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ABSTRACT

We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg? of
the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT)
Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and
polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%
precision (430 significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise
properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests,
and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power
spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend
on Planck or galaxy survey data, thus giving independent information about large-scale structure
growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing
amplitude of Ajens = 1.013£0.023 relative to the Planck 2018 CMB power spectra best-fit ACDM model
and Ajens = 1.005 £ 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power
spectrum measurement, we derive constraints on the parameter combination S¢MBY = a5 (Q2,,/ 0.3)0'25
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of SYMBL = (.818 & 0.022 from ACT DR6 CMB lensing alone and S{MBL = 0.813 + 0.018 when
combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent
agreement with ACDM model constraints from Planck or ACT DR4+ WMAP CMB power spectrum
measurements. Our lensing measurements from redshifts z ~ 0.5-5 are thus fully consistent with
ACDM structure growth predictions based on CMB anisotropies probing primarily z ~ 1100. We find
no evidence for a suppression of the amplitude of cosmic structure at low redshifts.

1. INTRODUCTION

The cosmic microwave background (CMB) is a unique
backlight for illuminating the growth of structure in our
Universe. As the CMB photons travel from the last-
scattering surface to our telescopes, they are gravitation-
ally deflected, or lensed, by large-scale structure along
their paths. The resulting arcminute-scale lensing de-
flections distort the observed image of the CMB fluctu-
ations, imprinting a distinctive non-Gaussian four-point
correlation function (or trispectrum) in both the tem-
perature and polarization anisotropies (Lewis & Challi-
nor 2006; Blanchard & Schneider 1987). A measurement
of this lensing-induced four-point correlation function
enables a direct determination of the power spectrum
of the CMB lensing field; the CMB lensing power spec-
trum, in turn, probes the matter power spectrum pro-
jected along the line of sight, with the signal arising from
a range of redshifts z ~ 0.5-5.! Since most of the lens-
ing signal originates from high redshifts and large scales,
the signal is near-linear and simple to model, with com-
plexities arising from baryonic feedback and highly non-
linear evolution negligible at current levels of precision.
Furthermore, the physics and redshift of the primordial
CMB source are well understood, with the statistical
properties of the unlensed source described accurately
as a statistically isotropic Gaussian random field. These
properties make CMB lensing a robust probe of cosmol-
ogy, and, in particular, cosmic structure growth.

Measurements of the growth of cosmic structure can
provide powerful insights into new physics. For exam-
ple, the comparison of low-redshift structure with pri-
mary CMB measurements constrains the sum of the neu-
trino masses, because massive neutrinos suppress the
growth of structure in a characteristic way (Lesgour-
gues & Pastor 2006). Furthermore, high-precision to-
mographic measurements of structure growth at low red-
shifts allow us to test whether dark energy continues to
be well described by a cosmological constant or whether

there is any evidence for dynamical behaviour or even a
breakdown of general relativity.

A particularly powerful test of structure growth is
the following: we can fit a ACDM model to CMB
power spectrum measurements arising (mostly?) from
z ~ 1100, predict the amplitude of density fluctuations
at low redshifts assuming standard growth, and compare
this with direct, high-precision measurements at low red-
shift. Intriguingly, for some recent low-redshift obser-
vations, it is not clear that this test has been passed:
several recent lensing and galaxy surveys have found a
lower value of Sg = o5 (€,,/0.3)"” than predicted by
extrapolating the Planck CMB power spectrum mea-
surements to low redshifts in ACDM (Heymans et al.
2013; Asgari et al. 2021; Heymans et al. 2021; Krolewski
et al. 2021; Philcox & Ivanov 2022; Abbott et al. 2022;
Loureiro et al. 2022; Li et al. 2023; Dalal et al. 2023).3
These discrepancies are generally referred to as the “Ss
tension”. CMB lensing measurements that do not rely
on either Planck® or galaxy survey data have the poten-
tial to provide independent insights into this tension.”

With the advent of low-noise, high-resolution CMB
telescopes such as the Atacama Cosmology Telescope
(ACT), the South Pole Telescope (SPT), and the Planck
satellite, CMB lensing has progressed rapidly from first
detections to high-precision measurements. First direct

I See Appendix K and Figure 49 for a more accurate characteriza-
tion of the redshift origin of the CMB lensing signal we measure.
While the mean redshift of the lensing signal is at z ~ 2, the
lensing redshift distribution is characterized by a peak at z ~ 1
and a tail out to high z.

2 Note that, while CMB power spectrum measurements primarily
probe structure at z ~ 1100, they also have a degree of sensitiv-
ity to lower redshift structure, e.g., due to gravitational lensing
effects on the CMB power spectra.

3 We note that the best-constrained weak-lensing parameter Sg =
08 (©,/0.3)%% has a slightly different exponent than SEMBL =
08 (2m/0.3)%25 the best constrained parameter for CMB lens-
ing. These different definitions of Sg reflect the different de-
generacy directions in the og—2y, plane due to galaxy lensing
and CMB lensing being sensitive to different redshift ranges and
scales.

4 Planck also did not find a low value of Sg from CMB lensing
Planck Collaboration et al. (2020a); Carron et al. (2022).

5 For example, if ACT were to obtain a lower lensing amplitude,
in tension with that predicted from the measurements of the pri-
mordial CMB anisotropies, this could indicate new physics at
high redshifts and on large scales (or unaccounted-for systematic
effects in either data). On the other hand, if ACT lensing were
entirely consistent with CMB anisotropies but inconsistent with
other lensing measurements, this could imply either systematics
in the measurements or new physics that only affects very low
redshifts and/or small scales.
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evidence of CMB lensing came from cross-correlation
measurements with Wilkinson Microwave Anisotropy
Probe (WMAP) data (Smith et al. 2007); ACT reported
the first CMB lensing power spectrum detection and
the first constraints on cosmological parameters from
lensing spectra, including evidence of dark energy from
the CMB alone (Das et al. 2011; Sherwin et al. 2011).
Since then, lensing power spectrum measurements have
been made by multiple groups, with important advances
made by the SPT, POLARBEAR and BICEP/Keck
teams as well as ACT (van Engelen et al. 2012; Ade
et al. 2014; Story et al. 2015; BICEP2 Collaboration
et al. 2016; Sherwin et al. 2017; Omori et al. 2017; Wu
et al. 2019; Bianchini et al. 2020). The Planck team has
made key contributions to CMB lensing over the past
decade and has made the highest precision measurement
of the lensing power spectrum prior to this work, with
a 400 significance® measurement presented in their of-
ficial 2018 release (Planck Collaboration et al. 2020a)
and a 420 measurement demonstrated with the NPIPE
data (Carron et al. 2022). With Planck lensing and now
separately with the measurements presented in this pa-
per, CMB lensing measurements have achieved precision
that is competitive with any galaxy weak lensing mea-
surement. CMB lensing is thus one of our most powerful
modern probes of the growth of cosmic structure.

The goal of our work is to perform a new measure-
ment of the CMB lensing power spectrum with state-of-
the-art precision. This lensing spectrum will allow us to
perform a stringent test of our cosmological model, com-
paring our lensing measurements from redshifts z ~ 0.5—
5 with flat-ACDM 7 structure growth predictions based
on CMB power spectra probing primarily z ~ 1100. Our
lensing power spectrum will also constrain key parame-
ters such as the sum of neutrino masses, the Hubble pa-
rameter, and the curvature of the Universe, as explored
in our companion paper (Madhavacheril et al. 2023).

2. SUMMARY OF KEY RESULTS

In this paper, we present CMB lensing measurements
using data taken by ACT between 2017 and 2021. This
is part of the ACT collaboration’s Data Release 6 (DR6),
as described in detail in Section 3. Section 4 discusses
the simulations used to calculate lensing biases and co-
variances. In Section 5, we describe our pipeline used
to measure the CMB lensing spectrum. We verify our

6 Throughout this work, the significance of a lensing power spec-
trum measurement is defined as the ratio of the best-fit lensing
amplitude Ajens to the error on this quantity.

7 Unless otherwise stated we will refer to ACDM as an abbreviation
to flat-ACDM.

measurements with a series of map-level and power-
spectrum-level null tests summarised in Section 6 and
we quantify our systematic error estimates in Section
7. Our main CMB lensing power spectrum results are
presented in Section 8; readers interested primarily in
the cosmological implications of our work, rather than
how we perform our analysis, may wish to skip to this
Section. We discuss our results in Section 9 and con-
clude in Section 10. This paper is part of a larger set
of ACT DR6 papers, and is accompanied by two others:
Madhavacheril et al. (2023) presents the released DR6
CMB lensing mass map, and explores the consequences
for cosmology from the combination and comparison of
our measurements with external data; MacCrann et al.
(2023) investigates the levels of foreground biases — ar-
guably the most significant potential source of system-
atic errors — and ensures these are well-controlled in our
analysis.

We briefly summarize the key results of our work in
the following paragraphs. Of course, for a detailed dis-
cussion, we encourage the reader to consult the appro-
priate section of the paper.

e We reconstruct lensing and lensing power spec-
tra from 9400 deg® of temperature and polariza-
tion data. Our measurements are performed with
a new cross-correlation-based curved-sky lensing
power spectrum pipeline that is optimized for
ground-based observations with complex noise.

e An extensive suite of null tests and instrument sys-
tematic estimates shows no significant evidence for
any systematic bias in our measurement. These
tests form a key part of our blinded analysis
framework, which was adopted to avoid confirma-
tion bias in our work. Foregrounds appear well
mitigated by our baseline profile-hardening ap-
proach, and we find good consistency of our base-
line results with spectra determined using other
foreground-mitigation methods.

e We measure the amplitude of the CMB lensing
power spectrum at state-of-the-art 2.3% precision,
corresponding to a measurement signal-to-noise
ratio of 430. This signal-to-noise ratio indepen-
dently matches the 420 achieved in the latest
Planck lensing analysis and is competitive with the
precision achieved in any galaxy weak lensing anal-
ysis. Our lensing power spectrum measurement is
shown in Figure 1.

e The lensing power spectrum is well fit by a
ACDM cosmology and, in particular, by the
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Figure 1. The upper panel shows in red the ACT DR6 lensing potential power spectrum bandpowers for our baseline (combined
temperature and polarization) analysis. The bandpowers within the shaded regions are excluded in our baseline analysis that
only analyzes the conservative range of lensing multipoles 40 < L < 763, although we also include scales up to Lmax = 1300,
indicated with a lighter shading, in our extended-range analysis. We find good agreement with the ACDM theoretical predictions
based on either the Planck 2018 or ACT DR4 + WMAP CMB power spectra best-fit cosmology; the solid line shows the Planck
2018 prediction, which we emphasize does not arise from a fit to our data. Residuals of our measurement with respect to the
Planck prediction are shown in the lower panel of the figure. Our ACT lensing data fits a model based on a best-fit rescaling
of the Planck prediction with a lensing amplitude of Ajens = 1.013 4 0.023, and one based on a rescaling of the ACT DR4 +
WMAP prediction with Ajens = 1.005 4 0.023.
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Figure 2. Constraints in the 0s—, plane from our baseline ACT DR6 lensing power spectrum measurement (blue). These
can be compared with the predictions from standard ACDM structure growth and Planck or ACT DR4 + WMAP CMB power
spectra (orange open and blue open contours, respectively). In all cases, 68% and 95% contours are shown. Our results are in
excellent agreement with Planck (or ACT DR4 + WMAP) and ACDM structure growth. The parameter combination measured
best by CMB lensing alone S§™MPY = o5 (2,,/0.3)°*° is measured to be S§™MBY = 0.818 & 0.022 and the individual parameters
are constrained to €,, = 0.355 £ 0.178 and o = 0.814 =+ 0.099.



ACT DR6 LENSING POWER SPECTRUM 7

Planck 2018 CMB power spectrum model. Fit-
ting a lensing amplitude that rescales the lensing
power spectrum from this model, we obtain a con-
straint on this amplitude of Ajens = 1.013 +0.023.
If we fit instead to the best-fit model from ACT
DR4 + WMAP power spectra, we obtain a lensing
amplitude of Ajens = 1.005 = 0.023.

e From our measurement of the DR6 lensing
power spectrum alone, we measure the best-
constrained parameter combination® SMBL =
o5 (2,/0.3)" as SEMBL — (.818 + 0.022. This
key result is illustrated in Figure 2.

e We combine ACT DR6 and Planck 2018 CMB
lensing power spectrum observations, accounting
for the appropriate covariances between the two
measurements. For this combined dataset, we ob-
tain a constraint of SYMBL = 0.813 £ 0.018.

e All our results are fully consistent with expecta-
tions from Planck 2018 or ACT DR4 + WMAP
CMB power spectra measurements and standard
ACDM structure growth. This is an impres-
sive success for the standard model of cosmology:
with no additional free parameters, we find that
a ACDM model fit to CMB power spectra prob-
ing (primarily) z ~ 1100 correctly predicts cosmic
structure growth (and lensing) down to z ~ 0.5-5
at 2% precision.

e We find no evidence for tensions in structure
growth and we do not see a suppression of the
amplitude of cosmic structure at the redshifts and
scales we probe (z ~ 0.5-5 on near-linear scales).
This has implications for models of new physics
that seek to explain the Sy tension: such models
cannot strongly affect linear scales and redshifts
z ~ 0.5-5 or above, although new physics affect-
ing primarily small scales or low redshifts might
evade our constraints.

3. CMB DATA

ACT was a six-meter aplanatic Gregorian telescope

located in the Atacama Desert in Chile. The Advanced
ACTPol (AdvACT) receivers fitted to the telescope were
equipped with arrays of superconducting transition-
edge-sensor bolometers, sensitive to both temperature

8 The degeneracy between og and €, prevents strong constraints
on either of these parameters individually, and indeed (although
we report them in the figure caption) any such constraints derived
will depend strongly on the prior ranges; in order to break the
degeneracy between these two parameters we combine with BAO
as shown in the companion paper (Madhavacheril et al. 2023).

and polarization at frequencies of 30, 40, 97, 149 jand
225 GHz® (Fowler et al. 2007; Thornton et al. 2016).
This analysis focuses on data collected from 2017 to 2021
covering two frequency bands f090 (77-112 GHz), 150
(124-172 GHz). The observations were made using three
dichroic detector modules, known as polarization arrays
(PA), with PA4 observing in the {150 (PA4 f150) and
220 (PA4 £220) bands; PA5 in the f090 (PA5 £090) and
f150 (PA5 150) bands, and PA6 in the 090 (PA6 f090)
and f150 (PA6 f150) bands. We will refer to these data
and the resulting maps as DR6; although further refine-
ments and improvements of the DR6 data and sky maps
can be expected before they are finalized and released,
extensive testing has shown that the current versions
are already suitable for the lensing analysis presented in
this paper. For arrays PA4-6, we use the DR6 night-
time data and the f090 and f150 bands only. Although
including additional datasets in our pipeline is straight-
forward, this choice was made because daytime data re-
quire more extensive efforts to ensure instrumental sys-
tematics (such as beam variation) are well controlled and
because including the 220 band adds analysis complex-
ity while not significantly improving our lensing signal-
to-noise ratio. We, therefore, defer the analysis of the
daytime and {220 data to future work.

3.1. Maps

The maps were made with the same methodology as
in Aiola et al. (2020); they will be described in full detail
in Naess et al. (2023). To summarize briefly, maximum-
likelihood maps are built at 0.5" resolution using 756
days of data observed in the period 2017-05-10 to 2021-
06-18. Samples contaminated by detector glitches or the
presence of the Sun or Moon in the telescope’s far side-
lobes are cut, but scan-synchronous pickup, like ground
pickup, is left in the data since it is easier to characterize
in map space.

The maps of each array-frequency band are made sep-
arately, for a total of five array-band combinations. For
each of these, we split the data into three categories
due to differences in systematics and scanning patterns:
night, day-deep and day-wide. Of these categories, night
makes up 2/3 of the statistical power and, as previously
stated, is the only dataset considered in this analysis.

Each set of night-time data is split into eight sub-
sets with independent instrument and atmospheric noise
noise. These data-split maps are useful for character-
izing the noise properties with map differences and for
applying the cross-correlation-based estimator described

9 In the following, we denote them 030, f040, f090, f150 and £220.
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in Section 5.8. In total, for this lensing analysis we use
40 separate night split maps in the f090 and f150 bands.

The data used in this analysis initially cover approxi-
mately 19 000 deg2 before Galactic cuts are applied and
have a total inverse variance of 0.55/nK? for the night-
time data. Figure 3 shows the sky coverage and full-
survey depth of ACT DR6 night-time observations.

In addition to the maps of the CMB sky, ancillary
products are produced by the map-making algorithm.
One such set of products is the “inverse-variance maps”
denoted by h, which provide the per-pixel inverse noise
variance of the individual array-frequencies.

3.2. Beams

The instrumental beams are determined from dedi-
cated observations of Uranus and Saturn. The beam es-
timation closely follows the method used for ACT DR4
(Lungu et al. 2022). In short, the main beams are mod-
elled as azimuthally symmetric and estimated for each
observing season from Uranus observations. An addi-
tional correction that broadens the beam is determined
from point source profiles; this correction is then in-
cluded in the beam. Polarized sidelobes are estimated
from Saturn observations and removed during the map-
making process. Just as the five observing seasons that
make up the DR6 dataset are jointly mapped into eight
disjoint splits of the data, the per-season beams are also
combined into eight per-split beams using a weighted
average that reflects the statistical contribution of each
season to the final maps (determined within the foot-
print of the nominal mask used for this lensing analysis).
One notable improvement over the DR4 beam pipeline
is the way the frequency dependence of the beam is
handled. We now compute, using a self-consistent and
Bayesian approach, the scale-dependent colour correc-
tions that convert the beams from describing the re-
sponse to the approximate Rayleigh—Jeans spectrum
of Uranus to one describing the response to the CMB
blackbody spectrum. The formalism will be described
in a forthcoming paper (Hasselfield et al. 2023). The
CMB colour correction is below 1% for the relatively
low angular multipole limit ¢,,,x used in this paper.

The planet observations are also used to quantify
the temperature-to-polarization leakage of the instru-
ment. The procedure again follows the description in
Lungu et al. (2022). To summarize, Stokes @ and U
maps of Uranus are constructed for each detector ar-
ray and interpreted as an estimate of the instantaneous
temperature-to-polarization leakage. After rotating the
@ and U maps to the north pole of the standard spher-
ical coordinate system an azimuthally symmetric model
is fitted to the maps. The resulting model is then con-

verted to a one-dimensional leakage beam in harmonic
space: B} 7¥ and B} 7P, which relates the Stokes I sky
signal to leakage in the E- or B-mode linear polarization
field.

3.3. Calibration and transfer function

Our filter-free, maximum-likelihood map-making
should ideally be unbiased, but that requires having the
correct model for the data. In practice, subtle model
errors bias the result. The following two main sources
of bias have been identified (Naess & Louis 2022).

1. Sub-pixel error: the real CMB sky has infinite
resolution while our nominal maps are made at
0.5’ resolution. While we could have expected this
only to affect the smallest angular scales, the cou-
pling of this model error with down-weighting of
the data to mitigate effects of atmospheric noise
leads to a deficit of power on the largest scales of
the maps.

2. Detector gain calibration: inconsistent detector
gains can also cause a lack of power in our maps
at f090 and 150 on large angular scales. This in-
consistency arises due to errors in gain calibration
at the time-ordered-data (TOD) processing stage.
The current DR6 maps'® use a preliminary cal-
ibration procedure; alternative calibration proce-
dures are currently being investigated to mitigate
this effect.

To assess the impact of the loss of power at large an-
gular scales on the lensing power spectrum, a multipole-
dependent transfer function t? is calculated at each
frequency by taking the ratio of the corresponding
ACT CMB temperature bandpowers CﬁCTXACT and
the ACT—Planck (NPIPE) temperature cross-correlation
bandpowers C?CTXP:

CACTXACT
th = o (1)
L ACTxP *
¢
Here C?CTXACT is a noise-free cross-spectrum be-

tween data splits and Cf‘CTXP is computed by cross-
correlating with the Planck map which is nearest in fre-
quency.

10 This analysis uses the first science-grade version of the ACT DR6
maps, labeled dr6.01. Since these maps were generated, we have
made some refinements to the map-making that improve the
large-scale transfer function and polarization noise levels, and
include data taken in 2022. We expect to use a second version
of the maps for further science analyses and for the DR6 public
CMB data release.
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Figure 3. Sky coverage and full survey depth of the ACT DR6 night-time observations in equatorial coordinates. Here the
z-axis gives right ascension and the y-axis indicates declination. The background grayscale map corresponds to the Planck
353GHz intensity. Coloured lines are the depth contours with the numbers corresponding to the noise levels in pK-arcmin units.
The odd and even numbers have different thickness to help distinguish contours with similar colour.
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Figure 4. The DR6 lensing convergence map filtered with a signal-over-noise (Wiener) filter in order to highlight the signal-
dominated scales. The coordinate system is the same as in Figure 3. We note that stretching features in the lower part of the map
are due to cylindrical projection. This map is produced using the cross-correlation-based estimator described in Section 5.8.1,
which avoids using data with the same noise realization, and provides a high-fidelity mapping of the dark matter distribution
over 23 % of the sky. The gray-scale has white corresponding to regions with high matter density and dark to under-dense
regions. Our companion paper, Madhavacheril et al. (2023), describes this lensing map in detail. We show the fiducial analysis
mask in orange as well as two additional masks used for consistency tests as described in Sections 6.5.6 and 6.5.8.

A logistic function with three free parameters is fit to with Planck, C?CTXP’Af, at intermediate multipoles. In
the above t{. We then divide the temperature maps in these DR6 maps, the transfer functions approach unity
harmonic space by the resulting curve, Ty, — Tom/ t{, as ¢ increases, and eventually plateau at this value for
in order to deconvolve the transfer function. Due to the £ > 800 and ¢ > 1250 at f090 and {150, respectively; we
modest sensitivity of our lensing estimator to low CMB therefore use the multipoles 800-1200 at f090 and 1250—
multipoles, deconvolving this transfer function results in 1800 at f150 to determine the calibration factors ca, by
only a negligible change in the lensing power spectrum minimizing the following x?:
amplitude, AAjeps = 0.004 (corresponding to less than ek man
0.20). Therefore, we have negligible sensitivity to the % %
details of the transfer function. *(ear) Z Z Ag,(ca) ]Zb 4 Ae' (cac)(2)

. . . £min g _pmin
We determine calibration factors ca, at each array- o=t 4=t

frequency combination Af of ACT relative to Planck by
minimizing differences between the ACT temperature
ACTXACT.Ar - and the cross-spectrum

where the sum is over bandpowers. Here, the difference

bandpowers are given by

power spectra, C,

_ ACTxACT,A¢ ACTxP,A¢
Ay, = caCyr -C, ; 3)
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and EZi% is their covariance matrix computed analyti-
cally, using noise power spectra measured from data, at
ca, = 1.

The errors we achieve on the calibration factors are
small enough that they can be neglected in our lensing
analysis; see Appendix C.1 for details.

3.4. Self-calibration of polarization efficiencies

Polarization efficiencies scale the true polarization sig-
nal on the sky to the signal component in the ob-
served polarization maps. Assuming incorrect polar-
ization efficiencies in the sky maps leads to biases
in the lensing reconstruction amplitude because our
quadratic lensing estimator uses up to two powers of
the mis-normalized polarization maps; for example,
polarization-only quadratic lensing estimators will be bi-
ased by the square of the efficiency error (pﬁé)z.

However, the normalization of the estimator involves
dividing the unnormalized estimator, which is quadratic
in CMB maps, by fiducial ACDM Cys. If these fiducial
ACDM spectra are rescaled by the same two powers of
the efficiency error then the estimator will again become
unbiased. In other words, as long as we ensure that the
amplitude of the spectra used in the normalization is
scaled to be consistent with the amplitude of spectra of
the data, our estimator will reconstruct lensing without
any bias. The physical explanation of this observation
is that lensing does not affect the amplitude of the CMB
correlations, only their shapes.

