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ABSTRACT

Signaling and metabolic pathways, which consist of chains of reactions that produce target
molecules from source compounds, are cornerstones of cellular biology. Properly modeling
the reaction networks that represent such pathways requires directed hypergraphs, where
each molecule or compound maps to a vertex, and each reaction maps to a hyperedge
directed from its set of input reactants to its set of output products. Inferring the most likely
series of reactions that produces a given set of targets from a given set of sources, where for
each reaction its reactants are produced by prior reactions in the series, corresponds to
finding a shortest hyperpath in a directed hypergraph, which is NP-complete.

We give the first exact algorithm for general shortest hyperpaths that can find provably
optimal solutions for large, real-world, reaction networks. In particular, we derive a novel
graph-theoretic characterization of hyperpaths, which we leverage in a new integer linear
programming formulation of shortest hyperpaths that for the first time handles cycles, and
develop a cutting-plane algorithm that can solve this integer linear program to optimality in
practice. Through comprehensive experiments over all of the thousands of instances from
the standard Reactome and NCI-PID reaction databases, we demonstrate that our cutting-
plane algorithm quickly finds an optimal hyperpath—inferring the most likely pathway—
with a median running time of under 10 seconds, and a maximum time of less than
30 minutes, even on instances with thousands of reactions. We also explore for the first time
how well hyperpaths infer true pathways, and show that shortest hyperpaths accurately
recover known pathways, typically with very high precision and recall.

Source code implementing our cutting-plane algorithm for shortest hyperpaths is avail-
able free for research use in a new tool called Mmunin.
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1. INTRODUCTION

S ignaling and metabolic pathways are cornerstones of systems biology. They underlie cellular
communication, govern environmental response, and their perturbation has been implicated in the causes

of disease (Li et al., 2020). Networks comprised of these pathways are traditionally represented as ordinary
graphs (Sharan and Ideker, 2006; Vidal et al., 2011), modeling each molecule as a vertex, and each reaction
by a collection of edges directed from each of its reactants to each of its products. Such representations in
terms of ordinary graphs, however, do not faithfully model multiway reactions—which are ubiquitous in
cellular processes—and shortest paths from these models are often not biologically meaningful (Klamt et al.,
2009; Ritz et al., 2014).

Directed hypergraphs generalize ordinary graphs, where an edge, now called a hyperedge, is directed
from one set of vertices, called its tail, to another set of vertices, called its head. Hypergraphs have been
used to model many cellular processes (Christensen et al., 2009; Heath and Sioson, 2009; Hu et al., 2007;
Klamt et al., 2009; Ramadan et al., 2010; Ramadan et al., 2004; Ritz and Murali, 2014; Ritz et al., 2014;
Zhou and Nakhleh, 2011). In particular, a reaction with multiple input reactants (all of which must be
present for the reaction to proceed) and multiple output products (all of which are produced upon its
completion) is correctly captured by a single hyperedge, directed from its set of reactants to its set of
products. Despite hypergraphs affording more faithful models of cellular processes, the lack of practical
hypergraph algorithms has hindered their potential for properly representing and reasoning about such
reaction networks.

Biologically, a typical metabolic or signaling pathway consists of a collection of reactions that synthesize
a set of target molecules—key metabolites or transcription factors—from a set of source compounds—
molecules available to the cell or activated membrane-bound receptors (Alberts et al., 2007). Computa-
tionally, inferring the most likely pathway maps to the shortest hyperpath problem (a generalization of
shortest paths to directed hypergraphs) that we consider in this paper: given a cellular reaction network
whose reactions, reactants, and products are modeled by the vertices and weighted hyperedges of a directed
hypergraph, together with a set of sources and a set of targets, find a series of hyperedges of minimum total
weight that yields a pathway producing the targets from the sources.

Next we briefly survey related work, then give our contributions, and the plan of the paper.

1.1. Related work

The two fundamental hypergraph models that have emerged for pathway inference in cellular reaction
networks are hyperpaths and factories (see Krieger, 2022). We first contrast them, and then summarize
computational results.

Informally, a hyperpath in a directed hypergraph is a series of hyperedges that starts from a set of
source vertices and ends at a set of target vertices, where for each hyperedge in the series, the vertices it
comes out of are covered by the vertices that prior hyperedges go into. In a network whose reactions are
modeled by hyperedges, this means for each reaction its input reactants are created as the output products
of prior reactions, so the reactions in the hyperpath may proceed without interruption from sources to
targets.

On the other hand, a factory in a directed hypergraph for a network whose reactions now also have
stoichiometries, is a set of hyperedges that again starts from a set of sources and ends at a set of tar-
gets, together with a positive real-valued flux on each hyperedge, where for all vertices other than
sources or targets, the total incoming flux from all hyperedges that enter the vertex (multiplied by the
stoichiometries for the reaction product represented by the vertex) is at least the total outgoing flux from
all hyperedges that leave it (again multiplied by the stoichiometries now for the reactant represented by
the same vertex). In a metabolic network, this flux condition means that by supplying the source com-
pounds to the factory, its reactions will produce the target molecules without depleting intermediate
metabolites.

While factories contain unordered hyperedges, and all their reactions effectively proceed simulta-
neously, hyperpaths contain ordered hyperedges, and their reactions essentially proceed in an ordered
cascade. For many of the reactions in current pathway databases, stoichiometries are not given (and most
reaction rates are unknown). While factories require stoichiometries (or an appropriate default choice for
them), hyperpaths do not.

2 KRIEGER AND KECECIOGLU

D
ow

nl
oa

de
d 

by
 C

ar
ne

gi
e 

M
el

lo
n 

U
ni

ve
rs

ity
 fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
1/

13
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Factories. In systems biology and synthetic biology, factories have mainly been applied to metabolic
networks. Current computational approaches find a factory that produces all targets while either minimizing
the number of sources it uses, called a min-source factory, or minimizing the number of reactions it uses
(equivalently, minimizing its number of hyperedges with nonzero flux), called a min-edge factory.

Cottret et al. (2008) introduced the min-source factory problem and showed it is NP-complete, while
Zarecki et al. (2014) extended the problem to consider molecular weights of sources.

Acuña et al. (2012) and Andrade et al. (2016) give methods for enumerating all min-source factories,
either excluding or including stoichiometry.

Krieger and Kececioglu (2022b) introduced the min-edge factory problem, showed it is NP-complete,
incorporated higher-order models of negative regulation into pathway inference for the first time, and
developed approaches based on mixed-integer linear programming (MILP) that are fast in practice to find
optimal min-edge factories without interference from negative regulation.

Hyperpaths. Initially studied within the field of algorithms, hyperpaths have been applied in systems
biology to pathway inference in cell-signaling and metabolic networks.

Italiano and Nanni (1989) proved that finding a shortest hyperpath is NP-complete, even for singleton-head
hypergraphs (where all hyperedges have only one head vertex) that are acyclic and have unit-weight edges.

In a seminal paper that is the source for much of the subsequent work on directed hypergraphs, Gallo
et al. (1993) explore many variants of hypergraphs and associated notions of connectivity, including what
they call a B-path (though see the correction of Nielsen and Pretolani, 2001), which is essentially equivalent
to our definition of hyperpath in Section 2. They give an algorithm for reachability in hypergraphs that
finds all vertices reachable from a source vertex in time linear in the total cardinality of the tail- and head-
sets of all hyperedges, an efficient algorithm for variants of shortest hyperpaths under additive cost
functions (our objective in this paper of minimizing the total weight of the hyperedges in a hyperpath is
non-additive), and study source-sink cuts in hypergraphs, proving that finding a minimum cut in a hy-
pergraph is NP-complete.

Carbonell et al. (2012) gave an efficient algorithm to find a source-sink hyperpath if one exists (irre-
spective of its length), and proved that finding any hyperpath that must contain a fixed set of hyperedges is
NP-complete.

Ritz and Murali (2014) and Ritz et al. (2017) were the first to give a practical exact algorithm (guar-
anteed to find optimal solutions) for shortest acyclic hyperpaths (the special case of cycle-free hyper-
paths, which remains NP-complete), by formulating it as an MILP, and demonstrated that optimal acyclic
hyperpaths can be found in practice even for large cell-signaling networks. Their acyclic MILP
formulation—the state-of-the-art for shortest hyperpaths—does not extend to general hyperpaths with
cycles, which occur naturally in cellular reaction networks, for instance due to feedback loops and the
processes of assembly and disassembly of protein complexes.

Schwob et al. (2021) later extended the acyclic MILP formulation to include reaction time-dependencies,
while Franzese et al. (2019) study parameterized notions of hypergraph connectivity that interpolate
between ordinary-path- and hyperpath-connectivity.

Ausiello and Laura (2017) survey results on singleton-head hypergraphs, and note the inapproximability
of shortest hyperpaths: unless P = NP, no polynomial-time approximation algorithm exists (that is guaranteed
to find near-optimal solutions) for shortest hyperpaths with approximation ratio (1 - o(1)) ln n on hypergraphs
with n vertices—which implies there is likely no efficient constant-factor approximation algorithm.

Krieger and Kececioglu (2021, 2022a) gave the first efficient heuristic for shortest hyperpaths that allows
cycles, proved that their heuristic finds optimal hyperpaths for singleton-tail hypergraphs (where all hy-
peredges have only one tail vertex), and developed a tractable hyperpath enumeration algorithm. They
demonstrated their heuristic is close to optimal in cellular reaction networks through experiments over all
source-sink instances from the standard reaction pathway databases, leveraging their enumeration algo-
rithm to verify near-optimality.

1.2. Our contributions

In contrast to prior work, we give the first practical exact algorithm for shortest hyperpaths with cycles,
which solves a new integer linear programming (ILP) formulation by a cutting-plane approach to find
provably optimal hyperpaths even in large cellular reaction networks. More specifically, we make the
following contributions.
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! We derive a new graph-theoretic characterization of hyperpaths in terms of source-sink cuts, that
captures fully-general hyperpaths with cycles.

! We leverage this characterization to obtain the first integer linear programming formulation of the
general shortest hyperpath problem with nonnegative edge weights. This ILP formulation has an
exponential number of constraints, however, and cannot be solved directly.

! We show we can nevertheless solve this ILP indirectly by a practical cutting-plane approach,
that computes over a small subset of the constraints, while guaranteeing an optimal solution to the
full ILP.

! Our cutting-plane approach is typically fast in practice on real biological instances, finding optimal
hyperpaths with a median running time of under 10 seconds, and a maximum running time of around
30 minutes, as measured through comprehensive experiments over all of the many thousands of
source-sink instances from the two standard reaction databases in the literature.

! We also evaluate for the first time how well shortest hyperpaths infer true pathways, and show they
accurately recover known pathways, typically with very high precision and recall.

A preliminary implementation of our cutting-plane algorithm in a new tool called Mmunin (short for
‘‘integer-linear-programming-based cutting-plane algorithm for shortest source-sink hyperpaths’’) is avail-
able free for noncommercial use at http://mmunin.cs.arizona.edu.

1.3. Plan of the paper

The next section defines the computational problem of shortest hyperpaths. Section 3 then gives a new
graph-theoretic characterization of hyperpaths that leads to the first formulation of shortest hyperpaths as an
integer linear program for fully general hyperpaths with cycles, as well as a cutting-plane algorithm for
solving this integer program to optimality in practice. Section 4 compares our algorithm to alternate
hyperpath methods through comprehensive experiments over the two standard reaction pathway databases,
and shows we can accurately infer true pathways. Finally Section 5 concludes, and offers directions for
further research.

