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Abstract

The variability of quasar light curves can be used to study the structure of quasar accretion disks. For example,
continuum reverberation mapping uses delays between variability in short and long wavelength bands (short lags)
to measure the radial extent and temperature profile of the disk. Recently, a potential reverse lag, where variations
in shorter wavelength bands lag the longer wavelength bands at the much longer viscous timescale, was detected
for Fairall 9. Inspired by this detection, we derive a timescale for these long negative lags from fluctuation
propagation models and recent simulations. We use this timescale to forecast our ability to detect long lags using
the Vera Rubin Legacy Survey of Space and Time (LSST). After exploring several methods, including the
interpolated cross-correlation function, a Von-Neumann estimator, JAVELIN, and a maximum-likelihood Fourier
method, we find that our two main methods, JAVELIN and the maximum-likelihood method, can together detect
long lags of up to several hundred days in mock LSST light curves. Our methods work best on proposed LSST
cadences with long season lengths, but can also work for the current baseline LSST cadence, especially if we add
observations from other optical telescopes during seasonal gaps. We find that LSST has the potential to detect
dozens to hundreds of additional long lags. Detecting these long lags can teach us about the vertical structure of
quasar disks and how it scales with different quasar properties.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Quasars (1319); Accretion (14); Black holes

(162); High energy astrophysics (739); Reverberation mapping (2019); Disk flaring (390)

1. Introduction

Quasars are among the most luminous objects in the
Universe. As a result, they are important to a variety of fields
within astrophysics, from the study of accretion disks to galaxy
evolution (Fabian 2012; Kormendy & Ho 2013). With the
exception of the extraordinary efforts by the Event Horizon
Telescope Collaboration et al. (2019), Gravity Collaboration
et al. (2018), it is generally not possible to resolve the
microarcsecond scales of the accretion disk, broad-line region
(BLR), and event horizon. Since spatial resolution is so difficult
to achieve and quasars vary over a range of frequencies,
temporal resolution is instead often used to study the accretion
disks of quasars.

In particular, Blandford & McKee (1982) proposed a
technique known as reverberation mapping to measure
distances to the BLR, by measuring time lags (of order 100
days) between the continuum emission and broad emission
lines (see also Kaspi et al. 2000; Peterson et al. 2004; Bentz &
Katz 2015; Grier et al. 2017). A second type of reverberation
mapping, first introduced by Collier et al. (1999) and known as
disk continuum reverberation mapping, uses time lags between
variability in different wave bands to measure the radial extent
of the disk, using the lamppost model (e.g., Sergeev et al. 2005;
Cackett et al. 2007, 2018; De Rosa et al. 2015; Edelson et al.
2015, 2017, 2019; Fausnaugh et al. 2016; Jiang et al. 2017;
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Starkey et al. 2017; Homayouni et al. 2022). The lamppost
model proposes that high-frequency (X-ray or hard-UV)
emission from the corona will be reprocessed by the disk and
reemitted as UV-optical light. Because it takes light time to
travel from the inner hotter regions of the disk, where it is
reemitted in shorter wave bands, to the outer cooler regions of
the disk, where it is reemitted in longer wave bands, there will
be a time lag of an order of days between variability in short
wavelength bands and long wavelength bands. Because this lag
is on the order of days, we refer to it here as the short lag.

Using the Shakura & Sunyaev (1973) accretion disk model
of an optically thick, geometrically thin disk to determine the
temperature dependence of the disk, this time lag should scale
as T, x A3 and also depend on the mass of the supermassive
black hole (SMBH) and accretion rate (see also, Lynden-
Bell 1969; Pringle & Rees 1972; Novikov & Thorne 1973;
Friedjung 1985). However, recent observations have suggested
that the radial extent of the disk is larger than predicted by the
standard thin-disk model (Jiang et al. 2017; Cackett et al. 2018;
Mudd et al. 2018; Guo et al. 2022), although this discrepancy
may be due to nuclear extinction (Gaskell 2017; Gaskell et al.
2023) or an underestimation of SMBH masses due to unknown
BLR geometry (Pozo Nuiiez et al. 2019). Other models suggest
that AGN disks may appear more extended due to large
azimuthal temperature fluctuations (Dexter & Quataert 2012),
disk winds (Laor & Davis 2014), or magnetically elevated
accretion (Dexter & Begelman 2019), none of which are
included in the standard thin-disk model.

There is also growing evidence that the lamppost model may
be insufficient to fully explain the optical-UV variability in
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quasar light curves (e.g., Arévalo et al. 2009; Shappee et al.
2014; Edelson et al. 2019; Yu et al. 2022) Alternative sources
of optical-UV light-curve variability, which may occur on the
thermal timescale, are magnetorotational instability turbulence
(Balbus & Hawley 1991; Burke et al. 2021) and convection due
to enhanced opacity in the optical-UV region of the disk (Jiang
& Blaes 2020). As these turbulent perturbations are accreted
inwards on the viscous timescale, they can also modify the
variability of light curves in inner regions of the disk
(Lyubarskii 1997). Because these perturbations are accreted
inwards, the lag will be negative compared to the short lag. In
other words, light-curve variability from disk turbulence in
short wavelength bands will lag variability in long wavelength
bands. The viscous timescale is (Davis & Tchekhovskoy 2020)

1 (k)72
visc — - P 1
Tvise aQ(r) )

where « is the Shakura & Sunyaev (1973) stress parameter,
Q = (GM /r?)!/2 is the orbital frequency, M is the mass of the
SMBH, G is the gravitational constant, / is the scale height of
the disk, and r is the radial position in the disk.

In the standard thin-disk model, 7. can be of the order of
hundreds of years, because in the radiation-dominated region of
the disk, & is constant as a function of r, and i/r <0.01.
However, a recent simulation by Jiang & Blaes (2020) suggests
that, due to variations in the scale height of the disk, the viscous
timescale could be on the order of 100 days. Furthermore, two
recent independent works have suggested the detection of
negative lags in the nearby quasar Fairall 9 (Herndndez
Santisteban et al. 2020; Yao et al. 2023). In particular, using the
SWIFT and Las Cumbres Observatory (LCO) light curves with
a baseline of ~270 days and subdaily cadence from Hernandez
Santisteban et al. (2020); Yao et al. (2023) found a long
negative lag of ~—70 days between the W2 and z band. This
sub 100 days negative lag supports the conclusions in the
simulation in Jiang & Blaes (2020) and suggests that it may be
possible to detect long lags in many more quasars.

In this paper, we derive a new empirical model for the “long”
negative lag based on the model fit to the long lags detected for
Fairall 9 by Yao et al. (2023). We then use this model to
examine our ability to detect long lags in the future. Detecting
more long lags will help to constrain our model and provide
information on the vertical structure of disks. Additional lag
measurements would also allow us to model how the vertical
structure of disks change as a function of quasar properties such
as SMBH mass and accretion rate.

Because long lags can last tens to hundreds of days, a long
baseline of high cadence observations is necessary to detect
them. The Vera Rubin Legacy Survey of Space and Time
(LSST; Ivezi¢ et al. 2019) will carry out a comprehensive
survey of the southern sky and will contain over 100 million
quasars. LSST will provide photometric light curves in ugrizy
bands, allowing us to study the wavelength dependence of
quasar lags. Kovacevic et al. (2022), Pozo Nuiiez et al. (2023),
and others found that LSST should be able to detect short lags
in quasar light curves. Here, we generate mock LSST quasar
light curves reprocessed with several different short and long
lags. We then test our ability to detect long lags using several
lag detection methods, primarily focusing on two: JAVELIN (Zu
et al. 2011) and a maximum-likelihood Fourier method
developed by Miller et al. (2010) and adapted for use on
quasars by Zoghbi et al. (2013), Cackett et al. (2022).
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We derive our model in Section 2, describe in detail how we
generate our mock LSST light curves in Section 3, and describe
our lag detection methods in Section 4. In Section 5, we report
the accuracy of our lag detection methods for light curves
reprocessed with only long lags (Section 5.1), light curves
reprocessed with long and short lags (Section 5.2), light curves
observed with different proposed LSST cadences (Section 5.3),
light curves from the simulation in Jiang & Blaes (2020;
Section 5.4), and light curves for dimmer magnitude quasars
(Section 5.5). We provide a brief summary of the accuracy of
our lag detection methods for all light curves in Section 5.6. In
Section 6, we make a prediction for the number of long lags
detectable by LSST over its 10 yr baseline. We summarize our
results in Section 7 and discuss the importance of improved
light-curve models (Section 7.1) and detection methods
(Section 7.2).

2. What Is the Long Lag Timescale?

The long lag timescale recovered by Yao et al. (2023) is
much shorter (70days versus 100 yr) than the viscous
timescale predicted by the standard Shakura & Sunyaev
(1973) thin-disk model. However, this timescale is in good
agreement with the recent simulation by Jiang & Blaes (2020)
that shows #/r>0.01 in the radiation pressure dominated
region. Disks with larger aspect ratios are also often invoked to
explain line driving broad absorption line quasars (e.g., Murray
et al. 1995; Leighly 2004). If this shorter timescale for the long
lag is accurate, it should be possible to detect long lags with
long baseline campaigns, like LSST, depending on the
properties of the quasar and wave band coverage. We therefore
use the results from Yao et al. (2023) to derive a new empirical
model for the long lag timescale.

As in Yao et al. (2023), we start by converting the viscous
timescale to a velocity, vyisc = r/Tyise, and integrate from rg, the
radius corresponding to the reference band, to r,, the radius
corresponding to band x,

23 -
rX }X /
Tiong = f dr = f /2284y
ro  Vvisc hoza\/ GM Y
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Here, we have written h = ho(r/r)? in order to capture the r-
dependence of 4. In the standard thin-disk model, =0, as & is
independent of radius.

Following Fausnaugh et al. (2016), Jiang et al. (2017), the
radius at which the disk radiates at a wavelength \ is

4/3 7\1/3
r(A)z(X’fBA) (ﬁGMM) , 3)

[rx7/2—2ﬂ _ r()7/272ﬂ]' (2)

he 8o

where kg is Boltzmann’s constant, h is Planck’s constant, ¢ is
the speed of light, o is the Stefan—Boltzmann constant, and M
is the accretion rate of the SMBH. X =2.49 is a factor to
account for emission at this wavelength from a range of
temperatures. f; is a factor to account for the irradiation from an
X-ray-UV source near the SMBH by changing the normal-
ization of the temperature profile. We set f; = 1, because three-
dimensional radiation magnetohydrodynamic (MHD) simula-
tions show that the UV-optical region of the disk is very
optically thick, making it difficult for X-ray photons to convert
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to UV photons, because the free—free absorption opacity for
X-rays is very small, and the Compton process is not important
(Jiang et al. 2016, 2019; Jiang & Blaes 2020). As a result, the
UV-optical emission should be dominated by photons
generated by the local disk (f;=1). ;=1 implies that X-ray
light will not be directly reprocessed by absorption and
reemission in the disk. Instead, in this model, the X-ray short
timescale variability is reprocessed by perturbing the local
photosphere via scattering on the X-ray variability timescale.

While Equation (3) is derived for the standard thin-disk
model, r x A3 does not rely on the assumption that /r < 1,
only the assumption that the emission is local. Since we care
most about the wavelength dependence of the long lag
timescale, we use Equation (3) here. However, the mass and
accretion rate dependence of the long lag may need to be
corrected when a more accurate model for the long lag can be
derived through either simulations or additional observations.
In particular, we note that //r and thereby 3 may depend on the
accretion rate and mass of the quasar. For simplicity, here we
will define i/r and (3 independently of any quasar property.

Substituting Equation (3) into Equation (2) gives a viscous
lag timescale of the form

A 4/3(1/2-2p)
Tiong = T0 (}\_) - 11, “4)
0

where,

. 4/3(1/2-28) -2
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Aw = 1928 1&, and hw/rw is the aspect ratio at the disk radius
corresponding to the W2 band. The parameterizations and
bands are based on the recent fitting that Yao et al. (2023)
performed on the wavelength-dependent long lag they detected
for Fairall 9 to this function for a reference band Ay. They
found 79=66.8+2.3, and 3=3.59+ 1.22. For Fairall 9,
M=2554+056 x 10® Mg (Peterson et al. 2004), and the
Eddington ratio //l.qq = 0.02 + 0.004 (Hernéndez Santisteban
et al. 2020), which gives 7o =66.8 days for a=0.1, and

The wave bands for LSST range from the u band to the y
band. For A\, = 3600 A, we get

7 =23.6 days( —4 )(hW/rw )_2
7/2 — 23 0.2

xﬂ(l/ledd)l/z m_ )" ©
a\ 0.1 108My )

)

for our fiducial values.

