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ABSTRACT

The increasing statistical power of cosmic microwave background (CMB) datasets requires a commen-

surate effort in understanding their noise properties. The noise in maps from ground-based instruments

is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel

models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6
(ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the at-

mosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models,

including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated

instrumental noise. The models are empirical, whose only inputs are a small number of independent

realizations of the same region of sky. We evaluate the performance of these models against the ACT

DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6

power spectrum pipeline reveals a ∼ 20% excess in the covariance matrix diagonal when compared to
an analytic expression that assumes noise properties are uniquely described by their power spectrum.

Along with our public code, mnms, this work establishes a necessary element in the science pipelines

of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO).

Corresponding author: Zachary Atkins
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1. INTRODUCTION

Increasingly precise cosmic microwave background

(CMB) instruments and data products have the po-

tential to place state-of-the-art constraints on astro-

physical, cosmological, and theoretical models. Cur-

rently, ground-based instruments collect data at both

small angular scales, including the Atacama Cosmol-

ogy Telescope (ACT) (Fowler et al. 2007; Thornton

et al. 2016; Henderson et al. 2016) and the South Pole

Telescope (SPT) (Benson et al. 2014; Anderson et al.
2018); and large angular scales, including POLAR-

BEAR (Suzuki et al. 2016), CLASS (Dahal et al. 2022),

and BICEP/Keck (Kang et al. 2018). While these in-

struments observe the sky with O(103 − 104) detec-

tors, next-generation projects, such as the Simons Ob-
servatory (SO) (Galitzki et al. 2018), the BICEP Array

(Schillaci et al. 2020), and AliCPT (Salatino et al. 2020)
will increase this count by an order of magnitude once

fully operational. Thereafter, the CMB-S4 experiment

(Abitbol et al. 2017; Barron et al. 2022) plans to de-

ploy yet another order of magnitude increase in detec-

tor count, to several hundred thousand. With growing

statistical power, the need for accurate modeling of in-

strument systematics and noise properties will become

more urgent.

Accurate, computationally tractable noise models are

a critical component for statistical inference with these

new data. For instance, accurate noise models are

necessary for an unbiased reconstruction of the CMB

power spectrum covariance matrix (e.g., Hivon et al.

2002; Efstathiou & Gratton 2021; Li et al. 2021); for
the subtraction of dominant bias terms in CMB lens-

ing reconstruction (e.g., Kesden et al. 2003; Hanson

et al. 2009; Madhavacheril et al. 2021); to check for bi-

ases and quantify the variance of internal linear com-

bination (ILC) foreground mitigation pipelines (e.g.,

Delabrouille et al. 2009; Madhavacheril et al. 2020);

for unbiased Bayesian/parametric component separa-
tion pipelines (e.g., Eriksen et al. 2008; Dunkley et al.

2009; Svalheim et al. 2020); for optimal Wiener filtering

or inverse-covariance filtering used in, for example, bis-

pectrum (Smith & Zaldarriaga 2011) or lensing (Smith

et al. 2007) estimation. A unique difficulty in the noise

modeling of ground-based CMB instruments, however,
is the dominance of complicated, spatially-red atmo-
spheric noise from broad microwave water lines (e.g.,

Dünner et al. 2013; Takakura et al. 2017; Morris et al.

2022) at large scales. Importantly, increasing detector

counts do not circumvent this noise component. There-
fore, our experience with current CMB experiments of-

fers a realistic preview of the noise modeling challenge
facing future surveys.

Existing noise modeling frameworks either do not
scale well to ground-based CMB data volumes, or simply
ignore prominent features in the data. A reasonably suc-

cessful, though resource-intensive, approach has been to

model instrumental noise in the time-domain, and then

propagate noise timestream realizations into map space

(e.g., Planck Collaboration III et al. 2020; Akrami et al.

2020; Chown et al. 2018; Bleem et al. 2022) through a

mapmaking pipeline. For Planck, 25 million CPU hours

were spent processing the FFP8 (full focal plane) simula-

tions (Planck Collaboration XII et al. 2016). As the size

of current and future ground-based experiments’ time-
ordered data (TOD) exceeds that of Planck,1 this route

will grow more costly. Many analyses also make use

of analytic noise models from mapmaker products, such

as low-resolution, dense pixel-pixel noise covariance ma-

trices from WMAP (Jarosik et al. 2007) or per-pixel

noise variance maps from Planck (Planck Collaboration
I et al. 2020). For high-resolution ground-based exper-

iments, the former approach is numerically intractable

and the latter approach neglects the strongly correlated

atmospheric noise. Other analyses have taken a hybrid

approach to model both spatially-varying, uncorrelated

noise variance and large-scale noise correlations simul-

taneously (e.g., De Belsunce et al. 2021). More recently,
ACT (Louis et al. 2017; Choi et al. 2020) and SPT (Mil-

lea et al. 2021) have developed noise models that are

more appropriate for ground-based instruments. In par-

ticular, both collaborations used a model that captures

spatially-varying, uncorrelated noise variance, as well as

a stationary, two-dimensional (2D) “stripy” component

(defined in either Fourier space or spherical harmonic

space) resulting from the scan strategy.2 Nevertheless,

by limiting the non-white noise to a stationary represen-

tation, these models do not generalize to surveys with

wide sky coverage, such as the complete ACT survey, or

the SO and CMB-S4 planned surveys.

ACT’s sixth data release (ACT DR6) will deliver mi-

crowave sky maps in three frequency bands (f090, f150,

and f220), covering ∼40% of the sky to a cumulative

depth of . 15µK-arcmin (. 20µK-arcmin) in temper-
ature (polarization). In this paper, we develop novel

noise models for ACT DR6, which aim to capture the ob-

served, complicated map space noise structure inherent

1 The total TOD volume included in ACT DR6 is ∼190TB. For
Planck, the total TOD volume is ∼13TB. SO is expected to
generate ∼2TB of TOD per day of observations.

2 Henceforth, we will refer to “spherical harmonic space” by a
shorthand, “harmonic space.” Also, while “stationary” typically
describes 1D signals over time, here we take it to mean “invari-
ant under translations in the 2D space discussed” — map space,
Fourier space, or harmonic space.
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to ground-based CMB instruments. These models are
empirical: they are built directly from ACT maps and

make few a priori assumptions about particular map

properties. We begin with an adapted version of a tiled

noise model from Naess et al. (2020), which builds a sta-
tionary, 2D noise model within interleaved tiles on the

sky. We generalize the formalism of this model into a
class of Gaussian noise models in arbitrary bases; this
allows us to prescribe an isotropic wavelet noise model

and a directional wavelet noise model. The latter two

wavelet approaches draw on existing wavelet formalism
in Fourier space (e.g., Freeman & Adelson 1991) and
harmonic space (e.g., Wiaux et al. 2008; Leistedt et al.

2013; McEwen et al. 2018; Chan et al. 2017), which

have been applied to CMB data (e.g., Delabrouille et al.

2009; Planck Collaboration XLVIII et al. 2016; Rogers

et al. 2016; Coulton et al. in prep.), large-scale structure

(e.g., Allys et al. 2020; Cheng et al. 2020) and Galactic
foregrounds (e.g., Regaldo-Saint Blancard et al. 2021).

While the isotropic model uses the wavelets of Wiaux
et al. (2008); Leistedt et al. (2013), we also prescribe a

new, tunable, directional wavelet set in Fourier space.

In addition, our directional wavelets allow the lossless

transform to and from wavelet space. To our knowl-

edge, these models represent the first application of 2D

wavelet analysis in the context of astrophysical instru-

ment noise modeling. The models’ primary user inter-
face is the drawing of simulated noise maps, and we
make our code — mnms

3 — publicly available. These

simulations are also consumed by downstream ACT

DR6 analyses, to be described in upcoming publications

(e.g., Qu et al. in prep.; Coulton et al. in prep.).
This paper is structured as follows. In §2, we summa-

rize the ACT instrument and DR6 data products that
enter the noise modeling. In §3, we define the map-

based noise and establish its most salient properties in

the ACT data. In §4, we detail the construction of the

three noise models, including their mathematical formal-

ism. In §5, we test the noise models’ ability to repro-
duce the complex noise covariance structure in the data,

and apply them to the ACT DR6 CMB power spectrum
pipeline. We discuss implications and future directions
for noise modeling, and conclude in §6.

Unless otherwise stated, in this paper, we refer to

scalar quantities by italicized variables of any case, vec-

tor quantities as boldface variables of lower case, and

matrix quantities as boldface variables of upper case.

3
mnms (Map-based Noise ModelS) is available at https://github.
com/simonsobs/mnms. The repository provides information on
a publicly-available release of noise models and simulations. It
also provides code tutorials and documentation.

Array Band Frequencies Beam

(GHz) (arcmin)

PA4
f150 124 – 172 1.4

f220 182 – 277 1.0

PA5
f090 77 – 112 2.0

f150 124 – 172 1.4

PA6
f090 77 – 112 2.0

f150 124 – 172 1.4

Table 1. Properties of the Advanced ACT detector arrays
used in DR6. We will refer to particular polarized maps
by their array and band (e.g., PA4 f220) throughout the
text. The frequency ranges contain central 99% of the band
power. Beam sizes refer to the average beam full-width at
half-maximum (FWHM).

Dec., R.A. Shape Pix. Size `max

(deg) (Rows, Cols.) (arcmin) (Nyq.)

−63 to 23,
10,320, 43,200 0.5 21,600

180 to −180

Table 2. Properties of the ACT DR6 maps for all arrays,
bands, and Stokes polarization components. In addition to
the data maps, these also apply to the inverse-variance and
cross-linking maps. The `max gives the Nyquist spherical-
harmonic bandlimit of the pixelization.

We also define multiplication (∗) and division (/) of vec-
tors to signify element-wise operations.

2. THE ACT INSTRUMENT AND PRODUCTS

The Atacama Cosmology Telescope (ACT) observed

the polarized microwave sky from an altitude of

∼5,200m in the Atacama Desert, Chile. Its receiver has

gone through several upgrades since its initial deploy-
ment in 2007; this paper — and DR6 products generally
— focus on data collected since its most recent upgrade,

Advanced ACT, in 2016 (Henderson et al. 2016).4 In

particular, we focus on data collected by three dichroic

detector modules, known as “polarization arrays” (PAs,

for short): PA4 (deployed 2016 – 2022) observing in the

f150 and f220 frequency channels (Ho et al. 2017), PA5
(deployed 2017 – 2022) observing in the f090 and f150

frequency channels, and PA6 (deployed 2017 – 2019), ob-

serving the same frequency channels as PA5 (Choi et al.

2018). Additional properties of these detector arrays

are given in Table 1. In 2019, PA6 was exchanged with

a new detector array, PA7, observing in the f030 and
f040 frequency channels. These “low frequency” mea-
surements are not discussed in this paper. For arrays

PA4 – 6, we use the DR6 “night only” maps, which in-

cludes only data taken between 23:00 and 11:00 UTC;

4 ACT ended observations in late 2022.
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Figure 1. Top: The inverse-variance map, h, for PA5 f090, first split. Larger values correspond to deeper regions of the map.
The ACT scanning strategy is also discernible. Border ticks give the declination (Dec) and right-ascension (R.A.) in degrees.
Bottom: The cross-linking map, 1− fp, for the PA5 f090 coadd (see Equation 4). Values close to 0 indicate poor cross-linking,
and vice versa for values close to 1, in arbitrary units (henceforth, a.u.).

however, the methods we develop are equally applicable

to ACT daytime data and null test maps.5 We make use

of three ACT DR6 map-based products in this paper as

follows.
Sky Maps: The mapmaking for DR6 will be described

in a forthcoming paper; the following is a summary.

The detector timestreams of each array are reduced into

Stokes I, Q, and U sky maps by a maximum-likelihood

mapmaking algorithm (Dünner et al. 2013; Naess et al.

2014; Louis et al. 2017; Aiola et al. 2020). The ACT

mapmaker assumes the following data model:

dt = Pm+ nt (1)

where dt are TODs, P is a projection matrix mapping

the pixelized sky m from map space to TOD space (us-

ing telescope pointing), and nt is additive, Gaussian

noise in each detector sample. Each data vector in Equa-

tion 1 contains intensity and polarization components.

The maximum-likelihood map under this model is:

m = (PT
N

−1
t P)−1

P
T
N

−1
t dt (2)

5 Distinguishing features of datasets such as their beam, overall
depth, sky footprint, etc. make no difference to our empirical
modeling. Indeed, the methods are not even restricted to maps
of the CMB.

where Nt is the covariance of nt. TODs are grouped

from the same array and frequency band into the same

vector dt, thus producing per-array, per-frequency, po-

larized (Stokes I, Q, U) maps. In ACT DR6, Equation

2 is solved in eight disjoint “splits” of the timestreams:
one-day-long TOD blocks are distributed exclusively

into eight sets, such that the noise in each split map

is independent. As in ACT DR4 (Aiola et al. 2020;

Mallaby-Kay et al. 2021), the maps are produced in the

Plate-Carrée cylindrical projection. Further properties

of the DR6 maps are given in Table 2.6

Inverse-Variance Maps: In addition to maps of
the microwave sky signal, the mapmaking algorithm

produces auxiliary products used later in this paper.

Of particular importance are “inverse-variance” maps,

which give the inverse of the white-noise covariance be-

6 This paper uses the first science-grade version of the ACT DR6
maps, labeled dr6.01. These maps are used in the upcoming ACT
DR6 lensing analysis (Qu et al. in prep.) and component sepa-
ration analysis (Coulton et al. in prep.). Since these maps were
generated, the ACT collaboration has made some refinements
to the mapmaking that improve the large-scale transfer function
and polarization noise levels. We expect to use a second version
of the maps for further science analyses and for the DR6 pub-
lic data release, and will update these noise simulations as those
maps are produced and released.
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tween Stokes components in each pixel. Following the
ACT convention (Choi et al. 2020; Madhavacheril et al.

2020), we label them h. The inverse-variance maps are

analogous to detector hit-count maps, but also include

the effect of intrinsic detector properties per detector

hit (Mallaby-Kay et al. 2021). Because the TOD noise

power spectrum is red, with a “white-noise floor” at high
frequencies (Dünner et al. 2013; Morris et al. 2022), the

inverse-variance maps are only accurate at small scales.

Although the Stokes covariance in each pixel is formally

a 3×3 matrix, for the same reasons as in DR4 (see Aiola

et al. (2020)), DR6 includes only the Stokes intensity-
intensity (II) element (Aiola et al. 2020). This has little

effect on our noise models, however. As we will show in

§4, our models still account for correlated Stokes com-

ponents in the DR6 maps. An example inverse-variance

map is shown in the top panel of Figure 1

Cross-Linking Maps: The mapmaker also produces
“cross-linking maps,” which we use as a reference in

§3.2 and to guide our modeling decisions in §4. These
are maps which contain information about the ACT re-

ceiver’s local scanning direction (see e.g., Aiola et al.

2020; Choi et al. 2020; Mallaby-Kay et al. 2021, for a

more complete description). In particular, the “polar-

ization fraction,” fp, of the cross-linking map encodes
the degree to which a given pixel is observed by many

different scanning directions. The cross-linking maps
are produced in such a way that fp = 0 corresponds to

maximal cross-linking (many crossing scans), and fp = 1

corresponds to no cross-linking (all scans in the same di-

rection). Therefore, we use the quantity 1 − fp in later

sections, such that high values of 1 − fp correspond to
high cross-linking and vice versa. An example cross-

linking map is shown in the bottom panel of Figure

1. Both the inverse-variance and cross-linking maps are

produced with the same projection and parameters (see

Table 2) as the sky maps.

3. MAP-BASED NOISE IN ACT DATA

We begin our analysis by exploring the map-based

noise in the ACT dataset. To do so, we first define
“map-based noise” and prescribe how we measure it.

3.1. Definition and Measurement

Each pixelized, polarized (Stokes I, Q and U) split

map has an independent noise realization:

mi ≡ s+ ni (3)

where mi is the map solution in TOD split i, s is the un-
derlying sky signal (assumed constant over splits), and
ni is additive noise in each pixel (we suppress indices la-

beling the array, frequency, and polarization). The form

of Equation 3 is not arbitrary — it follows from the addi-
tive time-domain noise in the definition of dt (Equation

1) and the linearity of the mapmaking solution (Equa-

tion 2). That is, ni is the mapped time-domain noise.

This paper aims to model the noise, ni, in each ACT

split. Of course, we can never measure ni directly, or else
we could produce noiseless maps. Rather, we must use

a proxy for the noise. In particular, we use differences

of map splits, relying on the assumption that each mi

in Equation 3 measures an identical signal. We give

the prescription by which we construct these difference

maps as follows.
The first step is to construct an unbiased estimate of

the signal, s, in the split maps. We do this by taking
the inverse-variance-weighted average of mi over splits

i, which we call the map-based “coadd,” c:

c =

∑

i hi ∗mi

Σ
(4)

where hi is the inverse-variance map for split i and Σ ≡
∑

i hi. Next, we subtract c from each of the mi to

construct a “raw” difference map, di:

di ≡ mi − c. (5)

If c were exactly s, then di would equal ni in that split.

Instead, because c contains an average of the noise from

each split, so too does di. We can see this by combining

Equations 3, 4, and 5:

di = ni −
∑

j hj ∗ nj

Σ
(6)

The upshot, though, is that di is a decent proxy for

ni: it contains only noise, and “mostly” (which we will

quantify in Equation 10) noise from split i. Indeed, this

is the proxy used in previous ACT analyses (Choi et al.

2020; Madhavacheril et al. 2020; Naess et al. 2020).

In this paper, we perform one more step by applying
a correction factor to the raw difference maps. Specif-

ically, we correct for the fact that the variance in di is

less than the variance in ni. To evaluate V ar(di), first

recall from §2 that V ar(ni) = 1/hi only in the white

noise, uncorrelated-pixel limit. We work in that limit for

now, and also define the difference map inverse-variance

along the same lines: V ar(di) ≡ 1/wi. In Appendix B,
we show that wi satisfies:

1

wi
=

1

hi
− 1

Σ
. (7)

That is, the left-hand side — the variance of di — is
less than that of ni by exactly 1/Σ. This motivates the

following correction to the raw difference maps:

νi ≡ di ∗
√

wi

hi
(8)
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Figure 2. Ratios of BB pseudospectra between the cor-
rected difference maps, νi, and the individual split maps,
mi, for each array and frequency channel in ACT DR6. All
pseudospectra are measured within this paper’s “pseudospec-
trum mask” described in §4.5.3. The dashed black line is the
nominal result (ratio of unity), the solid lines (shaded bands)
are the means (1σ range) over the eight splits of each dataset.
To mitigate any expected BB signal, in addition to masking
the Galaxy, all maps are point-source subtracted and filtered
using the ACT DR4 ground pickup filter (Choi et al. 2020),
where we remove Fourier modes with |kx| ≤ 90 and |ky| ≤ 50.
Spectra are smoothed with a tophat kernel of size ∆` = 250
to better visualize their overall trend.

such that the variance of νi is the same as that of ni:

V ar(νi) = V ar(di) ∗
wi

hi
=

=
1

wi
∗ wi

hi
=

1

hi
= V ar(ni).