2. SHORTEST HYPERPATHS IN DIRECTED HYPERGRAPHS

We arrive at our computational problem by successively defining hypergraphs, superpaths, hyperpaths,
their cycles, and finally the Shortest Hyperpaths problem.

2.1. Directed hypergraphs

Directed hypergraphs are a generalization of directed graphs where an edge, instead of touching two
vertices, now connects two subsets of vertices. Formally, a directed hypergraph is a pair (V‚ E), where V is
a set of vertices and E is a set of directed hyperedges.{ Each hyperedge e 2 E is an ordered pair (X‚ Y),
where both X‚ Y " V are nonempty vertex subsets.

Hyperedge e = (X‚ Y) is directed from set X to set Y, where X is called the tail of e, and Y the head
of e. We refer to these sets for hyperedge e by the functions tail(e) = X and head(e) = Y . We also refer to
the set of in and out hyperedges of a vertex v by the functions in(v) =

!
e 2 E : v 2 head(e)

"
and

out(v) =
!

e 2 E : v 2 tail(e)
"

.
Figure 1 shows how we draw a general directed hyperedge.
In the rest of the paper, the terms hypergraph and hyperedge always refer to a directed hypergraph and a

directed hyperedge. We use the term ordinary graph to refer to a standard directed graph (the special case
where all hyperedges e have jtail(e)j = jhead(e)j = 1). We also occasionally use edge for hyperedge when
the context is clear.

{Some of the literature uses the term hyperarc for edges in directed hypergraphs, and hyperedge only for undirected
hypergraphs. We prefer to use hyperedge in both contexts, just as edge is commonly used for both directed and
undirected graphs.
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2.2. Superpaths and hyperpaths

Hyperpaths are a generalization of directed paths to hypergraphs. In ordinary graphs, a path from a
vertex s to a vertex t is a sequence of edges starting from s and ending at t, where for consecutive edges e
and f, the preceding edge e must enter the vertex that the following edge f leaves. We say t is reachable
from s when there is such an s‚ t-path from s to t.

In generalizing these notions to hypergraphs, the conditions both for when a hyperedge can follow
another in a hyperpath and when a vertex is reachable from another become more involved. A hyperpath is
again a sequence of hyperedges, but now for hyperedge f in a hyperpath, for every vertex v 2 tail(f ), there
must be some hyperedge e that precedes f in the hyperpath for which v 2 head(e). Reachability is captured
by the following notion of superpath.

Definition 1 (Superpath). In a directed hypergraph (V‚ E), an s‚ t-superpath, for distinct vertices
s‚ t 2 V , is an edge subset F " E such that the hyperedges of F can be ordered e1‚ e2‚ . . . ‚ ek, where

(i) tail(e1) = fsg,
(ii) for each 1 < i # k,

tail(ei) " fsg [
[

1# j< i

head(ej)‚

(iii) and t 2 head(ek).

For an s‚ t-superpath, we call s its source vertex and t its sink vertex, and we say t is reachable from s. -

The term superpath was introduced in Krieger and Kececioglu (2021), and is intended to convey that it is
a superset of a hyperpath (which we define next). The concept of superpath is worth distinguishing, since
as we will see in Section 3.2, superpaths are directly amenable to representation by the inequalites of an
integer linear program, whereas hyperpaths are not.

We now define hyperpaths in terms of superpaths. A set S is minimal with respect to some property X if S
satisfies X, but no proper subset of S satisfies X.

Definition 2 (Hyperpath). An s‚ t-hyperpath is a minimal s‚ t-superpath. -

In other words, a hyperpath P is a superpath for which removing any hyperedge e 2 P leaves a subset
P - feg that is no longer a superpath.

Figures 2–4 from Section 4.4 illustrate hyperpaths from cellular reaction networks.
The above definitions for superpath and hyperpath are essentially equivalent to the notions of

B-connectivity and B-path in the original paper of Gallo et al. (1993) (though see Nielsen and Pretolani,
2001), while being more explicit. A similar definition of hyperpath is also given in Carbonell et al. (2012).

2.3. Cycles in hyperpaths

Hyperpath P contains a cycle if, for every ordering e1‚ . . . ‚ ek of its hyperedges satisfying properties
(i)–(iii) in the definition of superpath, P contains some hyperedge f with a vertex in head(f ) that also occurs
in tail(e) for a hyperedge e preceding f in the ordering. For the particular ordering e1‚ . . . ‚ ek of P, this
edge f creates a cycle by touching with its head the tail of an earlier edge e. In a sense this portion of
head(f ) that touches tail(e) is not strictly necessary (for reachability within the hyperpath) as tail(e) must
already be covered by prior hyperedges in the ordering, but it induces a cyclic dependency.

FIG. 1. A generic hyperedge e with tail(e) = fv1‚ . . . ‚ vkg and head(e) = fw1‚ . . . ‚ w‘g. In general, to use e in a
hyperpath P, for every vertex v 2 tail(e) there must be a hyperedge f that precedes e in P with v 2 head(f ).
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Figures 3 and 4 from Section 4.4 show two examples of hyperpaths with cycles in real reaction networks.
In practice, cyclic hyperpaths are unavoidable: there are source-sink instances in cellular reaction networks
where every s‚ t-hyperpath is cyclic, as discussed later in Section 4.2.

We mention that whether a hyperpath contains a cycle can be efficiently determined through the fol-
lowing construction. Given a hyperpath consisting of hyperedge set P that touches vertex set V, construct an
ordinary directed graph G = (P [ V‚ E), where the vertices of G correspond to every hyperedge in P and
every vertex in V, and where the edge set E of G has directed edges (v‚ e) and (e‚ w) for every hyperedge
e 2 P, every vertex v 2 tail(e), and every vertex w 2 head(e). Then hyperpath P contains a cycle if and only
if graph G contains a cycle. Since acyclicity of an ordinary directed graph can be tested in linear time (see
Cormen et al., 2009, pp. 612–614), this yields an algorithm for detecting whether a hyperpath is cyclic (and
if so, identifying one of its cycles) that runs in time linear in the size of the hyperpath, as measured by the
sum of the cardinalities of the tail- and head-sets of its hyperedges.

2.4. Shortest hyperpaths

We now come to our computational problem. When the hyperedges of a hypergraph all have real-valued
weights that are strictly positive, an s‚ t-superpath of minimum total weight must be minimal. (If it is not,
deleting hyperedges will yield another s‚ t-superpath of strictly smaller weight, contradicting its optimal-
ity.) Hence for strictly positive edge weights, a minimum-weight superpath is a minimum-weight hy-
perpath. This leads to the following definition of the shortest hyperpath problem.

For an edge weight function x(e), we extend x to edge subsets F " E by

x(F) :=
X

e2F

x(e) :

Below, positive edge weights means x(e) > 0 for all hyperedges e.

Definition 3 (Shortest Hyperpaths). The Shortest Hyperpaths problem is the following. Given
a directed hypergraph (V‚ E), positive edge weight function x : E ! R, source s 2 V , and sink
t 2 V - fsg, find

argmin
F " E

!
x(F) : F is an s‚ t-superpath

"
: (1)

This s‚ t-superpath of minimum weight is a shortest s‚ t-hyperpath. -

We mention that Shortest Hyperpaths can be extended to nonnegative edge weights x(e) $ 0 through
postprocessing, as follows. First find an s‚ t-superpath S of minimum total weight under nonnegative x,
and then repeatedly remove any hyperedge e 2 S with x(e) = 0 whose deletion preserves reachability of t
from s in S - feg. This yields a final minimal superpath P " S, where P is now a shortest s‚ t-hyperpath.
Testing a zero-weight hyperedge for removal can be done in linear time (Krieger and Kececioglu, 2021,
2022a). We define Shortest Hyperpaths using positive edge weights as it leads to a cleaner problem
statement—and a more elegant integer linear programming formulation. (For a discussion of negative edge
weights, see Section 5, under further research.)

We note that Shortest Hyperpaths with multiple sources and multiple sinks can be reduced to the above version
with a single source and sink, as follows. To find a hyperpath that starts from a set of sources S " V , simply add a
new source vertex s to the hypergraph together with a single hyperedge (fsg‚ S) of zero weight, and equivalently
find a hyperpath from the single source s. To find a hyperpath that reaches all vertices in a set of sinks T " V , add
a new sink vertex t, a zero-weight hyperedge (T‚ ftg), and equivalently find a hyperpath to the single sink t. To
find a hyperpath that reaches some vertex in a set of sinks T " V , add new sink vertex t, zero-weight hyperedges
(fvg‚ ftg) from all v 2 T , and again equivalently find a hyperpath to the single sink t. Thus all these versions are
captured by the single-source and -sink case above.

For a cellular reaction network, on choosing uniform edge weights x(e) = 1, Shortest Hyperpaths (with
an appropriate s and t and their incident hyperedges as described above) yields a series of reactions that
produces all the targets starting from the sources (where for each reaction in the series, all its input reactants
are formed as output products of prior reactions), using the fewest possible reactions. This is the most
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parsimonious set of reactions producing all targets from the sources. With non-uniform edge weights under
a simple likelihood model where x(e) = - log P(e) for probability P(e) of reaction e occurring given that
all its reactants are present, and assuming independence of reactions, Shortest Hyperpaths finds the most
likely set of reactions that produces the targets from the sources.

Shortest Hyperpaths is NP-complete (Italiano and Nanni, 1989), so there is likely no algorithm that finds
optimal solutions and is efficient in the worst-case. Shortest Hyperpaths remains NP-complete even when
the underlying hypergraph is acyclic, has unit edge weights x(e) = 1 for all hyperedges e, all hyperedges e
have singleton head-sets with jhead(e)j = 1, and all tail-sets have jtail(e)j # 2. (This last restriction follows
from the reduction in Krieger and Kececioglu (2022b) for Minimum Hyperedge Factory.) On the other
hand, Shortest Hyperpaths is polynomial-time solvable for the class of hypergraphs where all hyperedges e
have jtail(e)j = 1, as the efficient hyperpath heuristic of Krieger and Kececiogu (2021, 2022a) finds
optimal hyperpaths for singleton-tail hypergraphs.

We also mention that by restricting to the following doubly-reachable subgraph, we can often signifi-
cantly reduce the size of an instance of Shortest Hyperpaths in practice, while not altering its set of
solutions. A hyperedge e is doubly-reachable from source s and sink t if all vertices in tail(e) are reachable
in the forward direction from s through superpaths, and some vertex in head(e) is reachable in a backward
sense from t, where we consider t to be backward-reachable from itself, and recursively, for a hyperedge f,
if some vertex in head(f ) is backward-reachable from t then so are all vertices in tail(f ). The doubly-
reachable subgraph of the input hypergraph consists of all doubly-reachable hyperedges and the vertices
they touch. This subgraph safely contains all s‚ t-hyperpaths, is typically much smaller than the input
hypergraph, and can be found in linear time (Krieger and Kececiogu, 2021, 2022a).

The next section casts Shortest Hyperpaths as a new integer linear programming problem, allowing us to
leverage powerful techniques for solving such problems in practice, and compute optimal hyperpaths even
for large real-world reaction networks.