We show the lag between the u and y band at zero redshift
for a range of quasar masses and Eddington ratios in Figure 1.
For comparison, we show the short lag timescale for the
standard thin-disk model in the left panel using Fausnaugh
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where r()\g) is calculated from Equation (3). The remaining
three panels are for different values of hw/rw: hw/rw = 0.03,
which is similar to its proposed value in the standard thin-disk
model, and hw/rw = 0.1, 0.3, which are slightly smaller and
larger, respectively, than the value found from fitting the lag
found in Yao et al. (2023). Depending on hyw/rw, at low
redshift, the long lag can range from a fraction of a day to
dozens of years, for realistic quasar properties.

In addition to the mass and Eddington ratio of the quasar, the
long lag also depends strongly on the redshift, z, of the quasar.
First, the time dilation due to increasing redshift should
increase lag times by a factor of (1+4z). Second, the rest-frame
wave band of a quasar will change by a factor of 1/(1+z), i.e.,
Ao will decrease by a factor of 1/(1+z). Since 7, scales as
Ag/37/2729) for 3~ 3.6, overall 7, scales as

et al. (2016),

1 4/3(7/2-253)
) ~ (1 + )59, ®

TON(l-i-Z)(
1+z

The top left panel of Figure 2 shows the normalized
distribution of Ty, from the u to y band for quasars in the
Sloan Digital Sky Survey Data Release 7 (SDSS DR7, Shen
et al. 2011) for three different redshift ranges, using the 8~ 3.6
found in Yao et al. (2023). z=1 is the highest redshift shown
for two reasons. First, at z> 1, the observed-frame u band
corresponds to rest-frame bands shorter than the shortest UV
band in Yao et al. (2023), and we do not want to extrapolate
our models beyond the data available. Second, for z 2 1, the
long lag is over 3 yr long for a majority of quasars if 3 is indeed
as large as predicted by the model fit in Yao et al. (2023). Lags
longer than 3 yr would be difficult to detect even with the 10 yr
baseline of LSST.

In the top right panel of Figure 2, instead of using the exact
fit from Yao et al. (2023), we assume 3= 2. For =2, the lag
timescale would still flatten at longer wavelengths, as in Yao
et al. (2023), but the aspect ratio would only increase linearly
as a function of radius. If the average value of 3 is closer to this
value, the lags in quasars out to z < 2 should be measurable.

We now note a few things about the value of (. First, due to
the denominator of 7y in Equation (5), we restrict §=7/4.
Second, the dependence of the long lag on reference
wavelength would be very different for < 7/4. The term in
the brackets in Equation (4) would become a positive factor,
and 7o would become negative. The increase in &/r becomes
less steep than the other radial dependencies of the long lag.
Therefore, the long lag would increase with reference
wavelength as is the case with short lags (see Equation (7)).

For example, for =0, as in the standard thin-disk model,
Tiong OC )\(1)4/ 3 which is a stronger dependence on )\ than the

Tshort X )\3/ 3 for the short lag. As a result, the observed long lag
from the u to y band would actually decrease as a function of
redshift, because emission from the inner disk where the lag
timescale is shorter gets redshifted into longer wave bands. The
bottom left panel of Figure 2 shows the distribution of 7y, for
three different redshift ranges for 3 =0, and #/r =0.01, which
are typical assumed values for the standard thin-disk model.
These distributions peak around 10°-10° yr.
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Figure 1. The leftmost panel shows the rest-frame short lag between the u and y band in days calculated using the standard thin-disk model, and the remaining panels
show the long lag timescale between the « and y band in days for disks with aspect ratios from left to right of 0.03, 0.1, and 0.3 as a function of Eddington ratio and
SMBH mass in M. The white point shows the approximate SMBH mass and Eddington ratio of Fairall 9 (Peterson et al. 2004; Hernandez Santisteban et al. 2020).

0.20
3 z<0.5 B
[ 0.5<z<0.75

[ 0.75<z<1

=3.6

o

=

U
L

o

fary

o
!

0.051

Fraction of SMBH

0.00

B=2

10! 102 103
0.20

10! 102 103

o

=

w
L

0.051

Fraction of SMBH
o
S

0.00

Ratio

107 10°
Tiong(2) [days]

10! 102 10
Tiong(2) [days]

Figure 2. The normalized distribution of 7jo,4(z) for quasars in SDSS DR7 (Shen et al. 2011) that fall within different redshift ranges. We assume o = 0.1, and take
the masses, Eddington ratios, and redshifts from Shen et al. (2011). In the top left panel, we use 5= 3.6 as in Yao et al. (2023); in the top right panel, we use 5 = 2,
which is a more conservative estimate that the aspect ratio increases linearly with radius; in the bottom left panel, we use 8 =0, and #/r = 0.01, which are typical
values in the standard thin-disk model and lead to much long lag timescales (see different x-axis range); and in the bottom right panel, we use the ratios between the

long and short lag for different wave bands in Yao et al. (2023).

As an alternate way of scaling from Fairall 9 to other targets,
we can assume that the ratio between short and long lags is
preserved between Fairall 9 and other targets. We use this
alternative way of scaling to examine how removing our
various model assumptions changes the long lag distributions
for our different redshift ranges. To calculate these lags, we
take the redshift of each quasar in SDSS DR7 with z < 1 and
use that to determine the rest-frame wave bands that correspond
to the observed-frame u and y band for that quasar. We then
take the ratio between the long and short lag detected in Yao
et al. (2023) in the rest frame and multiply it by the short lag
(calculated using Equation (7)) for that quasar. In practice we
use the error-weighted mean of this ratio in the rest-frame wave
band corresponding to each quasar and both adjacent wave
bands.

Calculated in this way, the lags are shifted toward slightly
shorter timescales, relative to our model with 3 =3.6. This
shift is especially the case for z < 0.5 quasars and 0.75 <z < 1

quasars for which the distributions peak around 20 days instead
of 40 days and 250 days instead of 400 days, respectively. This
shift toward shorter lags would enable the detection of long
lags for light curves with shorter baselines than LSST and make
it possible to detect long lags out to z > 1 with LSST. The main
reason for the shift to shorter timescales is that this method
removes the mass and luminosity dependence of the lag
timescale, by scaling all lags to Fairall 9. In the bottom right
panel of Figure 2, we show the long lag timescale calculated
using this approach.

3. Generating Mock Light Curves

With a prescription for calculating lags in hand, we turn now
to creating mock multiband LSST-like light curves incorporat-
ing this negative lag. We outline our process for generating
mock LSST light curves that have been reprocessed with lags.
First, we either generate a driving light curve using a damped
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Table 1
The Three Redshift Ranges We Use to Bin SDSS DR7 Quasars When
Generating Our Mock Light Curves and Their Corresponding Median
Properties: Long Lag Timescale (7ion), Short Lag Timescale (7.), i-band
Magnitude, and Random Walk Damping Time (7gamp)

Redshift Tlong Te i-mag Tdamp
(days) (days) (mag) (days)
z2<0.5 50 7 17.8 145
0.5<z<0.75 130 9 18.6 170
075 <z<1 400 12 18.7 204

random walk (DRW) model or use light curves from the
radiation MHD simulation in Jiang & Blaes (2020). Then, we
reprocess these light curves with a Gaussian response function
to add lags. Finally, we subsample these light curves with
proposed LSST cadences.

3.1. Driving Light Curves
3.1.1. Damped Random Walk Light Curves

For light curves analyzed in Sections 5.1, 5.2, and 5.3, we
start by generating a highly sampled (At = 0.001 days) 2000 yr
long light curve, using a DRW model as in Kelly et al. (2009).
A DRW is a stochastic process that goes from a v~ 2 power law,
where v is frequency, at high frequency to white noise at low-
frequency at some characteristic damping timescale Tqamp. The
DRW model has been shown to be a decent representation of
quasar light curves for timescales of days to years (e.g., Kelly
et al. 2009; Koztowski et al. 2010; MacLeod et al. 2012; Zu
et al. 2013). The physical interpretation of this damping
timescale is still debated, although Kelly et al. (2009), Burke
et al. (2021) found that it may be related to the thermal
timescale of the disk. Burke et al. (2021) found that 7gump
scales with the SMBH mass as

0.38

M

Taamp = 107(108M ) : )
©

To determine the properties of our mock light curves, we
take quasars from SDSS DR7, and put them in three redshift
bins: 7 < 0.5,0.5 <z<0.75, and 0.75 < z< 1 (see Table 1). In
this paper, we only investigate our ability to detect lags in
quasars at z < 1, because, as can be seen in Figure 2, a majority
of quasars at z~ 1 have long lags over 500 days long, which
would be difficult to detect with the LSST baseline of 10 yr.
We use the median quasar mass in each bin to determine 7gump.
We assume the structure function at infinity, SF ., = 2.5 in flux
units, which is a typical value for quasar light curves from the
Dark Energy Survey (Yu et al. 2020) and describes the long
term variability of the quasar.

We split our 2000 yr light curve into 100 individual light
curves, which we use as underlying driving light curves, d(f).
We generate and subsample a 2000 yr light curve instead of
generating 100, 20 yr long driving light curves because it is
important when generating a DRW light curve that the baseline
is significantly longer than the damping timescale
(Koztowski 2017; Stone et al. 2022). Done this way, our
baseline DRW light curve is over 3000 times longer than the
largest damping timescale we use.
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3.1.2. Simulated Light Curves

While the DRW model does a good job describing quasar
variability over a range of timescales, it is not based on a
physical model of the disk. The DRW model may also not
model the power-spectral densities (PSD) properly at time-
scales less than 1 month (Mushotzky et al. 2011; Caplar et al.
2017; Sanchez-Séez et al. 2018; Smith et al. 2018), and be
unreliable on the longest timescales no matter how long the
modeled DRW is (Stone et al. 2022). Therefore, in Section 5.4,
we test the robustness of our results by using light curves from
a simulation performed by Jiang & Blaes (2020).

Jiang & Blaes (2020) used ATHENA ++ to perform a global
radiation MHD simulation of a quasar disk between 30 r, and
100 r,, where r, is gravitational radii. This region of the disk,
which roughly corresponds to the region that emits in the
optical, is dominated by the Rosseland mean opacity, which
increases around 1.8 x 10° K due to the iron opacity bump.
Jiang & Blaes (2020) found that the iron opacity bump causes
the disk to become convectively unstable leading to turbulence,
which puffs up and heats the disk. Eventually, the puffing up of
the disk decreases the opacity enough for the disk to become
convectively stable and cool, until it becomes optically thick
again. In Jiang & Blaes (2020) this cycle repeats itself every
few years and leads to variability in the luminosity of the disk
by factors of around 3-6.

Figure 14 in Jiang & Blaes (2020) shows the luminosity
scaled by the Eddington luminosity emitted from r < 60r§ and
r < 80r, over roughly 57 yr for their simulated 5 x 10° Mg
quasar. Over the 57 yr, the Eddington ratio can vary from
1/l.4a = 0.01-1. We split both of these light curves into eight
chunks of 20 yr each, and linearly interpolate them down to
subdaily cadence from an original sampling of roughly every
3 days. This interpolation should not have a large impact on our
results because the LSST cadence we downsample the light
curve with has a cadence of roughly every 10-30 days
(see Section 3.3).

3.2. Reprocessed Light Curves

Next, we reprocess our driving light curves with a Gaussian
response of the form
7(/—C)2

1
= — 252 10
P () o exp , (10)

where C is the center of the Gaussian (i.e., the input lag), and S is
the width of the Gaussian, set to S = C/35, for simplicity. For a
negative lag (C < 0), we replace ¢ with —z. We choose S = C/5
such that there is some width to the response that scales with the
lag duration. However, the exact shape of the response function
is unknown, especially for the long lag.

In cases where we are simulating both a long and a short lag,
we add two response functions together. We scale the relative
strength of the two response functions by fixing the amplitude
of the long lag response function to some fraction of the
amplitude of the short lag response function. As a result, the
integrated Gaussian for the long lag will no longer sum to one,
which means the amplitude of the reprocessed light curve will
differ from the amplitude of the driving light curve.

Because we want to examine a broad range of long lag
timescales, we use long lags of —50, —130, and —400 days.
From Figure 2, we can see this range of timescales does a good
job representing quasars from SDSS DR7 at z < 1. To match
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long lag timescales to other quasar light-curve properties, we
estimate that each quasar bin z<0.5, 0.5<z<0.75, and
0.75 <z <1 corresponds to a long lag of —50, —130, and
—400 days, respectively. We also calculate the short lag
corresponding to each bin using Equation (7). The long and
short lags for each redshift bin are in Table 1.

To get the reprocessed light curve, we Fourier transform the
driving light curve (d(f) — D(v)) and response function
(Y(f) — P(v)). In a linear reprocessing model, the reprocessed
light curve is

0= [ vde - an

which in Fourier space is equivalent to
R(v) =9Y()D(). (12)

We can then inverse Fourier transform R(v) — r(f) to acquire
our reprocessed light curve.