To ensure an unbiased polarization lensing estimator,
even though the ACT blinding policy in Section 6.3 does
not yet allow either a direct comparison of polarization
power spectra of ACT and Planck or a detailed compar-
ison of the ACT power spectra with respect to ACDM,
we employed a simple efficiency self-calibration proce-
dure, which aims to ensure amplitude consistency be-
tween fiducial spectra and map spectra. The procedure
is explained in detail in Appendix A. In short, we fit
for a single amplitude scaling peAé between our data po-
larization power spectra and the fiducial model power
spectra assumed for the normalization of the estimator.
We then simply correct the polarization data maps by
this amplitude scaling parameter to ensure an unbiased
lensing measurement. We verify in Appendix C.4 that
the uncertainties in this correction for the polarization
efficiencies are negligible for our analysis.

3.5. Point-source subtraction

Point-source-subtracted maps are made using a two-
step process. First, we run a matched filter on a version
of the DR5 ACT+ Planck maps (Naess et al. 2020) up-
dated to use the new data in DR6, and we register ob-

jects detected at greater than 40 in a catalog for each fre-
quency band. The object fluxes are then fit individually
in each split map using forced photometry at the catalog
positions and subtracted from the map. This is done to
take into account the strong variability of the quasars
that make up the majority of our point source sample.
Due to our variable map depth, this procedure results
in a subtraction threshold that varies from 4-7mJy in
the f090 band, and 5-10 mJy in the f150 band. An extra
map processing step to reduce the effect of point-source
residuals not accounted for in the map-making step is
described in Section 5.2, below.

3.6. Cluster template subtraction

Our baseline analysis mitigates biases related to the
thermal Sunyaev—Zeldovich (tSZ) effect by subtracting
models for the tSZ contribution due to galaxy clus-
ters. We use the NEMO!! software, which performs a
matched-filter search for clusters via their tSZ signal
(see Hilton et al. 2021 for details). We model the clus-
ter signal using the Universal Pressure Profile (UPP)
described by Arnaud et al. (2010) and construct a set of
15 filters with different angular sizes by varying the mass
and redshift of the cluster model. We construct cluster
tSZ model maps for both ACT frequencies by placing
beam-convolved UPP-model clusters with an angular
size corresponding to that of the maximal signal-to-noise
detection across all 15 filter scales as reported by NEMO,
for all clusters detected with signal-to-noise ratio (SNR)
greater than 5 on the ACT footprint. This model image
is then subtracted from the single-frequency ACT data
before coadding. Further details about point-source and
cluster template subtraction can be found in MacCrann
et al. (2023).

4. SIMULATIONS

Our pipeline requires ensembles of noise and signal
simulations. Because ACT is a ground-based telescope,
its dominant noise component is slowly varying, large-
scale microwave emission by precipitable water vapour
in the atmosphere (Errard et al. 2015; Morris et al.
2022). When combined with the ACT scanning strategy,
the atmospheric noise produces several nontrivial noise
properties in the ACT DR6 maps. These include steep,
red, and spatially varying noise power spectra, spatially
varying stripy noise patterns, and correlations between
frequency bands (Atkins et al. 2023).

Simulating the complicated ACT DR6 noise necessi-
tated the development of novel map-based noise mod-
els, as described in Atkins et al. (2023). In our main

M https://nemo-sz.readthedocs.io/
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analysis, we utilize noise simulations drawn from that
work’s “isotropic wavelet” noise model '2. This model
builds empirical noise covariance matrices by perform-
ing a wavelet decomposition on differences of ACT map
splits. It is designed to target the spatially varying
noise power spectra, which makes it an attractive choice
for our lensing reconstruction pipeline, which, in the
large-lens limit, approximates a measurement of the
spatially-varying CMB power spectrum (Bucher et al.
2012; Prince et al. 2018). In Appendix F we show that
our cross-correlation-based lensing estimator (Section
5.8.1) is robust to the choice of noise model, producing
consistent results when the isotropic wavelet model is
replaced with one of the other noise models from Atkins
et al. (2023) (the “tiled” or “directional wavelet” mod-
els); unlike the isotropic wavelet model, these addition-
ally model the stripy correlated noise features present
in the ACT noise maps. We also emphasize that since
the cross-correlation-based estimator is immune to noise
bias and hence insensitive to assumptions of the noise
modelling, accurate noise simulations are only required
in our pipeline for estimation of the lensing power spec-
trum’s covariance matrix; in contrast, for bias calcula-
tion steps, accurate noise simulations are not needed.
We then generate full-sky simulations of the lensed
CMB (Lewis 2005) and Gaussian foregrounds (obtained
from the average of foreground power spectra in the
Stein et al. 2020 and Sehgal et al. 2010 simulations) at
a resolution of 0.5’ and apply a taper mask at the edge
with cosine apodization of width 10’. We apply the cor-
responding pixel window function to this CMB signal in
Fourier space and then downgrade this map to 1’ reso-
lution. We add this signal simulation to the noise simu-
lation described above. The full simulation power spec-
tra, including noise power, were found to match those of
the data to within 3%.'3 For each array-frequency, we
generate 800 such simulated sky maps that are used to
calculate multiplicative and additive Monte-Carlo (MC)
biases as well as the covariance matrix (see Section 5.11).
We also generate a set of noiseless CMB simulations
used to estimate the the mean-field correction and the
RDNO bias (see Section E.1) and two sets of noiseless
CMB simulations with different CMB signals but with

12 We use the mnms (Map-based Noise ModelS) code available at

https://github.com/simonsobs/mnms.

13 Note that our blinding policy allows us to compare noise-biased
TT power spectra above ¢ = 500 to fiducial noise-biased power
spectra. We also note that, at this level of agreement, our bias
subtraction methods such as RDNO (see Appendix E.1) are ex-
pected to perform well. We also note that, since these simulations
are not used to estimate foreground biases, we may approximate
them safely as Gaussian.

a common lensing field used to estimate the N7 bias (see
Section E.2). In Section 9.3.1 we also make use of 480
FFP10 CMB simulations (Planck Collaboration et al.
2020b) to obtain an accurate estimate of the covariance
between ACT DR6 lensing and Planck NPIPE lensing.

5. PIPELINE AND METHODOLOGY

This section explains the reconstruction of the CMB
lensing map and the associated CMB lensing power
spectrum, starting from the observed sky maps.

5.1. Downgrading

The sky maps are produced at a resolution of 0.5,
but because our lensing reconstruction uses a maximum
CMB multipole of #,.x = 3000, a downgraded pixel
resolution of 1’ is sufficient for the unbiased recovery
of the lensing power spectrum and reduces computation
time. Therefore, we downgrade the CMB data maps
by block-averaging neighbouring CMB pixels. Similarly,
the inverse-variance maps are downgraded by summing
the contiguous full-resolution inverse-variance values.

5.2. Compact-object treatment

The sky maps are further processed to reduce the
effect of point sources not accounted for in the map-
making step. As described in Section 3.5, we work with
maps in which point sources above a threshold of roughly
4-10mJy (corresponding to an SNR, threshold of 40)
have been fit and subtracted at the map level. However,
very bright and /or extended sources may still have resid-
uals in these maps. To address this, we prepare a catalog
of 1779 objects for masking with holes of radius 6’: these
include especially bright sources that require a special-
ized point-source treatment in the map-maker (see Aiola
et al. 2020; Naess et al. 2020), extended sources with
SNR > 10 identified through cross-matching with exter-
nal catalogs, all point sources with SNR > 70 at f150
and an additional list of locations with residuals from
point-source subtraction that were found by visual in-
spection. We include an additional set of 14 objects for
masking with holes of radius 10’: these are regions of
diffuse or extended positive emission identified by eye
in matched-filtered co-adds of ACT maps. They in-
clude nebulae, Galactic dust knots, radio lobes and large
nearby galaxies. We subsequently inpaint these holes us-
ing a constrained Gaussian realisation with a Gaussian
field consistent with the CMB signal and noise of the
CMB fields and matching the boundary conditions at
the hole’s edges (Bucher & Louis 2012; Madhavacheril
et al. 2020b). This step is required to prevent sharp
discontinuities in the sky map that can introduce spu-
rious features in the lensing reconstruction. The total
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compact-source area inpainted corresponds to a sky frac-
tion of 0.147%. Further, more detailed discussion of
compact object treatment can be found in (MacCrann
et al. 2023).

5.3. Real-space mask

To exclude regions of bright Galactic emission and re-
gions of the ACT survey with very high noise, we prepare
edge-apodized binary masks over the observation foot-
print as follows. We start with Galactic-emission masks
based on 353 GHz emission from Planck PR2,* rotating
and reprojecting these to our Plate-Carrée cylindrical
(CAR) pixelization in Equatorial coordinates. We use a
Galactic mask that leaves (in this initial step) 60% of the
full sky as our baseline; we use a more conservative mask
retaining initially 40% of the full sky for a consistency
test described in Section 6.5.8. From here on we de-
note the masks constructed using these Galactic masks
as 60% and 40% masksGalactic masks. We additionally
apply a mask that removes any regions with root-mean-
square map noise larger than 70 pK-arcmin in any of our
input f090 and f150 maps; this removes very noisy re-
gions at the edges of our observed sky area. Regions with
clearly visible Galactic dust clouds and knots are addi-
tionally masked, by hand, with appropriately-sized cir-
cular holes.'® After identifying these spurious features
in either match-filtered maps or lensing reconstructions
themselves, masking them removes a further sky frac-
tion of fa, = 0.00138. The resulting final mask is then
adjusted to round sharp corners. We finally apodize the
mask with a cosine-squared edge roll-off of total width of
3deg. The total usable area after masking is 9400 deg?,
which corresponds to a sky fraction of f., = 0.23.

5.4. Pizel window deconvolution

The block averaging operation used to downgrade the
sky maps from 0.5’ to 1’ convolves the downgraded map
with a top-hat function that needs to be deconvolved.'®
We do this by transforming the temperature and polar-
ization maps X to Fourier space,'” giving FFT(X), and
dividing by the sinc(f,) and sinc(f,) functions, where

14 HFT Mask_GalPlane-apo0_2048_R2.00.fits

15 Null tests, such as the Galactic mask null tests in Section 6.5.8
and the consistency between temperature and polarization lens-
ing bandpowers in Section 6.5.1, show that we are insensitive to
details of the treatment of Galactic knots.

16 Of course, even without downgrading, a pixel window function is
present, although it has less impact on the scales of interest.

17 In this paper, we distinguish between Fourier space, obtained
from a 2D Fourier transform of the cylindrically projected CAR
maps, and harmonic space, which is shorthand for spherical har-
monic space

f» and f, are the dimensionless wavenumbers'®

FFT(X)

Xpixcl—dcconvolvcd =IFFT|——7
sine( fy)sine(fy) )

(4)

where IFFT denotes the inverse (discrete) Fourier trans-
form. For simplicity, X without a superscript used in
the subsequent sections will refer to the pixel-window-
deconvolved maps unless otherwise stated.

5.5. Fourier-space mask

Contamination by ground, magnetic, and other types
of pick up in the data due to the scanning of the ACT
telescope manifests as excess power at constant declina-
tion stripes in the sky maps and thus can be localised in
Fourier space. We mask Fourier modes with [£,] < 90
and |[¢,] < 50 to remove this contamination as in Louis
et al. (2017); Choi et al. (2020). This masking is carried
out both in the data and in our realistic CMB simula-
tions. We demonstrate in Appendix D that this Fourier-
mode masking reduces the recovered lensing signal by
around 10%; we account for this well-understood effect
with a multiplicative bias correction obtained from sim-
ulations.

5.6. Co-addition and noise model

In the following section, we describe the method we
use to combine the individual array-frequency to form
the final sky maps used for the lensing measurement.

We first define for each array-frequency’s data the
map-based coadd map ¢, an unbiased estimate of the
sky signal, by taking the inverse-variance-weighted av-
erage of the eight split maps m;:

=7
. hz * i
c= Zzz—:oi_%@ . (5)
=0 "7

Note that in the above equation, the multiplication (*)
and division denote element-wise operations. These
coadd maps provide our best estimate of the sky sig-
nal for each array, and are used for noise estimation as
explained below.

As we will describe in Section 5.8, the cross-
correlation-based estimator we use requires the con-
struction of four sky maps d with independent noise.
We construct these maps d in the same manner as
Equation (5), coadding together split j and j + 4 with
j€{0,1,2,3}.

18 f. and fy range from 0 to 0.5 and are generated using the numpy

routine numpy.fft.rfftfreq.
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5.6.1. Inverse-variance coaddition of the array-frequencies

We  combine the different coadded data
maps da, with  array-frequencies  Ag €
{PA4 {150, PA5 {090, PA5 150, PA6 090, PA6 {150}
into single CMB fields M;X ., with X € (T,E,B)
on which lensing reconstruction is performed. The
coadding of the maps is done in spherical-harmonic

space,'?

-1
M = Y widy, (B (6)
Ag

where

o ()Y
w,t = =) 5 (7)
S (V) (B)

=

are the normalized inverse-variance weights in harmonic
space. These weights, giving the relative contribu-
tions of each array-frequency, are shown in Figure 5
and are constructed to sum to unity at each multi-
pole ¢. Note that a deconvolution of the harmonic
beam transfer functions B?f is performed for each array-
frequency?’. The noise power spectra N, éAf are obtained
from the beam-deconvolved noise maps of the individual
sky maps with the following prescription.

We construct a noise-only map, n; by subtracting the
pixel-wise coadd ¢ of each map?' from the individual
data splits m;; this noise-only map is given by:

n; =m; — c. (8)

We then transform the real-space noise-only maps n;
into spherical-harmonic space ngzzl and use these to com-
pute the noise power spectra used for the weights in
Equation (7). Since we have k = 8 splits, we can reduce
statistical variance by finding the average of these noise

1.0
150
— 090
0.8+ PA4 f150
-—- PA5 f090
PA5 150
0.6 1 —-= PA6 f090
L.
« PAG f150 |
Y
0448  TTTmmemeeeel
. . - . o ~~~\~\
0.2 -
0.0
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4

Figure 5. Maps from detector array-frequencies are com-
bined using a weighted average in harmonic space to form a
coadded sky map. This figure shows the weights applied to
the map from each array-frequency as a function of multi-
pole; the weights sum to unity at each multipole. The white
regions show the CMB scales used in our baseline analysis,
namely 600 < ¢ < 3000. The combined f090 and f150 weights
are shown in solid green and blue respectively. We note that
the PA4 f150 array map has the smallest weight (shown as
dotted light blue), less than 10%, while PA5 f090 map pro-
vides the largest contributions to our coadded map (with the
weight shown in dashed green).

spectra®?:
k l
LI 1 (@) (i)
N1 1 .
kG 21 2 2 et O)

where wy = [ d*n M?(n)/(4r) is the average value of
the second power of the mask M (n), which corrects for
the missing sky fraction due to the application of the
analysis mask, as described in Section 5.3. The resulting
noise power is further smoothed over by applying a linear
binning??® of Al =14 .

The same coadding operation is performed on sim-
ulations containing lensed sky maps and noise maps.
The resulting suite of coadded CMB simulations is used
throughout our baseline analysis.

19 The harmonic-space coadding we perform here does not fully
account for spatial inhomogeneities in the noise, as opposed to
the coadd method presented in Naess et al. (2020). However, this
is justified because all array-frequencies have similar spatial noise
variations as they are observed with the same scanning pattern.
Hence the spatial part should approximately factor out.

20 We use the same beam for temperature and polarization and
neglect T' — P leakage beams. The latter is justified in Section
C.2, where we show that including 7" — P has a small impact on
the lensing bandpowers (a shift of less than 0.1%).

21 For simplicity, we suppress the subscripts indicating the array-
frequency (Ay).

5.6.2. Internal linear combination coaddition

22 The factors of 1/[k(k — 1)] are explained as follows: the 1/(k—1)
factor converts the null noise power per split to an estimate of
the coadd noise power; this is (k — 1) since the coadd map enters
into n removing 1 degree of freedom. The additional 1/k averages
over 8 independent realizations. Refer to (Atkins et al. 2023) for
a detailed discussion.

23 We checked that the resulting coadded map is stable to different
choices of binning A/ as long as the resultant Ny are smooth.
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As an alternative to our baseline approach of combin-
ing only the ACT maps in harmonic space, we also ex-
plore a frequency cleaning approach which includes high-
frequency data from Planck (353 GHz and 545 GHz).
This approach is described in detail in MacCrann et al.
(2023) but, to summarise, we produce harmonic-space
constrained internal linear combinations (ILC) of the
ACT and high-frequency Planck maps that minimise
the variance of the output maps while also approx-
imately deprojecting the cosmic infrared background
(CIB). Comparisons of the consistency of this approach
against the baseline method are described in Section
6.5.3 and provide a useful test of our methods for miti-
gating foreground biases.

5.7. Filtering

Optimal quadratic lensing reconstruction requires as
inputs Wiener-filtered X = T, FE and B CMB multi-
poles and inverse-variance-filtered maps (the latter can
be obtained from the former by dividing the Wiener-
filtered multipoles by the fiducial lensed power spectra
("1 before projecting back to maps). The filtering step
is important because an optimal analysis of the observed
CMB sky requires both the downweighting of noise and
the removal of masked areas (Hanson et al. 2011).

We write the temperature T' and polarization 1o P =
Q@ £ iU (beam- and pixel-deconvolved) data maps as

T TEm
oP | =Y | Eyp | + noise, (10)
_oP B

where the matrix ) contains the spin-weighted spherical
harmonic functions to convert the spherical harmonics
T, Eom and By, to real-space maps over the unmasked
region. The real-space covariance matrix of the data
maps is

C= y(cﬁdyT + Cnoi567 (11)

where Cfi is the matrix of our fiducial lensed CMB spec-
tra with elements

CIT CTE 0
[Cﬁd]€m7€’m’ - 6@@’6mm’ C@TE CEEE 0 5 (12)
0o o0 CpP

and Cheise is the real-space noise covariance matrix. The
Wiener-filtered multipoles are then obtained as

T
XNV = cldytc=1| ,p |. (13)
oP

For our main analysis, we employ an approximate

form of the Wiener filter that follows from the rearrange-
ment

(CﬁdyT071 _ (((Cﬁd)*l + Nfl)_l yi_cfl
= (e + N‘l)_l NI ()
_ Cfid (Cﬁd i N)A i (ny)q 7 (14)

where N1 = YfC~! V. The operation Yt (ny)_l

noise

takes the (pseudo-)spherical transform of the masked
maps, with YVt = diag(1,2,2)6®(n — A’). Our ap-
proximate form of the Wiener filter takes the form

T
XZXmF ~ (Cﬁd]_—yT (ny)fl WP |, (15)
_oP

where F is the filtering operation applied to the tem-
perature and polarization spherical harmonics. The
filters used are diagonal in harmonic space such that
each component of X € T, E, B is filtered separately by
FY = 1/(CXX 4 N},

The above diagonal filtering neglects small amounts

of mode mixing due to masking, does not account for
noise inhomogeneities over the map, and also ignores
cross-correlation in CLTE . However, it has the advantage
of allowing the temperature and polarization map to be
filtered independently and is a good approximation on
scales for which the CMB fields are signal dominated,
and in situations when the noise level is close to homo-
geneous, as is the case for ACT DR6.2* This method
is also significantly faster than using the more optimal
filter in Equation (13), which requires evaluation of the
inverse of the covariance matrix C' with, for example,
conjugate-gradient methods. Therefore, for the main
analysis, we employ this diagonal filter.

The inverse-variance filtered maps

X(n)=C'| ,P (16)

24 The sky maps used have only a factor of two variation on the
spatial dependence of the depth after the cuts done in Fig. 3.
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are related to the Wiener-filtered multipoles XZXIF in
Equation (15) via
X(n) = VYN TIVEC)TIXET
11
= dlag (17 By ) y(cﬁd)_lxlxvnF
2°2
11
=di 1 Xom, 17
o (11, 1) 5 "

where, in the last line, Xy, = (Cid)=1XVF,

5.8. Lensing reconstruction

In this section, we describe the methodology used
to estimate CMB lensing using the quadratic estima-
tor (QE). Our baseline methodology closely follows the
pipeline used in Planck Collaboration et al. (2020a),
albeit with key improvements in areas such as fore-
ground mitigation (using a profile-hardened estimator
that is more robust to extragalactic foregrounds, see Sec-
tion 5.8.2) and immunity to noise modeling (using the
more robust cross-correlation-based estimator described
in Section 5.8.3).

5.8.1. Standard Quadratic Estimator

A fixed realization of gravitational lenses imprints pre-
ferred directions into the CMB, thereby breaking the
statistical isotropy of the unlensed CMB. Mathemati-
cally, the breaking of statistical isotropy corresponds to
the introduction of new correlations between different,
formerly independent modes of the CMB sky, with the
correlations proportional to the lensing potential ¢p ;.
Adopting the usual convention of using L and M to refer
to lensing multipoles and ¢ and m to CMB multipoles,

J

we may write the new, lensing-induced correlation be-
tween two different CMB modes Xy, ,,, and Yp,,,, as
follows :

IR 4 L
<X€1m1}/€2m2>CMB = Z(_l)M < ! ? )
LM mi Mmoo —M
X fixtp oo (18)

The average ( )cmp is taken over CMB realizations
with a fixed lensing potential ¢. Here the fields
Xom,Yem € {Ttm, Eem, Bem} and the bracketed term
is a Wigner 3j symbol. The response functions f
for the different quadratic pairs XY can be found in
Okamoto & Hu (2003) and are linear functions of the
CMB power spectra (the lensed spectra are used to can-
cel a higher-order correction Lewis et al. 2011).

The correlation between different modes induced by
lensing motivates the use of quadratic combinations of
the lensed temperature and polarization maps to recon-
struct the lensing field. Pairs of Wiener-filtered maps,
XWF " and inverse-variance-filtered maps, X, are pro-
vided as inputs to a quadratic estimator that recon-
structs an un-normalized, minimum-variance (MV) es-
timate of the spin-1 component of the real-space lensing
displacement field:

)=~ Y _ X(@)O.XVF](R).  (19)

s=0,£2

Here, 0 is the spin-raising operator acting on spin spher-
ical harmonics and the pre-subscript s denotes the spin
of the field. The gradients of the Wiener-filtered maps
are given explicitly by

[F X VE] (7 Z\/ 0+ D)TYNE Yo (a
[0 XV (7 Z\/€+2 (=D)[ENF —iBYF]_ Vi (R),
[0, XVF(n) = — Z\/eﬂ Y0+ 3)ENY +iBYF )3V (). (20)

The displacement field can be decomposed into the
gradient ¢ and curl €2 components by expanding in spin-
weighted spherical harmonics:

-5y <¢LM iszM):tlYLM(ﬁ)~ (21)

ERY, L(L+1)

(

Hence, by taking spin-+1 spherical-harmonic transforms
of ild(ﬁ), where _;d = 162*, and taking linear combi-
nations of the resulting coefficients, we can isolate the
gradient and curl components. The gradient component
¢ contains the information about lensing that is the
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focus of our analysis. 2° The curl Qzas is expected to

be zero (up to small post-Born corrections; e.g., Pratten
& Lewis 2016 and references therein) and can therefore
serve as a useful null test, as discussed in Section 6.4.1.

Even in the absence of lensing, other sources of sta-
tistical anisotropy in the sky maps, such as masking or
noise inhomogeneities, can affect the naive lensing esti-
mator. One can correct such effects by subtracting the
lensing estimator’s response to such non-lensing statis-
tical anisotropies, which is commonly referred to as the
mean-field (¢r37). We estimate this mean-field signal
by averaging the reconstructions produced by the naive
lensing estimator from 180 noiseless?® simulations, each
with independent CMB and lensing potential realiza-
tions. This averaging ensures that only the response
to spurious, non-lensing statistical anisotropy remains
(as the masking is the same in all simulations, whereas
CMB and lensing fluctuations average to zero). Sub-
tracting this mean-field leads us to the following lensing
estimator:

b — b — (Prum)- (22)

The temperature-only (s = 0) and polarization-only
(s = 42) estimators®” in Equation (19) are combined at
the field level 28 to produce the full un-normalized MV
estimator.

