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A HEINTZE-KARCHER INEQUALITY WITH FREE BOUNDARIES
AND APPLICATIONS TO CAPILLARITY THEORY

MATIAS G. DELGADINO AND DANIEL WESER

ABSTRACT. In this paper we analyze the shape of a droplet inside a smooth container. To
characterize their shape in the capillarity regime, we obtain a new form of the Heintze—
Karcher inequality for mean convex hypersufaces with boundary lying on curved sub-
strates.

1. INTRODUCTION

1.1. The Heintze-Karcher inequality and Alexandrov’s theorem. Given a bounded
open set Q C R™*! with smooth boundary 9 and positive scalar mean curvature Hg, the
Heintze-Karcher inequality states that

(n+1)|Qf < /MHLQ (1.1)

with equality if and only if 2 is a Euclidean ball. Here |€2| denotes the volume of €, while
Hq is computed with respect to the outer unit normal vq to 2.

The Heintze-Karcher inequality is closely related to Alexandrov’s theorem, which states
that if Hg is constant (and € is bounded and connected), then €2 is a Euclidean ball.
Indeed, if Hq is constant, then by applying the divergence theorem twice (once in Q2 and
once tangentially to 0€2) to the identity vector field one finds

(n+ 1|0 = /Q div(z) = /mu-m):Him /m@:-m)Hm

Haq Jaa Hyg aa Hog

where H" denotes the n-dimensional Hausdorff measure in R"™! and div?®? the tangential
divergence with respect to 0€2. Thus the relation between (LI]) and Alexandrov’s theorem
is that one can prove the latter by characterzing the equality cases in ().

This interesting connection has motivated many authors to investigate the Heintze-
Karcher inequality (and variants of it) for proving rigidity theorems. Two proofs of the
Heintze-Karcher inequality that are particularly relevant for the present study are the one
by Montiel and Ros [MRI1] (see Lemma and Remark below; this proof is also
related to the argument recently used by Brendle [Brel3] to extend Alexandrov theorem
to a large class of warped product manifolds) and the one by Ros [Ros87]. Ros’ argument
is based on the study of the torsion potential u of {2, namely, the solution to the problem

—Au=1 in Q,
{ u=20 on 0f2.

As a by-product of this proof, one sees that when equality holds in (1], then —V?u =
(n+1)7'1d in Q and there exists A > 0 such that |[Vu| = —Vu-vg = X on 9Q. In
particular, the connected components of {2 are balls of the same radius, which can be
computed in terms of \ by exploiting the Dirichlet condition on w.

The analysis of this inequality found an application in a basic question of capillarity
theory, namely, the geometric descriptions of critical points of the Gauss energy of a
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VH = —€p+1

FIGURE 1.1. The setting for the Heintze-Karcher inequality on an ideal sub-
strate.

liquid droplet in the capillarity regime. Indeed, using the Heintze-Karcher inequality, the
pioneering work of [CMI7] showed that if a smooth set has mean curvature uniformly close
to a constant, then the set is almost a finite union of tangent balls of equal radius. In
[DM19], Alexandrov’s theorem was revisited for non smooth sets to account for bubbling
phenomenon. More specifically, sets of finite perimeter with distributional mean curvature
equal to a constant are shown to be the union of disjoint and tangent balls of equal
radius. This result was later quantified for smooth sets in [JN20] with the closeness of
the mean curvature to a constant measured in L™(952), which allowed the authors to show
exponential convergence of the volume preserving mean curvature flow to a union of balls

in R3. For the anisotropic generalization of these results, see [DMMNTI8, [DRKS20].

1.2. The Heintze-Karcher inequality on an ideal substrate. Motivated by the study
of droplets on a substrate, we look for a natural extension of the Heintze-Karcher in-
equality from the case of smooth sets in R™*! to that of subsets £ of the half-space
H = {x,11 > 0}. As depicted in Figure [T, we consider sets Q C {x,,+1 > 0} such that
M = 0QN{x,+1 > 0} is a smooth hypersurface with boundary, whose set of boundary
points bd(M) satisfies bd(M) = M N {x,+1 = 0}. We endow M with the orientation vy,
defined by vq, and, after defining for each = € bd(M) the angle 0(x) through

va(z) - v = cosf(x),

we assume the non-degeneracy condition (related to (L)) that #(x) € (0,7) for every
x € bd(M). In particular, the wetted region ¥ = 9Q N {z,+1 = 0} is a smooth set with
bd(X) = bd(M), and one can decompose

vy (z) = cosb(z)vy + sin 0 (x) vs(z) Vz € bd(M),

where vy, denotes the outer unit normal to ¥ in {z,4+1 = 0}.

A basic difficulty here is understanding what form the new Heintze-Karcher inequality
should take; indeed, the right-hand side of (ILT]) makes no sense, as Hq becomes a measure
on bd(M). The answer is found by looking at the Montiel-Ros proof [MRII]. Exploited in
this setting, their argument rather naturally suggests the discussion of the problem under
the additional assumption that

either 0(x) € (0,7/2] or O(z) € [r/2,m) for every x € bd(M).

Although this may look a bit artificial, this kind of restriction is actually natural from the
physical point of view, as it amounts to consider the case of hydrophobic (0 < § < 7/2)
or hydrophilic (7/2 < 6 < ) substrates. It is perhaps not surprising, then, that one finds
two different generalizations of the Heintze-Karcher inequality (I.1]), which we collectively
call the Heintze-Karcher inequalities on an ideal substrate:



FIGURE 1.2. Inthe hydrophobic case, the “pyramid” A is contained in H. Notice
that A may not be contained in 2. When € is a ball which intersects 0H below
its equator (picture on the top right corner), then A is the cone with vertex at the
center of the ball, spanned over the wetted region.

FIGURE 1.3. In the hydrophilic case, A is contained in {x,1 < 0}, and thus it
is automatically disjoint from 2. In this regime the optimal case is when € is a
ball intersecting OH above its equator. As in the hydrophobic case, A can then
be described as the cone with vertex at the center of the ball, spanned over the
wetted region.

Theorem 1.1 (Heintze-Karcher inequality on an ideal substrate). If Q C H = {z,+1 > 0}

18 a bounded connected open set such that M = H NI is a hypersurface with boundary
satisfying the hypotheses (h1l)—(h4) from Section[2, then

(n+1)(1Q —[A]) < /M HLM in the hydrophobic case,

(1.3)
(n+1)(JQ + [A]) < / i in the hydrophilic case,
v Hur
where in the hydrophobic case
A= {(z,t) €3 % [0,00): 0 <t < d(z,0%) tan H(Pag(z))} : (1.4)
and in the hydrophilic case
A= {(z,t) €3 x (—00,0) : d(2,0%) tan 0(Pys(2)) < t < o} , (1.5)

where Pyy, : X — 0X is the projection onto the boundary.
In both cases, equality holds in (L3) if and only if @ = B,(te,+1) N H for some r > 0
and [t] <.



The sets A are depicted in Figures and [[3] which illustrate the hydrophobic and
hydrophilic cases, respectively. The Heintze-Karcher inequalities on a substrate are both
sharp, and only a ball meeting 0H orthogonally (0 = 7/2) is an equality case for both
inequalities.

1.3. Droplets in a container. We now describe the main focus of this paper, the sessile
or pendant droplet in capillarity theory. For more details, we refer any interested reader to
[Fin86] for a classical overview of this problem. We consider the Gauss energy of a droplet
of fixed volume m sitting in a container: if K C R"*! an open set with C?-boundary
denotes the container and the open set 2 C K denotes the region occupied by the droplet,
then the Gauss energy of 2 is given by

F(Q) = P(QK) +/ odH" +/ g(x)dx with [Q = m fixed. (1.6)
OQNOK Q

where m > 0 is a given volume parameter, the function g : K — R is the potential energy
density, and o : 0K — [—1,1] is the relative adhesion coefficient, which measures the
relative mismatch between the surface tension of the liquid/air interface K NI and the
liquid /solid interface 092 N OK. Typically, one sets g(z) = go p Tp+1, where gy is Earth’s
gravity and p the density of on the liquid. Capillarity phenomena are characterized by the
dominance of the surface tension energy, that is of H"(KNIQ)+ . sanak O over the potential
energy fQ g. This is definitely the case when the volume parameter m is small enough in
terms of g, see (B.3]) for the expression of the energy after scaling by the volume. Although
for mathematical simplicity the relative adhesion coefficient ¢ is sometimes assumed to be
constant, several relevant physical phenomena such as hysteresis and contact line pinning
can be explained by local inhomogeneities of 0. Beyond the classical reference [HMT77],

we refer the reader to [CM0OT7al [CMOT7D] for a modern homogenization approach to rapidly
oscillating o.