3. COMPUTING SHORTEST HYPERPATHS BY INTEGER LINEAR PROGRAMMING

We now formulate Shortest Hyperpaths as a discrete optimization problem known as an integer linear
program, using a new characterization of superpaths in terms of cuts. This integer linear programming
formulation is the first in the literature that captures fully-general hyperpaths with cycles.

3.1. Characterizing superpaths via cuts in hypergraphs

We can give a surprisingly clean characterization of superpaths in terms of cuts. An s‚ t-cut of a
hypergraph is a bipartition (C‚ C) of its vertices V, for nonempty subsets C " V and C := V - C, where
source s 2 C and sink t 2 C. We call C the source side and C the sink side of the cut, and often refer to a cut
by just specifying its source side C.

A hyperedge e crosses s‚ t-cut C if tail(e) " C and headðeÞ 6" C. In other words, for a hyperedge to cross
a cut, all its tail vertices must be on the source side, while at least one head vertex must be on the sink side.
We say an edge subset F " E crosses an s‚ t-cut if at least one hyperedge e 2 F crosses the cut.

A remarkable aspect of the following characterization theorem is that it gives an equivalent represen-
tation of superpaths without requiring the ordering of hyperedges inherent to the definition of superpaths.
This characterization in terms of cuts is the key that will enable us to find shortest hyperpaths via integer
linear programming.

Theorem 1 (Characterizing Superpaths by Cuts). A set F of hyperedges is an s‚ t-superpath if and
only if F crosses every s‚ t-cut.

Proof. To prove the forward implication, take an ordering of the hyperedges of s‚ t-superpath F that
satisfies the definition of superpath, and an arbitrary s‚ t-cut C. In the ordering of F, consider the first
hyperedge e such that headðeÞ 6" C, which must exist since F reaches t =2 C.

We claim tail(e) " C. To see this, notice every hyperedge f 2 F that precedes e in the ordering of F must
have head(f ) " C (otherwise e is not the first with headðeÞ 6" C). Then by the definition of superpath,

tail(e) " fsg [
[

f2F : f precedes e

head(f ) " C :

SHORTEST HYPERPATHS IN DIRECTED HYPERGRAPHS 7
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So tail(e) " C, while headðeÞ 6" C. Thus hyperedge e crosses cut C, which implies F crosses C as well,
proving the forward implication.

For the reverse implication, we prove the contrapositive. Suppose F is not an s‚ t-superpath. Collect the set R of
all vertices reachable from s in F. While s 2 R, notice t =2 R (otherwise F reaches t from s, contradicting that
F is not an s‚ t-superpath). Thus (R‚ R) is an s‚ t-cut. Furthermore F does not cross cut R (since e 2 F
crossing R would contradict that R holds all vertices reachable in F), which proves the reverse implication. -

Interestingly, Gallo et al. (1993) in their seminal paper use a different definition of edge crossing in
a characterization theorem for hyperedge sets that cross all cuts, that led not to a characterization of
superpaths, but to a structure they call a B-reduction.

3.2. Representing superpaths by linear inequalities

We now formulate Shortest Hyperpaths as an integer linear programming problem. In general, an integer
linear program (ILP) is a mathematical optimization problem over integer-valued variables that maximizes a
linear function of these variables, subject to constraints that are linear inequalities in the variables. The key
to the formulation is to represent the set of all s‚ t-superpaths in a hypergraph (V‚ E) by linear inequalities.

The variables of our ILP encode the hyperedges in a superpath F " E. For every hyperedge e 2 E, there
is a variable xe, where xe 2 f0‚ 1g. An assignment of values to these variables encodes a superpath F by
xe = 1 if and only if e 2 F. We represent the collection of all variables in the ILP by a vector x = (xe)e2E,
where x 2 f0‚ 1gjEj.

The constraints of the ILP ensure that an assignment of values to the variables actually encodes an
s‚ t-superpath. The domain D of the ILP is all assignments of values to variables x that satisfy the con-
straints. For our ILP, the domain is

D := x 2 f0‚ 1gjEj : 8s‚t -cuts C
X

e2E : e crosses C

xe $ 1

( )

: (2)

This has a constraint for every s‚ t-cut of the hypergraph, which is a linear inequality in the variables xe.
Notice that this inequality for a cut C is satisfied if and only if at least one hyperedge e crossing C has
xe = 1. Equivalently, the set F " E encoded by x must contain at least one hyperedge e 2 F crossing C.
Thus, assignments x 2 D encode edge subsets F that cross every s‚ t-cut.

Consequently, by Theorem 1, the domain D of the ILP in equation (2) is exactly the set of all
s‚ t-superpaths in the hypergraph.

The objective function of the ILP is to minimize
P

e2E x(e) xe, for fixed positive edge weights x(e) > 0,
which is a linear function of the variables x. For x 2 D, the value of this objective function is the total
weight of the hyperedges in superpath F encoded by x. We can write this objective function as a dot product
x ' x, where x is now a vector of positive edge weights.

Finally, our integer linear program is to compute,

argmin
!
x ' x : x 2 D

"
: (3)

Since domain D is all s‚ t-superpaths, this is equivalent to relation (1), so a solution to this integer linear
program is a shortest s‚ t-hyperpath.

3.3. Solving the integer linear program by a cutting plane algorithm

For a hypergraph of n vertices and m hyperedges, the integer linear program given by relation (3) above
has m variables and Y(2n) constraints (corresponding to the number of s‚ t-cuts). Thus for a large
hypergraph, we cannot even feasibly write down the corresponding ILP, due to its exponentially-many
constraints. Nevertheless, we can actually compute optimal solutions to this full ILP in practice, even for
large hypergraphs, using an approach known as a cutting-plane algorithm.{

{In combinatorial optimization, the term cutting-plane algorithm traditionally refers to an algorithm that tackles an
integer linear program by solving a series of linear programs (see Cook et al., 1998, pp. 234–235). Here we use the term
to refer to an algorithm that instead solves a series of integer programs. Rather than referring to our approach as
‘‘cutting-plane-like,’’ we simply call it a cutting-plane algorithm, while recognizing this distinction.
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A cutting-plane algorithm computes over a subset of the constraints of the full integer linear program, and
solves a series of less-constrained problems, stopping once it detects it has an optimal solution to the full
ILP. The key to a cutting-plane algorithm is an efficient separation algorithm, which for a given
solution x to the current ILP, reports whether x satisfies all constraints of the full ILP, and if x does not,
returns a constraint violated by x. (This violated constraint is a hyperplane, called a cutting plane, that
separates x from the domain of the full ILP.) For our above ILP for Shortest Hyperpaths, this proceeds as
follows.

(1) Let I be an initial set of inequalities, containing a subset of the inequalities from the full ILP, and let
S := I be the current set of inequalities.

(2) Solve the ILP restricted to the inequalities in S, and let x( be the optimal solution to this current ILP.
(3) Run the separation algorithm to efficiently find an s‚ t-cut C that is not crossed by the hyperedges e

with x(e = 1, if such a cut exists.
(4) If the separation algorithm found a cut C not crossed by x(, add the new cut-inequality given by C to

set S, and go back to Step (2).
(5) Otherwise, the hyperedges in x( cross every s‚ t-cut. Halt and output the current solution x(.

This starts with an initial set of inequalities I , and iteratively adds inequalities to this set as it finds cuts that
are not crossed by solutions to prior ILPs.

While this algorithm does not directly solve the full ILP for Shortest Hyperpaths, but instead works on a
subset of its constraints, it is nevertheless guaranteed to find an optimal hyperpath, as we show next.

Theorem 2 (Cutting Plane Algorithm Solves Shortest Hyperpaths). The cutting-plane algorithm
always halts, and outputs a shortest s‚ t-hyperpath.

Proof. The cutting-plane algorithm halts on every input, as each iteration adds an inequality to the ILP
corresponding to a new s‚ t-cut, which is not crossed by the current solution x( and hence is distinct from
the cuts added by prior iterations, which x( does cross, while there are a finite number of such cuts.

When the algorithm halts and outputs its final solution x( at Step (5), let F be the corresponding set of
hyperedges e with x(e = 1. Set F crosses every s‚ t-cut, so by Theorem 1 this F is an s‚ t-superpath.
Furthermore, this final solution x( is optimal for an ILP that is a less-constrained minimization prob-
lem than the full ILP. Hence the objective function value of x( is a lower bound on the value of an
optimal solution to the full ILP. Thus F is a minimum-weight s‚ t-superpath, or equivalently, a shortest
s‚ t-hyperpath. -

As indicated by the proof, the cutting-plane algorithm at most adds an inequality for every s‚ t-cut, so in
the worst-case it solves the full ILP after 2n iterations, given a hypergraph with n vertices. In practice,
however, it finds a shortest hyperpath on solving a vastly smaller ILP, as shown later in Section 4.3.

An important observation that follows from the above proof is that the objective function values of
successive solutions x( found by the cutting-plane algorithm are monotonically increasing, and if we stop
the algorithm at any point, the value of its current solution x( yields a lower bound on the length of a
shortest s‚ t-hyperpath. Consequently, given a candidate hyperpath P obtained by a fast heuristic (such as in
Krieger and Kececiogu, 2021, 2022a), the gap between this lower bound and the length of P yields an upper
bound on how far P is from optimal. If the gap is fortuitously zero, by the lower bound matching the length
of P, this verifies P is optimal. Such an approach that leverages a heuristic can enable us to find a provably-
optimal hyperpath even before the full cutting-plane algorithm terminates.

The simplest possible realization of the above cutting-plane algorithm starts with I = ;, and uses the
following trivial separation algorithm. Simply collect the set R of vertices reachable from s by current
solution x( along hyperedges e with x(e = 1. This reachable set R can be computed in linear time (Krieger
and Kececiogu, 2021, 2022a). If t 2 R, then x( encodes an s‚ t-superpath, which crosses every s‚ t-cut.
Otherwise (R‚ V - R) is an s‚ t-cut that x( does not cross, which yields a cut-inequality violated by x(. In
practice, this elementary version of the cutting-plane algorithm requires a huge number of iterations before it
finds an optimal solution, making it intolerably slow. Instead, we develop a more sophisticated version that
both identifies a stronger set I and uses a more powerful separation algorithm.

The next section specifies the initial inequalities I we use in practice, which are crucial to its success.
Then Section 3.5 presents an efficient separation algorithm that finds multiple violated inequalities, which
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are all added to the ILP at the current iteration. As demonstrated in Section 4, together these enhancements
enable the cutting-plane algorithm to solve large real-world instances from actual cellular reaction net-
works to optimality.

3.4. Strengthening the initial integer program

We can markedly reduce the number of iterations of the cutting-plane algorithm by seeding it with a
strong set of initial inequalites I . We start with I consisting of both the structure-based and distance-based
inequalities that we describe next. This choice yields a small initial set I , whose number of inequalities
grows at most linearly with the size of the input hypergraph.

3.4.1. Structure-based inequalities. We now define a concise class of inequalities based on struc-
tural properties of hyperpaths, which has the following three subclasses.