Expanding the Wiener-filtered fields in terms of the
inverse-variance-filtered multipoles Xy, and extracting
the gradient part, approximately recovers the usual es-
timators ¢33, of Okamoto & Hu (2003), where XY €
{TT,TE,ET,EE, EB, BE}. More specifically, the MV
estimator presented here is approximately equivalent?’
to combining the individual estimators ¢3});, with a
weighting given by the inverse of their respective nor-
malization (R¥XY)~%:

o = (REV)TH D diiar (23)
XY

25 Here we adopt the notation of using the overbar to refer to un-

normalized quantities.

26 The reason we do not include instrumental noise here is that we
use the cross-correlation-based estimator, presented in Section
5.8.3, which cancels the noise contribution to the mean-field.

27 Note that the s = 0 estimator includes part of the standard Hu
and Okamoto T'F estimator (with E on the gradient leg) through
the Wiener filter, and the s = 2 includes part of the usual TE and
T B estimators. When obtaining temperature-only estimators, we
therefore also set the input E-fields to zero.

28 As opposed to the alternative of combining at the lensing power
spectrum level.

29 Our implementation corresponds to the SQE estimator from
Maniyar et al. (2021), which is slightly sub-optimal compared
to Okamoto & Hu (2003).

Here, (RMV)~! is the MV estimator normalization
that ensures our reconstructed lensing field is un-
biased; by construction, it is defined via ¢y =
(REY)~H{pXY)omp. The normalization is given explic-
itly by .

MVy—1
) = s ®Ey

In the notation adopted here, the unnormalized esti-
mator gZ)L M is related to the normalized estimator QBL M
via the normalization Rzl as (ZASLM = RzlquM.

To first approximation, this normalization is cal-
culated analytically with curved-sky expressions from
Okamoto & Hu (2003). We generally use fiducial lensed
spectra in this calculation (as well as the filtering of
Eq. 12), which reduces the higher-order N(? bias to
sub-percent levels; however, for the TT estimator, we
use the lensed temperature-gradient power spectrum
CIVT to further improve the fidelity of the reconstruc-
tion (Lewis et al. 2011). This analytic, isotropic nor-
malization is fairly accurate, but it does not account for
effects induced by Fourier-space filtering and sky mask-
ing. Therefore, we additionally apply a multiplicative
Monte-Carlo (MC) correction AAYS™! to all lensing

(24)

estimators, so that ¢ry — AAIZIC’muquLM. This cor-

rection is obtained by first cross-correlating reconstruc-
tions from simulations with the true lensing map; we
then divide the average of the input simulation power
spectrum by the result, i.e.,

(c$?)
gy

AAYOm = (25)

In practice, this multiplicative MC correction is com-
puted after binning both spectra into bandpowers.

An explanation of the origin of the multiplicative MC
correction is provided in Appendix D: it is found to be
primarily a consequence of the Fourier-space filtering.

Having obtained our estimate of the lensing map in
harmonic space, ¢z, we can compute a naive, biased
estimate of the lensing power spectrum. Using two in-
stances of the lensing map estimates q@fﬁ and QAS%'AD/[, this
power spectrum is given by

L
CEGIR I8 = gy X RO
(26)
where wy = [ d*n M*(f)/(4), the average value of the
fourth power of the mask M (7), corrects for the miss-
ing sky fraction due to the application of the analysis
mask. In Equation (37), below, we will introduce a new

version of these spectra that ensures that only different
splits of the data are used in order to avoid any noise
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contribution. This will allow us to obtain an estimate
of the lensing power spectrum that is not biased by any
mischaracterization of the noise in our CMB observa-
tions.

Nevertheless, biases arising from CMB and lensing
signals still need to be removed from the naive lensing
power spectrum estimator. We discuss the subtraction
of these biases in Section 5.9.

5.8.2. Profile hardening for foreground mitigation

Extragalactic  foreground contamination  from
Sunyaev—Zel’dovich clusters, the cosmic infrared back-
ground, and radio sources can affect the quadratic
estimator and hence produce large biases in the recov-
ered lensing power spectrum if unaccounted for. For
our baseline analysis, we use a geometric approach to
mitigating foregrounds and make use of bias-hardened
estimators (Namikawa et al. 2013; Osborne et al. 2014;
Sailer et al. 2020). As with lensing, other sources of
statistical anisotropy in the map such as point sources
and tSZ clusters can be related to a response function
f¢,0,r @and a field sy describing the anisotropic spatial
dependence. Bias-hardened estimators work by recon-
structing simultaneously both lensing and non-lensing
statistical anisotropies and subtracting the latter, with a
scaling to ensure the resulting estimator has no remain-
ing response to non-lensing anisotropies. Explicitly, the
bias-hardened T'T part of the lensing estimator is given
by

2TT TT\—179:8 3
"TTBH _  PLm — (Ry") "Ry 5Lm

LM - 5 )
- (REP(RET) M (Ry) !

(27)

where R%S is the cross-response between the lensing
field 77, and the source field 515, and (R3)™! is the
normalization for the source estimator.

In our case, we optimise the response to the presence
of tSZ cluster “sources”, and as shown in Sailer et al.
(2023), this estimator is also effective in reducing the
effect of point sources by a factor of around five. The
cross-response function of this tSZ-profile-hardened es-
timator is given by

RO _ 1 3 foo 122 (28)

2L+ 1 42 205t Cgptal?

where C{ot®l = CTT + NIT is the total temperature
power spectrum including instrumental noise and f{?Z
is the response function to tSZ sources. This response
function requires a model for cluster profiles; we esti-
mate an effective profile from the square root of the
smoothed tSZ angular power spectrum (which is dom-
inated by the one-halo term) obtained from a WEBSKY

simulation (Sailer et al. 2020).

In the formalism presented here, the appropriately
normalized MV estimator, with the temperature esti-
mator part ‘hardened’ against tSZ, is obtained by first
subtracting the standard temperature lensing estima-
tor from the MV estimator and then adding back the
profile-hardened temperature estimator, i.e.,

MV 2TT
AII\//IJXV?BH — (Rlz/[\/)—l LM _ LM
R (R
~TT,BH
LM
Pra | (29
twin| ®

Both the investigation of foreground mitigation in
MacCrann et al. (2023), summarized in this paper in
7.1, and the foreground null tests discussed in Section
6 show that this baseline method can control the fore-
ground biases on the lensing amplitude Ajens to levels
below 0.20, where o is the statistical error on this quan-
tity.

5.8.3. Cross-correlation-based quadratic estimator

The lensing power spectrum constructed using the
standard QE is sensitive to assumptions made in simu-
lating and modelling the instrument noise used for calcu-
lating the lensing power-spectrum biases. This is despite
the use of realization-dependent methods, as described
in Appendix E.1 (which discusses power-spectrum bias
subtraction). Hence, in practice, we construct our lens-
ing power spectrum using lensing maps qAS(ﬁV)[XY recon-
structed from different data splits, indexed by ¢ and j,
which have independent noise. Using the shorthand
notation of QE(X4,Y?) for the quadratic estimator
(see Eq. 19) operating on two sky maps X4 and Y7,

A(L@[’XY is defined as

Y = SIQB(X,YI) + QXYL (30)

Note that this is symmetric under interchange of the
splits.

We use this cross-correlation-based estimator from
Madhavacheril et al. (2020a) with independent data
splits to ensure our analysis is immune to instrumen-
tal and atmospheric noise effects in the mean-field and
Ny (Gaussian) biases (introduced below in Section 5.9).
This makes our analysis highly robust to potential in-
accuracies in simulating the complex atmospheric and
instrumental noise in the ACT data.

The coadded, standard lensing estimator, equivalent
to Equation (23), which uses all the map-split combina-
tions, is given by

- 1 ~(i§),XY
M=o (31)
ij
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The corresponding estimate of the power spectrum from
XY and UV standard QEs is then

q%s (i), XY 2(kl),UV
42 L L?\/I LM ) (32)
ijkl

CPIXY,UV] =

This is modified by removing any terms where the same
split is repeated to give the cross-correlation-based esti-
mator:

CEIXYVUVI = 5 S R A,

i iEkAL

(33)
In this way, only lensing maps constructed from CMB
maps with independent noise are included, so noise
mis-modelling does not affect the mean-field estimation,
and any cross-powers between lensing maps that repeat
splits (and hence contribute to the Gaussian noise bias)
are discarded.

We can accelerate the computation of Equation (33)
following Madhavacheril et al. (2020a). We introduce
the following auxiliary estimators using different combi-
nations of splits:

17X, 1), XY
=6k — 6 Z¢( ; (34)
50 Ly e,
i XY i XY
i @
A(ng}“xy _ A([Q\,/[XY _ 7(725(11) XY (36)

in terms of which the cross-correlation-based estimator
may be written as

~ A 1 a2
CYPXXY,UV] = I[25601’4’( YRR TivAl)

XY i) xX,UV
64ZC¢¢’ XY 60t

+ 42 Ci’d”’ XY
1<j

(37)

Finally, the baseline lensing map we produce, which
again avoids repeating the same data splits in the esti-
mator, is given by

= Zas (XY (38)
z<j

The resulting lensing map is shown in CAR projection
in Figure 4, with the map filtered to highlight the signal-
dominated scales.

5.9. Bias Subtraction

Naive lensing power spectrum estimators based on the
auto-correlation of a reconstructed map are known to be
biased due to both reconstruction noise and higher-order
lensing terms. This is also true for the cross-correlation-
based lensing power spectrum in Equation (37), despite
its insensitivity to noise. To obtain an unbiased lens-
ing power spectrum from the naive lensing power spec-
trum estimator, we must subtract the well-known lens-
ing power spectrum biases: the Ny and N7 biases as
well as a small additive MC bias. The bias-subtracted
lensing power spectrum is thus given by

CPP = PP — ACE™Ss — ACT — ACYC. (39)

These biases can be understood in more detail as fol-
lows. The Ny or Gaussian bias, ACS‘“‘SS, is effectively
a lensing reconstruction noise bias. Equivalently, since
the lensing power spectrum can be measured by com-
puting the connected part of the four-point correlation
function of the CMB, AC’G“SS can be understood as the
disconnected part that must be subtracted off the full
four-point function; these disconnected contractions are
produced by Gaussian fluctuations present even in the
absence of lensing. The Ny bias is calculated using the
now-standard realization-dependent Ny algorithm intro-
duced in Namikawa et al. (2013); Planck Collaboration
et al. (2014). This algorithm, which combines simulation
and data maps in specific combinations to isolate the dif-
ferent contractions of the bias, is described in detail in
Appendix E.1. The use of a realization-dependent Nj
bias reduces correlations between different lensing band-
powers and also makes the bias computation insensitive
to inaccuracies in the simulations.

The N7 bias subtracts contributions from “acciden-
tal” correlations of lensing modes that are not targeted
by the quadratic estimator (see Kesden et al. 2003 for
details; the nomenclature arises because the N; bias is
first order in C'zw, unlike the Ny bias, which is zeroth or-
der in the lensing spectrum). The Nj bias is computed
using the standard procedure introduced in Story et al.
(2015), and described in Appendix E.2.

Finally, we absorb any additional residuals arising
from non-idealities, such as the effects of masking, in
a small additive MC bias ACM€ that is calculated with
simulations. We describe the computation of this MC
bias in detail in Appendix E.3.

The unbiased lensing spectrum, scaled by L*(L +
1)2/4, is binned in bandpowers with uniform weighting
in L. Details regarding the bins and ranges adopted in
our analysis can be found in Section 6.1.

To illustrate the sizes of the different bias terms sub-
tracted, we plot them all as a function of scale in Fig-



ACT DR6 LENSING POWER SPECTRUM 19

ure 6. The fact that the additive MC bias is small is
an important test of our pipeline and indicates that it is
functioning well. The procedures laid out above consti-
tute our core full-sky lensing pipeline, which enables the
unbiased recovery of the lensing power spectrum after
debiasing.

5.10. Normalization: dependence on cosmology

Prior to normalization, the quadratic lensing estima-
tor probes not just the lensing potential ¢; it is instead
sensitive to a combination ¢, pr X RL|CeCMB7 where the
response Rp|come is a function of the true CMB two-
point power spectra. Applying the normalization fac-
tor R21|CEMB,fid, where OfMB’ fid are the fiducial CMB
power spectra assumed in the lensing reconstruction,
attempts to divide out this CMB power spectrum de-
pendence and provide an unbiased lensing map. If the
power spectra describing the data are equal to the fidu-
cial CMB power spectra (i.e., CCMB = C’fMB’ ﬁd), the
estimated lensing map is indeed unbiased. Otherwise,
the estimated lensing potential is biased by a factor
'R,Zl |CEMB,ﬁd /Rzl |C§JMB.

In early CMB lensing analyses, it was assumed that
the CMB power spectra were determined much more
precisely than the lensing field, so that any uncertainty
in the CMB two-point function and in the normalization
could be neglected; however, with current high-precision
lensing measurements, the impact of CMB power spec-
trum uncertainty must be considered. We use as our
fiducial CMB power spectra the standard ACDM model
from Planck 2015 TTTEEE cosmology with an updated
T prior as in Calabrese et al. (2017). In Appendix B, we
describe in detail our tests of the sensitivity of our lens-
ing power spectrum measurements to this assumption;
we summarize the conclusions below.

We analytically compare the amplitude of the lensing
power spectrum A, when changing the fiducial CMB
power spectra described above to the best-fit model
CMB power spectra for an independent dataset, namely
ACT DR4+WMAP (Aiola et al. 2020); we account
for the impact of calibration and polarization efficiency
characterization in this comparison. Doing this we find a
change in Aje,s of only 0.230, comfortably subdominant
to our statistical uncertainty. An important reason why
this change is so small is that our pre-processing pro-
cedures, which involve calibration and polarization effi-
ciency corrections relative to the Planck spectra, drive
the amplitudes of the spectra in our data closer to our
original fiducial model. This result reassures us that the
CMB power spectra are sufficiently well measured, by
independent experiments, not to degrade our uncertain-
ties on the lensing power spectrum significantly.

Nevertheless, we additionally account for uncertainty
in the CMB power spectra in our cosmological infer-
ence from the lensing measurements alone (i.e., when
not also including CMB anisotropy measurements) by
adding to the covariance matrix a small correction cal-
culated numerically from an ensemble of cosmological
models sampled from a joint ACT DR4+ Planck chain
(see Aiola et al. (2020) for details). This results in a
small increase in our errors (by approximately 3% for
the lensing spectrum bandpower error bars), although
the changes to the cosmological parameter constraints
obtained are nearly negligible.?’

5.11. Cowvariance Matrix

We obtain the band-power covariance matrix from
N, = 792 simulations. We do not subtract the computa-
tionally expensive realization-dependent RDNO from all
the simulations when evaluating the covariance matrix.
Instead, we use an approximate, faster version, referred
to as the semi-analytic Ny, which we describe briefly
below in Section 5.11.1.

To account for the fact that the inverse of the above
covariance matrix is not an unbiased estimate of the in-
verse covariance matrix, we rescale the estimated inverse
covariance matrix by the Hartlap factor (Hartlap et al.
2007):

Ns - Nbins -2

cov — — 40

where Npins is the number of bandpowers.

5.11.1. Semi-analytic Ny

The realization-dependent Ny algorithm (see Equa-
tion E9) used to estimate the lensing potential power
spectrum is computationally expensive since it involves
averaging hundreds of realisations of spectra obtained
from different combinations of data and simulations.
For covariance matrix computation, which requires the
estimation of many simulated lensing spectra to pro-
duce the covariance matrix, we adopt a semi-analytical
approximation to this Gaussian bias term, referred to
as semi-analytic RDNQ. This approximation ignores
any off-diagonal terms involving two different modes
(XemYyh,,) when calculating RDNO. The use of the
faster semi-analytic RDNO provides a very good approx-
imation to the covariance matrix obtained using the full
realization-dependent Ny, with both algorithms simi-
larly reducing correlations between different bandpow-

30 The error on S§MBL = 0g(,,/0.3)0-2% determined from ACT
DR6 CMB lensing alone increases from 0.021 to 0.022 when we
include the additional term in our covariance matrix.
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Figure 6. Summary of the different biases subtracted in our lensing power spectrum measurement; this figure also serves as a
test of our pipeline. The dotted line shows the large Gaussian or Ny bias as a function of multipole L; note that this is smaller
than the Gaussian bias of the standard QE estimator, as noise does not contribute to the bias for the cross-correlation-based
estimator we are using. The effective reconstruction noise for our measurement, which is a more accurate reflection of the noise
in our lensing map than the Ny bias, is indicated by the dot-dashed line. Similarly, the N1 bias is given by the solid grey line.
The power spectrum of the mean-field is shown with a dashed grey line. This term becomes larger than the lensing signal at
large scales, L ~ 20, and the inability to estimate it using simulations with sufficient accuracy is partially the reason why we
set the lower limit Lnin = 40 for cosmological interpretation. The open black circles show the reconstructed bandpowers for the
mean of 480 simulations with all biases except the MC bias subtracted; these bandpowers are measured by passing realistic sky
simulations that closely match the theory spectra (shown in blue) through the pipeline. The error bars on these points represent
the errors on a single realisation. An important test of our pipeline is that the simulated residual from an average over many
simulations, known as the MC bias, is small; the MC bias is shown as red stars in the plot and is indeed nearly negligible over a
wide range of scales. All curves shown are for the minimum-variance (i.e., combined temperature and polarization) estimator.

ers.?! We stress that this approximate semi-analytic Ny
is only used in the covariance computation and is not
employed to debias our data. Further details of the cal-
culation of the semi-analytic RDNO bias correction are
presented in Apppendix G.

5.11.2. Covariance verification

We verify that 792 simulations are sufficient to obtain
converged results for our covariance matrix as follows.
We compute two additional estimates of the covariance
matrix from subsets containing 398 simulations each and
verify that our results are stable: even when using co-
variances obtained from only 398 simulations, we obtain
the same lensing amplitude parameter, Ajens, to within
0.10. In addition, the fact that our null-test suite passes,
and in particular the fact that our noise-only null tests
in Section 6.4.2 (containing no signal) generally pass,

31 Not including this semi-analytic Ng can lead to correlations of

order 20% between neighbouring bandpowers.

provides further evidence that our covariance estimate
describes the statistics of the data well.

We verify the assumption that our bandpowers are
distributed according to a Gaussian in Appendix H.

5.11.3. Covariance matriz results and correlation between
bandpowers

The correlation matrix for our lensing power spectrum
bandpowers, obtained using a set of 792 simulations, can
be seen in Figure 7. We find that correlations between
different bandpowers are small, with off-diagonal corre-
lations typically below 10%.

6. NULL AND CONSISTENCY TESTS

We now summarize the set of tests we use to assess the
robustness of our lensing measurement and the quality
of the data we use. We first introduce the baseline and
extended multipole ranges used in our analysis, and de-
scribe how the null tests we have performed guided these
choices. In Section 6.2, we describe how we compute the
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Figure 7. Size of the off-diagonal correlations for our lensing
power spectrum bandpower covariance matrix. The covari-
ance matrix is estimated from 792 simulated lensing spec-
trum measurements. The number in each lower-diagonal el-
ement of the matrix shows the correlation coefficient between
the relevant bandpowers, expressed as a percentage, for the
bins used in our analysis range. It can be seen that the off-
diagonal correlations do not exceed the 15% level. The band
centers are shown along the axes of the matrix.

x? and probability to exceed (PTE?*?) to characterize
passing and failing null tests. In Section 6.3 we describe
our blinding procedure, the criteria used to determine
readiness for unblinding, and the unblinding process it-
self. We then describe in detail the map-level null tests
in Section 6.4 and bandpower-level null tests in Section
6.5. Section 6.6 provides a summary of the distribution
of the combined map- and bandpower-level null tests.
Finally, while we aim to present the most powerful null
tests in the main text, a discussion of additional null
tests performed can be found in Appendix I.

6.1. Selection of baseline and extended multipole range

For our baseline analysis, we use the lensing mul-
tipoles 40 < L < 763 with the following non-
overlapping bin edges for Npps = 10 bins at
[40, 66,101,145, 199, 264, 339, 426,526, 638, 763].  The
baseline multipole range 40 < L < 763 was decided
prior to unblinding. This range is informed by both the

32 The PTE is the probability of obtaining a higher x? than what
we actually obtain, given a distribution with the same number of
degrees of freedom.

results of the null tests and the simulated foreground
estimates. The scales below L = 40 are removed due
to large fluctuations at low L observed in a small num-
ber of null tests; these scales are difficult to measure
robustly since the simulated mean-field becomes signif-
icantly larger than the signal, although the cross-based
estimator relaxes simulation accuracy requirements on
the statistical properties of the noise. The L.y limit is
motivated by the results of the foreground tests on sim-
ulations performed in MacCrann et al. (2023), where at
L. = 763 the magnitude of fractional biases in the
fit of the lensing amplitude is still less than 0.20 (0.5%)
although biases rise when including smaller scales. This
upper range is rather conservative, and hence we also
provide an analysis with an extended cosmology range
up to Lyax = 1300, although we note that this extended
range was not determined before unblinding and that in-
strumental systematics have only been rigorously tested
for the baseline range. (We also note that the null-test
PTEs and simulated foregrounds biases still appear ac-
ceptable in the extended range, although, again, we cau-
tion that we only carefully examined the extended-range
null tests after we had unblinded.)

6.2. Calculation of goodness of fit

In any null test, we construct a set of null bandpowers
d™™", which (after appropriate bias subtraction) should
be statistically consistent with zero. For map-level null
tests, d™!! are the bandpowers obtained by performing
lensing power spectrum estimation on CMB maps differ-
enced to null the signal, while for bandpower-level null
tests they are given by differences of reconstructed lens-
ing power spectra, AC’LM’. We test consistency of the
null bandpowers with zero by calculating the x? with
respect to null:

X2 _ (dnull)chldnull. (41)

The relevant covariance matrix C for each null test is
estimated by performing the exact same analysis on 792
simulations, ensuring that all correlations between the
different datasets being nulled are correctly captured.
The PTE is calculated from the x? with 10 degrees of
freedom as we have 10 bandpowers in the baseline range.
(We also consider and compute PTEs for our extended
scale range, which has 13 degrees of freedom.)

6.3. Blinding procedure

We adopt a blinding policy that is intended to be a
reasonable compromise between reducing the effect of
confirmation bias and improving our ability to discover
and diagnose issues with the data and the pipeline effi-
ciently. We define an initial blinded phase after which,
when pre-defined criteria are met, we unblind the data.
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In the initial blinded phase, as part of our blinding
policy, we agree in advance to abide by the following
rules.

1. We do not fit any cosmological parameters or
lensing amplitudes to the lensing power spectrum
bandpowers. While we allow debiased lensing
power spectra to be plotted, we do not allow them
to be compared or plotted either against any the-
oretical predictions or against bandpowers from
any previous CMB lensing analyses, including the
Planck analyses. In this way, we are blind to
the amplitude of lensing at the precision needed
to inform the Sg tension and constrain neutrino
masses, but we can still rapidly identify any catas-
trophic problems with our data — although none
were found.

2. During the blinded phase, we also allow unpro-
cessed lensing power spectra without debiasing to
be plotted against theory curves or Planck band-
powers for L > 200. The justification for this is
that the unprocessed spectra are dominated on
small scales by the Gaussian Ny bias and hence
not informative for cosmology, although they al-
low for useful checks of bias subtraction and noise
levels. When analysing bandpowers of individual
array-frequency reconstructions, we allow unpro-
cessed spectra to be plotted over all multipoles,
because individual array-frequency lensing spectra
are typically noise-bias dominated on all scales.?3

We calculate PTE values of bandpowers in our map-
level null tests (see Section 6.4) and for differences of
bandpowers in our consistency tests (Section 6.5) dur-
ing the blinded phase. For the power spectra of the
CMB maps themselves (as opposed to those of lensing
reconstructions), we follow a blinding policy that will be
described in an upcoming ACT DR6 CMB power spec-
trum paper.

After unblinding, all these restrictions are lifted and
we proceed to the derivation of cosmological parameters.
We require the following criteria to be satisfied before
unblinding.

1. All baseline analysis choices made in running our
pipeline, such as the range of CMB angular scales
used, are frozen.

2. No individual null-test PTE should lie outside the
range 0.001 < PTE < 0.999.

33 Such comparisons allow for a small number of order-of-magnitude
sanity checks of intermediate results from different array-
frequencies.