In this work, we address the description of the critical points of F when m is small.
This problem leads to a question related to the one considered in [CM17]. To explain this
point, let us say that a bounded set 2 is a critical point of (LG). If M = KNJN is a
smooth hypersurface with boundary, then the Euler-Lagrange equations are the following:

Hq(z) 4+ g(z) = A for every x € int (M), (1.7)

v (x) v = o(x) for every x € bd(M). (1.8)
where bd(M) = M NOK and int (M) = 0Q N K. Condition (L) is known as Young’s
law, and it has been formulated here by taking s to be the orientation of M obtained by
continuously extending vgq from int (M) to bd(M). Condition (LT) is the Euler-Lagrange
equation of the perimeter, and A is a Lagrange multiplier that arises from the volume
constraint.

In the ideal case when ¢ = 0 and ¢ = o9, then M is a constant mean curvature
hypersurface contained in K whose boundary meets K at a constant angle. Wente’s
theorem [Wen80|, which was originally obtained by exploiting the moving planes method,
shows that when 0K is flat then M is a spherical cap. We also mention [HHW?20] for the
state of the art on the moving planes method with minimal regularity requirements. When
g is non-trivial and |2 is small, we are back to a problem similar to the one considered
in [CM17], with the added difficulties of having to deal with a surface with boundary
and almost constant contact angle. In [MMIG6], this problem was addressed for the case
of global minimizers, showing that as m — 07 global minimizers converge, up to a re-
scaling, to a ball intersected with a half-space. In this work, we extend this result to local
minimizers of (L6]), which we define as follows:

Definition 1.2. A set of locally finite perimeter  C K of volume |Q2] = m is said to be a
volume constrained local minimizer (VCLM) with diameter eg > 0 of the Gauss capillarity



energy if

fK,a,g(Q) < fK,U,g(Q)
for every Q C K satisfying |Q| = m and diam(QAQ) < Eomﬁl.

Analogous to the global minimizer case, our result is that as m — 0%, up to re-scaling,
local minimizers converge to a single ball intersected with the half-space {x,+1 > 0}.

Theorem 1.3. Consider a fized compact container K C R™ with C?-boundary and a
Lipschitz reqular hydrophilic adhesion coefficient o : 0K — (—1,0). Fiz constants C' > 1
and g9 > 0. For each m > 0, we consider the family G, c,.c of smooth connected sets
which are volume constrained local minimizers of Fi q4 for diameter o and volume m
and which satisfy

o P(Q; K) < Cmwit,
e diam(£,,) < C’mn%l,
o H(Sp) > C lmmit
Then, we have that
im  sup inf m QA (m T (2 + Q[Ba])| =0, (1.9)

m—0+ Qm€Gm.cq.C 0,Q,0«

where By, is the ball which intersects {x,+1 = 0} with angle 0, € (w/2,7) and has volume
|Bp, N {xp+1 > 0} =1, and Q[By,] is a rigid motion of By,.

Remark 1.4. We note that for n = 2 local minimizers are regular, see [Tay77, [PM15].
Remark 1.5. The convergence in (L9) is actually stronger, see ([A8) in Theorem [I.0.

To obtain this characterization, we prove a compactness result for Wente’s theorem.
The proof of the compactness theorem occupies the bulk of this paper.

1.4. Compactness. To prove Theorem [[L.3] we will re-scale the problem so that the re-
scaled sets have unit volume. Due to the C?-regularity of the container, the boundary of
its re-scaling will become flat in the limit. Consequently, our compactness theorem takes
the following (simplified) form (see Section Ml for the precise statement):

Theorem 1.6. Let {K;}ien be a sequence of conmected open sets with connected C2-
boundaries which converge to the half space {x,4+1 > 0} in the following sense:

[Aillco @) =0, llentiviilles ory) =0 and  |lz-villco or,) — 0, (1.10)

where A; is the second fundamental form of 0Kj.

Let {Q}ien be a sequence of connected open sets such that their boundaries {M;}ien
satisfy hypotheses (hl)-(h4) from Section [ If there exists a positive constant Ag > 0
such that

1 Hy = Xollcoar,y — 0, (1.11)
a fized angle 6y € (7/2, ) such that
101 — Bollcobaar,yy — 0 (1.12)
and a bounded set of finite perimeter Qo C {211 > 0} such that
P(y; K;) — P(Qoo; {Tnt1 > 0}) and |AQ| — 0, (1.13)

then Q is equal to the finite union of disjoint tangent balls of radius n/\g intersected
with {xn4+1 > 0} such the that balls in Qo which intersect the hyperplane {x,+1 = 0} do
so with contact angle 6y. Moreover, the wetted regions converge in the following sense:

Jim [H7(2)) = H" (Soo)| + H"H0%) — H"H0Z)| = 0. (1.14)
—00



The proof of Theorem follows from deriving a Heintze-Karcher-like inequality (see
Proposition B:{D

[ —yH" (2 /
H(|Q] —yH™(Z
= e dH = (0 +1)(12] = 7H(D)
dH"™ [ |Q] 1 9
2 1 4(d Q 0y — (|92] = yH"™(Z >
w2+ nef [ T <n+1+ (@ +92)(9 + 91" (D)) + max 77— (9] = 7 ()} > 0
(1.15)
by utilizing an appropriately modified torsion potential
—Au=1 in{
u=0 onM (1.16)
Oyt =7 on X,
where
0y
N HY(2) (1.17)

n+1 [ tan 6(x) dH 1 (z)

see also [JXZ22] for the inequality in the flat setting. Although this the guiding principle of
the proof in [CMI7], this is where the similarities with our proof end. The mixed boundary
conditions in (3.6]) made obtaining uniform Lipschitz estimates impossible at the present
time. In fact, the need to restrict to the hydrophilic regime 6 € (7/2,7) is due to the lack
of Cl-regularity in the hydrophobic case, see Remark 3.1l and Lemma We sidestep
these difficulties by utilizing varifold convergence of the boundaries and density estimates
to imply Hausdorff convergence of the boundaries. The characterization of the limit set
as a union balls follows from showing that the case of equality in the Heintze-Karcher-like
inequality (LI3)) is obtained in the limit. In fact, we can show the following quantitative
inequality:

(n + 1)(0] — vH"(S / e

Hy — A
§C<5+||9—90||00(az)+” i S ) (ag+ 3 wean,

where v is defined in (B3)).

1.5. Organization of the paper. Section [2] sets the general notation for the rest of the
paper. Section Blcontains all the necessary background for the proof of Theorem [I.6], which
can be found in Section @l Sections Bl and B prove Theorems and [T respectively.

2. HYPOTHESES AND NOTATION

Let n > 2, and denote by K C R™! an open set with C?-boundary. We will consider
non-empty bounded connected open sets 2 C K with finite perimeter, and we will denote

by vq the measure-theoretic outer unit normal to € (which agrees with the classical one
if the 99 is of class C'). We assume that

M=00NK

is a smooth hypersurface with boundary in R"*1. We denote by bd(M) and by int (M) the
boundary and the interior points of M, respectively, and make the following assumptions:

(h1): bd(M) is non-empty and contained in K, that is
bd(M) =M NOK int(M)=MNK=00nK.



In particular, vq is classically defined on M N K = K NI, and an orientation vy; of M
can be defined by setting

vy (x) = vo(x) Va € int (M),
vy(z) = lim vo(y) Vz € bd(M).

yeMNK
y—)CC

(h2): if we denote by Hjs the scalar mean curvature of M with respect to vy, then

Hy >0 on M.

(h3): if we define 6 : bd(M) — [0, 7] by setting
cosO(y) = vy (y) - vi Vx € bd(M),

then
O(x) € (0,m) Va € bd(M).

In particular, QN K is a smooth hypersurface in R"*!, ¥ := int (92 N JK) is an open
set with smooth boundary in 0H = R" x {0}, and

bd(M) = 0%,
where 0¥ denotes boundary of ¥ in H, whose outer unit normal is denoted by vs.

(h4): denoting by 6,,;, and 0,4, the extreme values of # on bd(M), we shall assume that

either [Omin, Omaz] C (0,7/2) (hydrophobic substrate) ,
or [Omins Omaz) € (7/2,7) (hydrophilic substrate) .

With the above notation in force, for every x € bd(M) one has
vy (z) = cosf(z)vk + sinf(x)vs(z),
Vha(ar) (7) = sinf(z)vi — cosO(z)vs(z), (2.1)

where vpq(37) denotes the outer normal to bd(M) with respect to M.

3. TORSION POTENTIAL WITH A SUBSTRATE

In this section, we will assume hypotheses (h1)—(h4) from Section Pl and, per the
discussion in the Introduction, we will assume further that the substrate is hydrophilic
and the container is almost flat. The precise definitions are as follows:

Hydrophilic: Denoting by 6, and 6,,,, the extreme values of 6 on bd(M), we shall
assume that there exists dy > 0 such that

[emin’ Hmaw] C (7T/2 + do, 7T).

Almost Flatness: There exists ¢ < 1 such that, up to rotation and translation

[Aokllcoy <& 1+ ent1-villco) <& and |z - villcors) < elzl. (3.1)

Remark 3.1. While Almost Flatness naturally arises from the proof of Theorem [I.3,
we need to assume we are in the Hydrophilic regime due to the fact that the torsion
potential fails to be C1(Q) in the hydrophobic regime, see LemmalZ.2 below. The reqularity
of the torsion potential is essential to justify Reilly’s identity, see Lemma below.