(9)

Both when we examine map-based noise properties of a
given split (§3.2), and build noise models (§4), we will

always be referring to the corrected difference map noise

measurements, νi, in Equation 8.

We emphasize that νi and ni are distinct but related
quantities. Their correlation is given by (Appendix B):

ρi =

√

1− hi

Σ
(10)

which approaches 1 as the number of splits increases, as-

suming splits contain reasonably uniform TOD volumes.

For example, given eight approximately uniform splits,
Equation 10 yields a correlation of ∼93.5%. Because we

can never directly measure ni in a map, we resort to

using νi as a highly correlated tracer.

Fortunately, we can test the two assumptions that the

uncorrected difference maps (Equation 5) contain pure

noise, and that the corrected difference maps (Equation

8) have accurate variance. From the best-fit model of the
signal from ACT DR4 (Choi et al. 2020), the expected

BB power from the lensed CMB and Galactic dust (with

the Galaxy masked, as in this paper’s pseudospectrum

mask, see §4.5.3) should be at the sub-percent level com-

pared to the ACT DR6 per-split noise. In other words,

the BB power spectra from raw, non-differenced split

maps, mi, should be a reasonably clean measure of the
map-based noise; in particular, they should match BB

power spectra from the corrected-power difference maps,

νi. Such a test is not trivial: Planck (Planck Collabo-

ration XII et al. 2016) found a several percent discrep-

ancy in their High Frequency Instrument (HFI) chan-

nels when performing a similar comparison, which was

attributed to systematics in their pre-processing.
As shown in Figure 2, ACT DR6 exhibits good agree-

ment. All arrays and frequencies achieve an average
difference map (νi) to raw map (mi) BB spectra ra-

tio of within 0.1% of nominal. Recall, in construct-
ing the difference maps (Equation 8), we had to work

in the white noise, uncorrelated-pixel limit where the

inverse-variance maps, hi, are expected to be accurate.
As discussed more in §3.2, this limit is reached only on

small angular scales. However, the performance of the
√

wi/hi correction factor is more robust: the BB ratios

are consistent with nominal at the ∼ 1% level for scales

as large as ` ∼ 300. While the observed percent-level

deviations for ` . 300 do matter when evaluating our
noise models in §5, overall this result strongly supports

the scheme by which we measure the noise in a given

map split.

3.2. ACT Map-Based Noise Properties

We motivate our noise model design choices by enu-

merating five salient features of the ACT map-based

noise. We take these five features to define the scope of

our modeling in §4; however, we do not expect this list

to be exhaustive in reality. Nevertheless, we do expect
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Figure 3. Top, large-scale noise correlations: Noise power spectra by polarization autocorrelation (TT, EE, BB), for each
detector array and frequency band. The power spectra are evaluated on the corrected difference maps (Equation 8), after
applying the apodized pseudospectrum mask described in §4.5.3. Shaded bands give the 1σ range over the eight split maps
for each array/frequency. All spectra are smoothed with a tophat kernel of size ∆` = 25. Both the TT and polarization (EE,
BB) spectra are normalized by the value of the TT spectrum at ` = 10, 800 to suppress the effect of variable data volume
between arrays. Polarization spectra plateau at a value of ∼2, owing to each polarized component receiving approximately half
the TOD volume as intensity. Both the intensity and polarization spectra are steep and red at large scales. Bottom, correlated
frequencies: Correlation spectra (r`, Equation 11) evaluated from the mean cross-power spectrum of the eight difference maps,
for each detector array. The same mask is applied as in the top panel, and shaded regions again correspond to the 1σ range over
the eight split maps. For legibility, we only plot the cross-spectra between different frequency bands — all crosses are between
the same polarization components (i.e., TT, EE, or BB). The colored series indicate cross-spectra between frequency bands on
the same physical detector array, while the grey series indicate the cross-spectra between bands on different physical detector
arrays. The only significant cross-spectra come from the same physical detector array.
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the noise properties in this section to be (a) the most
significant for downstream analyses, and (b) common to

ground-based, scanning microwave telescopes.

3.2.1. Large-Scale Noise Correlations

Large-scale noise correlations are a dominant

noise feature in ground-based microwave observatories

(Dünner et al. 2013; Henning et al. 2018). Their ori-

gin is typically attributed to fluctuating, nearly unpolar-

ized emission by atmospheric water vapor (Errard et al.

2015; Morris et al. 2022), which can leak into polar-
ized timestreams via optical and detector systematics

(Takakura et al. 2017). We see their effect in the power

spectra of the DR6 difference maps, as shown in the

top panel of Figure 3. Both the intensity and polarized

map-based noise power spectra are steep and red, span-
ning several orders of magnitude in power from their

white-noise level at small scales to their peaks at large
scales. The correlated noise in intensity maps is higher
than in polarization, mainly due to a smaller transition
scale — or, higher `knee — from red, correlated noise

to white noise. The power-law index of the correlated
noise — the slope in log-log space, as plotted in the top
panel of Figure 3 — is similar between intensity and

polarization. As is expected for thermal water emis-
sion, the intensity spectra increase monotonically with
the frequency band of the map. This scaling is not as

clear in the polarization spectra, highlighting the con-

tribution from non-atmospheric effects to the large-scale

polarized noise. Likewise, the convergence of the PA4

f220 TT spectrum to the f150 spectra at low-` requires

more work to understand its origin.

3.2.2. Correlated Frequencies

Because the ACT detector arrays are dichroic, maps

of each frequency band on a given detector array ob-

serve correlated fluctuations. We probe this by forming

“correlation spectra” of the two frequency maps:

rab` ≡ Cab
`

√

Caa
` Cbb

`

(11)

where Cab denotes the cross-spectrum of two fields a and

b. The bottom panel of Figure 3 shows how the corre-

lation spectra vary by detector array, polarization, and

angular scale. The TT correlation spectra between fre-

quency maps on the same array stand out in particular:

the two frequencies are ∼25% – 50% correlated at scales

where the atmospheric noise is dominant (` . 3, 000, see
the top panel Figure 3). Likewise, the polarization (EE,

BB) correlation spectra between frequency maps, again

on the same array, appear significant to similar levels

on larger scales (though more for PA4 and PA6 than
PA5). Owing to the increased distance between detec-
tors, correlations of any component between frequency

maps on different physical detector arrays are consider-

ably reduced. Other details apparent in Figure 3 are less

intuitive. It is not clear why the TT correlation peaks

at ` ≈ 1, 000 but declines for larger scales especially in
PA4, nor why PA5 polarization correlations are consid-

erably different from those of PA4 and PA6. Further

work is needed to understand these features. Neverthe-

less, our models treat these empirical noise correlations

in the ACT maps as a given.

3.2.3. Map-Depth Inhomogeneity

Map-depth inhomogeneity7 is a commonly modeled

property of map-based noise in the literature. For ACT,
this information is encoded in the inverse-variance maps

h discussed in §2. The inverse-variance maps contain
considerable morphology, as is seen in the top panel

of Figure 1. In particular, we see map depth varies

spatially on both large and small scales, generally be-

ing deeper closer to the celestial equator and shallowest

near the Galactic plane. As discussed, we expect this

spatial modulation to only be accurate for the high-`

ACT noise. Furthermore, we can discern the telescope

scan strategy inducing coherent arcs across the observed

footprint. Between declinations of ∼ 0◦ to 15◦, the ACT

scan strategy tends to have an “x-like” directional pat-

tern, while declinations of ∼ −45◦ to −15◦ have a uni-

formly “vertical” scanning pattern. The scanning pat-

tern is reflected in the bottom panel of Figure 1, which

contains a cross-linking map, 1 − fp (see §2). Regions
where the cross-linking is low are those where the ACT

scans are uniformly vertical; regions where the cross-

linking is high are those where the ACT scans are “x-

like.”

3.2.4. Spatially-Varying Noise Anisotropy

Unfiltered ACT data have historically shown stripy

noise features (Louis et al. 2017; Choi et al. 2020), and

the DR6 maps are no exception. Like the large-scale

correlations (Figure 3), stripy noise patterns are a man-

ifestation of the atmospheric noise. Given a particular
low-frequency atmospheric signal in a TOD, as the tele-
scope scans across the sky, the signal will manifest as

a one-dimensional stripe in the map. Thus, not only

are the largest spatial scales dominated by atmospheric

7 Herafter, we take “inhomogeneities” to mean quantities that vary
over 2D position on the sky, and “anisotropies” to mean quanti-
ties that vary over “azimuthal direction” in the maps, as centered
on any given 2D position. These differ from their conventional
definitions in cosmology.
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Figure 4. Spatially-varying noise anisotropy: TT power spectra in 2D Fourier space for PA5 f090, first split. The 2D spectra
are normalized radially by average power in annuli of ∆k = 50 and smoothed by a uniform 2D tophat kernel of sidelength
∆k = 100. The left spectrum is measured in the region from 0◦ to 15◦ Dec and −120◦ to −180◦ R.A.. The right spectrum is
measured in the region from −45◦ to −30◦ Dec and 45◦ to −15◦ R.A.. The edge of both regions is apodized with a 2◦-wide
cosine taper before taking Fourier transforms. Coordinates at the image perimeter give the vertical and horizontal Fourier
modes. Because the 2D spectra are normalized by their overall radial profile, the colorscale is unitless. As is explained in the
text, the noise exhibits stripy patterns that align with the local scan strategy. In Fourier space, these patterns manifest as
bars perpendicular to the local scan strategy. We outline the primary features from the scanning strategy in black. The left
(right) panel outlined region contains an average power excess of 8% (25%). Secondary features — such as detector-detector
correlations on the top and bottom of the right panel — are also visible. The regions of low noise power near the center result
from the removal of the radial, or “isotropic,” part of the power spectrum.

signals, but those signals also tend to “trace” the ACT

scan pattern. We confirm this intuition by examining

the 2D Fourier noise power in the previously mentioned

declination bands, as shown in Figure 4. In order to em-
phasize the “anisotropic” noise power, we first divide-

out the “isotropic” radial profile (i.e., the 1D spectra

from Figure 3) that would otherwise dominate the full

2D power. Near the celestial equator (the left panel),

we recover a strong “x-like” pattern in the relative 2D

noise power, as expected from our by-eye assessment of
the ACT scan pattern. Likewise, in the southern region
with vertical, poorly cross-linked scans (the right panel),

we find the 2D noise power to be concentrated in a hor-

izontal “bar” in Fourier space. In other words, the 2D

noise power exhibits long-wavelength (small wavenum-

ber) correlations in the y-direction, but is approximately

featureless (white) in the x-direction, as expected.
Furthermore, the poorly cross-linked region exhibits

stronger overall anisotropies than the well cross-linked

region. To demonstrate this, in Figure 4, we measure

the power excess within the dominant “x-like” or “bar”

features in the 2D spectra. The outlined “x-like” por-

tion of the well cross-linked 2D spectrum contains an

average noise power excess of 8%, whereas the same as

measured in the outlined “bar” of the poorly cross-linked

2D spectrum is 25%. Thus, the ACT map-based noise

contains anisotropies whose structure and prominence

varies spatially.

3.2.5. Scale-Dependent Map Depth

As discussed above, the ACT map-based noise is spa-

tially modulated by the inverse-variance maps at small

scales. At large scales where the atmospheric correla-

tions dominate, however, the map depth spatial mor-

phology resembles the amount of cross-linking.8 This

scale-dependent behavior can be understood as a conse-

quence of the ACT mapmaking solution itself. At small

scales where the noise is uncorrelated between detectors,

variance in the maximum likelihood map in Equation 2

8 An equivalent description of scale-dependent map depth is a
spatially-dependent noise power spectrum.
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Figure 5. Scale-dependent map depth: “Inverse-variance maps” as measured directly from the PA5 f090 difference maps.
Top: After filtering νi for small scales, 2000 ≤ ` ≤ 5000, and averaging over Stokes Q and U in only the first split. Bottom:
After filtering νi

√
hi for large scales, 200 ≤ ` ≤ 500, and averaging over Stokes Q and U in all eight splits. We square

the filtered maps to assess local noise variance, smooth them for legibility (Gaussian FWHM = 4π/5000 rad ≈ 0.14o and
FWHM = 2π/500 rad ≈ 0.72o, respectively), and take their inverse. We also multiply by pixel area to account for declination-
dependent loss of power from the filtering. Because we invert the variance, small values indicate larger noise power. As is
explained in the text, the small-scale noise power is modulated by the mapmaker inverse-variance, and the large-scale noise
power traces the mapmaker cross-linking.

decreases only with the number of detector hits. This

does not apply to large-scale correlated modes observed
simultaneously by many detectors. Instead, variance in
the estimation of large scales decreases with the number
of independent scans that observe the mode (heuristi-

cally, for atmospheric correlations on the order of the

array size, the array acts as if it has only one detector,

not hundreds). All scans are not equally effective at re-

ducing variance in the estimate, however. In a single

scan, large-scale, correlated signals on the sky are de-

generate in Equation 2 with low-frequency, correlated

atmosphere in the TOD. Observations of a fixed sky

position with differing scan directions act to lift this
degeneracy, while parallel scans do not. Therefore, in
addition to averaging down with the number of inde-

pendent scans, the large-scale map-based noise averages

down with increased map cross-linking as well.

To isolate this cross-linking-like morphology, we

should first normalize the difference maps by the num-

ber of array scans at each point. Maps of these statistics

are not readily available, so we use the inverse-variance

maps as a proxy.9 To be precise, we first multiply the

difference maps, νi, by
√
hi, such that the variance of

νi on small-scales is uniform. Borrowing from Equation

9, we have on small-scales:

V ar(νi

√

hi) = V ar(νi) ∗ hi =

=
1

hi
∗ hi = 1.

(12)

Then we filter νi

√
hi for large-scales and look for resid-

ual structure in the noise power across the map. Fig-

ure 5 presents the small- and large-scale behavior of the

data: the top panel shows the inverse of the variance

of νi after filtering for small scales, while the bottom

panel shows the inverse of the variance of νi

√
hi af-

ter filtering for large scales as just discussed. Com-

paring to Figure 1, the empirical small scale power

clearly traces the mapmaker-produced inverse-variance

9 This essentially assumes that the per-pixel number of array scans
is proportional to the per-pixel number of detector hits, which is
not exact but more than good enough for our purposes here.
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map, while the empirical large-scale power resembles the
mapmaker-produced cross-linking map — with greater

noise power (less inverse-variance) corresponding to less

cross-linking, and vice versa. In sum, different angular

scales have their own distinct “inverse-variance maps,”

resulting directly from the ACT scanning strategy.

Note that all of the above noise properties are each
manifestations of the same underlying process: the prop-

agation of correlated time-domain noise and the ACT

scanning strategy through the mapmaking. Further

study of atmospheric emission (Morris et al. 2022) and

instrumental noise sources (Dünner et al. 2013) may
reveal new, subtle map-based noise properties not ex-

plored in this paper.

4. NOISE MODELS

In this section we describe three different noise models
that capture the ACT map-based noise properties from

§3.2. Implicit in Equation 3 is the assumption that the
particular map based noise realizations in our data, ni,

are zero-mean random vectors. We also make the as-

sumption that the ni are Gaussian distributed.10 There-

fore, a statistically complete “noise model” for each ni is

given by its covariance matrix, Ni. We build estimates
of this matrix using the difference maps, νi, and use it

to draw noise simulations.
The long-distance noise correlations from the previous

section suggest that Ni is dense in the map basis. Com-

bined with the large pixel count in the ACT DR6 maps

(Npix = 445, 824, 000, see Table 2), the construction of

an explicit Npix × Npix Ni is intractable (Naess et al.
2020). Instead, we leverage the statistical properties in

§3.2 to build a sparse, but still approximately complete,
covariance matrix. The key to a sparse representation

is the isolation of stationary regions in some projection

of the noise. For example, given map space fields a and

b at locations x and x
′, and their Fourier transforms ã

and b̃ at modes k and k
′, the cross-correlation theorem

states:

If :

〈a(x)b∗(x′)〉 ≡ Cab(x,x′) = Cab(x− x
′)

then :

〈ã(k)b̃∗(k′)〉 ≡ C̃ab(k,k′) = C̃ab(k)δ(k− k
′)

(13)

10 This is well motivated because the time-domain noise is already
well described by Gaussian noise. The noise properties stay Gaus-
sian when the linear mapmaking equation (Equation 2) is applied.
Furthermore, each each pixel is is built up from many indepen-
dent time samples (∼ 97%/99%/98% of pixels have greater than
100 time sample hits in each split map of PA4/5/6) which is
expected to further reduce any non-Gaussianity.

where Cab is the map space covariance of a and b, and
C̃ab is its Fourier transform.11 In other words, if the

covariance of two fields is stationary in map space —

that is, exhibits translational invariance (even while be-

ing correlated) — then in Fourier space it is uncorrelated.

In particular, only the diagonal of the Fourier covariance

— the (cross) power spectrum C̃ab — needs to be mea-

sured. Therefore, for each noise model discussed in this

section, we will first filter the ACT DR6 noise maps to

promote their stationarity, and then transform them to

permit a sparse representation of the covariance matrix.

Following a brief discussion of some additional nota-
tion in §4.1, we begin in §4.2 with an updated version

of the “tiled” noise model from Naess et al. (2020), in-
cluding the algorithms by which we build the model and

draw simulations. We describe the same for two novel

noise models: an “isotropic wavelet” (or “wavelet”)

noise model in §4.3 and a “directional wavelet” (or “di-

rectional”) noise model in §4.4. Throughout §4.2, §4.3,
and §4.4, we will introduce proper matrix notation for

all operations performed on our map vectors. This will
aid users incorporating the noise covariance matrices
into their analysis program, as well as clarify how we
draw noise simulations. Lastly, for all three models, we

describe map preprocessing steps and additional imple-

mentation details in section §4.5.

4.1. Linear Algebra Notation

Before diving in, we establish some notation accom-

panying our map vectors and matrices. So far, we have

understood our proxy noise maps, νi, to have Npix ele-

ments. Henceforth, we will add an additional index to

the maps which iterates over frequency bands (2) and

polarization indices (3) on a given detector array. That

is, we should now take the vector νi to refer to a concate-
nation of the (6) polarized frequency maps from each ar-

ray, with 6Npix elements. In this way, our noise models

will be able to capture the observed frequency-frequency

cross-correlations from Figure 3.12 When needed, we

will refer to a particular frequency and polarization sub-

set of the data by its superscript index, a, ranging from

0 to 5 (e.g., for PA4, the a = 0 − 2 blocks of νa
i would

refer to the PA4 f150 band, I, Q, and U, respectively).