The tail-covering inequalities ensure that for any hyperedge chosen by a solution to the ILP, its tail set is
covered by the head sets of other chosen hyperedges (corresponding to condition (ii) in Definition 1 for a
superpath). More formally, for every hyperedge e 2 E, and every vertex v 2 tail(e) - fsg, we have the
inequality,

X

f 2 in(v)

xf $ xe : (4)

The head-hitting inequalities ensure that for a hyperedge e chosen by a solution, its head intersects (or
‘‘hits’’) the tail of another chosen hyperedge (following from the minimality condition in Definition 2 for a
hyperpath, since otherwise e can be safely trimmed while maintaining reachability). More formally, for
every hyperedge e 2 E with t =2 headðeÞ, we have the inequality,

X

f 6¼e :
##head(e) \ tail(f )

## $ 1

xf $ xe : (5)

The target-production inequality ensures that target t is reached by hyperedges chosen by the solution
(corresponding to condition (iii) in Definition 1 for an s‚ t-superpath). Formally this is the inequality,

X

f 2 in(t)

xf $ 1 : (6)

Together the above structure-based inequalities drive the solution found by the cutting-plane algorithm
toward having the connected structure of a hyperpath (whereas without them, the solutions over many
iterations tend to be disconnected hyperedges that cross the current set of cuts). As shown later in
Section 4.6, adding this class of inequalities to the initial ILP dramatically reduces the number of iterations
of the cutting-plane algorithm, greatly improving its running time.

For a hypergraph with total tail-set cardinality t :=
P

e2E

##tail(e)
##, these three structure-based sub-

classes together have Y(t) inequalities.

3.4.2. Distance-based inequalities. Next we define a concise class of cut-inequalities that are based
on distances of vertices from the source, which are efficiently computable. We first define this distance-
based class for ordinary graphs, and then generalize it to hypergraphs.

Ordinary graphs. For an ordinary directed graph with source s and sink t reachable from s, let D(v) be
the length of a shortest s‚ v-path for every vertex v reachable from s. Over these reachable vertices v other
than s with distance D(v) # D(t), let d1 < * * * < dk be the sorted set of their unique distances D(v). Define a
sequence of s‚ t-cuts C1 + * * * + Ck associated with these unique distances, for 1 # i # k, by

Ci := fsg [
!

v 2 V : D(v) < di

"
: (7)

Finally, denote the family of these s‚ t-cuts by C := fC1‚ . . . ‚ Ckg, which we call the distance-based cuts.
In Section 3.4.3, we prove in Theorem 3 that this class of distance-based cuts is sufficiently strong for

ordinary graphs to make the small integer program with cut-inequalities just from this class have an optimal
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solution value equal to the length of a shortest s‚ t-path. (In other words, solving this restricted ILP yields a
tight lower bound on the shortest-path length whose gap is zero for ordinary graphs.) Later in Section 4.6,
we show experimentally that the generalization of this class to hypergraphs, which we give next, is strong
as well.

The number of cuts in family C above is less than the number of vertices. Moreover, for ordinary graphs
with nonnegative edge weights, Dijkstra’s single-source shortest-path algorithm (see Cormen et al., 2009,
pp. 658–659) in the course of its computation computes distance D(v) for every vertex v reachable from s
with distance at most D(t). Thus for a graph with n vertices and m edges, we can find the distance-based
inequalities given by cuts C, which constitute less than n inequalities, in the same time as running Dijkstra’s
algorithm, namely O(m + n log n) time.

Generalizing to hypergraphs. To generalize the distance-based cuts C to hypergraphs, we need both
a measure of distance to a vertex in a hypergraph, and a way to efficiently compute this measure. While
there does not appear to be any natural distance measure on vertices for shortest hyperpaths that corre-
sponds to D(v) in ordinary graphs, we can define a generalized vertex distance as follows.

For a hyperedge e, let an s‚ e-superpath be a superpath from source s that reaches all vertices in tail(e),
and define an s‚ e-hyperpath to be a minimal s‚ e-superpath. For a hyperpedge e, let its tail-distance
D(tail(e)) be the length of a shortest s‚ e-hyperpath. Finally, for a vertex v in a hypergraph, we can define its
vertex-distance from source s to be,

D(v) := min
e2 in(v)

!
Dðtail(e)Þ + x(e)

"
: (8)

Note that computing tail-distances D(tail(e)) for hyperedges is at least as hard as Shortest Hyperpaths, so
computing the above vertex-distances D(v) is unfortunately NP-complete as well.

To make this practical, we run the efficient hyperpath heuristic of Krieger and Kececiogu (2021, 2022a),
which in polynomial time computes estimated tail-distances eD(tail(e)) for all hyperedges e that are
reachable from source s. We then apply these tail-distance estimates in the above definition of vertex
distance, to obtain efficiently-computable estimated vertex-distances eD(v).

Using these vertex-distance estimates eD(v), and their unique estimated vertex-distances ed1 < * * * < edk,
we can directly generalize our prior distance-based cuts C1‚ . . . ‚ Ck, defined by equation (7), to hyper-
graphs. This yields the distance-based inequalities that our cutting-plane algorithm starts with in its initial
set I .

For a hypergraph with n vertices, this distance-based class comprises less than n inequalities.
To summarize, the structure- and distance-based classes, for an input hypergraph with n vertices and

hyperedges of total tail-set cardinality t, together yield an initial constraint set I of O(n + t) inequalities.

3.4.3. Sufficiency for ordinary graphs. We now prove that the structure- and distance-based classes
together suffice for ordinary graphs, in the sense that solving the ILP with just these two classes of
inequalities finds a shortest s‚ t-path. We first prove that the distance-based class by itself captures shortest
path lengths, as the value of an optimal solution to the ILP with this class alone is the length of a shortest
s‚ t-path. We then build on this to prove that further adding the structure-based class captures shortest paths,
as it makes optimal solutions to the ILP now be shortest paths themselves.

Below, s‚ t-path means the standard graph-theoretic notion of a simple path from s to t in an ordinary
directed graph.

Capturing path lengths. The class of distance-based inequalities is sufficient to capture lengths of
shortest s‚ t-paths, as we now show. The following theorem only requires nonnegative edge weights
x(e) $ 0.

Theorem 3 (Distance-Based Cuts Capture Shortest Path Lengths). For an ordinary directed graph G
with source s, sink t, and nonnegative edge weights x, let F( be an edge set of minimum total weight
that crosses every cut in the family C of distance-based s‚ t-cuts. Then its weight x(F() is the length of a
shortest s‚ t-path in G.
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Proof. We first show by induction that the weight of an edge set crossing cuts C1‚ . . . ‚ Ci is at least di, for
all 1 # i # k, where k is jCj. As dk is D(t), this proves the weight of any edge set crossing all cuts in C is
at least D(t).

For the basis with i = 1, consider cut C1 = fsg, and let e = (s‚ v) be a minimum-weight edge leaving s.
Consider any set F crossing C1, which must contain an edge f leaving s. We have,

x(F) $ x(f ) $ x(e) = D(v) = d1 ‚

so the basis holds.
For the inductive step with i > 1, let F be any edge set that crosses cuts C1‚ . . . ‚ Ci. Set F must contain

an edge f = (u‚ v) that crosses cut Ci. Notice that D(u) < di, which implies D(u) = dj for some j < i. Let
F0 " F - ffg be the subset of F that crosses cuts C1‚ . . . ‚ Cj. We have,

x(F) $ x(F0) + x(f ) (9)

$ D(u) + x(u‚ v) (10)

$ D(v) (11)

$ di : (12)

In the above, inequality (9) is by nonnegativity of edge weights. Inequality (10) follows from the inductive
hypothesis on j < i, noting f = (u‚ v). Inequality (11) is due to a shortest s‚ u-path followed by edge (u‚ v)
yielding an s‚ v-path. Inequality (12) follows from the definitions of edge (u‚ v) and cut Ci. So the induction
holds.

Thus any edge set F that crosses all cuts in family C has weight x(F) $ D(t). Now consider an edge
set F( of minimum weight x(F() crossing family C, and a shortest s‚ t-path P(. Notice that P( crosses all
cuts in C, since for any s‚ t-cut the first edge in P( entering a vertex on the sink-side (which must exist
as P( reaches t) crosses the cut. Hence x(F() # x(P() = D(t). Together these two inequalities imply
x(F() = D(t), which proves the theorem. -

So by Theorem 3, solving an integer linear program containing just the distance-based inequalities gives
the length of a shortest s‚ t-path. An optimal solution, however, can have disconnected edges, and is not
necessarily itself a path. We next show that adding the structure-based inequalities makes optimal solutions
be shortest paths.

Capturing shortest paths. We now add the class of structure-based inequalities. Our next theorem
states that for ordinary graphs, the structure- and distance-based classes together suffice in the following
sense to capture shortest paths. Solving the small integer program containing just these two constraint
classes—which for an ordinary graph with n vertices and m edges has m variables, less than n distance-
based inequalities, and at most 2m structure-based inequalities—yields a shortest s‚ t-path.

As an aside, we note that the following result gives a concise ILP formulation of shortest paths in
ordinary graphs that is different from the standard linear-programming-based formulations in the literature
(see Wolsey, 1998, pp. 42–43). Of course, simply writing down the ILP requires us to have already solved
the shortest path problem, just in determining the distance-based cuts. Nevertheless, this ILP formulation
could provide a convenient way to tackle NP-complete variants of shortest path problems, by casting them
as ILPs with additional side constraints in order to solve them to optimality in practice.

Formally, the integer linear program P referred to in Theorem 4 below has for its constraints both the
structure-based inequalities (4)–(6) and the distance-based inequalities that correspond to cut-
inequalities (2) for the distance-based cuts (7), specialized for an ordinary graph whose edges e all have
singleton tail- and head-sets and positive weights x(e) > 0. The variables and objective function for P are
the same as for integer program (3).

Theorem 4 (Structure- and Distance-Based Inequalities Capture Shortest Paths). For an ordinary
directed graph G with positive edge weights, consider the corresponding integer linear program P whose
constraints are just the structure- and distance-based inequalities. Then optimal solutions to P are shortest
s‚ t-paths in G.
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Proof. Let x( be an optimal solution to the integer linear program whose constraints are just the structure-
and distance-based inequalities, for an ordinary graph with positive edge weights, and let P( be the
corresponding set of edges e with x(e = 1.

We first show every s‚ t-path P is a minimal feasible solution to this integer linear program. To see this,
notice any such P crosses every s‚ t-cut C, as the first edge of P entering the sink side of C (which must exist
as P reaches t) crosses C. Hence every such P satisfies the distance-based inequalities. Such paths P also
clearly satisfy the structure-based inequalities. Thus they are feasible solutions. Furthermore they are minimal,
as any proper subset of an s‚ t-path violates at least one of the classes of structure-based inequalities.

Consequently, optimality of P( implies the total weight of any s‚ t-path P satisfies x(P() £ x(P). Hence
x(P() £ D(t).

Moreover, minimality holds for P( as well (meaning P( is a minimal feasible solution to the integer
program), since with positive edge weights, removing edges from P( while preserving feasibility yields a
strictly better solution, contradicting optimality of P(.

We next argue sink t must be reachable from source s along edges in P(. Suppose not. By the target
production inequality, there must be an edge e 2 P( that enters t. Then by the tail-covering inequalities,
tracing in-edges in P( backward from e must lead to a cycle C " P(, since t is not reachable from s.