3.3. LSST Cadence

Now that we have a driving and reprocessed light curve, we
downsample their Ar=0.001 cadence to a variety of LSST
cadence possibilities. The LSST cadence is not final. Over the
past decade, the LSST community has conducted a thorough
investigation of prospective cadences (Connolly et al. 2014).
Different proposed cadences are available through the LSST
Operations Simulator (OpSim; Reuter et al. 2016).° OpSim
simulates the field selection and image acquisition for LSST
observations over its proposed 10 yr baseline. It takes into
account sky brightness, bad weather predicted from localized
weather models, seeing, telescope maintenance times, slew
times, and filter changes.

The LSST observing strategy includes two main compo-
nents, the Wide Fast Deep Survey and the Deep Drilling Fields
(DDFs). The Wide Fast Deep Survey will be at least
18,000 deg® where each 9.6 deg® field has a median of 825
visits summed over all six filters. The DDFs are five relatively
small (9.6 deg?) fields, which will have deeper coverage and a
higher cadence than the Wide Fast Deep Survey. In this paper,
we focus on objects observed in the DDFs. Specifically, here,
we use the proposed cadences for the XMM Large-Scale
Structure (XMM-LSS) DDF. Other DDFs have similar
cadences.

In this work, we use the baseline v2.0 DDF cadence, and the
DDF cadence with the longest available season length (ddf
season length slf0.10 v2), which uses 80% of the available
season, or a total of roughly 210 days. We primary use the u-
and y-band cadences, to take advantage of the largest
wavelength range available for LSST. Over 10 yr, the baseline
v2.0 cadence has 1156 and 4515 samples for the # and y bands,
respectively, while the long season cadence has 842 and 4434
samples for the u and y bands, respectively. We downsample
this number to eliminate visits that occur within 1/100 of a day
of each other and end up with 186 (150) and 443 (443) samples
for the baseline (long season) cadence, for the # and y bands,
respectively. This downsampling still leaves a large fraction
(15%-35% depending on the band and cadence) of visits that
occur within roughly 15 minutes of each other. For the baseline
cadence, most of the remaining samples are separated by
roughly 1-3 days. For the long season cadence, the separation

6 Code available at: https://github.com/Isst/sims_featureScheduler.
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is typically around 10-30 days, with more visit separations on
the longer side for the u band.

We find a longer season length, and as a result shorter season
gaps, to be beneficial for detecting long lags in our mock light
curves, even though the longer season has lower cadence
during the season (see Figure 6 and discussion in Sections 4.2
and 5.3). Therefore, in Sections 5.1, 5.2, 5.4, and 5.5, we use
the long season cadence. In Section 5.3, we discuss the relative
performance of our lag detection methods on light curves with
the baseline cadence and ways to improve our results if the
baseline cadence is selected.

After downsampling our driving light curve, we add the
band-dependent dust extinction and measurement error by
calculating the signal-to-noise ratio (S/N) for each observation
using the sky brightness and instrument noise from OpSim. In
this calculation, we use the average magnitudes in each SDSS
quasar bin for quasars with i <20 mag (see Table 1), to first
test our ability to detect the long lag in the most luminous
quasars. The median S/N for our mock quasars over all bins is
~150. We show that we should be able to detect long lags for
fainter quasars as well in Section 5.5.

The top panel of Figure 3 shows an example DRW light
curve. The driving light curve is shown in blue, and the same
light curve reprocessed with a long lag of —50 days is shown in
orange. The middle panel shows the same light curves
subsampled with the long season LSST cadence for the u
band and y band, for the driving and reprocessed light curves,
respectively.

4. Lag Detection Methods

In this section, we outline several methods developed for
detecting short lags and BLR lags that we will apply to the
detection of long lags. First, we briefly discuss different cross-
correlation methods (Gaskell & Peterson 1987, White &
Peterson 1994; Peterson et al. 2004), and the Von-Neumann
estimator presented by Chelouche et al. (2017). Next, we give a
more thorough description of the two methods we explore in
detail in this paper, JAVELIN (Zu et al. 2011) and a Fourier
method (Zoghbi et al. 2013). We test a variety of methods on
our mock light curves because each one has different strengths
and drawbacks. These drawbacks mostly arise because these
methods need to work for unevenly sampled UV—optical light
curves, like those LSST will produce, which will not have an
even cadence because of day-time gaps, bad weather, seasonal
gaps, shared telescope time, etc.

4.1. Cross-correlation Methods and the Von-Neumann
Estimator

With uniformly sampled light curves, the time lags can be
estimated by determining the delay time, 7, with the largest
cross-correlation coefficient,

2dO)r(t+ 1)

DA @ + 12

Multiple lags can in principle be detected by finding multiple
peaks in the correlation coefficients.

We show the cross-correlation coefficients as a function of
lag for mock DRW light curves with an evenly sampled, daily
cadence, and 10 yr baseline in Figure 4. The light curves have
been reprocessed with long (short) lags of —50 (7), —130 (9),
and —400 (12) days, in the top, center, and bottom panels,

CClocft (T) = (13)
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Figure 3. Top panel: simulated driving u#-band light curve, in blue, and y-band light curve, reprocessed with a long lag of —50 days, in orange. Middle panel: the same
light curve as in the top panel subsampled using the long season LSST cadence. Bottom left: JAVELIN probability distribution for the long lag between the light curves
above. The long lag is shown as a vertical dashed line. The median of the negative values of the distribution is —50 days. Bottom right: an example of the lags as a
function of frequency recovered by the maximum-likelihood method for a mock light curve with an input long lag of —50 days (shown as the horizontal dashed blue
line). The points are the lag detected in each bin (shown as the dashed vertical red lines). The vertical lines show the error bars. The lowest-frequency bin has the
largest error bar. The next two bins are roughly consistent with the input lag and have an error-weighted mean of —48 days. Because there is no short lag and it is at
frequencies higher than the wrapping frequency (vertical gray line), the highest-frequency bin is consistent with zero.

respectively. As the ratio between the amplitude of the long lag
and the amplitude of the short lag decreases the peak around
the long lag decreases. When the amplitude ratio is 0.01, the
peak around the long lag nearly entirely disappears for input
long lags of —50 and —400 days, although there remains a
small peak around the long lag for the light curve with a
—130 day input long lag.

On the other hand, as the amplitude ratio decreases, the peak
around the short lag becomes more pronounced. For an input
long lag of —50 days, it becomes the largest peak when the
amplitude ratio is 0.1. For the other two input long lags, the
peak around the short lag becomes dominant when the
amplitude ratio is 0.01. We show the positive and negative
lag values with the highest correlation coefficients for these
evenly sampled light curves in the top four rows of Table 2.

To use this cross-correlation technique on unevenly sampled
data, such as LSST light curves, we use the interpolated cross-
correlation method (ICCF; Gaskell & Peterson 1987), which
performs a linear interpolation to add values to the gaps in the
light curves to make them evenly sampled. We use the ICCF on
the mock light curves described in Section 3 and find that the
results are very consistent with what we find when we use
cross-correlation on evenly sampled light curves. That is, the
uneven cadence does not prevent us from being able to find an
accurate lag, but as the amplitude ratio between the long and
short lag decreases, we are less (more) able to recover the input
long (short) lag. We do not try other cross-correlation methods
on our light curves, such as the z-transformed discrete
correlation function (Alexander 2013), but we expect these
methods to perform similarly to the ICCF.
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Figure 4. The cross-correlation coefficients of even daily cadence light curves
that have been reprocessed with long (short) lags of —50 (7), —130 (9), and
—400 (12) days, in the top, center, and bottom panels, respectively.
Distributions shown in orange have been reprocessed with only a long lag.
The ratios of the amplitude of the long to the amplitude of the short lag for the
light curves with distributions shown in green, light blue, and pink, are 0.2, 0.1,
and 0.01, respectively. The dashed vertical lines show the input lags.

We do however try the Von-Neumann estimator presented
by Chelouche et al. (2017). This Von-Neumann method shifts
two light curves by some time 7 and measures the mean-square
successive-difference, which is a measure of the randomness,
between the two light curves as a function of 7. The lag is
therefore the 7 with the smallest measure of randomness. This
method is unique because it involves no model fitting,
interpolations, or binning, and is therefore ideal for unevenly
sampled light curves.

Figure 5 shows the mean of the mean-square successive-
differences for 1000 Monte Carlo Markov Chains (MCMCs)
for an example mock light curve reprocessed with a long
(short) lag of —50 (7) days in the top panel, —130 (9) days in
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the center panel, and —400 (12) days in the bottom panel. The
ratio of the amplitude of the long lag to the amplitude of the
short lag is 0.2, 0.1, and 0.01, in the left, center, and right
panels, respectively. Because the Von-Neumann method
assumes a lag that is constant with frequency, it has trouble
identifying two lags simultaneously. For the shortest duration,
—50days, lag, this assumption means the Von-Neumann
method combines the two lags into a single wider trough
when the amplitude ratio is 0.2. That trough gets skewed
toward the short lag when the amplitude ratio is 0.1. For the
longer duration lags, the assumption of only one lag results in
the Von-Neumann method finding only one of either the long
or the short lag for most amplitude ratios. Only for the light
curve with an input long lag of —130days and an amplitude
ratio of 0.1 are both lags detected at all, with significant dips in
the distribution near each lag.

As with the cross-correlation method, the single-lag
assumption is a drawback of using the Von-Neumann method
to detect a multilag signal, unless one signal can be filtered out
in some way. However, for an amplitude ratio of 0.2, we find
that the Von-Neumann method could be a helpful tool to detect
long lags in LSST light curves with long seasonal gaps. We
discuss this further in Section 5.3.

4.2. Javelin

Our first main lag detection method is JAVELIN, previously
known as SPEAR, which is a stochastic process estimator used
to look for time lags in spectroscopic (Zu et al. 2011) or
photometric (Zu et al. 2016) light curves. Li et al. (2019)
performed a comprehensive comparison of the performance of
JAVELIN versus cross-correlation methods over a broad range
of light-curve properties for mock SDSS light curves and found
that JAVELIN performs best at accurately detecting BLR lags.
As our lags are of a similar timescale, we use JAVELIN as one
of two main lag detection methods here.

JAVELIN works on unevenly sampled light curves by fitting a
model to the available data and running an MCMC to find the
posterior distributions for the DRW parameters (Tgsmp and
SF..) of each light curve. JAVELIN then uses these posteriors to
statistically interpolate each light curve as it shifts them
temporally and uses an MCMC to simultaneously derive the
posterior distributions for the DRW parameters and the
response function between different light curves. For its default
settings, which we use here, JAVELIN models the response
function as a top hat with a finite width centered at time lag .

The DRW statistical interpolation works well for shorter gaps
in unevenly sampled light curves but is unable to fit the large
seasonal gaps in our data, which becomes a problem for the LSST
baseline cadence. Figure 6 shows a JAVELIN distribution for an
example mock baseline cadence light curve. The largest peaks are
around +180 days, which is roughly the length of the gaps in
between each observing season. We discuss solutions to this
problem in case the baseline cadence is chosen in Section 5.3.

The bottom left panel of Figure 3 shows the JAVELIN
distribution for the example light curves in the panels above,
which have been subsampled with the long season cadence and
reprocessed with an input long lag of —50 days. The probability
distribution peaks very sharply around —50days, and the
median of the negative values of the distribution is —50 days.

