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Abstract—Fixed-point decimal operations in databases with Fs
arbitrary-precision arithmetic refer to the ability to store and g 4| |BOLELE L]
operaie decimal fraction numbers with an arbitrary length E'—-E 9
of digits. This type of operation has become a requirement 5
for many applications, including sclentific databases, financial ‘g 6
data processing, peometric data processing, and cryptography. g3
However, the staie-of-the-art fixed-point decimal technology ei- g o
ther provides high performance for low-precision operations or Postgre30L CockroachDB UltraPrecise
supports arbitrary-precision arithmetic operations at low perfor-
mance. In this paper, we present a design and implementation Fiz 1. Exccute SELECT SUM(cl+c2) FROM R in PostgreSQL, Cock-

of a framework called UliraPrecise which supports arbitrary-
precision arithmetic for databases on GPU, aiming to gain
high performance for arbitrary-precision arithmetic operations.
We build our framework based on the just-in-time compilation
technique and optimize its performance via data representation
design, PTX acceleration, and expression scheduling. UltraPrecise
achieves comparable performance to other high-performance
databases for low-precision arithmetic operations. For high-
precision, we show that UltraPrecise consistently outperforms ex-
Isting databases by two orders of magnitude, including workloads

of RSA encryption and trigonometric function approximation.
Index Terms—database, parallel computing, fived-point arith-

metic, GPU

I. INTRODUCTION

Database systems have long been evolving towards a general
and powerful infrastructure for highly complex data analytics
tasks [1]-[5]. The widely adopted 32-/64-bit floating-point
format following IEEE 7534-1985 [6] does not satisfy the re-
quirement of sufficiently accurate or even exact data analytics
applications in two ways [7]. First, many simple but critical
decimal fractions, such as 0.1, cannot be exactly represented,
unsatisfying the basic requirement of preserving the exactness
in banking, stock, and many other financing systems. Second,
the precision of a 32-/64-bit floating-point number is still
limited for many data analytics applications. To completely
address the two above-mentioned issues, a fixed-point data
type DECIMAL has been introduced to represent numbers
with decimal fractions. Several major database systems choose
to support this data type at arbitrary or nearly arbitrary-
precision [8]-[12], adapting themselves to a wide range of
applications besides financial systems, such as geographic
information systems, scientific computing, geometric compu-
tation, and cryptography. For example, evaluating orthogonal

*Menghai Xiao is the comesponding author

roachDB, and UltraPrecise. B has 10 million tuples. 1 and c2 ame set to (1)
both DOUBLE, (2) DECIMAL{1T, 5) and DECIMAL{14, 2), namely low-p, and
(3) DECIMAL(35, 5) and DECIMAL{32, 2), namely high-p.

polynomials in statistical analysis requires precision in calcu-
lation 4~-53 higher than the standard double-type [13], [14].
In gradient-domain processing, a prodigiously high precision
of up to 20,000 digits is necessary for solving a Poisson equa-
tion [15], [16]. The arbitrary-precision decimal arithmetic also
helps to address challenges in macroeconomic analysis [17].
However, the accuracy of decimal fractions in data analytics
gained by fixed-point DECIMAL processing is at a cost of high
data- and computing-intensive operations.

In databases, DECIMAL is associated with p, the precision,
and s, the scale. They are defined by the digital length of
the whole decimal number and the part after the decimal
point, respectively. The representation scope of DECIMAL(p,
5) is determined by the underlying word length. A 32-bit
word stores a decimal number at the highest precision of 9,
and a 64-bit word only raises that to 19. Thus, DECIMAL
must be extended to a multi-word representation for a higher
precision. However, the arithmetic operations of a multi-word
representation have to be implemented by software other than
by hardware, incurring non-trivial overhead because code that
properly handles carries, overflows, etc., should be added. In
PostgreSQL, more than 10K lines of C code are added to
realize the arbitrary-precision arithmetic of DECIMAL [18].

To quantitatively understand the performance and precision
issues of multi-word arithmetic operations, we execute a SQL
query using both the DECIMAL and DOUBLE data types
on PostgreSQL and CockroachDB, both of which declare to
support unlimited precision DECIMAL operations. The results,
shown in Figure 1, demonstrate that the execution of data type
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DOUBLE is very fast but produces incorrect results. Further-
more, we found that the DOUBLE execution results from the
two databases are inconsistent. Using the DECIMAL data type,
the results are correct and consistent, but the execution time
is 3.00x (PostgreSQL) and 1.45x (CockroachDB) slower
Increasing the precision further prolongs the execution time.
The performance of extending fixed-point decimals to high
precision is poor. Although PostgreSQL completes the job in
Figure 1, its long execution time is unacceptable for many ap-
plications. To address the trade-off between high-performance
fixed-point operations with low precision and low-performance
fixed-point operations with arbitrary-precision, we have ex-
plored the opportunity of amortizing the computation cost via
massive parallelism. In database systems, the same expression
is evaluated for every tuple without dependency om each
other. This indicates the arithmetic operations of DECIMAL are
highly regular and friendly to the parallel architecture. Even
for aggregations, a unique opportunity of paralle]l processing is
still available for the acceleration of the fixed-point operations
imvolved. In this paper, we design and implement a powerful
framework called UltraPrecise for fixed-point decimals based
on arbitrary-precision arithmetic in GPU databases. Figure 1
shows that in UltraPrecise, executing a query with DECIMAL
at low-precision is only 1.04x slower than that with DOUBLE.
The arithmetic operations of DECIMAL appear in both
tuple-based expression evaluation and column-based aggrega-
tion. For evaluating an expression having DECIMAL, a just-
in-time (JIT) compilation engine is installed to generate GPU
kemels. Without JIT techniques, the evaluation code is either
inefficient or too cumbersome. Our framework accelerates
fixed-point arithmetic by optimizing the data representation,
arithmetic operators, and expression scheduling. We design
both compact and non-compact decimal representation that
efficiently stores data in memory and expands only in compu-
tation. We also exploit PTX instructions to optimize the code
processing carries and to speed up time-consuming divisions.
Optimization techniques are also developed at the expression
level. The costly alignment operations in additions and sub-
tractions are reduced by rewriting the expression. Additionally,
evaluating the portion of an expression with only constants and
converting the constants to the DECIMAL type are migrated
to the compilation stage, eliminating redundant computation
at runtime. We also implement the multi-threading expression
evaluation and aggregation, which amortizes the resources of
each calculation instance among threads. We implement Ultra-
Precise in RateupDRB, a high-performance GPU database [19],
and camy out extensive experiments to justify our designs.
When mmning TPC-H Q1, UltraPrecise achieves comparable
performance as that of high-performance databases functional
only in this precision range, like HEAVYAI RateupDB, and
MonetDB. As the precision increases, UltraPrecise outper-
forms PostgreSQL by up to 41.28:x. In more computation-
intensive workloads such as Rivest-Shamir-Adleman (RSA)
encryption and trigonometric function approximation, similar
performance trends are observed, where UltraPrecise out-
performs PostgreSQL, H2, and CockroachDB, all featuring

arbitrary-precision arithmetic of DECIMAL, by two orders of
magnitude. Our contributions are summarized as follows:

+ We present a GPU computation framework that supports
arbitrary-precision arithmetic operations. To the best of
our knowledge, UltraPrecise is the only GPU database
realizing DECIMAL at arbitrary-precision.

