◦ N nat
b First GKP TEC correcting

native errors after Steane EC in
step b and the first segment of
the lossy storage channel. This
channel only appears if nL > 1.

Z and
X

σ 2
Z = 3σ 2

GKP + (1 − η) + 1−ηd
ηd

,

σ 2
X = 2σ 2

GKP + (1 − η) + 1−ηd
ηd

where
η = exp(−1/(nper-km × L0))

1 No Yes

NT EC ◦ N nat
T EC Intermediate GKP TEC

correcting native errors from
the previous GKP TEC and the

subsequent lossy storage
channel. This channel only
appears if nper-kmL > 2.

Z and
X

σ 2 = 2σ 2
GKP + (1 − η) + 1−ηd

ηd
where
η = exp(−1/(nper-km × L0))

nper-kmL − 2 No Yes

NBSM ◦ N nat
T EC Final CC amplification channel

on two GKP qubits from two
different cubes that are fused
together correcting native

errors from the previous GKP
TEC and the subsequent lossy
storage channel. The variance
given here is the total joint
channel simulating noise for
both inner-leaf qubits involved
in the BSM. This channel only

appears if nper-kmL > 1.

Z and
X

σ 2 = 2σ 2
GKP + 1−ηηd

ηηd
, where

η = exp(−1/(nper-km × L0))
1 (per pair of
GKP qubits
from two

different cubes)

No Yes

NBSM ◦ N nat
b CC amplification channel on

two GKP qubits from two
different cubes that are fused
together correcting native

errors after Steane EC in step b
and the subsequent lossy

storage channel. The variance
given here is the total joint
channel simulating noise for
both inner-leaf qubits involved
in the BSM. This channel only

appears if nper-kmL = 1.

Z and
X

σ 2
Z = 4σ 2

GKP + 1−ηηd
ηηd

,

σ 2
X = 2σ 2

GKP + 1−ηηd
ηηd

, where
η = exp(−1/(nper-km × L0 ))

1 (per pair of
GKP qubits
from two

different cubes)

No Yes

H Hadamard acting on qubits 1–4 in Fig. 33 transfers all the Z errors from channelsN s
c , N corr

c , Nd,d ′,e, f onto X errors on these
GKP qubits. Moreover, the channels described above involving N nat

b have their errors exchanged between X and Z on these
qubits.

or add a
√

π shift. Hence the final stabilizer measurement
occurring as part of the final BSM does not carry any addi-
tional information about the likelihood of errors during those
channels. The second category are channelsN native

b andNc−c,
which introduce Gaussian displacement errors. Hence the syn-
drome obtained during the final BSM can provide us with

information about a logical error arising as a consequence
of an overall shift occurring after the convolution of these
two channels. This means that for the evaluation of the error
likelihood for that final syndrome R√

π (q0) (R√
π (p0)) we will

use σ 2 = σ 2
n + σ 2

cc, where as we have seen σn is different for
the q and p quadrature.
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FIG. 33. Description of error processes affecting inner leaves. (a) The imperfect preparation of the inner leaves is followed by their local
storage in the lossy fiber with intermediate GKP TEC to overcome storage losses. Finally a concatenated-coded error-protected BSM is
performed on the two concatenated-coded qubits. This can be modelled as having perfect inner-leaf qubits passing through noisy channels
N followed by the noisy BSM. (b) Decomposition of N into individual error channels. The orange and green boxes describe noise channel,
which involve GKP stabilizer measurement and GKP error correction. This stabilizer GKP analog information is used in orange channels for
postselection. The analog information from green channels is used for boosting the performance of the [[7,1,3]]-code decoding after the BSM.
The blue channels denote additional Hadamard operations on qubits 1–4, which swap the noise and errors between the q and p quadratures
on these qubits. Since in the presented model we assume that a perfectly prepared concatenated-coded inner leaves are sent through noisy
channels N we need to apply the Hadamards twice as part of the noisy channel. Firstly we apply H† to undo the Hadamards from the perfect
state preparation, then we apply the noise and then restore the Hadamards again.

Having the error likelihood in both quadratures at hand we
can rank all the k links according to the likelihood that the
final BSM correctly reads the values in both quadratures, as
given in Eq. (19) and described in Sec. V.

APPENDIX I: ERROR CHANNEL
FOR THE INNER LEAVES

Here we describe the evolution, noise process, error cor-
rection, and entanglement swapping on the inner-leaf qubits.
The logical inner-leaf qubits are encoded in the [[7,1,3]] code
consisting of seven GKP qubits. These qubits are stored inside
the repeater. After the outer leaves have been connected and
the outer links have been ranked according to the expected
error likelihood, the ranking information determines which
inner-leaf logical qubits to connect with each other. We have
already discussed how the BSM for the concatenated GKP +

[[7,1,3]]-code qubits is performed. Here we will focus on the
error analysis.