3. The distribution of PTEs for different null tests
should be consistent with a uniform distribution
(verified via a Kolmogorov—Smirnov test, with the
caveat that this neglects correlations).

4. The number of null and consistency tests that fall
outside the range 0.01 < PTE < 0.99 should not
be significantly inconsistent with the expectations
from random fluctuations.

5. The comparison of the sum of x? for several differ-
ent types of tests against expectations from sim-
ulations should fall within 20 of the simulation
distributions.

The PTE ranges we accept are motivated by the fact
that we calculate O(100) PTEs but not O(1000).

6.3.1. Post-unblinding change

As described in Section 3.6, our baseline analysis mod-
els bright galaxy clusters and subtracts them from maps.
However, this procedure was introduced after unblind-
ing. Before unblinding, bright galaxy clusters were
masked and inpainted, similar to our treatment of com-
pact objects described in Section 5.2. This minor mod-
ification to the analysis, which had only a small effect
on the results, was not prompted by any of the post-
unblinding results we obtained, but rather from con-
cerns arising in an entirely different project focused on
cluster mass calibration. In the course of this project, a
series of tests for the inpainting of cluster locations were
performed using WEBSKY simulations (Stein et al. 2020)
and Sehgal simulations (Sehgal et al. 2010). We discov-
ered that in simulations, our inpainting algorithm can
be unstable, as it is heavily dependent on the assump-
tions of the underlying noise, on the map pre-processing
and on inpainting-specific hyperparameters; small in-
painting artifacts at the inpainted cluster locations can
correlate easily with the true lensing field, leading to
significant biases to the lensing results in simulations.
Although the same kind of stability tests performed on
data show no indication of issues related to inpainting
(likely due to the actual noise properties and processing
in the data not producing any significant instabilities),
concerns about the instability of inpainting on simula-
tions motivated us to switch, for our baseline analysis, to
the cluster template subtraction described in Section 3.6
as an alternative method for the treatment of clusters.

Model subtraction shows excellent stability in the sim-
ulations, with no biases found, and foreground studies
show that an equivalent level of foreground mitigation is
achieved with this method, even when the template clus-
ter profile differs somewhat from the exact profile in the
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Table 1. Summary of the map-level null tests described in
Section 6.4. For each test, we show the x? and associated
PTE values for the baseline range.

Map level null test x> (PTE)

PA4 f150 noise-only 85 )
PAS5 f090 noise-only 6.4 ( )
PAS5 f150 noise-only 1 ( )
PA6 090 noise-only 10 ( )
PA6 f150 noise-only 14 ( )
Coadded noise 212 ( )
PA4 {150 — PA5 {090 23 ( )
PA4 150 — PA5 150 19.5 ( )
PA4 150 — PA6 f090 13.7 ( )
PA4 150 — PA6 f150 19.0 ( )
PAS5 {090 — PA5 150 50 (0.89)
(0.68)

(0.06)

(0.27)

(0.61)

(0.46)

(0.67)

(0.84)

(0.61)

(0.93)

(0.05)

PA5 f090 — PA6 f090 7.5
PA5 090 — PA6 {150  18.0
PA5 150 — PA6 f090  12.3
PA5 150 — PA6 150 8.2
PAG6 f090 — PAG6 f150 9.7
£090 — f150 MV 7.6
f090 — f150 TT 5.7
(f090 — f150) x ¢ MV~ 8.2
(090 — £150) x ¢ TT 4.3
Time-split difference  18.6

simulations (MacCrann et al. 2023). We, therefore, ex-
pect lensing results obtained using the template subtrac-
tion method to be more accurate. Fortunately, changing
from cluster inpainting to cluster template subtraction
only causes a small change to the relevant SgMBL pa-
rameter: SYMPBL decreases by only 0.150, as shown later
in Figure 48; the inferred lensing amplitude increases by
0.750 (the shifts differ in sign due to minor differences in
the scale dependences of the lensing amplitude parame-
ter and S¢MBL). The small shift in SSMBL that results
from our change in methodology does not significantly
affect any of the conclusions drawn from our analysis.

6.4. Map-level null tests

This subsection describes null tests in which we apply
the full lensing power spectrum estimation pipeline to
maps that are expected to contain no signal in the ab-
sence of systematic effects. In all cases except for the
curl reconstruction in Section 6.4.1, this typically in-
volves differencing two variants of the sky maps at the
mabp level (hence nulling the signal) and then proceeding
to obtain debiased lensing power spectra from these null
maps. To adhere closely to the baseline lensing analy-
sis, we always prepare four signal-differenced maps and
make use of the cross-correlation-based estimator.

We describe each of our map-level null tests in more
detail in the sections below.

6.4.1. Curl

The lensing deflection field d can be decomposed
into gradient and curl parts based on the potentials
¢ and (), respectively, i.e., in terms of components
d; = Vi¢p + €7V;Q, where Q is the divergence-free or
“curl” component €2 of the deflection field and ¢ is again
the lensing potential. (Here, ¢;; is the alternating tensor
on the unit sphere.) The curl Q is expected to be zero
at leading order and therefore negligible at ACT DR6
reconstruction noise levels (although a small curl com-
ponent induced by post-Born and higher-order effects
may be detectable in future surveys; Pratten & Lewis
2016). However, systematic effects do not necessarily
respect a pure gradient-like symmetry and hence could
induce a non-zero curl-like signal. An estimate of this
curl field can thus provide a convenient diagnostic for
systematic errors that can mimic lensing. Furthermore,
curl reconstruction also provides an excellent test of our
simulations, our pipeline, and our covariance estimation.

We obtain a reconstruction of this curl field in the
same manner as described in Section 5.8.1, by taking lin-
ear combinations of the spin-1 spherical harmonic trans-
form of the deflection field. The bias estimation steps
are then repeated in the same way as for the lensing
estimator. The result for this null test is shown in Fig-
ure 8 for the MV coadded result *, which is the curl
equivalent of our baseline lensing spectrum. This test
has a PTE of 0.37, in good agreement with null. We
also show curl null test results for the temperature-only
(TT) version of our estimator in Figure 8.

The consistency of our curl measurement with zero
provides further evidence of the robustness of our lens-
ing measurement. Intriguingly, the curl null test was not
passed for the TT estimator in Planck, and instead (de-
spite valiant efforts to explain it) a 4.10 deviation®® from
zero has remained, located in the range 264 < L < 901
Planck Collaboration et al. (2020a); see Figure 8. Our
result provides further evidence that this non-zero curl
is not physical in origin.

34 A note on the y-scaling used in the plots: For the null test plots,
we scale our bandpowers by an factor of /L with the visual
purpose of enhancing the smaller scales with aids with identi-
fying potential issues on the small scales that we probe with
significant SNR. For Fig.6 and Fig. 26 we adopt the scaling of
L2(L+1)2/(2n) used by other CMB lensing measurements in the
literature for easier comparison.

35 Note that the significance falls to 2.9¢ after accounting for “look-
elsewhere” effects.
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Figure 8. Power spectrum of the reconstructed curl mode
of the lensing deflection field. Since the cosmological lensing
field is irrotational, a measurement of the curl component
can serve as a valuable null test for several systematic er-
rors. Results of this curl null test are shown for our baseline,
coadded dataset for the MV estimator (red) and TT esti-
mator (black). Neither show any evidence for systematic
contamination, with a PTE with respect to zero of 0.37 and
0.75, respectively. This can be contrasted with the Planck
NPIPE TT curl bandpowers shown in blue, which exhibit a
significant deviation from zero in the range 264 < L < 901.
Our results provide further evidence that the negative curl
power seen in the Planck TT reconstruction is not a real
cosmological signal (Planck Collaboration et al. 2020a).

For completeness, we also compute curl tests associ-
ated with all other null tests described in the subse-
quent sections; we summarise the results and figures in
Appendix I. These results also show that there is no ev-
idence of curl modes found even in subsets of our data.

6.4.2. Noise-only null tests: Indwidual array-frequency
split differences

We can test our pipeline, verify our covariance ma-
trices, and assess the modelling of the noise for each
array-frequency by differencing splits m; of the data
with equal weighting, and hence cancelling the signal,
to form null maps X*™! = m; — m, 4. (There are
various combinations from which this null map could be
formed; we choose to difference split ¢ and split ¢ + 4,
where ¢ € {0,1,2,3}.) The resulting four signal-nulled
maps are passed through the cross-correlation-based es-
timator. We perform lensing reconstruction on these
null maps with isotropic filtering. The power spectra
used in this filter are obtained by averaging the power
spectra of 80 simulations of lensed CMB with noise re-
alizations consistent with the inverse-variance-weighted

noise of the eight splits. For these tests we thus use the
filter appropriate to the coadded noise of the individ-
ual array-frequency instead of the baseline coadd filter,
since otherwise the high noise in the individual array-
frequencies leads to less sensitive null tests. Only the
coadd noise null test discussed in Appendix 1.0.1 uses
the baseline weights. The normalization is computed
with the same filters and applied to the resulting null
spectrum. Because we are using the cross-correlation-
based estimator and the signal is assumed absent, we
do not need to estimate the mean-field, or the RDNO
and Np biases (which should all be zero); therefore, the
simulations are used solely to estimate the covariance
matrix. The summary results for this category of tests,
written in terms of the sum of the x? for all the array-
frequencies, are shown in Figure 18 of Section 6.6. These
tests show no evidence of a discrepancy between different
splits of the data map; this fact also confirms that our
noise simulations provide accurate estimates of the co-
variance matrix. An additional noise-only null test can
be obtained by coadding all the individual noise-only
null maps; this stringent null test is shown in Appendix
L.

6.4.3. Map-level frequency-difference test

We prepare frequency-differenced null maps by sub-
tracting the beam-deconvolved {150 split maps from
the f090 split maps. The resulting difference maps are
passed into the lensing reconstruction pipeline with the
filters, normalization, and bias-hardening procedure the
same as used for the baseline reconstruction, which com-
bines f150 and f090. This filter choice weights different
scales in the null maps in the same way as for our base-
line lensing measurement, which ensures that null-test
results can be directly compared with our baseline lens-
ing results. The null lensing power spectrum C’E“H is
given schematically by

C?/ull — <QE(T90 _ T1507 T90 _ T15O)
% QE(T90 _ T150, T90 _ T150)>. (42)

This measurement is a rigorous test for our mitiga-
tion of foregrounds: the effect of foregrounds such as
CIB and tSZ is expected to be quite different in these
two frequency channels (with f090 more sensitive to tSZ
and less to CIB) so we do not expect full cancellation of
foregrounds in the difference maps. In particular, this
null test targets the residual foreground-only trispec-
trum of the lensing maps; we compare our results with
the levels expected from simulations in MacCrann et al.
(2023). In addition, this map-level null test is also sen-
sitive to beam-related differences between the two fre-
quency channels.
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Figure 9. Lensing null tests based on frequency differ-
ences, which are a valuable diagnostic for insufficient fore-
ground bias mitigation as well as for instrument systematics.
The light-blue and green points show a lensing power spec-
trum measurement from a f090 — 150 difference map, for TT
and MV, respectively. Yellow and blue points show a cross-
correlation of the null lensing map, made from the f090—f150
difference maps, with the baseline lensing map, for TT and
MYV, respectively. These two type of null tests are sensitive
to different foreground bias terms. All tests are consistent
with zero and thus provide no evidence for any foreground
bias (or other systematic bias) in our measurement.

As shown in Figure 9, these null tests are consistent
with zero, with PTEs of 0.67 and 0.84 for MV and TT
respectively; no evidence for un-mitigated foreground
contamination is found.

6.4.4. Frequency-nulled map x ¢MV

To perform an additional, similarly powerful, test of
foregrounds, we cross-correlate the null reconstruction
from the frequency-difference maps, obtained as in the
previous null test, with the baseline reconstruction q/A)MV;
i.e., schematically, we compute:

Cmull — <QE(T90 180 90 _ 150y o q5MV> . (43)

This measurement is sensitive mainly to the fore-
ground bispectrum?® involving two powers of foreground
residuals and one power of the true convergence field.
To a lesser extent, given the small residual foreground
biases remaining in qASMV, the test is also sensitive to a
foreground trispectrum contribution. The null test re-
sults in Figure 9 show good consistency with zero with

36 See MacCrann et al. (2023) for an explanation of the foreground

bispectrum and trispectrum terms.

a passing PTE of 0.61 and 0.93 for MV and TT, respec-
tively.

Since the foreground bias probed by this test is the
dominant one on large scales, the consistency of this test
with null is a particularly powerful test of foreground
mitigation in our analysis.

6.4.5. Array-frequency differences

We test for consistency between the data obtained
from the different instrument array-frequencies by tak-
ing differences between single array-frequency maps.
Since we have five array-frequencies we obtain 10 pos-
sible combinations of such null maps. We pass these
signal-nulled maps through the pipeline and use a filter
that consists of the average power spectra of the two
array-frequencies making up the difference map. We
find no evidence of inconsistency between the different
array-frequencies except for a marginal failure for the
difference between PA4 f150 and PAS5 {090 (with a PTE
of 0.01), which we discuss further in Section 6.6 and ar-
gue is not concerning. The histogram for the x? values
of all such tests is summarised in Figure 21 of Section
6.6. These tests show that there is good inter-array con-
sistency at the four-point level.

In Appendix 1.0.3 we perform an additional, related
test: we measure the lensing power spectrum from null
maps obtained by differencing CMB maps made from
2017-2018 observations with maps from 2018-2021 ob-
servations. The passing PTE of 0.05 provides no signifi-
cant evidence of inconsistency between the two periods.

6.5. Bandpower-level consistency tests

This section describes tests that aim to assess whether
lensing spectrum bandpowers from variations of our
analysis, or sub-sets of our data, are consistent with
each other. For each variation or sub-set, we subtract
the resulting debiased lensing power spectrum from our
baseline debiased lensing power spectrum; both spectra
are obtained with our standard methodology described
in Section 5.8. We obtain a covariance matrix for this
difference by repeating this analysis (with semi-analytic
debiasing described in Section 5.11.1) on simulations.
We then use the nulled bandpower vector and its co-
variance matrix to check for consistency with zero. We
summarise the results of these tests in Table 2; in this
table, we also utilize the statistic AAjens to quantify the
magnitude of any potential bias to the lensing amplitude
produced by the departure of the null-test bandpowers
from zero, i.e.,

Amull =1 A¢o
2w CLy Coy CT,

Ao ~—1 Apg ”
be/ CLb (Cbb’ CLb

AAlens = (44)
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Here, é’ff is the baseline lensing power spectrum and
Cpp is the baseline covariance matrix. The AAjens re-
sults are summarised in Fig. 11.

For all of the null tests discussed in subsequent sec-
tions, we present plots that show the lensing bandpow-
ers in the upper panel, with the baseline analysis in red
boxes. Additionally, we include a sub-panel showing dif-
ferences of bandpowers divided by the baseline MV er-
rors oy,

6.5.1. Temperature-polarization consistency

We compare our Dbaseline minimum variance
(MVxMYV) analysis against the polarization only mea-
surement (MVPOLxMVPOL) and the temperature-
only measurement (TTxTT). We additionally compare
TTxTT against MVPOLXxMVPOL. The lensing band-
powers and the null bandpowers from differencing the
polarization combinations can be seen in Figure 10. The
corresponding curl is shown in Appendix [.3. As can be
seen in these plots, the null tests are consistent with zero
with PTEs of 0.34 (TT — MV), 0.73 (MVPOL — MV)
and 0.69 (TT — MVPOL).

6.5.2. Bandpower-level frequency-difference test

We compare the lensing power spectrum derived from
f090 and f150 data alone to our baseline analysis in Fig-
ure 12.

The null bandpowers are formed by taking the differ-

ence o .
,90 GH ,150 GH
Cpt = CpP Ot - opr e (4p)

where Cf¢’90 GH7 is the lensing spectrum reconstructed
with the 090 data only, i.e., PA5 f090 and PA6 {090, and
C’ZW’QOGHZ is obtained by reconstructing the data at f150
only (from the PA4 f150, PA5 {150 and PA6 {150 array-
frequencies). For the co-addition of the data we use the
same noise weights (up to normalization) as in the base-
line analysis. For the reconstruction we use the same fil-
ters used for the baseline analysis. This null test is sensi-
tive to all foreground contributions (including both bis-
pectrum and trispectrum terms). However, compared to
the map-level frequency-difference null test above, this
measurement has larger errors, since the lensed CMB is
not nulled at the map level. Our results in Figure 12
show good agreement of the lensing reconstruction ob-
tained from different frequencies. The curl is also shown
in appendix 1.3.

6.5.3. Consistency with CIB-deprojection analysis

The companion paper MacCrann et al. (2023) finds
that a CIB-deprojected version of the analysis shows
similar performance to our baseline analysis in mit-
igating foreground biases to a negligible level with-
out incurring a large signal-to-noise penalty. We,
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Figure 10. ACT DR6 lensing convergence bandpowers
from the minimum-variance combination of temperature and
polarization (our baseline, denoted as MV) in red, from
temperature only (TT) in blue, and from polarization only
(MVPOL) in green. The bottom panel shows the differences
between the TT and MV spectra (blue), MVPOL and MV
(green) and TT and MVPOL (yellow). These are consistent
with null. Note that in the bottom panel, the difference re-
sults are divided by the error in the baseline bandpowers o.;
we emphasize that this baseline error is not the same as the
error in the difference.

therefore, perform a consistency check between this
alternative, multifrequency-based foreground mitiga-
tion method and the geometry-based profile hardening
method that is our baseline.

MacCrann et al. (2023) describe the production of
CIB-deprojected temperature maps by performing a
harmonic-space constrained internal linear combination
(hILC) of the DR6 coadded temperature map and
the high-frequency data from Planck at 353 GHz and
545 GHz. The high-frequency Planck channels are cho-
sen because the CIB is much brighter and the pri-
mary CMB information is subdominant at high frequen-
cies; these high-frequency maps are hence valuable fore-
ground monitors that can be used while still keeping
our analysis largely independent of CMB measurements
from Planck.

Performing the hILC requires the use of the total auto-
and cross-spectra for all the input maps; these are mea-
sured directly from the data, and are smoothed with a
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Table 2. Summary of the bandpower-level null tests de-
scribed in Section 6.5. For each test, we show the x? and as-
sociated PTE values of the difference bandpowers as well as
the shift in Ajens, in the form A A" :ta(AAle"S). ‘Where not
indicated in the description of the test, the reported values
are computed with respect to the baseline MV reconstruc-
tion.

Bandpower null test x> (PTE) A A
600 < foms < 2000 2.9 (0.98) —0.015=+0.023
600 < foms < 2500 9.6 (0.48) —0.019+0.012
800 < £oms < 3000 10.9 (0.37) 0.01 +0.01
1500 < £cmp < 3000 4.4  (0.93) —0.02 +0.03
40% mask 7.2 (0.71) 0.01 +0.02
Aggr. ground pick up 14.8 (0.14) 0.01 +£0.01
Poor cross-linking reg. 4.1 (0.94) —0.06 £+ 0.06
MYV 090 — £150 9.1 (0.52) —0.002 4 0.04
TT 090 — £150 16.6  (0.08) —0.05 £ 0.06
CIB deprojection 15.6 (0.11)  —0.02+0.02
TT shear 13.5  (0.20) 0.01 £0.05
TT — MV 11.2  (0.34) —0.004 +0.03
MVPOL — MV 6.9 (0.73) 0.06 + 0.06
TT — MVPOL 74 (0.69) —0.06 £ 0.07
South — North patch ~ 4.77  (0.91) 0.04£0.05
Time-split 1 — 2 11.4  (0.33)  0.003 £ 0.036
Time-split 1 81 (0.62) —0.04=+0.04
Time-split 2 11.2 (0.33) —0.04 £0.04
PA4 f150 — PA5 f090 9.1 (0.52) 0.0+0.1
PA4 f150 — PA5 150 7.0 (0.73) 0.1+0.2
PA4 f150 — PA6 090 9.1 (0.52) 0.0£0.2
PA4 f150 — PA6 f150 20.1  (0.03) 0.11+0.2
PA5 090 — PA5 150 58 (0.83) 0.13+0.2
PA5 090 — PA6 090 9.5 (0.49) 0.02 +0.05
PA5 f090 — PA6 f150 19.6  (0.08) 0.02 = 0.04
PA5 f150 — PA6 f090 10.4 (0.41) —0.03 £ 0.07
PA5 f150 — PA6 £150 16.6  (0.08) 0.1+0.2
PAG6 f090 — PAG6 f150 17.2 (0.07) 0.07+£0.2
PWYV high — low 5.0 (0.89) 0.02 +0.04

Savitzky—Golay filter (Savitzky & Golay 1964; window
length 301 and polynomial order 2), to reduce “ILC
bias” (see, e.g., Delabrouille et al. 2009) arising from
fluctuations in the spectrum measurements. We also
generate 600 realizations of these maps, using the Planck
NPIPE noise simulations provided by Planck Collabora~
tion et al. (2020c); these are used for the Ny subtraction,
mean-field correction and covariance matrix estimation.
The deprojected temperature maps are then used in our
lensing reconstruction and lensing power spectrum esti-
mation (along with the same polarization data as is used
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—eo— time split 1 - time split 2
f——e— TT-POL
—e— TT+POL-POL only
—o— TT+POL-TT only
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e CIB deprojection
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Figure 11. Shift in Ajens for the lensing bandpower null
tests described in Table 2. These shifts are color coded as
follows: the blue labels stand for scale consistency tests, or-
ange for isotropy-related tests, green for polarization- and
frequency-combination tests, and red for instrument-related
tests. The nulled spectra are all consistent with producing
zero shift in Ajens; the grey band shows the 1o errors of our
baseline lensing amplitude measurements.

in the baseline analysis and same cross-correlation-based
estimator with profile hardening).

As seen in Figure 13, the results show that the band-
powers are consistent with the baseline analysis with a
PTE of 0.11. This implies that CIB contamination is
not significant in our lensing analysis. Given the sim-
ilarity of the spectral energy distributions of the CIB
and Galactic dust, these results also provide evidence
against significant biases from Galactic dust contamina-
tion. At the same time, since CIB deprojection increases
the amount of tSZ in our maps (Abylkairov et al. 2021;
Kusiak et al. 2023), the stability of our results also sug-
gests that tSZ is mitigated well.

6.5.4. Shear estimator

We can obtain alternative temperature-only lensing
bandpower measurements using the shear-only estima-
tor (Schaan & Ferraro 2019; Qu et al. 2022). Shear es-
timators are a class of geometric methods that suppress
extragalactic foreground contamination while making
only minimal assumptions about foreground properties,
at the cost of only a moderate decrease in signal-to-noise.
The shear estimator decomposes the standard quadratic
estimator into a monopole and a quadrupole part and
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Figure 12. Lensing power spectra obtained from single-
frequency maps with the TT or MV estimator, compared
again with the baseline analysis (red boxes), which coadds
f090 and f150 data and uses the MV estimator. As seen in the
bottom panel, the single-frequency analyses are consistent
with each other and with the baseline MV.

discards the monopole part; the motivation for this is
that foreground mode-couplings tend to be spherically
symmetric, as argued in Schaan & Ferraro (2019).

We verify that we obtain consistent lensing results
with the full-sky shear estimator (Qu et al. 2022); the
spectrum difference AC?Q5 is shown in Figure 13 (blue
points). With a PTE of 0.20, this test shows no signifi-
cant discrepancies with the baseline and provides further
evidence that the impact of extragalactic foreground bi-
ases is controlled within our levels of uncertainty.