+ We design optimization methods from data representation
to expression scheduling that accelerates DECIMAL arith-
metic at arbitrary-precision, which have not been consid-
ered to enhance the arithmetic precision and performance
in existing database systems.

+« We implement and evaluate UltraPrecise in a real-world
database with extensive experiments. The results justify
the generality of our design, and UltraPrecise is the
fastest among databases supporting arbitrary-precision
arithmetic.

We present a preliminary introduction in Section IL Sec-
tion Il shows the design of UltraPrecise and Section IV
extensively evaluates our framework. Section V discusses
related work and Section VI concludes our work.

II. PRELIMINARY
A. Number Representations

Binary format vs. decimal format. A number n is defined
as
n =+ x b, (0

where i is a positive integer, b is the base, and = is the scale.
Numbers in computer systems are commonly represented in
the binary formar or the decimal formar, ie., set b to 2 or
10. A bit string represents the same number if s is 0, e.g.,
115 is 3 for both formats. But if s is set to -1, 11; means
1.5 in the binary format and 1.1 in the decimal format If
we want to represent digits at the left side of the radix point,
two formats make no difference because they are integers that
can be represented by the same i with s = (. For the digits
on the other side, the binary format fails to represent certain
numbers like 0.1 that could be exactly represented in the
decimal format, while the decimal format could represent all
numbers in the binary format. The decimal format still cannot
exactly represent some numbers like 1/3, but it is practical
enough since it is compatible with the numeric system in
human reality.

Fixed-point vs. floating-point. If the scale s in Equation 1 is
stored with the number and can be varied, the representation
is called floaring-poini. A representation is fived-poins if s
is determined at the compilation time. In database systems,
DECIMAL is a fixed-point representation so that only integers
are stored as the data, and the scale is the column property.
The fixed-point arithmetic between the operands with the same
scale is essentially integer arithmetic. With different scales,
the arithmetic operations become complicated and details are
discussed in Section II-B.

Arbitrary-precision vs. Imited-precision. The modemn arith-
metic logic units (ALUs) can only support arithmetic oper-
ations at limired-precision, which is commonly 32-/64-/128-
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bit length. The arbirrary-precision arithmetic is realized by
software and the practical limit should only be imposed by
the available memory. For general-purpose computation, we
expect not to put an upper bound on the precision p of
DECIMAL (p, 5) though, in practice, a couple of databases
only support small p values for high performance.

B. Fixed-poimt Arithmetic Operations

In this work, we are more interested in designing an efficient
framework for fixed-point arithmetic other than delving into
specific arithmetic algorithms. In this section, we briefly intro-
duce the basic arithmetic operations of fixed-point numbers.
Additlons/subtractions. The scales of two fixed-point
operands must be aligned before the addition or subtraction.
For example, 1.23 in DECIMAL(4, 2) is represented as an
integer 123 in the memory while 0.1 in DECIMAL(S, 1) is
stored as an integer |. Directly adding them leads to a wrong
result so we need to convert 0.1 with a scale of 1 to 0.10
with a scale of 2, which is represented by an integer of
10. In the decimal format, aligning a scale of s, to s is
realized by x 1077 If 5; > 85, the alignment operation is
realized as +1051752, The division operation not only incurs
higher computation overhead but also lowers the intermediate
precision. Thus, aligning a smaller scale with a larger one
is always preferred. Momeover, positives and negatives both
exist in the database. In a function implementing the addition,
the signs of operands determine whether two numbers are
added or one number is subtracted from the other. Numbers
are compared before the subtraction to decide the minuend
and the subtrahend. For addition and subtraction, numbers
are calculated from the least significant word to the most
significant word, where carries should be properly handled.
For the comparison, numbers are compared from the most
significant word to the least significant one. The result is
derived once two words differ.
Multiplications. Multiplying two DECIMAL numbers is es-
sentially multiplying two multi-word integers, and the basic al-
gorithm is the elementary school algorithm. For two operands
that each have N words, their product is 2N words. The k-th
word of the product is derived by multiplying the words from
two operands: if the i-th word from the first operand and the
j-th word from the second satisfies ¢ + j = &, their product
is added to the k-th word of the result, and all such pairs are
calculated. The carry-out of the accumulation is added to the
(k+1)-th word of the result. The Kararsuba algorithm [20] is
an advanced multiplication algorithm with a lower complexity
of O(N'"823) than that of the elementary school algorithm,
which is O(N?2). But in practice, the Karatsuba algorithm is
not as fast as the basic one for a small N. The Schinhage-
Strassen algorithm [21] has even lower complexity than the
Karatsuba algorithm, but it cutperforms the latter only if V is
sufficiently large.
Divisions. The division operation of DECIMAL numbers is
converted to a sequence of multiplications and additions for
high performance. The basic division algorithm is similar
to the lomg division method taught in elementary school.

select select
Fel+Re2 sum(Fe2)
DECIMALtps | from R from B DECM/AI pe
4 o group by ol _o
— Eel;
-
cl+e2
i - K sumicl)
(a) (b)

Fig. 2 The fixed-point arithmetics in the query execution. (a) Adding
DECIMALS in tupks. (b) Aggregating DECIMALS in columns.

The algorithmic steps are as follows: 1) Derive the quotient
range. If the digit length of the divisor is [, the quotient
range is then (D/10F, D/10'Y), where D is the dividend.
2) Find the exact quotient. The guotient is the mnumber that
times the divisor equals the dividend and could be located
with a binary search. An advanced algorithm is the Newron-
Raphson algorithm [22], where the quotient is calculated by
D =d ™!, where d is the divisor. ! could be approximated by
iterations of multiplication, where d_}; = d; '(2—d-d; '). The
Goldschmids algorithm [23] calculates the quotient according
to 57472 - - Once the divisor approximates 1, the dividend
approximates the guotient

III. FraMEWORK DESIGN
A, Overview

The fixed-point arithmetic happens in two places when
executing a SQL query: evaluating an expression and aggre-
gation. This indicates that the computation occurs in tuples or
columns. Two illustrative cases are presented in Figure 2.

We implement UltraPrecise in RateupDB [19], a high-
performance GPU database system. Figure 3 shows how the
expression evaluation is embedded in the database gquery
execution pipeline. A SQL query with expressions having
DECIMAL is parsed into a logical plan tree, where the
expressions are associated with relational operators and are
parsed into expression trees. The logical plan tree is turmed
into a physical plan tree when the expression trees are also
optimized. The optimized expression trees are evaluated in a
just-in-time (JIT) compilation engine, where GPU kemels are
generated and compiled. In the end, the executor executes the
query plan tree in a bottom-up manner, during which the GPU
kemels are launched for evaluating the expressions.

The DECIMAL values are aggregated in rounds for exploit-
ing massive parallelism on GPU. The arithmetic operations
are realized in functions instead of instructions. For the tuples
grouped according to DECIMAL columns before aggregation,
we implement the comparison operators of DECTMAL that help
sort the numbers to achieve grouping.

