
ar
X

iv
:2

21
0.

16
37

6v
1 

 [m
at

h.
A

P]
  2

8 
O

ct
 2

02
2

A HEINTZE–KARCHER INEQUALITY WITH FREE BOUNDARIES
AND APPLICATIONS TO CAPILLARITY THEORY

MATIAS G. DELGADINO AND DANIEL WESER

Abstract. In this paper we analyze the shape of a droplet inside a smooth container. To
characterize their shape in the capillarity regime, we obtain a new form of the Heintze–
Karcher inequality for mean convex hypersufaces with boundary lying on curved sub-
strates.

1. Introduction

1.1. The Heintze-Karcher inequality and Alexandrov’s theorem. Given a bounded
open set Ω ⊆ Rn+1 with smooth boundary ∂Ω and positive scalar mean curvature HΩ, the
Heintze-Karcher inequality states that

(n+ 1)|Ω| ≤
∫

M

n

HΩ
, (1.1)

with equality if and only if Ω is a Euclidean ball. Here |Ω| denotes the volume of Ω, while
HΩ is computed with respect to the outer unit normal νΩ to Ω.

The Heintze-Karcher inequality is closely related to Alexandrov’s theorem, which states
that if HΩ is constant (and Ω is bounded and connected), then Ω is a Euclidean ball.
Indeed, if HΩ is constant, then by applying the divergence theorem twice (once in Ω and
once tangentially to ∂Ω) to the identity vector field one finds

(n + 1)|Ω| =
∫

Ω
div(x) =

∫

∂Ω
(x · νΩ) =

1

H∂Ω

∫

∂Ω
(x · νΩ)H∂Ω

=
1

H∂Ω

∫

∂Ω
div∂Ω(x) =

nHn(∂Ω)

H∂Ω
=

∫

∂Ω

n

H∂Ω
,

where Hn denotes the n-dimensional Hausdorff measure in Rn+1 and div∂Ω the tangential
divergence with respect to ∂Ω. Thus the relation between (1.1) and Alexandrov’s theorem
is that one can prove the latter by characterzing the equality cases in (1.1).

This interesting connection has motivated many authors to investigate the Heintze-
Karcher inequality (and variants of it) for proving rigidity theorems. Two proofs of the
Heintze-Karcher inequality that are particularly relevant for the present study are the one
by Montiel and Ros [MR91] (see Lemma 6.1 and Remark 6.2 below; this proof is also
related to the argument recently used by Brendle [Bre13] to extend Alexandrov theorem
to a large class of warped product manifolds) and the one by Ros [Ros87]. Ros’ argument
is based on the study of the torsion potential u of Ω, namely, the solution to the problem

{−∆u = 1 in Ω ,

u = 0 on ∂Ω .

As a by-product of this proof, one sees that when equality holds in (1.1), then −∇2u =
(n + 1)−1 Id in Ω and there exists λ > 0 such that |∇u| = −∇u · νΩ = λ on ∂Ω. In
particular, the connected components of Ω are balls of the same radius, which can be
computed in terms of λ by exploiting the Dirichlet condition on u.

The analysis of this inequality found an application in a basic question of capillarity
theory, namely, the geometric descriptions of critical points of the Gauss energy of a
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Figure 1.1. The setting for the Heintze-Karcher inequality on an ideal sub-
strate.

liquid droplet in the capillarity regime. Indeed, using the Heintze-Karcher inequality, the
pioneering work of [CM17] showed that if a smooth set has mean curvature uniformly close
to a constant, then the set is almost a finite union of tangent balls of equal radius. In
[DM19], Alexandrov’s theorem was revisited for non smooth sets to account for bubbling
phenomenon. More specifically, sets of finite perimeter with distributional mean curvature
equal to a constant are shown to be the union of disjoint and tangent balls of equal
radius. This result was later quantified for smooth sets in [JN20] with the closeness of
the mean curvature to a constant measured in Ln(∂Ω), which allowed the authors to show
exponential convergence of the volume preserving mean curvature flow to a union of balls
in R3. For the anisotropic generalization of these results, see [DMMN18, DRKS20].

1.2. The Heintze-Karcher inequality on an ideal substrate. Motivated by the study
of droplets on a substrate, we look for a natural extension of the Heintze-Karcher in-
equality from the case of smooth sets in Rn+1 to that of subsets Ω of the half-space
H = {xn+1 > 0}. As depicted in Figure 1.1, we consider sets Ω ⊆ {xn+1 > 0} such that
M = ∂Ω ∩ {xn+1 > 0} is a smooth hypersurface with boundary, whose set of boundary
points bd(M) satisfies bd(M) = M ∩ {xn+1 = 0}. We endow M with the orientation νM
defined by νΩ, and, after defining for each x ∈ bd(M) the angle θ(x) through

νM(x) · νH = cos θ(x) ,

we assume the non-degeneracy condition (related to (1.8)) that θ(x) ∈ (0,π) for every
x ∈ bd(M). In particular, the wetted region Σ = ∂Ω ∩ {xn+1 = 0} is a smooth set with
bd(Σ) = bd(M), and one can decompose

νM (x) = cos θ(x)νH + sin θ(x) νΣ(x) ∀x ∈ bd(M) ,

where νΣ denotes the outer unit normal to Σ in {xn+1 = 0}.
A basic difficulty here is understanding what form the new Heintze-Karcher inequality

should take; indeed, the right-hand side of (1.1) makes no sense, as HΩ becomes a measure
on bd(M). The answer is found by looking at the Montiel-Ros proof [MR91]. Exploited in
this setting, their argument rather naturally suggests the discussion of the problem under
the additional assumption that

either θ(x) ∈ (0,π/2] or θ(x) ∈ [π/2,π) for every x ∈ bd(M).

Although this may look a bit artificial, this kind of restriction is actually natural from the
physical point of view, as it amounts to consider the case of hydrophobic (0 < θ ≤ π/2)
or hydrophilic (π/2 ≤ θ < π) substrates. It is perhaps not surprising, then, that one finds
two different generalizations of the Heintze-Karcher inequality (1.1), which we collectively
call the Heintze-Karcher inequalities on an ideal substrate:
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Figure 1.2. In the hydrophobic case, the “pyramid” Λ is contained inH . Notice
that Λ may not be contained in Ω. When Ω is a ball which intersects ∂H below
its equator (picture on the top right corner), then Λ is the cone with vertex at the
center of the ball, spanned over the wetted region.
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Figure 1.3. In the hydrophilic case, Λ is contained in {xn+1 < 0}, and thus it
is automatically disjoint from Ω. In this regime the optimal case is when Ω is a
ball intersecting ∂H above its equator. As in the hydrophobic case, Λ can then
be described as the cone with vertex at the center of the ball, spanned over the
wetted region.

Theorem 1.1 (Heintze-Karcher inequality on an ideal substrate). If Ω ⊆ H = {xn+1 > 0}
is a bounded connected open set such that M = H ∩ ∂Ω is a hypersurface with boundary
satisfying the hypotheses (h1)–(h4) from Section 2, then

(n+ 1)
(

|Ω|− |Λ|
)

≤
∫

M

n

HM
in the hydrophobic case ,

(n+ 1)
(

|Ω|+ |Λ|
)

≤
∫

M

n

HM
in the hydrophilic case ,

(1.3)

where in the hydrophobic case

Λ =
{

(z, t) ∈ Σ× [0,∞) : 0 ≤ t < d(z, ∂Σ) tan θ(P∂Σ(z))
}

, (1.4)

and in the hydrophilic case

Λ =
{

(z, t) ∈ Σ× (−∞, 0) : d(z, ∂Σ) tan θ(P∂Σ(z)) ≤ t ≤ 0
}

, (1.5)

where P∂Σ : Σ → ∂Σ is the projection onto the boundary.
In both cases, equality holds in (1.3) if and only if Ω = Br(t en+1) ∩H for some r > 0

and |t| < r.
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The sets Λ are depicted in Figures 1.2 and 1.3, which illustrate the hydrophobic and
hydrophilic cases, respectively. The Heintze-Karcher inequalities on a substrate are both
sharp, and only a ball meeting ∂H orthogonally (θ ≡ π/2) is an equality case for both
inequalities.

1.3. Droplets in a container. We now describe the main focus of this paper, the sessile
or pendant droplet in capillarity theory. For more details, we refer any interested reader to
[Fin86] for a classical overview of this problem. We consider the Gauss energy of a droplet
of fixed volume m sitting in a container: if K ⊆ Rn+1 an open set with C2-boundary
denotes the container and the open set Ω ⊆ K denotes the region occupied by the droplet,
then the Gauss energy of Ω is given by

F(Ω) = P (Ω;K) +

∫

∂Ω∩∂K
σ dHn +

∫

Ω
g(x) dx with |Ω| = m fixed. (1.6)

where m > 0 is a given volume parameter, the function g : K → R is the potential energy
density, and σ : ∂K → [−1, 1] is the relative adhesion coefficient, which measures the
relative mismatch between the surface tension of the liquid/air interface K ∩ ∂Ω and the
liquid/solid interface ∂Ω ∩ ∂K. Typically, one sets g(x) = g0 ρxn+1, where g0 is Earth’s
gravity and ρ the density of on the liquid. Capillarity phenomena are characterized by the
dominance of the surface tension energy, that is ofHn(K∩∂Ω)+

∫

∂Ω∩∂K σ over the potential
energy

∫

Ω g. This is definitely the case when the volume parameter m is small enough in
terms of g, see (5.3) for the expression of the energy after scaling by the volume. Although
for mathematical simplicity the relative adhesion coefficient σ is sometimes assumed to be
constant, several relevant physical phenomena such as hysteresis and contact line pinning
can be explained by local inhomogeneities of σ. Beyond the classical reference [HM77],
we refer the reader to [CM07a, CM07b] for a modern homogenization approach to rapidly
oscillating σ.

In this work, we address the description of the critical points of F when m is small.
This problem leads to a question related to the one considered in [CM17]. To explain this
point, let us say that a bounded set Ω is a critical point of (1.6). If M = K ∩ ∂Ω is a
smooth hypersurface with boundary, then the Euler-Lagrange equations are the following:

HΩ(x) + g(x) = λ for every x ∈ int (M) , (1.7)

νM (x) · νK = σ(x) for every x ∈ bd(M) . (1.8)

where bd(M) = M ∩ ∂K and int (M) = ∂Ω ∩ K. Condition (1.8) is known as Young’s
law, and it has been formulated here by taking νM to be the orientation of M obtained by
continuously extending νΩ from int (M) to bd(M). Condition (1.7) is the Euler-Lagrange
equation of the perimeter, and λ is a Lagrange multiplier that arises from the volume
constraint.