This notation extends to other map vectors like hi, and

any matrix objects we construct from the outer-product

of two vectors — when needed, we will refer to matrix

11 Due to the unitary property of the Fourier transform, Equation
13 is equally valid if we exchange map space and Fourier space.

12 While we do not observe significant polarization-polarization
noise cross-correlations in DR6, in keeping with previous ACT
convention (Choi et al. 2020; Madhavacheril et al. 2020), we al-
low for them in the models.
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block elements using superscript indices a and b. Each
map vector and noise model will continue to be distinct

for each detector array and split, i.

We also define matrices for the map transforms —

discrete Fourier transforms (DFTs) and spherical har-
monic transforms (SHTs) — used in our modeling and

simulation algorithms. We denote the forward DFT by
the matrix F, which is unitary (F−1 = F

†). Follow-

ing Reinecke, M. & Seljebotn, D. S. (2013); Seljebotn

et al. (2019), we denote spherical harmonic synthesis

(from harmonic to map space) by the Npix ×Nalm
ma-

trix Y, and spherical harmonic analysis (from map to
harmonic space) byY

†
W, whereW is a square diagonal

matrix containing per-pixel “quadrature weights” used

in the numerical integration. In general, it is the case

that Npix 6= Nalm
: SHTs are, unlike DFTs, rectangular

operations. Unless otherwise stated, we always perform

SHTs to the Nyquist bandlimit of the input pixelization.

Following the default SHT implementation in pixell13

and healpy14 (Górski et al. 2005; Zonca et al. 2019),
when applied to a spin-2 pair of Stokes Q and U maps,

we will take Y†
W to be the linear combination of spin-2

SHTs that outputs E- and B-mode harmonic coefficients

(Zaldarriaga & Seljak 1997).15 Thus, if s is a polarized

map with Stokes I, Q, and U components, the vector
a = Y

†
Ws consists of I (also referred to as T), E, and

B harmonic coefficients.
Finally, we make use of a compact notation to de-

scribe products of matrices and vectors with incompat-

ible shapes. The notation is similar to the “broadcast-

ing” of vector and matrix objects used in numpy, the

main scientific computing package for the Python pro-

gramming language (Harris et al. 2020). The use of this

notation helps save ink, prevents redundant definitions
of the same linear operation, and directly corresponds
to the implementation of these operations in code. For

example, under this notation it makes equal sense to

write Fm for the DFT of an intensity-only map m as

it does Fνi, where, as discussed, νi is a six-component
map. In the latter case, the DFT matrix F is understood

to be promoted to a 6 × 6 square block-diagonal ma-
trix with the original F along the block-diagonal. Like-

wise, a = Y
†
Wm is a spin-0 harmonic transform, while

ai = Y
†
Wνi is a six-component transform (e.g., for

13 https://github.com/simonsobs/pixell
14 https://github.com/healpy/healpy
15 Unlike cosmological modeling, the noise modeling done in this

work does not obviously benefit from a description in terms of
the parity even and odd E and B fields. It is likely that a refor-
mulation in terms of spin-0 SHTs of Q and U would have worked
equally well.

PA4, the a = 0− 2 blocks of aai would refer to the PA4

f150 band, T, E, and B respectively).

4.2. Tiled Noise Model

Previous ACT analyses (e.g., Louis et al. 2017) noted

that the stripy noise pattern appeared to be spatially

constant across the released maps. In ACT DR4, the

relatively small (compared to DR6) sky footprint of

each mapped region was referred to as a sky “patch”
(Aiola et al. 2020; Mallaby-Kay et al. 2021), and

thus downstream analyses, notably Choi et al. (2020)

and Madhavacheril et al. (2020), built a sparse, 2D

Fourier space model of the noise covariance in each

patch. In addition, these analyses weighed the Fourier

space models by the mapmaker inverse-variance to cap-

ture the spatial dependence of the map depth. Thus,

within a given patch, the ACT DR4 noise models cap-

tured isotropic noise correlations (the “radial” direction

in 2D Fourier space), correlated frequencies (by tak-

ing cross-spectra in Equation 13), map depth inhomo-

geneity (by inverse-variance weighting difference maps),
and spatially-constant anisotropy (constant across the

patch).

The main goal of the tiled noise model is to reproduce

the spatially-varying anisotropy in the ACT noise, as

shown in Figure 4. Our model is based on the “constant

correlation” model of Naess et al. (2020), which built

an inverse-variance weighted, 2D Fourier power spec-
trum in interleaved 4◦ × 4◦ tiles that are cut out of the

larger ACT maps. In this sense, the noise model in each
tile resembles that for each DR4 patch. We highlight
important changes from Naess et al. (2020), but for fur-

ther background, we refer the reader to §4 of that paper,

especially Figures 7 and 10 – 12.

4.2.1. Model Estimation

We outline how to measure the tiled noise model,

starting from a set of difference maps, νi. We follow

a similar algorithm as Naess et al. (2020), but make a

key change in Step 2 to improve performance. This also

establishes a general prescription for a class of Gaussian

map-based noise models, since the wavelet and direc-
tional noise models will proceed analogously.

1. As discussed above, we first want to filter the noise

maps to maximize their stationarity. But we know,

a priori, that their covariance is not translationally

invariant in map space, because the map depth has
spatial structure. Thus, before anything else, we
remove the covariance’s dependence on absolute

sky position — due to the map depth, at least —

by multiplying νi with
√
hi. We already saw the

effect of this in Equation 12: the per-pixel variance
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Figure 6. A 1D cross-sectional profile of the “forward” and
“backward” tile kernel for a tile of pitch p. The grey band
has width p and is centered on the tile. In this paper, we use
p = 4◦. The forward and backward profiles smoothly extend
into adjacent tiles; the dashed lines indicate the overlapping
kernels for the tile immediately to the right. The full 2D tile
kernel is the formed by the outer product of perpendicular
1D profiles.

of νi ∗
√
hi (on small scales) is uniform.16 We

introduce the matrix form of the operation νi ∗√
hi:

H
1

2

i νi (14)

where H
1/2
i is a square diagonal matrix whose di-

agonal entries are populated by
√
hi. Thus, H

1/2
i

is a “stationarity filter” acting on νi.

If we were strictly following the Naess et al. (2020)

prescription, we would next break up H
1/2
i νi into small

tiles and evaluate their 2D Fourier power spectra. Doing

so in the context of this paper, however, would introduce

some negative side-effects. As we will see in Step 3, the
tiling of the maps essentially consists of multiplying the

maps with small masks. Multiplication by these local
masks in map space effects a convolution by a broad
kernel in harmonic space. This would result in a mode-

coupling bias — power being “smeared” across scales

— since the noise power spectra are very steep. There-

fore, we first perform a “demodulation” step, in which

we divide-out the isotropic part of the noise power spec-

trum (the curves in the top panel of Figure 3) prior to
tiling. This results in much flatter power spectra that

are less sensitive to mode-coupling. In Appendix G, we

16 Equations 8 and 12 are together equivalent to the first step of
the noise prescription of Choi et al. (2020): di ∗

√
wi.

demonstrate the degree to which mode-coupling induced

bias can dominate the tiled noise model, especially for

large-scale polarization, without the inclusion of the de-

modulation step. We proceed as follows.

2. First, we measure the noise power pseudospec-

tra within a large, smooth “pseudospectrum es-

timate mask”, µest.
17 That is, we measure all

the auto- and cross-pseudospectra of the vector
µest ∗

√
hi ∗ νi, which we store in the object

Cest. For example, for PA5, C
0,3
est (the a = 0,

b = 3 part of Cest) is the f090 T× f150 T cross-

pseudospectrum: the only off-diagonal parts of

Cest are the frequency and polarization crosses in-

dexed by a and b. Thus, one can also think of Cest

as containing Nalm
6×6 matrices at each harmonic

mode. We note that Cest is a symmetric matrix.
Then we construct C

−1/2
est , where the matrix expo-

nent acts on each 6× 6 matrix of Cest separately.

Finally, we filter the weighted noise maps, H
1/2
i νi,

by C
−1/2
est in harmonic space:

YC
− 1

2

est Y
†
WH

1

2

i νi. (15)

This new vector is still in map space, and it still
has size 6Npix. On small scales, it has uniform

per-pixel variance. But now, at least as measured
within the apodized mask µest, it also has flat au-

tospectra,18 and has been decorrelated — its cross-

spectra have been nulled. As discussed, the goal of

flattening the spectra is to mitigate mode-coupling

when we tile these maps in Step 3. The benefit

of decorrelating them here will become apparent

when we outline the algorithm of drawing a noise

simulation: in that case, we will start with a map

of easy-to-produce white noise, and by applying

the inverse of C
−1/2
est — that is, C

1/2
est — we will

emerge with a map with properly-correlated spec-

tral components.

3. After the demodulation step, our goal is still to

filter the noise maps to maximize their stationar-

ity. Thus, we break the noise maps into a set of

small tiles as motivated by the central assumption

of the tiled noise model: that the stripy pattern

17 We need to use µest because the edges of the ACT footprint
are not smooth, so the unmasked pseudospectrum would have
undesired ringing artifacts. We discuss our choice of mask in
4.5.3.

18 The power spectrum of the filtered map as measured in small
patches of the sky may not be flat, especially in regions outside
µest, but should have reduced dynamic range compared to Figure
3, see Appendix G.
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within small sky patches is constant, but varies
over larger distances. We follow the same tiling

scheme as Naess et al. (2020), wherein the ACT

footprint is divided into M ∼ O(1, 500) equal-

sized square tiles with a 4◦ pitch. In practice,
each tile is actually larger than 4◦ × 4◦ to allow

for a 1◦ cosine apodization around its border.19

As a result, adjacent tiles partially overlap. We

fold the apodization into the definition of the tile

“profile,” or tile “kernel:” cutting a tile out of a

map consists of multiplying the map by the tile

kernel. A cross-section of an arbitrary tile kernel

is shown in Figure 6, displaying the apodized edge

and overlap with neighboring kernels. We name

this operation a “forward tiling transform;” the

“backward” transform, which combines tiles back

into one map, will be defined when we draw sim-

ulations.

We write the matrix form of the forward tiling

transform. Each tile has significantly fewer pixels

than the full map: Npix,tile � Npix. Thus, the first

step in applying a given forward tile — say, tile j
— to a map vector is to “crop” the map vector,

retaining only those pixels contained in tile j. The
next step is to multiply the cropped map vector

by the apodized tile kernel itself. Together, these

operations look like:

τj,fPj (16)

where Pj is a Npix,tile × Npix cropping matrix

consisting of Npix,tile rows of unique unit vec-
tors that select the jth tile pixels, and τj,f is a

Npix,tile×Npix,tile forward tile matrix, a square di-

agonal matrix with the jth tile kernel values along

its diagonal. The forward tile transform then con-

sists of all of these tile operations acting on the

same map vector:

Tf =













τ0,fP0

τ1,fP1

...

τM−1,fPM−1













(17)

where Tf is a block-column-vector of M forward

tiles. Putting it all together, our input noise maps

19 As with µest, the apodization prevents strong ringing when tak-
ing the per-tile DFT in the next step. Some tiles extend past the
edge of the ACT footprint. For such a tile, we simply redefine its
new border to be the intersection of the old border and the ACT
footprint, and apodize the new border instead.
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Figure 7. The tiled 2D Fourier power spectrum for PA5
f090, first split (i = 0). This particular power spectrum
corresponds to tile j = 1, 368 in a model bandlimited to
`max = 10, 800, and we see all Fourier modes k for the TT
(a = b = 0) component. As in Figure 4, we can visualize the
local anisotropic structure in this tile, including an “x-like”
scan strategy and detector-detector correlations at the image
perimeter (small scales). More examples are visible in Naess
et al. (2020), Figure 11.

have been transformed into weighted, demodu-
lated, tiled noise maps:

TfYC
− 1

2

est Y
†
WH

1

2

i νi. (18)

4. Assuming that within each tile the noise covari-

ance is stationary, we take our cue from the cross-
correlation theorem (Equation 13). That is, by

transforming to Fourier space, we will assume that

each Fourier mode in the resulting vector is uncor-

related with all other Fourier modes:

ui ≡ FTfYC
− 1

2

est Y
†
WH

1

2

i νi (19)

where ui is the weighted, demodulated, tiled, 2D
Fourier projection of the map-based noise, and F

is understood to be a square block-diagonal ma-

trix of DFTs (one for each tile). For each Fourier

mode, however, we still retain the six correlated

map fields: two frequency bands and three Stokes

components.

5. With the construction of ui, most of the hard work
is complete. The last steps use ui to build a sparse

(diagonal) covariance matrix, just as in Equation

13. For each tile, we evaluate its 2D Fourier noise
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power spectra:

N (k)abi,jδ(k− k
′) =

1

fj,2
<
(

u
a
i,j(k)u

b∗
i,j(k)

)

(20)

where k is a given 2D Fourier mode, < denotes the

real part (relevant when a 6= b), ua
i,j(k) is the jth

tile and ath component of our transformed noise

map for split i, and fj,2 corrects for the loss of

power from the apodization in the tile (Choi et al.

2020; Madhavacheril et al. 2020; Naess et al. 2020):

fj,2 =
1

Npix,tile
Tr[τ †

j,fτj,f ] (21)

which is just the average value of the squared tile

kernel. Thus, in each tile, the covariance matrix

Ni,j is block-diagonal in each Fourier mode k, with

a single block being a 6×6 matrixN (k)i,j . The to-

tal covariance matrix Ni is block-diagonal in tiles,

with a single block being Ni,j :

Ni =













Ni,0 0 . . . 0

0 Ni,1 . . . 0
...

...
. . .

...

0 0 . . . Ni,M−1













. (22)

This highly diagonal form is the sparse representa-
tion we originally sought: it has O(Npix) nonzero

elements near its diagonal, rather than being dense

with O(N2
pix) nonzero elements.

6. As in Choi et al. (2020); Madhavacheril et al.

(2020); Naess et al. (2020), we smooth each tile’s
power spectrum estimate N(k)abi,j over nearby

modes k to reduce sample variance. Unlike the

smoothing procedure for the two wavelet models

(discussed in §4.5.4 and Appendix F), for the tiled

model we cannot reliably distinguish between ran-
dom fluctuations and true features in the tiled 2D

power spectra. We thus select the same smooth-
ing width in Fourier space as was used in Mad-

havacheril et al. (2020) and Naess et al. (2020),

∆k = 400 in both the x- and y-directions. We per-

form the smoothing via convolution with a tophat

kernel directly applied to the 2D power spectra.20

The smoothing width is fixed both within a given

tile, and for each tile. An example smoothed, tiled

2D Fourier power spectrum is shown in Figure 7.

20 Recall we have already divided-out the steep isotropic part of
the power spectrum, so we are smoothing over the anisotropic

features in N(k)abi,j relative to the isotropic power spectrum.

7. Lastly, in preparation for drawing noise simula-

tions, we note that the actual objects we save to
disk are not the tiled 2D Fourier covariance matri-

ces, but rather their matrix square-root. This is
the matrix analog of obtaining the standard devia-
tion from the variance in preparation for sampling

a scalar Gaussian random variable. Thus, the ob-

ject we save to disk is actually N 1/2
i . As in Step

2, the only off-diagonal parts of Ni are the fre-
quency and polarization crosses indexed by a and

b. Therefore, the matrix exponent acts on each
6 × 6 matrix N (k)i,j separately. Some examples

of N (k)
1/2
i,j are visible in Figure 8. Because it is

also used in drawing simulations, we save C
1/2
est to

disk as well.

These steps generate the tiled model square-root co-

variance N 1/2
i for the purposes of this paper. A

schematic depiction of all these steps is given in the top

row of Figure 8.

4.2.2. Simulations and Covariance Matrix

The ultimate aim of this paper is to create realistic

simulations of the map-based noise. Here, we explain

how we draw such a such a simulation from the model

we have just described. Along the way, we also write

down the full map-based noise covariance matrix. The

following steps are essentially applicable to the wavelet

models as well; in §4.3.2 and §4.4.2 we only discuss mi-
nor differences from what follows here. Batches of these

map-based noise simulations are the main product of

this paper.

There are two key steps in extracting a realization of

the map-based noise from the tiled model. We start by

drawing a realization in tiled 2D Fourier space. Doing

so is tractable thanks to the highly diagonal structure
of the tiled 2D Fourier covariance, Ni. Then we need

to transform the realization back to map space, which

essentially means reverting the various operations that

built ui from νi in Equation 19.

1. For each tile, draw Gaussian white noise in tiled

2D Fourier space and take the inner product with

the square-root covariance:

N
1

2

i ηi (23)

where ηi is complex-valued white noise with

the same shape as ui. Again, the only non-
trivial (off-diagonal) part of this product is in

the frequency/polarization index. By definition,
〈ηiη

†
i 〉 = I, where I is the identity. Therefore,
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Figure 8. Top: The sequence of filters and other operations involved in measuring the sparse covariance in the tiled noise
model. Large boxes denote filters applied to the entire map, while small boxes denote filters or operations in the tiled basis. The
orange filters represent the “forward” tiling kernels in Figure 6. Each operation is labelled by the corresponding step number
in the model estimation algorithm. The input difference map is PA5 f090, T (a = 0), first split (i = 0), and the outputs are 2D
square-root Fourier power spectra, TT (a = b = 0). We see the noise anisotropy varies by tile. Bottom: The sequence of filters
and other operations involved in drawing a simulation of the map-based noise in the tiled model. The first column denotes
independent, Gaussian white noise. Importantly, the orange filters now represent the “backward” tiling kernels in Figure 6,
while all other operations revert those of the top row. Each operation is labelled by the corresponding step number in the
simulation algorithm. The output is a tiled noise simulation of PA5 f090, T, first split.

N 1/2
i ηi is a sample from the tiled covariance:

〈N
1

2

i ηi(N
1

2

i ηi)
†〉 = N

1

2

i 〈ηiη
†
i 〉N

1

2
,†

i = N
1

2

i N
1

2
,†

i = Ni

(24)

by construction. This demonstrates why we save

to disk the square-root covariance.

