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Abstract

We propose a gradient flow perspective to the spatially homogeneous Landau equa-
tion for soft potentials. We construct a tailored metric on the space of probability
measures based on the entropy dissipation of the Landau equation. Under this met-
ric, the Landau equation can be characterized as the gradient flow of the Boltzmann
entropy. In particular, we characterize the dynamics of the PDE through a func-
tional inequality which is usually referred as the Energy Dissipation Inequality (EDI).
Furthermore, analogous to the optimal transportation setting, we show that this in-
terpretation can be used in a minimizing movement scheme to construct solutions to
a regularized Landau equation.

1 Introduction

The Landau equation is an important partial differential equation in kinetic theory. It gives
a description of colliding particles in plasma physics [42], and it can be formally derived as
a limit of the Boltzmann equation where grazing collisions are dominant [20, 49]. Similar to
the Boltzmann equation (see [8] for a consistency result and related derivation issues), the
rigorous derivation of the Landau equation from particle dynamics is still a huge challenge.
For a spatially homogeneous density of particles f = ft(v) for t ∈ (0,∞), v ∈ R

d the
homogeneous Landau equation reads

∂tf(v) = ∇v ·
(

f(v)

∫

Rd

|v − v∗|2+γΠ[v − v∗](∇v log f(v)−∇v∗ log f(v∗))f(v∗)dv∗

)

. (1)

For notational convenience, we sometimes abbreviate f = ft(v) and f∗ = ft(v∗) . We also
denote the differentiations by ∇ = ∇v and ∇∗ = ∇v∗ . The physically relevant parameters
are usually d = 2, 3 and γ ≥ −d − 1 with Π[z] = I − z⊗z

|z|2 being the projection matrix onto

{z}⊥. In this paper, for simplicity we will focus in the case d = 3 and vary the weight
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parameter γ, although most of our results are valid in arbitrary dimension. The regime
0 < γ < 1 corresponds to the so-called hard potentials while γ < 0 corresponds to the soft
potentials with a further classification of −2 ≤ γ < 0 as the moderately soft potentials and
−4 ≤ γ < −2 as the very soft potentials. The particular instances of γ = 0 and γ = −d are
known as the Maxwellian and Coulomb cases respectively.

The purpose of this work is to propose a new perspective inspired from gradient flows
for weak solutions to (1), which is in analogy with the relationship of the heat equation and
the 2-Wasserstein metric, see [41, 3]. Our main result is inspired by and extends Erbar’s
work [30]. There, he establishes the gradient flow perspective for the closely related spatially
homogeneous Boltzmann equation with bounded collision kernels (γ = 0) which we perform
in the case of Landau for γ ∈ (−3, 0] (c.f. Theorem 12). One of the fundamental steps
is to symmetrize the right hand of (1). More specifically, if we consider a test function
φ ∈ C∞

c (Rd) we can formally characterize the equation by

d

dt

∫

Rd

φfdv = −1

2

∫∫

R2d

ff∗|v−v∗|2+γ(∇φ−∇∗φ∗) ·Π[v−v∗](∇ log f−∇∗ log f∗)dv∗dv, (2)

where the change of variables v ↔ v∗ has been exploited. Building our analogy with the
heat equation and the 2-Wasserstein distance, we define an appropriate gradient

∇̃φ := |v − v∗|1+
γ
2Π[v − v∗](∇φ−∇∗φ∗),

so that equation (2) now looks like

d

dt

∫

Rd

φfdv = −1

2

∫∫

R2d

ff∗∇̃φ · ∇̃ log fdv∗dv,

noting that Π2 = Π. To highlight the use of this interpretation, we notice that ∇̃φ = 0,
when we choose as test functions φ = 1, vi, |v|2 for i = 1, . . . , d which immediately shows
that formally the equation conserves mass, momentum and energy. The action functional
defining the Landau metric mimics the Benamou-Brenier formula [6] for the 2-Wasserstein
distance, see [28, 29, 31] for other distances defined analogously for nonlinear and non-local
mobilities. In fact, the Landau metric is built by considering a minimizing action principle
over curves that are solutions to the appropriate continuity equation, that is

dL(f, g) := min
∂tµ+

1

2
∇̃·(V µµ∗)=0

µ0=f, µ1=g

{
1

2

∫ 1

0

∫∫

R2d

|V |2 dµ(v)dµ(v∗)dt
}

, (3)

where the ∇̃· is the appropriate divergence; the formal adjoint to the appropriate gradient
(see Section 2.1).

Also, we notice that analogously to the heat equation, written as the continuity equation
∂tf = ∇ · (f∇ log f), the Landau equation can be formally re-written as

∂tf =
1

2
∇̃ · (ff∗∇̃ log f),
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equivalent to the continuity equation with non-local velocity field given by







∂tf +∇ · (U(f)f) = 0

U(f) := −
∫

Rd

|v − v∗|2+γΠ[v − v∗] (∇ log f −∇∗ log f∗) f∗dv∗ .
(4)

This is a direct way to write (1) in the form of a continuity equation. Considering the
evolution of Boltzmann entropy we formally obtain

d

dt

∫

Rd

f log fdv =: −D(ft) = −1

2

∫∫

R2d

|∇̃ log f |2ff∗dv∗dv ≤ 0. (5)

In physical terms this is referred to as the entropy dissipation referred to as entropy produc-
tion in the physics literature from defining H with a minus sign) since it formally shows that
the entropy functional

H[f ] :=

∫

Rd

f log fdv

is non-increasing along the dynamics of the Landau equation. Moreover, by integrating
equation (5) in time one formally obtains

H[ft] +

∫ t

0

D(fs)ds = H[f0]. (6)

In [49], Villani introduced the notion of H-solution, which captures this formal property.
Motivated by the physical considerations of certain conserved quantities and entropy dissi-
pation, H-solutions provided a step towards well-posedness of the Landau equation in the
soft potential case. One advantage to this approach is that it avoids assuming that the
solutions belongs to Lp(R3) for p > 1. For moderately soft potentials, the propagation of Lp

norms is proven and this is enough to make sense of classical weak solutions [52]. In the very
soft potential case, there is no longer a guarantee of Lp propagation due to the singularity
of the weight. We refer to [21, Section 1.2] for a heuristic description of this difficulty.

Similar to H-solutions our approach will also be based on the entropy dissipation (6).
Following De Giorgi’s minimizing movement ideas [2, 3], we characterize the Landau equa-
tion by its associated Energy Dissipation Inequality. More specifically, we show that weak
solutions to (1) with initial data f0 are completely determined by the following functional
inequality:

H[ft] +
1

2

∫ t

0

|ḟ |2dL(s) ds+
1

2

∫ t

0

D(fs) ds ≤ H[f0] for a.e. every t > 0,

where |ḟ |2dL(s) stands for the metric derivative associated to the Landau metric defined above.
Our analysis is also largely inspired by Erbar’s approach in viewing the Boltzmann equation
as a gradient flow [30] and recent numerical simulations of the homogeneous Landau equation
in [18] based on a regularized version of (4). In contrast with the classical 2-Wasserstein
metric, one of the main features of the Landau equation (1) and metric (3) is that they
are non-local. To be precise, gradient flow theory has been successfully applied to the
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study of many non-local PDEs [17, 7, 19] by viewing them as gradient flows of appropriate
energy functionals with respect to the 2-Wasserstein metric. The novelty in this work is
the construction of the non-local metric dL with respect to which (1) can be viewed as
the gradient flow of H. Hence, the convergence analysis usually relying on convexity and
lower-semi continuity needs to be adapted to deal with the non-locality of this equation. In
particular, our characterization Theorem 12 is based in using (expected) a-priori estimates
to deal with the non-locality through appropriate bounds.

On the other hand, the state of the art related to the uniqueness for the Landau equation
depends on the range of values γ may take. In the cases of hard potentials or Maxwellian,
the uniqueness theory is very well understood due to Villani and the third author [26, 27,
50]. In the soft potential case, one of the first major contributions to the general theory
of the spatially inhomogeneous Landau equation (γ ≥ −3) was the global existence and
uniqueness result by Guo [40]. This result was achieved in a perturbative framework with
high regularity assumptions on the initial data. Through probabilistic arguments, the next
major improvement to uniqueness for γ ∈ (−3, 0) came from Fournier and Guérin [32]. Their
result established uniqueness in a class of solutions that shrinks as γ decreases towards −3,
as more Lp and moments assumptions are needed. In their proof, uniqueness is shown by
proving stability with respect to the 2-Wasserstein metric.

Still lots of open questions for the soft potential case remain. In particular, a fundamen-
tal question like uniqueness for the Coulomb case is unresolved. To tackle this and other
problems an array of novel methods have been employed. Here is an incomplete sample of
the contributions made in this direction which highlight the difficulties of the soft potential
case [27, 26, 1, 13, 12, 52, 38, 36, 39, 37, 48, 35, 47, 34]. A brief glance at some of these
references illustrates the breadth of techniques that have found partial success at answering
the open questions; probability-based arguments, kinetic and parabolic theory, and many
more.

The purpose of this paper is to bring in another set of techniques to help answer some of
these fundamental questions. The gradient flow theory applied to PDEs has flourished in the
last decades. In their seminal paper [41], Jordan, Kinderlehrer, and Otto proposed a varia-
tional approach (JKO scheme) extended later on to a wide class of PDEs using the optimal
transportation distance of probability measures. These results and many more achievements
from their contemporaries allowed for novel approaches to questions of existence, uniqueness,
convergence to equilibrium, and other aspects of a large class of PDE; we mention [3, 45] for
a coherent exposition of these techniques and the relevant literature, even as more advances
have been made since then.

The advantage of our variational characterization of the Landau equation is that it un-
veils new possible routes of showing convergence results for this equation. First of all, it
allows for natural regularizations of the Landau equation by taking the steepest descent
of regularized entropy functionals instead of the Boltzmann entropy as in [16]. This idea
was recently developed in [18] leading to structure preserving particle schemes with good
accuracy. We can also consider the framework of convergence of gradient flows based on
Γ-convergence introduced in [44, 46] to attack the convergence of these numerical methods
[18]. Moreover, this approach is flexible enough to also study the rigorous convergence of the
grazing collision limit of the Boltzmann equation to the Landau equation. The grazing colli-
sion limit was recently revisited in the gradient flow framework by three of the authors [14].
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There, ideas from Γ-convergence were used to pass from Erbar’s gradient flow description for
the Boltzmann equation [30] to the present work’s description of the Landau equation. Fi-
nally, deriving uniqueness from the variational structure is classically done through convexity
properties of the entropy functional with respect to the geodesics of the Landau metric. This
is another important avenue of research that our work opens. Moreover, gradient flows of
convex entropies typically enjoy instantaneous smoothing [3]; even if the entropy at t = 0 is
infinite, for t > 0, the entropy becomes finite. In the case of Landau, we are not aware if
this property holds for H.

We mention briefly the connection between (1) and the Fokker-Planck equation. For
γ = 0, one can formally compute the evolution of

∫
vivjf(v)dv through (1). This a priori

information allows one to reduce (1) to a linear Fokker-Planck equation for γ = 0. The
present work proposes the alternative viewpoint that the resultant Fokker-Planck equation
can be viewed as the dL-gradient flow of H for γ = 0. Since many variants of the linear
Fokker-Planck equation have been well-studied, this case serves as a nice benchmark to test
the gradient flow theory developed here.

The plan of this paper is as follows. Section 2 introduces the prerequisites and contains
the statements of the main results. We first construct and analyze in Section 3 the Landau
metric based on (3). For a regularized problem, Section 4 shows the equivalence between
weak solutions and gradient flows, while Section 5 shows the existence of gradient flow
solutions via a Minimizing Movement scheme. Finally, we show in Section 6 that a gradient
flow solution is equivalent to H-solutions of the Landau equation (1) under some integrability
assumptions. Appendix A is devoted to some technical lemmata needed in the proof of the
main theorems regarding the chain rule identity behind the definition of weak solutions for
the regularized Landau equation.

2 Preliminaries and the main results

We start by introducing the necessary notation and definitions together with a quick overview
of gradient flow concepts to make our main results fully self-contained.

2.1 Notations and definitions

We denote
a .... b ⇐⇒ ∃C(. . . ) > 0 s.t. a ≤ C(. . . )b.

We adopt the Japanese angle bracket notation for a smooth alternative to absolute value

〈v〉2 = 1 + |v|2, v ∈ R
d.

For ǫ > 0, we denote our regularization kernel to be an exponential distribution

Gǫ(v) = ǫ−dG (v/ǫ) , G(v) = Cd exp (−〈v〉) , Cd =

(∫

Rd

exp(−〈v〉)dv
)−1

.

Our results work for some general tail behaviour in the kernels given by

Gs,ǫ(v) = ǫ−dGs(v/ǫ), Gs(v) = Cs,d exp(−〈v〉s), Cs,d =

(∫

Rd

exp(−〈v〉s)dv
)−1

,
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for s > 0; we point out some of the limitations and restrictions on s > 0 in the later
estimates. We shall refer to G2,ǫ as the Maxwellian regularization. We denote the space of
probability measures over Rd by P(Rd), endowed with the weak topology against bounded
continuous functions. We will mostly be dealing with the Lebesgue measure on R

d as our
reference measure which we denote by L. The subset Pa(Rd) ⊂ P(Rd) denotes the set of
absolutely continuous probability measures with respect to Lebesgue measure. For p > 0,
we also define the probability measures with finite p-moments Pp(R

d) by

Pp(R
d) :=

{

µ ∈ P(Rd)

∣
∣
∣
∣
mp(µ) :=

∫

Rd

〈v〉p dµ(v) <∞
}

.