6.5.5. Array differences

In addition to testing the consistency of the different
array-frequencies at the map level, we further test their
consistency by comparing the lensing bandpowers ob-
tained from each array. For the filtering operation, we
use a filter with a noise level consistent with the given
array instead of the coadded baseline noise level; this
choice was made in order to increase the signal-to-noise
for each single-array spectrum (which is not always high)
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Figure 13. Alternative measurements of lensing with dif-
ferent foreground mitigation techniques; the difference with
our baseline analysis provides an additional null test for fore-
ground contamination. Green points show lensing power-
spectrum bandpowers obtained using foreground mitigation
based on multifrequency CIB deprojection, described in Sec-
tion 6.5.3, alongside profile hardening. Blue points show
a measurement of the lensing power spectrum with the
foreground-insensitive shear estimator, described in Section
6.5.4. These can be compared with the baseline analysis us-
ing just profile hardening, shown with red boxes. The differ-
ences of these alternative measurements with our baseline are
shown in the bottom panel, with errors re-computed for this
difference measurement. The measurements of lensing with
different foreground mitigation methods are in good consis-
tency with our baseline analysis, suggesting that foregrounds
in our measurement have been mitigated successfully. While
one bandpower in the shear-estimator measurement appears
high, we note that such a sharp feature is not generally a
signature of foreground contamination in lensing (MacCrann
et al. 2023); since the overall shear PTE = 20% is acceptable,
we ascribe this point to a random fluctuation.

and increase the sensitivity of the test. This bandpower
null test provides a broader assessment of the presence
of possible multiplicative biases that could create incon-
sistencies among the different array-frequencies. The re-
sults in Table 2 and Figure 14 show there is no evidence
of such effects in our data.

6.5.6. Cross-linking

A pixel of the maps is said to be well cross-linked
when it has been observed by different scans that are
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Figure 14. Lensing power spectra obtained from single tele-
scope array-frequency maps, compared again with the base-
line analysis (red boxes), with spectrum differences in the
bottom panel. All results are for the MV estimator. We
conclude that the single-array analyses are consistent with
our baseline measurement.

approximately orthogonally oriented at the location of
the pixel on the sky. The DR6 scan strategy produces
adequate cross-linking over the survey area except for a
narrow region around Dec = —35°. The poorly cross-
linked region has significantly more correlated noise than
the rest of the patch.

We isolate a region with poor cross-linking, with the
footprint borders shown in green in Figure 4. We com-
pare the bandpowers obtained from this region (using a
filter consistent with the coadd noise of this small noisy
patch) against those from our baseline analysis in Fig-
ure 15 and find no statistically significant difference in
the bandpowers obtained from both regions, with a null
PTE = 0.94.

6.5.7. Multipole-range variation

We compare our baseline MV reconstruction, which
uses the CMB with multipoles in the range 600 <
¢ < 3000, against reconstructed lensing spectra obtained
from different CMB scale ranges: 500 < ¢ < 3000,
600 < ¢ < 3000, 800 < ¢ < 3000, 1000 < ¢ < 3000,
1500 < ¢ < 3000, 300 < ¢ < 2500, and 300 < ¢ < 2000.
This multipole range variation tests the following: (i)
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Figure 15. Lensing power spectra obtained with different
analysis masks, i.e., from different sky regions. These can
be compared with our baseline analysis using our standard
sky mask (red boxes). All results are for the MV estimator.
Selected differences of the resulting lensing spectra are shown
in the bottom panel. We find good stability of our results to
variations in the sky region used, with the difference spectra
consistent with zero.

the consistency of lensing spectra when including a more
or less extended range of CMB modes and, more specif-
ically, (ii) the impact of extragalactic foregrounds such
as CIB and tSZ, which should increase as we increase
the maximum multipole; and (iii) the impact of any
ground pickup, transfer function, or Galactic foreground
systematics, which should worsen when decreasing the
minimum multipole.

The lensing bandpowers and the null bandpowers can
be seen in Figure 16. We observe excellent consistency
with the baseline bandpowers.

6.5.8. Dust mask variation

Galactic foregrounds, such as dust, are non-Gaussian
and can, in principle, contribute to both the lensing
estimator, inducing a bias to the lensing power spec-
trum measurement, and the curl estimator, causing a
curl null-test failure. Given that we only consider small
angular scales, £ > 600, in our lensing analysis, we ex-
pect foreground power from Galactic foregrounds to be
a subdominant component in both temperature and (to
a lesser extent) in polarization.
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Figure 16. Lensing power spectra obtained from the MV estimator with different CMB scale cuts. These can be compared with
our baseline analysis (red boxes), which corresponds to a range of CMB scales 600 < fcus < 3000 used for the measurement.
The differences of the resulting lensing spectra compared with the baseline are shown in the bottom panel. We find excellent
stability of our results to different CMB scale choices, with all difference spectra consistent with zero.

We test for any effects of dust in the sky maps by
preparing apodized masks that include a more conser-
vative 40% Galactic dust mask in addition to 60% (our
baseline). The footprints of the baseline mask and the
40% mask are shown in Figure 4 in orange and red, re-
spectively. The 40% is otherwise prepared in the same
way as the 60% mask, as described in Section 5.3.

Figure 15 shows the bandpower difference between
baseline lensing spectra and those obtained when mea-
suring lensing with a 40% mask, which cuts out more
of the Galactic emission. For the filtering operation, we
use a filter with noise levels consistent with the 40%
mask. We find a passing PTE of 0.71, with no evidence
of contamination from dust in the MV channel. The

corresponding curl bandpowers are shown in Appendix
1.3.

6.5.9. North Galactic vs. South Galactic

We compare the bandpowers obtained from our ob-
servations north and south of the Galactic equator, us-
ing filters appropriate to the noise levels of each region.
The gradient bandpowers reconstructed from each re-
gion are shown in Fig.15; we find that the lensing signal
is consistent across these two regions with a null PTE
for their difference of 0.91. Similarly, the curl spectra
in Appendix 1.3 are also consistent with zero, with PTE
values of 0.14 and 0.47 for the Southern and Northern
patches respectively.
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6.5.10. Fourier-space filter variations

We vary the extent of the Fourier mask used to elim-
inate ground pickup and compare the resulting recon-
structed bandpowers with our baseline analysis, which
removes the Fourier modes |(;| < 90 and |{,| < 50. We
introduce a more aggressive masking of |¢,| < 180 and
|¢,] < 100, doubling the size of the excised region com-
pared to the baseline. The lensing bandpowers obtained
with this aggressive filter are consistent with the base-
line bandpowers, as shown in Figure 16 for the gradient
reconstruction (red points); the PTE for the null differ-
ence with respect to the baseline is 0.14.

6.5.11. Temporal null tests

Finally, we consider null tests with lensing power spec-
tra reconstructed from data taken under different ob-
serving conditions or at different times. For these tests,
we use filters with noise levels consistent with each
dataset to maximize the SNR of the lensing spectra ob-
tained from each data subset. The first such test uses
two sets of sky maps prepared specially according to the
level of precipitable water vapour (PWV) in the obser-
vations. This tests for instrumental effects that depend
on the level of optical loading and the impact of different
levels of atmospheric noise. Table 2 shows the results of
the PWYV high versus PWYV low test, in which we com-
pare the lensing bandpowers obtained from data with
high and low PWV; see Appendix 1.0.5 for implemen-
tation details. No statistically significant difference is
seen between the lensing power reconstructed from the
high PWV and low PWV data, with a PTE for their
difference of 0.89.

The second test compares lensing bandpowers ob-
tained from sky maps constructed with observations
in the period 2017-2018 (Time-split 1) and 2018-2021
(Time-split 2), as well as their comparison against the
baseline MV reconstruction. This tests for the impact
of any drifts in the instrument characteristics with time
that are not accounted for in the analysis. These results
are presented in Appendix 1.0.4, with PTE values ad-
ditionally reported in Table 2. Again, no statistically
significant differences are seen in the bandpower differ-
ences.

6.6. Null-test results summary

In this section, we present an overview of all our null
test results. We first summarize the results of the pre-
vious sections using the overall distribution of PTEs,
shown in Figure 17. Our conclusion is that the distribu-
tion of the PTEs of all the null tests is consistent with a
uniform distribution for both the baseline and extended
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Figure 17. Histogram of PTE values for all of our null
tests; the two panels show results for our baseline range of
scales in the lensing power spectrum (top panel) and ex-
tended range of scales (bottom panel). Both histograms are
consistent with a uniform distribution using a Kolmogorov—
Smirnov test at 10% and 74%, respectively. We argue in Sec-
tion 6.6 that the tests that have the lowest PTEs are unlikely
to indicate significant problems for our baseline analysis.

range (passing at 10% and 74% with the Kolmogorov—
Smirnov test, respectively).

Beyond performing individual null tests, a powerful
check for subdominant systematic errors is to analyze
suitable groups of null tests that probe similar effects.
To that end, we group all the null tests discussed previ-
ously into five categories: tests focusing on noise proper-
ties; different angular scales; different frequencies; fore-
grounds; isotropy; and instrument-related systematics.
We then compare: (i) the sum of all x? values within
each category and (ii) the worst (i.e., largest) x? within
each category from the data with the distribution of
such statistics obtained in simulations, as shown in Fig-
ures 18-22. For each test, we consider both gradient
lensing modes and curl modes. In the figures, the blue
lines show the sum or worst x? statistic for the data and
the dotted red lines show the 20 limits from the ensem-
ble of simulated measurements of the relevant statistic.
We do not see strong evidence of a systematic effect
from the above analysis. Only the worst-y? statistics
for the noise-only and instrument null-test sets slightly
exceed the 20 limits from simulations. These tests cor-
respond to the coadded noise-only test (Section 6.4.2)
and the map-level null for the PA4 f150 and PA5 f090
array-frequencies (Section 6.4.5), respectively.

For the following reasons, we do not consider the
array-frequency null-test failures related to PA4 150
and PA5 f090 concerning.
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e The array-frequency map difference tests are very
hard to pass, as the signal-variance contribution
to the error bars is absent; this implies, first, that
the null test errors can be much smaller than the
measurement errors, and second, that the require-
ments on the fidelity of the noise simulations are
much more stringent than needed for the standard
lensing spectrum measurement. We also note that,
since we do not subtract an Ny bias from these null
tests, a failure could simply indicate that the CMB
power spectrum of the two different maps being
nulled is inconsistent. This does not necessarily
imply an inconsistency in lensing, because in our
lensing power spectrum analysis, the realization-
dependent bias subtraction methodology should
absorb small changes in the CMB power spectra.

e Some of these worst-performing map-level null
tests involve the array-frequency PA4 f150. We
further checked for possible inconsistencies of this
array with the others by performing bandpower-
level null tests in Section 6.5.5; these tests should
be more sensitive to multiplicative biases affect-
ing the different datasets than the map-level test
and, furthermore, include the signal part of the co-
variance matrix. In these targeted tests, we found
no evidence of a systematic difference in PA4 150
compared to the other array-frequencies.

e In addition, the array PA4 f150 has the least
weight in our coadd data; as can be seen in Fig-
ure 5, it only contributes less than 10% at each
CMB multipole to the total coadded sky map used
in our analysis.

e Foregrounds are mnot a likely cause of the
PA4 150 — PA5 090 null failure since the much
more sensitive f090 — f150 coadd map null test
passes.

7. SYSTEMATIC ERROR ESTIMATES

7.1. Foreground mitigation methodology and
verification

MacCrann et al. (2023) focuses exclusively on the sys-
tematic impact of extragalactic foregrounds; we briefly
summarise that work here. We characterise and vali-
date the mitigation strategies employed in our lensing
analysis via a three-pronged approach.

1. We refine and test the mitigation strategies on two
independent microwave-sky simulations: those
from Sehgal et al. (2010) and the WEBSKY sim-
ulations (Stein et al. 2020). We demonstrate
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Figure 18. Results of x? tests applied to the bandpowers
reconstructed from null (noise-only) maps constructed for in-
dividual array-frequencies. To examine an entire set of null
tests of a certain type, we investigate two quantities: (i) we
sum the x? of all the relevant tests of this type; and (ii) we
select the worst x? of all tests of this type. We then com-
pare the sum or worst x? from data to the distribution of
the same summary statistic in simulations. In this figure, we
consider the set of noise-only null tests described in Section
6.4.2.. The top row shows the x? sum statistic, the bottom
row shows the worst x? statistic. The histograms are ob-
tained from simulations, and the red dashed lines indicate
the simulation-derived 20 limits (in the sense that 95% of
values fall below these limits). The solid blue lines show the
x* sum (or the worst x?) obtained from the data. Although
there are isolated, mild failures at the 20 level, overall, the
sum of x? tests do not provide evidence for significant prob-
lems in our data.

that the baseline approach taken here, i.e., find-
ing/subtracting SNR > 4 point-sources, finding
and subtracting models for SNR > 5 clusters,
and using a profile-hardened quadratic estimator
(see Section 5.8.2 for details), performs better or
equally well to the other tested mitigation strate-
gies, with sub-percent fractional biases to Cfd) on
both simulations within most of the analysis range
(see left panel of Figure 2 of MacCrann et al. 2023,
reproduced here as Figure 23). We also find that
for both simulations, biases in the inferred lens-
ing power spectrum amplitude, Ajns, are below
0.20 in absolute magnitude, and below 0.250 when
extending the analysis range to Lya.x = 1300, as
shown in the right panel of Figure 23. In addition,
we demonstrate that a variation of our analysis
where we include Planck 353 GHz and 545 GHz
channels in a harmonic ILC while deprojecting
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Figure 19. As for Figure 18, but for the set of scale-related
null tests of Section 6.5.7, namely the consistency of 600 <
£ < 3000 (baseline), 800 < ¢ < 3000, 1500 < ¢ < 3000, 600 <
¢ < 2500, 600 < ¢ < 2000 analysis ranges and the aggressive
Fourier-space mask test described in Section 6.5.10. We find
no evidence for systematic effects in our data in these tests.
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Figure 20. As for Figure 18, but for null tests related to
foregrounds: map-level f090 — f150 difference tests of Sec-
tion 6.4.3, bandpower f090 — f150 difference tests of Section
6.5.2, the CIB deprojection consistency test of Section 6.5.3,
the shear consistency test of Section 6.5.4 and the consis-
tency tests between different polarization combinations of
Section 6.5.1.
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Figure 21. As for Figure 18, but for null tests related to
instrument systematics. These include the map-level array-
difference tests described in Section 6.4.5 and the PWV and
season-difference null tests introduced in Section 6.5.11. We
again find no evidence for systematic effects in our data.
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Figure 22. As for Figure 18, but for null tests related
to isotropy: the cross-linking null test, as described in Sec-
tion 6.5.6, and consistency tests between the north and south
of the Galactic equator, as detailed in Section 6.5.9. This
suite of tests again appears nominal.

a CIB-like spectrum also performs well (see the
dashed lines in Figure 23); this motivated also run-
ning this variation on the real DR6 data to ensure
our measurement is robust to the CIB.
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2. Since the results described above to some extent
rely on the realism of the extragalactic microwave-
sky simulations, we also demonstrate our robust-
ness to foregrounds using targeted null-tests that
leverage the fact that the foreground contamina-
tion is frequency-dependent, while the CMB lens-
ing signal is not. These null tests are also pre-
sented in this paper (Figures 9 and 12).

3. Finally, we demonstrate that the DR6 data band-
powers are consistent when we use either CIB-
deprojected maps, which should reduce CIB con-
tamination but to some extent increase tSZ con-
tamination (see Section 6.5.3), or the shear esti-
mator (see Section 6.5.4).

7.2. Instrumental systematics

We investigate the effects of various instrumental sys-
tematic factors on the lensing auto-spectrum measure-
ment and present the summary here. These include: (i)
miscalibration; (ii) beam uncertainty; (iii) temperature-
to-polarization leakage; (iv) polarization efficiency; and
(v) polarization angles. A comprehensive evaluation of
these factors and their impact on the measurement is
presented in Appendix C. Here, we summarise the esti-
mated systematic biases to the lensing power spectrum
in terms of A A5, the typical bias in the lensing ampli-
tude. This is calculated from Equation (44), with CA’EL;“

replaced by Aézbf, the shift to the power spectrum due
to a systematic effect. Note that the AA,s is com-
puted for the baseline range (L € [40,763]). Table 3
summarises the AAjq,s values of the systematics consid-
ered in this study. The estimated levels of instrument
systematics would not produce a significant bias to our
lensing measurements. We now briefly discuss these sys-
tematic effects in turn.

The lensing power spectrum can be impacted by mis-
calibration of the sky maps and beam uncertainties. To
address this, we have estimated error budgets for both
factors using exact as well as approximate methods,
and found no significant bias (Appendix C.1). Sum-
mary statistics for AAjens, given the estimated uncer-
tainties in the calibration and beam transfer functions,
are reported in Table 3. Furthermore, the consistency
of patch-based isotropy tests in Section 1.0.2 shows that
there is no evidence of spatially varying beams at levels
relevant for lensing.

As discussed in Section 3.2, measurements on Uranus
provide evidence of temperature-to-polarization leakage
in the ACT data. We estimate the impact of this by
adding leakage terms to the polarization maps and an-
alyzing their response; see Appendix C.2 for details.

These results indicate only a small effect in our lensing
measurement, as summarized in Table 3.

Some evidence has been found for a larger
temperature-to-polarization leakage in the maps than
specified by the nominal Uranus leakage model, based on
power spectrum differences between detector arrays. We
analyse a simple model for such leakage in Appendix C.2
and propagate this through our lensing measurement
for the extreme case of the same leakage for all array-
frequencies. The bias on Ajens is again a small fraction
of the statistical error (see Table 3).

The absolute polarization angle error in the ACT DR6
data set is found to be consistent with the previous
ACT DR4 data set and rotating the @/U maps by an
amount equal to the estimated DR4 angle plus its un-
certainty (a total ®p = —0.16deg) has minimal impact
on the measurement (Table 3, with further details in
Appendix C.3).

The polarization efficiency correction that we apply to
the polarization maps was discussed in Section 3.4; see
also Appendix A for a full description. It is based on the
mean of the measured values for each array, obtained by
fitting the ACT DR6 EE spectra to the fiducal model.
A test where the estimated polarization efficiency is low-
ered by 1o, where o is the mean of the per-array statis-
tical errors from the fitting, shows no significant impact
(Table 3 and Appendix C.4). We note that this is a
very conservative test as it assumes the errors in the
fitted polarization efficiences are fully correlated across
array-frequencies.

Finally, we note that a broader, simulated investiga-
tion of the impact of instrument systematics on CMB
lensing was performed in Mirmelstein et al. (2021); al-
though the simulation choices are not an exact match to
ACT DR&, it is reassuring that the resulting systematic
biases reported there appear negligible at the levels of
precision considered in our analysis.

7.3. A Note on Map Versions

This analysis uses the first science-grade version of the
ACT DR6 maps, namely the dr6.01 maps. Since these
maps were generated, we have made some refinements
to the map-making that improve the large-scale transfer
function (discussed in Section 3.3) and polarization noise
levels, and include data taken in 2022. We expect to use
a second version of the maps for further science analyses
and for the DR6 public data release. While we caution
that we cannot, with absolute certainty, exclude changes
to the lensing power spectrum with future versions of the
maps, we are confident that our results are robust and
stable for the reasons discussed below.
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Figure 23. Left: Estimates of the fractional bias due to extragalactic foregrounds to the estimated CMB lensing power
spectrum, for an ACT DR6-like analysis, in the case of the baseline (MV) estimator. Circles with solid connecting lines indicate
biases predicted from the WEBSKY (Stein et al. 2020) simulations, triangles with solid connecting lines indicate biases estimated
from the Sehgal et al. (2010) simulations (denoted S10). The symbols with dashed connecting lines are for the CIB-deprojected
analysis, which additionally uses Planck data at 353 GHz and 545 GHz, described in the main text. The grey dotted line indicates
10% of the 1o uncertainty of the DR6 bandpower measurement, and the solid grey line indicates the signal-to-noise ratio when
only scales up to L are included. The grey shaded regions indicate scales not used in the baseline cosmological inference. Right:
Bias in inferred Ajens as a function of the maximum multipole in the CMB lensing power spectrum used, Lmax, in units of
the 1o uncertainty (with the uncertainty also re-computed as a function of Lmax). Both panels indicate that the biases to the
lensing power spectra are negligible in all our analyses; in particular, using the baseline range, foreground biases are generally

mitigated to below 0.20.

First, as discussed in Section 3.3, there are non-
idealities such as transfer function and leakage effects in
the analyzed version of the maps. In principle, one could
worry that the source of this transfer function problem
also affects lensing measurements. However, these ef-
fects appear primarily at low multipoles below £ ~ 1000.
Fortunately, the lensing estimator is insensitive to effects
at low multipoles, which is the reason for the negligible
change found when correcting for the transfer function
(as discussed in Section 3.3).

Second, after refinements to the map-making were im-
plemented, improving the large-scale transfer functions
and polarization noise levels, a small region of sky was
mapped with the old and new map-making procedures
to allow comparison. We measure lensing from the old
and new maps and construct lensing power spectrum
bandpowers and map-level null tests as described in Sec-
tion 6. In the comparison of the lensing power spectra,
the new maps produce a lower spectrum by 0.30 (of
the measurement error on this region) or 3.5%; while at
the time of publication noise simulations from the new
mapping procedure were not available to us to assess
the significance of the difference, this variation appears

consistent with random scatter. In addition, residuals
in the map-level null test are entirely negligible (below
C%’d) /1000), ruling out significant non-Gaussian system-
atics that differ between the map versions.

Finally, several of our null tests should be sensitive
to the known non-idealities in the maps. For exam-
ple, transfer function effects appear worse in f150 than
in f090; related systematics might therefore affect the
f090 — f150 frequency null tests or array-frequency null
tests. Similarly, systematics affecting low or high mul-
tipoles differently should affect the multipole range sta-
bility tests shown in Figure 16. Despite having run a
suite of more than 200 null tests, no significant evidence
for systematics was found; this, in particular, gives us
confidence in our results.

8. MEASUREMENT OF THE LENSING POWER
SPECTRUM

8.1. Lensing power spectrum results

Our baseline lensing power spectrum measurement is
shown in Figure 1 and Table 4 In addition to this com-
bined temperature and polarization (MV) measurement,
we also provide temperature-only and polarization-only
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Table 3. Summary of instrumental systematic error bud-
gets. The bias to the lensing amplitude, AAjens, is defined
similarly to Equation (44), but with the null spectrum re-
placed by the bias in the lensing spectrum due to the indi-
cated instrument systematic. The bias is calculated for the
baseline analysis range (L € [40,763]). The “T—P leakage
(const.)” and “Polarization eff.” represent the values from
very conservative models as described in Appendix C.2 and
Appendix C.4, respectively; they should hence be understood
as upper limits.

Systematic Estimator AAiens
Miscalibration MV 0.00432 (0.180)
Miscalibration MVPol 0.00419 (0.090)

Beam uncertainty MV 0.00113 (0.050)
Beam uncertainty MVPol 0.00110 (0.020)
T—P leakage (beam) MV —0.00021 (—0.010)
T—P leakage (beam) MVPol  —0.00052 (—0.010)
T—P leakage (const.) MV —0.00461 (—0.190)
T—P leakage (const.) MVPol  —0.00887 (—0.18¢)

Polarization eff. MV —0.00896 (—0.370)

Polarization eff. MVPol  —0.01884 (—0.380)
Polarization angle MV —0.00025 (—0.010)
Polarization angle MVPol 0.00070 (0.010)

lensing bandpowers in Figure 24 and their respective
Ajens values in Figure 25. A compilation of the most
recent lensing spectra made by different experiments
is shown in Figure 26. Our measurement reaches the
state-of-the-art precision obtained by the latest Planck
NPIPE analysis (Carron et al. 2022); compared with
other ground-based measurements of the CMB lensing
power spectrum, our result currently has the highest
precision. Furthermore, our polarization-only lensing
amplitude estimate, determined at 19.7¢0, is the most
precise amongst measurements of its kind, surpassing
the 12.70 and 10.1¢ from NPIPE (Carron et al. 2022)
and SPTpol (Wu et al. 2019), respectively.

8.2. Lensing amplitude

We estimate the lensing amplitude parameter Aje,s by
fitting our baseline bandpower measurements to a the-
ory lensing power spectrum predicted from the best-fit
ACDM model from the Planck 2018 baseline likelihood
plikHM TTTEEE lowl lowE, allowing the amplitude of
this lensing power spectrum to be a free parameter in
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Figure 24. The ACT DR6 lensing bandpowers for the
baseline analysis, combining temperature and polarization
(MV) are shown in red and are in good agreement with the
ACDM theoretical prediction based on the Planck 2018 CMB
power spectrum best-fit cosmology, which is shown in the
solid black line. A model based on the best-fit rescaling of
this prediction with Ajens = 1.013 & 0.023 is shown in the
dashed line. We also show the polarization-only (MVPOL)
and temperature-only (TT) analyses in green and blue, re-
spectively. We find good consistency of the lensing measure-
ments using temperature and polarization.