In the ideal case when g = 0 and σ ≡ σ0, then M is a constant mean curvature
hypersurface contained in K whose boundary meets ∂K at a constant angle. Wente’s
theorem [Wen80], which was originally obtained by exploiting the moving planes method,
shows that when ∂K is flat then M is a spherical cap. We also mention [HHW20] for the
state of the art on the moving planes method with minimal regularity requirements. When
g is non-trivial and |Ω| is small, we are back to a problem similar to the one considered
in [CM17], with the added difficulties of having to deal with a surface with boundary
and almost constant contact angle. In [MM16], this problem was addressed for the case
of global minimizers, showing that as m → 0+ global minimizers converge, up to a re-
scaling, to a ball intersected with a half-space. In this work, we extend this result to local
minimizers of (1.6), which we define as follows:

Definition 1.2. A set of locally finite perimeter Ω ⊆ K of volume |Ω| = m is said to be a
volume constrained local minimizer (VCLM) with diameter ε0 > 0 of the Gauss capillarity
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energy if
FK,σ,g(Ω) ≤ FK,σ,g(Ω̃)

for every Ω̃ ⊆ K satisfying |Ω̃| = m and diam(Ω̃△Ω) < ε0m
1

n+1 .

Analogous to the global minimizer case, our result is that as m → 0+, up to re-scaling,
local minimizers converge to a single ball intersected with the half-space {xn+1 > 0}.

Theorem 1.3. Consider a fixed compact container K ⊆ Rn+1 with C2-boundary and a
Lipschitz regular hydrophilic adhesion coefficient σ : ∂K → (−1, 0). Fix constants C > 1
and ε0 > 0. For each m > 0, we consider the family Gm,ε0,C of smooth connected sets
which are volume constrained local minimizers of FK,σ,g for diameter ε0 and volume m
and which satisfy

• P (Ωm;K) ≤ Cm
n

n+1 ,

• diam(Ωm) ≤ Cm
1

n+1 ,

• Hn(Σm) ≥ C−1m
n

n+1 .

Then, we have that

lim
m→0+

sup
Ωm∈Gm,ε0,C

inf
x0,Q,θ∗

m−1|Ωm△(m
1

n+1 (x0 +Q[Bθ∗ ]))| = 0, (1.9)

where Bθ∗ is the ball which intersects {xn+1 = 0} with angle θ∗ ∈ (π/2,π) and has volume
|Bθ∗ ∩ {xn+1 > 0}| = 1, and Q[Bθ∗ ] is a rigid motion of Bθ∗.

Remark 1.4. We note that for n = 2 local minimizers are regular, see [Tay77, PM15].

Remark 1.5. The convergence in (1.9) is actually stronger, see (4.8) in Theorem 1.6.

To obtain this characterization, we prove a compactness result for Wente’s theorem.
The proof of the compactness theorem occupies the bulk of this paper.

1.4. Compactness. To prove Theorem 1.3, we will re-scale the problem so that the re-
scaled sets have unit volume. Due to the C2-regularity of the container, the boundary of
its re-scaling will become flat in the limit. Consequently, our compactness theorem takes
the following (simplified) form (see Section 4 for the precise statement):

Theorem 1.6. Let {Kl}l∈N be a sequence of connected open sets with connected C2-
boundaries which converge to the half space {xn+1 > 0} in the following sense:

∥Al∥C0
loc(∂Kl)

→ 0, ∥en+1 ·νKl
∥C0

loc(∂Kl)
→ 0 and ∥x·νKl

∥C0
loc(∂Kl)

→ 0 , (1.10)

where Al is the second fundamental form of ∂Kl.
Let {Ωl}l∈N be a sequence of connected open sets such that their boundaries {Ml}l∈N

satisfy hypotheses (h1)-(h4) from Section 2. If there exists a positive constant λ0 > 0
such that

∥Hl − λ0∥C0(Ml)
→ 0 , (1.11)

a fixed angle θ0 ∈ (π/2,π) such that

∥θl − θ0∥C0(bd(Ml)) → 0 , (1.12)

and a bounded set of finite perimeter Ω∞ ⊆ {xn+1 > 0} such that

P (Ωl;Kl) → P (Ω∞; {xn+1 > 0}) and |Ωl∆Ω∞| → 0, (1.13)

then Ω∞ is equal to the finite union of disjoint tangent balls of radius n/λ0 intersected
with {xn+1 > 0} such the that balls in Ω∞ which intersect the hyperplane {xn+1 = 0} do
so with contact angle θ0. Moreover, the wetted regions converge in the following sense:

lim
l→∞

|Hn(Σl)−Hn(Σ∞)|+ |Hn−1(∂Σl)−Hn−1(∂Σ∞)| = 0 . (1.14)
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The proof of Theorem 1.6 follows from deriving a Heintze-Karcher-like inequality (see
Proposition 3.3)

|Ω|− γHn(Σ)

n+ 1

(
∫

M

n

HM
dHn − (n+ 1)

(

|Ω|− γHn(Σ)
)

)

+ 2(n+ 1)ε

{
∫

M

dHn

HM

(

|Ω|
n+ 1

+ 4(d2Ω + γ2)(|Ω|+ γHn(Σ))

)

+max
1

HM
(|Ω|− γHn(Σ))2

}

≥ 0

(1.15)

by utilizing an appropriately modified torsion potential
⎧

⎪

⎨

⎪

⎩

−∆u = 1 in Ω

u = 0 on M

∂νKu = γ on Σ ,

(1.16)

where

γ = − n

n+ 1

Hn(Σ)
∫

∂Σ tan θ(x) dHn−1(x)
, (1.17)

see also [JXZ22] for the inequality in the flat setting. Although this the guiding principle of
the proof in [CM17], this is where the similarities with our proof end. The mixed boundary
conditions in (3.6) made obtaining uniform Lipschitz estimates impossible at the present
time. In fact, the need to restrict to the hydrophilic regime θ ∈ (π/2,π) is due to the lack
of C1-regularity in the hydrophobic case, see Remark 3.1 and Lemma 3.2. We sidestep
these difficulties by utilizing varifold convergence of the boundaries and density estimates
to imply Hausdorff convergence of the boundaries. The characterization of the limit set
as a union balls follows from showing that the case of equality in the Heintze-Karcher-like
inequality (1.15) is obtained in the limit. In fact, we can show the following quantitative
inequality:

∣

∣

∣

∣

(n + 1)(|Ω| − γHn(Σ))−
∫

M

n

HM
dHn

∣

∣

∣

∣

≤ C

(

ε+ ∥θ − θ0∥C0(∂Σ) +
∥HM − λ∥C0(M)

λ

)(

dΩ +
1

λ

)

Hn(M),

where γ is defined in (3.3).

1.5. Organization of the paper. Section 2 sets the general notation for the rest of the
paper. Section 3 contains all the necessary background for the proof of Theorem 1.6, which
can be found in Section 4. Sections 5 and 6 prove Theorems 1.3 and 1.1, respectively.

2. Hypotheses and Notation

Let n ≥ 2, and denote by K ⊆ Rn+1 an open set with C2-boundary. We will consider
non-empty bounded connected open sets Ω ⊆ K with finite perimeter, and we will denote
by νΩ the measure-theoretic outer unit normal to Ω (which agrees with the classical one
if the ∂Ω is of class C1). We assume that

M = ∂Ω ∩K

is a smooth hypersurface with boundary in Rn+1. We denote by bd(M) and by int (M) the
boundary and the interior points of M , respectively, and make the following assumptions:

(h1): bd(M) is non-empty and contained in ∂K, that is

bd(M) = M ∩ ∂K int (M) = M ∩K = ∂Ω ∩K .

6



In particular, νΩ is classically defined on M ∩K = K ∩ ∂Ω, and an orientation νM of M
can be defined by setting

νM (x) = νΩ(x) ∀x ∈ int (M) ,

νM (x) = lim
y∈M∩K
y→x

νΩ(y) ∀x ∈ bd(M) .

(h2): if we denote by HM the scalar mean curvature of M with respect to νM , then

HM > 0 on M .

(h3): if we define θ : bd(M) → [0,π] by setting

cos θ(y) = νM (y) · νK ∀x ∈ bd(M) ,

then

θ(x) ∈ (0,π) ∀x ∈ bd(M) .

In particular, ∂Ω ∩ ∂K is a smooth hypersurface in Rn+1, Σ := int (∂Ω ∩ ∂K) is an open
set with smooth boundary in ∂H = Rn × {0}, and

bd(M) = ∂Σ ,

where ∂Σ denotes boundary of Σ in ∂H, whose outer unit normal is denoted by νΣ.

(h4): denoting by θmin and θmax the extreme values of θ on bd(M), we shall assume that

either [θmin, θmax] ⊆ (0,π/2) (hydrophobic substrate) ,

or [θmin, θmax] ⊆ (π/2,π) (hydrophilic substrate) .

With the above notation in force, for every x ∈ bd(M) one has

νM (x) = cos θ(x)νK + sin θ(x)νΣ(x) ,

νbd(M)(x) = sin θ(x)νK − cos θ(x)νΣ(x) , (2.1)

where νbd(M) denotes the outer normal to bd(M) with respect to M .

3. Torsion potential with a substrate

In this section, we will assume hypotheses (h1)–(h4) from Section 2 and, per the
discussion in the Introduction, we will assume further that the substrate is hydrophilic
and the container is almost flat. The precise definitions are as follows:

Hydrophilic: Denoting by θmin and θmax the extreme values of θ on bd(M), we shall
assume that there exists δ0 > 0 such that

[θmin, θmax] ⊆ (π/2 + δ0,π).

Almost Flatness: There exists ε≪ 1 such that, up to rotation and translation

∥A∂K∥C0(Σ) < ε, ∥1 + en+1 · νK∥C0(Σ) < ε, and ∥x · νK∥C0(Σ) < ε|x|. (3.1)

Remark 3.1. While Almost Flatness naturally arises from the proof of Theorem 1.3,
we need to assume we are in the Hydrophilic regime due to the fact that the torsion
potential fails to be C1(Ω) in the hydrophobic regime, see Lemma 3.2 below. The regularity
of the torsion potential is essential to justify Reilly’s identity, see Lemma 3.5 below.
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We define the torsion potential of Ω to be the unique solution u ∈ C2(Ω ∪ Σ) ∩ C0(Ω)
to the mixed boundary value problem

⎧

⎪

⎨

⎪

⎩

−∆u = 1 in Ω

u = 0 on M

∂νKu = γ on Σ,

(3.2)

where

γ = − n

n+ 1

Hn(Σ)
∫

∂Σ tan θ(x) dHn−1(x)
. (3.3)

Existence, uniqueness, and regularity follow from [Lie86, Theorem 1]. Next, we show that
in the Hydrophilic regime one can prove additional regularity of the torsion potential
and that in the Almost Flatness regime one can control its L∞-norm.

Lemma 3.2. Under the hypothesis of Section 2, assume further that the substrate is
Hydrophilic. Then, the unique solution u ∈ C2(Ω ∪ Σ) ∩ C0(Ω) to (3.6) additionally
satisfies

u ∈ C1(Ω) and u > 0 in Ω . (3.4)

Moreover, if Σ satisfies Almost Flatness with ε small enough then

∥u∥C0(Ω) ≤ 4(d2Ω + γ2) . (3.5)

Proof. The C1-regularity of u follows directly from [AK81, Thm. 1] after using a standard
argument to locally straighten the boundary of ∂Ω.

We now show that u ≥ 0 by showing that its minimum is achieved on ∂Ω ∩K, where
u vanishes. Indeed, the minimum can not be achieved in the interior by super harmonic-
ity, and the minimum of u cannot be achieved on Σ by applying Hopf’s lemma, since
Hydrophilic implies

∂νu(x) = γ ≥ 0 .