Finally, for E > 0, we consider the subset Pp,E(R
d) ⊂ Pp(R

d) of probability measures with
p-moments uniformly bounded by E;

Pp,E(R
d) :=

{

µ ∈ Pp(R
d)

∣
∣
∣
∣
mp(µ) ≤ E

}

.

We denote by M the space of signed Radon measures on R
d × R

d with the standard
weak* topology against the continuous and compactly supported functions of Rd ×R

d. The
space Md is the space of signed d-length Radon measures. For T > 0, we will add the time
contribution of the measures by denoting MT to be the space of signed Radon measures on
R

d × R
d × [0, T ] with the usual weak* topology. Similarly, Md

T will be the space of signed
d-length Radon measures on R

d × R
d × [0, T ].

For µ ∈ P(Rd), we define a family of regularized entropies Hǫ[µ] by

Hǫ[µ] :=

∫

Rd

[µ ∗Gǫ](v) log[µ ∗Gǫ](v)dv,

which we shall see is well-defined provided µ has a finite moment in Lemma 30. Formally,
one can calculate the first variation of this functional in P2 as

δHǫ

δµ
(v) = Gǫ ∗ log[µ ∗Gǫ](v).

This can be formally obtained by calculating Fréchet derivatives in the sense of identifying
the following limit

∫

Rd

δHǫ

δµ
(v)φ(v)dv = lim

t↓0

Hǫ[µ+ tφ]−Hǫ[µ]

t
,

for arbitrary φ ∈ C∞
c (Rd) with zero mean

∫

Rd φ = 0. To be precise, the first variation (in an
L2 setting) would actually be δHǫ

δµ
= 1 + Gǫ ∗ log[µ ∗ Gǫ]. We drop the constant term since

our functional space is P and the first variation typically appears with derivatives applied
to it. For a functional F : Pa(Rd) → R with first variation δF

δf
, we refer to the F Landau

equation as

∂tf = ∇ ·
(

f

∫

Rd

f∗|v − v∗|2+γΠ[v − v∗]

(

∇δF
δf

−∇∗
δF∗
δf∗

)

dv∗

)

. (7)
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To clarify the meaning of ∇̃·, for a given test function φ = φ(v) ∈ R
d and vector-valued test

function A = A(v, v∗) ∈ R
d, we have

∫∫

R2d

[∇̃φ](v, v∗) · A(v, v∗)dv∗dv = −
∫

Rd

φ(v)[∇̃ · A](v)dv.

In this way, the F Landau equation (7) can be concisely written as

∂tf =
1

2
∇̃ ·
(

ff∗∇̃
δF
δf

)

.

Note, by formally testing (7) with φ = δF
δf
, one obtains an analogy of Boltzmann’s H-theorem

with the functional F ;

d

dt
F [ft] = −DF (ft) := −1

2

∫∫

R2d

ff∗

∣
∣
∣
∣
∇̃δF
δf

∣
∣
∣
∣

2

dvdv∗ ≤ 0.

We will refer toDF as the F dissipation. These notations induce our notion of weak solutions
to the F Landau equation (7) closely following Villani’s H-solutions [49].

Definition 1 (Weak F solutions). For T > 0, we say that a curve f ∈ C([0, T ];L1(Rd)) is
a weak solution to the F Landau equation (7) if the following hold.

1. fL is a probability measure with uniformly bounded second moment so that

ft ≥ 0,

∫

Rd

ft(v)dv = 1, ∀t ∈ [0, T ], sup
t∈[0,T ]

∫

Rd

〈v〉2 ft(v)dv <∞.

2. The functional F evaluated along the curve is bounded by its initial value

F [ft] ≤ F [f0] < +∞, ∀t ∈ [0, T ].

3. The F dissipation is time integrable

∫ T

0

DF(ft)dt =
1

2

∫ T

0

∫∫

R2d

ff∗

∣
∣
∣
∣
∇̃δF
δf

∣
∣
∣
∣

2

dvdv∗dt <∞.

4. For every test function φ ∈ C∞
c ((0, T )× R

d), equation (7) is satisfied in weak form

∫ T

0

∫

Rd

∂tφft(v)dvdt =
1

2

∫ T

0

∫∫

R2d

ff∗∇̃φ · ∇̃δF
δf

dvdv∗dt.

For ǫ > 0, we will refer to the weak Hǫ solutions as ǫ-solutions and, recalling H is the
Boltzmann entropy, we will refer to weak H solutions as just weak solutions or H-solutions.
We deliberately use the terminology of H-solutions since the time integrability of DH(ft), as
for Villani [49], is essential in our analysis.
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2.2 Quick review of gradient flow theory

We recall the basic definitions of gradient flow theory that can be found in more generality
in [3, Chapter 1]. Throughout, (X, d) denotes a complete (pseudo)-metric space X with
(pseudo)-metric d. Points a < b ∈ R will refer to endpoints of some interval. F : X →
(−∞,∞] will denote a proper function.

Definition 2 (Absolutely continuous curve). A function µ : t ∈ (a, b) 7→ µt ∈ X is said to be
an absolutely continuous curve if there exists m ∈ L2(a, b) such that for every s ≤ t ∈ (a, b)

d(µt, µs) ≤
∫ t

s

m(r)dr.

Among all possible functions m in Definition 2, one can make the following minimal
selection.

Definition 3 (Metric derivative). For an absolutely continuous curve µ : (a, b) → X , we
define its metric derivative at every t ∈ (a, b) by

|µ̇|(t) := lim
h→0

d(µt+h, µt)

|h| .

Further properties of the metric derivative can be found in [3, Theorem 1.1.2].

Definition 4 (Strong upper gradient). The function g : X → [0,∞] is a strong upper
gradient with respect to F if for every absolutely continuous curve µ : t ∈ (a, b) 7→ µt ∈ X
we have that g ◦ µ : (a, b) → [0,∞] is Borel and the following inequality holds

|F [µt]− F [µs]| ≤
∫ t

s

g(µr)|µ̇|(r)dr, ∀a < s ≤ t < b.

Using Young’s inequality and moving everything to one side, the inequality in Definition 4
implies

F [µt]− F [µs] +
1

2

∫ t

s

g(µr)
2dr +

1

2

∫ t

s

|µ̇|2(r)dr ≥ 0, ∀a < s ≤ t < b.

If the reverse inequality also holds, one obtains the stronger Energy Dissipation Equality.
This leads to our notion of gradient flows.

Definition 5 (Curve of maximal slope). An absolutely continuous curve µ : (a, b) → X
is said to be a curve of maximal slope for F with respect to its strong upper gradient
g : X → [0,∞] if F ◦ µ : (a, b) → [0,∞] is non-increasing and the following inequality holds

F [µt]− F [µs] +
1

2

∫ t

s

g(µr)
2dr +

1

2

∫ t

s

|µ̇|2(r)dr ≤ 0, ∀a < s ≤ t < b.

F has the following natural candidates for upper gradient.

Definition 6 (Slopes). We define the local slope of F by

|∂F |(µ) := lim sup
ν→µ

(F (ν)− F (µ))+

d(ν, µ)
.

The superscript ‘+’ refers to the positive part. The relaxed slope of F is given by

|∂−F |(µ) := inf{lim inf
n→∞

|∂F |(µn) : µn → µ, sup
n∈N

(d(µn, µ), F (µn)) < +∞}.
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2.3 Main results

In order to understand the Landau equation as a gradient flow, we need to clarify what type
of object the corresponding metric is.

Theorem 7 (Distance on P2,E(R
d)). The (pseudo)-metric dL on P2,E(R

d) satisfies:

• dL-convergent sequences are weakly convergent.

• dL-bounded sets are weakly compact.

• The map (µ0, µ1) 7→ dL(µ0, µ1) is weakly lower semicontinuous.

• For any τ ∈ P2(R
d) the subset Pτ (R

d) :=
{
µ ∈ P2,m2(τ)(R

d) | dL(µ, τ) <∞
}

is a
complete geodesic space.

The content of this theorem is essentially that our new proposed distance actually pro-
vides a meaningful topological structure on P2,E(R

d). Furthermore, the connection to ǫ-
solutions of Landau is established when considering the previous notions of slope and upper
gradient with respect to dL. General conditions which guarantee dL(µ0, µ1) < +∞ are
presently unknown. In Lemma 15, we will see that a necessary condition is that µ0 and µ1

have the same mean velocity. Moreover, for γ ∈ [−4,−2], Lemma 15 asserts that they should
have the same second moment. In the construction of dL detailed in Section 3, if µ = µ(t)
for t ∈ [0, T ] is an H-solution of Landau, then it is certainly true that dL(µ(t), µ(s)) < +∞
for all 0 ≤ t, s ≤ T .

Theorem 8 (Epsilon equivalence). Fix any ǫ, E > 0, γ ∈ [−4, 0]. Assume that a curve
µ : [0, T ] → P2,E(R

d) has a density µt = ftL. Then µ is a curve of maximal slope for Hǫ

with respect to its upper gradient
√
DHǫ

if and only if its density f is an ǫ-solution to the
Landau equation.

From the numerical perspective, we can also construct ǫ-solutions using the JKO scheme
(see Section 5) which is the following

Theorem 9 (Existence of curves of maximal slope). For any ǫ, E > 0, γ ∈ [−4, 0], and
initial data µ0 ∈ P2,E(R

d), there exists a curve of maximal slope in P2,E(R
d) for Hǫ with

respect to its upper gradient
√
DHǫ

.

Remark 10. The curves constructed in Theorem 9 do not necessarily have a density with
respect to Lebesgue measure; the regularization allows Hǫ[µ] < +∞ without µ being abso-
lutely continuous with respect to Lebesgue measure. Moreover, uniqueness of such curves is
beyond the scope of the present work although it would be interesting to see what convexity
properties are available for Hǫ with respect to dL. This could also shed some insight into
the available convexity of H with respect to dL.

Remark 11. The choice of an exponential convolution kernel Gǫ for the regularized entropy
Hǫ is perhaps unnatural compared to the Maxwellian regularization G2,ǫ. We discuss in more
detail the estimates that fail using G2,ǫ in Remark 33 as it pertains to Theorem 8. With
respect to Theorem 9, the general construction of some curve can be done even with the
Maxwellian regularization. However, due to the same lack of estimates, this curve might not
be a curve of maximal slope with respect to

√
DHǫ

. This is discussed in Remark 37.
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Motivated by recent numerical experiments [18], Theorems 8 and 9 provide the theoretical
basis to this ǫ approximated Landau equation. In the limit ǫ → 0, more assumptions are
required.

Theorem 12 (Full equivalence). We fix d = 3 and γ ∈ (−3, 0]. Suppose that for some
T > 0, a curve µ : [0, T ] → P(R3) has a density µt = ftL that satisfies the following set of
assumptions

(A1) (Moments and Lp) Assume that for some 0 < η ≤ γ + 3, we have

〈v〉2−γ ft(v) ∈ L∞
t (0, T ;L1

v ∩ L
3−η

3+γ−η
v (R3)).

(A2) (Finite entropy) We assume that the initial entropy is finite

H[f0] =

∫

R3

f0 log f0 < +∞.

(A3) (Finite entropy-dissipation) We assume that the entropy-dissipation of f is integrable
in time

D(ft) = DH(ft) =
1

2

∫∫

R6

ff∗

∣
∣
∣
∣
∇̃δH
δf

∣
∣
∣
∣

2

dvdv∗ =

1

2

∫∫

R6

ff∗|v − v∗|γ+2|Π[v − v∗](∇ log f −∇∗ log f∗)|2dvdv∗ ∈ L1
t (0, T ).

Then µ is a curve of maximal slope for H with respect to its upper gradient
√
D if and only

if its density f is a weak solution of the Landau equation.

Remark 13. When γ ∈ [−2, 0], it is known that for suitable initial data (lying in weighted
Lp spaces for p large enough and for a sufficient power-like weight), weak solutions of Landau
equation satisfying (A1)–(A3) are known to exist (and to be strong and unique under extra
conditions). We refer to [52], and Appendix B of [23] when γ > −2, for details.

When γ ∈ (−3,−2), Assumption (A1) is not known to hold for global weak solutions
with large initial data. Solutions satisfying (A1)–(A3) are nevertheless known to exist for
initial data close to equilibrium (cf. [40], in a much larger spatially inhomogeneous context),
or in the Coulomb case γ = −3 (in that case 3−η

3+γ−η
being replaced by ∞) for large initial

data, but on specific intervals of times only ([25, 4]).
The focus on the Maxwellian and soft potential regime γ ≤ 0 here is motivated by building

a gradient flow framework to address the open questions for Landau. The hard potential
case γ ∈ (0, 1) has already been studied in detail by the third author and Villani [27, 26].
We believe that our results also carry to the hard potentials. In particular, the exponents in
assumption (A1) should be modified to

〈v〉2+γ ft(v) ∈ L∞
t (0, T ; L1

v(R
3)), ft(v) ∈ L∞

t (0, T ; L
3

3−γ
+

v (R3)), 0 < γ < 1.