7 As presented in Zu et al. (2010), code available at: hitps://github.com/

nyel7/javelin.
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Table 2
The Long and Short Lags Detected by Various Methods for Mock Light Curves with Each Cadence, Amplitude Ratio, and Input Long and Short Lag Used throughout
the Paper
Cadence Ratio Input Lag Cross-correlation /JAVELIN Fourier
Long Short Long Short Long Short
-50 -50 1 —51 -1
1) Even Long Only —-130 —129 1 —131 3
Daily —400 —385 518 .
—-50 7 —44 5 —27 7
©)) Even 0.2 —-130 9 —125 1 —96 9
Daily —400 12 —386 500 .
-50 7 -1 6 —-17 7
3) Even 0.1 —130 9 —122 8 —74 9
Daily —400 12 -390 12
—-50 7 -1 7 3 7
“) Even 0.01 -130 9 —1 9 -8 9
Daily —400 12 —1 12 . .
—50 —507] 460759, —49%3 074
6)) Long Long Only —-130 —130%) 490135 —130+140 0*4
Season —400 o —410719 2704350 . o
—50 7 —4871 1907390 —25%7 62
©6) Long 0.2 —130 9 —130%9 2504239 —98+33 812
Season —400 12 —40053) 17075° - -
—50 7 —48%3 14+120 —20%] 52
%) Long 0.1 —-130 9 —130%) 2407259 —62113 812
Season —400 12 —410*39 1601316
50 7 —140%39, 95 —2613, 573
®) Long 0.01 ~130 9 —1307% 13 —53+38 873
Season —400 12 25013, 141
—50 7 —180*9, 190719 —31*12 972
) Baseline 0.2 ~130 9 —180%4° 190719 —6412 942,
u—y —400 12 —18073%, 190+)°
—-50 7 —180739 1807330 —274%, 773
(10) Baseline 0.2 ~130 9 ~170"% 1901330 —98150 9+2,
gz —400 12 —190+1%, 19033°
-50 7 —5112 4501199 —22*4 61
an Baseline 0.2 —~130 9 —130%) 3707389 —85*3 8+
+LCO —400 12 —39013, 170+330 . .
-50 7 —53+3 150430 —21%} 6-9
12) LongSeason 0.2 ~130 9 —130%9, 130330 —95%¢, 971
(Non — DRW) —400 12 —430*49 190739
—50 7 —50%3 480739, —267] 573
13) LongSeason 0.2 —-130 9 —130%19 48049, —98+3 842
(i = 21 mag) —400 12 —410%39 170533° -

Note. Above divider: the peaks in the cross-correlation coefficient and the long and short lags detected by the fourier method for the even-cadence light curves with
different input lags and amplitude ratios (between the long and short lag) shown in Figures 4 and 7. Below divider: the median long and short lags detected by
JAVELIN and the maximum-likelihood method for 100 mock light curves with each cadence, amplitude ratio, and input long and short lag used throughout the paper.
The error ranges represent one standard deviation.

Because the long lag is negative and the short lag is positive, could bias our values for the short lag toward slightly larger
we take the long (short) lag as the median of the negative values, because the short lags are near zero, and so the peak
(positive) values of the JAVELIN distribution. This method related to the short lag could extend below zero. However, we
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Figure 5. The mean of the Von-Neumann value or the mean-square successive-difference for 1000 MCMCs as a function of lag for three mock long season LSST
light curves with input long lags of —50, —130, and —400 days and short lags of 7, 9, and 12 days in the top, middle, and bottom panels, respectively. The ratios of the
amplitude of the long lag to the amplitude of the short lag are 0.2 (left panels), 0.1 (middle panels), and 0.01 (right panels). The dashed vertical lines show the

input lags.

S U
o o
! !

w
o
!

Percent of Distribution
N
o

=
o
!

1

0 T
—600

L,

600

—200 0 200 400

Long Lag [Days]

—400

Figure 6. An example JAVELIN distribution for a mock light curve with the
baseline cadence. While there is a very small peak around the input lag (shown
as a dashed line) of —50 days, the peaks around +180 days are larger.

find that peaks in JAVELIN distributions around the input short
lags rarely extend past zero.

While JAVELIN is a useful method for detecting lags in
quasar light curves, it does make assumptions about the light
curve that are model dependent. Also, because the second light
curve is modeled as a smoothed and shifted version of the first,
the lag can depend on which light curve you model first. In
addition, because JAVELIN uses a DRW model, which is what
we use to generate our mock light curves, we could be biasing

10

our comparison to favor JAVELIN. We address this potential
bias in Section 5.4, where we test our methods on light curves
from radiation MHD simulations instead of DRW mock light
curves.

4.3. Maximum-likelihood Fourier Method

Our second main lag detection method is a Fourier method.
Fourier methods are useful because they allow us to separate
lags as a function of frequency. They are straightforward as
well because calculating the cross-spectrum is a simple
multiplication. We can use Equation (12) and the PSD of the
reprocessed and driving light curve, D(V)|2 =D (V)D(v), and
IR()|* = R ()R(v), respectively; to derive the cross-spectrum
of the two light curves to be

C(v) = D*W)R() = IDW) PP @).

(14)

The phase lag, ¢, is then just the phase of the complex cross-
spectrum, which is related to the time lag as (Uttley et al. 2014)

T = ¢/2mv. (15)

We show the lags as a function of frequency recovered by
this Fourier method between two 10yr baseline, evenly
sampled, daily cadence light curves in Figure 7. The input
long (short) lags are —50 (7) and —130 (9) days in the top and
bottom panels, respectively. We do not use this method to
detect long lags of —400 days because the LSST baseline is not
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Figure 7. The time lags as a function of frequency between two evenly
sampled, daily cadence light curves found using the phase of their complex
cross-spectrum and Equation (15). The input long (short) lags are —50 (7) and
—130 (9) days in the top and bottom panels, respectively. Distributions shown
in orange have been reprocessed with only a long lag. The ratio between the
amplitudes of the long and short lag for the light curves with distributions
shown in green, light blue, and pink, are 0.2, 0.1, and 0.01, respectively. The
dashed horizontal lines show the input lags and zero, and the vertical gray lines
show the wrapping frequencies.

long enough to recover enough data points at frequencies
<1072 day ' The vertical gray lines show the phase wrapping
frequencies, which are equivalent to v, =1/2C for a
symmetric response function (Uttley et al. 2014). Phase
wrapping, the sudden flip in the sign of the lag, occurs because
phase lags are limited to between =+, so a positive or negative
shift of half a wavelength cannot be distinguished.

For light curves with only an input long lag, at frequencies
lower than the first phase wrapping, the measured lag is —51
and —131 days for input long lags of —50 and —130 days,
respectively. At frequencies above the long lag’s phase
wrapping, the lag values oscillate around and then approach
zero. When a short lag is added and the ratio between the
amplitude of the long lag and the amplitude of the short lag is
0.2, the lags measured at low frequencies become roughly —27
and —95 days for input long lags of —50 and —130 days,
respectively. For an amplitude ratio of 0.1, the duration of these
lags decreases again to —17 and —74 days for input long lags
of —50 and —130 days, respectively. For an amplitude ratio of
0.01, the lag measured at the lowest frequencies becomes
positive for an input long lag of —50 days and is only —8 days
for an input long lag of —130 days.

The decrease in the duration of the recovered long lags as the
amplitude ratio decreases is due to the growing influence of the
short lag on lower frequencies. While the short lag has the
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Figure 8. The distribution of the inverse of the time between each observation
in the LSST long season cadence.

strongest impact at frequencies around the inverse of the short
lag timescale, it is also applied to all frequencies below that.
Therefore, it reduces the value of the long lag.

On the other hand, because the long lag only acts at lower
frequencies, the short lag is easier to isolate in Figure 7. For
light curves with two input lags, at frequencies higher than the
long lag phase wrapping frequency, the lag values oscillate
before quickly converging on the short lag value for all
amplitude ratios. The smaller the amplitude ratio the sooner
they converge. The lag values stay at the input short lag, until
the short lag wrapping frequency is reached, when the lag
values again oscillate and then in this case approach zero. We
summarize the long and short lag values in Figure 7 in the top
four rows of Table 2.

This Fourier method is very useful for recovering the shape
of a response function for evenly sampled X-ray data (e.g.,
Papadakis et al. 2001; McHardy et al. 2007; Arévalo et al.
2008; Fabian et al. 2009; Zoghbi et al. 2010; Cackett et al.
2013; De Marco et al. 2013; Uttley et al. 2014), but requires a
work-around for unevenly sampled data, which cannot be fast
Fourier transformed. Here, we use a maximum-likelihood
method described in Zoghbi et al. (2013) and first presented by
Miller et al. (2010).

First, we create N =4 bins in frequency space, ranging from
Soin=1/T, where T = 10 yr is the length of the light curve, to
Jinax = 0.055 day'. As in Zoghbi et al. (2013), we also add a
bin on either end to be discarded later to reduce bias in the
minimum and maximum bins. f . is chosen based on the
maximum frequency for which there is significant power for an
LSST cadence. Figure 8 shows the distribution of the inverse of
the time between each observation for the LSST long season
cadence. Because the length of the light curves is 10 yr,
frequencies less than 102 day ' are common, but because the
cadence is rou§hly every 10 days, frequencies greater than a
few times 10™* day ' are rarer.

It is easier to obtain accurate results with fewer bins.
Previous testing shows that errors for each bin are smaller when
the width of bins are at least a few times 1/7. This requirement
makes it difficult to detect —400 days lags, and so we do not
attempt to detect that lag with this method. Otherwise, four bins
are sufficient for our purpose here: detecting lags from two
Gaussian response functions representing the long and short
lag, which occur at order of magnitude different frequencies.
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However, additional bins would be useful for detecting the
shape of more complicated response functions.

Using these bins, we fit a piece-wise PSD to each light curve
and calculate the likelihood using the autocovariance function,

A(r) = f " IDW) cosmr)dy, (16)

where \D(V)\z =>.D; is the PSD as a piecewise sum over a
range of frequency bins. We then maximize this likelihood to
find the PSD for each light curve. We use these PSD as input
parameters for an MCMC, which gives us a distribution for the
power in each bin. We take the median of the distribution for
each bin as the power for that bin and combine them to form a
piecewise PSD over the full range of frequencies.

Next, we maximize the log-likelihood of the cross-
covariance,

() = L Y Cw)cosQmvr + () df

= f D) ¥ ()| cosRrvr — ¢(v))dv, a7
to obtain the best-fit values of W(v) = >_¥;, and ¢(v) = >_;¢; as
a function of frequency using the PSD from the MCMC
distributions. We again use the best-fit parameters as input for
an MCMC, which gives us the distribution of ¢(v). For each
bin, we use the median of the distribution as that bin’s ¢(v) and
the standard deviation as the error of ¢(v). Finally, we can use
¢(v) to determine the lag for each frequency bin using
Equation (15).

We show an example of the lag as a function of frequency
detected using this maximum-likelihood method in the bottom
right panel of Figure 3, for the same light curve with an input
long lag of —50days shown above. The vertical gray line
shows the phase wrapping frequency for —50 days. In Figure 3,
the lowest-frequency bin has the largest error bar and is
consistent with zero. In general, for our mock light curves, this
bin tends to have the largest error and to be the least consistent
with the input long lag. For these reasons, we neglect the lag
found in this bin, and then calculate the long lag as the error-
weighted mean of all recovered lags < —10 days. We apply a
cutoff of —10days, because lags will approach zero at the
wrapping frequency, and we only care about negative lag
values when searching for the long lag. In Figure 3, the two
bins below the wrapping frequency have an error-weighted
mean value of —49 days, which is similar to the input lag. The
bin above the wrapping frequency is consistent with zero for
this light curve, because there is no input short lag. For light
curves with input short lags, we also use the maximum-
likelihood method to detect the short lag. To avoid interference
from a long lag signal, we follow Yao et al. (2023) and
calculate a short lag by taking the lag value from the one bin
centered between 0.01 < v <0.1.

5. Using LSST to Detect Long Lags
5.1. Detecting Long Lags Alone

First, we examine the performance of JAVELIN and the
maximum-likelihood method on light curves with the long
season LSST cadence (see Section 3.3) that have been
reprocessed with a long lag only. Figure 9 shows the
distributions of the medians of the negative values of the
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Figure 9. The distribution of the long lags detected by JAVELIN for 100 mock
long season cadence LSST light curves with input long lags of —50, —130, and
—400 days (shown as dashed black lines) in the top, center, and bottom panels,
respectively.

JAVELIN distributions for 100 mock light curves with input long
lags of —50days (top panel), —130 days (middle panel), and
—400 days (bottom panel). The lag detected by JAVELIN agrees
within 10% for all light curves with input lags of —50 days and
—130 days and 88% of light curves with input lags of —400.

Figure 10 shows the distribution of lags recovered by the
maximum-likelihood method for the same mock light curves
excluding those with input long lags of —400 days. A long lag
of —400days is very difficult to detect with the maximum-
likelihood method for light curves with the LSST baseline of
10 yr. For input lags of —50 and —130 days, the maximum-
likelihood method is less accurate than JAVELIN. However, the
maximum-likelihood method is able to detect the long lag to
within 30% of the input lag for around 70% of light curves. We
show the medians and standard deviations of the JAVELIN and
maximum-likelihood method distributions for these mock light
curves in row (5) of Table 2.
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Figure 10. The distribution of long lags recovered by the maximum-likelihood
method for 100 mock long season cadence LSST light curves with input long
lags (shown as dashed black lines) of —50 days (top panel) and —130 days
(bottom panel).

5.2. Detecting Short and Long Lags Together

We now add a short lag to our mock light curves with the
long season LSST cadence to examine how multiple lag signals
can affect our ability to detect either lag. Our fiducial value for
the ratio of the amplitude of the long lag to the amplitude of the
short lag is 0.2, as we expect the short lag signal to be stronger.
We also examine our ability to detect lags when this ratio is 0.1
and 0.01. For readability, in this section, we only show figures
for light curves with an input long lag of —50 days and an input
short lag of 7days. Unless otherwise noted, the input lag
duration does not have an impact on the accuracy of our lag
detection methods. We repeat the analysis in this section for
light curves reprocessed with long (short) lags of —130 (9) and
—400 (12) days in Appendix A.1.