To show (3.5), consider v ∈ C2(Ω ∪Σ) ∩C1(Ω) given by

v(x) := u(x) +
|x|2

2(n+ 1)
+
γ + ε

n+1dΩ

1− ε
xn+1 ,

where ε is given by the Almost Flatness hypothesis. Then, v is the unique solution to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∆v = 0 in Ω

v(x) = |x|2

2(n+1) +
γ+ ε

n+1
dΩ

1−ε xn+1 on M

∂νKv = γ + 1
n+1x · νK +

γ+ ε
n+1

dΩ
1−ε en+1 · νK on Σ,

(3.6)

By the Almost Flatness hypothesis, we have that

|x · νK | ≤ εdΩ and en+1 · νK ≤ −(1− ε),

which implies that
∂νKv ≤ 0 on Σ.

By harmonicity and Hopf’s lemma, we have that v satisfies

sup
Ω

u−2(d2Ω+γ2) ≤ sup
Ω

v ≤ sup
M

v = sup
x∈M

( |x|2

2(n + 1)
+
γ + ε

n+1dΩ

1− ε
xn+1

)

≤ 2(d2Ω+γ
2) .

Thus, (3.5) holds. !

The main point of this section is to prove Propositions 3.3 and 3.4, which will be
fundamental in the proof of our main compactness theorem.
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Proposition 3.3. Under the hypothesis of Section 2, assume further that the substrate is
Hydrophilic, that Σ satisfies Almost Flatness with ε small enough, and that the mean
curvature HM is bounded away from zero. Then,

|Ω|− γHn(Σ)

n+ 1

(
∫

M

n

HM
dHn − (n+ 1)

(

|Ω|− γHn(Σ)
)

)

+ 2(n+ 1)ε

(
∫

M

dHn

HM

(

|Ω|
n+ 1

+ 4(d2Ω + γ2)(|Ω|+ γHn(Σ))

)

+max
1

HM
(|Ω|− γHn(Σ))2

)

≥ (1− 2(n+ 1)ε)

∫

M

dHn

HM

∫

Ω

(

|∇2u|2 − (∆u)2

n+ 1

)

dx

+

∫

M

dHn

HM

∫

M
|∇u|2(HM − 2(n+ 1)ε)dHn −

(

1− 2(n + 1)εmax
1

HM

)(
∫

M
|∇u|dHn

)2

≥ 0 . (3.7)

Proof of Proposition 3.3. By Lemma 3.5 and Lemma 3.6 we have that

|Ω|− γHn(Σ)

n+ 1

(
∫

M

n

HM
dHn − (n+ 1)

(

|Ω|− γHn(Σ)
)

)

≥
∫

M

dHn

HM

∫

Ω

(

(1− 2(n + 1)ε)|∇2u|2 − (∆u)2

n+ 1

)

dx

+

∫

M

dHn

HM

∫

M
|∇u|2(HM − 2(n+ 1)ε)dHn −

(
∫

M
|∇u|dHn

)2

.

The first inequaliy in (3.7) now follows by using that (∆u)2 = 1 and the divergence
Theorem to obtain

(
∫

M
|∇u|

)2

= (|Ω|− γHn(Σ))2.

To obtain the positivity we notice that by Cauchy-Schwarz

inf
HM − C(n)ε

HM

(
∫

M
|∇u|

)2

≤

(

∫

M
|∇u|

√

HM − C(n)ε√
HM

)2

≤
∫

M

1

HM

∫

M
|∇u|2(HM−C(n)ε),

with C(n) = 2(n+ 1). !

Proposition 3.4. Under the hypothesis of Section 2, assume further that the substrate is
Hydrophilic with constant δ0, that Σ satisfies Almost Flatness, and that ε, ∥θ− θ0∥C0

and
|HM−λ|C0

λ are small enough. Then, we have the bound
∣

∣

∣

∣

(n+ 1)(|Ω|− γHn(Σ))−
∫

M

n

H
dHn

∣

∣

∣

∣

≤ C(δ0)

(

ε+ ∥θ − θ0∥C0(∂Σ) +
|HM − λ|C0

λ

)(

dΩ +
1

λ

)

Hn(M) ,

where γ is as in (3.3).

Proof of Proposition 3.4. We consider the vector field X = x, and we apply the divergence
theorem to obtain

(n+ 1)|Ω| =

∫

M
x · ν dHn +

∫

Σ
x · νV dHn . (3.8)

9



By Almost Flatness, we have
∣

∣

∣

∣

∫

Σ
x · νV dHn

∣

∣

∣

∣

≤ εdΩHn(Σ) ,

which will become a part of the remainder. For the first term in (3.8), the tangential
divergence theorem yields the following identity:
∫

M
x · ν dHn =

n

λ
Hn(M) +

1

λ

∫

∂Σ
x · νMco dHn−1 +

∫

M

(

1− HM

λ

)

(x · ν) dHn . (3.9)

We notice the last term of (3.9) can be lumped into the remainder
∣

∣

∣

∣

∫

M

(

1− HM

λ

)

(x · ν) dHn

∣

∣

∣

∣

≤ dΩHn(M)
|HM − λ|C0

λ
.

For the second term of (3.9), we use the almost constant angle condition to obtain the
identity
∫

∂Σ
x · νMco dHn−1 = − cos(θ0)

∫

∂Σ
x · νΣ dHn−1 +

∫

∂Σ
(cos(θ0)− cos(θ))x · νΣ dHn−1

+

∫

∂Σ
sin(θ)x · νV dHn−1 . (3.10)

The last two terms can be lumped into the remainder by the bounds
∣

∣

∣

∣

∫

∂Σ
(cos(θ0)− cos(θ))x · νΣ dHn−1

∣

∣

∣

∣

≤ ∥θ − θ0∥C0(∂Σ)dΩHn−1(∂Σ)

and
∣

∣

∣

∣

∫

∂Σ
sin(θ)x · νV dHn−1

∣

∣

∣

∣

≤ εdΩH
n−1(∂Σ).

For the first term in (3.10), we can use the tangential divergence theorem on Σ to obtain
∫

∂Σ
x · νΣ dHn−1 = nHn(Σ)−

∫

Σ
H∂Kx · νV dHn,

and we can bound
∣

∣

∣

∣

∫

Σ
H∂Kx · νV dHn

∣

∣

∣

∣

≤ ε2dΩHn(Σ)

Putting all the previous identities together, we obtain that there exists a constant depend-
ing on dΩ, Hn(M), ∥HΣ∥C0 and Hn−1(∂Σ), such that
∣

∣

∣

∣

(n+ 1)|Ω|+ cos(θ0)nHn(Σ)

λ
− nHn(M)

λ

∣

∣

∣

∣

≤ εdΩ

(

2Hn(Σ) +
Hn(∂Σ)

λ

)

+ dΩHn(M)
|HM − λ|C0

λ
+ ∥θ − θ0∥C0(∂Σ)dΩ

Hn−1(∂Σ)

λ
.

(3.11)

Next, using the mean curvature deficit we can bound the difference
∣

∣

∣

∣

nHn(M)

λ
−
∫

M

n

H
dHn

∣

∣

∣

∣

≤ ∥H − λ∥C0

λ

∫

M

n

H
dHn ≤ ∥H − λ∥C0

λ
2n

Hn(M)

λ
,

where we have assumed that the mean curvature deficit is small enough.
Using Lemma 3.7, we have

∣

∣

∣

∣

cos(θ0)nHn(Σ)

λ
− (n+ 1)γ0Hn(Σ)

∣

∣

∣

∣

≤ cot θ0

(

6

sin(θ0)
(ε+ ∥θ − θ0∥C0) +

∥H − λ∥C0

λ

)

Hn(M)Hn(Σ)

Hn−1(∂Σ)
,
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where

γ0 =
n

n+ 1

Hn(Σ)

tan(θ0)Hn−1(∂Σ)
.

Using that θ is bounded away from π/2 by the hypothesis Hydrophilic, we have the
bound

|(n+ 1)γ0Hn(Σ)− (n+ 1)γ| ≤ C(δ0)
Hn(Σ)2

Hn−1(∂Σ)
∥θ − θ0∥C0 .

Finally, combining the above inequalities with the bound on Hn(∂Σ) from Lemma 3.7, we
obtain the bound in the statement of the Proposition. !

3.1. Supporting lemmas. In this section, we develop the lemmas used in the proofs of
Propositions 3.3 and 3.4. We start by exploiting the boundary regularity of the torsion
potential u in the hydrophilic regime (3.4) to prove a Reilly’s-type identity.

Lemma 3.5. Under the hypothesis of Section 2, assume further that the substrate is
Hydrophilic. Then, u satisfies the identities

n

n+ 1
(|Ω|− γHn(Σ)) +

∫

Ω

(∆u)2

n+ 1
− |D2u|2 =

∫

M
(uν)

2H +

∫

Σ
γ2H∂K +A∂K [∇Σu,∇Σu] ,

(3.12)
and

|Ω|− γHn(Σ)

n+ 1

(
∫

M

n

H
− (n+ 1)

(

|Ω|− γHn(Σ)
)

)

=

∫

M

1

H

∫

Ω

(

|∇2u|2 − (∆u)2

n+ 1

)

−
(
∫

M
|∇u|

)2

+

∫

M

1

H

(
∫

M
|∇u|2H +

∫

Σ
γ2H∂K +A∂K [∇Σu,∇Σu]

)

. (3.13)

Proof. We re-write the following expression as a divergence:

(∆u)2 − |D2u|2 = ∇ · (∇u∆u−D2u ·∇u) .

Hence, by using −∆u = 1, we have

n

n+ 1
|Ω|+

∫

Ω

(∆u)2

n+ 1
− |D2u|2 =

∫

∂Ω
uν∆u−D2u[∇u, ν] .