Simply parallelizing the expression evaluation and aggrega-
tion is still slow. To significantly improve the performance of
our framework, we have made efforts to effectively optimize
data representation, fine-tuned operator implementations, and a
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Fig. 3. Ewaluating expressions with DECIMAL in a database system

few technigues manipulating expressions. To further accelerate
the computation, we have also applied multi-threading for an
instance of expression and aggregation.

B. IT-based Representation

If the code of DECIMAL representations and arithmetic
operations is pre-implemented, there are three options: 1) A
large enough space is always defined for a decimal so that any
length of numbers could be contained, which is not practical;
2) We allocate memory at runtime according to the input data,
but the memory management cost could easily surpass the
time of calculation in simple expressions; 3) We compile the
database with DECIMAL representation templates. However,
this quickly inflates the code size because it has to instantiate
not only the representations with all possible data lengths but
also arithmetic operators having arbitrary length combinations.

To make our arithmetic framework general and efficient, the
DECIMAL representations are generated by the JIT engine. A
number in DECIMAL(p, 5) is represented as an integer stored
in an array of 32-bit words, and its sign is held in a byte.
For example, 1.23 is stored as 123. The precision and scale
are contained in the metadata of the relation because values
in a data column have the same DECIMAL definition. We
can directly use them as constants when generating the GPU
kemnel that carries out the fixed-point arithmetic operations.
The length of the value armray L., is also determined in code
generation, which follows

P - log, 10
Lo = [—32
The L., values of varying p are pre-computed and stored
in a key-value table. The top of Figure 4 illustrates our
representation and gives an example of representing -1.23 in
DECIMAL(10, 2), which takes 9 bytes in total.

The value array is word-aligned because this is efficient
in the calculation. For example, the PTX instruction addc
that adds two numbers with the carry-in operates on 32-bit
operands at least. However, storing DECIMAL in a word-
aligned manner consumes extra space in the memory and disk.
So the fixed-point decimals are stored in more compact byte-
aligned arrays before being read to the processors. We keep the
sign in the byte array using 1 bit, and thus the array length is
L bytes calculated by [%ﬂj In this way, less space i
allocated in memory for the decimals, and it also speeds up the
calculation if the workload is dominated by memory accesses.
The bottom of Figure 4 is the representation in memory and
gives an example as well, which stores -1.23 in 5 bytes.

-1.23 in DECIMAL(140, 7)
B-bit -
sien (] e[
values(ly) ][] | vaest21[1HI[ 0]
32-bit
in registers
in memory |
values[Ly] QI:I | values[5] 0] [T=B0]
a_hl :EEF
Loast signiffcans - Most signjffeans

Fig. 4 Fixed-point representations vary in registers and memory. The left
side shows the general mpresentations and the Aght side shows how -1.23 in
DECIMAL(LD, 2) is stomrd.

1) An alternative representation: A fixed-point number
could also be represented in an array where the decimal point
only appears between the array elements, which is the design
adopted by PostgreSQL [18] and RateupDB [19]. For example,
if we want to represent 1.23 in a word-aligned array, two words
must be allocated. One word stores 1, and the other word
represents 0.23 (it stores 230,000,000 in the 32-bit word). To
realize this representation, a 32-bit word to the right of the
decimal point is only allowed to represent 10° numbers.

The advantage of this design is that it cancels the alignment
operation between two DECIMAL numbers with different
scales in additions and subtractions. We show an example of
the altemative representation in Figure 5. Though this repre-
sentation saves computation, it also introduces extra storage
costs. Especially when the precision is low, double space is
required. We eventually discard this design because we notice
that compared to the align operations, reading data from the
memory dominates the execution time of additions and sub-
tractions. A compact representation benefits the calculation.

2) A Code Example: The expression evaluation follows
three steps: 1) Read the compact decimals, and expand them to
non-compact ones; 2) Evaluate the expression; And, 3) write
the mesults back to the memory in the compact format. We
present an example in Listing 1. The generated code evaluates
an expression of DECIMAL(4, 2) + DECIMAL(4, 1).

_ global woid calc_expr 1 (ColIter +*input,
int tupleMum, char woutput) {
int stride = blockDim.x » gridDim.x;
int tid = blockIdx.x *+ blockDim.x + threadIdx.x;
for{int i = tid; i < tupleNum; i += stride) {
Decimal<l» cl_4_2( (cDecimal+) (input[0] [1]), 2)i
Decimal<l» c2 4_1((cDecimals+) (input[1][i]), 2):
Decimal<l» result = (cl_4 2 + c2_4 1 << 1);
result.toCompact (output + i + (size_t)3, 3);
I
b

Listing 1. A code examplke is generated for evaluating DECIMALY, 1) +
DECIMAL(4, 1}. input is the iterator armay of accessing columns, whemr
input [0] points to the DECIMAL(4, 2) column and input [1] points to
the other. cDecimal is the compact representation of decimals which is a
byl amay. Decimal<M> is word-aligned and N is Lw. toCompact converts
a decimal to a compact representation.
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123+11
Em DECIMAL(4, 2) + DECIMAL(4, 1)

x
10 C__ 0@ ]
+ [173 + OO0 ]
EE]

Fig. 5. Different representations change the realization of fixed-point arith-
metic operations. Putting the decimal point between aray clements introduces
additional storage cost but cancels alignment in additions and subtractions.

When generating the GPU kernel, we calculate the lengths
of the word array and the byte array. As the precision is
4, L, is thus 1, and Ly is 2. We use C4++ templates to
help generate code for decimals with varying precisions. In
the code templates, + and <<n are overloaded to implement
adding two DECIMAL numbers and multiplying one value
by 107, mespectively. In this example, two numbers have
different scales, so an alignment operation is required. To
avoid potential overflows in the computation, we expand the
precision of the results to 6, which leads to Ly of still 1 and
Ly of 3.

3) Intermediate Precision: Using the JIT engine to evaluate
expressions has the advantage of determining the precision of
intermediate results and designating their size at compile time.
This eliminates the need to set the size of the data container
to a large enough value or allocate them at runtime to avoid
overflow. We can infer the precision of all intermediate nodes
in a bottom-up manner from an expression tree parsed. Dif-
ferent binary operators have different rules for the precisions
and scales of two operands. For addition or subtraction, the
result is defined as DECIMAL{max(py, pz + 5 — 82) + 1, 5)
if 81 = 8. For multiplication, the result is (p; + pa, 51 + 32).

For division, if the dividend is (p;. =;) and the divisor is
(p2, s2), the result is guaranteed to have the scale of s, + 4
in our framework. To achieve this, we multiply the dividend
by 10%2+* before the division. We also need to determine the
precision of the quotient. Since the integer part of the quotient
has a maximum length of (p; —s1)—(p2—s2)+1, we can safely
define the quotient as DECIMAL(p; —pa+382+5, 5, +4) without
causing the overflow. For the modulo operator, the precision
of the result is equal to ps, and the scale is 0 because only
the integer modulo is supported.