The distance-based inequalities ensure P( contains a minimal subset Q " P( that crosses all distance-
based cuts. The proof of Theorem 3 then shows x(Q) $ D(t). Furthermore Q is acyclic, as minimality of Q
implies every edge (v‚ w) 2 Q crosses a distance-based cut, and consequently has D(v) < D(w). Never-
theless P( contains cycle C. Thus P( must properly contain Q. Positive edge weights then force
x(P() > x(Q). However, this implies x(P() > D(t), a contradiction.

Hence t must be reachable from s through P(. This implies P( contains an s‚ t-path. Minimality of P(

requires P( be an s‚ t-path. Optimality of P( then ensures P( is a shortest s‚ t-path. -

While a result analogous to Theorem 4 does not hold for hypergraphs (since the very first ILP solved by
the cutting-plane algorithm, whose constraints I are exactly the structure- and distance-based classes, does
not in general return an s‚ t-hyperpath, otherwise the algorithm would immediately halt after one iteration),
the above theorem for ordinary graphs does suggest these classes are strong, and indeed our experimen-
tal results in Section 4.3 show that with these two classes—and the separation algorithm described next—
we typically need only three iterations of the cutting-plane algorithm to solve current cellular reaction
instances to optimality in practice.

3.5. A separation algorithm leveraging distance-based cuts

Recall that the cutting-plane algorithm starts with inequalities I , where I contains both the structure-
based class and the distance-based class for family C of distance-based cuts. Since the solution x( to the
current ILP crosses all cut-inequalities in S , I with its active hyperedges e where x(e = 1, solution x(

already crosses every cut in family C. To find new cuts not crossed by x(, the separation algorithm examines
every s‚ t-cut C 2 C, and considers enlarging its source-side C , fsg, called source-augmentation, or
enlarging its sink-side C = V - C , ftg, called sink-augmentation, to obtain a new s‚ t-cut bC not crossed
by x(. Such a cut bC specifies a cut-inequality from the full ILP that is violated by current solution x(.

We mention that the trivial separation algorithm described near the end of Section 3.3 can be viewed as a
special case of this more general separation algorithm, which only performs source-augmentation of the
single cut C = fsg 2 C, and just finds one inequality violated by x(.

The general separation algorithm outlined above that augments distance-based cuts can find up to
2k inequalities from the full ILP that are violated by x(, where k = jCj is the number of distance-based
cuts, since source- and sink-augmentation can together yield two new violated inequalities for each cut in
family C. All the violated inequalities that are found for x( are added to the current set S for the next
iteration of the cutting-plane algorithm.

This general separation algorithm is correct, as argued in the next subsection on source-augmentation, in
the following sense. Given current solution x(, it either (a) returns cut-inequalities from the full ILP that are
violated by x(, or (b) detects and reports that x( satisfies all inequalities in the full ILP.

Moreover, the general separation algorithm is also efficient (even though the full ILP contains expo-
nentially-many inequalities), as shown by the time analysis at the end of this section.

We next describe source-augmentation, sink-augmentation, and then bound the running time of the
resulting separation algorithm.
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3.5.1. Source-side augmentation. Given current solution x( from the cutting-plane algorithm,
and cut C from the family C of distance-based cuts (which implies x( crosses C), we perform source-
augmentation of C to obtain a new s‚ t-cut bC - C not crossed by x(, as follows. Recall that hyperedge e
crosses C if tail(e) " C but headðeÞ 6" C.

For a given active hyperedge e that crosses C, we enlarge C to form a new cut bC = C [ head(e), which is
the minimal enlargement of C that e no longer crosses. We then repeat this process on bC for every active
hyperedge that crosses it, until we obtain a final cut bC that no active hyperedge of x( crosses.

We note that this process can fail to find a new cut bC - C not crossed by x(, as bC could potentially grow
to encompass sink t, in which case bC is no longer an s‚ t-cut. When this occurs, however, there is no s‚ t-cut
that properly contains the source side of the original cut C that x( does not cross.

We also note that the above process actually finds the unique s‚ t-cut bC - C of minimum cardinality
## bC
##

that x( does not cross.
Importantly, the trivial cut C = fsg is one of the distance-based cuts in family C, and source-

augmentation of this trivial cut by the process described above yields set bC - fsg consisting of all vertices
reachable from s along active hyperedges. So by the reasoning in the proof of Theorem 1, this separation
algorithm is guaranteed to find a cut not crossed by x( whenever one exists.

This last observation verifies that our separation algorithm is correct: given current solution x(, it either
(a) finds an s‚ t-cut not crossed by x(, or (b) detects that x( crosses every s‚ t-cut, by discovering that t is
reachable from s along active hyperedges.

3.5.2. Sink-side augmentation. We perform sink-augmentation of distance-based cut C 2 C, to
obtain a new cut bC + C not crossed by x(, as follows.

For a given active hyperedge e that crosses C, we enlarge C = V - C by moving one vertex
v 2 tail(e) - fsg from C to its sink-side C, yielding the new cut bC = C - fvg. This is a minimal enlargement
of C that e no longer crosses. Of course, this may cause new active hyperedges to now cross bC that did not
before. To reduce the number of new hyperedges crossing bC, we exploit the freedom in picking v by greedily
choosing the v 2 tail(e) - fsg that causes the fewest active hyperedges to newly cross bC. We repeat this
process on bC for every active hyperedge crossing it, until we obtain a final cut bC + C that x( does not cross.

We note that the above process can fail to find a new cut bC not crossed by x( whose sink-side properly contains
the original cut, as once an active hyperedge e crossing bC has tail(e) = fsg, there is no further reduction of the
source-side of bC that x( does not cross. In this situation, due to the freedom in choosing vertices v to move to the
sink-side of bC, another sequence of vertex choices might have potentially led to finding a different successful sink-
augmentation bC. For efficiency, our implementation does not backtrack over its choices when this occurs, and
simply produces no sink-augmentation of this particular distance-based cut C, although one could exist. (In
contrast, source-augmentation always finds a cut bC - C not crossed by x( whenever one exists.) This does not
affect correctness of the separation algorithm as argued earlier, but it can reduce the number of violated in-
equalities that the separation algorithm finds to add to the current ILP per iteration of the cutting-plane algorithm.

3.5.3. Time complexity. We bound the time complexity of the separation algorithm in terms of the
following key parameters:

! the number of distance-based cuts k,
! the number of active hyperedges h in the current solution x(,
! the number of doubly-reachable hyperedges m (which are discussed at the end of Section 2; infor-

mally, these are all hyperedges that are both reachable in the forward direction from the source, and
reachable in a backward sense from the sink),

! the number of vertices n in the doubly-reachable subgraph (namely, the cardinality of the union of the
tail- and head-sets of all doubly-reachable hyperedges), and

! the standard measure of the size ‘ of a directed hypergraph (from Gallo et al., 1993), restricted to its
doubly-reachable hyperedges bE, where

‘ :=
X

e2bE

$##tail(e)
## +
##head(e)

##% :

To aid the analysis, we make the implementation of source- and sink-augmentation more concrete.
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Source-augmentation of a distance-based cut C can be implemented straightforwardly as a repeated scan
of the list of active hyperedges F in solution x(. For the current augmentation bC , C, the scan checks
whether hyperedge e 2 F crosses bC. If so, it updates the current augmentation to bC [ head(e), and performs
the next scan on this updated bC. These scans are repeated until verifying that no hyperedge in F crosses bC,
upon which this final bC is returned as the source-augmentation of cut C (or until encountering an active
hyperedge e crossing bC with t 2 head(e), which causes unsuccessful termination for C).

To easily test whether a hyperedge crosses the current augmentation, we maintain a boolean variable for
each vertex v in the doubly-reachable subgraph that records whether v is on the source-side of bC. In-
itializing these variables when processing a given distance-based cut takes Y(n) time.

Since each scan until termination makes at least one hyperedge e of F no longer cross bC (where e
remains noncrossing during subsequent scans), this does at most h = jFj scans. Each scan takes O(‘) time
to test hyperedges for whether they cross the current cut bC (by checking the boolean variables for vertices
in the tail- and head-sets of the hyperedge), and to update bC and its corresponding vertex variables. This
spends O(h‘) time per cut C.

So for a family of k distance-based cuts, source-augmentation takes total time Y(kn) + O(kh‘). As
n # ‘, this is O(kh‘) total time.

Sink-augmentation of a distance-based cut can be similarly implemented as a repeated scan of the active
hyperedges, where for efficiency we now use the following variables:

! a boolean variable for each vertex v that indicates whether v is on the source side of the current
augmentation,

! a boolean variable for each hyperedge e that records whether all of the tail- and head-vertices for e are
on the source side of the current augmentation, and

! an integer variable for each vertex v that counts the number of active hyperedges e 2 in(v) - out(v)
such that the boolean variable for e is true.

This integer count for v is precisely the number of active hyperedges that will newly cross the current
augmentation on moving v from its source side to its sink side. Initializing these variables for vertices and
hyperedges when processing a given distance-based cut takes O(‘) time.

When the scan detects that an active hyperedge e crosses the current augmentation bC (by checking the
boolean vertex variables in the tail- and head-sets for e), we examine each vertex v 2 tail(e) - fsg as a
candidate to move to the sink-side of bC (unless tail(e) = fsg causes unsuccessful termination for this cut).
The candidate v whose associated integer variable is minimum is then moved, updating the current aug-
mentation to bC - fvg. During this process, scanning all active hyperedges to test for crossing, examining
their tail sets to identify the vertex to move whose count is smallest, and updating the current augmen-
tation bC together with its associated variables for vertices and hyperedges, all take O(‘) time per scan.

As before, each scan until termination makes at least one active hyperedge no longer cross the current
augmentation (and this hyperedge remains non-crossing during subsequent scans), so this performs at most
h scans, spending O(h‘) time per distance-based cut. For k such cuts, this again takes O(k h‘) total time.

To summarize the time complexity, for k distance-based cuts, a solution with h active hyperedges, and a
doubly-reachable subgraph of size ‘, the separation algorithm runs in O(k h‘) time.

In terms of the input hypergraph, for a doubly-reachable subgraph of n vertices and m hyperedges, since
k # n and h # m (as at worst all vertices have distinct distances and all hyperedges are active—though in
practice k and h are typically several orders of magnitude smaller), this is O(‘mn) time worst-case.

4. EXPERIMENTAL RESULTS

We now present experimental results with a preliminary implementation of our cutting-plane algorithm,
in a tool we call Mmunin (Krieger and Kececioglu, 2022d).{ As the experiments show, Mmunin can find
optimal hyperpaths in large real-world cellular reaction networks quickly, often in less than 10 seconds.

{The name Mmunin (short for ‘‘integer-linear-programming-based cutting-plane algorithm for shortest source-sink
hyperpaths’’) was chosen to complement that of our tool Hhugin (Krieger and Kececioglu, 2022c), which implements
an efficient shortest hyperpath heuristic. (Huginn and Muninn are the mythical ravens of the Norse god Odin.)
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We first give details on our experimental setup, describing the datasets and our implementation. We then
show, through comprehensive experiments across all of the thousands of source-sink instances from the two
standard cellular reaction databases in the literature, how Mmunin surpasses both the state-of-the-art
heuristic for general shortest hyperpaths (Krieger and Kececioglu, 2021, 2022a) and the state-of-the-art
exact algorithm for shortest acyclic hyperpaths (Ritz et al., 2017). The last subsections discuss three
biological examples, study how well Mmunin recovers known biological pathways, and investigate the
effect of the various constraint classes on running time.