10



We emphasize that these conditions are guaranteed since the required moments and Lp

integrability are propagated from appropriate initial data when γ > 0 [27, 26]. This con-
dition appears in [22, Corollary 2.7]. It is the hard potential version of Theorem 41 which
is crucial to the proof of Theorem 12. Much of our analysis remains the same, however
the space P2 should be changed to P2+γ cohering with the moment condition above and
trivializing Lemma 43, for example.

It is an open problem to find the range of values γ under which we can show the existence
of curves of maximal slope for the original Landau equation (1), or equivalently, contructing
solutions of the original Landau equation passing ǫ→ 0 in Theorem 9. Some of the difficulties
to achieve this result are the propagation of moments for the regularized Landau equation
uniformly in ǫ and the compactness of sequences with bounded in ǫ regularized entropy
dissipation DHǫ

. The rest of this work is devoted to show the main four theorems in the
next four sections.

3 The Landau metric dL

Our approach to defining the distance dL mentioned in Theorem 7 closely follows the dynamic
formulation of transport distances originally due to Benamou and Brenier [6] and further
extended by Dolbeault, Nazaret, and Savaré [28]. We also refer the reader to Erbar [30] for
a similar approach.

3.1 Grazing continuity equation

We consider for γ ∈ [−4, 0] the grazing continuity equation:

∂tµt +
1

2
∇̃ ·Mt = 0, in (0, T )× R

d, (8)

which is interpreted in the sense of distributions. For every φ ∈ C∞
c ((0, T )× R

d), we have

∫ T

0

∫

Rd

∂tφ(t, v)dµt(v)dt+
1

2

∫ T

0

∫∫

R2d

[∇̃φ](t, v, v∗)dMt(v, v∗)dt = 0.

Another formulation(see Lemma 14) is the following for ζ ∈ C∞
c (Rd),

d

dt

∫

Rd

ζ(v)dµt(v) =
1

2

∫∫

R2d

∇̃ζ(v, v∗)dMt(v, v∗). (9)

The curves (µt)t∈[0,T ], (Mt)t∈[0,T ] are Borel families of measures belonging to M+ and Md

respectively. We will refer to µ from the pair as a curve and M as a grazing rate. For some
regularity properties, we will also need to assume the following moment condition

∫ T

0

∫∫

R2d

(1 + |v|+ |v∗|)d|Mt|(v, v∗)dt <∞. (10)

We first establish some a-priori properties of solutions to the grazing continuity equation.

11



Lemma 14 (Continuous representative). For families (µt), (Mt) satisfying the grazing con-
tinuity equation and the finite moment condition (10), there exists a unique weakly* contin-
uous representative curve (µ̃t)t∈[0,T ] such that µ̃t = µt a.e. t ∈ [0, T ]. Furthermore, for any
φ ∈ C∞

c ((0, T )× R
d) and any t0, t1 ∈ [0, T ], we have the following formula

∫

Rd

φt1dµ̃t1 −
∫

Rd

φt0dµ̃t0 =

∫ t1

t0

∫

Rd

∂tφdµtdt+
1

2

∫ t1

t0

∫∫

R2d

∇̃φdMtdt.

Proof. This proof is nearly identical to [3, Lemma 8.1.2]. There, it was crucial to estimate
the distributional time derivative of t 7→ µt. We perform the analogous estimate here to
highlight the difference in our context. Fix ζ ∈ C∞

c (Rd) and consider the map

t ∈ (0, T ) 7→ µt(ζ) =

∫

Rd

ζ(v)dµt(v) ∈ R.

According to (9), the distributional time derivative is

µ̇t(ζ) =
1

2

∫∫

R2d

∇̃ζdMt(v, v∗) =
1

2

∫∫

R2d

|v − v∗|1+
γ
2Π[v − v∗](∇ζ −∇∗ζ∗)dMt(v, v∗).

Depending on the values of γ above or below -2, the integrand can be estimated

∣
∣
∣|v − v∗|1+

γ
2Π[v − v∗](∇ζ −∇∗ζ∗)

∣
∣
∣

≤
{

21+
γ
2 supw∈Rd |∇ζ(w)|(|v|1+ γ

2 + |v∗|1+
γ
2 ), γ ∈ [−2, 0]

supw∈Rd |D2ζ(w)||v − v∗|2+
γ
2 , γ ∈ [−4,−2)

.

Consequently, using the moment condition (10), we have the following estimates depending
on γ ∈ [−4, 0],

|µ̇t(ζ)| .
{

supw∈Rd |∇ζ(w)|
∫∫

R2d(1 + |v|+ |v∗|)d|Mt|(v, v∗), γ ∈ [−2, 0]
supw∈Rd |D2ζ(w)|

∫∫

R2d(1 + |v|+ |v∗|)d|Mt|(v, v∗), γ ∈ [−4,−2)
.

The rest of the proof proceeds as in [3, Lemma 8.1.2] using the C2-norm of ζ for the soft
potentials γ ∈ [−4,−2) as opposed to their C1 control of ζ .

Lemma 15 (Conservation lemma). Fix γ ∈ [−4, 0] and let (µt)t∈[0,T ], (Mt)t∈[0,T ] be Borel
families of measures in M+, Md respectively satisfying (8) and the moment condition (10).
Assume further that (µt)t∈[0,T ] is weakly* continuous with respect to t. We have that mass
and momentum are conserved;

µt(R
d) = µ0(R

d),

∫

Rd

v dµt(v) =

∫

Rd

v dµ0(v), ∀t ∈ [0, T ].

In the case γ ∈ [−4,−2] we have that the energy is conserved;

∫

Rd

|v|2 dµt(v) =

∫

Rd

|v|2 dµ0(v), ∀t ∈ [0, T ].

12



Proof. To minimize clutter, we introduce w = |v− v∗|1+
γ
2 . We show the proof of the conser-

vation of energy for γ ∈ [−4,−2]. We consider a fixed ϕ ∈ C∞
c (B2) which satisfies

0 ≤ ϕ ≤ 1 and ϕ(v) = 1 in B1.

We denote
ϕR(v) = ϕ(v/R).

Using the grazing continuity equation, we have that
∫

Rd

|v|2ϕR(v) dµt(v)−
∫

Rd

|v|2ϕR(v) dµ0(v)

=

∫ t

0

∫∫

R2d

wΠ

(

vϕR(v) + |v|2∇ϕ(v/R)
R

− v∗ϕR(v∗)− |v∗|2
∇ϕ(v∗/R)

R

)

dMs(v, v∗)ds.

(11)
We estimate the contribution of vφR(v)− v∗φR(v∗) from the integral in (11) using the can-
cellation from the projection Π[v − v∗] to obtain
∣
∣
∣
∣

∫ t

0

∫∫

R2d

wΠ (vϕR(v)− v∗ϕR(v∗)) dMs

∣
∣
∣
∣

≤
∫ t

0

∫∫

(BR×BR)c
w |vϕR(v)− v∗ϕR(v∗)| d|Ms|

.

∫ t

0

∫∫

(BR×BR)c
(1 + |v|+ |v∗|) d|Ms|,

where we have used γ ∈ [−4,−2] to bound

w |vϕR(v)− v∗ϕR(v∗)| .
{

1 |v − v∗| ≤ 1

|v|+ |v∗| |v − v∗| ≥ 1.

Similarly, using that ∇φR is supported in B2R \ BR and that
∣
∣
∣∂vi

{

|v|2 ∂vjϕ(v/R)

R

}∣
∣
∣ . 1 for

every index i, j ∈ {1, . . . , d}, we obtain that
∣
∣
∣
∣

∫ t

0

∫∫

R2d

wΠ

(

|v|2∇ϕ(v/R)
R

− |v∗|2
∇ϕ(v∗/R)

R

)

dMs

∣
∣
∣
∣

.

∫∫

(BR×BR)c
1 + |v|+ |v∗| d|Ms| ,

where we have controlled the difference with a mean-value type estimate. From the previous
bounds, we can use hypothesis (10) to take R → ∞ in (11) and obtain the conservation of
energy

lim
R→∞

∫

Rd

|v|2ϕR(v) dµt(v) = lim
R→∞

∫

Rd

|v|2ϕR(v) dµ0(v).

The proofs for conservation of mass and momentum involve testing the grazing continuity
equation against φR and viφR respectively where vi is the i-th component of v. For these
statements, the case γ ∈ [−4,−2] follows the same as just presented. For γ ∈ [−2, 0], the
estimates can be more blunt since the weight is no longer singular.

Remark 16. Note that as γ increases into the range (−2, 0], the weight function w starts
adding growth so the mean-value type argument in Lemma 15 no longer helps unless more
moments of M are assumed than (10). Due to the conservation of mass, the unique weakly*
continuous representative (µ̃t) of Lemma 14 has the additional property of being weakly
continuous in the context of P(Rd).
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Based on the previous results, we propose the following definition.

Definition 17 (Grazing continuity equation). For some terminal time T > 0, we define
GCET to be the set of pairs of measures (µt,Mt)t∈[0,T ] satisfying the following:

1. µt ∈ P(Rd) is weakly continuous with respect to t ∈ [0, T ]. (Mt)t∈[0,T ] is a family of
Borel measures belonging to Md.

2. We have the moment bound
∫ T

0

∫∫

R2d

(1 + |v|+ |v∗|)d|Mt|(v, v∗)dt <∞.

3. The grazing continuity equation (8) is satisfied in the distributional sense. That is, for
every φ ∈ C∞

c ((0, T )× R
d),

∫ T

0

∫

Rd

∂tφdµtdt+
1

2

∫ T

0

∫∫

R2d

∇̃φdMtdt = 0,

or equivalently for every ζ ∈ C∞
c (Rd),

d

dt

∫

Rd

ζ(v)dµt(v) =
1

2

∫∫

R2d

∇̃ζ(v, v∗)dMt(v, v∗).

For fixed probability measures λ, ν, we may also specify the subset GCE(λ, ν) as those pairs
(µ,M) ∈ GCET such that µ0 = λ, µT = ν. For E > 0, we will speak of curves (µ,M) ∈
GCE2,E

T such that
∫

Rd

|v|2dµt(v) ≤ E, ∀t ∈ [0, T ].

3.2 Action of a curve

In this section, we construct the action of a curve under the grazing continuity equation. We
introduce the following function α : Rd × R≥0 → [0,∞] by

α(u, s) :=







|u|2
2s
, s 6= 0

0, s = 0, u = 0
∞, s = 0, u 6= 0

.

Remark 18. α is lower semi-continuous (lsc), convex, and positively 1-homogeneous.

For fixed µ ∈ P(Rd),M ∈ Md, we consider the tensorized probability measure µ⊗ µ ∈
P(Rd×R

d) given by µ⊗µ(dv, dv∗) = µ(dv)µ(dv∗). Define τ ∈ M given by τ = µ⊗µ+ |M |
and the decompositions µ⊗ µ = f 1τ and M = Nτ . We define the action functional as

A(µ,M) :=

∫∫

R2d

α(N, f 1)dτ. (12)

This is well-defined by the 1-homogeneity of α. The following lemma establishes a more
concrete expression for the action functional.

14



Lemma 19. Let µ ∈ P(Rd) be absolutely continuous with respect to L and µ = fL. Let
M ∈ Md be given such that A(µ,M) < ∞. Then, M is absolutely continuous with respect
to ff∗dvdv∗ given by some density U : Rd × R

d → R
d such that M = ff∗Udvdv∗ = mdvdv∗

and

A(µ,M) =
1

2

∫∫

R2d

ff∗|U |2dvdv∗ =
1

2

∫∫

R2d

|m|2
ff∗

dvdv∗.

Proof. The proof is identical to [30, Lemma 3.6] up to appropriate modifications. Define
τ ∈ M by τ = µ ⊗ µ + |M | and label the corresponding densities (which may be infinite)
µ ⊗ µ = gτ and M = Nτ . It suffices to show that M is absolutely continuous with respect
to µ⊗ µ which is the goal of this proof.

Suppose S ⊂ R
2d is a measurable set such that µ ⊗ µ(S) = 0. This is equivalent to

saying g = 0 τ -almost everywhere in S. Since α is positive, the assumption A(µ,M) < +∞
certainly implies α(N, g) < +∞ τ -almost everywhere in S. By definition of α, we must also
have N = 0 τ -almost everywhere in S which is equivalent to saying M(S) = 0.

Lemma 20 (Lower semi-continuity of action functional). The action functional A as defined
in (12) is lower semi-continuous in both arguments. Specifically, if µn ⇀ µ weakly in P(Rd)

and Mn
∗
⇀M weakly* in Md, we have

A(µ,M) ≤ lim inf
n→∞

A(µn,Mn).

Proof. This result is an application of the general lsc result in [9, Theorem 3.4.3] since α
satisfies the required convexity, lsc, and homogeneity assumptions by Remark 18.