We also need to determine the precision of the results for the
aggregation operators. For MAX and MIN, the precision of the
result is equal to the precision of the expression being aggre-
gated. For SUM, we define the result precision as p+[log,, N'.
where N is the number of tuples. For AVG, we determine the
result precision by following the rules of SUM and division,
where the divisor is converted to DECIMAL(|log,, NV | +1, O).

C. Opiimizations in Operators

Parallel thread execution (PTX) instructions of NVIDIA
GPUs are assembly-like, and they could be embedded in
the kemel code to gain performance comparable to native
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devices. We proficiently utilize these instructions to accelerate
the arithmetic operations of DECIMAL in our framework.

I} Carry-in and carry-out: We have to handle carry-in and
carry-out when performing multi-word arithmetic operations.
Additions and subtractions have the instructions addc and
subc. Listing 2 shows an example of using addc to add
two decimals. madc is also tested for multiplications, but it
is slower than the code implemented by CUDA only.

x2;" :
"r® (w[0])):

asm wolatile ("add.cc.u32 %0, %1,
®=r® (wv[0]} : "r" {other.v[0]},
fpragma unroll
For{int 1 = 1;
asm volatile
Fer® (w[i]) :

i< Hp i++4)
{"addc.cc.u32 %0,
"r® {other.v[1i]),

%1, %2;" :
"r®(w[i])):

Listing 2. The code appears in the function overloading operator “47. The
instruction add.cc.u32 adds two operands in unsigned 32-bit type and
sets a single flag bit if the result has carry-out. adde. co.u32 additionally
adds the carmy-in set in the previous instruction. w[N] is the amay storing
DECIMAL values

2) Divisions: The division is the most computationally
intensive arithmetic operator. To calculate a = b, we follow
a straightforward algorithm: 1) Understand the quotient range
by comparing the dividend and the divisor, which is derived
from the most significant position of | in a and b. For example,
if @ is lxxxxx; and b is 1xxg, the quotient must be in the
range from 102 to 111;. Locating the most significant 1 of
operands is accelerated by a PTX instruction bfind; 2) Use
the binary search to test numbers in the quotient range until a
number multiplies the divisor to equal the dividend.

We test two cases to circumvent the costly division algo-
rithm. First, if the dividend and divisor could be contained
in a 64-bit word, respectively, the instruction div is used to
accomplish the division directly. The test is after the precision
expansion of the dividend. Second, if the divisor is only a
32-bit word, we divide the dividend from the most significant
word to the least with the div instruction.

. Optimizations in Expressions

I) Alignment  scheduling:  As mentioned above, two
DECIMAL values with different scales must be aligned before
additions and subtractions. This requires more cycles than the
add or sub instructions because a multiplication operation
is introduced. In an extreme case, we have to align decimals
in every step of evaluating an expression. For example, in
DECIMAL(4, 1) + DECIMAL(4, 2) + DECIMAL(4, 1), the
first decimal must be aligned to the second one, resulting in a
sum with a scale of 2. Another alignment is required because
the scale of the third decimal is 1.

Before evaluation, we could reduce the alignment operations
by rewriting the expression. If we add two DECIMAL(4,
1) numbers first in the previous example, only 1 alignment
is required in the evaluation. To achieve this, we mewrite
the expression with the following steps: 1) An arbitrary
expression is first parsed into a binary expression tree, where
the intermediate nodes are operators and the leaf nodes are
operands; 2) The subtractions are changed to additions, where

Authorized icensed use imited to: The Ohio State University. Downloaded on Awgust 02,2024 at 02-58:34 UTC from IEEE Xplore. Restrictions apply.



015 nis)

115115

[EYE]

azz)

0Ly (235 015

aiz) [y

Fig. 6. An expression of a + b = ¢+ d — e is scheduled to minimize the alignments from 3 to 1. The precision and scale of operands are shown below
the leaf nodes. When sorting the operands of addition, the scale of an operator is determined by its type. =™ sums the scale of its operands and the unary

negation “—" inherits the scale.

the subtrahend is converted into a two-level subtree with the
unary negation operator as its root; 3) The binary expression
tree is converted into an n-ary tree by collapsing the addition
operators at neighboring levels; 4) The order of leaf nodes at
the same level is scheduled according to their scales; 5) The n-
ary tree is converted back to a binary tree for code generation.
Figure 6 shows an example of alignment scheduling.

2) Constanis in expressions: Constants, integers, and
floating-point numbers involved in fixed-point arithmetic need
to be converted to DECIMAL first. In the ex pression evaluation,
the constant conversion has to repeat itself for each tuple. To
eliminate the computation redundancy, we migrate the con-
stant conversion to the compilation from runtime execution.
Furthermore, a portion of an expression with only constants
is evaluated before the code generation.

Specifically, we optimize the constant arithmetic after the
expression is transformed into an m-ary tree. Before the
alignment scheduling, we order the nodes at the same level
according to their types, where the constant nodes are put
together. Then, it is trivial to calculate the arithmetic results of
the constant nodes. Once the calculation is done, i.e., at most
one constant remains at each level, we iteratively search if
any calculation shortcuts are in the expression tree. A shortcut
is a subtree that could be evaluated immediately, e.g., +a,
0+ a, and 1 x a. After all, the remaining constants are
converted to DECIMAL based on their value. For example, 1.23
is DECIMAL(3, 2) and 10 is DECIMAL(Z, 0). The DECIMAL
constants are scheduled with their scales. A constant is aligned
to the minimum of the nodes having a greater or equal scale.
We present an example in Figure 7.

E Multi-threading Arithmetic

1) Expression evaluation: In tuple-based expression evalua-
tion, it is natural to assign one tuple to one thread. The registers
required and the memory access cost per thread increase as the
precision expands and the expression becomes more complex.
To manage the processor resources at a reasonable scale and
hide the memory access latency, the arithmetic operations
could also be accomplished in multi-threading.

We implement the multi-threading arithmetic operations
based on Cooperative Groups Big Numbers (CGBN) [24],
[25], a GPU library that realizes multiple precision arithmetic
of unsigned integers. We extend the CGBN library to support
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our DECIMAL representations and signed operands. A group
of threads is arranged to evaluate an instance of expression,
where the group size is threads per instance (TPI).

The DECIMAL values are loaded into a thread group col-
laboratively. When generating the GPU kemel, we need to
determine how the operands in the compact representation are
read. Since processing carries between threads incurs inter-
thread communication, when the word length of a decimal
exceeds TPL, we direct a thread to read neighboring data
to minimize this overhead. For each thread in the group,
the words it reads are calculated as I, = |5y |- Since the
compact representation is not word-aligned, a trailing thread
in the group reads data less than or equal to I;.

int g tid = threadlde.x & 37 /f TPI—-1=3
int tid = (blockIdx.x = blockDim.x # throadIdx.x} / 4;
iff{tid »= tuplaeMum} return;

wink3I2_ £ w[2]; SFf Lhi=2
if{g_tid < 3) ff Lof(ly-4)=13
memcopy (v, input[0][tid] + g tid « 8, B);/F il-d =8
ff Ho following branch if Lp/f(l; - 4) == TPI.
alse if(g tid == 3}
mamcopy (v, input[D][tid] + g kid = 8, 31/ Lp%(l.-4) =3

Listing 3. The code is generated to load a number in DECTMAL(G, 32) to a
group of threads. The number is stored in an aray of 27 bytes, ie., L, = 2T.
As TFI is set to 4, each thread except the last one loads [ = 2 words. The
branch code is not generated if the compact representation is aligned to TPL

Listing 3 presents an example of loading a DECIMAL
value into a group of threads. Depending on the arithmetic
types, the loaded data are directly involved in computation
(additions/subtractions) or are broadcast to other threads in
the group (multiplications/divisions), piecing up the complete
results. After evaluation, the results are also collaboratively
written to memory by the thread group.