4.1. Experimental setup

We briefly describe the datasets and how we transform them into hypergraphs, and then give details on
our implementation, including two modifications that further improve running time.

Datasets and their preparation. Our source-sink instances for Shortest Hyperpaths were formed
from the two standard cellular reaction databases in the literature, following an established hypergraph
construction protocol (Krieger and Kececioglu, 2022a; Ritz et al., 2017). Our NCI-PID dataset aggre-
gates all 213 pathways from the US National Cancer Institute’s Pathway Interaction Database (NCI-PID)
(Schaefer et al., 2009), while our Reactome dataset aggregates all 2,516 pathways from the Reactome
database ( Joshi-Tope et al., 2005).

To build a hypergraph for each dataset, we map each protein or small molecule to a vertex, and each
reaction to a hyperedge. In each reaction’s hyperedge, its input reactants and positive regulators are in the
tail, and its output products are in the head. The set S of all vertices that originally have no incoming
hyperedges we call the sources. The set T of vertices that originally have no outgoing hyperedges we call
the targets. For the hypergraph, we create a single supersource vertex s, with one outgoing hyperedge
(fsg‚ S) to the sources. For the hypergraph, we also create a single sink vertex t.

In our single-target experiments, each source-sink instance has a single target v 2 T . In the instance for
target v, we create the hyperedge (fvg‚ ftg) as the sole hyperedge in the hypergraph that is incoming to
sink t for that instance. In this way, each s‚ t-instance (with supersource s and sink t) for a single-target
experiment is implicitly associated with one target v.

Table 1 gives summaries of these hypergraphs and their source-sink instances. The NCI-PID hyper-
graph has more than 9,000 vertices and 8,000 hyperedges, while the Reactome hypergraph has more than
20,000 vertices and 11,000 hyperedges. In both hypergraphs, vertices have small average in-degree and
out-degree. The head-sets and tail-sets of the hyperedges also tend to have small average size. Both
hypergraphs contain many hyperedges that are self-loops, which cannot be trivially removed, and which
would be excluded when finding shortest acyclic hyperpaths. Some of these self-loops are unreachable,

Table 1. Dataset Summaries

NCI-PID Reactome

Pathways 213 2,516
Vertices 9,009 20,458
Hyperedges 8,456 11,802
Self-loops 40 433
Unreachable self-loops 14 32
Sources 3,200 8,296
Targets 2,636 5,066
Reachable targets 2,220 2,432

mean max mean max

Vertex in-degree 1.0 323 0.9 1,056
Vertex out-degree 1.7 326 1.4 1,167
Hyperedge tail-size 1.9 10 2.4 26
Hyperedge head-size 1.1 5 1.6 28
Forward-reachable set 6,169 6,169 4,645 4,645
Backward-reachable set 1,198 2,863 4,027 7,021
Doubly-reachable set 756 1,836 929 1,725
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meaning at least one tail vertex has only this same hyperedge as an incoming hyperedge; in such a case, we
resolve this cycle in the self-loop by adding such tail vertices to the source set.

Out of all possible targets v 2 T in these hypergraphs, only a smaller number are actually reachable
targets, where an s‚ t-hyperpath exists from supersource s to sink t for that target v. (Each such hyperpath
corresponds to a series of reactions that creates the target molecule v from the set of source compounds S.)
As listed in Table 1, both NCI-PID and Reactome have more than 2,000 reachable targets, each
corresponding to an s‚ t-instance that has an s‚ t-hyperpath.

For each s‚ t-instance, we first reduce the hypergraph to its doubly-reachable subgraph for that instance,
as mentioned at the end of Section 2. (This subgraph is induced by the doubly-reachable hyperedges, which
for an s‚ t-instance are those that are both forward-reachable from s and backward-reachable from t.)
This reduction yields a significantly smaller hypergraph, without altering the set of solutions for that
s‚ t-instance. As shown in Table 1, it reduces the average number of hyperedges for an instance to less
than 800 for NCI-PID (down from over 8,000), and to less than 1,000 for Reactome (down from
over 11,000).

All hyperedges are given unit weight, even though the cutting-plane algorithm handles positive edge
weights. (In the reaction databases, reaction rates for many reactions are unknown.) A shortest hyperpath in
these unit-weight hypergraphs corresponds to a pathway that produces the target from the sources using the
fewest reactions—the most parsimonious pathway for that target.

Implementation. The cutting-plane algorithm and its separation algorithm are both implemented in
Python 3.8, comprising around 2,000 lines of code. All procedures are implemented as described in Section 3,
with a few exceptions.

First, for an s‚ t-instance, we use a procedure from Hhugin (Krieger and Kececioglu, 2022c) to compute
the doubly-reachable subgraph, which contains only those hyperedges from the input hypergraph that can
possibly be in any s‚ t-hyperpath. Next, the initial distance-based inequalities require approximate tail-
distances from Hhugin, but to improve running time, the cutting-plane algorithm begins with only the
distance-based inequality given by cut C = fsg. We start execution of Hhugin and the cutting-plane al-
gorithm in parallel, and at each iteration, the cutting-plane algorithm checks if Hhugin has terminated, in
which case it computes the full set of distance-based inequalities using the approximate tail-distances
returned by Hhugin, and adds them to the current constraint set S.

Lastly, at each iteration the cutting-plane algorithm compares the objective function value of its current
solution to the length of Hhugin’s heuristic hyperpath eP, and if they are equal, returns eP (since we then
know eP is optimal, as this objective function value is a lower bound on the length of a shortest hyperpath).

We also made one modification to Hhugin to improve its solution quality, while only slightly increasing
its running time. In the original description of Hhugin (Krieger and Kececioglu, 2021, 2022a), once a
hyperedge is extracted from the heap in the overall while-loop, its in-edge list becomes frozen, and further
hyperedges are not added to it. We changed this rule, so that now the in-edge list for a hyperedge no longer
on the heap can continue to grow as more hyperedges are subsequently extracted.

Source code for this cutting-plane algorithm implementation, including all datasets, is available free for
research use at http://mmunin.cs.arizona.edu (Krieger and Kececioglu, 2022d).

4.2. Comparing suboptimality of alternate methods

Mmunin outperforms the state-of-the-art hypergraph methods for pathway inference via hyperpaths:
both the efficient heuristic for general shortest hyperpaths with cycles, called Hhugin (Krieger and
Kececioglu, 2021, 2022a); and the MILP-based exact algorithm for shortest acyclic hyperpaths (Ritz and
Murali, 2014; Ritz et al., 2017), which we call AcycMILP. We compare these three methods across all
instances from Reactome and NCI-PID.

Table 2 summarizes statistics from this comparison for reachable instances, where an s‚ t-hyperpath
exists. The table reports for how many of these instances a tool found a suboptimal solution, and their
optimality gap on these suboptimal instances, which is the difference between the number of hyperedges in
their suboptimal hyperpath and the shortest hyperpath. (As Mmunin implements an exact algorithm for
fully-general hyperpaths, it is never suboptimal, and its optimality gap is always zero.) When AcycMILP
was suboptimal, it found no solution for a reachable instance, which is indicated by an infinite optimal-
ity gap.
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For all these instances, Mmunin computes an optimal hyperpath in less than 30 minutes, while allowing
cycles for the first time. Mmunin surpasses AcycMILP on the 22 Reactome instances and 38 NCI-PID
instances where all s‚ t-hyperpaths are cyclic, causing AcycMILP to not return any solution. Mmunin
outperforms Hhugin on the 23 NCI-PID instances where Hhugin finds a suboptimal solution.

Notably, Mmunin not only finds an optimal hyperpath for these instances where Hhugin is suboptimal,
it even finishes its computation before Hhugin—showing that Mmunin (without the distance-based
constraints obtained using Hhugin) actually finds an optimal solution for these instances faster than the
heuristic finds a suboptimal solution. In fact, overall, we found that Mmunin is faster than Hhugin on
more than 20% of all instances.

4.3. Performance for computing optimal hyperpaths

Mmunin is typically fast in practice, with a median running time across all instances of under
10 seconds. Table 3 gives performance statistics for computing optimal hyperpaths by Mmunin over all
reachable instances: specifically, the number of hyperedges in the shortest hyperpath, the number of
inequalities in the final ILP, the number of iterations to find an optimal solution, the running time per
iteration, and the total time over all iterations. (Due to inherent randomness in the CPLEX solver we use,
there is some variation in running time even for the same instance.)

The maximum running time across all instances is just under 30 minutes, demonstrating it is now feasible
to find shortest hyperpaths in cellular reaction networks even for large instances with more than 10,000
hyperedges.

The number of hyperedges in the shortest hyperpath tends to be very low, with a median of 3 hyperedges
for both NCI-PID and Reactome, and a maximum of 16 and 17 hyperedges, respectively. This is likely
because, in current practice, the pathways that have been annotated tend to have a small number of
reactions, and they tend to exhibit low overlap with other annotated pathways. As a result, the shortest
hyperpath to any target using only the reactions from one annotated pathway will tend to have a small
number of hyperedges (and any hyperpath outside the annotated pathway would tend to be longer).

The number of iterations for Mmunin to find an optimal solution also tends to be very low—around 2 or
3 iterations—but it can require more than 1,500 iterations. Note that at each iteration, the cutting-plane

Table 2. Suboptimality of Alternate Hyperpath Methods

NCI-PID Reactome

Reachable instances 2,220 2,432
AcycMILP suboptimal 38 22
Hhugin suboptimal 23 0
Mmunin suboptimal (none) (none)

median max median max

AcycMILP optimality gap (1) (1) (1) (1)
Hhugin optimality gap 1 6 0 0
Mmunin optimality gap (0) (0) (0) (0)

Table 3. Performance of MMUNIN

NCI-PID Reactome

Reachable instances 2,220 2,432

median max median max

Hyperedges in shortest hyperpath 3 16 3 17
Final number of inequalities 2,507 11,767 158 7,660
Number of iterations 3 1,598 3 874
Time per iteration (seconds) 2.2 12.4 2.5 12.2
Total time (seconds) 7.4 1,788 8.5 776
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algorithm must solve an ILP containing thousands of variables and inequalities. Even when an instance
requires many iterations, on average each iteration is fast, with a maximum time per iteration around
12 seconds.

The number of inequalities in the final ILP varies widely between instances and between datasets, with
median values of around 2,500 inequalities for NCI-PID and around 150 inequalities for Reactome. The
number of inequalities for an instance is mainly a function of both the size of its doubly-reachable subgraph
(which determines how many structure-based inequalities are in the initial ILP), and the number of
iterations of the cutting-plane algorithm (which strongly affects how many cut-based inequalities are added
to the ILP). The difference in median values between the datasets comes largely from their doubly-
reachable hyperedges, since most instances require very few iterations of the cutting-plane algorithm. The
maximum values of more than 11,000 inequalities for NCI-PID and 7,000 inequalities for Reactome are
on instances where a large number of cutting-plane iterations are needed to find an optimal solution.

4.4. Biological examples

To provide some concrete examples of shortest hyperpaths found by Mmunin, we discuss three bio-
logical instances (of a size that can be readily shown): an instance from NCI-PID, where Mmunin finds a
shorter hyperpath than the heuristic Hhugin; and two instances from Reactome where all s‚ t-hyperpaths
are cyclic, and AcycMILP finds no solution.