Table 4. Lensing bandpowers in the baseline range, for
our minumum-variance (MV) estimator. Values are given
for 107[L(L + 1)]2C¢?/4 = 107C§* averaged over mnon-
interlapping bins with bin edges given in the first column
and band centers L; in the second.

[Lmin  Lmax] Ly  107[L(L +1)]?C5? /4

[0 66] 53.0 2.354 + 0.157
[67 101] 835 1.822 + 0.096
(102 145] 123 1.368 + 0.068
(146 199] 172 1.000 =+ 0.054
[200 264] 2315 0.758 & 0.047
[265 339 3015 0.617 & 0.048
(340 426] 3825 0.439 =+ 0.039
(427 526] 476 0.409 = 0.032
(527 638] 582 0.249 + 0.027
(639 763]  700.5 0.156 + 0.026
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Figure 25. ACT DR6 measurements of the lensing am-
plitude Ajens relative to the model from the Planck 2018
measurements of the CMB anisotropy power spectra. Re-
sults are shown for the baseline analysis (MV), which com-
bines temperature and polarization, and for polarization-
only (MVPOL) and temperature-only (TT) analyses. We
find good consistency of lensing measurements using tem-
perature and polarization.

our fit.3?” We find

Alens = 1.013 £ 0.023  (68% limit) (46)

from the baseline multipole range L = 40-763, in good
agreement with the lensing spectrum predicted by the
Planck 2018 ACDM model (Ajens = 1). The scaled
model is a good fit to the lensing bandpowers, with a
PTE for x? of 13%. (The equivalent PTE for our band-
powers without rescaling the Planck model by Ajeys is
17%. Note that the PTE is higher here because we have
one more degree of freedom.) We also find

Alens = 1.016 + 0.023 (47)

using an extended multipole range of 40 < L < 1300.
The fit remains good over this extended range, with
a PTE of 12%.3® For comparison, the latest CMB
lensing analysis from Planck NPIPE obtained Ajepns =
1.004 £ 0.024 (Carron et al. 2022).%° For measurements
performed purely with temperature and polarization we
obtain the lensing amplitudes of Aj.ns = 1.009 £ 0.037
and Ajens = 1.034 + 0.049, respectively. The consis-
tency of the Ajens amplitude obtained from MV, TT,
and MVPOL is illustrated in Figure 25. Our measured
lensing bandpowers are therefore fully consistent with
a ACDM cosmology fit to the Planck 2018 CMB power

37 Qur accuracy settings, which were chosen to reproduce results
obtained with the high-accuracy settings of McCarthy et al.
(2022) with sufficient accuracy, while still ensuring rapid MCMC
runs, are as follows: 1lmax = 4000; lens_potential_accuracy =
4; lens margin = 1250; AccuracyBoost = 1.0; 1SampleBoost
1.0; and lAccuracyBoost = 1.0.

38 We note that the Ajepns error for the extended range only improves
over that from the baseline range in the next significant digit,
from 0.0234 to 0.0233; the improvement is modest because the
small angular scales in the lensing power spectrum are still quite
noisy.

39 Using the same theory model used in our work, we obtain Ajeps =
0.993 4+ 0.025 from the NPIPE lensing bandpowers.

spectra, with no evidence for a lower amplitude of struc-
ture.

It is also important to emphasise that the agreement
of our late-time measurements with the structure growth
predicted by the CMB power spectra also holds for CMB
power spectra measured by other experiments (not just
Planck). Our lensing measurements are also consistent
with a ACDM model fit to independent CMB power
spectra measurements from ACT DR4 + WMAP (Aiola
et al. 2020): fitting to a rescaling of the best-fit ACT
DR4 + WMAP ACDM model prediction yields an am-
plitude of lensing of Ajens = 1.005 £+ 0.023. We shall
explore the consequences of our measurements for struc-
ture growth further in the next section.

9. IMPLICATIONS FOR STRUCTURE GROWTH
9.1. Likelihood

We obtain cosmological constraints by constructing a
lensing likelihood function £ assuming Gaussian errors
on C’,?Jqu obtained from the MV estimator:

—2In Lo Y [CFF = CPY(0)]Cyr [0 — C72 ()],
bb’

(48)
where C’ff is the measured baseline lensing power spec-
trum, Cff(@) is the theory lensing spectrum evaluated
for cosmological parameters @, and Cy, is the baseline
covariance matrix. We discussed the construction of the
covariance matrix in Section 5.11, while verification of
the Gaussianity of the lensing bandpowers can be found
in Appendix H. Further corrections to this likelihood are
applied when considering joint constraints with CMB
power spectra, as described in our companion paper,
Madhavacheril et al. (2023). These account for the de-
pendence of the normalization of the lensing bandpowers
on the true CMB power spectra and of the Ny correc-
tion on both the true CMB and lensing power spectra.
For the lensing-only constraints presented in this paper,
we account for uncertainty in the CMB power spectra
by sampling 1000 flat-ACDM CMB power spectra from
ACT DR4 + Planck and propagating these through the
lensing normalization; the scatter in the normalization
leads to an additional broadening of the bandpower co-
variance matrix. For further details, see our earlier dis-
cussion in Section 5.10 and also Appendix B.

9.2. Constraints on the amplitude of structure from
lensing alone

We now consider constraints on the basic ACDM pa-
rameters — cold dark matter and baryon densities, Q.h?
and A2, the Hubble constant Hy, the optical depth to
reionization 7, and the amplitude and scalar spectral in-
dex of primordial fluctuations, As and ng — from our
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Figure 26. Compilation of CMB lensing power spectrum measurements, with our results shown as red datapoints. The CMB
lensing power spectrum presented in this paper represents (along with Planck NPIPE, which reaches similar precision) the highest

signal-to-noise lensing spectrum measured to date.

Table 5. Priors used in the lensing-only cosmological analy-
sis of this work. Uniform priors are shown in square brackets
and Gaussian priors with mean g and standard deviation o
are denoted N (u, o). The priors adopted here are identical to
those used in the lensing power spectrum analysis performed
by the Planck team (Planck Collaboration et al. 2020a).

Parameter Prior
In(10'°Ay) 2, 4]

Hy [40, 100]

N N(0.96,0.02)
Qph? N(0.0223,0.0005)
Q.h? [0.005,0.99]

T 0.055

lensing measurements alone. These parameters are var-
ied with priors as summarised in Table 5; these are the
same priors assumed in the most recent Planck lens-
ing analyses (Planck Collaboration et al. 2020a; Carron
et al. 2022). Since lensing is not sensitive to the CMB
optical depth, we fix this at 7 = 0.055 (Planck Collab-
oration et al. 2016). We fix the total neutrino mass to
be consistent with the normal hierarchy, assuming one
massive eigenstate with a mass of 60 meV.

Weak lensing observables in cosmology depend on
both the late-time amplitude of density fluctuations in
terms of og and the matter density (2,,; there is an ad-

ditional dependence on the Hubble parameter Hy. In
Figure 27 we show the CMB-lensing-only constraints de-
rived from our spectrum measurement; these follow, as
in previous lensing analyses, a narrow line in the space
spanned by os—Hp—2,,. In our companion paper Mad-
havacheril et al. (2023), we argue that this line-shaped
posterior arises because CMB lensing on large and small
scales constrains two different combinations of og—Hgp—
Q. These two constraint planes intersect in a con-
straint “line”, which explains the form of the posterior
seen in the figure. The DR6 lensing data provides the
following constraint on this 3-dimensional og—Hy—2,,
parameter space:

og (023 /1 Qb2
@(E) ( 0.13

This line-like degeneracy projects into constraints
within a narrow region in the og—§2,, plane, as shown
in Figure 2. The best-constrained direction corresponds
approximately to a determination of 032%:2%. Constrain-
ing this parameter combination with our data, we obtain

—0.32
) — 0.9938 + 0.0197  (49)

030%:2% = 0.606 + 0.016. (50)

This translates to a constraint on the CMB-lensing-
equivalent of the usual Sg parameter, which we define
as

Qm 0.25
SgMBL = Ug(ﬁ) 5 (51)
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Figure 27. Posterior samples in o0s—Ho—2,, space from our
lensing-only likelihood, with the projection into 2D spaces
shown with light grey points. As expected, our constraints
form a degeneracy “line” in this parameter space. The Hy
units are kms~! Mpc™*.

of
SEMBL — 0.818 +0.022 (0.830 + 0.020). (52)

In the constraint shown above, the result for the baseline
analysis is shown first, followed by the constraint from
the extended range of scales in parentheses. These can
be compared with the value expected from Planck CMB
power spectrum measurements assuming a ACDM cos-
mology. Extrapolating the Planck CMB anisotropy
measurements to low redshifts yields a value of S¢MBL =
0.823 4+ 0.011. This is entirely consistent with our di-
rect ACT DR6 lensing measurement of this parame-
ter. As in the case of Ajens, this agreement is not
limited to comparisons with Planck; similar levels of
agreement are achieved with ACT DR4 + WMAP CMB
power spectrum measurements, which give a constraint
of SYMBL = (.828+0.020. Our measurement is also con-
sistent with the direct S$MPBL result from NPIPE lensing,
SEMBL — (0.809 + 0.022. This consistency of S¢MBL be-
tween extrapolations from CMB power spectra, which
probe primarily z ~ 1100, and direct measurements with
CMB lensing at lower redshifts z ~ 0.5-5 can be seen in
Figure 28.

Our constraint on S¢MBL is robust to the details of
our analysis choices and datasets. In Figure 29, we
present the marginalized posteriors of SYMBL obtained
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Figure 28. Marginalised posteriors for SMBL from ACT
DR6 lensing (red). We also show the constraints from
Planck NPIPE lensing and the early-universe extrapolation
from CMB anisotropy measurements of ACT DR4 + WMAP
and Planck 2018.

using different variations of our analysis. Since levels
of extragalactic foregrounds are significantly lower in
polarization than in temperature, the consistency be-
tween our baseline analysis and the analyses using tem-
perature data and polarization data alone suggests that
foreground contamination is under control. While our
baseline analysis incorporates the modeling of non-linear
scales using the non-linear matter power spectrum pre-
scription of Mead et al. (2016), we also present con-
straints that use linear theory only. The consistency of
this result with our baseline shows that we are mainly
sensitive to linear scales. Finally, we present constraints
using our pre-unblinding method of inpainting clusters
instead of masking, as discussed in Section 6.3.1. This
method only results in a shift of 0.15¢ in S$MBL.

In Figure 30 we also show constraints on S$MBL
(and ,,,) with the sum of neutrino masses freed and
marginalized over, instead of being fixed at the mini-
mum allowed mass set by the normal hierarchy, 60 meV.
40 In this case, our constraint of SMBL = 0.797 £0.024
become tighter than constraints from Planck 2018 CMB
power spectra, S¢MBL = 0.811+£0.027. The fact that our
constraints are only slightly weakened when marginal-
izing over a free neutrino mass, whereas Planck con-
straints on S¢MBL are significantly degraded, is ex-
pected. Since our lensing results originate from low red-
shifts, minimal extrapolation to z = 0 (where SYMBL is
evaluated) is required, which makes our constraints com-
paratively insensitive to neutrino mass. In constrast, for
CMB power spectrum constraints, extrapolation over a
wide redshift range from z ~ 1100 to z = 0 is required,
which implies that the constraints have significant sen-
sitivity to neutrino mass.

9.3. Constraints on the amplitude of structure from
lensing alone: ACT+Planck NPIPE

40 Following the arguments in Lesgourgues & Pastor (2006) and Di
Valentino et al. (2018), here we consider a degenerate combina-

tion of three equally massive neutrinos.
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Figure 29. Marginalized posteriors for S$MBY using varia-

tions of our ACT DR6 analysis choices and datasets (black).
Moving from bottom to top, we first show results obtained
using the extended multipole range up to L = 1300, and
a constraint obtained using linear theory only in the model
predictions. The small shift for the latter compared to the
baseline (given in red) shows that we probe scales where de-
tails of non-linear physics are not so important. Next, the
result from the SZ-inpainting method, which we used before
unblinding, is shown; this produces a very small shift com-
pared to our post-unblinding method of template subtrac-
tion. Finally, variations using only temperature data (TT)
and polarization-only data (MVPOL) are shown to be con-
sistent with the baseline, further demonstrating that fore-
grounds are well mitigated. For comparison, we also show
the early-universe extrapolation for S¢MBY from the Planck
2018 CMB power spectrum measurements (orange).
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Figure 30. Marginalised constraint on the parameters
SEMBL — Ug(Qm/0.3)0'25 and Q,, from ACT DR6 CMB lens-
ing only (blue) and Planck 2018 CMB anisotropies (orange)
with the sum of the neutrino masses allowed to vary (open,
dashed contours) or fixed (filled contours). The marginalised
contours show the 68% and the 95% confidence levels. The
top and side panels show the corresponding 1D marginalized
constraints.
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Figure 31. Lensing bandpowers for ACT DR6 (red), the
Planck NPIPE lensing bandpowers (green boxes) in the con-
servative range of scales and the inverse-variance-weighted
combination of both (blue). We note that, unlike for Planck
points, ACT bandpowers are shown over the entire observed
range. The excellent consistency between the two measure-
ments provides motivation for combining the lensing mea-
surements at the likelihood level and inferring joint parame-
ter constraints.

The DR6 CMB lensing measurement from the ground
contains information that is, to some extent, indepen-
dent from the space-based measurement obtained with
the Planck satellite. The two measurements have dif-
ferent noise and different instrument-related systemat-
ics; their sky coverage and their angular scales also only
have partial overlap*! over a sky fraction of 67% used in
the Planck analysis.

This partial independence motivates not just compar-
ing the two measurements, but, given that we find good
consistency between the two, combining them to obtain
tighter constraints. The excellent agreement between
both measurements can be seen in Figure 31, where for
illustrative purposes we show also in blue the combined
(with an inverse-variance weight) lensing bandpowers
from ACT DR6 and Planck.*?

In this paper, we combine the two lensing spectra at
the likelihood level, taking into account the small corre-
lation between the two datasets in order to obtain fur-

41 As previously mentioned, ACT uses only CMB multipoles 600 <

¢ < 3000, whereas Planck analyses 100 < £ < 2048.

42 We re-bin the ACT DR6 bandpowers using the same binning
used by NPIPE and perform a inverse variance weighted coadd
using the ACT and Planck covariance matrices. Czomb”’ed =

[3,C71 7V 2,0, i € {ACTXACT, PlanckxPlanck}
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ther improved constraints on Sg. For the NPIPE lens-
ing measurements, we use the published NPIPE lensing
bandpowers.*? The NPIPE part of the covariance matrix
is obtained using a set of 480 NPIPE lensing reconstruc-
tions.*

9.3.1. Covariance matriz between ACT and Planck lensing
spectra

Although we expect the ACT and Planck datasets to
have substantially independent information, the sky and
scale overlap are large enough that we cannot, without
further investigation, neglect the correlation between
these two datasets. We, therefore, compute the joint
covariance, proceeding as follows. We start with the
same set of 480 full-sky FFP10 CMB simulations used
by NPIPE to obtain the Planck part of the covariance
matrix. We apply the appropriate ACT DR6 mask
and obtain lensing reconstructions using the standard
(not cross-correlation-based*®) estimator with a filter
that has the same noise level as the DR6 analysis. We
do not add noise to the ACT CMB maps as we ex-
pect the instrument noise of Planck and ACT to be
entirely independent; the ACT noise should hence not
enter the ACT-Planck-covariance (when using the cross-
correlation-based estimator for ACT). We use these 480
reconstructed ACT bandpowers along with the corre-
sponding NPIPE lensing bandpowers to obtain the off-
diagonal ACT-Planck elements of the joint bandpower
covariance matrix for the two datasets.

The correlation between the two datasets is small, as
we will show, but the computation of this larger covari-
ance matrix causes challenges in ensuring convergence
with a modest number of simulations. To reduce the
impact of fluctuations and ensure convergence of the re-
sulting covariance matrix, we use a criterion that al-
lows us to simulate only the most correlated bandpow-
ers. This is done by only simulating the terms in the
covariance matrix that we expect to be significantly dif-
ferent from zero, and nulling all other elements. To de-
termine which elements can be safely nulled, we com-
pute the covariance matrix between ACT and Planck

43 https://github.com/carronj/planck_PR4_lensing

44 As a test, we replace the ACT DR6 lensing bandpowers and
covariance matrix in our likelihood with those from NPIPE. We
recover 089%25 = 0.590 #+ 0.019, compared to the NPIPE con-
straint of 030925 = 0.599 £ 0.016. The difference in errors arises
mainly from the normalization marginalization step we perform
(Appendix B) and the shift in central value is explained by the
use of the measured Planck power spectrum in the NPIPE normal-
ization (see, for example, Section 3.2.1 of Planck Collaboration
et al. 2020a).

45 This is justified because the ACT-Planck-covariance does not
depend on instrument or atmospheric noise in ACT.
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Figure 32. Visualization of the ACT lensing x

Planck lensing part of the covariance matrix for the joint
dataset: we plot the correlation coefficient of the ACT band-
powers (horizontal axis) and the Planck NPIPE bandpowers
computed from a set of 480 FFP10 simulations. As argued in
Section 9.3.1, correlations between disjoint bandpowers can
be neglected in the ACT x Planck covariance; they are there-
fore set to zero to improve convergence with a finite number
of simulations.

in an unrealistic scenario of maximum overlap in area
and multipole by analysing a set of 396 ACT CMB sim-
ulations with the same ACT analysis mask and multi-
pole range 600 < ¢ < 3000 (instead of the NPIPE anal-
ysis mask covering 67% of the sky and multipole range
100 < ¢ < 2048) but with a filter, used for the inverse-
variance and Wiener filtering of the CMB maps, with
noise levels appropriate for NPIPE. The resulting covari-
ance matrix only shows a significant correlation among
the bins where the ACT and NPIPE bandpowers over-
lap in multipole L. (This is unsurprising because, even
within ACT, different-L bandpowers are only minimally
correlated, and we expect even smaller correlations be-
tween Planck and ACT bandpowers at a different L).
From this maximally overlapping covariance matrix we
choose the elements where the absolute value of the cor-
relation between the bandpowers is less than 0.15 and
zero these elements in the final ACT x Planck covari-
ance matrix, as these are likely due to noise fluctuations
rather than physical correlation between the bandpow-
ers.*0 The resulting covariance matrix is shown in Fig-
ure 32.

Finally, we broaden the covariance matrix to account
for marginalization over the uncertainties in the CMB

46 We verified that the central value of the posterior for SgMBL
changes by a negligible amount when the level of this threshold

is varied.
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lensing power spectra, as described earlier for the ACT
part in Section 9.1. This step is applied consistently to
both the ACT and the NPIPE parts of the covariance
matrix and is described in detail in Appendix B.

The parameter constraints on og and €2,,, derived from
the combination of ACT and Planck lensing are shown
in Figure 33. As expected, the joint constraint in red is
in good agreement with the ACT DR6-only constraint
and with the Planck CMB power spectrum prediction
in black.

The joint ACT DR6 + Planck lensing constraints in
the SYMBL-Q,, plane are shown in Figure 34. We ob-
tain the following constraint on S§MB from the ACT—
Planck combined dataset:

SEMBL — 0813 +0.018 (0.822 4 0.017), (53)

where the constraint in parentheses is from the extended
lensing multipole range.*”

9.4. Discussion of results

Our lensing power spectrum bandpowers are consis-
tent with the ACDM prediction over a range of scales.
Good consistency with ACDM is found even in the ex-
tended range of scales where foregrounds and non-linear
structure growth could be more relevant.

As previously discussed, our results are highly relevant
for the Sg tension. A powerful test of structure forma-
tion is to extrapolate, assuming ACDM structure growth
but no other free parameters, a model fit to the Planck
CMB power spectrum at (mostly) early times down to
low redshifts, and then compare this extrapolation with
direct measurements of S¢MBL = 54(,,/0.3)%-2° or 0.
Intriguingly, some lensing and galaxy clustering mea-
surements seem to give lower values of Sg or og than
predicted by Planck at the (2-3)o level, including KiDS,
DES and HSC (Heymans et al. 2013; Asgari et al. 2021;
Heymans et al. 2021; Krolewski et al. 2021; Philcox &
Ivanov 2022; Abbott et al. 2022; Loureiro et al. 2022; Li
et al. 2023; Dalal et al. 2023), although this conclusion
is not universal (eBOSS Collaboration 2021). Our mea-
surement of lensing and structure growth is independent
of Planck and also does not rely at all on galaxy sur-
vey data, with the associated challenges in modeling and
systematics mitigation.

47 The shift in posteriors from the baseline to the extended range,
despite the small change in errors, could indicate that NPIPE
lensing bandpowers are more consistent with the baseline ACT
DR6 range. Moreover, since the posteriors of the extended range
are not well-described by a Gaussian distribution, it is difficult
to make a direct comparison between the baseline and extended
posteriors. Refer to Appendix 1.1 for the full triangle plot of the
posteriors.

As described in the previous section, we find S$MBL =

0.818+£0.022 as our baseline result from ACT. This is in
full agreement with the expectation based on the Planck
CMB-anisotropy power spectra and ACDM structure
growth. We emphasize that the agreement between pre-
cise lensing measurements at z ~ 0.5—5 with predictions
from CMB anisotropies probing primarily z ~ 1100 is a
remarkable success for the ACDM model. From a fit of
ACDM at the CMB last-scattering surface, our standard
cosmology predicts, with no additional free parameters,
cosmic structure formation over billions of years, the
lensing effect this produces, and the non-Gaussian im-
print of lensing in the observed CMB fluctuations; our
measurements match these predictions at the 2% level.

Unlike several galaxy lensing measurements and other
large-scale structure probes, we find no evidence of any
suppression of the amplitude of structure.

Our lensing power spectrum and the resulting param-
eters also agree with the results of the Planck lens-
ing power spectrum measurement. Since both ACT
lensing power spectra and CMB power spectra are in
good agreement with Planck measurements, this disfa-
vors systematics in the Planck measurement as an expla-
nation of the Sg tension. This also means that we may
combine with the Planck lensing measurement to ob-
tain an even more constraining measurement S§MBL =
0.813 + 0.018, again in agreement with the Planck or
ACT DR4 + WMAP CMB power spectra.

We note that while we appear to find a higher value
of SYMBL than the Sy measured by several weak lens-
ing surveys, the two quantities differ in the power of
Q,, and can hence, in principle, be brought into better
agreement by a lower value of €2, < 0.3 (although the
matter density is very well constrained by other probes);
in any case, the discrepancy does not reach high statisti-
cal significance. Our companion paper (Madhavacheril
et al. 2023) discusses this comparison in more detail by
combining these datasets with baryon acoustic oscilla-
tion (BAO) data to constrain €, to ~ 0.3.

We expect the agreement of our lensing power spec-
trum with the Planck CMB power spectrum extrapola-
tion to disfavor resolutions to the Sg tension that involve
new physics having a substantial effect at high redshifts
(z > 1) and on linear scales, where our lensing measure-
ment has highest sensitivity.

However, this need not imply that statistical fluctua-
tions or systematics in other lensing and LSS measure-
ments are the only explanation for the reported ten-
sions. The possibility remains that new physics sup-
presses structure only at very low redshifts, z < 1, or on
non-linear scales, k > 0.2h Mpc™!, to which our CMB
lensing measurements are much less sensitive than cur-
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Figure 33. Constraints in the os—{, plane obtained by combining the ACT and Planck CMB lensing power spectrum
measurements at the likelihood level, including an appropriate correlation between the ACT and Planck bandpowers (red).
Posteriors arising from our baseline ACT DR6 lensing spectrum alone and from the Planck NPIPE lensing spectrum alone are
shown in blue and grey, respectively. It can again be seen that the results are in good agreement with the prediction in the
ACDM model from Planck 2018 CMB power spectrum measurements (black).

rent cosmic shear, galaxy-galaxy lensing, or galaxy clus-
tering constraints. An example of such physics could
be the small-scale matter power spectrum suppression
proposed in Amon & Efstathiou (2022) or He et al.
(2023) (along with systematics in CMB lensing cross-
correlation analyses); modified gravity effects that be-
come important at only very low redshifts are another
example, although these need to be consistent with ex-
pansion and redshift-space distortions (RSD) measure-
ments.