2. With our tiled 2D Fourier space noise realization in

hand, we proceed to revert Equation 19. So, first
we transform out of tiled Fourier space and back

to tiled map space with a per-tile inverse DFT:

F
†N

1

2

i ηi. (25)

3. Next, we need to stitch tiles back together into a

single map. That is, we need to apply a “back-

ward” tiling transform. At this point in the al-
gorithm, each tile contains an independent real-
ization of its own stripy noise pattern. Therefore,

as noted in Naess et al. (2020), naively pasting

each tile next to one another with a step-function

edge would produce sharp discontinuities in the

synthesized map. Just like the forward transform,

the solution is to apodize and overlap their bor-

ders such that the transition across tiles is contin-

uous. A good illustration of this is shown in Naess

et al. (2020), Figure 13. Unfortunately, we cannot

just reuse the tile kernels from the forward trans-

form: we should specifically design the apodiza-

tion to preserve the per-pixel noise variance in the

tile overlap. We show the exact constraint that
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must be satisfied in Equation 28 and derive it in
Appendix C, but, in short, the forward tile profile

does not satisfy it. Instead, we use the backward

profile shown in Figure 6, which is the square-

root of the bilinear interpolation from Naess et al.

(2020).

The matrix form of the backward tiling transform

is identical to that of the forward tiling transform

(Equation 17):

Tb =













τ0,bP0

τ1,bP1

...

τM−1,bPM−1













. (26)

The only difference is that the diagonal of each

Npix,tile ×Npix,tile backward tile matrix, τj,b, con-
tains the values of the backward tile kernels. The

projection matrices Pj are unchanged: by apply-

ing T †
b , they perform a “paste” operation that is

the exact opposite of the “crop” operation from

the forward transform. Thus we have:

T †
b F

†N
1

2

i ηi (27)

where the vector now has the same shape as an

input noise map, νi, and likewise lives in the orig-

inal, untiled map space.

As discussed, when stitched together in the synthe-

sized map, the backward tile profiles should preserve

the total per-pixel noise variance. For example, for a

given pixel belonging only to one tile, it should be the
case that the value of that tile’s backward kernel is 1
— or else we would artificially increase or decrease that
pixel’s variance. In general — including for pixels in an

overlapping region between multiple tiles — the quadra-

ture sum of all contributing tile kernels should likewise
be 1:

I =
M−1
∑

j=0

P
†
j(τ

†
j,bτj,b)Pj (28)

where the term in parentheses is just the squared value
of the backward tile kernels, and the sum over projection
matrices performs the tile “stitching.” We derive Equa-

tion 28 more rigorously in Appendix C. Continuing with

the simulation algorithm:

4. We need to apply the inverse of the demodulation
filter from the model estimation. That is, we mul-

tiply the simulation in harmonic space by C
1/2
est :

YC
1

2

estY
†
WT †

b F
†N

1

2

i ηi. (29)

This reapplies the steep noise auto- and cross-
spectra to the simulation.

5. The last step in drawing a noise simulation is to
divide by the square-root of the inverse-variance
map, or multiply element-wise by 1/

√
hi. This is

analogous to multiplying by the per-pixel standard

deviation. In matrix form, a simulation from the

tiled noise model is therefore defined as:

ξi ≡ H
− 1

2

i YC
1

2

estY
†
WT †

b F
†N

1

2

i ηi. (30)

These steps generate a tiled model noise simulation,

ξi, for the purposes of this paper. A schematic depiction

of all these steps is given in the bottom row of Figure 8.

We also have the necessary ingredients to write the full
map-based noise covariance matrix in the tiled model.
By definition, the map-based noise covariance matrix is:

Ni = 〈ξiξ†i 〉. (31)

Combining Equations 24, 30, and 31 we have:

Ni = H
− 1

2

i YC
1

2

estY
†
WT †

b F
†NiFTbWYC

1

2

estY
†
H

− 1

2

i

(32)

where we have used that H
−1/2
i , C

1/2
est , and W are Her-

mitian.
This section has given a detailed accounting of how

we both measure the tiled noise model and draw a tiled

noise simulation. While thorough, it is an investment

that will pay off in our discussion of the two wavelet

models: in spite of the wavelets’ orthogonal approach to

modeling the map-based noise, their actual mechanics

are highly similar to the tiled model.

4.3. Isotropic Wavelet Noise Model

Our isotropic wavelet, or “wavelet,” noise model es-
pecially targets the scale-dependent map depth of the

ACT DR6 noise, as shown in Figure 5. The model works

by taking Figure 5 at face value: maps of the per-pixel

noise variance appear different depending on the filtered

range of angular scales. That is, each range of angu-

lar scales could be assigned its own “inverse-variance”

map, where each map still operates in the white noise,

uncorrelated-pixel limit. This idea is especially well

motivated by the observation that the transition from
the small-scale to the large-scale map depth in Figure
5 is reasonably smooth (recall that the bottom panel

shows the morphology after normalizing by the map-

maker inverse-variance). In other words, we do not need

especially high-resolution “filters” in harmonic space to

capture the simultaneous scale- and spatial-dependence

of the map depth. We therefore assume that the set of
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scale-dependent inverse-variance maps forms a complete
and sparse description of the map-based noise.

Applying the core principle of the cross-correlation

theorem (Equation 13), a pixel-wise uncorrelated covari-

ance in map space inspires us to seek stationary regions
in harmonic space. We isolate these regions by tiling

the harmonic plane, where now we call the harmonic
space kernels “wavelets:” a set of smooth, interleaved
profiles defined over `, each of which filters for a compact

range of angular scales.21 Thus, the swapping of map

space and harmonic space is the main algorithmic dif-

ference between the tiled model and the wavelet model,
and we can proceed nearly identically as in §4.2. We

first prescribe how we construct a sparse representation

of the map-based noise covariance under the wavelet

model in §4.3.1. For reference, this procedure is simi-

lar to the construction of the total data covariance in

needlet ILC (NILC) analyses (e.g., Delabrouille et al.
2009; Planck Collaboration XLVIII et al. 2016; Coulton

et al. in prep.). Then, in §4.3.2, we outline how we draw
a simulation from the wavelet model.

4.3.1. Model Estimation

As before, the goal of the model estimation algorithm

is to first filter the ACT DR6 noise maps to promote
their stationarity, and then transform them to permit a

sparse representation of the covariance matrix. In the
wavelet model, we work in harmonic space first and then
transform into map space.

1. We start by considering the harmonic transform
of the noise maps. Thus, our input noise vectors

are given by:

Y
†
Wνi (33)

which is now a 6Nalm
element vector instead of a

6Npix element vector.

2. Just as in the tiled model, at this stage, we have a

priori knowledge that the noise covariance is not

translationally invariant in harmonic space. In-

stead, the noise variance depends on the absolute

position in harmonic space — that is, depends on

` — due to the steep noise power spectra (Figure

3). Therefore, we still need to apply a “stationar-

ity filter,” only this time in harmonic space instead

of map space. We perform the same filtering op-

eration as in §4.2.1, Step 2, wherein we divide-out

21 Technically speaking, there is not an exact analog of Equation 13
in harmonic space; instead, we use it as an approximately true
“guiding principle.”
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Figure 9. Top: Scale-discrete wavelet kernels (Wiaux et al.
2008; Leistedt et al. 2013) defined in harmonic space. Kernels
with indices j = 12 and j = 20 are highlighted. Middle:
Kernel j = 12 in map space, with support in ` of ∼ 100−200.
As expected, this kernel captures scales on the order of ∼

1◦ − 2◦. Bottom: Kernel j = 20 in map space, with support
in ` of ∼ 1, 000 − 2, 000. As expected, this kernel captures
scales on the order of ∼ 0.1◦ − 0.2◦. Its wider width in
harmonic space translates to a narrower width in map space.
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the square-root noise spectra22 as measured in the
same pseudospectrum estimate mask, µest:

C
− 1

2

est Y
†
Wνi. (34)

Whereas in the tiled model, this operation func-

tioned as a demodulation filter, now the flattened
power spectra help promote the noise stationarity
in harmonic space. Again, we further explore the
necessity of this filter in Appendix G.

In principle, we could now perform the harmonic space

equivalent of a “demodulation” step to avoid mode-
coupling. Recall, in the (map space) tiled model, this

involved a filter operating in harmonic space — dividing-

out the square-root noise pseudospectra. The effect of

this was to suppress mixing power across angular scales

when tiling the maps. Therefore, for the (harmonic

space) wavelet model, demodulation would involve a fil-
ter operating in map space — namely, multiplying by

the square-root inverse-variance maps (as in Equation

12). Analogous to the tiled model, this would suppress

mixing power across regions of the map when breaking

the harmonic plane into wavelets in the next step: mul-

tiplication by a local wavelet profile in harmonic space

effects a convolution by a broad kernel in map space.

Nevertheless, in practice we found this demodulation

step was not necessary for performance of the wavelet

model, and we chose to forego it here. Although we do

not include it, we discuss the drawbacks and benefits of

this demodulation step further in §6.

3. After flattening the spectra, our goal is still to iso-

late stationary regions in the transformed noise.
As discussed, we achieve this by breaking the noise

into a set of “wavelets,” which are analogous to
tiles defined in harmonic space. For this purpose
we use the “scale-discrete” wavelets of Wiaux et al.

(2008); Leistedt et al. (2013) with a scaling pa-

rameter λ = 1.3 (λ sets the logarithmic wavelet

width), lowest wavelet scale J0 = 9 (which sets the
`max of the lowest-` wavelet), and highest wavelet

scale J = 33 (which determines the overall num-
ber of wavelets). These parameters generate the

M = 26 wavelet kernels shown in the top panel of

Figure 9.23 The wavelet log-spacing is well suited

22 The Cest measured in the wavelet model will not be the same as
the tiled model, since in the tiled model we had already multi-
plied the noise maps by the square-root inverse-variance before
measuring the spectra.

23 We augment the highest-` wavelet kernel to extend to arbitrarily
high-` at a value of 1.

to the roughly power law scaling of the noise spec-
tra. In addition, the smooth overlap of the wavelet
profiles plays a similar role as the apodized tile

edges in §4.2.1, Step 3: it prevents strong ring-

ing of the map-space wavelet kernels when tak-
ing the per-wavelet SHT in the next step. Said

another way, it sacrifices some of each wavelet’s

resolution in harmonic space to increase its reso-

lution in map space. The bottom panels of Figure

9 demonstrate just that: the map-space wavelet

kernels are compact, and can therefore resolve lo-

cal noise features in map space. We also observe

that because the higher-` wavelets are wider in

harmonic space, their map-space kernels are com-

mensurately tighter. Thus, the wavelet decompo-

sition is capable of simultaneously localizing noise

properties over angular scale and sky position.

We again denote this operation a “forward tiling

transform.” As before, the first step in applying a

given wavelet profile to a map vector is to “crop”

the noise vector. Only now, we retain all har-

monic modes up to the wavelet `max, which is to

say we bandlimit the noise vector for each wavelet.

Then, we multiply the set of bandlimited vectors

by the corresponding wavelet profile. For a given

wavelet j, the matrix form is identical to Equation
16, where Pj is a Nalm,wav × Nalm

bandlimiting
matrix, and τj,f is a Nalm,wav × Nalm,wav square

diagonal matrix with the jth wavelet kernel values

along its diagonal. Then the forward tiling trans-

form, Tf has the exact same form as Equation 17.

Our input noise maps thus become transformed,

weighted, tiled noise maps:

TfC− 1

2

est Y
†
Wνi. (35)

4. We again are guided by the cross-correlation the-

orem (Equation 13): we now transform into map
space, where we assume that each pixel in the re-

sulting vector is uncorrelated with all other pixels:

ui ≡ YTfC− 1

2

est Y
†
Wνi. (36)

Thus, ui contains a set of M bandlimited “wavelet

maps,” where each map has six correlated fre-

quency/polarization components, but whose pix-

els are uncorrelated.

5. Using ui, we evaluate the pixel-diagonal wavelet

power maps:

N (x)abi,jδ(x− x
′) =

1

fj,2(x)

(

u
a
i,j(x)u

b∗
i,j(x)

)

(37)
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Figure 10. Top (Bottom): The inverse of a wavelet noise power map corresponding to the high-`, j = 20 (low-`, j = 12)
wavelet kernels highlighted in Figure 9. The particular component is PA5 f090, TT (a = b = 0), first split (i = 0). As expected,
when compared to Figure 5, we see the small-scale (large-scale) wavelet inverse-variance is suggestive of the morphology of the
mapmaker inverse-variance (cross-linking) map.

where x is a given wavelet map pixel, ua
i,j(x) is the

jth wavelet map and ath component of our trans-

formed noise vector evaluated at x, and fj,2(x)
corrects for the power suppression due to the

modes lost when multiplying by each wavelet pro-

file (Dahlen & Simons 2008):

fj,2(x) =
A(x)

4π
Tr[τ †

j,fτj,f ] (38)

where A, the pixel area in steradians, accounts for

the spherical geometry of the wavelets. The total

wavelet covariance matrix, Ni, is thus the same
form as Equation 22. Each block along the diag-

onal, Ni,j , is itself block-diagonal in map pixel x,

with a single block being a 6 × 6 matrix N (x)i,j ;

the elements of N (x)i,j are given by Equation

37. Again, this highly diagonal form is our de-

sired sparse representation, containing O(Nalm
)

nonzero elements near its diagonal.

6. We smooth each wavelet power map N (x)abi,j over

nearby pixels x to reduce sample variance. Some

examples of smoothed wavelet power maps are

shown in Figure 10. We see the wavelet model
is suggestive of cross-linking-like noise morphol-

ogy at large scales, and inverse-variance-like noise

morphology at small scales.

Unlike the tiled model, we do not use the same

smoothing width for all wavelets. Instead, we se-

lect a Gaussian smoothing kernel with a FWHM

of f(`max)π/`max radians, where f is some func-
tion of ` and `max is the maximum support of the

given wavelet. Because the `max of our SHTs are
set to the Nyquist bandlimit of the corresponding

map pixelization, π/`max for a given wavelet is the

pixel size (in radians) of the corresponding wavelet

map. Thus, f counts the number of pixels in the

wavelet power maps across the smoothing FWHM.
As shown in §4.5.4, Figure 16, f takes on values

of O(10). The choice of f(`) is discussed further

in §4.5.4, as well as in Appendix F.

7. Lastly, as before, we save to disk the matrix

square-root of Ni — that is, N 1/2
i — and C

1/2
est .

Some examples of N (x)
1/2
i,j are visible in Figure

11.

These steps generate the wavelet model square-root

covariance N 1/2
i for the purposes of this paper. A

schematic depiction of all these steps is given in the top

panel of Figure 11.
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Figure 11. Top: The sequence of filters and other operations involved in measuring the sparse covariance in the wavelet noise
model. Large boxes denote filters or operations applied to the entire map, while small boxes denote filters or operations after
tiling the harmonic plane. The orange filters represent the “forward” wavelet kernels in Figure 9 (“forward” and “”backward”
kernels are the same in this model). Each operation is labelled by the corresponding step number in the model estimation
algorithm. The input difference map is PA5 f090, T (a = 0), first split (i = 0), and the outputs are square-root wavelet power
maps, TT (a = b = 0). We see the spatial variation in map depth also varies by wavelet scale, with high-` to low-` running top
to bottom. Bottom: The sequence of filters and other operations involved in drawing a simulation of the map-based noise in
the wavelet model. The first column denotes independent, Gaussian white noise. The orange filters represent the “backward”
wavelet kernels in Figure 9, while all other operations revert those of the top row. The output is a wavelet noise simulation of
PA5 f090, T, first split.

4.3.2. Simulations and Covariance Matrix

Just as the wavelet noise model estimation algorithm

followed directly from §4.2.1, so too does its simulation

algorithm carry over from §4.2.2. That is, the proce-

dure for generating a noise simulation from the wavelet

model consists of first drawing a realization in wavelet

map space, and then reverting the operations that trans-

formed νi into ui in Equation 36.

1. For each wavelet, draw Gaussian white noise in

wavelet map space and take the inner product with

the square-root covariance:

N
1

2

i ηi (39)

where ηi is real-valued white noise with the same
shape as ui.

2. Next, transform out of wavelet map space and

back to wavelet harmonic space with a per-wavelet
SHT:

Y
†
WN

1

2

i ηi. (40)

That is, this vector contains the SHT of the M =
26 independent wavelet noise realizations.

3. Just as in a tiled noise simulation, we now need to
stitch the wavelet realizations back together, only

this time the stitching occurs in harmonic space.
The same considerations carry over from the tiled
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model as well: we should avoid naively pasting
each wavelet next to one another, which would

result in sharp discontinuities in the synthesized

harmonic transform. Thus, we first multiply the

wavelets by smoothly tapered profiles in harmonic

space. For this purpose, we reuse the same pro-

files, or “kernels,” from the forward transform, as
shown in Figure 9. As before, we also require that

the sum over wavelets of the per-harmonic-mode

noise variance is preserved; equivalently, that the

wavelet kernels satisfy Equation 28. Conveniently,

the wavelets of Wiaux et al. (2008); Leistedt et al.

(2013) do so by construction. We then simply add

up the 26 smoothly tapered wavelet realizations

in harmonic space, resulting in a single harmonic

transform. Together, this constitutes the “back-

ward tiling transform.”

The matrix form of the backward tiling transform
is identical to Equation 26. Since we have reused

the same wavelet profiles as in the forward trans-

form (Tb = Tf ), we therefore have:

T †
f Y

†
WN

1

2

i ηi (41)

where the vector now has the same shape as the

harmonic transform of νi, and likewise lives in the
original, “untiled” harmonic space.

4. We apply the inverse of the stationarity filter from

the model estimation. That is, we reapply the

square-root noise auto- and cross-spectra directly

in harmonic space:

C
1

2

estT †
f Y

†
WN

1

2

i ηi. (42)

5. Finally, transforming the entire simulation back

into map space completes the noise simulation:

ξi = YC
1

2

estT †
f Y

†
WN

1

2

i ηi. (43)

These steps generate a wavelet model noise simulation,

ξi, for the purposes of this paper. A schematic depiction

of these steps is given in the bottom panel of Figure 11.

As before, it is easy to use Equation 43 to write the
full map-based noise covariance matrix in the wavelet

model:

Ni = YC
1

2

estT †
f Y

†
WNiWYTfC

1

2

estY
† (44)

where we have used that C
1/2
est and W are Hermitian.

This completes our discussion of the isotropic wavelet

model. The direct parallels to the tiled model construc-

tion are apparent. By tiling harmonic space instead of

map space, the wavelet model is well-adapted to cap-

ture the scale-dependence of the map depth; however,

by construction, the isotropic wavelets are circular in

map space (Figure 9) — they are insensitive to any lo-

cal noise stripiness.