We define the torsion potential of 2 to be the unique solution u € C2(Q U X) N CY(Q)
to the mixed boundary value problem
—Au=1 1inQ
u=0 onM (3.2)
Opeu=r onk,
where
n H™(X)
n+1 [ tan O(x) dH 1 (z)
Existence, uniqueness, and regularity follow from [Lie86l Theorem 1]. Next, we show that

in the Hydrophilic regime one can prove additional regularity of the torsion potential
and that in the Almost Flatness regime one can control its L*>°-norm.

v = (3-3)

Lemma 3.2. Under the hypothesis of Section [2, assume further that the substrate is
Hydrophilic. Then, the unique solution v € C*(Q U X) N COQ) to B8) additionally
satisfies

ueCHQ) and u>0 inQ. (3.4)
Moreover, if ¥ satisfies Almost Flatness with ¢ small enough then
lulloo) < 4(d4 +77) (3.5)

Proof. The Cl-regularity of u follows directly from [AKSI, Thm. 1] after using a standard
argument to locally straighten the boundary of 0f2.

We now show that v > 0 by showing that its minimum is achieved on 02 N K, where
u vanishes. Indeed, the minimum can not be achieved in the interior by super harmonic-
ity, and the minimum of u cannot be achieved on ¥ by applying Hopf’s lemma, since
Hydrophilic implies

Opu(z) = v > 0.
To show (B.35)), consider v € C?(Q U X) N CY(Q) given by

2 + <4
where ¢ is given by the Almost Flatness hypothesis. Then, v is the unique solution to
—Av =0 in Q
o(z) = s + Tairde, on M (3.6)

. 1 Y+ do
Opv =7+ g% vk + —{=—€nq1 VK On X,

By the Almost Flatness hypothesis, we have that
|z - vi| < edg and ent1 VK < —(1 —¢),

which implies that
Opev <0 on Xx.

By harmonicity and Hopf’s lemma, we have that v satisfies

2 —I-Ldg
supu—2(dy+7°) < supv < supv = sup (2(‘%| 4 1T e mn+1) < 2(d3++?).

Q Q M zeM n+1) 1—¢
Thus, (B.5) holds. O

The main point of this section is to prove Propositions and B4l which will be
fundamental in the proof of our main compactness theorem.



Proposition 3.3. Under the hypothesis of Section[2, assume further that the substrate is
Hydrophilic, that ¥ satisfies Almost Flatness with ¢ small enough, and that the mean
curvature Hpyy is bounded away from zero. Then,

S T -
+2n+1)e </M CZ[—; Q%'l +4(d3 +72)(|9] +7’H”(Z))> +maxHLM (19 —w"(z)f)

> (1-2(n+ 1)) /‘m < ul? — Au))daz
+1

+/ dH"/ Vul(Har — 2(n + D)e)dH" — <1—2(n+1)€max—> (/ \Vu|d’H”>

>0. (3.7)
Proof of Proposition - By Lemma 35l and Lemma we have that
|2 —yH"(X) /
D(Q —yH™ (2
o TR — (1 1)(19] - 7 (2)
dH" Au)?
/ i /(1—2(n+1) )| V2ul? — (f:)1>dx

dH" N 2\
+/ /\w (Har — 2(n + 1)e)dH" — /\Vu|d’H .

The first inequaliy in (3:7) now follows by using that (Au)? = 1 and the divergence

Theorem to obtain )
([ 1w} =do1-m@p.
M

To obtain the positivity we notice that by Cauchy-Schwarz

infwgiﬂiwf(/M\vm) (/ |V YA HM VHy — C(n)e ) /HM/\Vu| (Hy—C(n)e),

with C(n) =2(n +1). O

Proposition 3.4. Under the hypothesis of Section[3, assume further that the substrate is

Hydrophilic with constant dy, that ¥ satisfies Almost Flatness, and that €, ||0 — 0y||co

and M are small enough. Then, we have the bound

(n+ 1)1 =1 () - [ 5

Hy — A
<) (=-+ 10t +%) (da+5) ),
where v is as in (3.3).

Proof of Proposition [3.7} We consider the vector field X = z, and we apply the divergence
theorem to obtain

(n+1)Q] = / v dH” +/x.yvcmn. (3.8)
M by



By Almost Flatness, we have

/m-yvd’H"
2

which will become a part of the remainder. For the first term in (3.8]), the tangential
divergence theorem yields the following identity:

/x-ud?—l”:E’H"(M)+l/ x-yé‘gd’}-["_1+/ <1—@>(x-u)d’}-[”. (3.9)
M A A Jos M A

We notice the last term of ([3.9) can be lumped into the remainder

/ o BV Gy e [Hy = Aoy
u X\ )

For the second term of ([B.9]), we use the almost constant angle condition to obtain the
identity

/ z-vMapt = — cos(@o)/ z-vs dH £ / (cos(8g) — cos(0))z - vs dH™ 1
o0x 0% 0%

<edoH"(Y),

< doH" (M)

+ / sin(f)z - vy dH" L. (3.10)
(o)X
The last two terms can be lumped into the remainder by the bounds

/ (cos(Bo) — cos(8)) - v AH™Y| < [0 — Bl cogosydaH™ ™ (I)
)

and
< edoH"1(0%).

/ sin(0)z - vy dH" 1
1)

For the first term in ([BI0), we can use the tangential divergence theorem on ¥ to obtain

/ z-vg dH" N = nH™ (D) — / Hygx - vy dH”,
% b

and we can bound
< €2dQHn(Z)

/ Hygx - vy dH"
b

Putting all the previous identities together, we obtain that there exists a constant depend-
ing on dg, H"(M), ||[Hs||co and H"~1(9%), such that

cos(fo)nH"(E) n’H"(M)'

1)|
(n+ D} + 08 )

H™(95)
)

|HM — )‘|Co

H™1(9%)
. = 94

A
(3.11)

< edg <2’H"(E) + ) + doH" (M) + 16 = bollco a5 o

Next, using the mean curvature deficit we can bound the difference

0D [ 8 gl ¢ Ve [ 1 g W e, 1O,
) v H ) w H ) )

where we have assumed that the mean curvature deficit is small enough.
Using Lemma 3.7 we have

M —(n+ 1)707%"(2)‘
< cot b (sin?@o) (e+ 160 — Oollco) + | H —)\)\HCO> H;(i\i);}'gg)z)’

10



where
on H™(X)
~ n+ 1tan(g)H1(0%)"

Y0

Using that 6 is bounded away from 7/2 by the hypothesis Hydrophilic, we have the
bound

Hn(2)2

[(n+ 1DyH"(E) — (n+1)7] < C(%)m

16— ol|co-

Finally, combining the above inequalities with the bound on H"(9Y) from Lemma B.7] we
obtain the bound in the statement of the Proposition. ]

3.1. Supporting lemmas. In this section, we develop the lemmas used in the proofs of
Propositions B3] and B4l We start by exploiting the boundary regularity of the torsion
potential u in the hydrophilic regime ([B4]) to prove a Reilly’s-type identity.

Lemma 3.5. Under the hypothesis of Section [, assume further that the substrate is
Hydrophilic. Then, u satisfies the identities

n (Au)2 2 12 / 2 / 2 ) n
——(|Q] = H" (S = Dl = D)2H Hox + Aprc [Vu, V34,
o 2= ))+/Qn+1 [D%uf* = | (w)*H + | 7*Hor + Aox[V-u (31142)

and

9T ([ 2y o) - )

R

1
"’/ e (/ |VU|2H+/ 72H3K+A3K[V2u,v2u]> . (3.13)
v H \Jy 2

Proof. We re-write the following expression as a divergence:

(Au)? — |D*ul? = V - (VulAu — D*u - Vu).

Hence, by using —Au = 1, we have

A 2
n |Q|—|—/ ﬂ—|D2u|2:/ u, Au — D*u[Vu, v .