More information on possible structure growth ten-
sions can be obtained from ACT lensing measurements
not just through combination with external data as in
our companion paper, but also by cross-correlations with
low-redshift tracers. Such cross-correlations will allow
structure growth to be tracked tomographically as a
function of redshift down to z < 1, providing for pow-
erful tests of new physics. Several tomographic cross-
correlation analyses with the lensing data presented here
are currently in progress.

10. CONCLUSIONS

In this paper, we report a new measurement of the
CMB lensing power spectrum using ACT data collected
from 2017 to 2021. Our lensing measurement spans
9400 deg? of sky and is signal-dominated up to multi-
poles L = 150.

The CMB lensing power spectrum is determined us-
ing a novel pipeline that uses profile-hardening and
cross-correlation-based estimators; these methods en-
sure that we are insensitive to the foregrounds and
complex noise structure in high-resolution, large-sky,
ground-based CMB observations. We obtain a lensing
spectrum at state-of-the-art precision: the amplitude of
the spectrum is measured to 2.3% precision (430 signif-
icance) over the baseline range of scales 40 < L < 763,
with very similar results (also 430) obtained over the
extended range 40 < L < 1300. We test the robust-
ness and internal consistency of our measurement using
more than 200 null and systematic tests performed at
both the bandpower and map level: these include tests
of consistency of different array-frequencies, sky regions,
scales, and of temperature and polarization data. We
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Figure 34. Marginalised constraint on the parameters
SSMBL — 55(Q,,/0.3)%?° and Q,, from ACT DR6 CMB
lensing only (blue), ACT DR6 combined with Planck NPIPE
lensing (black), Planck 2018 CMB anisotropies (green) and
ACT DR4 + WMAP CMB anisotropies (orange). The
marginalised contours show the 68% and the 95% confidence
levels. The top and side panels show the corresponding 1D
marginalized constraints.

find no evidence for any systematic effects that could
significantly bias our measurement.

Our CMB lensing power spectrum measurement pro-
vides constraints on the amplitude of cosmic structure
that do not depend on Planck or galaxy-survey data,
thus giving independent information about large-scale
structure growth and further insight into the Sg ten-
sion. We find that our lensing power spectrum is well fit
by a standard ACDM model, with a lensing amplitude
Ajens = 1.01340.023 relative to the Planck 2018 best-fit
model for our baseline analysis (Ajens = 1.016 + 0.023
for the extended range of scales). From our baseline
lensing power spectrum measurement, we derive con-
straints on the best-determined parameter combination
SYMBL = 5 (02,,/0.3)"%° of SYMBL — (.818 + 0.022
from ACT CMB lensing alone. Since our spectrum
shows good consistency with the Planck CMB lensing
spectrum, we also combine ACT and Planck CMB lens-
ing to obtain S¢MBL = 0.813 4 0.018.

Our results are fully consistent with the predictions
based on Planck CMB power spectrum measurements
and standard ACDM structure growth; we find no evi-
dence for suppression of structure at low redshifts or for
other tensions. Our companion paper (Madhavacheril
et al. 2023) combines our measurements with BAO data

to study the agreement with other lensing surveys. Since
our measurement is less sensitive to new physics at low
redshifts z < 1 and on non-linear scales, further investi-
gation of structure growth at lower redshifts and smaller
scales, for example with upcoming ACT lensing cross-
correlation analyses, is well motivated.

The lensing pipeline presented here provides a founda-
tion for high-resolution, ground-based lensing measure-
ments covering a significant portion of the sky. This
framework will be used for ongoing analyses of ACT data
incorporating day-time observations from 2017-2022 as
well as night-time data recorded in 2022. Moreover,
the analysis presented here demonstrates a preliminary
pipeline that can be used for Simons Observatory (SO
Collaboration 2019) in the near future.
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APPENDIX

A. SELF-CALIBRATION OF POLARIZATION EFFICIENCIES: FITTING OF AMPLITUDE SCALING

In this appendix, we describe the array-frequency fitting for a single amplitude scaling, peAéQ, which relates our data
polarization power spectra to the fiducial model assumed for the normalization of the lensing estimator. We define
the following x2:

Zlb!lax elbnax
2/, Ag _ Ar [y2Af,EE1T "L A Af
X (peff7aAf) - Z Z Aeb [2 ]Zb,% Agév (Al)
szzrbnin é;):(%{j““

where ebf’z' is an analytic covariance matrix including the cosmic variance and the noise variance measured from the
"

ACT data. The difference spectrum A?bf is given by the difference of a model for the spectrum and the data:

Af CMB,EE foreground,EE,A¢ Ag\2 ACTxACT,EE,A¢
Afb - (Cfb + OéAfceb )(peﬂ) - Cfb ) (A2)

Here OEMB’EE is the EE power spectrum from our fiducial Planck 2018 model, C’Zreground’EE’Af are foreground-model

templates from Choi et al. (2020), and ap, is a parameter characterizing the foreground amplitude. The spectrum
C’ZAbCTXACT’EE’Af is the measured ACT EE spectrum for array-frequency Ag.

We use the multipole range £, = 1000 and £;** = 1500 to minimise the impact of temperature-to-polarization
leakage, foreground contamination and effects of the transfer function. A prior on the foreground amplitude aa,,
which is dominated by the polarized dust component, is estimated using the measurement of the 353 GHz NPIPE EE
power spectrum from Planck. Further details about this prior will be discussed in the upcoming ACT power spectrum
analysis paper.

We determine the efficiency scaling peAlcfr by finding the maximum-posterior value from a simple Gaussian likelihood
derived from this y?, marginalized over aa,. We also derive an error on the efficiency scaling parameter from the
posterior.

B. FURTHER DISCUSSION OF NORMALIZATION CORRECTION

In this appendix, we provide further details of the normalization correction discussed in Section 5.10. The recon-
structed lensing field, ¢ s, is dependent on the assumed fiducial CMB power spectra through the normalization term,
Rzl. Setting aside the small Monte-Carlo correction for the moment, this dependence can be expressed as

'Rzl |CéCMB,fid R

QZ)L7M|CZCMB, fid ~o ¢L,M|CECMB (B?))

RE oo

MB, fid
cMP

where is the fiducial CMB power spectra used in the lensing reconstruction and C’ZCMB is the true spectrum

that describes the data. The reconstruction é M| coMmB, a1 normalized with the fiducial power spectra and will differ
e

from the unbiased reconstruction ¢ L, ]V[‘C[CMB (i.e., normalized with the correct spectrum) if the fiducial spectrum does
not match the truth. At the time this article was written, the final ACT DR6 CMB power spectra and their covariance
matrices were not yet available. As a result, the baseline normalization was calculated using the full-sky fiducial spectra,
CECMB’ ﬁd, based on the Planck 2015 TTTEEE cosmology with an updated 7 prior as shown in Calabrese et al. (2017).

While we expect this analytic normalization to be quite accurate, it is a potential concern that the lack of a final
measured power spectrum might introduce a small bias: in particular, that our assumption that the CMB power
spectrum is consistent with Planck might not be correct at high precision. Fortunately, the pre-processing steps
described in Section 5 help to minimize any potential bias that could arise from assuming incorrect fiducial CMB
power spectra. Recall that the error in the normalization is small as long as the data power spectra are similar to
the fiducial power spectra used in the analysis. By applying the calibration and polarization efficiency determination
described in Section 3.3, which are defined relative to Planck, we can ensure that this condition is met because the
amplitude of the data spectra is scaled to be in good agreement with the fiducial spectrum used in the normalization.
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Figure 35. Differences in CMB power spectra used in the lensing normalization. Using the toy model described in Appendix B,
we illustrate the difference between the fiducial ACT DR4+ WMAP power spectra (as presented in Choi et al. 2020; Aiola et al.
2020) and CZC MB, fid hefore and after applying calibration and polarization efficiency factors. As shown by the solid curves, the
overall amplitudes of the fiducial ACT DR4+4+ WMAP spectra differ from the fiducial spectra by a few percent before correction.
The application of calibration and polarization efficiency factors serves to rescale these spectra and bring them more in line with
the fiducial spectrua used for normalization (dashed lines).

To confirm quantitatively the effectiveness of our methods for reducing bias, we have tested a scenario in which
the ACT DR6 data CMB power spectra match the ACT DR4+ WMAP spectra (as presented in Choi et al. 2020;
Ajola et al. 2020) although we still assume CE MB. fid i) our normalization. F igure 35 compares the fiducial ACT
DR4+ WMAP spectra with CE MB, fid y1sed in our work. In the analysis range, the ACT DR4+WMAP spectra differ
by a few percent from C’ZC MB, fid * e follow the procedure described in Section 3.3 and 3.4 to compute corrections
(calibration and polarization efficiency) and apply them to the ACT DR4+ WMAP spectra. The dashed lines in the
figure show that the differences between the ACT+ WMAP and the fiducial spectra are significantly reduced after
these corrections are applied.

We calculated the normalization Rzl for each of these spectra and compared it to our baseline Ril. The results
of this comparison are displayed in the left panel of Figure 36. Prior to the correction, the ACT DR4+ WMAP Rzl
was approximately 1.3% lower than the baseline, corresponding to a roughly 1.14¢ bias in the lensing power spectrum
amplitude Ajens. After applying the correction, the difference in ’Rzl was reduced by a factor of around 5, reducing
the bias in Ajens to 0.230. We anticipate that the ACT DR6 spectra will not be clearly inconsistent with the Planck or
ACT DR4+ WMAP fiducial spectra, and we thus expect that they will fall somewhere in between these two spectra.
Therefore, the actual bias in the data is likely to be less than 0.230.

For the lensing-only likelihood analysis considered in this paper, we account for this uncertainty in the true CMB
spectra as follows. Since C’gMB is well constrained, the difference between the true CMB power spectra that describe
the data, CEMB, and the fiducial C’EMB’ﬁd is expected to be small. We can, therefore, Taylor expand Ril | comB around
the fiducial spectra as

IR !
Sk (CF® = CP)

~ Rzllc,CMB,fid [1 + M£|CCMB,ﬁd(
¢ ¢

R21|CZCMB ~ RzllcngB,fid +

CCMB _ CCMB,ﬁd)
¢

¢ (B4)

)

where M} | cupna = dln R, /OCEMB coms, fa is the linearized normalization-correction matrix. We compute it
y4 £
using finite differences at each ¢. After correction for Ny, and neglecting N7, this leads to the expected value of the
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Figure 36. Left: Similar to Figure 35, but for the normalization factor Rzl. Without the application of calibration and
polarization efficiency factors (red solid curve), the mismatch between the power spectrum describing the data and the fiducial
spectra leads to the lensing reconstruction being biased high by around 1.3% corresponding to a bias of around 1.140 in the
inferred lensing amplitude. After applying amplitude corrections to the CMB maps (red dashed curve), this bias is reduced by a
factor of 5, resulting in only 0.230-level bias in the lensing amplitude. (If we assume that the ACT DR6 spectra fall somewhere
in between Planck and ACT DR4 spectra, any biases will be significantly less than 0.230.) Right: Inflation of lensing bandpower
error bars due to uncertainty in the true CMB power spectra, which are needed to normalize the lensing measurement correctly.
As described in the text, sampling 1000 ACDM spectra from ACT DR4 + Planck chains results in a less than 2.5% increase in
error bars and introduces small mode coupling between bandpowers. This change only has a negligible impact on cosmological
parameter constraints.

reconstructed lensing power spectrum being related to the true spectrum by

. 'Rzl ‘CCMB,ﬁd 2 =
i~ | | o’
RL |C£CI\’[B

(B5)

Q

[1 - 2M£|CZCMB,fid (CeCMB — CeCMB’ﬁd)} Cfd).
For a lensing-power-spectrum-only likelihood, we need to marginalize over the uncertainty in CF™MB. In Planck
Collaboration et al. (2020a), the marginalization is performed analytically using the P1ik lite CMB bandpower
covariance. At the time of writing this article, the ACT DR6 CMB covariance is not yet available. Instead, we
sample 1000 ACDM CMB power spectra from the ACT DR4 + Planck parameter chains used in Aiola et al. (2020)
to generate an ensemble of smooth power spectrum curves consistent with the ACT DR4 + Planck power spectrum
measurements; we then propagate these power spectrum curves through to the lensing normalization and compute
the resulting additional dispersion in the lensing bandpowers. As a result, for the lensing-only analysis, we add an
additional term to the covariance matrix:

Cbbr =Cupp + (Cl?bMB, (B6)

where now C5MB is the additional covariance induced by the CMB marginalisation. In the right panel of Figure 36, we
demonstrate the inflation of lensing bandpower error bars resulting from the marginalization over CMB power spectra.
This process leads to an increase of at most 2.5% in error bars and the introduction of small correlations between bands.
For comparison, we have conducted the marginalization using the ACT DR4+ WMAP parameter chains and found a
slightly larger increase of up to 3.5%. In the baseline analysis range, the error bars on the lensing amplitude increase
from o(Ajens) = 0.023 to 0(Ajens) = 0.0256 when marginalizing over the ACT DR4+ Planck chains. In comparison,
when marginalizing over the ACT DR4+ WMAP chains, the error bars increase to o(Ajens) = 0.0264. Although this

seems like a non-negligible change, the impact on cosmological parameters such as S¢™MBY appears significantly smaller.
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In particular, the error on the S¢MBL only increases from 0.021 to 0.022 when we include the ACT DR4+ Planck-based
marginalization. One may question the choice of using ACT DR4+ Planck chains rather than, for example, the ACT
DRA4 only chains, as well as the use of smooth ACDM curves instead of allowing the bandpowers to vary freely given
the likelihood. However, it is important to note that the marginalization approach remains robust as long as the CMB
bandpowers have been well-characterized, regardless of the specific CMB measurement used. The larger scales, which
play an important role in determining the overall power spectrum amplitude, are already robustly measured by Planck.
Therefore, we believe it is a valid approach to incorporate this information in the marginalization procedure. With
regard to the use of smooth ACDM curves, we explicitly test our model-dependence by using chains for an extended
model (ACT DR4+ Planck ACDM+A12€I:S) in the marginalization. Note that A?gfs is a parameter that characterizes
the impact of gravitational lensing on the CMB power spectra and is distinct from the lensing amplitude parameter
Ajens. We find that using the extended-model chains results in an increase of only 3% on the error bars of the lensing
amplitude, o(Ajens), compared to the ACT DR4+ Planck ACDM case. This negligible change is an illustration of the
fact that this marginalization does not introduce significant model dependence into our lensing measurement. Lastly,
it is worth highlighting that the ACT DR6 power spectra will have improved constraints on both small and large
scales. As a result, future analyses will have the ability to marginalize directly over the ACT-only power spectra.

C. ESTIMATION OF INSTRUMENTAL SYSTEMATICS
C.1. Calibration and beam systematics

Both beam and calibration errors have the potential to bias lensing measurements. One way in which lensing can
be affected by such errors is through their coherent rescaling of the measured power spectra across a range of scales.
This rescaling then impacts the overall normalization of the measured lensing power spectrum, as discussed in detail
in Appendix B. Hence, it is crucial to account carefully for both beam and calibration errors in any lensing analysis
to avoid systematic biases.

We run the full lensing pipeline for multiple different realizations of the calibration factor and beam transfer functions,
based on their estimated means and uncertainties as discussed in Sections 3.2 and 3.3. We find that the change in
the amplitude of the lensing power spectrum (as opposed to a scale-dependent fractional correction) is the dominant
effect. In fact, in our tests, we find that the response is, to a good approximation, given by A ln Cf(b ~ 2AIn Cy, where
AlnC; and Aln Cf¢ are fractional changes in the CMB power spectrum averaged over ¢ € [600,3000] and fractional
changes in the lensing power spectrum, respectively. Since quantifying the effect of beams and calibration errors by
running the full lensing power spectrum pipeline is computationally prohibitive, we may use the approximation above
to quantify their effect.

To quantify the typical effect of beam and calibration errors on lensing, we proceed as follows. We do not attempt to
incorporate beam and calibration errors into our statistical error but instead will treat the typical error as a systematic
that we argue is negligible. First, as our calibration factors are computed with respect to the Planck maps, they may
not be independent across array-frequencies, and this correlation can increase the overall bias. To investigate this
issue, we estimate their correlations by jointly sampling calibration factors from a likelihood of the following form (up
to an irrelevant constant):

Lmax

—2In L({ea, J{AM}) = Z ZAAf TR AN (C7)

=l AL

where AZA" = (2 CACTXACTAr _ CAtC?CTXP’Af is the difference between the auto-power spectrum of ACT array-

frequency A; and the cross-power between ACT and the Planck map closest in frequency, after scaling the ACT
array-frequency map by the calibration factor ca,. The indices Ay and Af run through the ACT array-frequencies used
in our analysis, and ¥, is an approximate analytic covariance matrix for the A?f (assumed diagonal in ¢) computed
using the fiducial CMB theory spectrum and measured noise spectrum. Our analysis shows that the 90 GHz channels
are strongly correlated at a level of 51%, while the 150 GHz channels exhibit lower correlations ranging from 10%
to 18%. This difference can be attributed to the lower noise in the 90 GHz channels. Furthermore, the correlation
between the 90 GHz and 150 GHz channels is negligible because calibration factors are fitted at different multipole
scales for the two frequency bands. We draw 100 independent Monte-Carlo samples of the calibration and beam,
based on their estimated means and uncertainties (see Sections 3.2 and 3.3, and Lungu et al. 2022 for details), as
well as accounting for the estimated correlations among calibration factors. We then process raw data maps using



ACT DR6 LENSING POWER SPECTRUM 53

Frac. diffence (%) in the temperature power spectrum 15

1.00
---- Miscalibration Miscalibration
o I Beam Uncertainit
0.75 ---- Beam Uncertainity v
0.50 o
o
= S
— * 0.5
¥ 0.25 =
— |
! | i L £
g 000 T P
?) Q
0 <
o S
G -02s Q
o g g 3 -o0s
(@) wn g S
~ -0.50 g £ ) g g
' 3 8 8 g
5 ) -10 3 8
-0.75 > < T 3
s £
-1.00 15
0 500 1000 1500 2000 2500 3000 3500 4000 : 102 103
4 L

Figure 37. Left: Mean and one-sigma confidence intervals of the reprocessed coadded temperature power spectrum compared
to the baseline. The scatter is due to uncertainties in calibration factors (shown in red) and instrument beams (shown in
blue). The confidence intervals are computed using the 100 Monte-Carlo samples of calibration and beams applied to raw maps
processed in the same way as the baseline. The greyed-out regions are outside of the baseline analysis range. Right: Similar to
the left panel but for the lensing power spectrum. This is computed using the same 100 samples but with the fractional error
in the CMB power spectrum propagated to the lensing power spectrum with the approximation A ln Czw ~ 2A1n C, discussed
in the text. The greyed-out regions are outside of the baseline analysis range.

these samples, following the pre-processing procedure described in Section 5, and remeasure the CMB power spectra.
Figure 37 (left) shows the fractional change in the coadded temperature power spectrum. We find that the scatter in
the power spectrum is less than 0.2% in our baseline analysis range (¢ € [600, 3000]).

We then convert the error in the power spectra to an error in the lensing power spectra using the approximation
above. We take the RMS (1o) shift as an estimate of the typical systematic bias from ignoring beam and calibration
uncertainty. We show the derived systematic biases for calibration and beam in the right panel of Figure 37. We
conclude that these are subdominant sources of error compared to our 2.3% statistical uncertainty in our lensing
power spectrum measurement.

In particular, for calibration, we find AAjeps = 0.00432 (0.18¢0) and AAjens = 0.00419 (0.090) for the MV and
MVPol estimators, respectively. Similarly, for beam uncertainty, we find AAjops = 0.00113 (0.050) and AAjes =
0.00110 (0.020) for MV and MVPol, respectively.

C.2. Temperature-to-polarization leakage verification

As described in Section 3.2, we find evidence for some degree of temperature-to-polarization (T — P) leakage in our
measurements. This leakage is estimated to be small but could affect the accuracy of our polarization-based lensing
estimators mainly due to its effect on normalization. To quantify its effect, we add additional leakage terms to the
polarization multipoles for each array-frequency:

Xém = Xom + Xé(:kage (CS)
= Xom + B 7P Top,

where Xy, are either the baseline £ or B multipoles, B@THP is the estimated leakage beam, and Ty, are the baseline
T multipoles The left panel of Figure 37 shows an example of the leakage beams in our analysis. Since the baseline
data, Xy, already include the T — P leakage effect, our modified maps, Xp,, include twice the amount of leakage
compared to a scenario with no leakage. We run our analysis pipeline on these modified maps and find the shift in the
estimated lensing power spectrum is less than 0.1% compared to our MV baseline (see the right panel of Figure 37).
In terms of our AAjens metric (Equation 44), we find AAjens = —0.00021 (—0.010) and AAjens = —0.00052 (—0.010)
for MV and MVPol, respectively.
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Figure 38. Left: Example of the T — P leakage beams (discussed in Section 3.2). We calculate the impact of these leakage
beams on the lensing bandpowers, following the method outlined in Appendix C.2, and find AAjens = —0.00021 (—0.010) and
AAjens = —0.00052 (—0.010) for MV and MVPol, respectively. Right: Effects of polarization angle, T — P leakage, and
polarization efficiency on lensing power spectrum estimates. See Appendices C.2, C.3, and C.4 for further information. The
effects from polarization angle and T" — P leakage are neglible. The impact of polarization efficiency is larger (green dashed
line), although it is important to note that the result here represents a very conservative upper limit. The bias to the lensing
amplitude for each case can be found in Table 3 in the main text.

Preliminary analysis (at the time of preparing this paper) of the ACT DR6 CMB power spectra has revealed an
additional leakage for a specific array-frequency. This leakage is consistent with a constant temperature-to-polarization
leakage in the form of Eom = Epm + oIy, where a = 0.0035. While this feature is yet to be confirmed, we have
developed a toy model to investigate its potential impact. In this toy model, we assume that temperature maps leak
into polarization maps (both E and B) at all array-frequencies with a constant coefficient of o = 0.0035. However, it
should be noted that this feature has only been observed in a specific array-frequency. Thus, it is unlikely that it would
affect all channels equally, and this model likely represents a worst-case scenario. We run our analysis pipeline on this
toy model and find AAje,s = —0.00461 (—0.190) and AAje,s = —0.00887 (—0.180) for MV and MVPol, respectively.

C.3. Polarization angle verification

At the time of writing, a precise characterisation of the absolute polarization angle of the DR6 data set is not yet
available. However, tests differencing DR4 and DR6 EB spectra have found that the EB power spectrum from the DR6
data set is consistent with that of the DR4 data set. This suggests that the DR6 polarization rotation angle should be
consistent with the DR4 estimate of ®, = —0.07 £0.09 deg. In order to assess the impact of a non-zero polarization
angle on our results, we artificially rotate the Q/U maps of our data set by ®, = —0.16 deg. (the mean minus one o)
and reanalyze the resulting maps using our analysis pipeline. The resulting lensing auto-spectrum estimates for these
rotated maps are shown in the right panel of Figure 38 as the blue dashed curve. As demonstrated in the figure, our
bandpowers are not significantly affected by the rotation angle; the rotation results in minimal changes to our A A,
statistics. We find A Ajens = —0.00025 (—0.010) and AAjens = 0.00070 (0.010) for MV and MVPol, respectively.