4.4. Directional Wavelet Noise Model

Our directional wavelet, or “directional,” noise model

in principle captures all enumerated aspects of the ACT

map-based noise, including the spatially-varying stripy

patterns and scale-dependent map depth, simultane-

ously. Its key feature is a decomposition using a set

of directional wavelets: each wavelet filters for a partic-
ular range of angular scales (like the “isotropic” wavelet
model), as well as a particular direction on the sky (un-

like the “isotropic” wavelet model). That is, by assum-

ing the noise is stationary within a “directional wavelet”

with both a well-defined angular scale and direction, the

decomposition naturally leads to scale- and direction-

dependent “inverse-variance” maps. Moreover, because

the main difference between the wavelet model and di-

rectional model is just the definition of their wavelet pro-

files, their model estimation and simulation algorithms

are nearly identical. The directional model can therefore

be viewed as a generalization of the wavelet model.

The directional model’s only algorithmic change is

that we build the wavelets in 2D Fourier space instead

of harmonic space.24 Doing so admits speed improve-

ments, increased flexibility in wavelet design, and gener-

ally simpler implementation. One consequence of defin-

ing wavelets in Fourier space is that their map space

kernels change physical size over declination — that is,

their size in pixels stays fixed as the physical sizes of

the pixels themselves change. In principle, then, the

wavelets could mix physical scales. In practice, however,

the effect of this is limited: the map depth morphol-
ogy undergoes a smooth transition from small to large
scales (again, see Figure 5). We should also note that

the Fourier space wavelets would encounter regularity

issues at the poles; however, this too is not relevant for

the ACT footprint, whose largest declination is −63◦.
Fourier space aside, again we can heavily borrow from

§4.3.1 and §4.3.2 in what follows.

24 For harmonic space analogs, see e.g., the “curvelets” of Chan
et al. (2017) and the “steerable wavelets” of McEwen et al.
(2018). We note that the latter wavelets were used in the scale-
discretised, directional wavelet ILC (SILC) analysis of Rogers
et al. (2016). The total data covariance in SILC is the direc-
tional generalization of the NILC covariance, just as our direc-
tional wavelet model generalizes our isotropic model.
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4.4.1. Model Estimation

Again, our goal is to construct a sparse representation
of the noise covariance matrix. We give an abridged ver-

sion of the model estimation algorithm from the wavelet

model in §4.3.1, since the steps are highly similar. We

take care, however, to explain notable differences in the
implementation, especially in relation to the design of
the directional wavelets.

1. We apply the same stationarity filter as in §4.3.1,

Step 2: flattening the noise power spectra as mea-

sured in µest. Again, this helps remove the abso-

lute dependence of the noise variance on angular

scale, `. We still apply this filter to the maps in
harmonic space:

C
− 1

2

est Y
†
Wνi. (45)

2. In preparation for the wavelet decomposition, we

need to transform the maps from harmonic space

to 2D Fourier space. To do so, we first return

to map space, and then take the DFT to Fourier

space:

FYC
− 1

2

est Y
†
Wνi. (46)

We note that this Fourier space noise vector still

contains 6Npix elements, since the DFT, F, is a
square matrix.

3. As in §4.3.1, Step 3, our goal is to isolate station-

ary regions in the transformed noise. Now, we do

this by breaking the noise into a set of wavelets de-

fined in Fourier space. We construct the wavelets

to be separable radially and azimuthally in the

Fourier plane. Modes with comparable radii, k ≡
|k|, map to comparable angular scales, `, as well.
For instance, had we constructed the isotropic

wavelets from §4.3 in 2D Fourier space instead
of harmonic space, they would have appeared as

concentric annuli. Thus, for the radial part of

the directional wavelets we reuse the scale-discrete

wavelet profiles of Wiaux et al. (2008); Leistedt

et al. (2013), only now with a scaling parameter
λ = 1.6 (i.e., we have increased the logarithmic

wavelet spacing), J0 = 5, and J = 19, yielding

16 profiles (see the top panel of Figure 12). Com-

pared to the isotropic model, the directional model

has fewer and wider radial wavelet kernels. Also

note, since we are in Fourier space, we consider
the wavelets to be functions of k instead of `. By

augmenting the wavelets with an azimuthal part,

we create wavelets local not only in their angular
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Figure 12. Top: Radial slices of the Fourier directional
wavelet kernels over angular scale. These profiles are again
from the scale-discrete wavelet family (Wiaux et al. 2008;
Leistedt et al. 2013). The blue and orange dashed wavelet
around k ∼ 100, labeled by a “radial” index of 7, corresponds
to the azimuthal slices shown in the middle panel; the green
and red dashed wavelet around ` ∼ 1, 000, labeled by a “ra-
dial” index of 11, corresponds to the azimuthal slices shown
in the bottom panel. Middle and Bottom: We construct a
wavelet set with increasing directional locality as a function
of k. For example, 13 wavelets tile the azimuthal axis for the
lower-k wavelet, while 37 kernels tile the azimuthal axis at
the higher-k wavelet. A full 2D wavelet is given by the outer
product of the radial and azimuthal slices. Numeric labels
are for comparison with Figure 13.
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scale, k, but in their direction on the sky as well.
The azimuthal profile shapes (middle and bottom

panels of Figure 12) are defined in Appendix D;

their outer product with the radial profiles yields

M ∼ O(300) 2D Fourier space wavelets. The full
2D wavelets are shown in Figure 13. As before,

these 2D Fourier-space wavelet profiles smoothly
overlap to prevent ringing and increase their map-
space resolution.

The forward tiling transform associated with the
directional wavelets is similar to that of §4.3. We

note that the action of “cropping” out each wavelet

from the full 2D Fourier space is akin to the `max-

bandlimiting from the isotropic wavelet model, ex-

cept that we are restricted to a rectangular geom-

etry (as in the tiled model). That is, rather than

retaining all harmonic modes up to the wavelet

`max, we retain all Fourier modes up the wavelet

|ky,max| and |kx,max|. Thus, each projection matrix

Pj is a Npix,wav ×Npix cropping matrix, and τj,f
is a Npix,wav×Npix,wav is a square diagonal matrix
with the jth wavelet kernel values along the diag-

onal. The forward tiling transform matrix form is

again identical to Equation 17, yielding the follow-

ing weighted, transformed, tiled noise vectors:

TfFYC
− 1

2

est Y
†
Wνi. (47)

In Figures 12 and 13, we clearly observe what makes

these wavelets directional: by isolating a compact range

of azimuthal angles in Fourier space, their map space

kernels are stripy with a well-defined orientation on the

sky. Additionally, those figures demonstrate a critical

design principle: the “zero-sum” tradeoff in scale, az-

imuthal (i.e., directional), and spatial locality. In Figure
13, for instance, the left panel shows that at large scales

(near the “center” of Fourier space), each wavelet ex-
hibits a high degree of scale locality and low azimuthal
locality. Correspondingly, their map space kernels (in
the top row of the right panel) are spatially extended

overall, but are proportionally compact along their ori-
entation. At small scales (far from the “center” of

Fourier space), each wavelet exhibits successively less

scale locality, and successively more azimuthal locality.

Correspondingly, their map space kernels (in the bottom

row of the right panel) are spatially compact overall,

but are proportionally extended along their orientation.

This behavior is reminiscent of the “parabolic scaling”
in Chan et al. (2017), wherein the smaller-scale wavelets

become progressively more extended. We discuss the en-

gineering of this tradeoff in more detail in Appendix D.

4. We again transform from the space in which the
noise is assumed to be stationary (Fourier space)

into the space where we take the noise to be diag-

onal (map space), this time with an inverse DFT.

Thus, we assume each pixel in the following vector:

ui = F
†TfFYC

− 1

2

est Y
†
Wνi (48)

is uncorrelated with all other pixels.

5. We evaluate the same pixel-diagonal wavelet

power maps, N (x)abi,j , as in Equation 37. The

only change is due to the rectangular geometry,

the normalization factor fj,2 is the same form as

the tiled model (Equation 21), with Npix,wav re-

placing Npix,tile. The highly diagonal wavelet co-
variance matrix, Ni, is likewise the same form as

in the isotropic wavelet model.

6. We apply the same smoothing method with the

same definition of f as in the isotropic wavelet

model (§4.3.1, Step 6) to reduce sample variance.

7. We save to disk the square-root matrices N 1/2
i and

C
1/2
est .

These steps generate the wavelet model square-root
covariance N 1/2

i for the purposes of this paper. We do

not show the directional wavelet model maps, but they

are qualitatively similar to Figure 10. The top panel

of Figure 11, showing the schematic model estimation

steps, is likewise similar for the directional wavelets after
substituting spherical harmonic transforms for Fourier

transforms.

4.4.2. Simulations and Covariance Matrix

Apart from the wavelet construction, the process of

drawing a noise simulation from the directional model

is, again, almost identical to the wavelet model. We give

an abridged version of the simulation algorithm here.

1. For each wavelet, draw Gaussian white noise in

wavelet map space and take the inner product with

the square-root covariance:

N
1

2

i ηi. (49)

2. Transform out of wavelet map space and back to

wavelet Fourier space with a per-wavelet DFT:

FN
1

2

i ηi. (50)

3. Apply a “backward tiling transform” in Fourier

space. That is, again, we need to stitch the
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Figure 13. Left: Contour-levels of the full 2D wavelet kernel set. The blue (7, 0), orange (7, 2), green (11, 0), and red (11, 6)
2D wavelets, formed by the product of the 1D profiles in Figure 12, are highlighted (numeric labels match those of Figure 12).
The contours are at the half-maxima of the squared wavelets. We see the wavelets are attuned to “radially oriented” features in
2D Fourier space. Right: The map space wavelet kernels for the same blue, orange, green, and red wavelets. Wavelets (7, 0) and
(7, 2) pick out low-frequency features by design and are spatially nonlocal. Wavelets (11, 0) and (11, 6) pick out high-frequency
features by design and are spatially local overall. The opposite rotation sense in map space versus Fourier space results from
the plotting convention (in map space, the R.A. decreases to the right).

wavelets back together to form a single noise

Fourier transform. For the same reasons as the

isotropic wavelet model, we choose to reuse the

forward tiling transform — Tb ≡ Tf — noting that
we construct our wavelets (Appendix D) to satisfy

Equation 28. We therefore have:

T †
f FN

1

2

i ηi (51)

where the vector now has the same shape as the
Fourier transform of νi, and likewise lives in the

original, “untiled” Fourier space.

4. We reapply the noise auto- and cross-spectra in

harmonic space. To do so, we first transform out

of Fourier space and into map space, and then into

harmonic space, and then multiply by the square-

root noise pseudospectra:

C
1

2

estY
†
WF

†T †
f FN

1

2

i ηi. (52)

5. Transforming the entire simulation back into map

space completes the noise simulation:

ξi = YC
1

2

estY
†
WF

†T †
f FN

1

2

i ηi. (53)

These steps generate a directional model noise simu-

lation, ξi, for the purposes of this paper. The schematic

depiction in the bottom panel of Figure 11 is highly rep-

resentative of the simulation algorithm. As before, we

use Equation 53 to write the full map-based noise co-

variance matrix in the directional model:

Ni = YC
1

2

estY
†
WF

†T †
f FNiF

†TfFWYC
1

2

estY
† (54)

where we have used that C
1/2
est and W are Hermitian.

This completes our discussion of the directional

wavelet model. By generalizing the wavelets to iso-

late a particular direction on the sky in addition to a

range of angular scales, the directional model naturally

captures the spatially-varying noise anisotropy and the

scale-dependent map depth simultaneously.
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Figure 14. 2◦ × 2◦ region centered on M87 in the PA5 f090, first split, T difference map. Left: Raw difference map (not
point-source subtracted). Center: Using the point-source subtracted maps described in the text partially mitigates the residual
point source but does not eliminate it. Right: The inpainted difference map.

4.5. Preprocessing and Implementation

Now that we have defined the core features and for-

malism of the models, we complete their discussion with
some final implementation details. In Sections §4.5.1

and §4.5.2, we describe the data preprocessing we per-

form on the noise maps, νi, prior to using them as inputs

to the noise models. This is necessary to mitigate resid-

ual map signal that does not cancel in Equation 5. In
Section §4.5.3, we define the “pseudospectrum estimate

mask,” and other masks, used throughout the analy-
sis. Sections §4.5.1, §4.5.2, and §4.5.3 are common to all

three models; section §4.5.4 gives further details on the

model smoothing step for the wavelet and directional

models only.

4.5.1. Source Subtraction and Inpainting

Each of the preceding models sacrifices some degree

of map space locality in order to simultaneously resolve

features in harmonic/Fourier space. The raw ACT data,

however, contain spatially compact point sources; im-

portantly, the brightest of these sources do not exactly

cancel when we construct difference maps in Equation
5. This is likely due to a variety of underlying causes:

many sources are themselves time-variable, or the tele-

scope pointing varies slightly between splits, both of

which would leak their signal into the map-based noise

as defined in Equation 1. They may be bright enough

that small errors in gain calibration between splits can
also induce significant signal-to-noise leakage in Equa-

tion 5. The upshot is that raw difference maps contain

spatially compact point-source residuals, which, when

left untreated, can bias our noise models.

We mitigate these point-source residuals in two ways.

First, we use “point-source subtracted” maps (Aiola
et al. 2020; Naess et al. 2020). These are maps in

which both time-domain and map-space models of point

sources, either from a catalog or matched filter applied

directly to the ACT DR6 data, have been fit and sub-

tracted from the raw map products (Aiola et al. 2020;

Naess et al. 2020). Use of the point-source subtracted

maps as inputs eliminates most of the difference map

residuals, but some particularly bright sources remain

(see left and center panels of Figure 14).

To further increase robustness against point-source

residuals, we also inpaint the difference maps in small

regions around the sources. For computational simplic-

ity, we do not use a constrained-realization (e.g., Bucher

& Louis 2012) inpainting routine. Rather, we develop a

simple, sufficient procedure which leverages the overall
smoothness of the noise and compactness of the point-

source residuals. For a given point-source location in
the difference map, we inpaint only the pixels within a
six arcmin radius — the “inpainted region” — as follows:

1. Set the value of all pixels within the inpainted re-

gion equal to the mean value of pixels in the an-

nulus between six and nine arcmin. This removes

the point-source residual and replaces it with a

reasonable constant value. While this is better

than having the large spike from the point-source

residual, it will leave a discontinuity in the noise

properties at the border of the inpainted region.

2. We would like the large-scale noise features to be

continuous across the inpainted region. To achieve

this, we first copy the 120 arcmin square region

centered on the point source from the updated dif-
ference map — that is, the map resulting from the

first step. We then smooth this copied cutout with

a six arcmin FWHM Gaussian kernel. Finally, we

adopt the values of this smoothed cutout only in

the inpainted region of the difference map. This

adds some large-scale modes from outside the in-

painted region on top of the constant value from

the first step.
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Figure 15. Grey: The PA5 f090 cross-linking (square-root of the same data as Figure 1. The square-root improves contrast in
small values). Blue: The region preserved by the apodized pseudospectrum estimate mask, µest, overplotted on the cross-linking.
Orange: The outline of the boolean mask, µbool, for PA5.

3. We would also like the small-scale noise fea-

tures to be continuous across the inpainted region.

For this, we simply add a white-noise realization

drawn from the per-pixel difference map variance

(w−1
i ) to the difference map inpainted region.

These three steps ensure that in a small region around

inpainted point-source residuals, the noise features are

reasonably continuous. The results of this procedure for

a sample point source are shown in the right panel of

Figure 14. We inpaint around all sources in the compact

source catalog described in Qu et al. (in prep.), which
contains 1,779 point sources. While only a fraction of

this catalog is likely bright enough to cause a noticeable

residual, our inpainting procedure is benign and we only

inpaint 0.12% (0.28%) of the sky (ACT footprint).

4.5.2. Map Downgrading

We typically complete our preprocessing of the differ-

ence maps by downgrading their resolution by a factor of

two or four, which also reduces their bandlimit propor-

tionately. There is no fundamental reason for this step;

rather, we do so only to save disk space and computa-

tion time of noise realization ensembles. We resample

in Fourier space to perform the downgrading. This has

several benefits over pixel-block-averaging. First, the

pixel centers in the downgraded pixelization align with

pixel centers in the raw pixelization. This is necessary
for ensuring SHTs of the downgraded maps are lossless
(i.e., the downgraded maps still follow the Clenshaw-

Curtis quadrature rule, see Reinecke, M. & Seljebotn,

D. S. (2013)). Second, we do not introduce any addi-

tional pixel window or aliasing beyond what is already
present in the full-resolution maps. Lastly, unlike har-

monic space resampling, Fourier space resampling pre-
serves the entire Fourier plane, which is necessary for the
directional wavelet decomposition to work. In principle,

bandlimiting the difference maps could introduce ring-

ing around bright features, but in practice these features

are already suppressed when we take map differences in

Equation 5 and inpaint the difference maps.

4.5.3. Pseudospectrum and Boolean Masks

Our models also rely on two input masks. The first

is an apodized mask that leaves a restricted portion of
the sky used to measure the noise pseudospectrum and
construct the isotropic filter for the noise models. The

second is a boolean mask defining the larger area we

model and simulate.

This first mask is only used to measure the noise pseu-

dospectra which enter the isotropic filter in §4.2.1 Step

2, §4.3.1 Step 2, and §4.4.1 Step 1. The goal of this
mask is produce “representative” pseudospectra: down-

weighting or excluding the noisiest data which would
otherwise dominate the spectra, while retaining a rea-
sonable fraction of the ACT footprint. Thus we use a
slightly modified version of the nominal ACT DR6 CMB

lensing analysis sky mask (Qu et al. in prep.). This is

the intersection of two other masks: a root-mean-square
threshold cut on the ACT DR6 f090 and f150 coadd

maps of 70µK-arcmin, and a Planck 60% Galactic mask

(Planck Collaboration I et al. 2020). We modify it by

then cutting pixels not observed by all splits of all de-

tector arrays. This ensures we can use this one mask

version for all of our noise models. Finally, we apodize
the mask by three degrees with a cosine profile. The
outline of the resulting pseudospectrum mask, µest, is

shown as the blue region in Figure 15, overlayed on top

of a cross-linking map. To maximize noise model ac-

curacy one might be tempted to select the same mask

here as is used in any downstream analysis, but the en-

suing proliferation of noise models could be cumbersome

from a data management perspective. Instead, we note

that our noise models are reasonably robust to O(1)
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variations about the noise spectra as measured in our
pseudospectrum mask (see Appendix G).25

The boolean mask is used to define which data enter
our noise models and are simulated. Ideally, we would

include all observed pixels in a given difference map,

such that we model and simulate all the available data.

In practice, however, we found it improved performance
to prohibit pixels with the lowest cross-linking from en-
tering the noise models. We detail the motivation and

construction of this boolean mask, µbool, in Appendix E.