In the top panel of Figure 11, we compare the JAVELIN
results for light curves reprocessed only with a long lag (in
orange) to JAVELIN results for light curves reprocessed with a
long and short lag (in blue). For light curves with both lags, we
take the median of the negative (positive) values in the
JAVELIN distribution as the long (short) lag. When the
amplitude ratio between the long and short lag is 0.2 or 0.1,
the distributions of long lags detected by JAVELIN are
consistent with the distribution of long lags detected for light
curves without a short lag. Adding in a short lag only makes the
distributions somewhat broader. Comparing these results to the
correlation coefficients for evenly sampled daily cadence light
curves, shown in Figure 4, the long lag tends to be more
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prominent than we might expect, in particular for an amplitude
ratio of 0.1. It may be that the roughly every 10-30 days
cadence of the long season LSST cadence helps us to detect the
long lag, because it hides some of the signal from the short lag.

On the other hand, when the ratio is decreased to 0.01, we
fail to detect the correct long lag for nearly all mock light
curves with an input long lag of —50days. In Figure 23 in
Appendix A.1, for an input long lag of —130 days, there is still
a peak in the distribution around —130 days. It is unclear
whether this peak is tied to the cadence of the light curve or the
injected long lag. For one, there is also a peak around
—130 days in the lag distributions for input long lags of —50
and —400 days when the amplitude ratio is 0.01. There is also
some evidence for a peak around —130 days in our null tests
using light curves that have not been reprocessed with a lag
(see top left panel of Figure 33 in Appendix B.1). JAVELIN
detects a long lag of around —130days for roughly 10% of
these light curves with no input lag. However, in the right
middle panel of Figure 23, JAVELIN accurately recovers a long
lag of around —130 days for a significantly higher percentage
(~50%) of light curves. Furthermore, in Figure 4, there is a
slight peak in the cross-correlation coefficient for the evenly
sampled light curve with a —130 days input long lag and an
amplitude ratio of 0.01, while there is no corresponding peak in
the correlation coefficient for other input lags when the
amplitude ratios are 0.01. Therefore, it is unclear if the peak
in the distribution in the right middle panel in Figure 23 is due
to a recovered lag or not.

We show the medians of the positive values of the JAVELIN
distribution for 100 mock light curves with input lags of —50
and 7 days in the top panel of Figure 12. We zoom in to the
portion of the distribution falling between 0 and 20 days to
better show the accuracy of the short lag when it is detected.
When the ratio of the amplitude of the long lag to the amplitude
of the short lag is 0.01, JAVELIN is able to detect the short lag,
although the distribution is skewed toward larger values than
the input short lag. In previous studies, JAVELIN has detected
short lags that appear to be skewed toward longer frequencies
due to diffuse BLR emission (e.g., Cackett et al. 2018).
Something similar may be happening here due to the presence
of both a long and short lag.

For an amplitude ratio of 0.1, JAVELIN detects a short lag of
around 13-16 days for roughly 60% of light curves with input
lags of —50 and 7 days. The null tests do not show a peak
around 13 days for this cadence (see top right panel of
Figure 33 in Appendix B.1). In addition, for the even cadence
light curve with an input long lag of —50 days shown in the top
panel of Figure 4, the peak in the correlation coefficient around
the short lag is larger than the peak around the long lag when
the amplitude ratio is 0.1. The fact that this peak around the
short lag is already larger at this amplitude ratio suggests that it
might be easier to detect the short lag with JAVELIN in this
particular case. Therefore, it is possible that the light blue peak
in the top panel of Figure 12 is due to the input short lag, but
heavily skewed toward longer lags because of the presence of
the long lag. For other input long lags, JAVELIN is unable to
detect a short lag for most light curves unless the amplitude
ratio is 0.01 (see Figure 25 in Appendix A.1).

The bottom panel of Figure 11 is the same as the top panel,
but instead shows the long lag detected by the maximum-
likelihood method. As with the even cadence light curves in
Figure 7, when a short lag is added, the long lag is shifted
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Figure 11. The distributions of the long lags detected by JAVELIN (top panel) and the maximum-likelihood method (bottom panel) for 100 mock long season cadence
LSST light curves with an input long lag of —50 days (shown as a dashed black line). Distributions shown in blue are for light curves that also have a short lag of 7
days. The legends show the ratio of the amplitude of the long lag to the amplitude of the short lag for each blue distribution.

toward shorter timescales. The median of the distribution for
light curves with an input long lag of —50 days goes from
—49 days for light curves with no short lag, to —25 days and
—20 days for light curves with amplitude ratios of 0.2 and 0.1,
respectively. When the amplitude ratio is 0.01, for light curves
with input long lags of —50 days, there are very few negative
lags detected at all, and for light curves with an input long lag
of —130 days, there are only about 20 negative lags detected,
mostly between —10 and —65days (see Figure 24 in
Appendix A). It is clear that like JAVELIN the maximum-
likelihood method is unable to isolate the long lag when the
amplitude ratio is 0.01.

The bottom panel of Figure 12 shows the distribution of
short lags detected by the maximum-likelihood method. Unlike
JAVELIN, the maximum-likelihood method is able to detect
short lags that are accurate to within a few days of the input lag
for over 60% of light curves with amplitude ratios of 0.2 and
0.1. Detecting short lags more accurately for a wider range of
amplitude ratios is therefore one benefit to using the maximum-
likelihood method in addition to JAVELIN.

The accuracy of the maximum-likelihood method on light
curves where we include two input lags appears to be
consistent with Figure 7, where we use the Fourier method
on uniform 1 day cadence, 10 yr long, DRW light curves. It is
promising that the maximum-likelihood method is able to
perform nearly as well on light curves with the long season
LSST cadence as the Fourier method performs on light curves
with an even cadence. However, it will be difficult with this
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method to disentangle the length of the long lag versus the
amplitude ratio between the long and short lag.

We show the medians and standard deviations of the
distributions of lags recovered by JAVELIN and the maximum-
likelihood method for our 100 mock light curves in rows (6),
(7), and (8) in Table 2 for the light curves with amplitude ratios
between their input long and short lags of 0.2, 0.1, and 0.01,
respectively. In Figure 13, we show the fractional error of the
medians of the distributions of lags recovered by JAVELIN and
the maximum-likelihood method for the 100 mock light curves
as a function of these amplitude ratios for all input long lags.
The error bars show the fractional error of one standard
deviation for each distribution. The accuracy of the recovered
lags is similar regardless of the durations of the input lags.

5.3. Improving the Baseline Cadence

The LSST collaboration is still evaluating different possible
cadences. We have evaluated and compared the ability of our
lag detection methods to accurately pick out long lags for
several cadences. Above, we asserted that the most significant
factor for improving our ability to detect lags is increased
season length. In the previous sections, we use the long season
LSST cadence. In this section, we compare the detected lags for
light curves with this long season cadence to light curves with
the baseline v2.0 cadence. We again only show results here for
light curves with input lags of —50 and 7 days. We show
results for all three lag bins in Table 1 in Appendix A.2. Unless
otherwise noted, our results for light curves reprocessed with a
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long lag of —50 days are consistent with the results for light
curves reprocessed with other input long lags.

The top panel of Figure 14 shows the long lags detected by
JAVELIN for 100 mock light curves subsampled with the long
season and baseline cadences, in orange and green, respec-
tively. Unfortunately, when using the baseline cadence,
JAVELIN fails to accurately recover any long lags. Instead,
JAVELIN primarily recovers long lags of around —180 days.
The second panel from the top in Figure 33 in Appendix B.1
shows the distributions of the medians of the negative and
positive values of the JAVELIN distributions for 100 light
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curves with the baseline cadence but with no input lag, in the
left and right panels, respectively. The positive and negative
distributions peak strongly around =+180days, like the
distribution shown in green in top panel of Figure 14,
suggesting that the peak around +180days is due to the
cadence, not a lag.

The maximum-likelihood method, on the other hand, still
performs reasonably well on the light curves subsampled with
the baseline cadence. Because the maximum-likelihood method
separates the signal out in frequency space, it is easier to
separate out the lag signal from the cadence signal. The bottom
panel of Figure 14 shows the distribution of lags recovered by
the maximum-likelihood method for light curves with the long
season or baseline cadence in orange and green, respectively.
The distribution of long lags recovered by the maximum-
likelihood method is slightly less skewed toward shorter
timescales, with a median of —31days. In Figure 28 in
Appendix A, the distribution of long lags for light curves with
an input long lag of —130 days is more skewed toward shorter
timescales, with a median of —58 days. It could be that the
presence of a gap at longer timescales actually helps to skew
the long lag back toward longer timescales for light curves with
input lags significantly shorter than the observing gaps (~ —50
days), while longer lags (~ —130 days) closer to the gap length
are affected differently.

In order to improve the performance of JAVELIN on light
curves with large seasonal gaps, we can add observations from
other telescopes to fill in the 180 days gap. Here, we explore
the effectiveness of filling these gaps with observations from
LCO. LCO has been used for numerous rotation measures
campaigns and has wave bands ranging from the u—y band.
Here, we experiment with adding observations in the g and z
bands to each seasonal gap on roughly a 10 day cadence. We
use the g and z bands instead of the # and y bands to increase
the S/N. We determine the additional LCO cadence in the gaps
using the LCO g- and z-band cadences from the Herndndez
Santisteban et al. (2020) Fairall 9 observing campaign, which
are roughly daily. We randomize these Fairall 9 observing
times over a uniform distribution with a range of half the
distance to the following observation, and then downsample to
every tenth observation.

For each lag bin in Table 1, we make 100 mock light curves
subsampled at times corresponding to the LSST baseline
cadence for the g and z band and these additional LCO
observations. The LCO observations add roughly 18 observa-
tions per year or 180 total. We add measurement errors
corresponding to the S/N for LSST and LCO. The S/N for our
mock LCO observations was calculated using the LCO
Exposure Time Calculator® and ranges from 19 to 77,
depending on the band and redshift bin.

We show the long lags recovered by JAVELIN for 100 of
these mock light curves with input lags of —50 and 7 days in
pink in the top panel of Figure 15. For comparison, we show
the lags recovered by JAVELIN for 100 mock light curves with
the same input lags and the u- and y-band LSST baseline
cadences (in green) and g- and z-band LSST baseline cadences
(in light blue). The light curves with the g- and z-band LSST
baseline cadences experience the same cadence-related issues
as the light curves with the u- and y-band LSST baseline
cadences (see also Appendix B.1). However, adding LCO

& htps: //exposure-time-calculator.lco.global /
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Figure 14. The distributions of the long lags recovered by JAVELIN (top panel)
and the maximum-likelihood method (bottom panel) for 100 light curves with
input lags of —50 and 7 days. The green and orange distributions are for mock
light curves with the long season and baseline v2.0 LSST cadences,
respectively, for the u and y band. The dashed vertical line shows the input
long lag.

observations eliminates most of the false lag detections from
the large gaps in the baseline cadence. JAVELIN recovers a long
lag within 10% of the input lag for 74% (100% are within 30%)
of light curves with input long lags of —50 days. The decline in
false lag detections with this LSST+LCO cadence can also be
seen in our null tests in Appendix B.1. In the bottom panel of
Figure 33, the distributions of lags detected by JAVELIN for
light curves with this LSST4+LCO cadence and no input lag
peak around zero, as expected.

The bottom panel of Figure 15 is the same as the top panel
except for the maximum-likelihood method. The distribution of
long lags detected for light curves with the LSST+LCO
cadence is similar to the distribution for light curves with the
long season cadence. The median long lag detected for light
curves with the LSST+LCO cadence is —22 days for an input
long lag of —50days. This median is similar to, although
skewed slightly shorter than, the median found for light curves
with the long season cadence (—25 days).

We show the distributions of short lags detected by the
maximum-likelihood method for the same light curves as above in
Figure 16. For all cadences, the distributions peak around the
input short lag. However, for the baseline cadences, only around
50% of short lags detected are within 2 days of the input short lag,
whereas when the LCO observations are added around 80% of the
short lags detected are within 2 days of the input short lag, which
is slightly more accurate than with the long season cadence. For
both JAVELIN and the maximum-likelihood method, it is clear that
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Figure 15. Distribution of the long lags recovered by JAVELIN (top panel) and
the maximum-likelihood method (bottom panel) for 100 mock light curves
with input lags of —50 and 7 days (top panel). The dashed vertical line shows
the input long lag. The green and light blue distributions are for mock light
curves with the baseline v2.0 LSST cadence for the u and y band and g and z
band, respectively. The distributions shown in pink are for light curves with the
baseline g- and z-band cadence plus an LCO observation taken roughly every
10 days in each LSST observing gap. These LCO observations amount to
around 18 observations in each gap, or per year, for a total of around 180
observations.

adding just 18 LCO observations a year in the gaps of the baseline
cadence should be sufficient to erase the gap issue and detect lags
at rates consistent with those for the long season cadence. We
show the medians and standard deviations of the distributions of
lags recovered by JAVELIN and the maximum-likelihood method
for light curves with the baseline u- and y-band cadences, baseline
g- and z-band cadences, and baseline+LCO cadence in rows (9),
(10), and (11) of Table 2, respectively.