On M, we can use Reilly’s identity. Indeed, because u =0 on M and Vu = u,v, we have
that pointwise on M

u, Ay — D2u[Vu, vl =u, Z DQU[TZ', Ti] = w,Apru + H(u,,)2 = H(uy)2 ,
i=1

where {7;}!" | is a basis of the tangent space and A, is the Laplace-Beltrami operator on
M. Therefore,

/M u, Au — D*u[Vu,v] = /M H(u,)?. (3.15)

11



Next, given a point p € ¥ and a basis {r;}}~, for T,,3 we find pointwise

u, Au — D*u[Vu, V]

= u, {Z D?ulr;, 3] + D?ulv, 1/]} - {Z(Vu,n> D?ulri, v] + (Vu,v) D?uly, 1/]}
i=1 i=1

= wy, ZDzu[TZ’,TZ’] — Z(VU,TZ'>D2U[T7;,I/]
i=1 i=1

= u, Asu + H(u,)?* — Z(Vu,n>D2u[Ti,y]. (3.16)
i=1
We now compute the Hessian term in the sum to be
D?u[r;,v] = (D,,Vu,v)
= D, (Vu,v) — (Vu,D,v)
= 0 — (VZu,D,,v) — u, (v, Dy,v)
= — Ag[VZu,7],
where we used the facts that u, is constant on ¥ (and hence D, u, = 0) and that
(v,D;,v) = D; (v,v) — (Dyv,v) = —(Drv,v),
which directly implies that (v, D, v) = 0. Thus, we can rewrite (310]) to be
n

u, Au — D*u[Vu,v] = u, Asu + H(u,)? — Z(Vu,Ti>D2u[Ti,y]
i=1

= w, Ayu + H(u,)* + ) (Vu, 1) As[V>u, 7]
=1
= u, Avu + H(ul,)2 + Ag[Vzu, Vzu]

Hence, by the divergence theorem on X, we have

/ Uy Ay — DQU[VU, v] = ’y/ Asu+~2Hs, + As [Vzu, Vzu]
5 b

= 7 Vu-vs + / v Hy, + A [VZu, V). (3.17)
o% b

We now use the definition of the angle to write the co-normal of M on 9% as
Veo = — cos(0) vy, + sin(f) vk .

As noted above, we have that Vu = u,v on M, and hence on M = 9% by the Cct
regularity on ). So, we find that pointwise on 9%

0=Vu-ve,=—cos(0)Vu-vs + ysin(6).

We thus arrive at the pointwise identity

in(6
Vu - vy :fyw on 0%,
cos(6)
which we substitute into (317 to find

/uyAu—D2u[Vu, v] = 72/ sin() + /72H2+A[Vzu, V)
by ax cos(0) )

— ) + / 2Hy + AVEL, VR, (3.18)

n+1 »



where the last equality follows from the definition of 4. The identity ([BI2]) then follows

by putting together (BI4]), (BI5) and BIF]).

By the divergence theorem one has
2 —#(®) = [ [7ul,

so by using this identity and ([B12]) we can directly expand the right-hand-side of (3.13])
to find

fom Jo(woa = 50) o [ (e e awnea) - (f )
— /M% </Q|V2u| - (nAf:)f +/M|Vu|2H—|—/E'y2H—|—A[VEu, v%]) - (/M|Vu|>2

B </M %> (102 =M TH®) — (19] -y HN ()
| — yH"™

:n—H</ 2= (4 (0]~ A (T >>>,
which is (BI3). =

Next, we utilize the Almost Flatness hypothesis to control the extra the terms in the
wetted region.

Lemma 3.6. Under the hypothesis of Section [, assume further that the substrate is
Hydrophilic, ¥ satisfies Almost Flatness with parameter e < 1/2, then

/ (v?Hs, + As[VZu, VZu]) dH"
2

2(n +1)e (/Q (|1D%u* + |Vu|2)da:—|—/ |Vu)? d?—l”)

< 2(n+1)e <4(cl§2 + ) (Q] +yH™(Z / |D?ul? dz +/ |Vul? d’H”> (3.19)

IN

where u € C?(QUX) N CHQ) is the unique solution to ([B.0).

Proof. We consider the vector field —|Vu|?e, 1, and apply the divergence theorem to
obtain

/ \Vul*(—epy1 - vs) dH™ = / IVul?epq1 - var dH™ + 2/ Vu- VO, t1u dz
X M Q
From the Almost Flatness hypothesis, we obtain
(1-— E)/ |Vul|? dH" < / |Vul|? dH" —I—/ |D?u)? + |Vul? dz.
by M Q

Using the previous inequality with ¢ < 1/2, we can directly bound

/ (V?Hs, + As[Vu, Vu]) dH"
%

< (n+1) | Aslloogs) /E Vul? dH"

< 2(n+1) | As|lcos) (/Q (|D2u|2+|Vu|2)d:r+/M|Vu|2d’H”> .
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The first inequality in (8.19) then follows from the Almost Flatness hypothesis || As||co(s) <
e. For the second inequality, we integrate by parts and use ([3.0) to obtain

/ Vul? do = / wdz 4 / wdH < Jfulloe (19 +HA(E)),
Q Q )

and the desired inequality now follows from applying the L*°-estimate (B.5]). O

Finally, we use the Hydrophilic and Almost Flatness hypotheses to control the
perimeter of the wetted region.

Lemma 3.7. Under the hypothesis of Section [, assume further that the substrate is
Hydrophilic, ¥ satisfies Almost Flatness, and that € and ||0 —6p||co are small enough.
Then, we have the bounds

n—1 2 n _ n
HIHOF) < s (VHP(E) + [ = Moo (M)
and
cos By H™(X) 6 |H— Ao\ H™(M)
_ < - - .
X tan@o’}-l"—l(aZ)‘ < cot o <sin(90)(5+ 1 = bollco) + ——; H=1(93)

Proof. Using the divergence theorem on the vector field X = e, 1, we have that
0= / divX dH" = / HX -vg dH" +/ (sinfX - vg —cos0X -vx) dH™ 1. (3.20)
M M )
For the first term of ([B.20]), we use the almost constancy of the mean curvature to obtain
/ HX -vg dH" < ||H — N|SH (M) + )\/ X vk dH™,
M b
and then, by using Almost Flatness, we further find that

'XH”(E) —/ HX - vg dH"| < eAH™(S) + |H — M| coH™ (M) .
M

For the second term of ([B.20)), we also use Almost Flatness to obtain

sin oH" 1 (9%) +/ (sinfX - v —cos0X -vs) dH" !
)

<H"HOD)[0 — Oollco + eH"H(OD) .
Hence, we find
|sin GoH"H(0%) + AH™(Z)| < eAH™(Z) + |H — M|coH" (M)
+ (e + 0 — o)l co)H"1(O%), (3.21)

which, for e and ||§ — 6p]||co small enough, implies

H L (0%) <

sin(fo) (XHH(E) +H - AHoo’hl"(l\f)) :

Substituting this bound into ([B21]), we get that

|sin O H" (%) + AH™(2)] < 4 ( e+ 1160 — bgllco) + || H — AHCO> H" (M) .

2
sin(@o))\(

The desired estimate now follows from dividing by sin §gH" }(0X)\ and multiplying by
cos . O
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4. COMPACTNESS

4.1. GMT preliminaries. In the proof of Theorem [[L6l we will make use of the theory
of varifolds. Additionally, we will weaken the technical hypothesis of the convergence
in perimeter (LI3]) by appealing to the deep result of White [Whi09, Thm. 1.2], which
relates the limits of “compatible” sequences of currents and varifolds. Here, we follow the
notation of [ST83, Chapters 6 and 8].

Let K be a bounded open set with C2-boundary, and let Q C K be a bounded connected
open set such that M = K N oL is a smooth hypersurface with boundary satisfying the
hypotheses (h1)-(h4). Denote by M and ¥ the sets M = 0Q N K and ¥ = 02 N OK.
Then, we will let V, and W denote the multiplicity one varifolds associated to M and 0f2,
respectively; that is, for ¢ € C? (R”H x G(n+1, n)) we define

Vi) = /wa,TpM)d'H",

Wil = [ s manae + [ o TS (4.1)

In terms of notation, we sometimes take test functions ¢ € C(R"™! x G(n + 1,n)) that
are constant on the second variable ¥(p, ) = ¢(p), where ¢ € CO(R"*!). Through this
consideration, for ¢ € CO(R"™!) we denote

Vigl = /Msod'H".

We will reserve the symbols ¢ for test functions ¢ € C?(R™!) which only depend on the
space variable and v for general test functions ¢ € C2(R"*! x G(n +1,n)).
Next, given X € C°(R*"; R the first variation of V and W are given by

WVIX] = / div, XdH" :/ HMX-VMd’H”—I-/ X-I/bd(M)d’H”_l
M M bd (M)

5W[X] = / diVTXdHn —|—/ diVTXdHn :/ HMX . VMdHn —l—/ X - (Vbd(M) + Ug)d%n_l,
M ) M bd(M)

where div, denotes the tangential divergence operator on M. Note that the representation
on the right-hand-side follows from the regularity we have assumed, see Section

We now state a simplified version of [Whi09, Thm. 1.2] sufficient for our setting:

Theorem 4.1. Let {Q;}1en be a sequence of compact sets with uniformly bounded finite
perimeter and {W;}1en be the natural multiplicity one varifolds associated to the boundaries

{an}ZEN as in (IE:D
If the wvarifolds {W;}ien have uniformly bounded first variation, then, up to a subse-
quence, one has that Q; — Qo in L' and

W, — Wa = E1dH"|o0.. + ZodH"|s, (4.2)

where S is a rectifiable set disjoint from 0 and =1 and =g are integer valued Borel
functions satisfying Z1 = 1 (mod 2) and Zg = 0 (mod 2).