The NFATC2/CREM complex. The first example is drawn from the 23 instances in NCI-PID where
Mmunin outperforms Hhugin, as it finds a suboptimal hyperpath. (We chose this particular instance
because the size of its hyperpaths makes them reasonable to draw.) We note that AcycMILP is also
optimal on this instance, as there is a shortest hyperpath that is acyclic.

Figure 2 shows the hyperpaths returned by Mmunin and Hhugin for this example, which consist of
reactions involved in the deactivation of the ‘‘nuclear factor of activated T cells 2’’ (NFATC2) by the
‘‘cAMP response element modulator’’ (CREM). Sources are shown across the top of the figure, and the
target is in the bottom right corner. Hyperedges drawn in a red dash are unique to Mmunin’s hyperpath,
and hyperedges in a green dotted line are unique to Hhugin’s hyperpath, while hyperedges in a solid black
line are common to both hyperpaths. Eight hyperedges that are shared by both pathways have been replaced
in the figure by ellipses, for simplicity. All hyperedges denote biochemical reactions except the hyperedges
from MAPK8 to JUN and from MAPK3 to JUN, which denote the transcription and translation of JUN.
Vertices with a gray fill denote the activated form of a protein. Note that stoichiometry of the reactions is
not considered in our hyperpath formulation, so this hyperpath is valid, even though two copies of NFATC2
are needed in the final reaction.

FIG. 2. Comparison of hyperpaths whose target is the NFATC2/CREM complex. Sources are shown across the top of
the figure, and the target is in the bottom right corner. Hyperedges drawn in dashed red are unique to Mmunin’s
hyperpath, hyperedges in dotted green are unique to Hhugin’s hyperpath, and hyperedges in solid black are common
to both hyperpaths. Eight hyperedges that are shared by both hyperpaths have been replaced by ellipses. Hyperedges
from MAPK8 to JUN and from MAPK3 to JUN denote transcription and translation of JUN. Vertices with gray fill
denote the activated form of a protein.
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Each hyperpath contains hyperedges from the following four NCI-PID pathways: ‘‘Calcium signaling in
the CD4+ TCR pathway,’’ ‘‘RAS signaling in the CD4+ TCR pathway,’’ ‘‘JNK signaling in the CD4+ TCR
pathway,’’ and ‘‘Nongenotropic androgen signaling.’’ The hyperpaths show CREM repressing the activated
form of NFATC2 before forming a ternary complex with NFATC2 and its DNA binding sites, resulting in
the attenuation of transcription of T helper-1-specific cytokine genes in human medullary thymocytes
(Bodor and Habener, 1998).
Hhugin’s hyperpath contains 13 hyperedges, while Mmunin’s hyperpath contains 11 hyperedges,

which is optimal. Notably, hyperedges unique to Mmunin’s hyperpath only use vertices that are common to
both hyperpaths, further simplifying it, and making it a more likely pathway.

The phosphorylated p53 tetramer. The second example was chosen from the 22 instances in
Reactome with no acyclic hyperpath, on which AcycMILP finds no solution. We note that the heuris-
tic Hhugin also finds an optimal hyperpath for this particular instance.

Figure 3 shows the optimal hyperpath returned by Mmunin, which captures the phosphorylation of
‘‘cellular tumor antigen p53’’ (TP53) by ‘‘AMPK-related protein kinase 5’’ (ARK5), causing its activation.
Sources are shown across the top of the figure, and the target is in the bottom right corner. The hyperedges
in dotted blue represent transcription/translation events, and the hyperedge in red shows the cycle in the
hyperpath, where a node in the head of the red hyperedge is in the tail of an earlier hyperedge in the
hyperpath.

This hyperpath shows the transcription and translation of key proteins involved in the formation
of a complex with the TP53 homotetramer. Once this complex is formed, ARK5 is activated by phos-
phorylation, allowing it to directly phosphorylate p53 (Hou et al., 2011), activating p53 and allowing it to
assist in DNA damage repair.

This example from Reactome has more than 1,600 hyperedges in the doubly-reachable subgraph,
making it one of the largest instances. It is also one of the longer cycles for any Reactome instance, with
three hyperedges involved in the cycle. Interestingly, even though this is a large instance, no alternate
hyperpaths exist that reach the target for this instance.

The BMP7/BMPR2/BMPR1A/SMAD6/SMURF1 complex. The third example was also chosen
from the 22 instances in Reactome where all source-sink hyperpaths are cyclic, hence Mmunin out-
performs AcycMILP. Again Hhugin is optimal on these as well.

Figure 4 shows the optimal hyperpath found by both Mmunin and Hhugin for this example, which
represents a signaling pathway resulting in the degradation of the ‘‘bone morphogenetic protein receptors’’
(BMPR2 and BMPR1A) in Reactome (Murakami et al., 2003). Sources are shown across the top of the
figure, and the target is in the bottom right corner. The part of the final hyperedge shown with a dotted line
represents PPM1A acting as a positive regulator of the reaction. The cycle in this hyperpath is shown in red,
and represents the phosphorylation and subsequent dephosphorylation of ‘‘Mothers against decapentaplegic
homolog 1’’ (SMAD1).

FIG. 3. Shortest hyperpath to the phosphorylated p53 tetramer. Sources are shown across the top of the figure, and
the target is in the bottom right corner. The hyperedges in dotted blue represent transcription/translation events. The
hyperedge in red creates a cycle in the hyperpath, as node STK11 in its head occurs in the tail of a prior hyperedge in
the hyperpath.
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The hyperpath for this example shows the formation of many different complexes that include ‘‘bone
morphogenetic proteins’’ (BMP2, BMP7) and their receptors. These receptor complexes are then marked
for ubiquitination and degradation both by SMAD1 and the complex of SMAD6 and ‘‘SMAD-specific E3
ubiquitin protein ligase 1’’ (SMURF1).

This particular example shows how even a short hyperpath can be fairly involved, by sharing many
vertices among its hyperedges in various ways. While this hyperpath has only five hyperedges, most have
tails and heads with multiple vertices, and hence would likely not be captured correctly by ordinary graph-
based methods.

4.5. Accuracy of pathway inference

Mmunin recovers known annotated pathways from Reactome typically with very high accuracy. For
the following pathway inference experiments, we formed new problem instances for a small number of
known pathways in Reactome: namely, all ten pathways from the 22 instances with only cyclic hy-
perpaths where the target appears in only one annotated Reactome pathway{ (and hence there is a unique
true pathway that produces the target). This gave ten instances for the inference experiment.

For each instance, given by a particular Reactome pathway P(, the input hypergraph G contains all
vertices and hyperedges from Reactome; the sources consist of all vertices in G with no incoming
hyperedges in G, and all vertices in pathway P( with no incoming hyperedges from within P(; and the
targets are all vertices in P( with no outgoing hyperedges from within P(. Across these ten instances, the
number of hyperedges in pathway P( has range [2‚ 98], with median [14‚ 17]. We note that all these
instances now contain multiple targets.

For five of these instances, the sink was not reachable from the supersource, due to an unreachable cycle.
(A simple example of such a cycle is when vertex v is in the tail of all in-edges to vertex w and vice versa.)
To reestablish reachability, we manually inspected each unreachable cycle and added vertices to the source
set{ from the cycle that would not normally qualify as sources (since these vertices have incoming
hyperedges). We tried to choose for these new source vertices those that would minimize the number of
reactions that could now be bypassed, since these new sources could now be in the tail of a hyperedge in a
hyperpath before being reached in the head of a prior hyperedge.

FIG. 4. Shortest hyperpath to the BMP7/BMPR2/BMPR1A/SMAD6/SMURF1 complex. Sources are shown across
the top of the figure, and the target is shown at the bottom. The portion of the final hyperedge in dotted red represents
PPM1A acting as a positive regulator of the reaction. The hyperedges in red form a cycle in the hyperpath.

{These ten benchmark pathways are identified by the following names: ‘‘Glycogen Synthesis,’’ ‘‘Hydrocarboxylic
Acid-Binding Receptors,’’ ‘‘Interleukin-37 Signaling,’’ ‘‘Proton/Oligopeptide Cotransporters,’’ ‘‘Regulation of Com-
plement Cascade,’’ ‘‘Sphingolipid Metabolism,’’ ‘‘Tolerance by Mtb to Nitric Oxide Produced by Macrophages,’’
‘‘Transport of Small Molecules,’’ ‘‘Triglyceride Catabolism,’’ and ‘‘Uncoating of the Influenza Virion.’’

{For all ten instances, the specific vertices that were added to the source set are listed in file supplementary_
sources on Mmunin’s website, identified by their Pathway Commons ID. This includes both vertices that contain no
incoming hyperedges from within the known pathway P(, and vertices added to establish reachability of an otherwise
unreachable cycle.
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This resulted in a doubly-reachable subgraph containing up to 3,600 hyperedges for some pathway
inference instances, which is more than double the size of this subgraph for any of our previous single-
target instances. Due to the expansion of this subgraph, the running time of Mmunin on some instances was
significantly longer, taking up to 25 hours to compute an optimal hyperpath (which we investigate further
below).

To evaluate the accuracy of pathway inference on these instances, we compared Mmunin’s inferred
hyperpath eP with the true annotated pathway P( from Reactome for each instance. On five of the
instances eP = P(, meaning Mmunin perfectly recovered the annotated pathway. For the other five in-
stances, eP contained fewer hyperedges than P(, either due to redundant branches in P( (causing eP + P() or
the existence of hyperedges outside P( that more efficiently reach vertices within P( (which is evidence of
potential crosstalk between cellular pathways).

We evaluated the accuracy of recovering the true pathway P( by inferred pathway eP using three
measures: precision, recall, and overlap, which are respectively,

jeP \ P(j
jePj

‚
jeP \ P(j
jP(j

‚
jeP \ P(j

1
2

$
jePj + jP(j

% :

Across the ten instances,

! precision has range [0:56‚ 1], with median [0:9‚ 1];
! recall has range [0:70‚ 1], with median 1; and
! overlap has range [0:62‚ 1], with median [0:95‚ 1].

This experiment shows Mmunin is able to accurately recover known pathways, or possibly discover more
efficient ones.

Factors affecting inference time. The markedly longer running time for some instances of pathway
inference is likely due to a much larger doubly-reachable subgraph. For these instances, we compared
Mmunin’s running time with three features of the instance with which we thought it might share a
correlation: (a) the number of hyperedges in the doubly-reachable subgraph, (b) the number of hyperedges
in the shortest hyperpath, and (c) the number of targets for the instance (since all these instances now have
more than one target, in contrast to our earlier single-target experiments).

Figure 5a–c shows scatterplots comparing running time with these three features. The ten instances can
be naturally separated into two groups by their running time, so we identified the same four instances with
high running time by red discs across the plots, and the same six instances with low running time by blue
triangles.

Interestingly, of these three features, the only one having any correlation with running time is the number
of doubly-reachable hyperedges. The number of targets for an instance, and the length of its shortest
hyperpath, surprisingly seem to have no relation with running time.

4.6. Effect of constraint classes on running time

Our last experiments study the effect of the structure- and distance-based constraint classes—and their
subclasses—on the running time of Mmunin. We first compare running times when excluding separately
each single constraint-subclass, and then compare times when including subclasses together one-by-one
within the cutting-plane algorithm.