Finally, we find that the Von-Neumann method (see
Section 4.1) is more effective at detecting long lags for mock
light curves with the baseline LSST cadence than JAVELIN or
the Fourier method. The Von-Neumann method is more
accurate than these other methods in this case because it does
not involve any interpolation or binning.

Figure 17 shows the distributions of long lags recovered by
the Von-Neumann method for 100 mock light curves with input
lags of —50 and 7 days and either the long season cadence (in
orange) or the baseline v2.0 cadence for the u and y band (in
green). Unlike with JAVELIN, the Von-Neumann method is still
able to detect an accurate long lag for light curves with the
baseline cadence. The median long lags for both distributions are
—40f§ and —40"] days for an input long lag of —50 days for the
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Figure 17. Distribution of the long lag recovered by the Von-Neumann method
for 100 mock light curves with input lags of —50 and 7 days. The dashed
vertical line shows the input long lag. The orange (green) distribution is for
mock light curves with the long season (baseline u# and y band) cadence.

long season and baseline cadences, respectively. Therefore, the
Von-Neumann method appears to be a very useful tool for
recovering the long lag if the baseline cadence is selected.

5.4. Beyond DRW Light Curves

Although the DRW model has been shown to be a good
representation of quasar light curves (e.g., MacLeod et al. 2012),
the DRW model is not physically motivated and may be
unreliable at the smallest and largest scales. Furthermore, since
JAVELIN uses a DRW model to interpolate unevenly sampled
light curves, it is prudent to investigate its performance on light
curves that are not generated using a DRW. Therefore, in this
Section, we use the light curves from the radiation MHD
simulation in Jiang & Blaes (2020; see Section 3.1.2). These
mock light curves have the long season LSST cadence and the
fiducial amplitude ratio of 0.2. The simulation in Jiang & Blaes
(2020) is for a 5 x 108 M SMBH, and the light curves vary in
Eddington ratio from //l.qq =~ 0.01 — 1. A DRW can be fit to the
light curves with T4,mp = 200, although this fit is not unique.
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Figure 18. Distribution of the long lags recovered by JAVELIN for 16 mock
long season cadence LSST light curves made using light curves from the
simulation in Jiang & Blaes (2020) for input lags of —50 and 7 days (top
panel), —130 and 9 days (middle panel), and —400 and 12 days (bottom panel).
The long lags are shown as the dashed vertical line.

Figure 18 shows the distribution of the median of the
negative values of the JAVELIN distribution for the 16 mock
light curves made using the simulated light curves from Jiang
& Blaes (2020). For an input long lag of —50 and —130 days,
all medians fall within ~10% of the input lag. 14 out of 16 lags
detected for light curves with input long lags of —400 days are
within 20% of the input long lag, with only two outliers. Both
of these outliers are from light curves made using only the
inner radius light curve (see Section 3.1.2), and may be from a
portion of the light curve with lower variability, making it more
difficult to detect the lag. Nonetheless, despite using a DRW
model to interpolate light curves, JAVELIN still performs well
on light curves that are not generated as a DRW.

We show the long lags detected by the maximum-likelihood
method for the 16 mock light curves with input long lags of
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method for 16 mock long season cadence LSST light curves made using light
curves from the simulation in Jiang & Blaes (2020) for input lags of —50 and
7 days (top panel) and —130 and 9 days (bottom panel). The long lags are
shown as the dashed vertical line.

—50 and —130 days in Figure 19. We again see that the
distribution of long lags is skewed toward shorter timescales as
was the case for light curves reprocessed with a long and short
lag in Section 5.2. The shifts in these distributions are mildly
larger. The maximum-likelihood method finds long lags of
—20days (40% of the input lag) versus —25 days (50% of the
input lag) and —95days (73% of the input lag) versus
—98 days (75% of the input lag) for light curves with input
long lags of —50 and —130, respectively.

As with DRW mock light curves where the ratio of the
amplitude of the long lag to the amplitude of the short lag is
0.2, JAVELIN is unable to accurately detect the short lag. The
maximum-likelihood method, however, is able to detect the
short lag to within 50% accuracy for all light curves and to
within a day for a majority of light curves. We show the
distribution of short lags recovered by the maximum-likelihood
method for these light curves in Figure 20.

We show the medians and standard deviations of the
distributions of lags recovered by JAVELIN and the maximum-
likelihood method for these non-DRW modeled light curves in
row (12) of Table 2. Using light curves from the radiation
MHD simulation in Jiang & Blaes (2020) instead of DRW light
curves appears to have little affect on our ability to detect long
and short lags. Because we derive similar success rates for
more physically motivated light curves, we are hopeful that our
results for light curves generated with a DRW model will hold
for future observed LSST light curves.
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5.5. Dimmer Magnitude Quasars

In the previous sections, we test our lag recovery methods on
light curves with i < 19 mag, which have S/N of around 150.
To test if we can detect lags at lower S/N, we generate mock
long season cadence LSST light curves with the same input
long and short lags as in the previous sections and a ratio of 0.2
between the long and short lag amplitudes, but set the band
magnitudes to i =21 for all input lags. For LSST, this band
magnitude gives an S/N of around 30.

The colored lines in Figures 21 and 22 show the distributions
of lags recovered by JAVELIN and the maximum-likelihood
method, respectively, for these mock light curves. These
distributions are very similar to the distributions, shown in
gray, of lags recovered by both of these methods for light
curves with the band magnitudes in Table 1. The median long
lags recovered by JAVELIN are —50, —130, and —410 days for
input long lags of —50, —130, and —400 days, respectively.

The median long lags recovered by the maximum-likelihood
method for these light curves, —26 and —98 days for input long
lags of —50 and —130 days, respectively, are also very similar
to the median long lags recovered for light curves with brighter
magnitudes. We show these median values, their standard
deviations, and these values for the short lags in the bottom row
of Table 2. Because the results for these dimmer magnitude
quasars are nearly identical to the results in Section 5.2, we can
expect to be able to detect long lags for quasars brighter than
i =21 mag, and suggest it might be possible to look for lags for
even fainter quasars.

5.6. Summary of Results

We now provide a summary of Section 5. First, in
Section 5.1, we find that JAVELIN and the maximum-likelihood
method both detect long lags with high accuracy in mock light
curves with the LSST long season cadence that only have an
input long lag. When we also reprocess these mock light curves
with a short lag in Section 5.2, JAVELIN is still able to
accurately recover the long lag as long as the ratio of the
amplitude of the long lag to the amplitude of the short lag is 0.2
or 0.1. The long lags recovered by the maximum-likelihood
method get skewed to shorter and shorter durations as this
amplitude ratio decreases, a trend we also see in our tests of the
Fourier method on even cadence light curves (see Figure 7).
This trend could potentially help us to determine the amplitude
ratio between the long and short lag in cases where we can
make a robust long lag prediction from an alternative method.
Both detection methods fail to recover the long lag for most
light curves when the amplitude ratio is 0.01, although
JAVELIN may in some cases be able to detect a long lag for
this ratio when the input long lag is —130 days.

JAVELIN is unable to detect a short lag for an amplitude ratio
of 0.2 for most light curves. For an amplitude ratio of 0.1,
JAVELIN is only able to detect the short lag for a significant
amount of light curves for light curves with input lags of —50
and 7 days. When the amplitude ratio is 0.01, JAVELIN is able
to detect a short lag for a majority of light curves, although the
short lags detected are often skewed toward longer durations.
The maximum-likelihood method, on the other hand, is always
able to detect the short lag, which is a real strength of the
method.

In Section 5.3, we find that JAVELIN performs poorly on
light curves with the LSST baseline v2.0 cadence, identifying



THE ASTROPHYSICAL JOURNAL, 956:81 (31pp), 2023 October 20

121

101

Number of Light Curves
[o)]

Lag [days]

Number of Light Curves

4 6 8 10 12 14

Lag [days]
Figure 20. Distribution of the short lags detected by the maximum-likelihood
method for 16 mock long season cadence LSST light curves made using light
curves from the simulation in Jiang & Blaes (2020) for input lags of —50 and

7 days (top panel) and —130 and 9 days (bottom panel). The short lags are
shown as the dashed vertical line.

the season gaps instead of the long or short lag. The maximum-
likelihood method and the Von-Neumann method perform
better on light curves with the baseline cadence, seeming to be
only minorly affected by the change in cadence. We show that
adding just 18 observations a year from LCO in the gaps in the
baseline cadence fixes the cadence-issues for JAVELIN,
resulting in highly accurate lag detections. Adding these
additional LCO observations also improves the accuracy of the
short lags recovered by the maximum-likelihood method.

In Section 5.4, we find that both JAVELIN and the maximum-
likelihood method detect lags with roughly the same level of
accuracy for the light curves from the radiation MHD
simulation in Jiang & Blaes (2020) as for our DRW light
curves. That our methods perform this consistently on more
physically motivated light curves suggests that the results in
this section should be applicable to real LSST light curves in
the future. Finally, in Section 5.5, we find that when we
generate dimmer mock light curves with a magnitude of i =21,
which lowers their S/N, the distributions of lags detected by
JAVELIN and the maximum-likelihood method are nearly
identical to the distributions for the brighter magnitude mock
light curves (i < 19) in Section 5.2.

6. Number of Detectable Long Lags

We now provide an estimate for the number of long lags we
may expect to measure with LSST. To do this estimate, we will
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Figure 21. The distributions of the long lags recovered by JAVELIN for 100
mock light curves with the long season LSST cadence and input lags of —50
and 7 days (top panel), —130 and 9 days (middle panel), and —400 and 12 days
(bottom panel). The vertical dashed lines show the input long lag. The colored
lines are the distributions for light curves where we set i = 21 to explore how a
lower S/N changes our ability to detect lags. The distributions of these lags are
very similar to the distributions shown in gray, which are for light curves with
the i-band magnitudes in Table 1.

use quasar properties from SDSS and metrics developed for the
robustness of BLR and short lag detections.

First, we select only quasars at z < 1, because, for our
models based on Fairall 9, Figure 2 suggests that we should
be able to detect the long lags for a majority of SDSS quasars
at z< 1. Note that, if =0, and i/r=0.01, as is often
assumed for the standard thin-disk model, the long lag will
be at least on the order of 100 yr for bright SDSS quasars,
and therefore not detectable using LSST. Next, we select
only quasars with an i-mag brighter than 21. In Section 5.5,
we show that our lag detection methods are accurate down to
this magnitude.
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Figure 22. The distributions of the long lags recovered by the maximum-
likelihood method for 100 mock light curves with the long season LSST
cadence and input lags of —50 and 7 days (top panel) and —130 and 9 days
(bottom panel). The vertical dashed lines show the input long lag. The colored
lines are the distributions for light curves where we set i = 21 to explore how a
lower S/N changes our ability to detect lags. The distributions of these lags are
very similar to the distributions shown in gray, which are for light curves with
the i-band magnitudes in Table 1.

Whether a long lag is detectable or not also depends on the
variability of the quasar. When looking for BLR lags in SDSS
quasar light curves, Grier et al. (2017) defined a criterion S/N2
based on the continuum and line light-curve rms variability.
The rms variability is the intrinsic variability of the light curve
about a fitted linear trend, divided by the uncertainty of the
estimated intrinsic variability.

To detect C IV lags, Grier et al. (2019) require an S/N2
>20. They found that 348 out of 492 (~71%) quasars in their
sample from the SDSS reverberation mapping project that fall
within 1.35 <z <4.32 met that criterion. Homayouni et al.
(2020) look for Mgl lags for 453 quasar light curves with
redshifts more similar to our target redshifts here,
0.35<z< 1.7, and find that 198, or ~44%, have an S/N2
>20. The number of quasars with S/N2 > 20 is fewer in this
case because Mg 1l tends to be less variable.