4.2. Proof of Theorem We now state and prove Theorem in its precise form:

Theorem 1.6. Let {K;}en be a sequence of connected open sets with connected C?-
boundaries that converge to the half space in the following sense:

[Aillco o) = 0, lent1-viilloo ory) =0 and |z villoo (ar) — 0, (4.3)

where A; is the second fundamental form of 0Kj.
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If {Q }1en is a sequence of connected open sets which satisfy uniform bounds in diameter
and perimeter,

sup diam(£2;) < oo, sup P(Q; {xn+1 > 0}) < o0, (4.4)
leN leEN

then, up to subsequence, there exists a bounded set of finite perimeter Qoo C {xp41 > 0}
such that | AQs| — 0 and for which the following holds: if the boundaries {M;}ien
satisfy hypotheses (h1)-(h4) from Section [3, if there exists a positive constant \g > 0
such that

1Hi = Nollcogar,y = 0, (4.5)
if there exists a fized angle 0y € (7/2,m) such that
101 — Oollcomwacar)y) — 05 (4.6)

and if the set S in [@2) satisfies
H'(S N {xps1 >0}) =0, (4.7

then Q is equal to a finite union of disjoint tangent balls of radius n/\g intersected with
{Zn4+1 > 0}, the balls in Qo which intersect the hyperplane {x,+1 = 0} do so with contact
angle 6y, and

P(Ql; Kl) — P(Qom {l‘n+1 > 0}) .
Moreover, the wetted regions converge in the following sense:

Jim [H"(3) = H" (Seo)| + (H"HO%)) — H"H(0%)| = 0. (4.8)
— 00

Remark 4.2. The technical hypothesis [AT) is only used in the first step of the proof to
establish (A13]) and may be able to be removed using additional arguments.

Proof of Theorem [I.8l. Without loss of generality, we may simplify our notation by con-
sidering the specific case of A = n.

Notation. We will let C denote a generic constant independent of [ which may depend
upon n, R, 0y, sup;en |71/, and sup;ey P(§2;) and which we will allow to change line-by-line.
For all [ € N, we will let V; denote the multiplicity-one varifold induced by M;. Next, for
each [ € N, we will let u; : £; — R denote the torsion potential of §2;, that is to say the

unique solution to
—Aul =1 in Ql

u =0 on M, (4.9)
Oy, w =i on

with v; as in (33). By an abuse notation, we will also denote vu; : K; — R to be the zero
extension of u; to K.

Step one. By hypothesis there exists Qs C {z,+1 > 0} a set of finite perimeter such
that

|QAQ| — 0. (4.10)
We now claim that there exists an integral varifold V, such that (up to a subsequence)
Vi 2 Ve, and 6V, = 6V (4.11)

and, moreover, there exists a set of finite perimeter Yo, C {x,+1 = 0}, such that, up to
passing to a subsequence, one has the convergence of the wetted region

dH"|Z; 2 dH" Yoo (4.12)

as | — oo.
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We show that the sequence of varifolds {V;};cn have uniformly bounded mass and first
variation. That they have uniformly bounded mass follows directly from (@4]). For the
first variation, we consider X € C°(R" ™1 R" 1) and compute

oV [X] :/ div, XdH" = HX vy, dH" +/ X - vpa(y)dH"™,
M M, bd(M;)
where vy, pq(ur,) denote the outer unit normal of M, and the outer unit conormal of
bd(M;). Therefore, by ([@4]), Lemma 3.7 and (£3]), we have the uniform bound

sup [0V[[X] < C[|X|comn+1)
leN

so that by the compactness theorem for integral varifolds [ST83, 42.7] there exists an
integral varifold V., such that, up to a subsequence, (LII]) holds. The convergence in
(£12)) follows by similar arguments.

We conclude this step by noting that by ({7 it directly follows that

supp Voo N {xpy1 > 0} = Qoo N{zpy1 > 0} = 90 N{xp1 > 0}, (4.13)

where the last equality is obtained by choosing the representative (o, such that its topo-
logical boundary coincides with the closure of the reduced boundary 0*Q., = 9, see

Proposition 12.19].

Step two. We now claim that, up to passing to a subsequence, for every n > 0 the
following limit holds:

Jim b (M 0 {2041 > 0}, 90 0 {2ng1 > 1) = 0. (4.14)
—00

This will follow from a uniform density estimate stemming from the bounded mean curva-
ture hypotheses. By (@3], (&3]), and the monotonicity formula for integral varifolds [ST83)
17.7], there exists a constant C' > 0 independent of [ and 7 such that for all » > 0 and !
large enough such that 3; C {x,,11 < n/2} the following holds: for any p € M;N{x,+1 > n}
and p € (0,1/2) one has
H"(M; N B,y(p)) > wnp”. (4.15)
We will now prove that
lim sup dist(p, 0Qs) = 0. (4.16)
1200 pe My {@n41>n}
Suppose for sake of contradiction that ([AIG]) does not hold. Then, there exists n,e > 0 and
a sequence of points {p;} such that p; € M; N {x,+1 > n} and dist(p;, 0Q) > €. By the
uniform diameter of the sets {€;};en, the sequence {p;};en has a convergent subsequence,
which we will not relabel. Let py, denote this limit, and note that dist(peo, 0Q) > €. Let
¢ € CX(B:(po)) be such that 0 < ¢ < 1 and ¢ =1 on B,/3(px). By the convergence
of the sequence p; — pso, for I large enough we have B, 4(p1) € B./2(peo). Up to taking
[ larger, so that we ensure ¥; C {x, 11 < n/2} by ([@3]), for [ large enough the density

estimate (£.I5) yields

4n M,

However, this contradicts the fact that Vi[p] — Vao[p] = 0 by (@II]), where we know that
Voole] = 0 by dist(peo, 0020) > ¢ and ([@I3]). Hence, ([@I6]) must hold.
To prove the converse limit,

lim sup dist(p, M;) =0,
1=00 ped o N{an41>1}

C

we again argue by contradiction. Suppose that there exists n,e > 0 and p € 0QcN{zp41 >
n} such that for all [ large enough one has dist(p, M;) > e. Let ¢ € C°(B,/2(p)) be such
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that 0 < ¢ < 1 and ¢ = 1 on B,/(p). Then, by @II), (AI3), and the fact that
dist(p, M; N {xps+1 > n}) > ¢ for all [, one has

0 < Vaolp] = lim Vi[p] =0,
l—o00
a contradiction. Therefore, we conclude that (ZI4]) holds as claimed.

Step three. For each | € N, let u; : £; — R be the unique solution to (£9]). Then, we

claim that )

Id
lim Vi — ——| dz = 0 (4.17)
l— o0 o +].
and
sup [lugll g1k, < oo (4.18)
leN

Combining Propositions B3] B4l and Lemmal37], we can use the hypothesis in the Theorem
to conclude that

0 = lim [(1—271—1—1 / dH / <|V2 (Aul)>dx
=00 Ml o

dH"
+/ / |V | (Hpg, — 2(n + 1)e)dH"
M, Hyp, M

- <1 — 2(n + 1)e max H;) (/Ml |Vul|d7-l”>2] .

Using that the two last terms in the previous limit are always positive, since the mean
curvature is bounded above and the perimeter bounded below, we may conclude that

A 2
lim <|V2ul|2 - M) dxr = 0.
l— o0 o n -+ 1

Considering the matrices I and V?u; as vectors in v, w € R(”+1)2, we notice that the above
integrand can be written as

Auy)? vew
V2|2 — ( — ]2
| Ul| n+1 |w| |U|2

and hence is exactly quantifying the deficit in the inequality of Cauchy-Schwarz. Following
the arguments in [DMMNTI7, Proposition 3.7], we conclude that

2

o1
lim — dx = 0.

Id
Vi — ——
l—00 2 o n + 1

The estimate ([AI8) follows directly by integration by parts, as the equation and the
boundary conditions for u; yield

/ V> de = [ |Vwy|? do
Kl Ql

= / uld:r—l—’yh/ u; dH"
Ql ]

<l poe (18] +mH" (1))
where the uniform L*°-bound is given by (B.3l).

Step four. By (4I8]) and the asymptotic flatness of the domain, there exists a positive
function us, € H'({z, 41 > 0}) such that

U — Uso  strongly in L2 ({#np1 > 0}) and w — use weakly in Hi ({zp41 > 0}).
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We now claim that

Id

Dy =
oo n+1

in Qo (4.19)

and, moreover, there exists a finite number of disjoint balls { B;(y;) }ic; with radii satisfying
r; = 1 (mod 2) such that

Qoo N {zn1 >0} = | JBiN {wni1 >0},
el

We begin by showing (£I9) holds in distribution. Let z € Qo N {411 > 0}, and let
e > 0 be such that d(z,00«) > ¢ > 0. By the Hausdorff convergence ([4.14]), we can take
[ large enough such

d(0 N {zni1 > 0}, 0 N{zn1 > n}) <e/2

for 7 = zp41/2, which implies that B.5(2) C €; for [ large enough. By ([@IT7) and the
previous inclusion, one can directly see that for any ¢ € C2°(B./2(2))

I
d /¢dm = lim /D2ul¢>daz = lim /ulD2¢>da; = /UOOD2¢ dz
n+1 l—00 l—o0

which shows ([£19) in distribution. This readily implies that us € C*°(Qy) and that its
nodal set has zero Lebesgue measure, i.e. [{uc = 0} N Q| = 0. Thus, in each connected
component of Q,, = [JQ,, there exists y; € R"! and r; € (0,00) such that

_ e =il =7

)= EYE TN i
oo () 2(n + 1) 2t

Next, using the weak H' convergence and integration by parts, we have that for any test
function ¢ € C°({zp41 > 0})

/ Vi dz = lim Vup der = — lim wVodr = —/ Uso VO d
{Zn+1>0} Qoo

-0 Jo, =00 Jq,
which by the uniform continuity of us, on 2., implies that the trace vanishes
Uso = 0 on 0y =0.
We therefore may directly conclude that each component
QL = By, (yi) N {zns1 > 0}, (4.20)

as claimed.