Once defined, we apply it directly to the difference maps

(via µbool ∗ νi) before the model estimation algorithms,

and directly to the simulations (via µbool ∗ ξi) after the
simulation algorithms. The outline of this boolean mask

is shown as the orange curve in Figure 15. We see it ex-

cludes the regions at the edge of the ACT footprint with

practically no cross-linking. Importantly, the boolean

mask does not cut any data used in the main DR6 cos-

mology analyses (the CMB power spectrum and CMB

lensing).

4.5.4. Model Smoothing

The preceding noise models are themselves noisy ap-

proximations of an underlying, true covariance matrix.
This statistical “model scatter” is made especially acute
by the fact that we build models using a single realiza-
tion of the input data — a model for each split map.

Absent any suppression of the statistical scatter in the

estimated covariance matrices, the models will be biased

by over-fitting to the data: random fluctuations in the

estimated covariance matrix will be recorded as part of
the true covariance matrix. Of course, the preceding al-
gorithms do address this issue by smoothing the tiled 2D

Fourier power spectra (§4.2.1, Step 6) or wavelet power

maps (§4.3.1, Step 6 and §4.4.1, Step 6). These smooth-

ing steps are essentially averages over adjacent modes
or pixels in each tiled or wavelet covariance (we discuss

whether also averaging noise models over data splits is a
viable alternative in §6). While necessary to avoid over-

fitting to the data, however, over-smoothing the noise

models may remove structure in the true noise covari-

ance. For example, in the wavelet power maps of Figure
10, a given “blob” of high variance might be a statistical

fluctuation, such that we would want to smooth it away,
or might be real feature in the true noise covariance,

such that we would not want to smooth it away. Here,

we attempt to balance these competing potential biases.

25 Furthermore, matching the pseudospectrum estimate mask to
some desired analysis region is not guaranteed to achieve op-
timal agreement between the noise power spectra of simulations
and data in that region.

Starting with the wavelet models, we need to spec-
ify the function f(`) used in §4.3.1, Step 6 and §4.4.1,

Step 6. Recall, in those smoothing steps we take each

wavelet power map, corresponding to a wavelet with a

given `max, and smooth it with a Gaussian kernel whose

FWHM in map pixels is given by f(`max). Thus, we

want f(`) to lie in the “Goldilocks zone” of not too lit-
tle, but not too much, smoothing.

Fortunately, we have a priori insight into what the

noise power maps should resemble: at high-`, the map-

maker inverse-variance maps, and at low-`, the map-

maker cross-linking maps (recall Figures 1 and 5).26 We
use this knowledge to estimate the optimal smoothing

width, fopt, at a given `max, according to the following
procedure:

1. Take the raw mapmaker inverse-variance, initially
with a Nyquist bandlimit `max = 21, 600, to be the

“true” noise covariance. Draw a white-noise real-
ization from this covariance to represent a single
realization of the map-based noise in the data.

2. With varying amounts of smoothing, construct

white-noise models using this realization of the
map-based noise as the input. This is done by sim-
ply squaring the observed noise in each pixel, and
smoothing with a Gaussian kernel whose FWHM

is f pixels.

3. Compare the agreement between the “estimated”
white-noise covariance in the models with the

original, “true” noise covariance. The optimal

smoothing, fopt, corresponds to the model that

maximizes this agreement.

4. Repeat these steps by varying what is taken to
be the true noise covariance, by downgrading the

inverse-variance map to a lower `max and/or in-

cluding the cross-linking map. Find fopt in each

case.

The fourth step above is important to ensure the fidu-
cial input covariance is as realistic as possible. First, the

wavelet power maps probe noise structure at different

resolutions, as set by their `max. Consider the limiting

case of a white-noise covariance defined by the map-

maker inverse-variance map. In this case, even though

there is a “true” noise covariance at full resolution, such

a covariance has different spatial structure when down-

graded to lower resolutions. Thus, the optimal smooth-

ing level at those downgraded resolutions may not be the

26 To be precise, these two mapmaker products trace the spatial
variation of the map depth. It is their inverse that traces the
map noise power.
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Figure 16. Optimal smoothing factors, fopt, as a function of bandlimit, using the procedure in the text (also see Appendix
F). The blue circles are obtained by comparing a simple white-noise model to a cross-linking plus inverse-variance-like noise
model. The orange circles correspond to a white-noise model following the inverse-variance only. The green diamond (cross)
are obtained by comparing the wavelet (directional) noise model to an inverse-variance-like noise covariance. Each data point
shows the mean and 1σ range over the six ACT DR6 arrays/frequencies (first split of each). The solid black line shows our
chosen form of f(`) for use in the actual model estimation of §4.3.1 and §4.4.1.

same as at full resolution. Second, we observed in Fig-

ure 5 that the spatial noise structure resembles the map-

maker cross-linking at large scales. Thus, by including

the (downgraded) cross-linking in our input covariance

at lower values of `max, the resulting optimal smoothing

level is appropriate for models of the actual data.

This procedure balances the tension between preserv-

ing the true covariance structure and suppressing ran-

dom fluctuations in realistic wavelet power maps. We

show the results in Figure 16.27 In general, the optimal

smoothing factor, fopt, increases with `max. At large
scales — that is, scales dominated by correlated noise

— the cross-linking governs the spatial noise structure,
and fopt ∼ 5 − 10. At small scales, where the inverse-

variance dominates the spatial noise structure, fopt in-

creases toward ∼ 20− 25. The open green diamond and

cross in Figure 16 correct for the fact that our wavelet

noise models are not simple white-noise models (also ex-
plained further in Appendix F). They indicate the op-

timal smoothing for the wavelet noise models is slightly
less than implied by our simple white-noise procedure.

In light of these results, we opt for a simple ad-hoc

form of f(`max) in all arrays and frequencies, using the

model shown in Figure 16.28 This respects all arrays’

preference for low smoothing factors at low `, with a
shallow increase toward larger smoothing factors at large

`. This curve also remains ∼ 10− 30% below the white-

27 We give the detailed version of this approach and define a quan-
titative measure of “model-to-truth” agreement in Appendix F.

28 The lines from (0, 2) to (1,350, 10), and then through (5,400, 16)
in (`, f(`)) space.

noise results for compatibility with our wavelet models.

We also see no significant effect in the results of §5.1

when varying f(`max) by ∼ 5 at all but the largest scales.

Therefore, in setting the form of f(`max) we are pri-

marily concerned with capturing the overall trend than
specific, minor variations between arrays. We plan to

improve our smoothing procedure in future work.
For the tiled model, there is no mapmaker product

that gives an a priori understanding of what the 2D

Fourier power spectra should look like. Thus, as we

discussed in §4.2.1, Step 6, we simply adopt the same

smoothing scale as was used in Madhavacheril et al.

(2020) and Naess et al. (2020).

5. MODEL EVALUATION AND RESULTS

Having constructed the tiled, isotropic wavelet, and

directional wavelet noise models, we examine their abil-
ity to reproduce ACT map-based noise statistics. As
discussed in the previous section, we do so by averaging

over large ensembles of noise simulations. A data differ-

ence map and example noise simulations for each model

are shown in Appendix A. For ease of computation, we
have chosen to show results from models bandlimited to

`max = 5, 400, and averages of 30 simulations.
Because of the density of the data and model noise

covariance in map space, a direct comparison of those

matrices is not possible. As an informative substitute,

we instead examine the noise properties of §3.2 as cap-

tured in simulations. Thus, in §5.1, we compare simula-

tions to the data by: (a) isotropic noise auto- and cross-

spectra (large-scale noise correlations), (b) 2D Fourier

power spectra (spatially-varying noise anisotropy), and

(c) effective “inverse-variance” at different angular scales
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Figure 17. Comparisons of PA5 noise auto- and cross-spectra between the simulations and the data. The solid lines (shaded
bands) are the means (1σ range) over the eight splits. The top row shows f090 power spectrum ratios. The bottom row shows
f150 power spectrum ratios. The middle row shows correlation spectra differences: the correlation is calculated by considering
the ratio of the f090 × f150 cross-spectra to the geometric mean of the auto-spectra (Equation 11). For all three rows, the
nominal result is a value of 0. All spectra are measured in the same apodized pseudospectrum mask from §4.5.3. Recall the
models are bandlimited to `max = 5, 400. Temperature spectra perform well at all scales, exhibiting no more than few-percent
deviations at low-`. As discussed in §6 , polarization spectra appear robust for ` & 300, but exhibit ∼10% deviations for ` . 300.

(scale-dependent map depth). Each comparison is anal-
ogous to viewing the full map-based noise covariance
matrix along a different “slice,” or through a different
“lens:” it visualizes a particular salient aspect of the

matrix structure, since doing so for the entire matrix at

once is difficult. In §5.2, we apply the noise simulations
to a realistic analysis pipeline. In particular, we examine

the covariance matrix of the ACT DR6 power spectrum
bandpowers — that is, the determination of the errors
on the power spectrum. We compare a common ana-
lytic prescription for the covariance matrix and a Monte

Carlo estimate from simulations alone.

5.1. Noise Covariance Model-Data Comparisons

We examine the noise properties from §3.2 as captured

by our simulations and compare to the data. Thus, we

directly probe the extent to which each model achieves

its design goals. As discussed, each property visualizes

a slice of the full covariance matrix, either constructed

from the single available realization of the data, or av-

eraged over an ensemble of simulations. If we have built

a good noise model, the covariance slice measured from

the data should be consistent with a single noisy real-

ization of the ensemble average covariance slice. Said
another way, the ensemble average slice is each model’s
postulated long-run average of the data slice, if it were
possible to rerun the experiment many times. Thus, for

a successful model, we expect the data slice to “scat-

ter” around the smoother long-run average provided by

the simulations, as is the case in a typical goodness-of-fit

analysis. Indeed, in future work, we aim to add a full χ2

consistency test of data and simulations, which would
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Figure 18. The same 2D Fourier power spectra treatment as Figure 4, for both data and noise simulations. The top (bottom)
row corresponds to the same regions as the left (right) panel of Figure 4. The first/second/third/fourth columns correspond to
the data/tiled/wavelet/directional models. The model bandlimit (`max = 5, 400) causes the oval power loss in the simulations.
The bandlimit is nearly circular in 2D Fourier space in the top row, since this is from a region near the equator. The bandlimit
becomes “squished” in the x-direction in the bottom row, since this region is at a higher declination. That is, the pixels in the
x-direction are physically closer together at these latitudes, and so the 2D Fourier space samples higher frequencies. Note we
account for this in our definition of the 2D Fourier coordinates. The tiled and directional models capture the main anisotropies
observed in the data, with the tiled model resolving more fine features. The wavelet model has no ability to measure anisotropies
by construction.

require application of the full inverse noise covariance

matrix, N−1
i , to map vectors (see §6 for a discussion of

the inverse covariance matrix). At any rate, we should

keep this signature of good model performance in mind

in what follows.

5.1.1. Large-Scale Noise Correlations and Correlated
Frequencies

As discussed, extended atmospheric signals are what
produce most of the non-trivial map-based noise proper-

ties, including pixel-pixel correlations, and correlations

between frequencies on the same detector array. Fig-

ure 17 demonstrates the noise models’ performance at

reconstructing the noise auto-spectra and cross-spectra

between frequencies. Generally, all models perform sim-

ilarly well in reconstructing the noise TT, EE auto- and

TE cross-spectra. Their mean values are within 1% of
nominal (zero for the correlation spectra differences and
the auto-spectra ratios, since in Figure 17 we have sub-

tracted 1 from the ratios). Departures from nominal

are mainly confined to large scales (` . 300), especially

in polarization. One possible explanation for this be-

havior is the pseudospectrum filter, which is applied to

all of our models. This filter places a lower bound on

the map space locality of features in the simulated noise.

As we show in §6, this lower bound happens to be about
three times higher in polarization than temperature. In

other words, it is more difficult to contain locally noisier
regions of the sky in polarization, and we would inter-
pret Figure 17 as showing some noisy, large-scale polar-

ized regions bleeding into the analysis mask. We note,

however, that ACT DR4 power spectra were limited to

`min = 350 in polarization and `min = 600 in temper-
ature (Choi et al. 2020). Thus, we take the results of

Figure 17 as a marker of good noise model performance
across all three model types.

5.1.2. Spatially-Varying Noise Anisotropy

While the tiled and directional models are designed

to capture the location-dependent stripiness in the ACT

noise, the wavelet model is not. To evaluate their per-

formance in this regard, we simply repeat the analysis
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in Figure 4, substituting an average over simulations for
the data. The success, or lack thereof, in each model

is visually apparent in Figure 18. Both the tiled and

directional models succeed at reconstructing the pri-

mary noise stripiness in each region: the “x-like” pattern

near the equator, and the horizontal “bar” in the poorly

cross-linked region. The tiled model appears to capture
some secondary features in the data noise that are not
oriented radially; recall the directional kernels (Figure

13) are primarily designed around radial features. The

wavelet model stands out: by construction, it has no

ability to measure local noise anisotropy. We also ob-

serve that the high frequency “covariance scatter” in the

data 2D power spectrum is substantially suppressed in

the simulation spectra. This is expected: as discussed,

in the simulation spectra we visualize the true, under-

lying covariance structure postulated by each model, of

which the data spectrum is a single realization. This also

inspires confidence in the model smoothing from §4.5.4:

the models are not obviously over-fit to the random fluc-
tuations in the data covariance. In sum, the tiled model
and directional models succeed at capturing the primary
features of the spatially-varying noise anisotropy in the

data, while the wavelet model captures no such features.

5.1.3. Scale-Dependent Map Depth

In addition to spatial correlations and stripiness, we
showed how the atmosphere and scan strategy together

induce a scale dependence to the map depth in §3.2. In
particular, we showed that the small-scale noise power

appears to follow the morphology of the mapmaker

inverse-variance maps, while the large-scale noise power

is sensitive to the scan cross-linking. We compare the

ability of the noise models to reproduce these effects

in Figures 19 and 20. When filtered for small scales

(Figure 19), all three models succeed at reproducing
the mapmaker inverse-variance-like morphology in the

data. When filtered for large scales (Figure 20), the

two wavelet-based models succeed at reconstructing the

mapmaker cross-linking-like morphology, for which they

were nominally designed.

The tiled model, while not explicitly designed for this
purpose, also performs moderately well. This is because

a scale-dependent map depth is equivalent to a spatially-

dependent noise power spectrum. The tiles do model a

spatially dependent (2D Fourier) power spectrum, but

limited to a resolution of the tile size (∼ 4◦). As a result,
some features in the tiled large-scale spatial noise power

are not resolved — for instance, the fine structures near
a declination of −20◦. Other structures are “squared-

off,” such as the transitions between high- and low-cross-

linking regions.

For the large-scale maps, we also note that all three
models show slightly less inverse-variance (more noise

power) than the data. This is a restatement of the re-

sult in Figure 17 that the polarized noise power spectra

ratios are elevated for ` . 300. Finally, as for the 2D

Fourier spectra of Figure 18, we observe the same sup-
pression of high-frequency scatter in the simulated av-

erages as compared to the data. This is again expected,

and further supports the model smoothing of §4.5.4. In

sum, the two wavelet models perform somewhat better

than the tiled model at capturing the scale-dependent

map depth in the data.
In short, the models behave as designed. All three

models reconstruct the overall noise auto- and cross-

spectra. The tiled model is best at capturing spatially-

varying noise stripiness; it performs less well at cap-

turing scale-dependent map depth. The wavelet model

cannot capture stripiness; however, it is best at captur-

ing scale-dependent map depth. Finally, the directional

model performs well in both analyses.

5.2. ACT DR6 Power Spectrum Covariance

In this section, we examine the implications of our

noise simulations on the estimation of the covariance

matrix for the CMB angular power spectrum. Specifi-

cally, we examine the matrix, Ξ, given by:

ΞWXY Z
b,b′ ≡ 〈∆CWX

b ∆CY Z
b′ 〉 (55)

where ∆CWX
b is the residual of the recovered power

spectrum in `-bin b, between fields W and X (one of

T, E, or B), with respect to a fiducial model. An accu-

rate covariance matrix is a required deliverable of any

CMB experiment: inaccuracies would directly propagate

into cosmological parameter uncertainties and could also

skew power spectrum pipeline null tests.

While the exact calculation of Equation 55 is diffi-

cult (see e.g. Planck Collaboration XI et al. 2016), sev-

eral approximations exist. These incorporate knowledge

of a fiducial sky model, instrumental noise, and incom-

plete sky coverage into computationally tractable, ana-
lytic expressions of the covariance matrix (e.g., Brown

et al. 2005; Efstathiou 2006; Couchot et al. 2017; Garćıa-

Garćıa et al. 2019; Louis et al. 2020). These analytic

expressions may also be augmented with simulations to

correct for some of their assumptions, for example, by

adding variance at low-` to account for masking point

sources with small holes (Planck Collaboration V et al.
2020; Li et al. 2021). As far as their treatment of instru-

mental noise, these semi-analytic methods adopt one of
two approaches. The first approach assumes the noise is
diagonal in the harmonic domain — that is, completely
described by the noise power spectrum. This is the de-
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Figure 19. The same small-scale “inverse-variance map” as the top panel of Figure 5, for both data and noise simulations.
The first/second/third/fourth rows depict the data/tiled/wavelet/directional models. As is discussed in §4.5.3, we see that
simulations are masked with the boolean mask that removes sky regions with the lowest cross-linking. All models do a good
job reproducing the high-` map depth in the data.
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Figure 20. The same large-scale “inverse-variance map” as the bottom panel of Figure 5, for both data and noise simulations.
The first/second/third/fourth rows depict the data/tiled/wavelet/directional models. All three models exhibit slightly less
inverse-variance (more noise power) than the data, as is expected from the elevated polarized power spectra ratios in Figure 17
for ` . 300. The wavelet and directional models capture fine structures in the data; the tiled model resolution at large scales is
limited to the tile size — map features are “squared-off” or unresolved.
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Figure 21. Ratios of the power spectrum covariance matrix diagonal elements between a Monte Carlo construction using 300
noise simulations, and an analytic approach common in the literature. The nominal result is a value of 1. TT (EE) ratios
exhibit an excess of up to ∼ 15% (∼ 20%). The “Gaussian” simulations are a sanity check: they are drawn directly from the
measured noise power spectra and should match the analytic covariance. Significant deviations of the “Gaussian” simulations
from nominal (i.e., in TT for ` . 300) suggest discounting this comparison at those scales. Data points are plotted at the center
of the multipole bins, and show the per-bin mean and 1σ error in the mean coming from the 300 simulations.

fault approach in the NaMaster29 (Garćıa-Garćıa et al.
2019) and pspy30 (Louis et al. 2020) codes, which to-

gether form the SO power spectrum pipeline, PSpipe31.
The second approach generalizes the first by combining

knowledge of the noise power spectrum and the inhomo-

geneous white-noise depth (e.g., Planck Collaboration

XI et al. 2016; Efstathiou & Gratton 2021).