A second criterion for determining lag significance for both
BLR and short continuum lags is setting a minimum threshold
for rn.x, the maximum ICCF correlation coefficient (see
Section 4.1). Setting a minimum threshold for r,,, ensures
that the light curves are well correlated. Guo et al. (2022)
require 7, > 0.8 for their sample of z < 0.8 quasar light
curves from the Zwicky Transient Facility. Of 4255 quasars,
559 (13%) met that criterion.
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SDSS DR14 has ~5 x 10° quasars over 9376 deg” (Paris
et al. 2018). Limiting ourselves to z<1 and i<21 mag
quasars, we are left with ~9.5 x 10* quasars. Accounting for
the five planned 9.6 deg” DDF, we can expect to detect around
500 of these quasars within the DDFs. If we take the more
conservative fraction of quasars with S/N2>20 from
Homayouni et al. (2022), we find that around 200 quasars
should have detectable lags. If we assume only 13% of light
curves will have ry,x > 0.8 as in Guo et al. (2022), we would
be able to detect long lags for 65 quasars within the DDFs.

Here, we only look at z < 1 quasars because the long lag gets
very long at z > 1, and LSST has a 10 yr baseline. However, it
is possible LSST will operate for 20 yr. In addition, at higher
redshifts, we could potentially use a narrower range of wave
bands (for example, g — i) to detect lags with lengths similar to
those tested here for z < 1. Finally, we could also expand on
the 10 yr LSST baseline by using lower cadence archival data.
Future work should examine if such a cadence enables lag
detection. If we use the same i-band magnitude cutoff for SDSS
DR14 quasars out to z<2, we would roughly double the
number of detectable long lags.

The Wide-field Infrared Survey Explorer and eROSITA
provide other catalogs of quasars not included in SDSS. In
particular, these catalogs could be useful for studying lower
luminosity, and thus lower mass, or redder, more dust-obscured
quasars. Since Tiong X M 172 the lag timescales for these quasars
will be shorter. Shorter lag timescales could help us detect a
higher yield of longs lags for lower mass quasars, although this
exact yield is difficult to estimate.

Even with our conservative estimates, we should be able to
detect long lags for dozens to hundreds of new quasars over the
10 yr lifetime of LSST. In addition, Yao et al. (2023) were able
to potentially detect a lag of ~70 days using light curves with a
less than 1 yr baseline, so we speculate that we should be able
to detect long lags in some fraction of nearby quasars with
durations <50 days within the first 1-3 yr of LSST. Roughly a
third of SDSS quasars with i < 21 and z < 1 are within z < 0.5,
where we expect lags to have durations of <50 days.
Therefore, it could be possible to detect long lags for roughly
20-100 quasars within the first couple of years of LSST.

7. Discussion and Summary

In this section, we discuss caveats related to our simulated
light curves (Section 7.1) and lag detection methods
(Section 7.2) that we plan to address in future work. We then
provide a summary of the paper in Section 7.3.

7.1. Improved Simulated Light Curves

In this paper, we create mock observations of our driving and
reprocessed light curves with both the proposed LSST baseline
v2.0 and longest season cadence from OpSim. While OpSim
models S/N and observing gaps by taking into account sky
brightness, bad weather predicted from localized weather
models, seeing, telescope maintenance times, slew times, and
filter changes, the cadences and S/N measurements may still be
optimistic. However, small changes in cadence should not have
a large impact on our ability to detect lags on the order of
months. In addition, our tests in Section 5.5 using S/N
corresponding to i =21 mag light curves show that, even if the
S/N corresponding to the magnitudes in Table 1 is too high by
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an order of magnitude, we should still be able to recover lags
with similar accuracy.

We use two types of light curves, self-generated DRW light
curves and light curves from the simulation in Jiang & Blaes
(2020). While often used to model quasar light curves, the DRW
models are not physically motivated and may fail to model the
quasar PSD properly at short and long timescales. In particular,
PSD from highly sampled light curves from the Kepler mission
appear to have a steeper slope at short timescales (Mushotzky
et al. 2011; Kasliwal et al. 2015; Smith et al. 2018), and the
length of the light curve may have an effect on the PSD at long
timescales (Stone et al. 2022). On the other hand, the simulated
light curves from Jiang & Blaes (2020) are not intended to
capture quasar variability for a wide range of quasar parameters.
Therefore, future work to simulate light curves for a wider range
of quasar parameters is needed to better understand our ability to
detect long lags in their variability.

We reprocess our light curves with a Gaussian response
function. However, the shape of the response function for a long
lag is unknown. For this paper, we set the width of the Gaussian
to S = C/5 (see Equation (10)), but preliminary tests suggest that
JAVELIN has more difficulty accurately recovering lags for
response functions with larger widths (S 2 C/2). In addition,
using other functional forms for the response function, such as
the log normal distribution, may make it more difficult to detect
a long lag using JAVELIN. Therefore, the width and shape of the
response function are important parameters. Here, we use the
default JAVELIN response function model, a top hat with no
priors on the width. It is possible that adjusting the model or
priors for the width of the response function could improve the
accuracy of JAVELIN. Still, JAVELIN may not be the best tool if
detecting long lags relies on finding lags in variability that is
reduced or smeared as it moves inwards. The maximum-
likelihood method is better designed to capture the shape of the
response function and should therefore be able to handle broader
or more complex response functions.

Our response function is centered on frequencies corresp-
onding to the timescale of the long lag. However, if the
perturbations that are accreted inward leading to the long lag
are on the thermal timescale it may be that, unlike the short lag
timescale, the frequencies most affected by the long lag do not
correspond exactly to the inverse of the long lag timescale. The
thermal timescale is similar to the viscous timescale we use to
determine the long lag timescale, for the large aspect ratios in
our model. However, a future improvement would be to
experiment with the recoverability of long lags depending on
the frequencies most affected by the long lag.

Another simplification is that we model the radial dependence
and value of the aspect ratio as independent of SMBH mass or
Eddington ratio, when that is very likely not the case. Most
likely, as the Eddington ratio of a quasar increases, its aspect
ratio will increase, which will shorten its long lag timescale.

Ultimately, simulations of the reprocessing of high-fre-
quency light in the UV-optical emitting regions of turbulent
quasar disks for a wide range of quasar parameters are needed
to better model a more accurate response function for the long
lag. To perform these simulations, it will be necessary to use a
multifrequency radiation MHD code, such as the code
developed by Jiang (2022) for ATHENA ++. Radiation MHD
is necessary to capture the Maxwell stress, magnetic pressure,
radiative viscosity, and radiation pressure, all of which may
play a role in locally generated turbulence that can be accreted
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inwards on the viscous timescale (Jiang & Blaes 2020). The
multifrequency capabilities will be useful because it will allow
us to inject high-frequency radiation and compare it to the
radiation reprocessed and emitted by the local disk.

7.2. Improved Lag Detection Methods

Here, we use two main lag detection methods. The first,
JAVELIN, very accurately detects long lags when the ratio
between the amplitude of the long lag and the amplitude of the
short lag is 20.1. On the other hand, it performs very poorly
when this amplitude ratio is 0.01. JAVELIN has been shown
previously to be biased in the presence of multiple lag signals
(e.g., Cackett et al. 2018).

We can potentially improve the performance of JAVELIN by
simultaneously fitting several reprocessed light curves, instead of
just fitting one driving and one reprocessed light curve. Fitting
several reprocessed light curves will be possible for LSST,
which will have six different wave bands. With multiple bands,
JAVELIN will be less likely to misidentify seasonal gaps as lags
when the lags of the different wave bands are significantly
different from each other (Zu et al. 2016), which would be
especially helpful if the baseline v2.0 cadence is selected.
However, in our model for the long lag, the lag timescales
between longer wavelength bands becomes very short. As a
result, fitting multiple wave bands simultaneously may not be as
helpful as it is when fitting BLR lags, which differ significantly
from band to band. Another potential improvement would be to
use a custom model for the response function in JAVELIN that
includes a positive and negative lag, instead of using the default
model, which is just a single top hat function.

The maximum-likelihood method is less accurate overall than
JAVELIN at detecting the long lag. The long lags also become
increasingly skewed toward zero as the amplitude of the short
lag becomes stronger relative to the long lag. Figure 7 shows that
this skewing toward zero is due to the shape of the combined
long and short lag response function. However, because of this
bias, it will be difficult to disentangle the exact value of the long
lag versus the ratio of the long lag amplitude to the short lag
amplitude. Utilizing the full frequency dependent information
instead of summarizing the long lag with a single average value
may help disentangle the two and reveal more details about the
shape of the response function. More details could also be
obtained by increasing the number of bins. In this paper, we only
use four frequency bins for the Fourier method, because of the
relatively low sampling rate of LSST, and because it is easier to
detect a single lag with fewer bins.

There are several ways that using all of the frequency
dependent lag information can provide additional information
on the shape of the response function. For one, regardless of the
ratios between the long and short lags, the wrapping frequency
seems to consistently occur very near 1/ 2Tiong in Figure 7.
Therefore, we may be able to more effectively exploit the
location of the wrapping frequency to derive the lag. In
addition, as can be seen in Figure 7, for larger amplitude ratios
even if the value of the long lag at lower frequencies is skewed
toward zero, right before the lag wraps, it drops to roughly the
value of the input long lag. If, on the other hand, the lags
increase toward zero or positive values as the lag approaches
the wrapping frequency, as is the case for smaller amplitude
ratios, that would provide information on the possible presence
of a long lag with a small amplitude relative to the short lag.
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Overall, there is room for improvement in the lag recovery
techniques used here, especially if we want to detect long lags
with amplitudes less than 10% of the amplitude of the short lag.
We have mentioned several ways our employment of JAVELIN
and the maximum-likelihood method could be improved. It is
possible that alternative methods used for detecting lags in
quasar light curves may be more accurate. The Von-Neumann
method, which we also test on our mock light curves, seems
like a particularly promising alternative, especially if the
baseline cadence is chosen for LSST (see Section 5.3).
Ultimately, the greatest improvement may be to create a new
method, directly tailored to detecting the long lag.

7.3. Summary

Inspired by the recent potential detection of a long lag in
Fairall 9, we have laid out a model for the timescale of negative
long lags, which occur due to turbulence in the outer disk and
propagate inward on the viscous timescale. Because the viscous
timescale depends on the aspect ratio of the disk, measuring
long lags can provide information on the vertical structure of
the disk. Based on the measured long lags in Yao et al. (2023)
for Fairall 9, we find that the scale height depends on the radial
disk position as & o< °~>°. However, additional long lags need
to be detected to properly constrain our initial model for the
radial dependence of the scale height. We therefore hope to use
LSST to detect these additional long lags.

To study whether LSST will be able to detect long lags, we
simulate mock LSST light curves using both DRW modeled
light curves and light curves from the simulation in Jiang &
Blaes (2020), which we then mock observe with several LSST
cadences from OpSim. We reprocess the lagging light curve
with a Gaussian response function. We then test several lag
detection methods, including the ICCF (Gaskell & Peter-
son 1987; White & Peterson 1994; Peterson et al. 2004), a
Von-Neumann estimator presented by Chelouche et al. (2017),
JAVELIN (Zu et al. 2011), and a maximum-likelihood Fourier
method (Zoghbi et al. 2013), on our mock light curves. We
primarily focus on two main lag detection methods. The first is
the commonly used JAVELIN code. We find that when only the
long lag is included (Section 5.1), JAVELIN is accurate to
within 10% of the input lag for all light curves with input long
lags of —50 and —130 days, and accurate to within 10% of the
input lag for 79% of light curves with input lags of —400 days
in our DRW modeled light curves.

When we include a short lag as well (Section 5.2), JAVELIN
remains very accurate, unless the ratio of the amplitude of the
long lag to the amplitude of the short lag is around 0.01, at
which point the accuracy decreases dramatically. Conversely,
the short lag is not detected by JAVELIN unless this ratio <0.1
(for an input long lag of —50 days) or <0.01 (for input long
lags of —130 and —400 days). JAVELIN detects long lags with a
similar level of accuracy even when using a DRW model to
interpolate the non-DRW modeled light curves from the
simulation in Jiang & Blaes (2020) in Section 5.4.

Because JAVELIN is not aimed at detecting two lags
simultaneously, we also use a maximum-likelihood Fourier
method, which separates lags in frequency space. Separating lags
in frequency space should make it easier to detect multiple lags.
However, as the amplitude of the long lag decreases relative to
the amplitude of the short lag, the influence of the short lag on
lower frequencies increases, skewing the recovered long lag
toward shorter durations. When the amplitude ratio between the
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long and short lags is 0.01, the maximum-likelihood method is
unable to identify the long lag at all for most light curves, just
like JAVELIN. On the other hand, the maximum-likelihood
method provides a significant advantage when it comes to
detecting the short lag, which it is able to accurately detect for all
amplitude ratios. Finally, the performance of this method on the
light curves from Jiang & Blaes (2020) is comparable to its
performance on DRW light curves.