To show that the radii satisfy r; = 1 (mod 2), we use the varifold convergence of the
first variations 6Vag, — 6Vaq., and Theorem Bl Given a vector field X € C°(H;R" 1)
whose support does not intersect {x,+1 = 0}, we can use ([LI3)) and ([@20) to write

Voo X] = / div, X =, dH" = Zﬁ/ X -vE dH",
(219788 icl i 0By, (i)
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and by using the convergence of the mean curvature (L5 we can explicitly compute the
limit

Vo[ X] = lim div, X dH"

h—o00 Mh

= lim n X -vdH"

h—o0 M,

= lim n/ divy1 X dx
Qpn

h—o00

= n/ div,+1 X dx

=n X -vdH"
0o

= Z n / X -vdH",
iel 9B, (i)

Hence we may directly conclude that r; is constantly equal to Z; in each spherical cap
0B;, and the fact that 7, = 21 = 1 (mod 2) follows from Theorem [£.11

Step five. In this step we show that for all the radii r; are all equal to 1, and to do so we
will use a sliding argument. Fix an index ¢ € I. If r; = 1, then we are of course done, so
suppose for sake of contradiction that r; # 1. By the previous step, we have that r; > 3.
If B,,(yi) does not intersect the plane {z,+1 = 0}, the proof that r; = 1 follows from
obvious modifications of the argument below. Thus, we will assume that B,, (y;) intersects
the plane {x,+; = 0} with angle 6;. We handle the cases 6; € (0,7/2) and 0, € [7/2, )
separately.

Case I: 6; € (0,7/2). By the Hausdorff convergence of the boundary we have that for
any € > 0 and any 7 > 0 there exists [ large enough such that ¥; C {z,4+1 < n/2} and
Bri—<(yi) N {znt1 > n} C Q0 {zn41 >0}

Using that 6; € (0,7/2), if we translate 0B,,_-(y;) N {zn+1 > n} vertically then the first
touching point with 9€; can not happen at {z,+1 = n} for n small enough, which implies
that the curvatures are ordered rﬁa > Hpn, > n — 9. Using that r; > 3, we get a
contradiction by taking € and n small enough.

Case II: 0; € [7/2,1). We first define the height
hi = —y; - eny1,

which is the distance of the center of the ball B;(y;) from the plane {z,+1 = 0} (note the
convention h; > 0). We will now let ¢ > 0 be such that

1=y
< —, 4.21
€ < min { Sr— } (4.21)
By the local Hausdorff convergence of the boundary (setting n = ¢ for simplicity), for I
large enough

0# M N Brite(yi) N {ng1 > e} C By, —c(y:)° N {Zny1 > €}
If necessary, we will take [ larger so that ¥; C {41 <e}. For t € (0,1 + ¢) the mapping
t — Br,_1(yi +tens1) N{zpt1 > €} (4.22)

corresponds to vertically sliding the ball B, _; (y;) until it touches the boundary 0By, +(y;),
which serves as an upper for the furthest one would need to translate in order to touch M;.
If the sliding ball (£22]) does not intersect the boundary of the disk By, _-(y;) N {zn4+1 = €}
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for any ¢t € (0,1 + €), then the first point of contact with M; will be tangential, and the
same argument will hold as in Case I, thereby allowing us to conclude that r; = 1. Thus,
we are reduced to showing that

min dist (8B7«i_1(yi + t€n+1) N {xn—i-l = 5} , 8Bri_5(yi) N {:L‘n+1 = 6}) > 0. (4.23)
te[0,14-<]

We note that both of the sets considered in ([{.23]) are disks with the same center, hence
to check the desired property we need to show that for ¢ € [0,1 + ¢]

radius(0By,—1(y; + tep+1) N {xny1 = €}) < radius(0By, —c (yi) N {znt1 = €}).

Computationally, we break the proof into two subcases, I when the minimum is achieved
for some t € (0,1 4+ ¢), and IT when it is achieved at t = 1 + e. To alleviate the notation,
without loss of generality we consider the case that y; is on the x,1-axis.

Subcase I: There exists a time tg € (0,1 4 ) such that

radius(0By,—1((—h; + to)ent1) N{zpnt1 =€}) =r; — 1, (4.24)
which implies that we have the inequality
hi=ty—e<1, (4.25)

as tgp € (0,14¢). Using the Pythagorean theorem, we see that the desired inequality (£.23))
is equivalent to the claim

radius(By,—«(—(h; + €)ens1) N{ani1 =0}) = /(ri —e)2 — (hi +e)2 > 1 — 1,
which directly follows from the fact that r; > 3, h; < 1 by (£25]) and ¢ < 2%1 by (@21]).
Subcase II: Assuming ([4.24)) does not hold, the desired ([@23]) follows from the inequal-
ity
radius (Bn._g(— (h; +E)€n+1) N{zp41 = O}) > radius (Bri_l ((—hi + 1)en+1){mn+1 = 0}) )

Using the Pythagorean theorem and squaring both sides, this is equivalent to
(ri —e)? — (hi +e)2 > (r; — 1)* = (—h; +1)?

which follows from the choice of ¢ < :;ZZ in (@21)).

Step siz. In this step we will show that the angles with which the components of .,
intersect the plane {z,,11 = 0} must all be equal to y. More specifically, if we let I’ C T
denote the subset of indices such that By (y;) N {x,41 = 0} # 0, and if for i € I’ we let 6;
denote the angle with which B (y;) intersects {x,+1 = 0}, then we claim that 6; = 6, for
all i € I'. As a byproduct of the proof, we will also show that P(£;) — P(Q).

We consider a test vector field X € C°(R"!) such that X - e,,1 = 0 on {z,;1 = 0},
for which it holds that

WX] = HX v dH" —I—/
M, 0%
Using the varifold convergence V; — V., the convergence of both the mean curvature

([@5) and angle (4]), the convergence of v, — e,41 by [@3)), and the uniform bound on
H"1(0%);) from Lemma [B7], we can apply the divergence theorem twice to obtain that

Wl X] = lliglo 0V X] = lim (n/Q divp41 X do — cos(@o)/
1

l—00 Zl

(sin(@l)X VK, —cos(0;) X - I/gl) dH™ 1.

div, X d?—l”) )
which in turn implies by (£I0) and (£I12) that

Voo X] = n/ div,, 11 X do — cos(@o)/ div,, X dH" .

oo )
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Since the boundary of Qo = J,;c; B1(yi) N {xn41 > 0} has constant mean curvature equal
to n, we can apply the divergence theorem again to obtain that

Vool X| = / div, X dH"
[ ] Z aBl(yz)mH

+ Z cos(6;) / div,, X dH" — cos(fy) / div, X dH" (4.26)
Bi(yi) {Tnt1=0} oo
At the same time, we claim that we can write 6V, as

Vo[ X] = Z / div, XdH" + / div, X Zy dH"™ + / div, X Zo dH™,
8Bl(yl)ﬂH Qmﬂ{rn+1:0}\2m

iel S
(4.27)
for S an n-rectifiable subset of the plane {x,+1 = 0} disjoint from Qo N{x,+1 =0} \ Lo,
and Zgp and E; integer-valued Borel functions such that Zp = 0 (mod 2) and =; = 1

(mod 2). Indeed, for Wy, defined as in Theorem AT we can use ([@2) and Step five to

write
Voo = W —dH"|n,, = dHn|aQOOm{xn+1>0} + Eld%n|goon{$n+1:0}\200 + ZodH"|s,

where S C {x,,11 = 0} is the set from Theorem [4.] enlarged to contain the points in Y
with multiplicity greater than 1. This proves (£27]).