In the following subsections we compare Equation 55

estimated from an analytic expression following the for-

mer approach (assuming diagonal noise in the harmonic
domain), to a Monte Carlo estimate from simulations
alone. We will examine analytic expressions following

the latter approach in future work. We focus on the

PA6 f150 band, whose results are representative of the

full DR6 data.

5.2.1. Analytic and Monte Carlo Covariances

We construct an analytic covariance matrix assuming

the signal and noise are completely described by their

respective power spectra — that is, assuming uniform

white-noise depth. In particular, we use the methods of

pspy available in PSpipe. Our implementation adopts

the best-fit ΛCDM cosmology from Planck Collabora-

tion VI et al. (2020) as the primary CMB power spec-

trum signal, and adds a foreground model power spec-

trum consistent with Dunkley et al. (2013), derived from

29 https://github.com/LSSTDESC/NaMaster
30 https://github.com/simonsobs/pspy
31 https://github.com/simonsobs/PSpipe

maps with a 15 mJy source flux cut. We incorporate the

noise pseudospectra estimated directly from the DR6

data (i.e., the unnormalized version of the spectra in

Figure 3), following Equation 8 of Louis et al. (2020)
(see also Equation 2.55 of Garćıa-Garćıa et al. (2019)

and Equation 10 of Li et al. (2021)). To keep our anal-

ysis straightforward and avoid issues with point source

holes, we reuse the pseudospectrum estimate mask, µest,

from the previous sections (shown in Figure 15).

Next, we prescribe the simulations from which we

build a Monte Carlo covariance matrix. We first
draw signal map realizations from the same CMB-plus-

foreground signal model that entered the analytic ma-

trix, and convolve them with the PA6 f150 beam. We

then add noise realizations in map space using the meth-

ods of §4. We evaluate the power spectra of 300 such

simulations, for each of the eight PA6 f150 splits, and
directly compute the Monte Carlo covariance matrix
(Equation 55) by averaging the residuals of the esti-

mated power spectra compared to the input signal power

spectrum. As a sanity check we also generate a set of

“Gaussian” Monte Carlo simulations whose noise real-

izations are simply drawn from the noise power spectra,

and estimate their covariance matrix following the same
method. Both the analytic and Monte Carlo matrices
account for the mode-coupling induced by the analysis
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mask,32 and are binned in ` to improve their condition-
ing.

5.2.2. Comparison

We compare the diagonals of the Monte Carlo and an-

alytic matrices in Figure 21. In terms of Equation 55,
that is, we only consider the elements of Ξ with b = b′

and W = X = Y = Z. As expected, the “Gaussian”

simulations produce a Monte Carlo matrix whose diago-

nal agrees with the analytic expression to a few percent,

demonstrating that our pipeline is not significantly bi-

ased. We then note that in spite of their different meth-

ods, our three noise models deliver remarkably similar

results. In particular, the TT (EE) block of the analytic

covariance appears to underestimate its diagonal by up

to ∼ 15% (∼ 20%) for ` & 2, 000 (1, 000). Such dis-

crepancies exceed what has been found in comparable

analyses of Planck data. For instance, Couchot et al.

(2017) compared the diagonals of a Monte Carlo covari-

ance estimate and an analytic expression assuming uni-
form white-noise depth and found errors of at most a
few percent. Meanwhile, Li et al. (2021) performed a

similar comparison and suggest errors of order ∼ 10%.

At a minimum, our noise simulations suggest increasing

the ACT DR6 power spectra covariance by up to ∼ 20%

in polarization.

The agreement of our three noise models in Figure 21

hints at a common underlying mechanism. As discussed,

one ACT noise property not accounted for in the ana-

lytic covariance of this section is the spatially-varying

map depth (regardless of whether the map depth is si-

multaneously scale-dependent). Thus, the natural next

step would be to evaluate an analytic expression that in-
cludes the inhomogeneous ACT white-noise depth (Efs-

tathiou & Gratton 2021), as was used for Planck (Planck

Collaboration XI et al. 2016; Planck Collaboration V

et al. 2020), assessing whether it could sufficiently cap-

ture the additional variance observed in our simulations.
These results will inform the approach to constructing

a power spectrum covariance matrix for ACT DR6, and
will be explored in future work.

6. DISCUSSION AND CONCLUSIONS

For ACT DR6, the advent of three separate noise mod-

els allows downstream analysis pipelines to evaluate re-
sults against a range of map-based noise properties. For

32 The noise power spectra entering the analytic matrix were mea-
sured after applying the same Fourier space ground pickup filter
as in ACT DR4 (Choi et al. 2020) and Figure 2. Likewise, we
applied this filter to the simulations. The final matrices then
deconvolve the transfer function induced by this pickup filter.

instance, we showed how propagation of noise simula-
tions through the ACT DR6 power spectrum pipeline
can help measure the extent to which analytic covari-

ance matrix expressions accurately capture the nontriv-

ial ACT noise properties (e.g., Li et al. 2021; Efstathiou

& Gratton 2021). Likewise, the ACT DR6 lensing anal-

ysis (Qu et al. in prep.) utilizes these models to demon-
strate that the lensing inference is robust with respect

to the complicated ACT noise. While checking pipelines

for robustness against different noise models can be use-

ful, it is too early to say whether one model is the most

performant for particular applications. Finally, con-

sumption of large noise simulation ensembles by ACT

and community users requires efficient code and a sim-
ple interface to those products. This code — mnms — is

made public with this paper, and is out-of-the-box ap-

plicable to future ground-based CMB experiments such

as SO and CMB-S4. Nevertheless, it is worthwhile to

evaluate key model assumptions and suggest directions

for future development.

Measuring noise from split differences: Throughout
this paper, we have assumed νi to be an accurate noise

estimate. In §3.1 we demonstrated this is a reasonable

assumption when averaged over a large sky fraction.

However, in regions of especially compact or bright fore-

grounds, we encounter residual signal in our difference

maps. As discussed in §4.5.1, we mitigate point-source

residuals with inpainting. However, we do not handle
bright, extended source residuals, which can be promi-
nent in the Galactic plane (see Figure 23). The un-

derlying cause of these residuals is likely similar as for

point sources: a combination of pointing variation in the

telescope and small relative calibration errors between

splits. Our noise models will therefore be biased in these
regions. Future work could include more sophisticated
inpainting than our implementation in §4.5.1 to handle

bright, extended regions.

Non-identically distributed splits: As noted, unlike

ACT DR4, we do not assume that the noise in sepa-
rate splits is identically distributed. Therefore, we do

not average noise models over splits in their sparse ba-
sis. Whether to do so is tightly coupled to the model
smoothing: averaging over the eight splits of ACT DR6
would reduce the amount of required model smooth-

ing. However, if splits contain different noise structure,

averaging over them would bias every model. In fact,

we know a priori that the noise is not identically dis-

tributed over splits because their inverse-variance maps

vary considerably. We indeed observe percent-level im-

provement in low-` power spectra ratios when treating

splits separately versus when averaging over splits. In

principle, including inverse-variance maps as a mode-



37

Figure 22. “Beam-like” real-space profiles corresponding
to the transform of the noise autospectra from the top panel
of Figure 3 for PA5 f090. The profiles have been peak-
normalized. Solid lines (shaded bands) denote the mean (1σ
range) over splits.

decoupling filter in the wavelet models (as we discussed,

and forewent, in §4.3.1 and §4.4.1) would eliminate the

barrier they present to averaging over splits.

Noise pseudospectrum filtering : Each of our noise

models includes the same noise pseudospectrum filter.

The benefits of this filter were discussed in §4 and are

explored further in Appendix G. However, this filter has
a downside: it limits our ability to model high-resolution

noise features in map space, especially in polarization.

To see how, consider that the noise pseudospectra in the

top panel of Figure 3 downweight small scales relative to

large scales. Thus, the noise pseudospectrum filter has

a similar effect in the noise models as the instrumental

beam has on a given sky signal: by suppressing small

scales it “blurs” compact features. We can see this by ex-

amining the “beam-like” real-space profiles correspond-

ing to the transform of noise pseudospectra. Results are

shown in Figure 22 for the PA5 f090 band. The FWHM

of the EE and BB real-space profiles are both ∼ 5◦,

whereas the TT profile is more spatially compact, with a

FWHM of ∼ 1◦. In other words, given a point-like noise
feature in both temperature and polarization, we would

expect our simulations to resolve it to ∼ 1◦ in temper-

ature and ∼ 5◦ in polarization. This may explain, for

instance, the greater deviations observed in the low-`

power spectra ratios (Figure 17) for EE than TT: noisy

regions from farther outside the analysis mask in polar-
ization than temperature are smoothed into the mask,
skewing the ratios. The different real-space widths in

Figure 22 are driven mainly by the low-` shape of the

noise pseudospectra in Figure 3: in some bands, the TT

noise power at the largest scales (` . 100) level off and

even decrease. This does not occur in polarization. We
will seek to better understand the shape of the low-`

noise power spectra in future work.

Powers of noise covariance matrix: In this paper, we

only interact with the full noise covariance matrix by
drawing samples from the Gaussian distribution it de-

fines. Downstream analyses may wish to raise the ma-

trix to an arbitrary power and then apply it to a map

vector. In particular, Monte Carlo methods, inverse-

covariance filtering, and Wiener filtering require the full

inverse noise covariance matrix. Such an implementa-

tion is beyond the scope of this work; nevertheless, we

can comment on its feasibility. Unfortunately, due to

the overlap of tiles in map space (likewise, of wavelets
in harmonic/Fourier space) the class of noise covariance
matrices prescribed here are not analytically invertible.

An exception would be the case of non-overlapping (i.e.,

tophat) tiles or wavelets, but with a detrimental impact

to their performance as noise models (as noted in the

text) from their lack of smoothness. In principle, the

exact application of the inverse noise covariance matrix
to a map vector is still possible with a conjugate gradi-
ent method, but may be slow. We will explore this and

other alternatives in future work.

Prospective: These results offer concrete insights for

the design of next-generation, ground-based CMB ex-

periments. Foremost among them is the central role

of the map cross-linking in modulating large-scale noise

power. Combined with the tight relationship between

cross-linking and the noise anisotropy pattern, spatial

uniformity of cross-linking is as, if not more, impor-

tant to realizing a successful map-based noise model

than uniformity of detector hits. We acknowledge that

achieving uniform cross-linking may encounter more ob-

servational constraints than uniform detector hits (e.g.,

the dynamics of the telescope and receiver). In a sim-

ilar vein, projects seeking to use these noise modeling

methods should design scan strategies that facilitate

identically distributed map splits. While formally dif-

ficult, maximizing the uniformity of heuristics across

splits (again, e.g., cross-linking, inverse-variance) would
go a long way toward allowing noise models to be av-
eraged over splits. Projects should also seek to avoid

unnecessary “hard edges,” in their scan strategies. This

includes not only the observation footprint boundary,

but also adjacent regions of disparate cross-linking or

inverse-variance levels. Such boundaries within the ACT

DR6 footprint proved especially challenging to handle
from a noise modeling perspective.

Finally, we emphasize the utility of a fast and flexible

noise model implementation, as is released in this paper
with mnms. Using ACT DR6 data with mnms, this paper
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has constructed empirical noise models and drawn large
ensembles of ACT noise simulations. For future exper-

iments undergoing design and forecast activities, such

as SO, mnms can also serve as an emulator of otherwise

expensive TOD simulations. Thus, mnms could relieve
a bottleneck in the simulation-to-forecast feedback loop,

enabling iterative optimization of experiment design.

ACKNOWLEDGMENTS

We thank Reijo Keskitalo and Bruno Régaldo-Saint
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APPENDIX

A. EXAMPLE NOISE SIMULATIONS
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Figure 23. The difference map (Equation 8) for PA5 f090, first split, and simulations from the three noise models (Stokes I).
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Figure 24. The difference map (Equation 8) for PA5 f090, first split, and simulations from the three noise models (Stokes Q).
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B. DIFFERENCE MAP ALGEBRA

We explicitly show the algebra relating to the construction of the difference maps, νi. We first prove Equation 7.

Starting from Equation 6, we have:

V ar(di) = E(d2
i ) = E

(

(

ni −

∑

j hj ∗ nj

Σ

)2
)

=

= E(n2
i )− 2E

(

ni ∗

∑

j hj ∗ nj

Σ

)

+ E

(

∑

i hi ∗
∑

j hj ∗ ni ∗ nj

Σ2

)

=

= E(n2
i )−

2
∑

j hj ∗ E(ni ∗ nj)

Σ
+

∑

i hi ∗
∑

j hj ∗ E(ni ∗ nj)

Σ2
.

(B1)

Now impose the independence of the noise in different splits and the definition of the inverse-variance in split i,

E(ni ∗ nj) = 1/hi ∗ δij . Also substitute the definition Σ ≡
∑

i hi:

V ar(di) =
1

hi

−
2
∑

j hj ∗ 1/hi ∗ δij

Σ
+

∑

i hi ∗
∑

j hj ∗ 1/hi ∗ δij

Σ2
=

=
1

hi

−
2

Σ
+

∑

i hi

Σ2
=

=
1

hi

−
1

Σ
.

(B2)

We then prove Equation 10. First, we note that because νi ∝ di, the correlation of νi and ni is the same as that of

di and ni. Next, we evaluate the covariance of di and ni:

Cov(di,ni) = E(di ∗ ni) = E

(

ni ∗

(

ni −

∑

j hj ∗ nj

Σ

))

=

= E(n2
i )−

∑

j hj ∗ E(ni ∗ nj)

Σ
=

=
1

hi

−

∑

j hj ∗ 1/hi ∗ δij

Σ
=

=
1

hi

−
1

Σ
=

= V ar(di).

(B3)

Now evaluate the correlation coefficient directly:

ρi =
Cov(di,ni)

√

V ar(di) ∗ V ar(ni)
=

V ar(di)
√

V ar(di) ∗ V ar(ni)
=

√

V ar(di)

V ar(ni)
=

√

hi ∗

(

1

hi

−
1

Σ

)

=

√

1−
hi

Σ
. (B4)

Note that all of these Equations are simply generalizing the familiar “N − 1” factors from the unbiased sample
variance of a set of equally-weighted observations to the case of unequally-weighted observations.

C. DERIVATION OF TILING CONSTRAINT

We offer a derivation on the backward tiling transform constraint (Equation 28) that each noise model must satisfy.

We will show that it emerges from a desire to not bias the diagonal entries of the full noise covariance matrix. We

begin by considering a simpler version of the noise simulation equations (Equations 30, 43, 53). Specifically, we ignore

any “exterior” filtering operations, and we replace any DFTs or SHT matrices with a “universal” transform matrix

U (we also drop the split index i for brevity). In this way, a noise simulation from all three noise models appears

identical:

ξoper = T †
b UN

1

2

sparseη

=

M−1
∑

j=0

P
†
jτ

†
j,bUN

1

2

j,sparseηj . (C5)
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where we have generalized the bases of these objects: the simulation is in the “operational” basis where we define and
apply the tiling transform profiles — for the tiled/wavelet/directional model this is map space/harmonic space/Fourier

space — and the model covariance is in the “sparse” basis. The matrix U thus projects a vector from the “sparse” to

the “operational” basis — it is a DFT or a SHT matrix.

We want to determine the conditions under which the operational space noise covariance matrix, Noper = 〈ξoperξ
†
oper〉,

is unbiased:

Noper = 〈ξoperξ
†
oper〉 =

M−1
∑

j=0

M−1
∑

k=0

P
†
jτ

†
j,bUN

1

2

j,sparse〈ηjη
†
k〉N

1

2
,†

k,sparseU
†τk,bPk

=

M−1
∑

j=0

M−1
∑

k=0

P
†
jτ

†
j,bUN

1

2

j,sparseIδj,kN
1

2
,†

k,sparseU
†τk,bPk

=

M−1
∑

j=0

P
†
jτ

†
j,bUNj,sparseU

†τj,bPj

=

M−1
∑

j=0

P
†
jτ

†
j,bNj,operτj,bPj

(C6)

where we have identified UNj,sparseU
† with Nj,oper. Now consider a single matrix element indexed by x, x′ — that

is, the covariance between “pixels” (or “modes”) in the operational basis, Nx,x′

oper. Such an element is formed by taking

the xth row of P†
jτ

†
j,b and x′th column of τj,bPj , each of which have at most one nonzero element. Thus, for a given

j, Nx,x′

oper receives a contribution from at most one element of Nj,oper; let us index that element by e and e′:

Nx,x′

oper =

M−1
∑

j=0

(P†
jτ

†
j,b)x(τj,bPj)x′Ne,e′

j,oper

Nx,x′

oper = Ne,e′

oper

M−1
∑

j=0

(P†
jτ

†
j,b)x(τj,bPj)x′

1 =

M−1
∑

j=0

(P†
jτ

†
j,b)x(τj,bPj)x′ .

(C7)

In the case of x = x′ (i.e., the diagonal of the map-based covariance matrix), Equation C7 recovers Equation 28. We

had to use two sleights-of-hand in the second and third lines of Equation C7. In the second line, we moved Ne,e′

j,oper

out of the sum, where it became Ne,e′

oper. In the third line, we asserted that Nx,x′

j,oper = Ne,e′

j,oper. To do so, we assume

that any given element of the covariance matrix on the left-hand-side is equal to each of its occurrences in each tile or

wavelet, j. In reality, each tile or wavelet covariance will disagree on the exact value of a given shared element, but if

we assume that these separate estimates are unbiased, then satisfying Equation C7 will likewise yield an unbiased full
covariance matrix.

There are a few more caveats of note. Working backwards, it is difficult to construct useful tiles or wavelets that
satisfy Equation C7 for x 6= x′, and indeed for the kernels in this paper this sum approaches zero as the difference

between x and x′ increases. The upshot is that we cannot model correlations at scales larger than the tile or wavelet

size within the tiling scheme itself. Such “long-distance” correlations instead are modeled by the filtering steps that

we excluded from the preceding argument. Likewise, we assume that our sparse-basis covariance blocks Nj,sparse are

unbiased estimates, but that is likely not true. For instance, Equation 21 is the zeroth-order correction to the mode-

coupling induced by the forward tiling transform. Lastly, we must assume that the sparse-basis covariance blocks
are themselves uncorrelated, but we know that is not true, since the forward tiling kernels from which the blocks are

measured also overlap. In sum, while satisfying Equation 28 is necessary for a performant noise model, it alone is not

sufficient.
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D. DIRECTIONAL WAVELET KERNELS

As discussed in §4.4, the directional model utilizes radially- and azimuthally-separable wavelets in the Fourier plane:

τj,f(k) → τu,v,f(k) = κu(k)ηu,v(φ) (D8)

where k is the 2D Fourier mode, k = |k|, φ = arg(k), κ are the wavelet kernels of Wiaux et al. (2008); Leistedt et al.