Another useful property of the action functional is the compactness provided by bounded
action. We first state

Lemma 21. Let F : R2d → [0,∞] be measurable and fix any µ ∈ P(Rd), M ∈ Md. We
have the following bound:

∫∫

R2d

F (v, v∗)d|M |(v, v∗) ≤
√
2A(µ,M)

1

2

(∫∫

R2d

F (v, v∗)
2dµ(v)dµ(v∗)

) 1

2

(13)

Proof. This proof follows [30, Lemma 3.8]. We assume A(µ,M) < +∞ or else (13) holds
automatically. This implies that whenever A ⊂ R

2d is a measurable set, µ⊗µ(A) = 0 if and
only if |M |(A) = 0. Therefore, in the following computations we are implicitly integrating
away from sets of zero µ⊗ µ-measure. We provide the simple argument by Cauchy-Schwarz
for completeness. By considering τ = µ⊗ µ+ |M |, we estimate

∫∫

R2d

Fd|M |(v, v∗) ≤
∫∫

R2d

F

∣
∣
∣
∣

dM

dτ

∣
∣
∣
∣
dτ(v, v∗) =

∫∫

R2d

F

(∣
∣
∣
∣

dM

dτ

∣
∣
∣
∣

/√

2
dµ⊗ µ

dτ

)√

2
dµ⊗ µ

dτ
dτ

≤
(∫∫

R2d

α

(
dM

dτ
,
dµ⊗ µ

dτ

)

dτ

) 1

2
(∫∫

R2d

2F 2dµ⊗ µ

) 1

2

=
√
2A(µ,M)

1

2

(∫∫

R2d

F (v, v∗)
2dµ(v)dµ(v∗)

) 1

2

.
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Remark 22. Suppose we have µt ∈ P(Rd) such that

∫ T

0

m2(µt)dt =

∫ T

0

∫

Rd

〈v〉2 dµt(v)dt <∞,

then for M ∈ Md
T the previous estimate (13) yields

∫ T

0

∫∫

R2d

(1 + |v|+ |v∗|)d|Mt|(v, v∗)dt .
∫ T

0

A(µt,Mt)
1

2

(

1 + 2

∫

Rd

|v|2 dµt

) 1

2

dt. (14)

Therefore, if the integral in time of the second moment of µ is bounded, then M satisfies
the moments conditions (10) and the energy is conserved (15). In the sequel, we will be
considering curves that have bounded second moment which guarantee (14).

Proposition 23. Let (µn
t ,M

n
t )n be a sequence in GCET such that (µn

0)n is tight and we have
the following uniform bounds

sup
n∈N

∫ T

0

∫

Rd

|v|2 dµn
t dt <∞ and sup

n∈N

∫ T

0

A(µn
t ,M

n
t ) dt <∞. (15)

Then, there exists (µt,Mt) ∈ GCET such that, possibly after extracting a subsequence, we
have the following convergences

µn
t ⇀ µt weakly in P(Rd), ∀t ∈ [0, T ]

Mn
t dt

∗
⇀Mtdt weakly* in Md

T

.

Furthermore, along this subsequence we have the following lower semi-continuity

∫ T

0

A(µt,Mt) dt ≤ lim inf
n→∞

∫ T

0

A(µn
t ,M

n
t ) dt.

Sketch proof. This result follows from a similar proof to [28, Lemma 4.5] and [30, Proposition
3.11] which we sketch. The second moment bound for µn in (15) produces a limit µ. Recalling
the application of Lemma 21 in Remark 22, the bounded action in (15) and the estimate (14)
produce a limit Mtdt for a subsequence of Mn

t dt. The lower semi-continuity follows from
Fatou’s lemma and Lemma 20.

3.3 Properties of the Landau metric

We define the distance, dL induced by the action functional on P2,E(R
d). Throughout, we

will be working in the grazing continuity equation space defined earlier by GCE2,E
T for T > 0

some terminal time and E > 0 any second moment bound.

Definition 24. For λ, ν ∈ P2,E(R
d) we define the (square of the) Landau distance by

d2L(λ, ν) := inf

{

T

∫ T

0

A(µt,Mt)dt

∣
∣
∣
∣
(µ,M) ∈ GCE2,E

T (λ, ν)

}

. (16)
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Notice this definition is independent of T > 0 considering the scaling of the grazing
collision equation and the 1-homogeneity of A. We have an equivalent characterization of
dL which can be seen in other PDE contexts such as [30, 28].

Lemma 25. Given λ, ν ∈ P2,E(R
d), we have

dL(λ, ν) = inf

{∫ T

0

√

A(µt,Mt)dt

∣
∣
∣
∣
(µ,M) ∈ GCE2,E

T (λ, ν)

}

. (17)

Proof. This proof uses the same reparameterisation technique in [28, Theorem 5.4].

Proposition 26 (Minimizing curve). Suppose that µ0, µ1 ∈ P2,E(R
d) are probability mea-

sures such that dL(µ0, µ1) <∞. Then there exists a curve (µ,M) ∈ GCE2,E
1 (µ0, µ1) attaining

the infimum of (16) (equivalently, also (17)) and A(µt,Mt) = d2L(µ0, µ1) for almost every
t ∈ [0, 1].

Proof. This result follows from the direct method of calculus of variations where the lower
semicontinuity comes from Proposition 23.

Proof of Theorem 7. We prove the statements in exactly the order they are presented in
the theorem, starting with the properties of the proposed Landau distance as a metric. The
positivity of dL follows from the positivity of α. We now check that dL satisfies the properties
of a metric.
dL distinguishes points

Fix µ0, µ1 ∈ P2,E(R
d), we check that dL(µ0, µ1) = 0 ⇐⇒ µ0 = µ1. Suppose that

dL(µ0, µ1) = 0. By Proposition 26 we can find (µ,M) ∈ GCE2,E
1 (µ0, µ1) which is a minimiz-

ing curve and moreover 0 = dL(µ0, µ1) = A(µt,Mt) implies M = 0. The grazing continuity
equation reduces to ∂tµt = 0 which implies µt is constant in time.

The converse statement follows similarly by pairing the constant curve µ : t 7→ µ0 = µ1

with the zero measure so that (µ, 0) ∈ GCE2,E
1 (µ0, µ1).

Symmetry
Symmetry follows because time can be reversed for every curve. For instance, if (µ,M) ∈
GCE2,E

T (µ0, µ1), then one can check that the pair

µr : t 7→ µ(T − t), M r : t 7→ −M(T − t)

belong to GCE2,E
T (µ1, µ0) with the same action.

Triangle inequality
We sketch the argument using a glueing lemma as in [28, Lemma 4.4]. Let µ0, µ1, µ2 ∈
P2,E(R

d) be such that dL(µ
0, µ1) <∞ and dL(µ

1, µ2) <∞. If not, dL(µ
0, µ2) ≤ dL(µ

0, µ1)+
dL(µ

1, µ2) holds trivially. By Proposition 26, we can find minimizing curves connecting these
probability measures

{
(µ0→1,M0→1) ∈ GCE2,E

1 (µ0, µ1)

(µ1→2,M1→2) ∈ GCE2,E
1 (µ1, µ2)

}

.

Their concatenation from time 0 to 1 is given by

µt :=

{
µ0→1
2t , 0 ≤ t ≤ 1/2

µ1→2
2(t−1/2), 1/2 ≤ t ≤ 1

, Mt :=

{
2M0→1

2t , 0 ≤ t ≤ 1/2
2M1→2

2t−1/2, 1/2 < t ≤ 1
.
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One can check that (µ,M) ∈ GCE2,E
1 (µ0, µ2), so it is an admissible competitor in the com-

putation of dL(µ
0, µ2). By looking at the action on the different time pieces, we obtain

dL(µ
0, µ2) ≤

∫ 1

0

√

A(µt,Mt)dt = dL(µ
0, µ1) + dL(µ

1, µ2).

dL-convergence/boundedness implies weak convergence/compactness
Fix µn, µ∞ ∈ P2,E for n ∈ N be such that dL(µ

∞, µn) → 0 as n → ∞. By Proposition 26,

take minimizing curves (νn,Mn) ∈ GCE2,E
1 (µ∞, µn) such that

dL(µ
∞, µn) =

√

A(νnt ,M
n
t ), a.e. t ∈ [0, 1].

By compactness in Proposition 23, there are limits (ν,M) ∈ GCE2,E
1 such that νn ⇀ ν and

Mn ∗
⇀M up to a subsequence. Moreover, the lower semicontinuity in Proposition 23 gives

A(νt,Mt) ≤ lim inf
n→∞

A(νnt ,M
n
t ) = 0,

hence M = 0 so that ν is a constant in time. Since ν(0) = µ∞, this implies µ∞ = ν(1) =
limn→∞ µn which establishes the weak convergence.
(Pτ , dL) is a complete geodesic space
We start with the geodesic property from completely analogous arguments to Erbar [30],
the remaining statement that Pτ equipped with dL is a complete geodesic space follows.
Fix τ ∈ P2,E(R

d) with µ0, µ1 ∈ Pτ , the triangle inequality ensures dL(µ0, µ1) < ∞ so

Proposition 26 guarantees the existence of a minimizing curve (µ,M) ∈ GCE2,E
1 (µ0, µ1). One

easily sees that this also induces a minimizing curve for intermediate times. More precisely,
for every 0 ≤ r ≤ s ≤ 1, we have that (t 7→ µt+r, t 7→Mt+r) ∈ GCE2,E

s−r(µr, µs) also minimizes
dL(µr, µs).

To show completeness, let (µn)n∈N be a Cauchy sequence in Pτ . The sequence is certainly
dL-bounded so by Proposition 23, we can find, up to extraction of a weakly convergent
subsequence, µ∞ ∈ P2,E(R

d) such that µn ⇀ µ∞ in P2,E(R
d). Lower semi-continuity of dL

and the Cauchy property of the subsequence give

dL(µ
n, µ∞) ≤ lim inf

m→∞
dL(µ

n, µm) → 0, as n→ ∞.

For any n ∈ N the triangle inequality gives

dL(µ
∞, τ) ≤ dL(µ

∞, µn) + dL(µ
n, τ) <∞,

So µ∞ ∈ Pτ .

Proposition 27 (Metric derivative). A curve (µt)t∈[0,T ] ⊂ P2,E(R
d) is absolutely continuous

with respect to dL if and only if there exists a Borel family (Mt)t∈[0.T ] belonging to Md
T such

that (µ,M) ∈ GCE2,E
T with the property that

∫ T

0

√

A(µt,Mt)dt <∞.
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In this equivalence, we have a bound on the metric derivative

lim
h↓0

d2L(µt+h, µt)

h2
=: |µ̇|2(t) ≤ A(µt,Mt), a.e. t ∈ (0, T ).

Furthermore, there exists a unique Borel family (M̃t)t∈[0,T ] belonging to Md which is charac-
terized by

Mt = Uµt ⊗ µt and U ∈ Tµ := {∇̃φ | φ ∈ C∞
c (Rd)}

L2(µt⊗µt)

such that (µ, M̃) ∈ GCEE
T (µ0, µT ) where we have equality:

|µ̇|2(t) = A(µt, M̃t), a.e. t ∈ (0, T ).

Proof. The argument follows exactly as in [28, Theorem 5.17].

4 Energy dissipation equality

The goal in this section is to prove Theorem 8 which states that the notions of gradient
flow solutions coincide with ǫ-solutions to the Landau equation. To fix ideas, we recall the
regularized entropy functionals acting on probability measures

Hǫ[µ] =

∫

Rd

(µ ∗Gǫ)(v) log(µ ∗Gǫ)(v)dv,

with Gǫ(v) given by

Gǫ(v) = ǫ−dCd exp
{

−
〈v

ǫ

〉}

.

The crucial ingredient to prove Theorem 8 is the following

Proposition 28 (Chain Rule ǫ). Fix γ ∈ [−4, 0] and suppose (µ,M) ∈ GCE2,E
T and

∫ T

0

A(µt,Mt)dt <∞.

Then, supt∈[0,T ]Hǫ[µt] <∞ and the ‘chain rule’ holds

Hǫ[µr]−Hǫ[µs] =
1

2

∫ r

s

∫∫

R2d

∇̃
[
δHǫ

δµ

]

· dMtdt, ∀0 ≤ s ≤ r ≤ T. (18)

Remark 29. Recall the expression for the dissipation

Dǫ[µ] =
1

2

∫∫

R2d

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

dµ(v)dµ(v∗).

Using a time integrated version of Lemma 21, we have the estimate

1

2

∫ r

s

∫∫

R2d

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣
· d|Mt|(v, v∗)dt ≤

∫ r

s

A(µt,Mt)
1

2Dǫ[µt]
1

2 dt.
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Therefore, under the hypothesis of Proposition 28, we have that

|Hǫ(µr)−Hǫ(µr)| ≤
∫ r

s

|µ̇|(t)Dǫ[µt]
1

2 dt,

which implies that Dǫ[µt]
1

2 is a strong upper gradient of Hǫ, see Definition 4.

Taking Proposition 28 for granted, we can prove Theorem 8.

Proof of Theorem 8. Throughout, µ = fL is a curve of probability measures with uniformly
bounded second moment.
Weak ǫ-solution =⇒ Curve of maximal slope

Consider f an ǫ-solution to the Landau equation. Define m = −ff∗∇̃ δHǫ

δf
so that the pair

of measures (µ = fL,M = mL ⊗ L) therefore belong to GCEE
T . Indeed, the distributional

grazing continuity equation from Definition 17 is precisely the weak ǫ Landau equation.
Based on the definition of M and the finite Hǫ dissipation, we have the bound

∫ T

0

A(µt,Mt)dt =

∫ T

0

Dǫ(ft)dt <∞,

which implies the weak continuity of µ. By Proposition 27, we have

|µ̇|2(t) = A(µt,Mt) = Dǫ(ft) <∞, a.e. t ∈ [0, T ].