Additionally, we enhance the CGBN library to support
full-fledged DECIMAL operations. For additions, the signs
of operands are shared among group threads, and the actual
calculation is converted to subtraction according to the signs,
where the alignment and comparison operations are also
added. For multiplications and divisions, the processing of
signs, precisions, and scales are added to the implementations
as discussed in Section III-B3. To the end, we extend CGBN
to support the arithmetic of arbitrary-precision DEC IMAL and
be compatible with UltraPrecise.
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Fig. 7. The constants in an expression of 1 +a+bx (5+e¢— 5} +d+ 1.23 are optimized. The constant arithmetics ane processed at each level individually.
The subtee mepresenting 0+ ¢ is found a shortcut and could be optimized to a single node o After the alignment scheduling, 2.23 in DECIMAL(R, 2) is
scaled to DECIMAL(4, 3). which saves redundant computation in runtime.

2) Multi-threading Aggregation: We implement multi-
threading aggregation operators using moderngpu [26]. In
these operators, we meplace the underlying comparison, ad-
dition, and division with multi-threading versions, and adjust
how the workload is arranged accordingly. The aggregation is
accomplished in several passes. For each pass, the DECIMAL
values are arranged into several thread blocks, with each
thread block calculating an aggregation result. The aggregation
results are collected together for the next pass until we can
process all the data in one thread block.

To fully exploit the computational capacity of streaming
multiprocessors (SMs), the decimals to be aggregated must
be properly armranged. Specifically, to aggregate n DECIMAL
values, each expanded to L,, words in the calculation, we
determine 7, the number of values processed in a thread
block, and ng, the number of values processed in a thread.
In a thread block, the DECIMAL wvalues are first read into
the shared memory and then aggregated. The aggregation is
first carmied out inner-thread and then inter-thread. Thus, ny
and mn; are determined by T,,.., the maximum number of
threads that can be launched in a thread block, and 5, the
size of shared memory. Since TPI threads are grouped to
calculate an arithmetic instance, the number of thread groups
in a thread block is Ny = Tmaz/TPL Due to the shared
memory limitation, we derive that n; = mJ We
thus have n = n, - N, and need to | FN /) thread
blocks.

IV. EVALUATION

Hardware configuration. All experiments are performed on a
server equipped with high-performance hardware. The server
has two CPUs of Intel Xeon Gold 6130H with a frequency of
2.10 GHz, featuring 16 cores and a 22MB Last-Level Cache.
The GPU is an NVIDIA Quadro RTX A6000, which has 48
GB GDDRES memory and is connected through a PCle 4.0 bus.
The machine is equipped with 128 GBE DDE4 DRAM and has
mirrored 1TB 55Ds. The server runs on Ubuntu 20.04 LTS
operating system and the experiments were conducted using
CUDA Toolkit 11.6.

Workloads. To comprehensively evaluate the system perfor-
mance, we vary the precision of decimals used in the experni-
ments. This changes the size of the array used to hold decimal
data in both compact and non-compact representations. If

not specified, we fix the precision of evaluation results of
expressions to [83876/153/307, which means 2/4&16/32
words are used to store the results. So, the precisions of
DECIMAL columns in different experiments are determined by
the rules in Section ITI-B3. When reporting the performance,
LEN represents the word length. The scales are set to different
values in experiments. The relations used in the experiments
contain 10 million tuples unless otherwise specified, and the
data in DECIMAL columns are randomly generated.

Peer systems. We select a couple of representative databases
to compare with UltraPrecise. For CPU databases, Post-
ereSQL v14.4 and MonetDB v11.46.0 are selected. Post-
greSQL supports arbitrary-precision arithmetic toward fixed-
point decimals. MonetDB is a high-performance in-memory
database but only supports DECIMAL at limited precision. For
GPU databases, we select HEAVY.AT v6.3.0 and an open-
source version of RateupDB for academic partners, both using
GPU to accelerate the query execution but do not support high-
precision DECIMAL. RateupDB supports the max precision
of 36 while HEAVY.AI only supports 18. We additionally
evaluate two synthesized workloads, i.e., RSA encryption and
gine functions, on CockroachDB v23.1.0 and H2 +v2.1.214.
The two databases claim to support DECIMAL at arbitrary-
precision as PostgreSQL.

A. Decimal Representation

We first evaluate the representation design with Query 1,
where the mrelation R1 has three columns of decimals. The
only expression of the query is composed of three columns
in a DECIMAL type with the same precision and scale. Thus,
no alignment scheduling and constant optimization are intro-
duced. We generate 5 versions of R1 with increasing precision.
For all relations, the columns have the same scale of 2. We
disable the multi-threading arithmetic in the experiments.

SELECT cltcZtc3 FROM R1;

Query 1

The results are reported in Figure 8, where the performance
numbers are shown in groups of bars. Each group represents
the varying result precision, from 2 to 32 words. The y-axis
is the execution time in seconds. The execution time includes
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Fig. 8. Performance of various databases when executing the Query 1

the disk I/Os except for MonetDB, which is designed as an
in-memory database. The execution time of GPU databases,
ie., HEAVY Al RateupDB, and UltraPrecise, also includes
the PCle transfer time. For HEAVY AL it executes the query
successfully only when the decimals can be contained in two
32-bit words, since it uses a 64-bit word to represent the
DECIMAL type, no matter how the precision and scale are
defined. MonetDB fails to execute the gquery as well when
LEN exceeds 4 because only two 64-bit words are used in
it. RateupDB has the same problem in that internally at most
5 32-bit words are used to represent the decimals. When the
precision is low, MonetDB is the fastest database because disk
I'Os are excluded. It uses 461 ms and 800 ms to execute the
query as LEN is 2 and 4, respectively. UltraPrecise is slower
than RateupDB when LEN is 2 because we introduce the JIT
engine to evaluate the decimal expression. UltraPrecise uses
714 ms and RateupDB uses 622 ms. When LEN increases to
4, UltraPrecise becomes faster than RateupDB, which is 902
ms versus 1055 ms. The reason is that the compilation time
in UltraPrecise is almost the same but the computation time
increases. As our representation design benefits the computa-
tion, our system becomes faster. Surprisingly, HEAVY.AI is
the slowest one among GPU databases, which takes 800 ms
even though its decimal arithmetic is evaluated as integers.
Postgre5QL accomplishes all query executions as ours but
with a quite slower speed. Due to the GPU acceleration and
the representation, we speed up the execution by up to 5.24:x.