(2013) with the parameters given in §4.3.1, η are the azimuthal kernels, and we have expanded the wavelet index j into

a “radial” index u and “azimuthal” index v. Evaluated at each discrete k in the map Fourier transform, τj,f becomes
the diagonal of the forward wavelet kernel matrix τj,f . The fact that η also carries the “radial” index denotes that

each radial kernel has its own distinct set of associated azimuthal kernels.

We define the azimuthal kernels as follows:

ηu,v(φ) → ηv(φ;nu, pu) =

∞
∑

k=−∞







Ak,p cos(ωn,p(φ− φ0,k,n,v))
p, ωn,p|φ− φ0,k,n,v| < π/2

0, ωn,p|φ− φ0,k,n,v| ≥ π/2
(D9)

where:

Ak,p = ip(−1)kp
√

22p

(p+ 1)
(

2p
p

)

ωn,p =
n+ 1

p+ 1

φ0,k,n,v = (k +
v

n+ 1
)π

(D10)

with n ≥ 0, 0 ≤ p ≤ n, 0 ≤ v ≤ n, and all indices are integers. One should interpret this as follows. For each radial

index u, we choose two parameters for the set of associated azimuthal kernels: n and p. n sets the number (n+ 1) of

azimuthal kernels, and p is the kernel “shape” parameter. v is the kernel index, and it generates n + 1 copies of the

kernel equally spaced in azimuth (at each φ0,k,n,v). The kernel shape is the p-th power of a cosine centered on φ0,k,n,v,

and truncated at either side of φ0,k,n,v where the cos(...)p function intersects the x-axis. The width of the cosine is set

by ωn,p. The normalization ensures the kernels satisfy Equation 28 (with τj,b = τj,f∗) and respect reality conditions

when applied to the Fourier-transformed map in §4.4.1, step 3. Finally, the sum over k ensures that this piecewise
function is periodic in π. Example azimuthal kernels are shown in the top row of Figure 25.

The guiding principle in the construction of ηu,v is the tradeoff in locality between map space and Fourier space: a

kernel compact in map space will necessarily be extended in Fourier space, and vice versa. Taking the radial kernels

as a given (see Figure 12), all else being equal the large-scale wavelets will be therefore be extended in map space,

while the small scale wavelets will be compact in map space. We counteract this by tuning the n and p parameters

for each radial kernel. For a given number of azimuthal kernels n + 1, increasing the shape parameter p decreases

the compactness of the kernel in Fourier space (and increases its compactness in map space). We note that p = 0
corresponds to n+ 1 equally spaced, non-overlapping tophat functions, while p = n corresponds to the steerable basis

of Freeman & Adelson (1991). On the other hand, for a given p, increasing n increases the compactness of the kernels

in Fourier space (and decreases its compactness in map space). This tradeoff is evident in the bottom row of Figure 25.

Therefore, we select low n and high p values for the large-scale wavelets, and the opposite for the small scale wavelets,

subject to 0 ≤ p ≤ n. Meanwhile, computational interests favor fewer, more-compact Fourier space kernels at high u.
We found the parameters in Table 3, which we used in §4.4, to be a good balance of all considerations. There are

fewer radial kernels (16 vs. 26) compared to the isotropic wavelet model to make up for the increased total kernel
count. The choice of n and p recalls the “parabolic scaling” in Chan et al. (2017), such that the 2D kernels become

increasingly directional (narrow) at larger u (see Figure 13), except at the highest radial kernel. This allows the

resolution of sufficient detail in 2D Fourier space (e.g., Figure 18) without sacrificing large-scale detail in map space

(e.g., Figure 20). We note that we accomplished this by increasing n in large steps, while decreasing p within each

step. A similar narrowing of the 2D kernels with increasing radii could have been accomplished, for example, by more
smoothly increasing n while holding p constant.
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Figure 25. Top: 1D profiles of various directional wavelet azimuthal kernels. The left plot demonstrates the decreasing
Fourier space compactness with increasing shape parameter, p, values. The right plot demonstrates increasing Fourier space
compactness with increasing number of kernels, n+ 1, values. Bottom: Map space 2D kernels corresponding to u = 7, v = 0 for
the kernel set used in this paper. The left map space kernel corresponds to the n = 2, p = 2 case, which has the most spatial
locality and least directional locality. The middle map space kernel corresponds to the n = 16, p = 2 case, which has the least
spatial locality and most directional locality. The right map space kernel corresponds to the n = 16, p = 16 case, which has
intermediate spatial and directional locality.

Rad. Kern. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

`min 0 7 11 17 27 43 69 110 176 282 451 721 1,153 1,845 2,952 4,723

`max 11 17 27 43 69 110 176 282 451 721 1,153 1,845 2,952 4,723 7,556 ∞

n 0 6 6 6 6 12 12 12 12 24 24 36 36 36 36 0

p 0 6 4 2 2 12 8 4 2 12 8 2 2 2 2 0

Table 3. Parameters of the directional wavelet kernel set used in this paper. The radial kernels (u-indexed) and associated
`min, `max values are generated by supplying the parameters λ = 1.6, `min = 10, and `max = 5, 300 to the wavelet functions
prescribed in Wiaux et al. (2008); Leistedt et al. (2013). We prescribe the n and p values to generate the azimuthal kernel set
for each radial kernel.
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E. BOOLEAN MASK CONSTRUCTION

As discussed in §4.5.1, we exclude some regions of the ACT footprint from our noise models and simulations. We do

this through the application of a boolean mask, µbool. We note that µbool can only have a value of 0 or 1 in a given

pixel (corresponding to omitting the pixel, and permitting the pixel, respectively). Here, we motivate and define this
boolean mask.

The most natural boolean mask is one that selects exactly the pixels that have non-zero hits; however, we construct
a slightly more restrictive mask. In addition to unobserved pixels, we mask regions with low cross-linking that abut

otherwise well cross-linked/deep regions. These regions are predominantly located on the left and right sides of the

southern half of the ACT footprint (the solid black areas Figure 15). We found that masking these regions significantly

improved the low-` power spectra ratios with respect to the data (see §5). This can be understood as a fundamental
limitation of our modeling: as with residual point sources, our models cannot resolve the step-function-like change from

high cross-linking to approximately no cross-linking at the edges of these masked regions. In other words, if we did

not mask these shallow, poorly cross-linked regions, their noise power would mix into adjacent deep, well cross-linked

regions in the noise models. Importantly, these deep, well cross-linked regions are exactly those retained in the DR6

CMB power spectrum and CMB lensing pipelines — the main consumers of our noise simulations. Therefore, we try
to optimize noise model performance in these priority regions, while sacrificing as little data as possible.

We construct µbool separately in two disjoint regions. The first (northern) region includes all pixels north of −6◦

Dec between 180◦ and 125◦ R.A., north of 3◦ Dec between 125◦ and −100◦ R.A., and again north of −6◦ Dec between

and −100◦ and −180◦ R.A.. The second (southern) region is the complement of the northern region. First, in both

regions, we set µbool = 1 in pixels observed by all eight splits in both frequencies of a given modeled detector array,

and 0 otherwise. Then, only in the southern region, we also set µbool = 0 in pixels whose cross-linking statistic is less

than 0.001 in the point-source subtracted coadd map of any DR6 array or frequency. A considerable fraction (0.65%)

of µest in the first region would be cut by the cross-linking threshold, hence why we only apply the cross-linking cut
to the second region. In the second region, the fraction of µest cut by the cross-linking threshold is only 0.04%. We

add these pixels in the second region back to µbool such that µbool fully encompasses µest. Together, this procedure

is effective at removing the large areas of approximately zero cross-linking on the left and right sides of the southern

region, while preserving the data used in downstream analyses. For PA5, for instance, this results in the blue outline

in Figure 15. For the other arrays, the mask is visually indistinguishable.

The somewhat ad-hoc procedure of this section is only necessary given the properties of the ACT scanning strategy

cross-linking. Future surveys can mitigate the need for a boolean mask by ensuring more uniform cross-linking.

F. MODEL SMOOTHING

This appendix expands on our discussion of how and why we smooth our wavelet noise models. As discussed in

the text, we use a white-noise map space covariance, modulated by either the mapmaker cross-linking and/or inverse-

variance maps, as the fiducial input to our optimization procedure. This simplification has a twofold advantage.

First, we showed in §3.2 that the cross-linking and inverse-variance maps approximately capture the spatial noise
structure at large and small scales, respectively. Since we do not know the true noise covariance of the DR6 noise,

these products serve as realistic proxies. In particular, by downgrading these maps to specific, lower resolutions (and

Nyquist bandlimits), we can emulate the noise covariance at specific wavelet scales. Second, by assuming the noise is

white, we can evaluate the agreement between noise models and the input covariance using an analytic likelihood.
We proceed as follows:

1. For a given array and frequency, select either the raw inverse-variance map alone, h, or the combination of h and

the raw cross-linking map, fp. Using Fourier space resampling, downgrade all maps by a given factor d, such that
the Nyquist bandlimit of the maps is `max = 21, 600/d. In both cases, invert the downgraded inverse-variance

map to obtain a “variance” map, 1/h.

2. In the first case, let the variance map define an an underlying, true, white-noise covariance map, σ2
0 = 1/h.

This map only has high variance when the inverse-variance is small. In the second case, let the underlying, true,

white-noise covariance map be defined as σ2
0 = fp/h. Relative to the inverse-variance map, this map has high

power when the cross-linking is also poor (fp ∼ 1), following the discussion of Equation 12.

3. Mask σ2
0 with the same boolean mask for the selected array as in §4.5.3.
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Figure 26. Model likelihoods (−lnL) as a function of smoothing factor f . Solid lines (shaded bands) denote the mean (1σ range)
over the Ni = 3 noise realizations from the fiducial input covariance. Curves have been recentered and normalized relative to
their minima to facilitate direct comparison. Left: Likelihoods using the PA5 f150 cross-linking and inverse-variance combination
map (σ2

0 = fp/h) as the input covariance. Different colors denote different choices of downgrade factors. Right: Likelihoods for
the set of noise modeling routines enumerated in the appendix, using the PA5 f150 inverse-variance map (σ2

0 = 1/h) downgraded
by a factor of four as the input covariance. The data labeled “White (MC)” (“White (Model)”) refer to the white-noise model’s
s2i,MC map (s2i,model map). The agreement between the curve and overplotted crosses demonstrates that 30 simulations are
sufficient to reach convergence of Monte Carlo estimates. For the other models, we only have the option of using the Monte
Carlo estimates. For both panels, the relatively small scatter over the Ni = 3 noise realizations indicates the optima are robust.

4. Draw an uncorrelated, Gaussian realization from N (0,σ2
0), called si. Let this be analogous to the hypothetical

i-th independent realization of the noise in the data.

5. Feed si into one of several noise modeling routines, utilizing a fixed FWHM smoothing factor f in all models:

• A white-noise model which is simply the pixel-wise square of si, s
2
i,model.

• The isotropic wavelet model of §4.3, without the pseudospectrum-filtering step.

• The directional wavelet model of §4.4, without the pseudospectrum-filtering step.

6. Draw Nsim = 30 simulations, si,sim, and form the Monte Carlo estimated, white-noise covariance map s
2
i,MC =

1/Nsim

∑
s
2
i,sim. For the two wavelet models, this is necessary because it is not possible to directly compare

the model itself, which is in the wavelet basis, to the input covariance, σ2
0 , which is in the map basis. For the

white-noise model, as noted above, we retain both the Monte Carlo estimate, s2i,MC, as well the model itself,

s
2
i,model, since the model is in the map basis. By comparing results using s

2
i,MC to s

2
i,model in the next step, this

allows us to check that Nsim = 30 simulations is sufficient for the Monte Carlo estimates to converge (e.g., note

the agreement between the blue crosses to the blue line in Figure 26).

7. For the white-noise model, the isotropic wavelet model, and the directional wavelet model, evaluate the likelihood

of s2i,MC given the true covariance σ2
0 , L(s

2
i,MC|σ

2
0). For the white-noise model only, also evaluate L(s2i,model|σ

2
0).

To avoid the poorly-observed edges of σ2
0 , only perform the evaluation using pixels where the pseudospectrum

mask from §4.5.3 is nonzero.

8. Accumulate results over Ni = 3 input noise realizations.

The likelihood, L(s2i,MC|σ
2
0), follows the gamma distribution in each pixel x:

−lnL(s2i |σ
2
0) = −

∑

x

Pgamma(s
2
i |α = Nsim/2, θ = 2σ2

0,x/Nsim) (F11)

where Pgamma is the gamma probability density with shape parameter α and scale parameter θ. That is, for a given

pixel with variance σ2
0 , we evaluate the likelihood that the average of Nsim = 30 independent samples of that variance
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equals the observed value. We minimize −lnL as a function of the smoothing factor f , for various modeling routines
and downgrade factors d. Example likelihoods are shown in the left panel of Figure 26.

As a motivating example, we dispel the misconception that noise models with more wavelet kernels, and with thus

with more parameters, require increased model smoothing. This view arises from the observation that, in the case of

a single-frequency, unpolarized map, the directional model, with its 280 wavelet kernels, contains a factor ∼53 more
parameters than the input data dimension. Compare that to the white-noise model we enumerated above, which

has exactly the same number of parameters as the input data dimension. However, this argument overlooks that
these 280 wavelet kernels are compact in Fourier space: their corresponding wavelet maps will therefore be smooth,

with highly-correlated parameters. In fact, they will be correlated by exactly the right amount to guarantee that the

number of degrees-of-freedom will be equal to the input data dimension. This is a consequence of Equation 28: with

more kernels supporting a single element of the map space covariance matrix, Equation 28 averages over equally more

terms, and with proportionally smaller weights.
To confirm this expectation, we perform the above procedure for each of the listed noise modeling routines. We use

inverse-variance maps downgraded by a factor of four as inputs, and examine the results in the right panel of Figure

26. On the whole, we find the likelihood is generally insensitive to the noise modeling routine. In fact, the likelihood

slightly prefers less smoothing as the number of wavelet kernels increases. This preference can also be understood as a

consequence of the spatially-smooth wavelet kernels: they have a fundamentally limited ability to localize features in

map space, and so enter the regime of “over-smoothing” sooner than a perfectly-local white-noise model. We factor
this limitation into our final choice of smoothing factors in §4.5.4.

G. BENEFITS OF PSEUDOSPECTRUM FILTER: MODE-DECOUPLING AND STATIONARITY

The noise pseudospectrum filter is necessary for the construction of minimally biased noise models. We demonstrate

that its exclusion leads to significant deviations from nominal in ratios of simulated versus input power spectra. We
also demonstrate that our model estimation and simulation algorithms — when including the filter — suppress these

deviations even if the filter is suboptimal. We examine the performance of a tiled and wavelet model in both cases.
We proceed as follows:

1. We draw a full-sky, isotropic realization from an input fiducial noise power spectrum (bandlimited to `max =

5, 400).

• For the no-filter, tiled (wavelet) model case, we use the PA5 f090 noise EE (TT) pseudospectrum.

• For the supoptimal-filter case, both models, we construct the input spectrum from scratch. The spectrum
is much closer to flat than the actual noise spectra, but is not exactly flat (see Figure 27). It is equivalent

to the situation where we have drawn from the same unfiltered PA5 f090 noise spectra, and then applied an

imperfect noise pseudospectrum filter, leaving some residual `-dependence to the filtered noise realization.

2. We mask this realization with the same boolean footprint mask as the actual PA5 f090 data (see §4.5.3).

3. From these realizations we generate a noise model as in §4, with some simplifications:

• For the tiled model, we exclude the inverse-variance map filter step since the input noise realization is

isotropic.

• For all cases, we exclude the pseudospectrum filter step.

• For all cases, we do not smooth the models at all. This is especially important for the tiled model whose
sparse basis is in Fourier space: smoothing directly mixes power across scales and could also produce

deviations in output/input power spectra ratios. For consistency, we do not smooth the wavelet model.

4. From these models, we draw a single simulation as in §4, with the analogous simplifications.

5. We compare the pseudospectra of the ouput noise simulation with the input noise realization, as measured in
the apodized pseudospectrum mask of §4.5.3.

The downsides of ignoring the pseudospectrum filter are self-evident in Figure 27. As discussed in §4.2.1, multiplying

each tile by an apodized mask in map space mixes modes in Fourier space. When the power spectrum of the signal
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Figure 27. Top-left: Noise pseudospectra from the actual data used as input power spectra for the no-filtering case. They
are the mean over splits from the same curves as Figure 3. The black dashed line indicates an arbitrary normalization to the
spectra which has no effect on the results. Top-right : Power spectra ratios between tiled and wavelet simulations, and their
input noise realizations. The input realization from the tiled (wavelet) model is drawn from the EE (TT) spectrum. The tiled
model deviation has been divided by 10 to fit on the same plot. Power spectra entering the ratios are smoothed with a tophat
kernel of size ∆` = 25. Bottom-left: Toy spectrum used as input for the suboptimal-filtering case. Now the black dashed line
signifies that this spectrum represents the effect of an imperfect filter. Bottom-right: Power spectra ratios for tiled and wavelet
simulations, built off the same toy realization. The tiled model deviation is no longer divided by 10. Again, power spectra
entering the ratios are smoothed with a tophat kernel of size ∆` = 25.

in the tile is especially steep, as in the case of the PA5 f090 EE noise, a given mode receives excess power from

nearby modes at slightly larger scales. In the simple demonstration here, we observe an excess in simulation power of

∼500% near ` = 200 relative to the input noise power. Meanwhile, as discussed in §4.3.1, the wavelet model assumes
stationary noise in harmonic space; this assumption is clearly violated by the strong `-dependence of the PA5 f090 TT

noise power spectrum. Instead, the model projects out the stationary part of the noise — that is, without an absolute
`-dependence — within each wavelet kernel. This produces a “staircase-like” noise model in harmonic space, with a

flat step on each wavelet kernel, rather than the smoothly decreasing input spectrum. Thus, we observe an oscillating

ratio between the simulation and the input realization

By including a (sub)optimal pseudospectrum filter we suppress these issues. As Figure 27 shows, even if the power

spectrum of the input noise contains O(1) variations over `, simulations drawn from the noise models are less biased
over a large range of angular scales. Such a power spectrum could plausibly arise in §4 after the pseudospectrum

filtering step in regions of sky whose local noise power spectrum does not match the one used in the filter. We judge
these improvements to be worth the cost of the filter’s limited map space resolution discussed in §6. Finally, we note

that when applied to the real data, the pseudospectrum filter does not guarantee unbiased simulated power spectra,

even if the filter perfectly matches the actual noise power spectrum. Rather, this appendix goes to show that such a

filter is necessary, but not sufficient, for a performant noise model.
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