4.6.1. Excluding constraint classes. To understand which constraints best contribute to Mmunin’s
running time, we conducted the following exclusion experiment. We separately considered these classes:
the distance-based cuts, the head-hitting constraints, the tail-covering constraints, the target-production
constraint, and the class of cut-inequalities added at each iteration of the cutting-plane algorithm. For each
of these classes, we determined their contribution to Mmunin’s running time by removing that single class
from the initial ILP or from subsequent iterations, and then comparing the resulting running time with the
original time for Mmunin with all classes present. We performed this experiment on the 22 instances from
Reactome with no acyclic hyperpath. We chose this small set of instances because they have diverse
shortest hyperpath lengths and (as shown later) Mmunin’s running time when excluding constraint classes
can be very high. The results of this exclusion experiment are summarized in Table 4.
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FIG. 5. Comparison of Mmunin’s running time to three features of the instances for the pathway inference exper-
iment. The three features are: (a) size of the doubly-reachable edge set, (b) shortest hyperpath length, and (c) number of
targets. Red discs mark the four instances with high running time, while blue triangles mark the six instances with low
running time.

Table 4. Comparing Excluded Constraint Classes

Excluded class none distance-based head-hitting tail-covering target-prod cutting-plane

Not optimal in
24 hours

0/22 3/22 3/22 3/22 0/22 0/22

median max median max median max median max median max median max

Number of
iterations

2 802 2 (1) 112 (1) 11 (1) 2 718 2 893

Time per
iteration (s)

4.2 4.8 4.2 5.6 1.0 4.9 3.0 12.0 4.2 4.7 4.0 4.5

Total time (s) 9.0 1,454 9.1 (1) 56.8 (1) 27.8 (1) 8.7 1,488 8.7 1,208
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We found that the distance-based cuts, head-hitting constraints, and tail-covering constraints contribute
the most to a reasonable running time, as their absence causes a huge slowdown. In reality, rather than
literally excluding all distance-based cuts, to ensure that the cutting-plane algorithm terminates (given
enough time) we must replace the distance-based cuts with the single cut C = fsg. Our implementation of
Mmunin in fact starts with this single cut, but once Hhugin terminates in parallel, all of the distance-based
cuts are then computed and supplied to the cutting-plane algorithm. For many of the easier instances,
Hhugin does not actually terminate before Mmunin, in which case the distance-based cuts never get
added, even when they are not deliberately excluded. For the harder instances, however, the distance-based
cuts, head-hitting constraints, and tail-covering constraints are all necessary for Mmunin to finish within
24 hours. For the easier instances, exclusion of the head-hitting constraints has the most impact, as shown
by the largest increase in median running time and iteration count.

To determine the effect on running time of the cutting-plane inequalities that are source- and sink-
augmented distance-based cuts, we replaced Mmunin’s general separation algorithm with the trivial one
that at each iteration just finds the set R of vertices reachable from s along the active hyperedges of the
current solution x(, and only adds the single cut C = R to the ILP. We found that using this trivial
separation algorithm and excluding the target-production constraint had little effect on running time for
these 22 instances. On the full set of instances from NCI-PID and Reactome, however, the general
separation algorithm and the target-production constraint do improve the running time for the hardest
instances. Unsurprisingly, using the trivial separation algorithm increases the number of iterations needed
to find an optimal hyperpath, likely because fewer cut-based inequalities are added at each iteration.

4.6.2. Including constraint classes. For the second inclusion experiment, we first ranked the con-
straint classes by their effect on running time (from greatest effect to least) based on the outcome of the
previous exclusion experiment, which gave the following order: (a) head-hitting constraints, (b) tail-
covering constraints, (c) distance-based constraints, (d) target-production constraint, and (e) augmented
cutting-planes. Then for each of the 22 cyclic Reactome instances, we initially ran Mmunin without any
constraint classes, followed by including classes together one-by-one in this order, rerunning Mmunin on
including each successive class. For this inclusion experiment, we set a time limit of 48 hours for each run.

The simplest possible version of the cutting-plane algorithm with none of the initial constraint classes
(and the trivial separation algorithm) did not finish within this time limit on any of these instances. When
starting with no initial constraints in the first ILP, the earliest iterations of this simplest cutting-plane
algorithm tend to find current solutions x( with only one active hyperedge, whose tail is a subset of sources;
then current solutions whose active hyperedges are pairs of hyperedges, whose tails are sources; then
current solutions that are triples of such hyperedges; and so on, for successively larger cardinalities, until
exceeding the time limit.

Including just the head-hitting constraints allows Mmunin to now find optimal hyperpaths on eight of
the 22 instances within 48 hours. For these instances, the cutting-plane algorithm still requires a very large
number of iterations to find an optimal solution, with a median of more than 5,000 iterations, and a minimum
time of more than 24 hours. Even though this restricted version of Mmunin can find optimal solutions for
some instances within the limit, further constraint classes are necessary to make it in fact practical.

Its performance when in addition including the tail-covering constraints is similar to its performance
when only the distance-based constraints are excluded. Mmunin finds an optimal hyperpath within
48 hours now for 19 of the 22 instances, with a median of 2 iterations, a median time per iteration of
4 seconds, and a median total time of 10 seconds. This is close to when excluding the distance-based class
likely because excluding the other classes (namely the target-production constraint and the augmented
cutting-planes) does not have a major impact on performance on these instances (as seen earlier in Table 4).

The further addition of the distance-based constraints allows us to finally find optimal solutions on all
22 instances, yet its typical performance is still roughly the same as the preceding version: a median of
2 iterations, a median time per iteration of 4 seconds, and now a median total time of 9 seconds.

The results for adding the final two constraint classes—the target-production constraint and the aug-
mented cutting-planes—are already given in Table 4 under the respective columns ‘‘cutting-plane’’ and
‘‘none.’’ The effect of including these last two classes for these 22 instances is inconclusive: their inclusion
or exclusion does not have a consistent effect on our median and maximum performance criteria.
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In short, the results of this experiment confirm the importance of the head-hitting, tail-covering, and
distance-based inequalities, and indicate that their mutual inclusion allows us to typically find optimal
hyperpaths quickly.

5. CONCLUSION

We have presented the first practical exact algorithm for Shortest Hyperpaths—a generalization of
shortest paths to directed hypergraphs—which employs a cutting-plane-like approach to solve an integer
linear programming formulation, derived from a new graph-theoretic characterization of superpaths, that
for the first time captures fully-general hyperpaths with cycles. Comprehensive experiments on large real-
world cellular reaction networks show we can compute optimal hyperpaths quickly, and that shortest
hyperpaths infer true pathways with high accuracy.

Further research

This opens many directions for further research. We offer some avenues for investigation in combina-
torial optimization, algorithm design, computational biology, and algorithm evaluation.

Studying the superpath polytope. The largest advance in solving Shortest Hyperpaths to optimality
is likely to come from studying an object in combinatorial optimization called the superpath polytope: a
representation of the convex hull of the domain D for our integer linear program—consisting of all binary
vectors that encode the s‚ t-superpaths of a hypergraph—in terms of linear inequalities over real-valued
variables. (The description of domain D given earlier in equation (2) uses linear inequalities over integer-
valued variables.) Even if a full description of the superpath polytope cannot be completely determined,
identifying classes of facet-defining inequalities that lie on the faces of this polytope, and that have an
efficient separation algorithm or a good separation heuristic, should further improve the cutting-plane
approach to Shortest Hyperpaths in practice, by enabling it to solve a series of more computationally-
efficient linear programs.

On a related note, it is surprising how quickly modern solvers such as CPLEX can find optimal solutions
to the series of integer linear programs in our current cutting-plane approach—even on instances with
thousands of hyperedge variables—which suggests the linear programming relaxation of our integer pro-
gram may already tend to be integer-valued in practice.

Accommodating negative edge weights. Our formulation of Shortest Hyperpaths relies on positive
edge weights (but can be extended to nonnegative edge weights through postprocessing as mentioned
toward the end of Section 2), and breaks down for negative edge weights.

This parallels the behavior of shortest paths in ordinary directed graphs, where algorithms like Dijkstra’s for
the special case of nonnegative edge weights are much simpler and more efficient than those for the general
case of arbitrary weights (and in particular negative weights), whose known algorithms differ markedly from
Dijkstra’s. Moreover, shortest paths with negative edge weights can be efficiently solved in ordinary graphs
only because the problem statement permits non-simple paths that can repeatedly use a given cycle, allowing
an algorithm to report there is no best solution once it discovers a reachable negative-weight cycle, which can
be efficiently detected. When shortest paths are required to be simple paths, which effectively corresponds to
requiring solutions be minimal, the problem under negative edge weights becomes NP-complete even for
ordinary graphs, as an algorithm can then be forced to find a longest path (or equivalently, detect a Hamil-
tonian path). In the context of Shortest Hyperpaths, solutions already must be minimal—as hyperpaths are
minimal superpaths—so for negative edge weights the recourse of reporting there is no best solution is never
available (since a shortest hyperpath trivially exists whenever the sink is reachable from the source), hence
an algorithm has to also deal with finding longest hyperpaths.

While our integer program finds a minimal superpath for positive weights, it fails for arbitrary edge
weights. Furthermore, as indicated above, any algorithm for Shortest Hyperpaths that handles negative
weights can be forced to solve a generalization of Longest Paths to hypergraphs. Whether there is a more
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general algorithm that can in practice find optimal hyperpaths while accommodating negative edge weights
is open, and will require a much different design than our current one.

Incorporating negative regulation. More directly relevant to computational biology is incorporating
negative regulation when finding shortest hyperpaths. A negative regulator is a molecule that inhibits a
particular reaction from occurring. Consequently, a hyperpath whose reactions create (as output products)
negative regulators of its own reactions is not a suitable solution for producing targets from sources (as it
inhibits itself from proceeding).

Krieger and Kececioglu (2022b) consider negative regulators in the context of finding optimal factories
in metabolic networks, and introduce the notion of non-interference under first-order negative regulation—
where a factory does not directly produce negative regulators of its own reactions—and second-order
negative regulation—where in addition negative regulators of a factory’s reactions are not indirectly
produced downstream by reactions outside the factory.

Their approach to finding optimal factories under first- and second-order negative regulation provides a
general technique that applies to integer-programming-based methods (through adding side-constraints and
generating next-best solutions). Exploring whether this technique also enables finding optimal hyperpaths
under first- and second-order negative regulation seems promising.

Collecting benchmark hypergraphs. Our experiments evaluating the cutting-plane approach im-
plemented by Mmunin in Section 4.5 suggest its hardest instances arise from growth in the size of the
doubly-reachable subgraph. While comprehensive evaluation of Mmunin over all single-target instances
from the two available cellular reaction databases shows it can quickly find optimal hyperpaths in current
reaction networks, its performance will inevitably degrade for even larger future networks, due to the
inherent difficulty of solving Shortest Hyperpaths via integer linear programming.

Are there other classes of real-world directed hypergraphs (in contrast to simulated instances from
random hypergraph generators which can lack the challenging structure of real instances) besides cellular
reaction networks, for evaluating shortest hyperpath solvers, that contain harder structure (such as larger
doubly-reachable subgraphs), and naturally arise from applications needing solution? Collecting such
challenging benchmark hypergraphs would be a valuable contribution to the evaluation and development of
improved hyperpath solvers, and likely other hypergraph algorithms as well.

Clearly there are many avenues for future investigation.
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