On M , we can use Reilly’s identity. Indeed, because u = 0 on M and ∇u = uνν, we have
that pointwise on M

uν∆u−D2u[∇u, ν] = uν

n
∑

i=1

D2u[τi, τi] = uν∆Mu+H(uν)
2 = H(uν)

2 ,

where {τi}ni=1 is a basis of the tangent space and ∆M is the Laplace-Beltrami operator on
M . Therefore,

∫

M
uν∆u−D2u[∇u, ν] =

∫

M
H(uν)

2 . (3.15)
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Next, given a point p ∈ Σ and a basis {τi}ni=1 for TpΣ we find pointwise

uν∆u−D2u[∇u, ν]

= uν

{

n
∑

i=1

D2u[τi, τi] +D2u[ν, ν]

}

−

{

n
∑

i=1

⟨∇u, τi⟩D2u[τi, ν] + ⟨∇u, ν⟩D2u[ν, ν]

}

= uν

n
∑

i=1

D2u[τi, τi] −
n
∑

i=1

⟨∇u, τi⟩D2u[τi, ν]

= uν ∆Σu + H (uν)
2 −

n
∑

i=1

⟨∇u, τi⟩D2u[τi, ν] . (3.16)

We now compute the Hessian term in the sum to be

D2u[τi, ν] = ⟨Dτi∇u, ν⟩
= Dτi⟨∇u, ν⟩ − ⟨∇u,Dτiν⟩
= 0 − ⟨∇Σu,Dτiν⟩ − uν⟨ν,Dτiν⟩
= −AΣ[∇Σu, τi] ,

where we used the facts that uν is constant on Σ (and hence Dτiuν ≡ 0) and that

⟨ν,Dτiν⟩ = Dτi⟨ν, ν⟩ − ⟨Dτiν, ν⟩ = −⟨Dτiν, ν⟩ ,
which directly implies that ⟨ν,Dτiν⟩ ≡ 0. Thus, we can rewrite (3.16) to be

uν∆u−D2u[∇u, ν] = uν ∆Σu + H(uν)
2 −

n
∑

i=1

⟨∇u, τi⟩D2u[τi, ν]

= uν ∆Σu + H(uν)
2 +

n
∑

i=1

⟨∇u, τi⟩AΣ[∇Σu, τi]

= uν ∆Σu + H(uν)
2 + AΣ[∇Σu,∇Σu]

Hence, by the divergence theorem on Σ, we have
∫

Σ
uν∆u−D2u[∇u, ν] = γ

∫

Σ
∆Σu+ γ2HΣ +AΣ[∇Σu,∇Σu]

= γ

∫

∂Σ
∇u · νΣ +

∫

Σ
γ2HΣ +AΣ[∇Σu,∇Σu] . (3.17)

We now use the definition of the angle to write the co-normal of M on ∂Σ as

νco = − cos(θ)νΣ + sin(θ)νK .

As noted above, we have that ∇u = uνν on M , and hence on ∂M = ∂Σ by the C1

regularity on Ω. So, we find that pointwise on ∂Σ

0 = ∇u · νco = − cos(θ)∇u · νΣ + γ sin(θ) .

We thus arrive at the pointwise identity

∇u · νΣ = γ
sin(θ)

cos(θ)
on ∂Σ ,

which we substitute into (3.17) to find
∫

Σ
uν∆u−D2u[∇u, ν] = γ2

∫

∂Σ

sin(θ)

cos(θ)
+

∫

Σ
γ2HΣ +A[∇Σu,∇Σu]

= γ
n

n+ 1
Hn(Σ) +

∫

Σ
γ2HΣ +A[∇Σu,∇Σu] , (3.18)
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where the last equality follows from the definition of γ. The identity (3.12) then follows
by putting together (3.14), (3.15) and (3.18).

By the divergence theorem one has

|Ω|− γHn(Σ) =

∫

M
|∇u| ,

so by using this identity and (3.12) we can directly expand the right-hand-side of (3.13)
to find
∫

M

1

H

∫

Ω

(

|∇2u|− (∆u)2

n+ 1

)

+

∫

M

1

H

(
∫

M
|∇u|2H +

∫

Σ
γ2H +A[∇Σu,∇Σu]

)

−
(
∫

M
|∇u|

)2

=

∫

M

1

H

(
∫

Ω
|∇2u|− (∆u)2

n+ 1
+

∫

M
|∇u|2H +

∫

Σ
γ2H +A[∇Σu,∇Σu]

)

−
(
∫

M
|∇u|

)2

=

(
∫

M

1

H

)

n

n+ 1

(

|Ω|− γHn−1(Σ)
)

−
(

|Ω|− γHn(Σ)
)2

=
|Ω|− γHn(Σ)

n+ 1

(
∫

M

n

H
− (n+ 1)

(

|Ω|− γHn(Σ)
)

)

,

which is (3.13). !

Next, we utilize the Almost Flatness hypothesis to control the extra the terms in the
wetted region.

Lemma 3.6. Under the hypothesis of Section 2, assume further that the substrate is
Hydrophilic, Σ satisfies Almost Flatness with parameter ε < 1/2, then
∣

∣

∣

∣

∫

Σ

(

γ2HΣ +AΣ[∇Σu,∇Σu]
)

dHn

∣

∣

∣

∣

≤ 2(n + 1)ε

(
∫

Ω

(

|D2u|2 + |∇u|2
)

dx+

∫

M
|∇u|2 dHn

)

≤ 2(n + 1)ε

(

4(d2Ω + γ2)(|Ω|+ γHn(Σ)) +

∫

Ω
|D2u|2 dx+

∫

M
|∇u|2 dHn

)

, (3.19)

where u ∈ C2(Ω ∪ Σ) ∩ C1(Ω) is the unique solution to (3.6).

Proof. We consider the vector field −|∇u|2en+1, and apply the divergence theorem to
obtain

∫

Σ
|∇u|2(−en+1 · νΣ) dHn =

∫

M
|∇u|2en+1 · νM dHn + 2

∫

Ω
∇u ·∇∂n+1u dx

From the Almost Flatness hypothesis, we obtain

(1− ε)

∫

Σ
|∇u|2 dHn ≤

∫

M
|∇u|2 dHn +

∫

Ω
|D2u|2 + |∇u|2 dx .

Using the previous inequality with ε < 1/2, we can directly bound
∣

∣

∣

∣

∫

Σ

(

γ2HΣ +AΣ[∇u,∇u]
)

dHn

∣

∣

∣

∣

≤ (n + 1) ∥AΣ∥C0(Σ)

∫

Σ
|∇u|2 dHn

≤ 2(n + 1) ∥AΣ∥C0(Σ)

(
∫

Ω

(

|D2u|2 + |∇u|2
)

dx+

∫

M
|∇u|2 dHn

)

.
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The first inequality in (3.19) then follows from theAlmost Flatness hypothesis ∥AΣ∥C0(Σ) <
ε. For the second inequality, we integrate by parts and use (3.6) to obtain

∫

Ω
|∇u|2 dx =

∫

Ω
u dx+ γ

∫

Σ
u dHn ≤ ∥u∥∞(|Ω|+ γHn(Σ)) ,

and the desired inequality now follows from applying the L∞-estimate (3.5). !

Finally, we use the Hydrophilic and Almost Flatness hypotheses to control the
perimeter of the wetted region.

Lemma 3.7. Under the hypothesis of Section 2, assume further that the substrate is
Hydrophilic, Σ satisfies Almost Flatness, and that ε and ∥θ−θ0∥C0 are small enough.
Then, we have the bounds

Hn−1(∂Σ) ≤ 2

sin(θ0)
(λHn(Σ) + ∥H − λ∥C0Hn(M))

and
∣

∣

∣

∣

cos θ0
λ

− Hn(Σ)

tan θ0Hn−1(∂Σ)

∣

∣

∣

∣

≤ cot θ0

(

6

sin(θ0)
(ε+ ∥θ − θ0∥C0) +

∥H − λ∥C0

λ

)

Hn(M)

Hn−1(∂Σ)
.

Proof. Using the divergence theorem on the vector field X = en+1, we have that

0 =

∫

M
divX dHn =

∫

M
HX · νΩ dHn +

∫

∂Σ

(

sin θX · νK − cos θX · νΣ
)

dHn−1 . (3.20)

For the first term of (3.20), we use the almost constancy of the mean curvature to obtain
∫

M
HX · νΩ dHn ≤ ∥H − λ∥0CHn(M) + λ

∫

Σ
X · νK dHn ,

and then, by using Almost Flatness, we further find that
∣

∣

∣

∣

λHn(Σ)−
∫

M
HX · νΩ dHn

∣

∣

∣

∣

≤ ελHn(Σ) + ∥H − λ∥C0Hn(M) .

For the second term of (3.20), we also use Almost Flatness to obtain
∣

∣

∣

∣

sin θ0Hn−1(∂Σ) +

∫

∂Σ

(

sin θX · νK − cos θX · νΣ
)

dHn−1

∣

∣

∣

∣

≤ Hn−1(∂Σ)∥θ − θ0∥C0 + εHn−1(∂Σ) .

Hence, we find
∣

∣sin θ0Hn−1(∂Σ) + λHn(Σ)
∣

∣ ≤ ελHn(Σ) + ∥H − λ∥C0Hn(M)

+ (ε+ ∥θ − θ0∥C0)Hn−1(∂Σ) , (3.21)

which, for ε and ∥θ − θ0∥C0 small enough, implies

Hn−1(∂Σ) ≤ 2

sin(θ0)

(

λHn(Σ) + ∥H − λ∥C0Hn(M)
)

.

Substituting this bound into (3.21), we get that

∣

∣sin θ0Hn−1(∂Σ) + λHn(Σ)
∣

∣ ≤ 4

(

2

sin(θ0)
λ(ε+ ∥θ − θ0∥C0) + ∥H − λ∥C0

)

Hn(M) .

The desired estimate now follows from dividing by sin θ0Hn−1(∂Σ)λ and multiplying by
cos θ0. !
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4. Compactness

4.1. GMT preliminaries. In the proof of Theorem 1.6, we will make use of the theory
of varifolds. Additionally, we will weaken the technical hypothesis of the convergence
in perimeter (1.13) by appealing to the deep result of White [Whi09, Thm. 1.2], which
relates the limits of “compatible” sequences of currents and varifolds. Here, we follow the
notation of [S+83, Chapters 6 and 8].

Let K be a bounded open set with C2-boundary, and let Ω ⊆ K be a bounded connected
open set such that M = K ∩ ∂Ω is a smooth hypersurface with boundary satisfying the
hypotheses (h1)–(h4). Denote by M and Σ the sets M = ∂Ω ∩ K and Σ = ∂Ω ∩ ∂K.
Then, we will let V , and W denote the multiplicity one varifolds associated to M and ∂Ω,
respectively; that is, for ψ ∈ C0

c

(

Rn+1 ×G(n+ 1, n)
)

we define

V [ψ] :=

∫

M
ψ(p, TpM)dHn ,

W [ψ] :=

∫

M
ψ(p, TpM)dHn +

∫

Σ
ψ(p, TpΣ)dHn . (4.1)

In terms of notation, we sometimes take test functions ψ ∈ C0
c

(

Rn+1 ×G(n + 1, n)
)

that
are constant on the second variable ψ(p, ·) = ϕ(p) , where ϕ ∈ C0

c (R
n+1). Through this

consideration, for ϕ ∈ C0
c (R

n+1) we denote

V [ϕ] :=

∫

M
ϕ dHn .

We will reserve the symbols ϕ for test functions ϕ ∈ C0
c (R

n+1) which only depend on the
space variable and ψ for general test functions ψ ∈ C0

c

(

Rn+1 ×G(n + 1, n)
)

.
Next, given X ∈ C∞

c (Rn+1;Rn+1), the first variation of V and W are given by

δV [X] :=

∫

M
divτXdHn =

∫

M
HMX · νMdHn +

∫

bd(M)
X · νbd(M)dHn−1

δW [X] :=

∫

M
divτXdHn +

∫

Σ
divτXdHn =

∫

M
HMX · νMdHn +

∫

bd(M)
X · (νbd(M) + νΣ)dHn−1 ,

where divτ denotes the tangential divergence operator on M . Note that the representation
on the right-hand-side follows from the regularity we have assumed, see Section 2.