We now wish to show that S and Qo N {z,+1 = 0} \ Lo have H™-measure zero, which
implies P(§;) — P(Q). To this end, comparing (£26]) and ([@27]), we may conclude that

D cos(0:)X B, (yi)n{wms=0} — €08(00) X oo = Z0XS + E1X0ue {1201\ Sne (4.28)
ier

Given i € I, if the set Bi(y;) N {zp+1 = 0} C Qo N{zp+1 = 0} is not contained in
Yo, then by ([@28)) we have that =, = cos(6;) on Bi(yi) N {zn+1 = 0}. The condition
Z1 = 1 (mod 2) implies that either cos(f;) = 1 or §; = 0, both of which imply that
H™(B1(y;){xn+1 = 0}) = 0. Hence, for all i € I’ we must have By (y;) " {zp+1 = 0} C Qoo
which implies that H"(Qeo N {Zn41 = 0} \ o) = 0. To show H™(S) = 0, we notice that
by ([£28]) and the previous argument the inclusion S C ¥, holds and, moreover, that on
each connected component

=0 = cos(#;) —cos(fp) = 0 (mod 2),
which can only be satisfied if 6; = 0y for every ¢ € I and =y = 0 vanishes everywhere.

Step seven. We claim that H"19%;, — H" 10X . Let ¢ € C®({z,11 = 0}), and,
abusing notation, extend ¢ to R"™! by ¢(z) = ¢(w1,...,2,,0), so that div(ge,;1) = 0.
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Then, by the convergence in mean curvature and angle it follows that

lim div,(peni1)
l—00 Ml

= lim
l—00

Hl¢€n+1 V+/

bd (M)

= lim ¢en+1 1/+81n90/ ¢
l—00 bd(Ml)
< div(pent1) —n/ Peny1 - VK, —i—sm«%/ ¢)
bd(M;)

lim | —n P€ni1 - VK, +sin 90/ o |, (4.29)
=00 N bd(M;)

while at the same time by the varifold convergence (£I1))

<Sin(9h)€n+]_ VK, — cos(0))enq1 - Vgl)(;b)

= lim
h—o00

lim dwT (dent1) =) / dwT (dent1)
o

l—o0 icl Bl yz
¢+ sinby / ¢ . (4.30)

:_nz/

icl 1(yz |q{rn+l 0} iel’ Bl(yi)m{rn+1:0}
By (@3]) and the previous step, first term of (£.29]) has a well-defined limit given by
lim [ ¢ep1-vk, = / ¢ = Z/ ¢, (4.31)
=00 Jy Soo ‘el ¥ B1(yi){wn11=0}

and from this it follows that the term fb a(My) ¢ must too have a well-defined limit. Com-

bining (£29)), ([£30), and (£3T]), we find that

=00 Jhd(My) bd(Moo)

as claimed. This concludes the proof of the theorem. O

5. CONVERGENCE OF LOCAL MINIMIZERS

Proof of Theorem[IL.3. We argue by contradiction. Assume that {€;};en is a sequence of
smooth VCLMs in the hydrophilic regime with diameter ey and volume || = m; — 0
satisfying

e (); is connected,
o P(Qy; K) < Cmﬁ,
e O, C Cm”“Bl( x;) for some z; € 0K,
o H'(S,) > Oy
and such that for any angle 0

lim inf m~'|Q; A(mn+1 (xo + Q[By]))| > 0, (5.1)
0+ 2,Q,0.

where Q[Bpg] is a rigid transformation of a ball that intersects the {x,+1 = 0} with angle
0.
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By the compactness of the container, up to a subsequence we can assume that x; — zg €
OK. Then by re-centering and re-scaling, we have that (up to a rotation) the sequence
K — i)

Kj = — — {l‘n+1 > 0}

Moreover, using that the boundary of K is C?, we have that the re-scalings K j converge
to the half-space in the sense of (43]), which is of course is one of the hypotheses of
Theorem [I.6

To analogously re-scale and re-center our sets, we define
Ej _ Ej — X0 7
m;j
which now satisfy
Qj is connected,
P(Qj; KJ) S C,
Q; C Bac(0),
’H”(EJ) > C~ L
Moreover, using the local minimality condition (properly re-scaled), we can derive the
mean curvature equation

Hyg, + mn%lg =} on OE;
and Young’s law
va, (y) - vii(y) = o(mjy + o) on ¥; C 9K;.
Hence, we have that
1o, ~ Ailleoony <miillgloe  and — [6() — Gollgogs,) < COollzapormy.
where we have used the Lipschitz regularity of the adhesion coefficient in the se((:ifc)l

inequality.
By Proposition B.4] and Lemma B.7] we can control the perimeter of the wetted region

~ ~ 1 ~
HI(05) < Clos (H7(E5) + ] lalleo P09 ) ).
Moreover, using that |(~2]| = 1 we can identify the limit of the Lagrange multiplier

(n+ 1)\ + ncosOoH"(X;) — nP(0Q;; KJ)‘
1

< C(bo)dg, (e + [18(x) = Ooll co s, H™ (Z)A; + m ™ lglleodg, P9y Kj)

where C'(6p) is the constant from (B.I1]) depending on 6y and € > 0 is the parameter in
Almost Flatness which can be taken as small as we like (for j large enough). Using
upper and lower bounds on perimeter, we can conclude that, up to a subsequence, there
exists Ag > 0 such that

lim A\j =X >0,
j—o0
and hence (5.2]) may be recast as

The desired convergence will follow from applying Theorem to the sequence of
sets {Qj}; however, we still need to check the technical condition on the convergence of
perimeter. To show this, we will exploit the local minimality property and apply [PMI5]
Theorem 2.9] to show that the perimeter of Ej converges strongly in the limit 7 — oo.
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First, as the hypotheses of [PM15, Theorem 2.9] require the container to be exactly the
half space, we need to rectify the boundary. For a small enough radius r > 0, we can
consider the inverse mapping that locally rectifies the boundary of K around x(; more
specifically, we take the C'!-diffeomorphism f : {z,+1 > 0} N B, — K N B,(x0) that, up
to rotation, satisfies

Vf(x)=id + O(|z]).

We next scale f by the sequence of length scales m; to obtain the sequence of mappings

1 1
filw) =m; " (f(mf“x) - a:o) ,
which are defined

fi: mg_#l ({an >0} ﬂBr(l’o)) - mj_”%l (Kﬂ B, — mo) :

Note that for j large enough each f; is a small deformation of the identity on compact
sets, i.e.

1
Vii(z) =1id + O(m;+1 EDR
- _ 1
For j large enough, one has the inclusion E; C m; "' (KN B, —1g), and hence we consider

Gj = f; (),
which satisfies G; C {xp4+1 > 0} N Bsc. Translating the local minimality property of €;

to these new sets, we have that for j large enough the set G; is a local minimizer of the
following anisotropic perimeter functional for variations of diameter less than ¢ /2:

FiG)= [ 1ol (T el )+ [ o) () a2

- / o(f3(2)) T f;(x) d (5.3)
G

where the cof(V f;(y)) is the co-factor matrix of V f;(y).

Next, to apply the compactness result Theorem 2.9], we need to transform the
wetting energy into a surface integral. Following the idea in Lemma 6.1], we
consider the vector field

Tj(@) = o(£5(@) 17" fi(@)ent
where & denotes the projection onto the boundary of the half-space {z,+1 = 0}, and we
notice that for a set of finite perimeter F' C dom(f;) we have by the divergence theorem

/ a(fj(z))JaHfj(z) dH"(z) = —/ Ti(y) - ve(y) dH"(y) +/ divTj(x) dx .
FROH

& FNH FNH
Using that G is a VCLM of (5.3]), we obtain

/8*G- lcof (V fi(y))va, W) — Tj(y) - va, (y) dH" (y)

1

< [ 1ot (A )we)] = Ty(0) - vota) dH ) + (sup div T + 5 sup ) |65 A6

for any set G satisfying diam(GAG;) < g9/2. Therefore, G; is an almost minimizer of the
pure anisotropic perimeter with elliptic integrand

®;(y,v) = [cof (Vfj(y)v| = T;(y) - v.
For j large enough ®; are convex, positive one-homogeneous, and satisfy the requirements

of [PMI5] Theorem 2.9].

Therefore, there exists a limiting set Gy such that G; — Gp in L' and such that on
{zp+1 > 0} the norm of the Gauss-Green measures converge HG; = G- Using that up to
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a rigid motion f; converges in C ! to the identity map on compact sets, we obtain that the
original scaled set also converges €0, — G in L' and P(Q;; K;) — P(Go;{xps1 > 0}) in
perimeter. Therefore, G is a union of balls of equal radius intersecting with constant angle
0p. By the local minimality of Ej, we obtain that Gy is also a local minima of the Gauss
energy Fg »0, where K = {x,41 > 0} and the adhesion coefficient o = cos 6 is constant.
Lemma Gl below implies that Gy is a single ball that intersects the hyperspace {z,+1 = 0}
with angle 6y, which contradicts (5I). This concludes the proof of the theorem. (]

Lemma 5.1. Consider the case when K = {xn,+1 > 0} and the adhesion coefficient o
is constant. Then, within the class of unions of tangent balls, volume constrained local
minimizers of Fi o0 are a single ball.

Proof. Suppose for sake of contradiction that GG is the union of at least two tangent balls.
Then, we first note the Euler-Lagrange equations implies that each of them have correct
associated contact angle with the plane {x,+1 = 0}.