We further execute a more complicated query shown in
Query 2, where B2 is a relation of 8 columns. We still gen-
erate 5 versions of B2, where cl-c4 are constantly defined
as DECIMAL(6, 2) and c5-c8 are defined with increasing
precision. As a result, the first expression always outputs the
decimal result in one word and the second expression outputs
the result with increasing LEN. In our implementation, two
GPU kemels are generated in query execution.

SELECT cl+cZ2+c3+cd, cbtcb+cT+c8 FROM RZ;

Query 2

The performance of executing Query 2 in various databases
is shown in Figure 9. As the expressions are more computation
intensive, UltraPrecise outperforms other databases and is the
fastest in all cases. When LEN is 2, UltraPrecise takes 969
ms while HEAVY.AIL RateupDB, and MonetDB take 1.09
s, 1.02 5, and 1.27 s to finish the execution. When LEN
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is 4, UltraPrecise, RateupDB, and MonetDBE spend 1.32 s,
1.55 5, and 1.69 s. HEAVY.AI and RateupDB are faster than
MonetDB because the GPU databases are more advantageous
in computation-intensive workloads. PostgreSQL is still the
slowest. Our scheme outperforms Postgre SQL by up to 8.02 .

We use NVIDIA Nsight Compute [27] to profile kernels of
evaluating @ + b and a = b, where o and b are DECIMAL
columns. The profiling results show that for additions, the
SM utilization is 4.14% if LEN is 8 even though the warp
occupancy is 100% already. As LEN increases to 32, the
SM utilization decreases to 2.31% because more registers are
required by a thread and the warp occupancy becomes 50%.
As for multiplication, similar profiling results are observed.
When LEHN increases from 8 to 32, the SM utilization decreases
from 3.70% to 3.23% while the warp occupancy reduces to
33% from 100% as well. The profiling results confirm that
simple arithmetic operations are memory-intensive workloads,
and our compact representation design accelerates the compu-
tation.

B. Optimizations in Expressions

I) Alignment  scheduling: We evaluate the alignment
scheduling by generating GPU kemnels from three expressions:
lya+b+a, 2)a+b+a+a+a, and 3) a+b+a+a+a+a+a,
where both a and b are DECIMAL. b is DECIMAL(LT, 11)
when LEN is 2 or DECIMAL(LE, 11) otherwise. a has increas-
ing precisions and a constant scale of 1. With the alignment
scheduling, the operand b is moved to the end of the expres-
sions because of its large scale, and the alignment operations
are reduced to | from 2, 4, and 6 times, respectively. We
report the experimental results in Figure 10. We can observe
the trends from the experimental results that more time is saved
with the growing precision and the longer expression lkength.
When the expressionisa+b+a+a+a+a+a and LEN is
32, the alignment scheduling improves the execution time by
34%. For a + b+ a and LEN is 2, the saving is 16.5%.

2) Constant construction: One of the techniques for opti-
mizing the decimal expression is constant construction, ie.,
instead of converting the constants to DECIMAL in runtime,
the conversion is moved to the compile time. In this experi-
ment, we generate GPU kemels to evaluate the expression of
1+a, where a is a DEC TMAL with increasing precision and the
same scale of 10. When generating the code, the constant | is
comverted to a DECIMAL with the precision 10 and the scale
10, which aligns with the scale of a. The experimental results
are shown in Figure 11. We can observe that with increasing
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precision, we save more execution ime of GPU kemels due
to the higher alignment overhead. When the size of the array
storing o increases from 2 to 32, it speeds up the execution
by 1.33x, L.25:x, L14x, L14x, and L.11x.

3) Constant pre-calcularion: We test the optimization tech-
nigue of constant pre-calculation, which calculates the sub-
expression with constants only at the compile time. We gen-
erate the GPU kemels of 1 +a+2+ 11, 1 +a+ 2 — 3, and
0.25 % (a+b) x4, where a and b are DECTIMAL with increasing
precision and the same scale of 10. Without the constant pre-
calculation, three GPU kemels are generated, and the first two
need to process 3 additions or subtractions. The last kemnel
processes 2 multiplications and | addition. If the constant pre-
calculation is enabled, 1 +a+ 2+ 11 is ransformed to 14 +a,
and in the GPU kemel, 14 is represented as DECIMAL(12,
10). We reduce 3 additions to 1 addition in the code. For
1+a+2—3, the expression is reduced to o, and no GPU kemel
is penerated. For 0.25 » (a+b) x 4, we actually evaluate a+ b.
The results are shown in Figure 12, where the execution time
is saved up to 62.55%, 100.00%, and 62.50%, respectively.

C. Mulii-threading Arithmetic

1) Expression evaluation: We also conduct experiments to
measure the kernel execution time if an expression is evaluated
in the multi-threading manner, i.e., the arithmetic operations
are calculated by a group of threads. We generate kernels for 3
expressions (since the addition and the subtraction are almost
the same): 1) a+ b, 2) a = b, and 3) a = b, where a and b are
DECIMAL types. In the experiments, we set TPI to 1, 4, 8,
16, and 32. When LEN exceeds TPI, every thread in the group
processes LEN/TPI words of data. The kemels are executed 3
times and we report the average results in Figure 13.

Additions and multiplications have a similar performance
trend. When the precision is low, the performance of single-
threading arithmetic operations is similar to the mult-
threading ones. For LEN is 4, the single-threading and the
4-threading kemels both take 3.67 ms to add two decimals.

However, the multi-threading implementations are more effi-
cient as the operand precision grows. When LEN is 32, the
single-threading kemel takes 49.67 ms and 45.00 ms in the
additions and the multiplications, respectively. In contrast to
this, the multi-threading implementations take as fast as 23.67
ms (&-threading) for additions and 23.33 ms (8-threading) for
multiplications. The multi-threading implementations are more
efficient because the memory accesses to a value array are
coalesced in a thread group. For the divisions, different algo-
rithms are used in the single-threading kemel and the multi-
threading kermel. In the single-treading kemel, the result is
calculated using binary search in a range of potential quotients.
In the multi-treading kernel, we follow the implementation
in CGBN [24], [25]. which is based on the Newton-Raphson
algorithm. However, the implementation has a restriction that
LEN/TPI must be less than or equal to TPIL, so no data is
presented when executing the 4-threading kernel and LEN is
32

SELECT S5UM{cl) FROM R3;

Query 3

2} Multi-threading aggregarion: We also implement the
aggregation operations of DECIMAL in multi-threading. We
measure the execution time of Query 3 in various database
systems, where B3 has only one column of decimals. We vary
the precision and scale of c1 in (11, 7), (29, 11), (65, 31),
(137, 51}, and (281, 101) so that the final aggregation results
are stored in the 32-bit word-aligned array with the sizes of
2,4, 8, 16, and 32. The TP is 8, and the other databases also
execute the aggregation operation in parallel.