Using Proposition 28, we have for any 0 ≤ s ≤ r ≤ T

Hǫ[µr]−Hǫ[µs] +
1

2

∫ r

s

Dǫ(µt)dt+
1

2

∫ r

s

|µ̇|2(t)dt ≤ 0.

According to Definition 5, this is the curve of maximal slope property.
Curve of maximal slope =⇒ weak ǫ-solution
Assume that µ = fL is a curve of maximal slope for Hǫ with respect to the upper gradient√
Dǫ. Since µ is absolutely continuous with respect to dL, Proposition 27 guarantees existence

of a unique curve M : t ∈ [0, T ] 7→ Mt ∈ Md such that
∫ T

0

√

A(µt,Mt)dt < ∞ and

|µ̇|2(t) = A(µt,Mt) a.e. t ∈ [0, T ]. Furthermore, the pair (µ,M) ∈ GCEE
T . According to

Lemma 19, let M = mL⊗L for some measurable function m. We apply the chain rule (18)
with Cauchy-Schwarz and Young’s inequalities with minus signs in the follow computations.

Hǫ[fT ]−Hǫ[f0] =
1

2

∫ T

0

∫∫

R2d

∇̃δHǫ

δf
·mdvdv∗dt

≥ −1

2

∫ T

0

(
∫∫

R2d

ff∗

∣
∣
∣
∣
∇̃δHǫ

δf

∣
∣
∣
∣

2

dvdv∗

) 1

2 (∫∫

R2d

|m|2
ff∗

dvdv∗

) 1

2

dt

≥ −1

2

∫ T

0

(

1

2

∫∫

R2d

ff∗

∣
∣
∣
∣
∇̃δHǫ

δf

∣
∣
∣
∣

2

dvdv∗

)

dt− 1

2

∫ T

0

(
1

2

∫∫

R2d

|m|2
ff∗

dvdv∗

)

dt

= −1

2

∫ T

0

Dǫ(ft)dt−
1

2

∫ T

0

|ḟ |2(t)dt.
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All the inequalities in the calculations above are actually equalities owing to the fact that µ is
a curve of maximal slope. In particular, since we have the equality in the Young’s inequality,
this implies that m√

ff∗
= −

√
ff∗∇̃ δHǫ

δf
. As in the previous direction, the weak ǫ Landau

equation coincides with the grazing continuity equation when m is equal to −ff∗∇̃ δHǫ

δf
.

The rest of this section is devoted to proving Proposition 28. We need some lemmata to
establish crucial estimates. The following result is a variation of [11, Lemma 2.6].

Lemma 30 (Carlen-Carvalho [11]). Let µ be a probability measure on R
d with finite second

moment/energy, m2(µ) ≤ E for E > 0. Then, for every ǫ > 0, there exists a constant
C = C(ǫ, E) > 0 such that

| log(µ ∗Gǫ)(v)| ≤ C
〈v

ǫ

〉

.

Proof. Starting with an upper bound, we easily see

µ ∗Gǫ(v) =

∫

Rd

Gǫ(v − v′)dµ(v′) .ǫ 1.

Turning to the lower bound, we cut off the integration domain to |v′| ≤ R, for some R > 0
to be chosen later. We estimate, for ǫ > 0 small enough

〈
v − v′

ǫ

〉

=

√

1 +

∣
∣
∣
∣

v − v′

ǫ

∣
∣
∣
∣

2

≤

√

1 + 2
∣
∣
∣
v

ǫ

∣
∣
∣

2

+ 2

(
R

ǫ

)2

≤
√
2

(〈v

ǫ

〉

+

〈
R

ǫ

〉)

.

This is substituted into Gǫ(v − v′) to obtain

µ ∗Gǫ(v) ≥
∫

|v′|≤R

Gǫ(v − v′)dµ(v′) &ǫ exp

{

−
√
2

(〈v

ǫ

〉

+

〈
R

ǫ

〉)}∫

|v′|≤R

dµ(v′).

At this point, we appeal to Chebyshev’s inequality to see

∫

|v′|≤R

dµ(v′) = 1−
∫

|v′|≥R

dµ(v′) ≥ 1− 1

R2

∫

|v′|≥R

|v′|2dµ(v′).

We can now choose, for example, large R such that 1− E
R2 ≥ 1

2
to uniformly lower bound the

integral
∫

|v′|≤R
dµ(v′) away from 0 and then conclude the result after applying logarithms.

Lemma 31 (log-derivative estimates). For fixed ǫ > 0 we have the formula

∇Gǫ(v) = −1

ǫ

〈v

ǫ

〉−1

Gǫ(v)
v

ǫ
. (19)

For µ ∈ P(Rd), denoting ∂i = ∂
∂vi

and ∂ij = ∂2

∂vi∂vj
, we obtain

|∇ log(µ ∗Gǫ)(v)| ≤ 1

ǫ
,
∣
∣∂ij log(µ ∗Gǫ)(v)

∣
∣ ≤ 4

ǫ2
. (20)
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Proof. Equation (19) is a direct computation after noticing

∇Gǫ

Gǫ
= ∇ logGǫ = ∇

(

−
〈v

ǫ

〉

+ const.
)

= −1

ǫ

〈v

ǫ

〉−1 v

ǫ
.

The first order log-derivative estimate of (20) is calculated using formula (19) to obtain

|∇(µ ∗Gǫ)(v)| = |µ ∗ ∇Gǫ(v)| ≤ 1

ǫ

∫

Rd

〈
v − v′

ǫ

〉−1 ∣∣
∣
∣

v − v′

ǫ

∣
∣
∣
∣
Gǫ(v − v′)dµ(v′)

≤ 1

ǫ

∫

Rd

Gǫ(v − v′)dµ(v′) =
1

ǫ
(µ ∗Gǫ)(v).

For the second order, we first look at ∂ijµ ∗Gǫ which can be computed with the help of (19)

|∂ijµ ∗Gǫ(v)| =
∣
∣
∣
∣
∣
∂i

(

−1

ǫ

∫

Rd

〈
v − v′

ǫ

〉−1
vj − v′j

ǫ
Gǫ(v − v′)dµ(v′)

)∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

ǫ2

∫

Rd

(〈
v − v′

ǫ

〉−3
vi − v′i

ǫ

vj − v′j

ǫ
+ δij

〈
v − v′

ǫ

〉−1

−
〈
v − v′

ǫ

〉−2
vi − v′i

ǫ

vj − v′j

ǫ

)

Gǫ(v − v′)dµ(v′)

∣
∣
∣
∣
∣

≤ 3

ǫ2
µ ∗Gǫ(v).

Combining this estimate with the previous first order one, we have

∣
∣∂ij log(µ ∗Gǫ)(v)

∣
∣ =

∣
∣
∣
∣

∂ijµ ∗Gǫ

µ ∗Gǫ
− (∂iµ ∗Gǫ)(∂jµ ∗Gǫ)

(µ ∗Gǫ)2

∣
∣
∣
∣
≤ 4

ǫ2
.

Lemma 32. Fix ǫ > 0 and γ ∈ [−4, 0] with µ ∈ P2,E(R
d) for some E > 0. We have

1. Moderately soft case γ ∈ [−2, 0]:

∣
∣
∣
∣
∇̃δHǫ

δµ

∣
∣
∣
∣
=
∣
∣
∣∇̃[Gǫ ∗ log(µ ∗Gǫ)](v, v∗)

∣
∣
∣ .ǫ |v|1+

γ
2 + |v∗|1+

γ
2 .

2. Very soft case γ ∈ [−4,−2]:
∣
∣
∣
∣
∇̃δHǫ

δµ

∣
∣
∣
∣
.ǫ 1.

In particular, it holds
∫∫

R2d

∣
∣
∣
∣
∇̃δHǫ

δµ

∣
∣
∣
∣

2

dµ(v)dµ(v∗) ≤ E.
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Proof. We develop the expression for ∇̃ δHǫ

δµ
in integral form to be used throughout this proof.

∇̃δHǫ

δµ
= ∇̃Gǫ ∗ log(µ ∗Gǫ)(v, v∗)

= |v − v∗|1+
γ
2Π[v − v∗](∇vG

ǫ ∗ log(µ ∗Gǫ)(v)−∇v∗G
ǫ ∗ log(µ ∗Gǫ)(v∗))

= |v − v∗|1+
γ
2Π[v − v∗]

∫

Rd

Gǫ(v′)

(∇µ ∗Gǫ

µ ∗Gǫ
(v − v′)− ∇µ ∗Gǫ

µ ∗Gǫ
(v∗ − v′)

)

dv′.

(21)

1. Moderately soft case γ ∈ [−2, 0]: We use (a concave version of) the triangle inequality
(valid since 1 + γ

2
≥ 0) and the first estimate of (20) to bound the last line of (21)

∣
∣
∣
∣
∇̃δHǫ

δµ

∣
∣
∣
∣
≤ 21+

γ
2 (|v|1+ γ

2 + |v∗|1+
γ
2 )
2

ǫ

∫

Rd

Gǫ(v′)dv′ .ǫ |v|1+
γ
2 + |v∗|1+

γ
2 .

2. Very soft case γ ∈ [−4,−2]: We perform estimates in two cases, the far field |v−v∗| ≥ 1
and near field |v − v∗| ≤ 1.
|v − v∗| ≥ 1:

In the far field, we have |v−v∗|1+
γ
2 ≤ 1 hence we can brutally estimate (21) using again

the first estimate of (20) to obtain, similar to the moderately soft case, the estimate
∣
∣
∣
∣
∇̃δHǫ

δµ

∣
∣
∣
∣
≤ 2

ǫ
.

|v − v∗| ≤ 1:
We can remove the singularity from the weight with a mean-value estimate and the
second estimate of (20)
∣
∣
∣
∣

∇µ ∗Gǫ

µ ∗Gǫ
(v − v′)− ∇µ ∗Gǫ

µ ∗Gǫ
(v∗ − v′)

∣
∣
∣
∣
≤ sup

i,j=1,...,d

∣
∣
∣
∣

∣
∣
∣
∣
∂i
(
∂jµ ∗Gǫ

µ ∗Gǫ

)∣
∣
∣
∣

∣
∣
∣
∣
L∞

|v−v∗| ≤
4

ǫ2
|v−v∗|.

Inserting this into (21), we have
∣
∣
∣
∣
∇̃δHǫ

δµ

∣
∣
∣
∣
≤ 4

ǫ2
|v − v∗|2+

γ
2

∫

Rd

Gǫ(v′)dv′ ≤ 4

ǫ2
.

Remark 33. Originally, we considered the general family of convolution kernels Gs,ǫ de-
scribed in Section 2.1. Besides the context of the Landau equation, Lemma 31 (excluding
the second order log-derivative estimate) can be generalized to this family of s-order tailed
exponential distributions with additional moment assumptions on µ. In particular, equa-
tions (19) and (20) (for s ≥ 1) become

∇Gs,ǫ

Gs,ǫ
(v) = −s

ǫ

〈v

ǫ

〉s−2 v

ǫ
,

|∇(µ ∗Gs,ǫ)|
µ ∗Gs,ǫ

(v) .
1

ǫs
〈v〉s−1 .

Since Maxwellians are known to be stationary solutions for the Landau equation, we wanted
to perform the regularization with s = 2. However, the analogous estimates of Lemma 31 for
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s = 2 are not sufficient for Lemma 32 in the P2 framework. For example, in the moderately
soft potential case, the estimate reads

∣
∣
∣
∣
∇̃δH2,ǫ

δµ

∣
∣
∣
∣
.ǫ 〈v〉2+

γ
2 + 〈v∗〉2+

γ
2 /∈ L2(µ⊗ µ).

However, there is one value of γ = −2 for which the estimates hold when using a Maxwellian
regularization kernel G2,ǫ. A restriction to P4 resolves the issue mentioned above for the
moderately soft potential case, but then a fourth moment propagation is needed which we
did not pursue. A similar issue is present in the very soft potential case.

Proof of Proposition 28. To prove equation (18), our strategy is to regularize the pair (µ,M)
in time with parameter δ > 0 and differentiate the regularization. Then we obtain uniform
bounds in δ needed to take the limit δ → 0.
Finite regularized entropy
We have the following chain of inequalities

Hǫ[µt] =

∫

Rd

(µt ∗Gǫ)(v) log(µt ∗Gǫ)(v)dv .ǫ,E

∫

Rd

(µt ∗Gǫ)(v) 〈v〉 dv .ǫ 1 + E.

The first inequality comes from Lemma 30 because log(µt ∗Gǫ) has linear growth (uniform
in time) while in the second inequality, one realises that µt ∗Gǫ has as many moments as µt

with computable constants.
Time regularization with δ > 0
Without loss of generality, let µ be the weakly time continuous representative (Lemma 14)
andM be the optimal grazing rate (Proposition 27) achieving the finite distance dL. We first
regularize the pair (µ,M) in time for a fixed parameter δ > 0 as follows. Take η ∈ C∞

0 (R)
with the following properties

supp η ⊂ (−1, 1), η ≥ 0, η(t) = η(−t),
∫ 1

−1

η(t)dt = 1.