In the preparation of the cube, the first seven out of eight
GKP qubits in Fig. 30 form the inner-leaf qubit. The uncorre-
lated logical errors that can arise on each of these inner-leaf
qubits at this stage are given in Table III (note that while
for the outer leaves we moved all the relevant errors in the
preparation of both the left and the right cube onto the left
outer-leaf qubit, for the inner leaves we separately simulate
every qubit). The native shift errors on the inner-leaf qubits
are the same as for the outer-leaf qubit, namely they have vari-
ances (σ 2

GKP, 2σ
2
GKP) in the q and p quadrature respectively.

Moreover, one extra error possibility relates to the correlated
errors arising in step c when the logical error on the measured
red-leaf qubit of the top three-tree would propagate as the
correlated error on the grey and red-leaf qubits of the bottom
three-tree. These correlated errors further propagate to the
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qubits forming the cube in steps d, d’, e, and f as described
in Appendix G. As described in Table IV, six out of the seven
qubits forming the encoded inner-leaf qubit are susceptible to
the correlated errors. As these errors result from the BSM in
step c we consider postselection here and do not store analog
information. Hence in our simulation we sample from the
Bernoulli distribution with the error probability variable given
in Eq. (G5).

After the cube preparation, we first apply a Hadamard on
qubits 1–4 to transform the cube to the desired Bell pair
between the physical GKP qubit and the concatenated GKP
+ [[7,1,3]] qubit. These Hadamards exchange the native shift
errors on these qubits and transfer the Z logical errors onto X
logical errors on these qubits. Then we store the seven GKP
qubits in a fiber loop until the ranking information from the
outer leaves arrives. In the meantime, to counteract loss errors
we periodically implement GKP TEC and store the corre-
sponding generated analog information. To overcome channel
losses through this TEC we consider the standard pream-
plification strategy. Hence the effective noise corresponds to
a Gaussian random displacement channel with σ 2 = 1 − η,
where η = exp(− L

nL0
) = exp(− 1

nper-kmL0
). Here L is the re-

peater separation and the total number of GKP corrections on
a given GKP qubit during its storage is given by n = nper-kmL
(including the final classical GKP correction during the BSM)
with nper-km being the number of GKP corrections during stor-
age per km of fiber. As discussed in Appendix F the TEC can
be modeled as ideal GKP correction with additional Gaussian
random displacement channels, one with σ 2 = σ 2

GKP + 1−ηd

ηd

preceding the correction and one with σ 2 = σ 2
GKP after the

correction. The final channel directly preceding the logical
BSM does not involve a preamplfication but rather the CC
amplification, i.e., each of the GKP qubits passes through a
Gaussian random displacement channel with σ 2 = 1−ηηd

2ηηd
. We

list all the error channels in Table VI and graphically illustrate
them in Fig. 33.

The final logical BSM implements both GKP and [[7,1,3]]-
code correction. After the 14 homodyne measurement out-
comes from the seven GKP Bell measurements are decoded
into binary outcomes, the [[7,1,3]]-code correction is imple-
mented for both X and Z errors. For each of these, the classical
parity check matrix corresponding to the 3 X (Z) stabilizers is

H =

⎛
⎜⎝0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎟⎠ (I1)

and it is applied to the string of seven outcome bits. We
interpret the obtained syndrome using the analog information.
In this way we can correct not only single but also most
of the two-qubit errors and increase the reliability of our
encoded BSM [22]. Since the stabilizers in X and Z for the
[[7,1,3]] code are the same, the procedure is the same for
both quadratures. For each quadrature each error syndrome
is consistent with one single-qubit error and three two-qubit
errors. The analog information allows us to infer which one
of these four cases is most likely. Specifically we evaluate the
error likelihood for each case by finding the likelihood that the
expected erroneous qubit(s) had an error and the other qubits

did not have an error. We note that the three two-qubit error
cases are equivalent to each other up to the stabilizers, but
due to numerical precision and simulation efficiency issues
we find that treating them separately leads to a better perfor-
mance. Note that in total we have 14 GKP qubits involved in
this measurement but for each quadrature we have only seven
bits of classical outcomes. This is because in our BSM we
only care about the reliability of the final outcome, hence we
want to identify which of the qubit pairs had an error. Within
a pair of GKP qubits that was transversally connected through
a BSM, we do not care whether the error that led to the X (Z)
flip of the outcome occurred on the left or the right qubit. We
need to only identify on which pair(s) the error happened to
identify which of the seven bits are erroneous. Therefore for
each pair j ∈ {1, . . . , 7} we evaluate the likelihood of error as