The experimental results are shown in Figure 14{a). As in
the expression evaluation, HEAVY.AI supports the aggregation
only if LEN is 2, while MonetDB and RateupDB support
aggregations if LEN is less than or equal to 4. MonetDB
iz the fastest database when LEN is 2 and 4, which takes
0.017 s and 0.019 s to execute the query. The reason is that
the disk 'Os are not included in the results. Compared to
RateupDB, UltraPrecise reduces the execution time by 33.33%
(LEN=2) and 12.50% (LEN=4) because of the multi-threading
implementation and the compact data representation. As for
HEAVY.AL it takes the longest time to execute the guery
when LEN is 2, which is 0.47 s. Postgre SQL could accomplish
the guery execution like UltraPrecise but with slower speeds.
When LEN is 8, 16, and 32, PostgreSQL needs 112.12%,
67.24%, and 29.25% more time.
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D. Synthesized Workloads
1) TPC-H Q1: We execute TPC-H Q1 in various databases,

where 4 columns,

1_guantity, 1_extendedprice,

1_discount, and 1_tax, are defined as decimal types. In
the query execution, we need to evaluate 2 expressions and
T aggregations with decimals. To more comprehensively test

our

system, we extend the precision of 1_guantity and

1_extendedprice in experiments and guarantee that the
results can be stored in the 32-bit word array with lengths of

2,4,

6, and 8. For 1_discount and 1_tax, they are always

defined as DECIMAL(S, 2) because their values are between 0

and

1. We also test the original version of TPC-H Q1, where all

columns are DECTMAL(12, 2). In the experiments, we exclude
the scan time from all database systems.

Figure 14(b) shows the results. Among all methods, our
system is only slower than HEAVY.AI which is optimized for

low

precision. For the original 11 and LEN=2, HEAVY.AI

executes the query in 489.00 ms and 642.33 ms while our
system takes 684.67 ms and 685.00 ms. But HEAVY.ALI fails
to support decimal type at higher precision. When LEN is 4,
8, 16, and 32, UltraPrecise spends 754.67 ms, 1135.33 ms,
2610.33 ms, and 6164.33 ms to execute the query. MonetDB
and RateupDB execute Q1 slower than UltraPrecise. MonetDB
is 1.64x (orignal Q1), 1.17x (LEN=2), and 1.52x (LEN=4)
slower. RateupDB is 1.70x (orignal Q1), 1.52x (LEN=2), and

1.61
time

DECIMAL columns are compressed into different sizes. We
decompress the values before the calculation in the kemnel.
The experimental results show that when LEN is 4, 8, 16, and
32, the execution time including PCle transferring could be ac-
celerated by 1.38x, 2.01 =, 3.36:x, and 4.80x, which depends
on how much data we could compress. If an advanced scheme
featuring little decompression overhead [29] is incorporated,
the performance of UltraPrecise could be further improved.

2) Other TPC-H gqueries: We execute other TPC-H queries
with UltraPrecise and RateupDBE to see if the performance of
queries without DECIMAL is impaired. We set the scale to
10, and the experimental results are shown in Table 1. For
all queries except Q18 and Q20, the performance mesults of
the two databases are consistent and comparable, affirming
the stability of UltraPrecision. By looking at the code, the
longer execution time of two gueries results from subgqueries
returning DECIMAL values. In RateupDB, delivering results of
subgqueries to the outer query is not JIT-based and our efficient
representation cannot be applied.

SELECT cl = c1l % H = 1 &% N FROM R4;

® (LEN=4) slower. PostgreSQL takes the most execution

. UltraPrecise is 41.28:= (original Q1), 39.55x (LEN=2),

38.56x (LEN=4), 28.09x (LEN=8), 14.46x (LEN=1£), and

7.70
and

®* (LEN=32) faster than PostgreSQL. The compilation
execution of UltraPrecise are individually measured for

Q1. With the LEN increasing from 2 to 32, the time proportion
of compilation decreases from 47% to 7%, though the absolute
compilation time increases from 320 ms to 423 ms due to the
longer code generated.

We have also evaluated the potential benefit of the compres-

sion
cise

technique of frame-of-reference (FOR) [28] to UltraPre-
for Q1 as a case study. We generate 1_guantity and

1_extendedprice with different distributions so that the
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Query 4

3) REA: Rivest-Shamir-Adleman (R5A) [30] is one of the
most widely deployed cryptosystems, which uses a pair of
keys to encrypt and decrypt messages. To encrypt a message
X, we need to calculate X° mod N, where N is a product of
two big prime numbers and (e, V) is the encryption key. With
the increasing size of NV, the encrypted message gets harder
to exploit. In this experiment, we implement RSA encryption
in SQL. Query 4 encrypts the messages stored in the column
1, which is decimal type. 4 versions of B4 are generated and
the precision of c1 is 17, 35, 71, and 143. The scale of c1 is
always 0. We set £ as 3 and IV is presented also as decimal
type constants with the precisions and scales of (18, 0), (36,
0y, (72, 0), and (144, 0). In the end, we execute Query 4 to
accomplish the encryption of data stored in c1.
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TABLE 1
EXECUTION TIME (M5) OF TPC-H QUERIES IN RATEUPDE AND ULTRAPRECISE

Q2 Q3 4 Q5 6 Q7 Q3 Q8 QI QI Q12 QI3 Q14 QI5 Ql16 QI7T QI3 Q19 Q20 Q21 Q22
RateupD}B 1600 Z7E 68 409 71 562 301 612 480 120 70 106 Bl 2Z7 97 400 447 0 w4 36T 551 42
UltraPrecise 169 271 67 400 57 538 314 614 303 136 & 100 72 226 95 332 690 99 476 586 46
HEAVY A1 [ MonetDB 0] RaewpDB [ PostgreS01L [T H2 [ Cocknachilg ] UliaPrecis
E1200 £ . EfTS
Y PLL @
il el =10 =
; mw :
g 30U G ¥ ;
5 ol . LG . Ll Fyel L
LEN=2 LEM=4 LEN=§ LEN=I6 LEM=32 Urgind LEN=2 LEM=4 LEN-3 LEN=1& LEN=32 LEM=4  LEN=§ LEN=l6 LEN-32
{1} hi i)

Fig. 14. Performance of various databases executing (a) Query 3. (b) TPC-H Q1. and (c) Query 4

HEAVY.AI fails to execute this guery because it does
not support the modulo operator of the decimal type. We
measure the execution time including the scan operation for
all databases. The results are shown in Figure 14(c). We
can observe that UltraPrecise is the most efficient solution.
It finishes the encryption in 574.67 ms, 601.00 ms, 738.33
ms, and 1018.67 ms when LEN is 4, &, 16, and 32. MonetDB
and RateupDB take 1520.67 ms and 1628.00 ms to execute
the query when LEN is 4. PostgreSQL encrypts the messages
22223, 47.55%, 10619, and 247.59 slower than UltraPre-
cise. H2 and CockroachDB are even slower than PostgreSQL
for these queries.

SELECT €l — clzclzcl/6 + clxclxclxclxcl/f120
FROM Rb;

Query 5 A query of approximating sin( + €). We vary ol o o2 or o3
for different input x and append more terms for higher precision results.