We define the following measures for t ∈ [0, T ], by taking convex combinations

µδ
t :=

∫ 1

−1

η(t′)µt−δt′dt
′, M δ

t :=

∫ 1

−1

η(t′)Mt−δt′dt
′.

Here, we constantly extend the measures in time. That is, if t − δt′ ∈ [−δ, 0], we treat
µt−δt′ = µ0,Mt−δt′ = 0. For the other end point, if t − δt′ ∈ [T, T + δ], we set µt−δt′ =
µT ,Mt−δt′ = 0. This transformation is stable so that (µδ,M δ) ∈ GCET and in particular, the
distributional grazing continuity equation holds

∂tµ
δ
t +

1

2
∇̃ ·M δ

t = 0.

We derive equation (18) using this regularized grazing continuity equation. Consider

Hǫ[µ
δ
t ] =

∫

Rd

(µδ
t ∗Gǫ)(v) log(µδ

t ∗Gǫ)(v)dv,
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which we differentiate with respect to t by appealing to the Dominated Convergence Theo-
rem. Firstly, due to the time regularization, we have

∂t
{
(µδ

t ∗Gǫ) log(µδ
t ∗Gǫ)

}
=
[
(∂tµ

δ
t ) ∗Gǫ

]
(log(µδ

t ∗Gǫ) + 1).

The L1
v bound is obtained on the following difference quotient for a fixed time step h > 0

∣
∣
∣
∣

1

h
[(µδ

t+h ∗Gǫ) log(µδ
t+h ∗Gǫ)− (µδ

t ∗Gǫ) log(µδ
t ∗Gǫ)]

∣
∣
∣
∣

≤ 1

h

∣
∣(µδ

t+h ∗Gǫ)− (µδ
t ∗Gǫ)

∣
∣ sup
s∈[t,t+h]

∣
∣log(µδ

s ∗Gǫ) + 1
∣
∣ .

where we have used the Mean Value theorem with the chain rule. Applying Lemma 30, we
obtain
∣
∣
∣
∣

1

h
[(µδ

t+h ∗Gǫ) log(µδ
t+h ∗Gǫ)− (µδ

t ∗Gǫ) log(µδ
t ∗Gǫ)]

∣
∣
∣
∣
.ǫ,E

1

h

∣
∣(µδ

t+h ∗Gǫ)− (µδ
t ∗Gǫ)

∣
∣ 〈v〉 .

We apply the Mean Value Theorem on the difference quotient again to get
∣
∣
∣
∣

1

h
[(µδ

t+h ∗Gǫ) log(µδ
t+h ∗Gǫ)− (µδ

t ∗Gǫ) log(µδ
t ∗Gǫ)]

∣
∣
∣
∣
.δ,ǫ ||η′||L∞

(

µ0 ∗Gǫ +

∫ T

0

µt ∗Gǫdt

)

〈v〉 .

Since µ has finite second order moments, this last expression belongs to L1
v. By the Domi-

nated Convergence Theorem,

d

dt
Hǫ[µ

δ
t ] =

∫

Rd

[
(∂tµ

δ
t ) ∗Gǫ

]
(log(µδ

t ∗Gǫ) + 1)dv =

∫

Rd

(∂tµ
δ
t ) · [Gǫ ∗ log(µδ

t ∗Gǫ)]dv

The last line is achieved by the self-adjointness of convolution with Gǫ and eliminating the
constant term due to the conserved mass of µδ. Integrating in t, we obtain

Hǫ[µ
δ
r]−Hǫ[µ

δ
s] =

∫ r

s

∫

Rd

(∂tµ
δ
t ) · [Gǫ ∗ log(µδ

t ∗Gǫ)]dvdt

=
1

2

∫ r

s

∫∫

R2d

[∇̃Gǫ ∗ log(µδ
t ∗Gǫ)] · dM δ

t dt

=
1

2

∫ r

s

∫∫

R2d

∇̃δHǫ

δµδ
t

· dM δ
t dt.

(22)

We now turn to establishing estimates independent of δ > 0 to pass to the limit.
Estimates on the right-hand side of (22):
According to Lemma 32, we have the estimate

∣
∣
∣
∣
∇̃δHǫ

δµδ

∣
∣
∣
∣
.ǫ,E |v|p + |v∗|p,

where p ≤ 1. By the first moment assumption of Mt, we have

∫ T

0

∫∫

R2d

∣
∣
∣
∣
∇̃δHǫ

δµδ
t

∣
∣
∣
∣
d|Mt|(v, v∗)dt .ǫ,E

∫ T

0

∫∫

R2d

|v|+ |v∗|d|Mt|(v, v∗)dt <∞.
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This estimate also extends to M δ
t

∫ T

0

∫∫

R2d

∣
∣
∣
∣
∇̃δHǫ

δµδ
t

∣
∣
∣
∣
d|M δ

t |(v, v∗)dt <∞.

Note that these estimates are independent of δ > 0.
Convergence δ → 0:
Firstly, we establish the following identity which will be useful later. For fixed functions
f 1, f 2 we have

∇̃[Gǫ ∗ f 1]− ∇̃[Gǫ ∗ f 2]

= |v − v∗|1+
γ
2Π[v − v∗](∇[Gǫ ∗ f 1]−∇[Gǫ ∗ f 2]− (∇∗[G

ǫ ∗ f 1]∗ −∇∗[G
ǫ ∗ f 2]∗))

= |v − v∗|1+
γ
2Π[v − v∗]

∫

Rd

(∇Gǫ(v − v′)−∇Gǫ(v∗ − v′))(f 1(v′)− f 2(v′))dv′.

(23)

Using the weak in time continuity of µ, we can consider

|µδ
t ∗Gǫ(v′)− µt ∗Gǫ(v′)| ≤

∫ 1

−1

η(t′)|〈µt−δt′ , G
ǫ(v′ − ·)〉 − 〈µt, G

ǫ(v′ − ·)〉|dt′.

The · stands for the convoluted variable. Since t belongs to a compact set, the function
t 7→ 〈µt, G

ǫ(v′ − ·)〉 is uniformly continuous from the weak continuity of µ. In particular,
using the continuity in v′ and the lower bound from Lemma 30 we conclude that for any
R > 0

| log(µδ
t ∗Gǫ)− log(µt ∗Gǫ)| → 0 uniformly on BR. (24)

Therefore by Lemma 30, denoting w = |v − v∗|1+
γ
2 , and using (23) with f 1 = log(µδ

t ∗ Gǫ)
and f 2 = log(µt ∗Gǫ), we have

∣
∣
∣
∣
∇̃δHǫ

δµδ
t

− ∇̃δHǫ

δµt

∣
∣
∣
∣
= |∇̃Gǫ ∗ log(µδ

t ∗Gǫ)(v, v∗)− ∇̃Gǫ ∗ log(µt ∗Gǫ)(v, v∗)|

≤
∫

Rd

w|∇Gǫ(v − v′)−∇Gǫ(v∗ − v′)|| log(µδ
t ∗Gǫ(v′))− log(µt ∗Gǫ(v′))| dv′

≤
∫

Bc
R0

w|∇Gǫ(v − v′)−∇Gǫ(v∗ − v′)|Cǫ 〈v′〉 dv′

+ sup
BR0

| log(µδ
t ∗Gǫ)− log(µt ∗Gǫ)|

∫

BR0

w|∇Gǫ(v − v′)−∇Gǫ(v∗ − v′)| dv′.

For a fixed (v, v∗), we obtain the convergence to zero by taking δ → 0 and R0 → ∞ in the
previous estimate. This holds for all γ ∈ [−4, 0] by taking advantage of the regularity of Gǫ.
Using continuity, we obtain that for any R > 0

∣
∣
∣
∣
∇̃δHǫ

δµδ
t

(v, v∗)− ∇̃δHǫ

δµt
(v, v∗)

∣
∣
∣
∣
→ 0 uniformly on [0, T ]× BR ×BR. (25)
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We turn to the limit estimate for the right hand side of (22). For any R > 0, we have

∣
∣
∣
∣

∫ r

s

∫∫

R2d

∇̃δHǫ

δµδ
t

· dM δ
t dt−

∫ r

s

∫∫

R2d

∇̃δHǫ

δµt
· dMtdt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ r

s

∫∫

R2d

(

∇̃δHǫ

δµδ
t

− ∇̃δHǫ

δµt

)

· dM δ
t dt

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ r

s

∫∫

R2d

∇̃δHǫ

δµt

· dM δ
t dt−

∫ r

s

∫∫

R2d

∇̃δHǫ

δµt

· dMtdt

∣
∣
∣
∣

≤
∫ r

s

∫∫

BR×BR

∣
∣
∣
∣
∇̃δHǫ

δµδ
t

− ∇̃δHǫ

δµt

∣
∣
∣
∣
d|M δ

t |dt+
∫ r

s

∫∫

(BR×BR)C

∣
∣
∣
∣
∇̃δHǫ

δµδ
t

− ∇̃δHǫ

δµt

∣
∣
∣
∣
d|M δ

t |dt+ o(1).

The last term is o(1) as δ → 0 due to similar estimates from the previous step. By sending
δ → 0 (the first term vanishes due to (25)) and then sending R → ∞ (the second term
vanishes again due to the estimate from the previous step), we obtain the convergence

lim
δ→0

1

2

∫ r

s

∫∫

R2d

∇̃δHǫ

δµδ
t

· dM δ
t dt =

1

2

∫ r

s

∫∫

R2d

∇̃δHǫ

δµt

· dM δ
t dt. (26)

Convergence of the left-hand side of (22)
By (24), Lemma 30 and the uniform bound on the second moment, we have that

|Hǫ[µ
δ
t ]−Hǫ[µt]| ≤

∫

Rd

|(µδ
t ∗Gǫ) log(µδ

t ∗Gǫ)(v)− (µt ∗Gǫ) log(µt ∗Gǫ)(v)|dv

→ 0, as δ → 0.

Therefore, by the previous equation and (26) we can take δ → 0 in (22) to obtain

Hǫ[µr]−Hǫ[µs] =
1

2

∫ r

s

∫∫

R2d

∇̃δHǫ

δµt
· dMt(v, v∗)dt,

which is the desired result.

5 JKO scheme for ǫ-Landau equation

This section is devoted to the proof of Theorem 9 after a series of preliminary lemmata.
Our construction of curves of maximal slope in Theorem 9 uses the basic minimizing move-
ment/variational approximation scheme of Jordan et al. [41]. Fix a small time step τ > 0 and
initial datum µ0 ∈ P2,E(R

d) and consider the recursive minimization procedure for n ∈ N

ντ0 := µ0, ντn ∈ argminλ∈P2,E

[

Hǫ(λ) +
1

2τ
d2L(ν

τ
n−1, λ)

]

. (27)

Then, we concatenate these minimizers into a curve by setting

µτ
0 := µ0, µτ

t := ντn, for t ∈ ((n− 1)τ, nτ ]. (28)

The scheme given by (27) and (28) satisfies the abstract formulation in [3] giving
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Proposition 34 (Landau JKO scheme). For any τ > 0 and µ0 ∈ P2,E(R
d), there exists

ντn ∈ P2,E(R
d) for every n ∈ N as described in (27). Furthermore, up to a subsequence of

µτ
t described in (28) as τ → 0, there exists a locally absolutely continuous curve (µt)t≥0 such

that
µτ
t ⇀ µt, ∀t ∈ [0,∞).

Proof. Our metric setting is (Pµ0
, dL) (see Theorem 7) with the weak topology σ. This

space is essentially P2,E(R
d) except we need to make sure that dL is a proper metric, hence

we remove the probability measures with infinite Landau distance. We follow the proof of
Erbar [30] which consists in verifying [3, Assumptions 2.1 a,b,c]. These assumptions are
listed and verified now.

1. Hǫ is sequentially σ-lsc on dL-bounded sets: Suppose µn ∈ P2,E(R
d) ⇀ µ ∈

P2,E(R
d), this implies µn ∗Gǫ ⇀ µ ∗Gǫ in P2(R

d). It is known that

H(µ) =

{ ∫

Rd f(v) log f(v)dv, µ = fL
+∞, else

is σ-lsc and since Hǫ(µ) = H(µ ∗Gǫ), we achieve the first property.

2. Hǫ is lower bounded: By Carlen-Carvalho Lemma 30 for fixed ǫ > 0, log(µ ∗ Gǫ)
is uniformly lower bounded by a linearly growing term. For fixed µ ∈ P2,E(R

d), we
have, with Cauchy-Schwarz

Hǫ(µ) &ǫ −
∫

Rd

〈v〉µ ∗Gǫ(v)dv ≥ −
(∫

Rd

〈v〉2µ ∗Gǫ(v)dv

)1

2

≥ −(O(ǫ) + E)
1

2 > −∞.

3. dL-bounded sets are relatively sequentially σ-compact: This is one of the con-
sequences from Theorem 7.

The existence of minimizers, ντn, to (27) and limits, µt, to (28) is guaranteed from [3, Corollary
2.2.2] and [3, Proposition 2.2.3], respectively.

At the abstract level, the limit curve constructed in Proposition 34 has no relation to√
Dǫ. The following lemmata bridge this gap.

Lemma 35. For any µ0 ∈ P2(R
d), we have

√

Dǫ(µ0) ≤ |∂−Hǫ|(µ0).