Pj = 1 − �m
i

(
1 − 2pj

i

)
2

, (I2)

where pj
i corresponds to a likelihood of GKP error at GKP

correction i on one of the two qubits belonging to pair j. Here
index i runs over all the corrections in the q (p) quadrature
that contributed analog information over both the left and right
qubits of the specific pair. Then the total likelihood of each of
the four error patterns consistent with the error syndrome is
just the product of Pj’s for j’s corresponding to the erroneous
qubits and 1 − Pj for j’s, which in the given pattern do not
have an error. Then we pick the error pattern with the largest
likelihood and flip the corresponding classical bit(s) in the 7-
bit measurement outcome in that quadrature. After that we
read off the logical measurement outcome by xor-ing all the
seven bits as for the [[7,1,3]] code the logical X (Z) operator
has the form XXXXXXX (ZZZZZZZ).

We note that, as described in Sec. VI, in the final CC
amplification we measure both the GKP and the [[7,1,3]]-
code stabilizers destructively and the correction is done on
the classical data. This means that the only type of error
that can happen after the correction is a logical error on the
second level, which effectively corresponds to a flip of the
measurement outcome. This in turn will correspond to an X
(Z) error on the qubit teleported through our entanglement
swapping on the inner leaves. Hence in the simulation we can

0 500 1000 1500
10-10
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100

FIG. 34. Probabilities of at least one of �sX and �sZ sequences
being outside of the typical set as a function of total distance Ltot

for different typical sequences parameterized by z. The curves stop
at the value of Ltot at which the corresponding rate R drops to zero.
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FIG. 35. Rate R as a function of total distance Ltot for different
typical sequences parameterized by z. Additionally we also re-plot
the rate that includes all the sequences and the PLOB bound. We
note that the sudden break of the dashed curves is due to a rapid drop
of the corresponding rate to zero, which is so quick that it cannot be
captured by the resolution of our data.

verify whether the BSM was performed reliably or resulted in
a logical X or Z error.

APPENDIX J: INNER-LEAF INFORMATION
IN TERMS OF TYPICAL SEQUENCES

In this Appendix we provide additional insights into how
the inner-leaf information enables for maintaining positive
rate for much larger distances. A good way of explaining
this phenomenon is using typical sequences. The specific se-
quences we are referring to here are the sequences of bits in
�sX and �sZ , since the inner-leaf information allows us to extract
the secret key (entanglement) separately from the bins with
different values of |�sX | and |�sZ |.

For any ε > 0, the typical sequences x1, x2, . . . , xn drawn
from an i.i.d. distribution X are defined as those sequences
whose probability p(x1, x2, . . . , xn) satisfies:

2−n(H (X )+ε) � p(x1, x2, . . . , xn) � 2−n(H (X )−ε), (J1)

where H (X ) is the Shannon entropy of the distribution X .
The probability of a randomly drawn sequence belonging to
this set approaches 1 as n → ∞. In our case of sequences �sX

and �sZ the underlying distribution is the Bernoulli distribu-
tion for each trial and then one can show that 2−nH (X ) = pav

where pav = t nt (1 − t )n(1−t ) is the probability of an average
sequence with nt 1s (corresponding in our case to nt repeaters
with an error syndrome and n(1 − t ) repeaters with zero-

error syndrome) for the Bernoulli distribution with parameter
t . Hence the typical sequences are the sequences centered
around the average sequences. For finite n the probability of
a randomly sampled sequence belonging to the set of typical
sequences depends on ε. For the case of Bernoulli distribution
it might be more helpful to define the sequences included in
the typical set in terms of the weights of the corresponding
bit strings rather than ε. The two are linked by a simple linear
relationship. This can be seen as follows. For ε = 0 we obtain
only the sequences with the average number of 0’s and 1’s. Let
us assume t < 0.5, which is the case for us. Then the sequence
with probability

P = 2−n(H (X )+ε) (J2)

for ε > 0 will include more 1’s than the average sequence and
occur with the smaller probability than the average sequence.
The probability of a sequence with nz more 1’s than the
average sequence is given by

P = t n(t+z)(1 − t )n(1−t−z). (J3)

Hence equating Eq. (J2) and Eq. (J3) we find that

ε = z( log2(1 − t ) − log2(t )). (J4)