4} Trigonometric functions: Trigonometric functions are
used extensively in various fields, e.g., calculating distances
on geospatial datasets. An effective approach to deriving high-
precision results of trigonometric functions is using Taylor Se-
ries. An example is the Si;ﬂ ﬁu:l;c’Lion:?sin{z} is approximated
with a polynomial = — 5 + & — & + ---, where = is an
input radian. In the experiments, we compose SQL gqueries
to calculate sin(-) at high precision, and we show one of the
queries using 3 terms in Query 5.

The queries are executed on a melation RS that has three
columns cl, c2, and c3, storing the input radian values.
All the columns are DECIMAL(SD, 8). The radian values of
1 are randomly generated that follow the normal distribution
N(0.01,0.012), representing the extremely small angles close
to 0. The radian values of <2 and <3 follow the normal
distributions of N(0.78 0.01%) and N(1.56,0.01%), which
are close to w4 and w/2, respectively. In the queries, we
expand the polynomial from 2 terms to 11 terms, expecting to
calculate increasingly precise results. We verify the results via
GMP [43], by which we calculate the ground truth results until
287 digits after the decimal point. The queries are executed in

PostgreSQL, CockroachDB, H2, and UltraPrecise. We report
the execution time in milliseconds as the y-axis and the mean
absolute error (MAE) as the x-axis in Figure 15, where each
point is one time of execution. For all queries, UltraPrecise
has the lowest execution time from 505.67 ms to 1668.33
ms, which is almost two orders of magnitude faster com-
pared to other databases. UltraPrecise is also more scalable.
For example, when extending the length of the polynomial
that calculates sin(0.78 + ¢€), ie., more DECIMAL arithmetic
operations are added, UltraPrecise increases its execution time
by only 1131.33 ms. But the execution time is increased by
134.51 s, 190127 s, and 385.57 s in PostgreSQL, H2, and
CockroachDB, respectively. When calculating sin({0.01 + €),
the precision of results saturates after 4 or 5 terms appended
because DECIMAL(DQ, 8) cannot provide enough precision to
extremely small values. Though we follow the rules discussed
in Section III-B3, only 4 digits can hardly protect the divi-
sion from underflow in the cases. Other databases also have
such a problem except for H2. The reason is that H2 adds
20 additional digits in DECIMAL divisions. But this would
also incur high computation overhead in a workload with
intensive divisions. Postgre SQL executes the query faster when
appending the 10th term, reducing the execution time by 48.89
s, 54.87 s, and 67.76 s, mrespectively. This is due to that
PostgreSQL started to enable parallel scans in its query plan.

V. RELATED WORK

DECIMAL In databases. Fixed-point decimal arithmetic sys-
tems are databases dependent, with varying precision and
scale ranges. PostgreSQL and YugabyteDB support up to
131,072 digits before and 16,383 digits after the decimal
point, while Greenplum claims to impose no limits. Ver-
tica and PolarDB support a maximum precision of about
1,000, Another group of databases incorporates external li-
braries to support arbitrary-precision DECIMAL. SparkS5QL
and H2 use java.math.BigDecimal, although Spark5QL
stopped supporting arbitrary-precision since version 1.5. Hive
initially used the same Java library, but they later developed
their decimal implementation, supporting up to a maximum
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TABLE II
THE DECIMAL FRECISIONS IN A GROUF OF DATARASES

Database Max (p, 5) Database Max (p, 5) Database Max (p, 5) Database Max (p, 5)
Postgre 501 [8] (147 455, 16.383)  Greenplum [10] no limit  PrestoDB [31] (38, 18) RatewpDBE [19] (36, 36)
Yugabyie DB [9] (147 455, 16,383)  CockroachDB [11] no limit  SQL Server [32] (38, 38) Hive [33] (38, 38)
H2 [12] (100,000, 1000000  Vertica [34] (1,024, 1,024) HEAVYAIT [35] (18, 18) Oracle [36] (38, 1Z7)
MongoDB [37] double and string  SparkSQL [38] (38, 38) MonctDB [39] (38, 38) My30L [40] (65, 300
PolarDdH [41] (1000, 10000  Google Spanner [42] (38, 9

precision of 38, CockroachDB initially used a Go external
library for arbitrary-precision arithmetic but later developed
its customized library. To store DECIMAL data efficiently
and precisely, MongoDB stores two fields: a string type for
storing the exact value and a floating-point type for quick
arithmetic operations. In other databases, the DECIMAL type
of arbitrary-precision arithmetic is not feasible because of its
inferior performance. For instance, Google Spanner supports
up to a maximum precision of 38 and recommends using the
string type beyond this limit HEAVY.AI is the most limited
database, only supporting DECIMAL data at the maximum pre-
cision of 18. RateupDB supports a max precision of 36, which
is the platform for our system implementation. Oracle deviates
from the convention of scale < precision. The precisions of
DECIMAL supported in a group of databases are in Table IL

Arbltrary-precision arithmetic. Arbitrary-precision arith-
metic (APA) is widely supported by programming languages
and general arithmetic libraries. The supports to APA are
found in languages like Python, Java, C#, and MATLAR,
where java.math.BigDecimal in Java and the decimal
module in Python are two examples. Several individual li-
braries also support APA, among them the most widely used
one is the GNU Multiple Precision Arithmetic Library [43].
Class Library for Numbers [44] is another representative
one. Cooperative Groups Big Numbers (CGBN) [24], [25] is
developed by NVIDIA that realize arithmetic operations for
big positive integers on GPU. APA is also used in geometric
computation like Computational Geometry Algorithms Library
(CGAL) [45] and GeometricTools [46]. OpenSSL [47] and
Crypto++ [48] also require APA for cryptography operations.
GPU databases. CoGaDB [49] uses an “operator-at-a-time™
approach to query execution, with each operator having
a comesponding kernel function. GPUDEBE [50] and Hip-
pogriffDB [51] strive to alleviate the transmission overhead
between GPU and host. Kemel Weaver [52], GPL [53],
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and HorseQXC [54] optimize data movements on GPLU when
executing kernels. DogQC [55] proposes to balance divergence
effects during the execution of the fusion pipeline. The het-
erogeneous designs [36]-[39] have also been explored.

JIT In query processing Sysem R [60] is the first to
propose code generation to optimize queries. DBToaster [61]
generates efficient C4++ code for view maintenance gueries,
while Cloudera Impala [62] focuses on code generation for
data parsing and expression calculation. HIQUE [63] uses
C++ templates to generate code for all operators and compile
them into a dynamic link library. Hyper [64] uses LLVM IR
code to speed up compilation. ROF [65], Tupleware [66],
and LegoBase [67] apply different optimization strategies.
Zhang et al. [68] propose to genmerate code dynamically for
data chunks. Zeuch et al. [69] provide am accurate cost
model for a JIT-enabled database. Other approaches [70], [T1]
adaptively switch between translation and interpretation for
faster compilation.

VI. CoNCcLUSION

Fixed-point arithmetic operations in a database with exact-
ness and high precision are desirable but challenging. We
have achieved both high precision and high performance
for fixed-point arithmetic operations through effective GPU
acceleration. UltraPrecise offers comparable performance to
high-performance databases that are in a low-precision range.
However, its arithmetic operations are faster by two orders of
magnitude compared to the databases that support arbitrary-
precision DECIMAL.
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