Proof. For fixed ǫ, R1, R2 > 0 and γ ∈ R, take T > 0 from Theorem 48 in Appendix A and
the unique weak solution µ ∈ C([0, T ];P2(R

d)) to
{

∂tµ = ∇ · {µφR1

∫

Rd φR1∗ψR2
(v − v∗)|v − v∗|γ+2Π[v − v∗](J

ǫ
0 − J ǫ

0∗)dµ(v∗)}
µ(0) = µ0

.

The functions 0 ≤ φR1
, ψR2

≤ 1 are smooth cut-off functions with the following properties

φR1
(v) =

{
1, |v| ≤ R1

0, |v| ≥ R1 + 1
, ψR2

(z) =

{
0, |z| ≤ 1/R2

1, |z| ≥ 2/R2
.
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The notation J ǫ
0 from Appendix A means

J ǫ
0 = ∇Gǫ ∗ log[µ0 ∗Gǫ] ∈ C∞(Rd;Rd).

For this proof alone, we define the reduced ǫ-entropy-dissipation

DR1,R2

ǫ (µ0) :=
1

2

∫∫

R2d

φR1
φR1∗ψR2

(v − v∗)|v − v∗|γ+2 |Π[v − v∗](J
ǫ
0 − J ǫ

0∗)|2 dµ0(v)dµ0(v∗).

On the other hand, as the ǫ-entropy dissipation comes from the negative time derivative of
entropy, we have

DR1,R2

ǫ (µ0) = lim
t↓0

Hǫ(µ0)−Hǫ(µt)

t
= lim

t↓0

Hǫ(µ0)−Hǫ(µt)

dL(µ0, µt)

dL(µ0, µt)

t

≤ lim
t↓0

{Hǫ(µ0)−Hǫ(µt)

dL(µ0, µt)
× 1

t

×
(
∫ t

0

√

1

2

∫∫

R2d

φ2
R1
φ2
R1∗ψ

2
R2
|v − v∗|γ+2|Π[v − v∗](J

ǫ
0 − J ǫ

0∗)|2dµs(v)dµs(v∗)ds

)}

≤ |∂Hǫ|(µ0)

√

DR1,R2
ǫ (µ0).

In the first inequality, we estimated dL(µ0, µt) by considering the PDE in this lemma as the
grazing collision equation with M = −(µ ⊗ µ)∇̃ log µ0. In the last inequality, we have used
the Lebesgue differentiation theorem with strong-weak convergence since µ is continuous in
time as well as the fact that φ2

R1
≤ φR1

and ψ2
R2

≤ ψR2
since 0 ≤ φR1

, ψR2
≤ 1. We are left

with the inequality
√

DR1,R2
ǫ (µ0) ≤ |∂Hǫ|(µ0), ∀R1, R2 > 0.

Owing to the many regularisations applied, the ǫ-entropy-dissipation µ 7→ DR1, R2

ǫ (µ) is
continuous with respect to weak convergence of probability measures. By considering weakly
convergent sequences and passing to the limit inferior, we deduce the same inequality with
the relaxed slope

√

DR1,R2
ǫ (µ0) ≤ |∂−Hǫ|(µ0), ∀R1, R2 > 0.

As functions of R1, R2 individually, D
R1,R2

ǫ (µ0) is non-decreasing. Furthermore, the integrand
of DR1,R2

ǫ (µ0) converges to the integrand of Dǫ(µ0) pointwise µ0-almost every v, v∗. Thus,
an application of the monotone convergence theorem in the limit R1, R2 → ∞ on the above
inequality completes the proof.

Lemma 36. |∂−Hǫ| is a strong upper gradient for Hǫ in Pµ0
(Rd) where µ0 ∈ P2,E(R

d).

Proof. Fix λ, ν ∈ Pµ0
(Rd) so that by the triangle inequality of Theorem 7, we have dL(λ, ν) <

∞. Now by Proposition 26, there exists a pair of curves (µ,M) ∈ GCEE
1 connecting λ, ν and

A(µt,Mt) = d2L(λ, ν) for almost every t ∈ [0, 1]. Using Remark 29 and Lemma 35, we have

|Hǫ(λ)−Hǫ(ν)| ≤
∫ 1

0

√

Dǫ(µt)|µ̇|(t)dt ≤
∫ 1

0

|∂−Hǫ|(µt)|µ̇|(t)dt.
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We now have all the ingredients to prove Theorem 9 so that we can relate curves of
maximal slope to weak solutions of the ǫ-Landau equation.

Proof of Theorem 9. Take a limit curve µt constructed in Proposition 34. By the previous
Lemma 36, the assumptions of [3, Theorem 2.3.3] are fulfilled so the curve is of maximal
slope with respect to |∂−Hǫ| and satisfies the associated energy dissipation inequality

Hǫ(µr)−Hǫ(µs) +
1

2

∫ r

s

|∂−Hǫ(µt)|2dt+
1

2

∫ r

s

|µ̇|2(t)dt ≤ 0.

The inequality of Lemma 35 gives

Hǫ(µr)−Hǫ(µs) +
1

2

∫ r

s

Dǫ(µt)dt+
1

2

∫ r

s

|µ̇|2(t)dt ≤ 0,

which is precisely the statement that the limit curve µt is a curve of maximal slope with
respect to

√
Dǫ.

Remark 37. The results of Proposition 34 and Lemma 35 can be generalized to other
regularization kernels Gs,ǫ, in particular, the Maxwellian regularization. However, this is not
the case for Lemma 36 since the proof relies on Proposition 28, see Remark 33.

6 Recovering the full Landau equation as ǫ→ 0

Theorems 8 and 9 provide the basic existence theory for the ǫ > 0 approximation of the
Landau equation. In this section, we prove the ǫ ↓ 0 analogue of Theorem 8 which is
Theorem 12. By definition, both H-solutions and curves of maximal slope to the full Landau
equation dissipate the entropy. Therefore, the assumption of finite initial entropy (A2)
automatically ensures

sup
t∈[0,T ]

H[ft] = sup
t∈[0,T ]

∫

R3

ft log ft < +∞.

In the sequel, every quotation of (A2) will refer to this bound.

Sketch of the proof of Theorem 12. By repeating the proof of Theorem 8, we see that the
crucial ingredient is the chain rule (18) in Proposition 28. For now assume the following

Claim 38. Assume (A1), (A2), (A3) and let M be any grazing rate such that (µ,M) ∈
GCEE

T and
∫ T

0

A(µt,Mt)dt <∞.

Then we have the chain rule

H[µr]−H[µs] =
1

2

∫ r

s

∫∫

R6

∇̃
[
δH
δµ

]

· dMtdt. (29)
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By following the steps of the proof of Theorem 8 and using (29) instead of (18), one
completes the proof of Theorem 12. We dedicate this section to proving Claim 38.

Equation (29) is clearly the ǫ ↓ 0 limit of (18). The left-hand side of (29) can be obtained
from the left-hand side of (18) using the finite entropy assumption (A2) and the fact that
ǫ 7→ Hǫ[µt] is non-increasing for every t. We refer to [30, Proof of Proposition 4.2; Step 4:
part d)] for more details on a similar argument.

The difficulty remains in deducing that the right-hand side of (18) converges to the
right-hand side of (29) as ǫ ↓ 0 given by

∫ T

0

∫∫

R6

∇̃δHǫ

δµ
· dMtdt→

∫ T

0

∫∫

R6

∇̃δH
δµ

· dMtdt, ǫ ↓ 0 (30)

under the additional assumptions (A1), (A2), (A3) on f . The key result which we will
use repeatedly in this section is the following theorem which is a specific case of the result
in [43, Chapter 4, Theorem 17].

Theorem 39 (Extended Dominated Convergence Theorem (EDCT)). Let (Hǫ)ǫ>0 and (Iǫ)ǫ>0

be sequences of measurable functions on X satisfying Iǫ ≥ 0 and suppose there exists mea-
surable functions H, I satisfying

1. |Hǫ| ≤ Iǫ for every ǫ > 0 and pointwise a.e.

2. Hǫ and Iǫ converge pointwise a.e. to H and I, respectively.

3.

lim
ǫ↓0

∫

X

Iǫ =

∫

X

I <∞.

Then, we have the convergence

lim
ǫ↓0

∫

X

Hǫ =

∫

X

H.

Setting M = mL ⊗ L (valid by Proposition 19) and using Young’s inequality on the
right-hand side of (18), we obtain the majorants

∇̃
[
δHǫ

δµ

]

·mt ≤
1

2
ff∗

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

+
1

2

|mt|2
ff∗

.

Notice that the first term is precisely the integrand of Dǫ while the second term is the
integrand of the action functional A(µt,Mt) which has no dependence on ǫ and is henceforth
ignored. We can apply EDCT 39 with X = (0, T )× R

6 to prove (30) once we show

∫ T

0

∫∫

R6

ff∗

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

dv∗dvdt→
∫ T

0

∫∫

R6

ff∗

∣
∣
∣
∣
∇̃
[
δH
δµ

]∣
∣
∣
∣

2

dv∗dvdt, ǫ ↓ 0. (31)

The pointwise a.e. convergence hypothesis of EDCT 39 is straightforward based on the
regularization of Hǫ through Gǫ. Focusing on (31), we will use a standard Dominated
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Convergence Theorem (DCT) for the integration in the t variable, by proving

∫∫

R6

1

2
ff∗

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

dv∗dv →
∫∫

R6

1

2
ff∗

∣
∣
∣
∣
∇̃
[
δH
δµ

]∣
∣
∣
∣

2

dv∗dv, a.e. t,

∫∫

R6

1

2
ff∗

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

dv∗dv ≤ C

∫∫

R6

1

2
ff∗

∣
∣
∣
∣
∇̃
[
δH
δµ

]∣
∣
∣
∣

2

dv∗dv, a.e. t ∀ǫ > 0,

(32)

where C > 0 is a constant independent of ǫ > 0. The estimate of (32) guarantees the L1
t

majorisation due to the finite entropy-dissipation assumption (A3).

Our estimates in this section accomplish both the convergence and the estimate of (32)
by nested application of EDCT 39. The significance of all three assumptions (A1), (A2),
and (A3) will be apparent in proving the convergence in (32).

Remark 40. In this section, the only properties of Gǫ we use are that it is a non-negative
radial approximate identity with sufficiently many moments. As in the construction of
minimizing movement curves in Section 5, the results of this section can be achieved with
other radial approximate identities.

6.1 Outline of technical strategy to prove (32)

The need to apply EDCT 39 instead of the more classical Lebesgue DCT is that we are unable

to prove pointwise estimates in v for the function v → f
∫

R3 f∗

∣
∣
∣∇̃
[
δHǫ

δf

]∣
∣
∣

2

dv∗. Instead, our

estimates in this section rely on the self-adjointness of convolution against radial exponentials
(SACRE) to construct a convergent majorant in ǫ.
Step 1: Finding majorants and appealing to EDCT 39
We seek to find pointwise a.e. majorants in the v variable

f

∫

R3

f∗

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

dv∗ ≤ I1ǫ (v),

where I1ǫ (v) satisfies the hypothesis for the majorant in EDCT 39. We show that I1ǫ converges
pointwise to some I1, since I1ǫ depends on ǫ only through convolutions against Gǫ, which is
an approximation of the identity. Hence, we are left with showing the integral convergence
Item 3 of EDCT 39 ∫

R3

I1ǫ (v)dvdt→
∫

R3

I1(v)dv, ǫ→ 0.

Step 2: Use SACRE with Gǫ

To show the integral convergence for I1ǫ , we find functions A1 and B1 such that

I1ǫ (v) ≤ A1(v)(Gǫ ∗B1)(v)

and apply EDCT 39. As in the previous step, the pointwise convergence is easily proved.
Hence, we are left to show the integral convergence

∫

R3

A1(Gǫ ∗B1)dv →
∫

R3

A1B1, ǫ→ 0.
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The key observation is applying SACRE to obtain
∫

R3

A1(Gǫ ∗B1) =

∫

R3

(Gǫ ∗ A1)B1

︸ ︷︷ ︸

=:I2ǫ

.

Therefore, we have reduced the problem to showing integral convergence Item 3 of EDCT
for I2ǫ (as the pointwise convergence is easily proved).
Step 3: Reiterate step 2
We repeat the process outlined in Step 2 by finding functions A2 and B2 such that we have
the pointwise bound

I2ǫ (v) ≤ A2(v)(Gǫ ∗B2)(v).

Again the pointwise convergence for the majorant follows easily, hence we only need to check
the integral convergence Item 3 of EDCT 39 given by

∫

R3

A2(Gǫ ∗B2) →
∫

R3

A2B2.

Using SACRE, we study instead the integral convergence of

I3ǫ (v) = (Gǫ ∗ A2)B2.

Eventually, after a finite number of times of finding majorants and applying SACRE, we
will obtain a majorant I iǫ for which the estimates and the convergence as ǫ → 0 follows from
the standard Lebesgue DCT, using the bound of the weighted Fisher information in terms
of the entropy-dissipation (see Theorem 41) and assumption (A3).

6.2 Preparatory results

As mentioned in the previous section, for the final step of the proof we need a bound on the
weighted Fisher information and a closely related variant in terms of the entropy-dissipation
originally discovered by the third author in [24].