C.4. Polarization efficiency

As previously discussed in Section 5, we apply a correction to our polarization maps based on the mean of the
measured polarization efficiencies. Following this correction, our baseline and polarization-only estimators show good
agreement (see Figure 10). To assess the robustness of our correction method, we conduct an approximate test in
which the estimated polarization efficiency was artificially lowered by lo. It is important to note that the deviations
from the mean polarization efficiency are not anticipated to correlate strongly across array-frequencies, and as such, it
is unlikely that all efficiencies would be biased in the same manner. Therefore, this test represents a very conservative
upper limit. The resulting lensing auto-spectrum estimates for these maps are shown in the right panel of Figure 38 as
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Figure 39. Cross—gpectrum between the reconstructed lensing map from simulated CMB maps and the lensing map of the

input simulation, CLW, divided by the input lensing auto spectrum C}f‘b. It can be seen in the red curve that the Fourier-space
filter, which helps to remove ground pick-up, causes a multiplicative suppression of the reconstructed lensing map by 10-20%.
Without this filter (blue curve), the lensing suppression is absent, except at low multipoles where mask effects become important.
This well-understood multiplicative suppression due to Fourier-space filtering is simply corrected using a multiplicative factor
derived from simulations.

the greeen dashed curve. We find AAje,s = —0.00896 (—0.370) and AAjens = —0.01884 (—0.38¢0) for MV and MVPol,
respectively. Given that these values were obtained from conservative estimates, we anticipate that the actual data
bias is much smaller than the values presented. We therefore include them in our summary table as conservative upper
limits.

D. PIPELINE VERIFICATION AND ORIGIN OF MULTIPLICATIVE NORMALIZATION CORRECTION

We demonstrated the performance of our pipeline using simulations in Figure 6. The multiplicative MC correction
constitutes a 10-15% effect; however, it is well understood and arises almost entirely from the fact that the Fourier
modes of |€;] < 90 and |£,| < 50 are filtered away. To demonstrate this, Figure 39 shows the ratio of the cross-spectrum
between a lensing reconstruction and the input lensing map with the input auto-spectrum from simulations. With no
Fourier-space mask applied, we find that this ratio is quite close to unity (with the departures at large scales expected
from the couplings induced by the mask); in contrast, the same ratio computed on maps where the Fourier-space mask
is applied is lower by 10-20%.

E. LENSING POWER SPECTRUM BIASES

This appendix describes in more detail the algorithms used to compute the lensing power spectrum biases; we focus
on the computation of Ny, N; and additive MC biases.

E.1. Realization-dependent Ny

Lensing power spectrum estimation aims to probe the connected 4-point function that is induced by lensing. However,

the naive lensing power spectrum estimator C‘f’b [X,Y, A, B] ~ XY AB also contains disconnected contributions arising
from Gaussian fluctuations (e.g., (X A)(Y B)), which are non-zero even in the absence of lensing. These contributions,
which are typically referred to as the Gaussian or Ny bias and which can be understood as a bias arising from the
“noise” in the lensing reconstructions, must be subtracted to recover an unbiased estimator of lensing.

The Gaussian (Np) bias is estimated using an algorithm involving different pairings of data and two sets of independent
simulation maps, denoted with superscript S and S’ (Namikawa et al. 2013; Planck Collaboration et al. 2020a):
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ACF™ =(CF[XY?®, AB®] + C[[X®Y, AB?]
+ CY (XY, ASB] + C*[XY*, ASB|
— O XYY, ASBY] - Cr (XY, AY B))s 6. (E9)

This estimator can be obtained from the Edgeworth expansion of the lensing likelihood; it has the useful feature
that it corrects for a mismatch between two-point functions of the data and of simulations. The estimator achieves
this by also using the two-point function of the data, rather than simulations alone, when calculating this Gaussian
bias; the combination employed above can be shown to be insensitive to errors in the simulation two-point function,
to first order in the fractional error. Furthermore, this estimator helps to reduce the correlation between different
lensing bandpowers (Hanson et al. 2011) as well as the correlation of the lensing power spectra with the primary
CMB spectra (Schmittfull et al. 2013). Finally, the negative of the last two terms of Equation (E9), obtained purely
from simulations, constitutes the Monte-Carlo NO or MCNO. This term corresponds to the Gaussian reconstruction
noise bias of the lensing bandpowers averaged over many CMB and lensing reconstructions; we use this term in
Equation (E.3) to estimate the size of the additive MC bias.

We use 480 different realisations of noiseless simulation pairs 5,5’ to calculate this bias for the real measurement.
Noiseless simulations can be used here because we are using the cross-correlation based estimator, and the absence of
noise helps to reduce the number of simulations required to achieve convergence. We verify that increasing the number
of realizations from 240 to 480 did not substantially affect our results (with AAjos =5 x 1075 ). We hence conclude
that 240 realizations are sufficient for convergence, though we use 480 simulations in our data and null tests to be
conservative.

The same RDNO calculation should also be carried out for each simulation used to obtain the covariance matrix, with
the ‘data’ corresponding to the relevant simulated lensed CMB realization. However, in practice, it is computationally
unfeasible to estimate this RDNO bias for each of the 792 simulations used for the covariance matrix, due to the very
large number of reconstructions required for each RDNO computation. Therefore, we resort to an approximate version
of the realization dependent Ny, referred to as the semi-analytic Ny; we discussed this in detail in Section 5.11.1.

E.2. Nj bias

In addition to the Gaussian bias, another, smaller, bias term arises from “accidental” correlations of lensing modes
that are not targeted by the quadratic estimator, as described in detail in Kesden et al. (2003). Since this bias is linear
in Cf¢, it is denoted the N7 bias.

We calculate the N; bias by using 90 pairs of simulations with different CMB realizations, but common lensing
potential maps denoted (S, S:b) and 90 pairs of simulations with different CMB and lensing potential (5,S5"). (We
have carried out convergence tests as in Section E.1 to ensure that 90 simulations are sufficient.)

ACY =(Cy x50y, A% B%]
+ CY X5y % A% B%)
— CX[X5YY, ASBY)
-Cr [XSYS,vASIBS]>S,S’,S¢,S;5~ (E10)
We do not include biases at orders higher than N7, since biases such as N/2) due to non-linear large scale structure
growth and post-Born lensing effects are still negligible at our levels of sensitivity (Beck et al. 2018).

E.3. Additive MC Correction

Although subtraction of the Gaussian and Nj biases results in a nearly unbiased lensing power spectrum, we calculate
an additive Monte-Carlo bias CM€[XY, AB] with simulations to absorb any residual arising from non-idealities that
have only been approximately captured, such as the effects of masking. As can be seen in Figure 6, this bias term is
very small. This justifies why we may model this bias term as additive rather than multiplicative: any true functional
form of the Monte-Carlo correction could be simply Taylor expanded to give an additive term. This additive MC
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bias is given by taking to be the difference of the fiducial lensing spectrum Ciw and the average of 480 (mean-field
subtracted) cross-only lensing power spectra obtained from simulations, i.e.,

ACMC = 90 — (AAYO™N XY G — MCNO — ACYY) (E11)
Here, AAIZIC’mUI is the multiplicative bias term defined in Section 5.8.1.

F. CROSS-CORRELATION BASED ESTIMATOR: MOTIVATION FROM NOISE-ONLY NULL TESTS

A novelty in our lensing measurement presented here compared to past results is the use of the cross correlation-
based lensing estimator, where we estimate the lensing bandpowers from four independent data splits as outlined in
Sec. 5.8.1. At a cost of modestly reducing the signal to noise by avoiding using the data with non-independent noise,
we are completely immune to the assumptions made in modelling or simulating the instrument noise. Accurate noise
modelling is important for the lensing analysis for calculating the Gaussian disconnected bias (RDNO), which receives
a contribution from both the CMB signal and foregrounds, as well as the instrument noise. Our original plan was to
use the standard quadratic estimator as our simulated results agree with the data within 5% at the CMB two-point
power spectrum level and the RDNO algorithm itself is designed to self-correct for small differences between data and
simulations. However, using this standard estimator, we were unable to pass the noise-only null test which directly
tests the robustness of our pipeline and the accuracy of our noise simulations. This noise-only null test consists of
the following: For each data array, we prepare four splits of data map {Xo, X1, X2, X3} from the original 8 splits
by weighting them with their respective inverse variance maps. We then form the following signal-nulled data map:
[(Xo+ X1) — (X34 X4)]/2. The same processing is done for a set of 300 simulations used to calculate the mean-field
and the RDNO. We do not need to estimate the N; here as this term is zero due to the absence of the lensing signal.

The left panel of Figure 40 shows the resulting null test for the array PA5 f090 obtained with noise simulation
drawn from three different types of noise models: directional wavelet, isotropic wavelet and tiled while using the same
reconstruction filter and normalization. We see that the ‘null’ bandpowers are dependent on the details of the noise
modelling, and in this particular case, only the tile model passes the test. This scatter of results suggests that an
accurate noise model required for lensing is hard to construct for ground-based CMB surveys covering a significant
portion of the sky, with the main challenges coming from the combination of the atmosphere and the ACT scanning
strategy. Space-based surveys like Planck avoid these complications from the atmosphere, and many previous ground-
based measurements cover a smaller region at lower precision, which allows the standard lensing power spectrum
estimator to be used. It is worth noting that we are investigating improvements to the noise modeling on the basis of
this null-test result.

Switching to the four cross estimator, and performing the same null test as in 6.4.2 means that this noise-only null
does not depend on noise for the mean-field and RDNO, and hence the null test is independent of the details of the
noise modelling. This can be seen in the null bandpowers in the right panel of Figure 40, obtained from the same noise
sims. The null bandpowers are now consistent with zero. We also obtain nearly the same PTE values independent of
the noise simulation type used, indicating that our covariance matrix is stable.

G. SEMI-ANALYTIC Ny

The semi-analytic Ny bias can be computed as follows:

ACSauSs,diag[X, }7’ W, Z] _

Ri(y_lREVZ_l XY,WZ A XY, ZW A
AXY AZW = TG =G+ ¢ [CE]} ) (G12)
where AXX =2 AFB = ATB — 1. Here, ( is equal to the integral of the lensing normalization if X =Y =W = Z
and it depends on C’?d, the theoretical power spectra, and Cy, the realization dependent CMB spectrum. Writing this
out explicitly it has the form

d’L
GO = [ G R IS FEFEFY R (CERCY + cEV R (G13)
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Figure 40. Left: Noise-only null test using the standard quadratic estimator for the three different type of noise simulations
(directional wavelet, isotropic wavelet and tiled) for the array PA5 f090. . Right: Noise-only null test using the cross-correlation
based estimator for the three different type of noise simulations (directional wavelet, isotropic wavelet and tiled) for the array
PA5 f090. Tt can be seen that the cross-correlation based estimator avoids biases arising from noise mis-modeling. We also note
that, with the cross-correlation based estimator, the errors and PTEs are similar for all noise simulations, indicating that the
covariance matrix is stable for this estimator.

where FX = 1/(CX + N;X) is the total diagonal power spectrum used for the filter.*

H. GAUSSIANITY OF THE BANDPOWERS

The likelihood we use in the cosmological analysis is built with the assumption that our bandpowers are Gaussian
distributed. A priori, this assumption should not hold at arbitrary precision given the fact that even our lensing
reconstruction map arises from a quadratic function of the (nearly Gaussian) observed CMB fields. However, the
large number of effectively independent modes in our bandpowers suggests that the central limit theorem will drive
the distribution of our bandpowers towards a Gaussian. We test this assumption using a set of 400 simulated lensing
reconstructions by investigating the distribution of the resulting bandpowers. We choose the lowest and highest bins as
representative examples; the distributions of these bandpowers is shown Fig. 41. The Kolmogorov—Smirnov statistic
(Massey 1951) shows that both distributions are well described by Gaussians, with PTEs of 0.6 and 0.9 respectively.

I. ADDITIONAL NULL TESTS

In the main text, for brevity we focused on summary statistics characterizing our ensemble of null tests and on some
of the most crucial individual tests. In this Appendix, we explain and show results from the additional null tests we
have performed with our data.

1.0.1. Coadded split differences

A stringent noise-only null test, in the sense that it has small errors, is obtained by coadding in harmonic space
the eight splits of each array with the same weights used to combine the data and forming 4 null maps by taking
Xémull = gplit; — split;,, . The filter and normalization used for this test are the same used for the baseline lensing
analysis.

The gradient null is shown in the left panel of Figure 42 and the curl is shown in the 5th panel of Fig. 47. While the
curl passes with a PTE of 0.85, the PTE for the gradient test is low, 0.02; however, given the large number of tests
we have run, the fact that the failure does not exhibit any obvious systematic trend, and the fact that magnitude of
the residuals is negligibly small compared to the signal, we do not consider this concerning.

49 For simplicity we showed the flat sky expression here but in the
pipeline this is done using the curvedsky formalism.
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Figure 41. To test that a Gaussian likelihood for the lensing power spectrum bandpowers is sufficient, we plot histograms of
the distribution of C7® bandpowers obtained from simulations for a bin with Lp = 53 (top panel) and Lg = 700.5 (bottom
panel). In both cases, the distribution of the bandpowers closely follows a Gaussian distribution with the expected properties

(i-e., a mean and width given by the bandpower mean and standard deviation). No evidence for departures from Gaussianity is
found.
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Figure 42. Left: All array-frequencies coadd difference map noise-only bandpowers. Noise-only test obtained by coadding first
the individual array-frequencies and taking the difference of the coadded splits. The low PTE of 0.02 is not concerning as the
null bandpowers do not exhibit a systematic trend and the size of the residual is small compared to the lensing signal. Right:
Null bandpowers obtained from differencing the Time-split 1 and Time-split 2 maps.

1.0.2. Isotropy

We test for consistency of our lensing measurements across different regions of the sky by dividing our sky into
50 patches 10° x 25° non-overlapping patches °°. We compare the lensing power spectrum obtained in each patch,
debiased and with errors estimated from simulations using our baseline procedure described in Sec. 5.8. The tests
show that our bandpowers are consistent with the assumption of statistical isotropy in the lensing signal and lensing

50 The whole footprint is divided into 10° x 25° rectangular patches
but some patches at the edge of the map include masked, zeroed
regions outside our analysis footprint. This is why 50 x 250 =
12500 deg? does not correspond to the exact area of 9400 deg?;
the fact that some regions (e.g., patch 33) only include a small
unmasked area also explains why such regions’ spectra have larger
errors.
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Figure 43. Null tests differencing the lensing power spectrum measured in 50 different patches (regions) of the sky from the
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of the lensing signal. This test also shows that there is no evidence for spatially varying beams at levels significant for our
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power spectrum. This test is particularly targeted towards identifying spurious residual point sources in the map;
higher spatial resolution and smaller patches are helpful for this. It complements well other tests of isotropy with
larger regions: for example, the comparison of north vs south patches where we similarly did not find any evidence for
anisotropy. Furthermore, effects such as beam asymmetry and small time variations can all lead to spatially varying
beams which could induce mode coupling similar to lensing.

The bandpower consistency across the different regions also provides evidence that there are no problematic beam
variations across the analysis footprint.

Frequency

0.0 0.2 0.4 0.6 0.8 1.0

PTE

Figure 44. Distribution of the PTE’s for the 100 isotropy bandpower difference and curl tests. The distribution is consistent
with a uniform distribution, passing the K-S statistic with a PTE of 0.66.

The ensemble of 50 isotropy lensing is shown in Fig. 43. These have PTE values consistent with a uniform
distribution; the distribution of the combined 100 lensing and curl null bandpowers passes the K-S statistic with a
PTE of 0.66 as shown in Fig. 44.

1.0.3. Time-split differences Map level

We difference maps made from observations during the period 2017-2018 from those constructed from the period
2018-2021.This test targets potential instrument systematics which may be different between these two phases and also
makes sure that the beam, calibrations and transfer functions used are consistent across different observation periods.

The gradient null bandpowers in the right panel of Figure 42 are marginally consistent with zero with a PTE of
0.05; the curl in Fig. 47 is also consistent with zero with a PTE of 0.48. To obtain accurate PTE’s and debiasing in
the bandpower test described in Sec. 1.0.4 below, we produce special noise simulations capturing the characteristics
of the two time-splits using mnms (Atkins et al. 2023).

1.0.4. Time splits bandpower level test

We difference lensing spectra made from 2017-2018 observations from the spectra obtained from data taken during the
period 2018-2021. This test targets systematic variations of beam, calibration and transfer functions with observing
time. We apply the same filter and normalization used for our baseline lensing analysis and find no evidence of
systematic differences between the two time-splits. The bandpower difference is shown in the left panel of Figure 45;
it has a passing PTE of 0.33.

1.0.5. PWYV split differences

We obtain lensing spectra from two sets of sky maps that are made to contain observations at high and low precip-
itable water vapour (PWYV), respectively; a null difference of these two spectra can test for instrument systematics, e.g.
systematics that have any dependence on the detector optical loading and to the level of atmospheric fluctuations. The
noise levels of the high-PWV and low-PWV maps are noticeably different; hence, for the Wiener and inverse variance
filtering of the maps, the filter is built using a power spectrum whose noise is given by the average noise power of both
maps. The null test results are shown in the right panel of Figure 45 with a PTE of 0.89. To obtain accurate PTE’s
and debiasing in this null test, we draw special noise simulations capturing the characteristics of the two PWV-splits
using mnms.



62

le—6

1.4 1 ¢
4
1.2 1
1.0 1

0.8 1

L'2L2(L+ 1)2CP1(2m)

time-split 1 MV
time-split 2 MV

¢ time-split 1- time-split 2 MV

L'2L2(L+1)2CP?12n)

o
N}
)

ACL¢¢/O'L
Ab oo

o
<)
!

°
o
!

o
EN
L

le—6

QU, SHERWIN, MADHAVACHERIL, HAN, CROWLEY ET AL.

{  PWV high MV
b PWV low MV

4.

¢

ke -

PWV high- PWV low MV

T

10!

10?2

L

Figure 45. Left: Comparison of lensing spectra from time-split 1 and time-split 2 maps. Right: The lensing power spectrum
measured with PWV high and PWYV low maps. No significant difference between the two measurements is found.
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Figure 46. Left: Marginalized posteriors for the combined ACT DR6 lensing constraints in the baseline range (red) and the
constraints obtained using the extended range of scales (blue). Right: Marginalized posteriors for the combined ACT DR6 and

Planck NPIPE Lensing constraints.

I.1. Marginalized posteriors for cosmology runs

Here, we provide a detailed presentation of the complete posterior contours for the cosmology runs that are presented
in this paper. The constraints obtained from our DR6 lensing baseline and extended range are depicted in the left
panel of Figure 46 in blue and red, respectively. Likewise, the posterior plots for the baseline and extended range when
incorporating Planck NPIPE lensing bandpowers, are shown in the right panel of Figure 46.
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1.2. Sensitivity of lensing-only constraints to Qy,

Extensions to the flat-ACDM cosmology with parameters such as the spatial curvature € are considered in our
companion paper (Madhavacheril et al. 2023). In principle, the lensing-only constraints could be significantly affected
by fully freeing curvature since the CMB lensing power spectrum amplitude can be affected by curvature; however,
typical curvature values preferred by current constraints, such as those in our companion paper, are sufficiently close
to flatness that the lensing-only constraints are minimally affected by assuming such curvature values. For example,
assuming the maximum posterior value for the curvature from Madhavacheril et al. (2023) only minimally shifts our
lensing-only constraints to S¢™MBL = 0.814 + 0.022, consistent with the baseline constraints S¢MPL = 0.818 + 0.022.

1.3. Curl results summary

We present a more comprehensive summary of the curl results for the different null test, including a compilation of the
PTEs and x? values in Table 6. Our analysis reveals no significant evidence of systematic biases in our measurements.

J. POST-UNBLINDING CHANGE: FROM INPAINTING TO SUBTRACTING CLUSTERS

As described in Section 6.3.1, although our initial procedure for removing clusters involved inpainting a region around
the cluster, we decided, based on simulation results, that subtracting a model template was more stable; we, therefore,
switched to this procedure after unblinding. The two versions of the lensing spectra, which use inpainting and model
subtraction, respectively, is seen in Figure 48. As discussed in Section 6.3.1, the resulting change to SgMBL are found

to be negligible.

K. LENSING POWER SPECTRUM REDSHIFT KERNEL

The lensing kernel that is usually presented represents how sensitive we are to structure at a given redshift. It is

given by the formula:

It enters the lensing convergence equation

K(R) = /0 T AW (2)0m (x (), 2), (K15)

and is shown as the dashed blue curve on Figure 49.
However, this kernel does not tell us where lensing we probe in the measured power spectrum comes from. To answer
this question, we first recall that the lensing power spectrum can be approximated by the redshift integral

e = [ WP/, (K16)

where W (z) = [H/cx?]W*(2)? and where Py is the non-linear matter power spectrum, typically evaluated with
HALOFIT (Takahashi et al. 2012). At a each multipole, the relative contribution of a given redshift to the power
spectrum amplitude is the logarithmic derivative, namely:

dIn CJ?

T — W) PNL(/X(). (K17)

Note that having the log in the sum is correct because we estimate Ajens for each bandpower, which is Cp/ Cg‘d“ial,

and then average that Alens estimate over bandpowers, so it makes sense when thinking about contributions to Cp
. b
to divide by CHiducial e effectively average dlndf‘ over multipoles. This quantity depends on both redshift and

multipole, and is shown on a 2d grid on the left panels of Figure 50. We used a crLAss (Lesgourgues 2011a,b; Blas et al.
2011) to compute this quantity efficiently. Our lensing power spectrum measurements are such that we are more or
less sensitive to some f-range. So to give an accurate picture of where the lensing that measure in the power spectrum
comes from, we want to weight K17 in an ¢-dependent way. We chose to weight it by [Cfd) /o¢)?, so the smaller the
errors are, the bigger the weight is. Finally, we obtain the error weighted lensing kernel by taking the average over
all {’s at each z, computing >, [CZM’/oe]len Cf¢/dz. This quantity is shown as the red line in Figure 49. And the
cumulative is the orange line.
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Table 6. Summary of results for the curl versions of our null tests.

Curl null test x> (PTE)
PA4 {150 noise-only 52  (0.88)
PAS5 f090 noise-only 13.9 (0.18)
PAS5 f150 noise-only 8.1 (0.62)
PA6 f090 noise-only 11.6  (0.31)
PA6 f150 noise-only 19.1  (0.04)

Coadded noise 54  (0.85)
600 < £oms < 2000 14.2  (0.16)
600 < Lons < 2500 151 (0.13)
800 < £cms < 3000 13.1  (0.22)
1500 < fous < 3000 138 (0.18)

CIB deprojection 8.6  (0.57)
PA4 f150 — PA5 090 14 (0.16)
PA4 f150 — PA5 f150 9.5  (0.48)
PA4 f150 — PA6 f090 8.0  (0.63)
PA4 f150 — PA6 f150 9.6  (0.48)
PAS5 f090 — PA5 150 15.3  (0.12)
PA5 090 — PA6 f090 52  (0.88)
PA5 090 — PA6 150 6.7  (0.75)
PA5 150 — PA6 f090 14.7  (0.14)
PA5 150 — PA6 {150 12.0  (0.29)
PAG f090 — PA6 £150  11.7  (0.30)
f090 — £f150 map MV 8.0 (0.63)
£090 — £150 map TT 44 (0.92)

TT £150 135 (0.19)

TT £090 6.0 (0.82)

MV 150 180 (0.05)

MV 090 43 (0.93)

MV coadd 11.7  (0.37)

TT coadd 6.8  (0.75)
MVPOL coadd 13.2  (0.21)
North region 9.6  (0.47)
South region 14.7  (0.14)

40% mask 8.3 (0.41)
Aggressive ground pick up 10.8  (0.37)
Poor cross-linking region 9.0  (0.54)

From the cumulative we can read off several interesting redshifts: 50% of signal is from 1.16 < z < 4.09, 67% of
signal is from 0.88 < z < 5.44, and 95% of signal comes from z < 9.6. While mean redshift from which our lensing
comes is z = 2.16, the peak of the red curve — i.e. the redshift that contributes most strongly to our C’f ? s slightly
below 1, at z = 0.96.

Other noticeable features are the visibility of the BAO in the integrand, which are washed out in the Limber integral,
and the importance of the nonlinear evolution which gives more weight to low redshift at high multipole. This is shown
in Figure 50.
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Figure 47. Compilation of curl null test bandpowers. No significant evidence for any curl signal is found. These results not
only test for systematic contamination, but also provide additional validation of our covariance matrix estimates.
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Figure 48. DR6 lensing bandpowers compared: bandpowers from cluster mitigation with inpainting (green) can be compared
with bandpowers from model subtraction (red). The difference only leads to negligible shifts in cosmological parameters.
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Figure 49. Comparison of the lensing kernel and weighted Céw integrand.
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Figure 50. Lensing power spectrum integrand, impact of nonlinear evolution (left) versus linear (right).
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