We now state a simplified version of [Whi09, Thm. 1.2] sufficient for our setting:

Theorem 4.1. Let {Ωl}l∈N be a sequence of compact sets with uniformly bounded finite
perimeter and {Wl}l∈N be the natural multiplicity one varifolds associated to the boundaries
{∂Ωl}l∈N as in (4.1).

If the varifolds {Wl}l∈N have uniformly bounded first variation, then, up to a subse-
quence, one has that Ωl → Ω∞ in L1 and

Wl → W∞ = Ξ1 dHn|∂Ω∞
+ Ξ0 dHn|S , (4.2)

where S is a rectifiable set disjoint from ∂Ω∞ and Ξ1 and Ξ0 are integer valued Borel
functions satisfying Ξ1 = 1 (mod 2) and Ξ0 = 0 (mod 2).

4.2. Proof of Theorem 1.6. We now state and prove Theorem 1.6 in its precise form:

Theorem 1.6. Let {Kl}l∈N be a sequence of connected open sets with connected C2-
boundaries that converge to the half space in the following sense:

∥Al∥C0
loc(∂Kl)

→ 0, ∥en+1 · νKl
∥C0

loc(∂Kl)
→ 0 and ∥x · νKl

∥C0
loc(∂Kl)

→ 0 , (4.3)

where Al is the second fundamental form of ∂Kl.
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If {Ωl}l∈N is a sequence of connected open sets which satisfy uniform bounds in diameter
and perimeter,

sup
l∈N

diam(Ωl) < ∞ , sup
l∈N

P (Ωl; {xn+1 > 0}) < ∞ , (4.4)

then, up to subsequence, there exists a bounded set of finite perimeter Ω∞ ⊆ {xn+1 > 0}
such that |Ωl∆Ω∞| → 0 and for which the following holds: if the boundaries {Ml}l∈N
satisfy hypotheses (h1)-(h4) from Section 2, if there exists a positive constant λ0 > 0
such that

∥Hl − λ0∥C0(Ml)
→ 0 , (4.5)

if there exists a fixed angle θ0 ∈ (π/2,π) such that

∥θl − θ0∥C0(bd(Ml)) → 0 , (4.6)

and if the set S in (4.2) satisfies

Hn(S ∩ {xn+1 > 0}) = 0 , (4.7)

then Ω∞ is equal to a finite union of disjoint tangent balls of radius n/λ0 intersected with
{xn+1 > 0}, the balls in Ω∞ which intersect the hyperplane {xn+1 = 0} do so with contact
angle θ0, and

P (Ωl;Kl) → P (Ω∞; {xn+1 > 0}) .
Moreover, the wetted regions converge in the following sense:

lim
l→∞

|Hn(Σl)−Hn(Σ∞)|+ |Hn−1(∂Σl)−Hn−1(∂Σ∞)| = 0 . (4.8)

Remark 4.2. The technical hypothesis (4.7) is only used in the first step of the proof to
establish (4.13) and may be able to be removed using additional arguments.

Proof of Theorem 1.6. Without loss of generality, we may simplify our notation by con-
sidering the specific case of λ = n.

Notation. We will let C denote a generic constant independent of l which may depend
upon n, R, θ0, supl∈N |γl|, and supl∈N P (Ωl) and which we will allow to change line-by-line.
For all l ∈ N, we will let Vl denote the multiplicity-one varifold induced by Ml. Next, for
each l ∈ N, we will let ul : Ωl → R denote the torsion potential of Ωl, that is to say the
unique solution to

⎧

⎪

⎨

⎪

⎩

−∆ul = 1 in Ωl

ul = 0 on Ml

∂νKl
ul = γl on Σl

(4.9)

with γl as in (3.3). By an abuse notation, we will also denote ul : Kl → R to be the zero
extension of ul to Kl.

Step one. By hypothesis there exists Ω∞ ⊆ {xn+1 ≥ 0} a set of finite perimeter such
that

|Ωl∆Ω∞| → 0 . (4.10)

We now claim that there exists an integral varifold V∞ such that (up to a subsequence)

Vl
∗
⇀ V∞ , and δVl

∗
⇀ δV∞ (4.11)

and, moreover, there exists a set of finite perimeter Σ∞ ⊂ {xn+1 = 0}, such that, up to
passing to a subsequence, one has the convergence of the wetted region

dHn|Σl
∗
⇀ dHn|Σ∞ (4.12)

as l → ∞.
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We show that the sequence of varifolds {Vl}l∈N have uniformly bounded mass and first
variation. That they have uniformly bounded mass follows directly from (4.4). For the
first variation, we consider X ∈ C∞

c (Rn+1;Rn+1) and compute

δVl[X] =

∫

Ml

divτXdHn =

∫

Ml

HlX · νMl
dHn +

∫

bd(Ml)
X · νbd(Ml)dH

n ,

where νMl
, νbd(Ml) denote the outer unit normal of Ml, and the outer unit conormal of

bd(Ml). Therefore, by (4.4), Lemma 3.7, and (4.3), we have the uniform bound

sup
l∈N

|δVl|[X] ≤ C∥X∥C0(Rn+1)

so that by the compactness theorem for integral varifolds [S+83, 42.7] there exists an
integral varifold V∞ such that, up to a subsequence, (4.11) holds. The convergence in
(4.12) follows by similar arguments.

We conclude this step by noting that by (4.7) it directly follows that

suppV∞ ∩ {xn+1 > 0} = ∂∗Ω∞ ∩ {xn+1 > 0} = ∂Ω∞ ∩ {xn+1 > 0} , (4.13)

where the last equality is obtained by choosing the representative Ω∞ such that its topo-
logical boundary coincides with the closure of the reduced boundary ∂∗Ω∞ = ∂Ω∞, see
[Mag12, Proposition 12.19].

Step two. We now claim that, up to passing to a subsequence, for every η > 0 the
following limit holds:

lim
l→∞

hd (Ml ∩ {xn+1 > η}, ∂Ω∞ ∩ {xn+1 > η) = 0 . (4.14)

This will follow from a uniform density estimate stemming from the bounded mean curva-
ture hypotheses. By (4.3), (4.5), and the monotonicity formula for integral varifolds [S+83,
17.7], there exists a constant C > 0 independent of l and η such that for all η > 0 and l
large enough such that Σl ⊆ {xn+1 < η/2} the following holds: for any p ∈ Ml∩{xn+1 > η}
and ρ ∈ (0, η/2) one has

Hn
(

Ml ∩Bρ(p)
)

≥ ωnρ
n . (4.15)

We will now prove that

lim
l→∞

sup
p∈Ml∩{xn+1>η}

dist(p, ∂Ω∞) = 0. (4.16)

Suppose for sake of contradiction that (4.16) does not hold. Then, there exists η , ε > 0 and
a sequence of points {pl} such that pl ∈ Ml ∩ {xn+1 > η} and dist(pl, ∂Ω∞) ≥ ε. By the
uniform diameter of the sets {Ωl}l∈N, the sequence {pl}l∈N has a convergent subsequence,
which we will not relabel. Let p∞ denote this limit, and note that dist(p∞, ∂Ω∞) ≥ ε. Let
ϕ ∈ C∞

c (Bε(p∞)) be such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on Bε/2(p∞). By the convergence
of the sequence pl → p∞, for l large enough we have Bε/4(pl) ⊆ Bε/2(p∞). Up to taking
l larger, so that we ensure Σl ⊆ {xn+1 < η/2} by (4.3), for l large enough the density
estimate (4.15) yields

C
min{εn, ηn}

4n
≤
∫

Ml

ϕ dHn = Vl[ϕ] .

However, this contradicts the fact that Vl[ϕ] → V∞[ϕ] = 0 by (4.11), where we know that
V∞[ϕ] = 0 by dist(p∞, ∂Ω∞) > ε and (4.13). Hence, (4.16) must hold.

To prove the converse limit,

lim
l→∞

sup
p∈∂Ω∞∩{xn+1>η}

dist(p,Ml) = 0 ,

we again argue by contradiction. Suppose that there exists η, ε > 0 and p ∈ ∂Ω∞∩{xn+1 >
η} such that for all l large enough one has dist(p,Ml) > ε. Let ϕ ∈ C∞

c (Bε/2(p)) be such
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that 0 ≤ ϕ ≤ 1 and ϕ = 1 on Bε/4(p). Then, by (4.11), (4.13), and the fact that
dist(p,Ml ∩ {xn+1 > η}) > ε for all l, one has

0 < V∞[ϕ] = lim
l→∞

Vl[ϕ] = 0 ,

a contradiction. Therefore, we conclude that (4.14) holds as claimed.

Step three. For each l ∈ N, let ul : Ωl → R be the unique solution to (4.9). Then, we
claim that

lim
l→∞

∫

Ωl

∣

∣

∣

∣

∇2ul −
Id

n+ 1

∣

∣

∣

∣

2

dx = 0 (4.17)

and
sup
l∈N

∥ul∥H1(Kl) < ∞ . (4.18)

Combining Propositions 3.3, 3.4 and Lemma 3.7, we can use the hypothesis in the Theorem
to conclude that

0 = lim
l→∞

[

(1− 2(n+ 1)ε)

∫

Ml

dHn

HMl

∫

Ωl

(

|∇2ul|2 −
(∆ul)2

n+ 1

)

dx

+

∫

Ml

dHn

HMl

∫

Ml

|∇ul|2(HMl
− 2(n+ 1)ε)dHn

−
(

1− 2(n+ 1)εmax
1

HMl

)(
∫

Ml

|∇ul|dHn

)2 ]

.

Using that the two last terms in the previous limit are always positive, since the mean
curvature is bounded above and the perimeter bounded below, we may conclude that

lim
l→∞

∫

Ωl

(

|∇2ul|2 −
(∆ul)2

n+ 1

)

dx = 0.

Considering the matrices I and ∇2ul as vectors in v ,w ∈ R(n+1)2 , we notice that the above
integrand can be written as

|∇2ul|2 −
(∆ul)2

n+ 1
= |w|2 − v · w

|v|2

and hence is exactly quantifying the deficit in the inequality of Cauchy-Schwarz. Following
the arguments in [DMMN17, Proposition 3.7], we conclude that

lim
l→∞

1

2

∫

Ωl

∣

∣

∣

∣

∇2ul −
Id

n+ 1

∣

∣

∣

∣

2

dx = 0.

The estimate (4.18) follows directly by integration by parts, as the equation and the
boundary conditions for ul yield

∫

Kl

|∇ũl|2 dx =

∫

Ωl

|∇ul|2 dx

=

∫

Ωl

ul dx+ γh

∫

Σl

ul dHn

≤ ∥ul∥L∞(|Ωl|+ γlHn(Σl)) ,

where the uniform L∞-bound is given by (3.5).

Step four. By (4.18) and the asymptotic flatness of the domain, there exists a positive
function u∞ ∈ H1({xn+1 > 0}) such that

ul → u∞ strongly in L2
loc({xn+1 > 0}) and ul ⇀ u∞ weakly in H1

loc({xn+1 > 0}) .

18



We now claim that

D2u∞ =
Id

n+ 1
in Ω∞ (4.19)

and, moreover, there exists a finite number of disjoint balls {Bi(yi)}i∈I with radii satisfying
ri = 1 (mod 2) such that

Ω∞ ∩ {xn+1 > 0} =
⋃

i∈I

Bi ∩ {xn+1 > 0} .