Based on the results in Section 5.3 and other cadence tests
we performed, we believe a long season cadence’ is helpful for
detecting long lags. A long season cadence is particularly
beneficial when using JAVELIN to detect long lags, whereas the
Von-Neumann method and the maximum-likelihood method
for shorter duration long lags (~—50 days) are able to detect
long lags with similar accuracy regardless of the cadence.
However, adding just 18 LCO observations annually to mock
light curves subsampled with the baseline v2.0 cadence leads to
a comparable or higher lag detection rate than for the long
season cadence, for both our main methods for all lag
durations. Additional LCO observations or the Von-Neumann
method may also be effective tools for finding long lags in the
Wide Fast Deep Survey, which will cover a much larger area of
the sky at lower cadence.

Even with our conservative estimates in Section 6, we should
be able to detect long lags for dozens to hundreds of new
quasars over 10 years. These detections will significantly
improve our ability to model the long lag as a function of
wavelength, SMBH mass, and Eddington ratio. These models
will help us constrain the vertical structure of quasar disks for a
range of quasar parameters.
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Appendix A
Full Tests

In Sections 5.2 and 5.3, we show the distributions of lags
detected by our various methods only for light curves with
input lags of —50 and 7 days, for the sake of brevity. Here, we
present the same results, but for all lag bins in Table 1.

A.l. Long and Short Lags

We show the distributions of the long lags detected by
JAVELIN for 100 mock long season cadence LSST light curves

° Including strong rolling or weak accordion cadences, which both have long

seasons.
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Figure 23. The distribution of the long lags detected by JAVELIN for 100 mock long season cadence LSST light curves with input long lags, shown by the dashed
vertical lines, of —50 days (top panel), —130 days (middle panel), and —400 days (bottom panel). Distributions shown in blue also include a short lag of 7 days (top
panel), 9 days (middle panel), and 14 days (bottom panel). The ratio of the amplitude of the long lag to the amplitude of the short lag is shown in the legends for each
blue distribution.

with input long lags of —50days (top panel), —130 days long lag of —130 days are mostly consistent with the results for
(middle panel), and —400 days (bottom panel) in Figure 23. an input long lag of —50 days. The maximum-likelihood does
The distributions shown in orange have only long lags, while do slightly better at detecting some negative lags for an
the distributions shown in blue have long and short lags with amplitude ratio of 0.01 for —130 days lags. This improvement
varying ratios between the amplitude of the long and short lag. is expected based on our tests of the Fourier method with even-
The accuracy of the distributions for different input long lags is cadence light curves shown in Figure 7. It appears that, because
mostly consistent, with the exception of the distribution for the long lag is greater for light curves with —130 days input
light curves with input long lags of —130days and an lags, it is not skewed all the way positive by the short lag.
amplitude ratio of 0.01, which appears to be more accurate We show the short lags detected by JAVELIN and the
than the other distributions (see Section 5.2 for more maximum-likelihood method in Figures 25 and 26, respec-
discussion). tively, for different input lags and amplitude ratios. As
Figure 24 is the same as Figure 23 but for the maximum- discussed in Section 5.2, JAVELIN does a better job detecting
likelihood method. The results for light curves with an input the short lag for light curves with an input long lag of —50 days
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Figure 24. Distribution of the long lags recovered by the maximum-likelihood method for 100 mock long season cadence LSST light curves with input long lags,
shown by the dashed vertical lines, of —50 days (top panel) and —130 days (bottom panel). Distributions shown in blue also include a short lag of 7 days (top panel)
and 9 days (bottom panel). The ratio of the amplitude of the long lag to the amplitude of the short lag is shown in the legends for each blue distribution.
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Figure 25. The distribution of the short lags detected by JAVELIN for 100 mock long season cadence LSST light curves with different amplitude ratios (shown in the
legend). We zoom in on the portion of the distribution between 0 and 20 days to better show the accuracy of the short lag when detected. The input short lags, shown
as the vertical dashed line, are 7, 9, and 12 days for the left, middle, and right panels, respectively.

and an amplitude ratio of 0.1 than for light curves with other
input lags. Otherwise, the accuracy of these distributions for
different input lags is similar.

A.2. Improving the Baseline Cadence

We compare the accuracy of JAVELIN and the maximum-
likelihood method for the long season LSST cadence and
baseline v2.0 cadence in Figures 27 and 28, respectively.
JAVELIN identifies the seasonal gaps of —180 days for light
curves with the baseline cadence for all input lags. As
mentioned in Section 5.3, the maximum-likelihood method
does better at still detecting the input lags for light curves with
the baseline cadence than JAVELIN, although it does better on
light curves with —50 days lags than —130 days lags, perhaps
because —130 days is closer to the length of the season gaps.

24

In Figures 29 and 30, we compare light curves that have both
the LSST baseline cadence and a roughly 10 day cadence of
LCO observations in the LSST season gaps (see Section 5.3 for
details), to light curves with the LSST baseline cadence for
various wave bands. We find that adding LCO observations in
the LSST seasonal gaps is very useful for improving the
accuracy of JAVELIN for all input long lags. The distributions
of lags detected by the maximum-likelihood method for light
curves with different cadences are consistent with each other
for all input long lags. However, Figure 31 shows that the
maximum-likelihood method does a better job detecting short
lags with the added LCO cadence for both input lags.

As mentioned in Section 5.3, the Von-Neumann method
performs better on light curves with the baseline cadence than
JAVELIN. We show the distribution of lags detected by the



THE ASTROPHYSICAL JOURNAL, 956:81 (31pp), 2023 October 20 Secunda et al.

404 1 Ratio=0.2 ] " -
1 Ratio=0.1 20 ——
§35‘ [ Ratio=0.01 | é
3°Y —] 3
—] 30 |
2 25 — b=
(*)] (*)]
3 5
5 20 5
o o 201
81579 o
g | g
2 109 — Z 101
’] EE:,I_I—l_, 4,_Q_I—-
ok - r I . - ok . : i . . .
-15 -10 -5 0 5 10 15 -15 -10 -5 5 10 15

0
Lag [days] Lag [days]
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Figure 29. Distribution of the long lags recovered by JAVELIN for 100 mock light curves with input lags of —50 and 7 days (left panel), —130 and 9 days (middle
panel), and —400 and 12 days (right panel). The dashed vertical line shows the input long lag. The green and light blue distributions are for mock light curves with the
baseline v2.0 LSST cadence for the «# and y band and g and z band, respectively. In addition to the baseline LSST cadence, the distributions shown in pink have an
LCO observation taken roughly every 10 days in each LSST observing gap. These LCO observations amount to around 18 observations in each gap, or per year, for a
total of around 180 observations.
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Figure 32. Distribution of the long lag recovered by the Von-Neumann method for 100 mock light curves with input lags of —50 and 7 days (left panel), —130 and 9
days (middle panel), and —400 and 12 days (right panel). The dashed vertical line shows the input long lag. The orange (green) distributions are for mock light curves
with the long season (baseline) u and y band cadence.

Von-Neumann method for light curves with the long season (in and —51078) days for an input long lag of —400 days, for the
orange) and baseline (in green) cadences in Figure 32. The long season and baseline cadences, respectively.
Von-Neumann method detects long lags within 20 days of the

input lag for a majority of light curves, except for light curves Appendix B

with an input long lag of —400 days, where the distribution Null Tests

peaks around —550 days. The median long lags are —40°7 and To verify that our results are due to the presence of lags, we
—40%; days for an input long lag of —50, —130%;", and run our two lag detection methods on mock light curves with
—140"19 days for an input long lag of —130 days, and —400* 1 no input lag for each of the different cadences presented in this
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Figure 33. The distribution of the negative (left panels) and positive (right panels) medians of JAVELIN distributions for 100 mock light curves with no input lag. From
top to bottom, the light curves have been subsampled with the long season LSST u- and y-band cadence, the baseline u- and y-band cadence, the baseline g- and z-band

cadence, and the baseline g- and z-band cadence + LCO cadence.
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Figure 34. Eight individual JAVELIN distributions for light curves with no reprocessing and the long season LSST cadence. Each panel is labeled with the median of

the positive and negative values of the distribution.

paper. To generate these mocks, we perform all of the steps
outlined in Section 3, but skip Section 3.2, i.e., we do not
reprocess either light curve with a response function. As a
result, we have two identical light curves that are then
subsampled with the cadence for two different wave bands (u
and y or g and z, depending on the cadence). Below, we discuss
the signals recovered by JAVELIN (Appendix B.l) and the
maximum-likelihood method (Appendix B.2). Any signals
recovered could be due to the cadence and/or gaps in the
cadence, or timescales inherent to the light curves themselves,
such as the damping timescale.

28

B.1. Javelin

Figure 33 shows the distributions of the medians of the
negative (left panel) and positive (right panel) values of the
JAVELIN distributions for 100 mock DRW light curves with no
reprocessing. Light curves in the top panel have been mock
observed with the long season LSST u- and y-band cadence
used for the light curves in Sections 5.1, 5.2, 5.4, and 5.5. In the
remaining panels, light curves have been mock observed with
the baseline u- and y-band cadence, the baseline g- and z-band
cadence, and the baseline g- and z-band cadence with the
additional LCO cadence, which are all used to subsample the
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Figure 35. The distribution of long lags (left panel) and short lags (right panel) recovered by the maximum-likelihood method for light curves that have not been
reprocessed with a lag for all cadences in the paper. From top to bottom, the light curves have been subsampled with the long season LSST u- and y-band cadence, the
baseline u- and y-band cadence, the baseline g- and z-band cadence, and the baseline g- and z-band cadence + LCO cadence.
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Figure 36. The top panel shows the lags recovered by JAVELIN, and the bottom panel shows the lags recovered by the maximum-likelihood method for 16 mock light
curves made from the simulation in Jiang & Blaes (2020) with no input lag and the long season LSST u- and y-band cadence.

light curves in Section 5.3. The distribution of the negative
medians for light curves with the long season cadence peaks at
zero. The duration of the long lag detected by JAVELIN for 70%
of light curves is <15 days, suggesting that the lags recovered
by JAVELIN in the previous sections are due to the input lag
signal. On the other hand, over 50% of positive lags recovered
by JAVELIN are over 5 days, suggesting that our short lag
results could be contaminated.

The individual JAVELIN distributions for light curves with
the long season cadence that have not been reprocessed with an
input lag, several of which are shown in Figure 34, peak most
prominently at zero, but have noise. Most of this noise is either
around £150-200 days, because that is the length of the season
gap, or around the edges of the range over which we run
JAVELIN (£600 days). When we take the median of only the
positive or negative parts of the distributions, this noise skews
lag values to >0 days.

In Figure 34, each panel is labeled with the median of the
positive and negative values of the distribution, most of which
are very near zero, due to the sharp peak in the distribution
around zero. There are several exceptions where the positive or
negative median is =132 days, due to noise in the distribution.
These large median values only amount to 10%—-15% of the
overall distribution in the top panel of Figure 33. However,
these values are similar to our input lag of —130 days and so
could contribute somewhat to our ability to detect —130 days
lags with JAVELIN.

The mock light curves made from the simulation in Jiang &
Blaes (2020) presented in Section 5.4 also have the long season
cadence. The top panel of Figure 36 shows that, for mock light
curves without an input lag, JAVELIN only detects a long lag
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longer than 10 days and a short lag longer than 1 day for two
light curves each.

On the other hand, we show in Section 5.3 that the baseline
cadence leads to contamination from the +180 days seasonal
gap. For light curves subsampled with the baseline cadence that
have not been reprocessed, the medians of the positive and
negative values of the JAVELIN distributions peak around +180
and —180 days, respectively (see middle panels of Figure 33).
When we add a mock LCO cadence of roughly every 10 days
to the gaps, however, the results are significantly better (see
bottom panel of Figure 33). 90% of negative lags detected have
a duration of less than 15 days. The same is true for ~60% of
the short lags detected. Unsurprisingly, it appears for this
cadence the JAVELIN results are very robust.

B.2. Fourier Method

Figure 35 shows the distribution of the lags recovered by the
maximum-likelihood method for light curves subsampled with
the same cadences used throughout the paper, but with no input
lag. Roughly 90% of long and short lags detected by the
maximum-likelihood method are shorter than 10 days for all
cadences. For the long season cadence (top panel), the
maximum-likelihood method detects only 3 nonzero long lags
and only seven short lags longer than 1 day.

For light curves with no reprocessing and the LSST+LCO
cadence (bottom panel of Figure 35), the maximum-likelihood
method detects lags shorter than 1 day for roughly 90% of light
curves. The maximum-likelihood method performs less well on
the two baseline cadences (middle two panels of Figure 35)
without the added LCO observations, although 80% of long
(short) lags detected are shorter than 10 (3) days. The lags
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detected by the maximum-likelihood method for mock light
curves made from the light curves in the simulation in Jiang &
Blaes (2020) with no input lag are all less than 1 day (see bottom
panel of Figure 36). Overall, the lags recovered by the maximum-
likelihood method seem unlikely to be contaminated by any of the
cadences used in this paper or the light-curve properties.
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