If the point of tangency of any two balls occurs in the interior {x,; > 0}, then by
classical upper and lower density arguments, see for instance [PMI5] Lemma 2.8|, yield
the desired contradiction. Next, we assume that there exists a point of tangency xg lying
in the plane {z,+; = 0}. Blowing up this configuration at x(, we obtain (up to a rotation)
the wedge

G‘:{x : 0<xn+1<@}.
|o|

Using the local minimality property of G, we can deduce that G must also be a local
minimizer of the functional

F(E) = P(E;{zps1 > 0}) + oH"(E N {xpy1 = 0}).

We will achieve the desired contradiction by constructing an appropriate competitor.
For a parameter [ > 0 to be determined later, we define the prism set

S={z: |z <lfor2<i<n}.
On S, we alter the wedge G to obtain a new set F in the following way:

F:=GnSs° U {z : 0<apy1 <rforzeSand |zi| <|o|r}.

We first notice that the wetted regions for G and I are the same; hence to contradict the
minimality of G we only need to compute their difference in perimeter. Due to the simple
geometry of the competitor, we can compute explicitly

F(G) = F(F) = 2" (V14 0% = [o]) = 2lo|(n — 1)i" "%

By using that v/1+ 02 — |o| > 0 for || < 1 and by taking r < [ and r small enough, we
obtain that

F(G)— F(F) >0,

which contradicts the local minimality property for G. This concludes the proof of the
lemma. U

6. PROOF OF THEOREM [[L1]

The next lemma contains the core of the Montiel-Ros argument for proving the classical
Heintze-Karcher inequality. The argument is detailed for the sake of clarity.
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Lemma 6.1. If N an orientable hypersurface with boundary in R™"1 with finite area and
positive mean curvature Hy with respect to the normal vector field vy, then

(n+ DIY(T)| < /N " (6.1)

where P(xz,t) =z — tvy(x) for every (z,t) € N x R,

F:{(;p,t)eNxR:0<t§%nl(x)}v

and k1 < ko < -+ < Ky, denote the principal curvatures of N.

Moreover, denoting by {N;}", the connected components of N, we see that equality
holds in (G1)) if and only if each N; is contained in a sphere OB, (x;) and the cones over
N, with vertex at x; are mutually disjoint.

Remark 6.2. When N = 02 we are in the case considered by Montiel and Ros [MRI1],
who complete the proof of (II) by showing that Q@ C ¢(I'). Indeed, pick y € Q and let
xo € 0Q such that |z¢g — y| = dist(xg,0Q). Then vo(xo) = (x0 — y)/|zo — y| and thus
kin(z0) > |20 — 9|~ In particular, y = ¥ (zo, |0 — y|) for |zo — y| < 1/kp(x), and thus

Q C ().
Proof of Lemma[G1. The tangential Jacobian of ¢ along N x R C R"*?2 is given by

J(z,t) :ﬁ(l—tﬁi(l’)) V(z,t) e N xR.
i=1

If t < 1/kp(x), then each factor in this formula is non-negative, and thus one can apply
the arithmetic-geometric mean inequality to infer that

Tib(x, 1) < (% zn:u (@) = (1t HNT("”))" V(z,t) €T,
=1

By the area formula we thus get

r)| < /w RO Jovanw< [ (1-¢20)" gy

where H" ! is the (n + 1)-dimensional measure in R"™2. By the coarea formula and since

HN/néﬁna
H 1/kn(x) H
/(1—t—N) AR = /d’H”/ 1—t—N)
T n n

n/Hy
e [ 0=ty

n+1 HN

This proves (6.1). If equality holds, then (i) N is umbilical, in the sense that x;(z) =
Hy(z)/n for every x € M and ¢ = 1,...,n; (ii) ¢ is injective on I". By (i), each connected
component N; of N is either contained in a sphere or in a hyperplane, the latter case being
actually ruled out by Hy > 0. Denote by z; the center of the sphere containing IV;, and by
K; the cone with vertex x; spanned by N;. By (ii), the cones K; are mutually disjoint. [

IN

Now we are ready to prove Theorem [L.11

Proof of Theorem [I. We apply Lemma [6.1] with N = M and find

e+l < [ (6:2)
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where ¢¥(z,t) =z —tvg(z), I = {(z,t) rx € M ,0 <t <1/kp(z)} and k1 < --- < Ky, are
the principal curvatures of M. We notice that

Ac ) (6.3)
if A denotes the set of points y € R™*! such that
dist(y, M) = |z — y| for some x € M N H with é:z' =vo(x). (6.4)

Indeed, this is the same argument outlined in Remark if y € A then the sphere
0B|,—y|(y) is touching M at z from the inside of Q2. Hence

1
> Kplx
o=y =)
which in turn implies y = ¢(z, |x — y|) for (z, |z —y|) € T

Step one: We show that if y € R"*! is such that dist(y, M) = |zo—y| for some zy € bd(M),
then

o —Y

lzo —

Indeed, by differentiating = — |z — y\2 at xo along a direction v € T,,(0%) we find that
(xo—y) - v=0 Vo € Ty (0%) = vs(z0)t Nvg .

This implies that z¢—y lies in the plane generated by vy and vs(z¢), thus the first relation
in (G5). Next, by differentiating = + |2 — y|? at x( in the direction —I/é\g( ) (zo) (which

= cos a vy + sin a vy (o) sin(f(zo) — ) <0, (6.5)

points inwards M) we find that
(@0 =) - (= ¥pdqan) (@) >0
which thanks to (21]) and the first relation in (G.0]) gives
0 < —cosasinf(xy) + sina cos(0(xp)) = sin(a — 0(xg)) .

This proves (6.5]).

Step two: We assume to be in the hydrophobic case where 0 < 0,5, < e < 7/2. Setting
A as in ([I4), it will suffice to prove

Q\ACA. (6.6)
Indeed, by combining (6.2)) and (6.3]) with (G.6]) we find

1 n
— > ()] > A > |Q\A] > |Q] — |A
— | = = 14> 2\ AL 9] - Al

that is the hydrophobic case of (3.

We now prove ([6.6). Let y € Q\ A, and let g € M be such that |xg — y| = dist(y, M).
If zp € M N H, then according to (6.4]) we immediately find y € A, as desired. We
conclude by showing that if 79 € bd(M), then y € A. Indeed, if this is the case, then (6.5
holds. Since y,4+1 > 0, in ([65) we have a € (—7/2,7/2). By 6(zo) € (0,7/2], we have
0(xo) — o € (—m/2,m), so that sin(f(xp) — ) < 0 implies

—g<9(m0)—a§0.

Summarizing,

i

5"
Denoting y = (z,t) and multiplying (6.35]) by z¢ — y, we obtain

0<bpmin <a<

0 <|xzog—y| < —cosat+sinalz — x|

which implies that
0 <t <tana d(Pypyy,o¥),
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which is the definition of y € A.
Step three: We address the hydrophilic case 7/2 < 0pin < Omae < 7™ by showing that
QUACA,

where now A is as in (LI]). As before, we just need to exclude the existence of y € QU A
such that dist(y, M) = |xg — y| for some xg € bd(M). Looking at (G0, if y € Q, then
Yn+1 > 0, which implies o < 7/2. If y € Q, but py ¢ X, then the closest point has to
happen at M. Therefore, we can assume that py € ¥ and thus o > 0. Since a € (0,7/2),
and 0(xg) € [7/2,7), we conclude that 6(zg) — a € (0,7), sin(f(xg) — «) > 0, and thus
find a contradiction with the second condition in ([G.5]). This proves that Q@ C A. Now let
us consider the case of y € A. By construction, 0 < a < 0,,,;, so that

0<Opmin —a<0(xg) —a<bxy) <m
which, again, contradicts sin(f(zg) — «) < 0.

Step four: Let us now assume that € satisfies (I3]) as an equality. This means that (6.2))
holds as an equality. By Lemma [6.1] and since €2 is connected, M C 0B, (x) for some r > 0
and x € R*"". The facts that bd(M) = M N H and 6(z) € (0,7) for every x € bd(M)
force bd(M) to be a non-degenerate sphere and 6 to be constant along bd(M).

Let us show, conversely, that if € is the intersection of an Euclidean ball with H in
such a way that 0 = 6,,;, = ez € (0,7), then equality holds in (L3]). Let us notice that,
independently from the value of 8, we always have that

Q= HNB,(rcos(f) ent1) -

Since M is always a spherical cap of radius r, we have

/MHLM =rH"(M).

Notice also that A is always the cone with center at r cos(6) e, 41 spanned by B, (7 cos(6) e,41)N
OH. In the hydrophobic case,

ACQ  with  Q\A= [ AM;
0<A<1

in the hydrophilic case,

ANQ=0 with QUA= U AM.
0<A<1

Since in both cases

T n T n n ,’,,HTL M
U = [ #ommnds = [ e apnran = 200
0<A<1 0 0 ne
we conclude that (I3]) always holds as an equality. O
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