We begin by showing (4.19) holds in distribution. Let z ∈ Ω∞ ∩ {xn+1 > 0}, and let
ε > 0 be such that d(z, ∂Ω∞) > ε > 0. By the Hausdorff convergence (4.14), we can take
l large enough such

d
(

∂Ωl ∩ {xn+1 > η}, ∂Ω∞ ∩ {xn+1 > η}
)

≤ ε/2

for η = zn+1/2, which implies that Bε/2(z) ⊆ Ωl for l large enough. By (4.17) and the
previous inclusion, one can directly see that for any φ ∈ C∞

c (Bε/2(z))

Id

n+ 1

∫

φ dx = lim
l→∞

∫

D2ulφ dx = lim
l→∞

∫

ulD
2φ dx =

∫

u∞D2φ dx ,

which shows (4.19) in distribution. This readily implies that u∞ ∈ C∞(Ω∞) and that its
nodal set has zero Lebesgue measure, i.e. |{u∞ = 0} ∩ Ω∞| = 0. Thus, in each connected
component of Ω∞ =

⋃

Ωi
∞, there exists yi ∈ Rn+1 and ri ∈ (0,∞) such that

u∞(x) =
|x− yi|2 − r2i

2(n+ 1)
in Ωi

∞ .

Next, using the weak H1 convergence and integration by parts, we have that for any test
function ϕ ∈ C∞

c ({xn+1 > 0})
∫

{xn+1>0}
∇u∞φ dx = lim

l→∞

∫

Ωl

∇ulφ dx = − lim
l→∞

∫

Ωl

ul∇φ dx = −
∫

Ω∞

u∞∇φ dx ,

which by the uniform continuity of u∞ on Ω∞ implies that the trace vanishes

u∞ = 0 on ∂Ω∞ = 0 .

We therefore may directly conclude that each component

Ωi
∞ = Bri(yi) ∩ {xn+1 > 0} , (4.20)

as claimed.
To show that the radii satisfy ri = 1 (mod 2), we use the varifold convergence of the

first variations δV∂Ωl
⇀ δV∂Ω∞

and Theorem 4.1. Given a vector field X ∈ C∞
c (H;Rn+1)

whose support does not intersect {xn+1 = 0}, we can use (4.13) and (4.20) to write

δV∞[X] =

∫

∂Ω∞

divτX Ξ1 dHn =
∑

i∈I

n

ri

∫

∂Bri
(yi)

X · ν Ξ1 dHn ,
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and by using the convergence of the mean curvature (4.5) we can explicitly compute the
limit

δV∞[X] = lim
h→∞

∫

Mh

divτX dHn

= lim
h→∞

n

∫

Mh

X · ν dHn

= lim
h→∞

n

∫

Ωh

divn+1X dx

= n

∫

Ω∞

divn+1X dx

= n

∫

∂Ω∞

X · ν dHn

=
∑

i∈I

n

∫

∂Bri (yi)
X · ν dHn ,

Hence we may directly conclude that ri is constantly equal to Ξ1 in each spherical cap
∂Bi, and the fact that ri = Ξ1 = 1 (mod 2) follows from Theorem 4.1.

Step five. In this step we show that for all the radii ri are all equal to 1, and to do so we
will use a sliding argument. Fix an index i ∈ I. If ri = 1, then we are of course done, so
suppose for sake of contradiction that ri ̸= 1. By the previous step, we have that ri ≥ 3.
If Bri(yi) does not intersect the plane {xn+1 = 0}, the proof that ri = 1 follows from
obvious modifications of the argument below. Thus, we will assume that Bri(yi) intersects
the plane {xn+1 = 0} with angle θi. We handle the cases θi ∈ (0,π/2) and θi ∈ [π/2,π)
separately.

Case I: θi ∈ (0,π/2). By the Hausdorff convergence of the boundary we have that for
any ε > 0 and any η > 0 there exists l large enough such that Σl ⊂ {xn+1 < η/2} and

Bri−ε(yi) ∩ {xn+1 > η} ⊆ Ωl ∩ {xn+1 > η} .
Using that θi ∈ (0,π/2), if we translate ∂Bri−ε(yi) ∩ {xn+1 > η} vertically then the first
touching point with ∂Ωl can not happen at {xn+1 = η} for η small enough, which implies
that the curvatures are ordered n

ri−ε
≥ H∂Ωl

> n − δ. Using that ri ≥ 3, we get a
contradiction by taking ε and η small enough.

Case II: θi ∈ [π/2, 1). We first define the height

hi := −yi · en+1 ,

which is the distance of the center of the ball B1(yi) from the plane {xn+1 = 0} (note the
convention hi ≥ 0). We will now let ε > 0 be such that

ε < min

{

1

2ri
,
ri − hi
ri + hi

}

(4.21)

By the local Hausdorff convergence of the boundary (setting η = ε for simplicity), for l
large enough

∅ ≠ Ml ∩Bri+ε(yi) ∩ {xn+1 > ε} ⊆ Bri−ε(yi)
c ∩ {xn+1 > ε} .

If necessary, we will take l larger so that Σl ⊂ {xn+1 < ε}. For t ∈ (0, 1 + ε) the mapping

t 7→ Bri−1(yi + ten+1) ∩ {xn+1 > ε} (4.22)

corresponds to vertically sliding the ball Bri−1(yi) until it touches the boundary ∂Bri+ε(yi),
which serves as an upper for the furthest one would need to translate in order to touch Ml.
If the sliding ball (4.22) does not intersect the boundary of the disk Bri−ε(yi)∩{xn+1 = ε}
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for any t ∈ (0, 1 + ε), then the first point of contact with Ml will be tangential, and the
same argument will hold as in Case I, thereby allowing us to conclude that ri = 1. Thus,
we are reduced to showing that

min
t∈[0,1+ε]

dist
(

∂Bri−1(yi + ten+1) ∩ {xn+1 = ε} , ∂Bri−ε(yi) ∩ {xn+1 = ε}
)

> 0 . (4.23)

We note that both of the sets considered in (4.23) are disks with the same center, hence
to check the desired property we need to show that for t ∈ [0, 1 + ε]

radius(∂Bri−1(yi + ten+1) ∩ {xn+1 = ε}) < radius(∂Bri−ε(yi) ∩ {xn+1 = ε}).
Computationally, we break the proof into two subcases, I when the minimum is achieved
for some t ∈ (0, 1 + ε), and II when it is achieved at t = 1 + ε. To alleviate the notation,
without loss of generality we consider the case that yi is on the xn+1-axis.

Subcase I: There exists a time t0 ∈ (0, 1 + ε) such that

radius(∂Bri−1((−hi + t0)en+1) ∩ {xn+1 = ε}) = ri − 1, (4.24)

which implies that we have the inequality

hi = t0 − ε < 1, (4.25)

as t0 ∈ (0, 1+ε). Using the Pythagorean theorem, we see that the desired inequality (4.23)
is equivalent to the claim

radius
(

Bri−ε(−(hi + ε)en+1) ∩ {xn+1 = 0}
)

=
√

(ri − ε)2 − (hi + ε)2 ≥ ri − 1 ,

which directly follows from the fact that ri ≥ 3, hi < 1 by (4.25) and ε < 1
2ri

by (4.21).

Subcase II: Assuming (4.24) does not hold, the desired (4.23) follows from the inequal-
ity

radius
(

Bri−ε
(

− (hi+ε)en+1
)

∩{xn+1 = 0}
)

≥ radius
(

Bri−1
(

(−hi+1)en+1
)

{xn+1 = 0}
)

.

Using the Pythagorean theorem and squaring both sides, this is equivalent to

(ri − ε)2 − (hi + ε)2 ≥ (ri − 1)2 − (−hi + 1)2

which follows from the choice of ε < ri−hi
ri+hi

in (4.21).

Step six. In this step we will show that the angles with which the components of Ω∞

intersect the plane {xn+1 = 0} must all be equal to θ0. More specifically, if we let I ′ ⊆ I
denote the subset of indices such that B1(yi) ∩ {xn+1 = 0} ≠ ∅, and if for i ∈ I ′ we let θi
denote the angle with which B1(yi) intersects {xn+1 = 0}, then we claim that θi = θ0 for
all i ∈ I ′. As a byproduct of the proof, we will also show that P (Ωl) → P (Ω∞).

We consider a test vector field X ∈ C∞
c (Rn+1) such that X · en+1 = 0 on {xn+1 = 0},

for which it holds that

δVl[X] =

∫

Ml

HlX · νΩl
dHn +

∫

∂Σl

(

sin(θl)X · νKl
− cos(θl)X · νΣl

)

dHn−1 .

Using the varifold convergence Vl ⇀ V∞, the convergence of both the mean curvature
(4.5) and angle (4.6), the convergence of νKl

→ en+1 by (4.3), and the uniform bound on
Hn−1(∂Σl) from Lemma 3.7 , we can apply the divergence theorem twice to obtain that

δV∞[X] = lim
l→∞

δVl[X] = lim
l→∞

(

n

∫

Ωl

divn+1X dx− cos(θ0)

∫

Σl

divnX dHn

)

,

which in turn implies by (4.10) and (4.12) that

δV∞[X] = n

∫

Ω∞

divn+1X dx− cos(θ0)

∫

Σ∞

divnX dHn .
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Since the boundary of Ω∞ =
⋃

i∈I B1(yi)∩ {xn+1 > 0} has constant mean curvature equal
to n, we can apply the divergence theorem again to obtain that

δV∞[X] =
∑

i∈I

∫

∂B1(yi)∩H
divτX dHn

+
∑

i∈I′

cos(θi)

∫

B1(yi)∩{xn+1=0}
divnX dHn − cos(θ0)

∫

Σ∞

divnX dHn , .(4.26)

At the same time, we claim that we can write δV∞ as

δV∞[X] =
∑

i∈I

∫

∂B1(yi)∩H
divτXdHn +

∫

Ω∞∩{xn+1=0}\Σ∞

divnX Ξ1 dHn+

∫

S
divnX Ξ0 dHn ,

(4.27)
for S an n-rectifiable subset of the plane {xn+1 = 0} disjoint from Ω∞ ∩ {xn+1 = 0} \Σ∞,
and Ξ0 and Ξ1 integer-valued Borel functions such that Ξ0 = 0 (mod 2) and Ξ1 = 1
(mod 2). Indeed, for W∞ defined as in Theorem 4.1, we can use (4.2) and Step five to
write

V∞ = W∞ − dHn|Σ∞
= dHn|∂Ω∞∩{xn+1>0} + Ξ1dHn|Ω∞∩{xn+1=0}\Σ∞

+ Ξ0dHn|S ,

where S ⊆ {xn+1 = 0} is the set from Theorem 4.1 enlarged to contain the points in Σ∞

with multiplicity greater than 1. This proves (4.27).