Similarly, we can see that the probability of a sequence with
nz less 1’s than the average sequence is given by

P = 2−n(H (X )−ε). (J5)

This shows that for a Bernoulli distribution parameterized
by t there is a simple linear relationship between defining
the typical set in terms of sequences with specific number
of 1’s, and defining them in terms of their probabilities as
defined in Eq. (J1). Specifically, we can define the typical set
to include all the sequences whose number of 1’s is between
n(t − z) and n(t + z). This corresponds to a typical set defined
in Eq. (J1) in terms of the probabilities of the corresponding
typical sequences with ε given in Eq. (J4). Clearly we require
that z < min(t, 1 − t ).

In Fig. 34 we plot the probability of being outside the
typical set for at least one of the two-bit strings �sX and �sZ

for different values of z (the same value of z is used for both
bit-strings) for the parameters considered in Fig. 6. For these
parameters tZ = 0.0537 and tX = 0.0581. This gives us an
indication what values of z would correspond to including the
best all-zero sequence for �sX and �sZ strings.

In Fig. 35 on the other hand we plot the rate achieved when
post-selecting only the bins belonging to the corresponding
typical set and then extracting entanglement (secret key) from

FIG. 36. Achievable distances for L = 0.5 km.
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FIG. 37. Achievable distances for L = 1 km.

each of those bins separately. Additionally we also replot the
full rate that includes all the bins. On both plots we only plot
the curves for distances for which the rate is nonzero.

We find that increasing z and hence ε increases the
achievable distance. This is precisely because for every typ-
ical set defined for a fixed z there exists a distance for
which the QBER is too large for all the sequences be-
longing to that typical set. By increasing z we enlarge the
typical set to include those before atypical sequences for
which the QBER for this distance is still much smaller
hence allowing for key/entanglement extraction. Hence at
every distance at which for a given z the performance starts
rapidly dropping to zero, we can rescue it by including
those atypical sequences with smaller error. We see that in-
cluding all the sequences allows for achieving the largest
distance.

It is interesting to note that the probabilities of those atyp-
ical sequences that can rescue the rate are very small. This
can be seen from the fact that for most values of z and for the
distance at which the corresponding rate drops to zero (end
of the curves in Fig. 34), the probability of being outside of
the typical set for at least one of �sX and �sZ is generally small.
Yet the fact that for that same distance the rate can be made
positive by increasing z shows that those previously excluded
sequences, for which the probability of obtaining any of them
is very small, include bins, which can generate nonzero rate
at these distances. In fact we see that the ends of the curves
in Fig. 34 could be connected by a curve that would be close
to a straight line. This also shows that the probability of being
outside of the typical set for at least one of �sX and �sZ for the
largest value of z for which the typical set cannot generate any
key/entanglement for some distance Ltot, decays exponentially
with that distance as well.

Here we also explain in more detail why for large repeater
separation of L = 5 km with very good parameters the achiev-

able distance with respect to the PLOB bound is almost the
same as the one with respect to the threshold of 10−6. This is
because of the following feature of the inner-leaf information.
Firstly we note that for the best, most highly ranked links,
the error rate for the single elementary link corresponding to
s = 0 (Steane code zero-error syndrome) is in most cases at
least one and often two or three orders of magnitude smaller
than the corresponding error for the s = 1 case. Therefore the
smallest nonzero key that we can expect to obtain will corre-
spond to the largest distance for which we can still extract key
from the �s = 0̄ sequence for both X and Z (we note that here
we cut off if that will lead to rate below 10−30). If the repeaters
are placed more densely, these bit strings grow faster with
distance, e.g., in Fig. 7 we see that for ηd = 0.99 and σGKP =
0.15 the optimal repeater separation is L = 0.5 km. For that
configuration tZ ≈ 0.026 and tX = 0.031. This means that at
the achievable distance with respect to PLOB of 7450 km
the probability of having �s = 0̄ sequence for both Z and X is
(1 − tZ )2×7450×(1 − tX )2×7450. This is a completely negligible
number and since at that distance our rate is still above 10−30,
we see that other bit strings still contribute at this distance.
This shows us that the distance at which only the �s = 0̄ bit
string will contribute to the rate is much larger than 7450 km
and the probability of that bit string there will be even smaller
than at 7450 km. Hence, we see that the reason that for this
configuration the rate decays so gradually leading to a signif-
icant distance range over which the rate is below 10−6 and
above PLOB and 10−30 is that the probabilities of individual
bins/sequences can be very small but from many of these bins
one can still extract significant amount of key/entanglement.
Hence we conjecture that the slow decay of the overall rate
is dictated by the decay of the probabilities of being in the
specific bins.