We now wish to show that S and Ω∞ ∩ {xn+1 = 0} \Σ∞ have Hn-measure zero, which
implies P (Ωl) → P (Ω∞). To this end, comparing (4.26) and (4.27), we may conclude that

∑

i∈I′

cos(θi)χB1(yi)∩{xn+1=0} − cos(θ0)χΣ∞
= Ξ0χS + Ξ1χΩ∞∩{xn+1=0}\Σ∞

. (4.28)

Given i ∈ I ′, if the set B1(yi) ∩ {xn+1 = 0} ⊆ Ω∞ ∩ {xn+1 = 0} is not contained in
Σ∞, then by (4.28) we have that Ξ1 = cos(θi) on B1(yi) ∩ {xn+1 = 0}. The condition
Ξ1 = 1 (mod 2) implies that either cos(θi) = 1 or θi = 0, both of which imply that
Hn(B1(yi)∩{xn+1 = 0}) = 0. Hence, for all i ∈ I ′ we must have B1(yi)∩{xn+1 = 0} ⊆ Ω∞,
which implies that Hn(Ω∞ ∩ {xn+1 = 0} \ Σ∞) = 0. To show Hn(S) = 0, we notice that
by (4.28) and the previous argument the inclusion S ⊆ Σ∞ holds and, moreover, that on
each connected component

Ξ0 = cos(θi)− cos(θ0) = 0 (mod 2),

which can only be satisfied if θi = θ0 for every i ∈ I and Ξ0 = 0 vanishes everywhere.

Step seven. We claim that Hn−1|∂Σl ⇀ Hn−1|∂Σ∞. Let φ ∈ C∞({xn+1 = 0}), and,
abusing notation, extend φ to Rn+1 by φ(x) = φ(x1, . . . , xn, 0), so that div(φen+1) = 0.
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Then, by the convergence in mean curvature and angle it follows that

lim
l→∞

∫

Ml

divτ (φen+1)

= lim
l→∞

(

∫

Ml

Hlφen+1 · ν +
∫

bd(Ml)

(

sin(θh)en+1 · νKl
− cos(θl)en+1 · νΣl

)

φ

)

= lim
l→∞

(

n

∫

Ml

φen+1 · ν + sin θ0

∫

bd(Ml)
φ

)

= lim
h→∞

(

n

∫

Ωl

div(φen+1)− n

∫

Σl

φen+1 · νKl
+ sin θ0

∫

bd(Ml)
φ

)

= lim
l→∞

(

−n

∫

Σl

φen+1 · νKl
+ sin θ0

∫

bd(Ml)
φ

)

, (4.29)

while at the same time by the varifold convergence (4.11)

lim
l→∞

∫

Ml

divτ (φen+1) =
∑

i∈I

∫

∂B1(yi)∩H
divτ (φen+1)

= −n
∑

i∈I

∫

B1(yi)∩{xn+1=0}
φ+

∑

i∈I′

sin θ0

∫

B1(yi)∩{xn+1=0}
φ . (4.30)

By (4.3) and the previous step, first term of (4.29) has a well-defined limit given by

lim
l→∞

∫

Σl

φen+1 · νKl
=

∫

Σ∞

φ =
∑

i∈I′

∫

B1(yi)∩{xn+1=0}
φ , (4.31)

and from this it follows that the term
∫

bd(Ml)
φ must too have a well-defined limit. Com-

bining (4.29), (4.30), and (4.31), we find that

lim
l→∞

∫

bd(Ml)
φ =

∫

bd(M∞)
φ ,

as claimed. This concludes the proof of the theorem. !

5. Convergence of local minimizers

Proof of Theorem 1.3. We argue by contradiction. Assume that {Ωj}j∈N is a sequence of
smooth VCLMs in the hydrophilic regime with diameter ε0 and volume |Ωj| = mj → 0
satisfying

• Ωj is connected,

• P (Ωj;K) ≤ Cm
n

n+1

j ,

• Ωj ⊆ Cm
1

n+1

j B1(xj) for some xj ∈ ∂K,

• Hn(Σj) > C−1m
n

n+1

j ,

and such that for any angle θ

lim
j→0+

inf
x,Q,θ∗

m−1|Ωj△(m
1

n+1 (x0 +Q[Bθ]))| > 0, (5.1)

where Q[Bθ] is a rigid transformation of a ball that intersects the {xn+1 = 0} with angle
θ.
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By the compactness of the container, up to a subsequence we can assume that xj → x0 ∈
∂K. Then by re-centering and re-scaling, we have that (up to a rotation) the sequence

Kj :=
K − x0
mj

→ {xn+1 > 0}.

Moreover, using that the boundary of K is C2, we have that the re-scalings Kj converge
to the half-space in the sense of (4.3), which is of course is one of the hypotheses of
Theorem 1.6.

To analogously re-scale and re-center our sets, we define

Ẽj =
Ej − x0

mj
,

which now satisfy

• Ω̃j is connected,
• P (Ω̃j ;Kj) ≤ C,
• Ω̃j ⊆ B2C(0),
• Hn(Σ̃j) > C−1.

Moreover, using the local minimality condition (properly re-scaled), we can derive the
mean curvature equation

H∂Ω̃j
+m

1
n+1 g = λj on ∂Ẽj

and Young’s law

νΩ̃j
(y) · νKj(y) = σ(mjy + x0) on Σ̃j ⊂ ∂Kj .

Hence, we have that

∥H∂Ω̃j
− λj∥C0(∂Ω̃j)

≤ m
1

n+1 ∥g∥∞ and ∥θ(x)− θ0∥C0(Σ̃j)
≤ C(θ0)∥σ∥Lip(∂K)mj,

(5.2)
where we have used the Lipschitz regularity of the adhesion coefficient in the second
inequality.

By Proposition 3.4 and Lemma 3.7, we can control the perimeter of the wetted region

Hn(∂Σ̃j) ≤ C(θ0)λj

(

Hn(Σ̃j) +m
1

n+1

j ∥g∥C0P (∂Ω̃j ;Kj)

)

.

Moreover, using that |Ω̃j | = 1 we can identify the limit of the Lagrange multiplier
∣

∣

∣
(n+ 1)λj + n cos θ0Hn(Σ̃j)− nP (∂Ω̃j ;Kj)

∣

∣

∣

≤ C(θ0)dΩ̃j
(ε+ ∥θ(x)− θ0∥C0(Σ̃j)

)Hn(Σ̃j)λj +m
1

n+1

j ∥g∥C0dΩ̃j
P (∂Ω̃j ;Kj) ,

where C(θ0) is the constant from (3.11) depending on θ0 and ε > 0 is the parameter in
Almost Flatness which can be taken as small as we like (for j large enough). Using
upper and lower bounds on perimeter, we can conclude that, up to a subsequence, there
exists λ0 > 0 such that

lim
j→∞

λj = λ0 > 0 ,

and hence (5.2) may be recast as

∥H∂Ω̃j
− λ0∥C0(∂Ω̃j)

→ 0 and ∥θ(x)− θ0∥C0(∂̃Σj)
→ 0.

The desired convergence will follow from applying Theorem 1.6 to the sequence of
sets {Ω̃j}; however, we still need to check the technical condition on the convergence of
perimeter. To show this, we will exploit the local minimality property and apply [PM15,
Theorem 2.9] to show that the perimeter of Ẽj converges strongly in the limit j → ∞.
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First, as the hypotheses of [PM15, Theorem 2.9] require the container to be exactly the
half space, we need to rectify the boundary. For a small enough radius r > 0, we can
consider the inverse mapping that locally rectifies the boundary of K around x0; more
specifically, we take the C1-diffeomorphism f : {xn+1 > 0} ∩ Br → K ∩ Br(x0) that, up
to rotation, satisfies

∇f(x) = id +O(|x|) .
We next scale f by the sequence of length scales mj to obtain the sequence of mappings

fj(x) = m
− 1

n+1

j

(

f
(

m
1

n+1

j x
)

− x0
)

,

which are defined

fj : m
− 1

n+1

j

(

{xn+1 > 0} ∩Br(x0)
)

→ m
− 1

n+1

j

(

K ∩Br − x0
)

.

Note that for j large enough each fj is a small deformation of the identity on compact
sets, i.e.

∇fj(x) = id +O
(

m
1

n+1

j |x|
)

.

For j large enough, one has the inclusion Ẽj ⊂ m
− 1

n+1

j (K∩Br−x0), and hence we consider

Gj := f−1
j (Ω̃j),

which satisfies Gj ⊆ {xn+1 > 0} ∩ B3C . Translating the local minimality property of Ωj

to these new sets, we have that for j large enough the set Gj is a local minimizer of the
following anisotropic perimeter functional for variations of diameter less than ε0/2:

F̃ [G] =

∫

∂∗G
|cof(∇fj(y))νF (y)|dHn(y) +

∫

G∩∂H
σ(fj(z))J

∂Hfj(z) dHn(z)

+m
1

n+1

j

∫

G
g(fj(x))Jfj(x) dx , (5.3)

where the cof(∇fj(y)) is the co-factor matrix of ∇fj(y).
Next, to apply the compactness result [PM15, Theorem 2.9], we need to transform the

wetting energy into a surface integral. Following the idea in [PM15, Lemma 6.1], we
consider the vector field

Tj(x) = σ(fj(x̂))J
∂Hfj(x̂)en+1 ,

where x̂ denotes the projection onto the boundary of the half-space {xn+1 = 0}, and we
notice that for a set of finite perimeter F ⊆ dom(fj) we have by the divergence theorem
∫

F∩∂H
σ(fj(z))J

∂Hfj(z) dHn(z) = −
∫

∂∗F∩H
Tj(y) · νF (y) dHn(y) +

∫

F∩H
div Tj(x) dx .

Using that Gj is a VCLM of (5.3), we obtain
∫

∂∗Gj

|cof(∇fj(y))νGj (y)|− Tj(y) · νGj(y) dHn(y)

≤
∫

∂∗G
|cof(∇fj(y))νG(y)|− Tj(y) · νG(y) dHn(y) + (sup |div Tj|+m

1
n+1

j sup g)|Gj△G|

for any set G satisfying diam(G△Gj) < ε0/2. Therefore, Gj is an almost minimizer of the
pure anisotropic perimeter with elliptic integrand

Φj(y, ν) = |cof(∇fj(y))ν|− Tj(y) · ν .
For j large enough Φj are convex, positive one-homogeneous, and satisfy the requirements
of [PM15, Theorem 2.9].

Therefore, there exists a limiting set G0 such that Gj → G0 in L1 and such that on
{xn+1 > 0} the norm of the Gauss-Green measures converge µGj → µG0

. Using that up to
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a rigid motion fj converges in C1 to the identity map on compact sets, we obtain that the
original scaled set also converges Ω̃j → G0 in L1 and P (Ω̃j ;Kj) → P (G0; {xn+1 > 0}) in
perimeter. Therefore, G0 is a union of balls of equal radius intersecting with constant angle
θ0. By the local minimality of Ẽj, we obtain that G0 is also a local minima of the Gauss
energy FK,σ,0, where K = {xn+1 > 0} and the adhesion coefficient σ = cos θ0 is constant.
Lemma 5.1 below implies that G0 is a single ball that intersects the hyperspace {xn+1 = 0}
with angle θ0, which contradicts (5.1). This concludes the proof of the theorem. !

Lemma 5.1. Consider the case when K = {xn+1 > 0} and the adhesion coefficient σ
is constant. Then, within the class of unions of tangent balls, volume constrained local
minimizers of FK,σ,0 are a single ball.

Proof. Suppose for sake of contradiction that G is the union of at least two tangent balls.
Then, we first note the Euler-Lagrange equations implies that each of them have correct
associated contact angle with the plane {xn+1 = 0}.

If the point of tangency of any two balls occurs in the interior {xn+1 > 0}, then by
classical upper and lower density arguments, see for instance [PM15, Lemma 2.8], yield
the desired contradiction. Next, we assume that there exists a point of tangency x0 lying
in the plane {xn+1 = 0}. Blowing up this configuration at x0, we obtain (up to a rotation)
the wedge

G̃ =

{

x : 0 < xn+1 <
|x1|
|σ|

}

.

Using the local minimality property of G, we can deduce that G̃ must also be a local
minimizer of the functional

F(E) = P (E; {xn+1 > 0}) + σHn(E ∩ {xn+1 = 0}).

We will achieve the desired contradiction by constructing an appropriate competitor.
For a parameter l > 0 to be determined later, we define the prism set

S = {x : |xi| ≤ l for 2 ≤ i ≤ n} .

On S, we alter the wedge G̃ to obtain a new set F̃ in the following way:

F̃ := G̃ ∩ Sc
⋃

{x : 0 < xn+1 < r for x ∈ S and |x1| < |σ|r} .

We first notice that the wetted regions for G̃ and F̃ are the same; hence to contradict the
minimality of G̃ we only need to compute their difference in perimeter. Due to the simple
geometry of the competitor, we can compute explicitly

F(G̃)− F(F̃ ) = 2ln−1r(
√

1 + σ2 − |σ|) − 2|σ|(n − 1)ln−2r2

By using that
√
1 + σ2 − |σ| > 0 for |σ| < 1 and by taking r ≪ l and r small enough, we

obtain that

F(G̃)− F(F̃ ) > 0,

which contradicts the local minimality property for G̃. This concludes the proof of the
lemma. !

6. Proof of Theorem 1.1

The next lemma contains the core of the Montiel-Ros argument for proving the classical
Heintze-Karcher inequality. The argument is detailed for the sake of clarity.
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Lemma 6.1. If N an orientable hypersurface with boundary in Rn+1 with finite area and
positive mean curvature HN with respect to the normal vector field νN , then

(n+ 1)|ψ(Γ)| ≤
∫

N

n

HN
(6.1)

where ψ(x, t) = x− t νN (x) for every (x, t) ∈ N × R,

Γ =
{

(x, t) ∈ N × R : 0 < t ≤ 1

κn(x)

}

,

and κ1 ≤ κ2 ≤ · · · ≤ κn denote the principal curvatures of N .
Moreover, denoting by {Ni}mi=1 the connected components of N , we see that equality

holds in (6.1) if and only if each Ni is contained in a sphere ∂Br(xi) and the cones over
Ni with vertex at xi are mutually disjoint.

Remark 6.2. When N = ∂Ω we are in the case considered by Montiel and Ros [MR91],
who complete the proof of (1.1) by showing that Ω ⊆ ψ(Γ). Indeed, pick y ∈ Ω and let
x0 ∈ ∂Ω such that |x0 − y| = dist(x0, ∂Ω). Then νΩ(x0) = (x0 − y)/|x0 − y| and thus
κn(x0) ≥ |x0 − y|−1. In particular, y = ψ(x0, |x0 − y|) for |x0 − y| ≤ 1/κn(x), and thus
Ω ⊆ ψ(Γ).

Proof of Lemma 6.1. The tangential Jacobian of ψ along N × R ⊆ Rn+2 is given by

Jψ(x, t) =
n
∏

i=1

(

1− tκi(x)
)

∀(x, t) ∈ N × R .

If t ≤ 1/κn(x), then each factor in this formula is non-negative, and thus one can apply
the arithmetic-geometric mean inequality to infer that

Jψ(x, t) ≤
( 1

n

n
∑

i=1

(1− tκi(x))
)n

=
(

1− t
HN(x)

n

)n
, ∀(x, t) ∈ Γ .

By the area formula we thus get

|ψ(Γ)| ≤
∫

ψ(Γ)
H0(ψ−1(y)) dy =

∫

Γ
Jψ dHn+1 ≤

∫

Γ

(

1− t
HN

n

)n
dHn+1

where Hn+1 is the (n+1)-dimensional measure in Rn+2. By the coarea formula and since
HN/n ≤ κn,

∫

Γ

(

1− t
HN

n

)n
dHn+1 =

∫

N
dHn

∫ 1/κn(x)

0

(

1− t
HN

n

)n

≤
∫

N
dHn

∫ n/HN

0

(

1− t
HN

n

)n

=
1

n+ 1

∫

N

n

HN
.

This proves (6.1). If equality holds, then (i) N is umbilical, in the sense that κi(x) =
HN (x)/n for every x ∈ M and i = 1, ..., n; (ii) ψ is injective on Γ. By (i), each connected
component Ni of N is either contained in a sphere or in a hyperplane, the latter case being
actually ruled out by HN > 0. Denote by xi the center of the sphere containing Ni, and by
Ki the cone with vertex xi spanned by Ni. By (ii), the cones Ki are mutually disjoint. !

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We apply Lemma 6.1 with N = M and find

(n+ 1)|ψ(Γ)| ≤
∫

M

n

HM
(6.2)
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where ψ(x, t) = x− t νΩ(x), Γ = {(x, t) : x ∈ M , 0 < t ≤ 1/κn(x)} and κ1 ≤ · · · ≤ κn are
the principal curvatures of M . We notice that

A ⊆ ψ(Γ) (6.3)

if A denotes the set of points y ∈ Rn+1 such that

dist(y,M) = |x− y| for some x ∈ M ∩H with x−y
|x−y| = νΩ(x) . (6.4)

Indeed, this is the same argument outlined in Remark 6.2: if y ∈ A then the sphere
∂B|x−y|(y) is touching M at x from the inside of Ω. Hence

1

|x− y| ≥ κn(x)

which in turn implies y = ψ(x, |x− y|) for (x, |x− y|) ∈ Γ.

Step one: We show that if y ∈ Rn+1 is such that dist(y,M) = |x0−y| for some x0 ∈ bd(M),
then

x0 − y

|x0 − y| = cosα νH + sinανΣ(x0) sin(θ(x0)− α) ≤ 0 , (6.5)

Indeed, by differentiating x 7→ |x− y|2 at x0 along a direction v ∈ Tx0
(∂Σ) we find that

(x0 − y) · v = 0 ∀v ∈ Tx0
(∂Σ) = νΣ(x0)

⊥ ∩ ν⊥H .

This implies that x0−y lies in the plane generated by νH and νΣ(x0), thus the first relation
in (6.5). Next, by differentiating x 7→ |x − y|2 at x0 in the direction −νMbd(M)(x0) (which

points inwards M) we find that

(x0 − y) ·
(

− νMbd(M)(x0)
)

≥ 0

which thanks to (2.1) and the first relation in (6.5) gives

0 ≤ − cosα sin θ(x0) + sinα cos(θ(x0)) = sin(α− θ(x0)) .

This proves (6.5).

Step two: We assume to be in the hydrophobic case where 0 < θmin ≤ θmax ≤ π/2. Setting
Λ as in (1.4), it will suffice to prove

Ω \ Λ ⊆ A . (6.6)

Indeed, by combining (6.2) and (6.3) with (6.6) we find

1

n+ 1

∫

M

n

HM
≥ |ψ(Γ)| ≥ |A| ≥ |Ω \ Λ| ≥ |Ω|− |Λ| ,

that is the hydrophobic case of (1.3).
We now prove (6.6). Let y ∈ Ω \ Λ, and let x0 ∈ M be such that |x0 − y| = dist(y,M).

If x0 ∈ M ∩ H, then according to (6.4) we immediately find y ∈ A, as desired. We
conclude by showing that if x0 ∈ bd(M), then y ∈ Λ. Indeed, if this is the case, then (6.5)
holds. Since yn+1 > 0, in (6.5) we have α ∈ (−π/2,π/2). By θ(x0) ∈ (0,π/2], we have
θ(x0)− α ∈ (−π/2,π), so that sin(θ(x0)− α) ≤ 0 implies

−π
2
< θ(x0)− α ≤ 0 .

Summarizing,

0 < θmin ≤ α <
π

2
.

Denoting y = (z, t) and multiplying (6.5) by x0 − y, we obtain

0 ≤ |x0 − y| ≤ − cosαt+ sinα|z − x0|
which implies that

0 ≤ t ≤ tanα d(P∂Hy, ∂Σ),
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which is the definition of y ∈ Λ.

Step three: We address the hydrophilic case π/2 ≤ θmin ≤ θmax < π by showing that

Ω ∪ Λ ⊆ A ,

where now Λ is as in (1.5). As before, we just need to exclude the existence of y ∈ Ω ∪ Λ
such that dist(y,M) = |x0 − y| for some x0 ∈ bd(M). Looking at (6.5), if y ∈ Ω, then
yn+1 > 0, which implies α < π/2. If y ∈ Ω, but py /∈ Σ, then the closest point has to
happen at M . Therefore, we can assume that py ∈ Σ and thus α > 0. Since α ∈ (0,π/2),
and θ(x0) ∈ [π/2,π), we conclude that θ(x0) − α ∈ (0,π), sin(θ(x0) − α) > 0, and thus
find a contradiction with the second condition in (6.5). This proves that Ω ⊆ A. Now let
us consider the case of y ∈ Λ. By construction, 0 ≤ α < θmin so that

0 < θmin − α ≤ θ(x0)− α ≤ θ(x0) < π

which, again, contradicts sin(θ(x0)− α) ≤ 0.

Step four: Let us now assume that Ω satisfies (1.3) as an equality. This means that (6.2)
holds as an equality. By Lemma 6.1 and since Ω is connected, M ⊆ ∂Br(x) for some r > 0
and x ∈ Rn+1. The facts that bd(M) = M ∩ H and θ(x) ∈ (0,π) for every x ∈ bd(M)
force bd(M) to be a non-degenerate sphere and θ to be constant along bd(M).

Let us show, conversely, that if Ω is the intersection of an Euclidean ball with H in
such a way that θ = θmin = θmax ∈ (0,π), then equality holds in (1.3). Let us notice that,
independently from the value of θ, we always have that

Ω = H ∩Br(r cos(θ) en+1) .

Since M is always a spherical cap of radius r, we have
∫

M

n

HM
= rHn(M) .

Notice also that Λ is always the cone with center at r cos(θ) en+1 spanned by Br(r cos(θ) en+1)∩
∂H. In the hydrophobic case,

Λ ⊆ Ω with Ω \ Λ =
⋃

0<λ<1

λM ;

in the hydrophilic case,

Λ ∩ Ω = ∅ with Ω ∪ Λ =
⋃

0<λ<1

λM .

Since in both cases
∣

∣

∣

⋃

0<λ<1

λM
∣

∣

∣
=

∫ r

0
Hn((ρ/r)M) dρ =

∫ r

0
(ρ/r)n dρHn(M) =

rHn(M)

n+ 1

we conclude that (1.3) always holds as an equality. !
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