For the case of large repeater separation L = 5 and ηd =
0.99 and σGKP = 0.12 on the other hand, the rate drops from

FIG. 38. Achievable distances for L = 2 km.
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FIG. 39. Achievable distances for L = 2.5 km.

around 10−6 at the distance of 2300 km to 10−10 at 2350 km
and then immediately to zero afterwards. This is because the
values of t is slightly lower in this case, they are tZ ≈ 0.023
and tX ≈ 0.024 but more importantly because the repeaters are
now ten times further away. Hence at the achievable distances
of 2300–2350 km the probability of having �s = 0̄ sequence for
both Z and X is (1 − tZ )2300/5×(1 − tX )2300/5 ≈ 10−10. Since
the secret fraction decays fast, for a distance of 2400 km
it is already zero for that bin. Hence the fact that for these
parameters the probabilities of the individual sequences are
much higher means that there is no finer graining possible
and the rate decays very fast leaving little or no gap between
the achievable distance defined with respect to the rate being
above 10−6 and 10−30 with beating PLOB.

APPENDIX K: ALL ACHIEVABLE DISTANCES

In this Appendix we provide the tables with achievable
distances for all the considered configurations. The results are
shown in Figs. 36–40.

APPENDIX L: SIMULATION ACCURACY

In this Appendix we describe how we quantify the accu-
racy of our Monte Carlo simulations. We specify the desired
accuracy and run the simulation until that accuracy is reached.
Specifically, we start with 10 simulation runs. After that we
estimate the standard error on the obtained quantities. If that
error estimate satisfies the desired accuracy, we output the
results. Otherwise we rerun the simulation with 10 times more
runs and again estimate the standard error on the obtained
data. We repeat this procedure until we have simulated so
many runs that the desired level of accuracy has been reached.

We estimate the standard error on all 2k Z and X -flip prob-
abilities [after combining the inner-leaf QX/Z,inner(s = 0, 1)
and outer-leaf QX/Z,outer( j = {1, . . . , k}) flip probabilities

using Eq. (21)] over the single link (k values for k multiplexed
ranked links and then for each ranked link we have two values
corresponding to the case with s = 0 and s = 1 for the inner-
leaf information). We also estimate the standard error on the
probability of the inner-leaf error syndrome tX and tZ . Clearly
all the variables are Bernoulli variables so the standard error
estimate is given by

�Q̃X/Z (s, j) =
√

Q̃X/Z (s, j)(1 − Q̃X/Z (s, j))
NX/Z (s)

,

�t̃X/Z =
√

t̃X/Z (1 − t̃X/Z )

Ntot
, (L1)

where tilde indicates that we are dealing with estimates based
on currently available simulation output and N is the number
of simulation runs. We also note that the number of simulation
runs for the error estimate when s = 0 and when s = 1 is not
fixed but rather depends on the value of t̃X/Z . Specifically,
when setting a number of total simulation runs, it is only
Ntot that we set. The values of NX/Z (s) depend on Ntot as
follows:

NX/Z (s = 0) = Ntot(1 − t̃X/Z ),

NX/Z (s = 1) = Ntott̃X/Z . (L2)

Clearly, since we expect t̃X/Z to be small, we will have much
less data points for the s = 1 case than the s = 0 case when
fixing Ntot. However, the actual value of the error will be
much larger for the s = 1 than the s = 0 case so much less
simulation runs will be sufficient for the first than for the
second case in order to achieve the same relative accuracy.

After calculating these estimates we calculate the relative
error estimates �Q̃X/Z (s, j)/Q̃X/Z (s, j) and �t̃X/Z/t̃X/Z . We
can then check whether �Q̃X/Z (s, j)/Q̃X/Z (s, j) < b(s, j)X/Z

and �t̃X/Z/t̃X/Z < hX/Z are satisfied for preset thresholds

FIG. 40. Achievable distances for L = 5 km.
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b(s, j)X/Z and hX/Z . If at least one of the above 2k + 1 inequal-
ities is not satisfied we increase Ntot by a factor of 10 and rerun
the simulation.

We note that for all but one of our simulations we set the
accuracy thresholds as b(s, j)X/Z = 0.1 for all s and j and

hX/Z = 0.001. The specific simulation with better accuracy
was run for the data shown in Fig. 5, where the data obtained
for the ranking strategy has been simulated with accuracy
given by b( j)X/Z = 0.05 for all j leading to the error bars
shown on the plot.
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