Theorem 41. Suppose γ ∈ (−4, 0] and let f ≥ 0 be a probability density belong to L1
2−γ ∩

L logL(R3). We have

∫

R3

f(v)〈v〉γ
∣
∣
∣
∣
∇δH
δf

∣
∣
∣
∣

2

dv +

∫

R3

f(v) 〈v〉γ
∣
∣
∣
∣
v ×∇δH

δf

∣
∣
∣
∣

2

dv ≤ C(1 +Dw,H(f)),

where C > 0 is a constant depending only on the bounds of m2−γ(f) and the Boltzmann
entropy, H[f ], of f .

The estimate in this precise form can be found in [23, Proposition 4, p. 10]. We will refer
to the second term on the left-hand side as a ‘cross Fisher information’. We mention here
that assumption (A2) enters in the sequel since the constant C > 0 in Theorem 41 depends
on bounds for H[f ].

To decompose the entropy-dissipation in a manageable way that makes the cross Fisher
term more apparent, we have the following linear algebra fact.
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Lemma 42. For x, y ∈ R
3, we have

|x|2(y · Π[x]y) = |x× y|2

Proof. Without loss of generality, we assume neither x, y = 0 or else the statement holds
trivially. Let θ be an oriented angle between x and y. We expand the definition of Π[x] and
observe

|x|2(y · Π[x]y) = y · (|x|2I − x⊗ x)y = |x|2|y|2 − |x · y|2 = |x|2|y|2(1− cos2 θ) = |x|2|y|2 sin2 θ

= |x× y|2.

The following lemma shows how we use assumption (A1) to control the singularity of
the weight.

Lemma 43. Given γ ∈ (−3, 0], assume that f satisfies (A1) for some 0 < η ≤ γ + 3, then
we have for a.e. t

∫

R3

f∗(t)|v − v∗|γdv∗ ≤ C1(t) 〈v〉γ ,
∫

R3

f∗(t)|v∗|2|v − v∗|γdv∗ ≤ C2(t) 〈v〉γ , (33)

where
||C1||L∞(0,T ) .γ,η || 〈·〉−γ f(t)||

L∞

(

0,T ;L1∩L
3−η

3+γ−η (R3)

)

||C2||L∞(0,T ) .γ,η || 〈·〉2−γ f(t)||
L∞

(

0,T ;L1∩L
3−η

3+γ−η (R3)

).

Proof. We will only prove the first inequality of (33) since the second inequality uses the
same procedure. We split the estimation for local |v| ≤ 1 and far-field |v| ≥ 1.
|v| ≤ 1
We split the integral over v∗ into two regions

∫

R3

f∗|v − v∗|γdv∗ =
∫

|v−v∗|≥1

f∗|v − v∗|γdv∗ +
∫

|v−v∗|≤1

f∗|v − v∗|γdv∗

≤ 1 +

∫

|v−v∗|≤1

f∗|v − v∗|γdv∗,

where we have used that
∫

R3 f = 1 and γ ≤ 0. For the integral with the singularity, we apply

Young’s convolution inequality with conjugate exponents
(

3−η
3+γ−η

, −3+η
γ

)

∫

|v−v∗|≤1

f∗|v−v∗|γdv∗ ≤ ||f∗(χB1
|·|γ)||L∞ ≤ ||f ||

L
3−η

3+γ−η
||χB1

|·|γ||
L

−3+η
γ

≤
(
ω2

η

)−3+η
γ

||f ||
L

3−η
3+γ−η

.

Here, ω2 is the volume of the unit sphere in R
3.

|v| ≥ 1
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Once again, we split the integral into two parts
∫

R3

f∗|v − v∗|γdv∗ =
∫

|v∗|≤ 1

2
|v|
f∗|v − v∗|γdv∗ +

∫

|v∗|≥ 1

2
|v|
f∗|v − v∗|γdv∗

≤ 2−γ|v|γ
∫

|v∗|≤ 1

2
|v|
f∗dv∗ + 2−γ|v|γ

∫

|v∗|≥ 1

2
|v|
f∗|v∗|−γ|v − v∗|γdv∗.

The first term and second term come from the following inequalities based on their respective
integration regions

|v − v∗| ≥ |v| − |v∗| ≥
1

2
|v|, 1 ≤ 2−γ|v|γ|v∗|−γ.

We estimate the first integral using the unit mass of f , while the second integral is more
delicate but again uses the splitting of the previous step to obtain
∫

R3

f∗|v−v∗|γdv∗ ≤ 2−γ|v|γ+2−γ|v|γ
(∫

|v−v∗|≥1

f∗|v∗|−γ|v − v∗|γdv∗ +
∫

|v−v∗|≤1

f∗|v∗|−γ|v − v∗|γdv∗
)

.

In the large brackets, the first integral can be estimated by m−γ(f). Now we use the same
Young’s inequality argument for the remaining integral to obtain

∫

R3

f∗|v − v∗|γdv∗ ≤ 2−γ|v|γ + 2−γ|v|γ
(

m−γ(f) +

(
ω2

η

)−3+η
γ

||| · |−γf ||
L

3−η
3+γ−η (R3)

)

.

The proof is complete by combining the estimates for |v| ≤ 1 and |v| ≥ 1.

Lemma 44 (Peetre). For any p ∈ R and x, y ∈ R
d, we have

〈x〉p
〈y〉p ≤ 2|p|/2〈x− y〉|p|.

Proof. Our proof follows [5]. Starting with the case p = 2, for fixed vectors a, b ∈ R
d we

have, with the help of Young’s inequality,

1 + |a− b|2 ≤ 1 + |a|2 + 2|a||b|+ |b|2 ≤ 1 + 2|a|2 + 2|b|2

≤ 2 + 2|a|2 + 2|a|2|b|2 + 2|b|2 = 2(1 + |a|2)(1 + |b|2).

Dividing by 〈b〉2 and setting a = x− y, b = −y, we obtain the inequality for p = 2

〈x〉2

〈y〉2
≤ 2 〈x− y〉2 .

By taking non-negative powers, this proves the inequality for p ≥ 0. On the other hand,
when we divided by 〈b〉2 we could have also set a = x− y, b = x to obtain

〈y〉2

〈x〉2
≤ 2 〈x− y〉2 .

Taking strictly non-negative powers here proves the inequality for p < 0.
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Next, we prove an estimate for algebraic functions (growing or decaying) convoluted
against Gǫ with respect to the original function.

Lemma 45. For any p ∈ R, we have
∫

Rd

〈w〉pGǫ(v − w)dw ≤ C 〈v〉p ,

where C > 0 is a constant depending only on |p| and m|p|(G).

Proof. We use Peetre’s inequality in Lemma 44 to introduce v − w into the angle brackets
∫

Rd

〈w〉pGǫ(v − w)dw ≤ 2|p|/2 〈v〉p
∫

Rd

〈v − w〉|p|Gǫ(v − w)dw

= 2|p|/2 〈v〉p
∫

Rd

(1 + |w|2) |p|
2 ǫ−dG(w/ǫ)dw = 2|p|/2 〈v〉p

∫

Rd

(1 + ǫ2|w|2) |p|
2 G(w)dw

≤ C|p| 〈v〉p
[

1 + ǫ|p|
∫

Rd

|w||p|G(w)dw
]

≤ C|p|
[
1 + ǫ|p|m|p|(G)

]
〈v〉p

We stress that Peetre’s inequality 44 is necessary for the estimate of Lemma 45 with
non-positive powers p which we apply in the sequel. Finally, the last result we will need is
an integration by parts formula for the differential operator associated to the cross Fisher
information.

Lemma 46 (Twisted integration by parts). Let f, g be smooth scalar functions of R3 which
are sufficiently integrable. Then, we have the formula

∫

R3

(v ×∇vg(v))f(v)dv = −
∫

R3

g(v)(v ×∇vf(v))dv.

Here, the meaning of v ×∇v is

v ×∇vf(v) = (v2∂3f(v)− v3∂2f(v), v3∂1f(v)− v1∂3f(v), v1∂2f(v)− v2∂1f(v)).

6.3 Proof of (32) using EDCT 39

We start by decomposing and estimating the integrand of Dǫ. With the help of Lemma 42,
we expand the square term of the integrand to see

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

= |v − v∗|2+γ|Π[v − v∗](b
ǫ ∗ aǫ − bǫ ∗ aǫ∗)|2

≤ |v − v∗|γ(4|v × (bǫ ∗ aǫ)|2 + 4|v∗ × (bǫ ∗ aǫ∗)|2

+ 4|v × (bǫ ∗ aǫ∗)|2 + 4|v∗ × (bǫ ∗ aǫ)|2)
≤ 4|v − v∗|γ |v × (bǫ ∗ aǫ)|2

︸ ︷︷ ︸

1○

+4|v − v∗|γ |v∗ × (bǫ ∗ aǫ∗)|2
︸ ︷︷ ︸

2○

+ 4|v|2|v − v∗|γ |bǫ ∗ aǫ∗|2
︸ ︷︷ ︸

3○

+4|v∗|2|v − v∗|γ |bǫ ∗ aǫ|2
︸ ︷︷ ︸

4○

,
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where we use the shorthand notation

bǫ = Gǫ and aǫ = ∇ log(Gǫ ∗ f). (34)

By using that Gǫ is an approximation of the identity, we know that the integrand of Dǫ

converges pointwise a.e. to the integrand of D as ǫ ↓ 0. As well, each i○ for i = 1, 2, 3, 4
converge pointwise a.e. to

1○ → |v ×∇f |2
f 2

, 2○ → |v∗ ×∇∗f∗|2
f 2
∗

, 3○ → |∇∗f∗|2
f 2
∗

, 4○ → |∇f |2
f 2

.

By EDCT 39, to show the integral convergence in (32), it suffices to show, for example,

∫∫

R6

ff∗|v − v∗|γ 1○dvdv∗ →
∫∫

R6

ff∗|v − v∗|γ
|v ×∇f |2

f 2
dvdv∗,

and similarly for each i○ for i = 2, 3, 4. By symmetry considerations when swapping the
variables v ↔ v∗, the convergence for the terms 1○ and 4○ controls the convergence for 2○
and 3○, respectively. Hence we will focus on the term 4○ first and then on term 1○.

6.3.1 Term 4○

We seek to show in the limit ǫ ↓ 0,

∫∫

R6

ff∗|v∗|2|v − v∗|γ|bǫ ∗ aǫ|2dv∗dv =
∫

R3

(∫

R3

f∗|v∗|2|v − v∗|γdv∗
)

f |bǫ ∗ aǫ|2dv

→
∫

R3

(∫

R3

f∗|v∗|2|v − v∗|γdv∗
) |∇f |2

f
dv.

(35)

By the reordering of integrations written above, we now think of the double integral over v, v∗
of ff∗|v∗|2|v− v∗|γ|bǫ ∗ aǫ|2 as a single integral of the function

(∫

R3 f∗|v∗|2|v − v∗|γdv∗
)
f |bǫ ∗

aǫ|2 over v. To be precise, we wish to apply Theorem 39 with X = R
3 with Hǫ =

(∫

R3 f∗|v∗|2|v − v∗|γdv∗
)
f |bǫ ∗ aǫ|2. We can use Cauchy-Schwarz on the convolution integral

to absorb the power term as follows

|bǫ ∗ aǫ|2 =
∣
∣
∣
∣

∫

R3

bǫ(v − w)aǫ(w)dw

∣
∣
∣
∣

2

≤
(∫

R3

〈w〉−γ bǫ(v − w)dw

)(∫

R3

bǫ(v − w) 〈w〉γ |aǫ(w)|2dw
)

≤ C 〈v〉−γ bǫ ∗ [〈·〉γ |aǫ(·)|2],

where the last inequality comes from Lemma 45. Continuing with Lemma 43, we have

(∫

R3

f∗|v∗|2|v − v∗|γdv∗
)

f |bǫ ∗ aǫ|2 ≤ Cfbǫ ∗ [〈·〉γ |aǫ|2].

By EDCT 39, we reduce the problem to showing in the limit ǫ ↓ 0

∫

R3

fbǫ ∗ [〈·〉γ|aǫ|2]dv →
∫

R3

〈v〉γ |∇f |
2

f
dv.
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This is were we use SACRE, Step 2 of our general strategy 6.1. Application of SACRE and
further simplification using the specific forms of aǫ and bǫ (see (34)) yields

∫

R3

fbǫ ∗ [〈·〉γ|aǫ|2]dv =
∫

R3

[bǫ ∗ f ] 〈v〉γ |aǫ|2dv =
∫

R3

〈v〉γ |bǫ ∗ ∇f |2
bǫ ∗ f dv. (36)

We work with this simplified expression and note that pointwise convergence is still valid

|bǫ ∗ ∇f |2
bǫ ∗ f → |∇f |2

f
.

Next, we notice that the function β : (F, f) 7→ |F |2
f

is jointly convex in F ∈ R
3 and f > 0, so

we can use Jensen’s inequality with bǫ = Gǫ as the reference probability measure to obtain
a further pointwise majorant for the integrand of (36)

|bǫ ∗ ∇f |2
bǫ ∗ f (v) = β(bǫ ∗ ∇f, bǫ ∗ f)(v) = β

(∫

R3

∇f(v − y)bǫ(y)dy,

∫

R3

f(v − y)bǫ(y)dy

)

≤
∫

R3

β(∇f(v − y), f(v − y))bǫ(y)dy =

∫

R3

|∇f(v − y)|2
f(v − y)

bǫ(y)dy = bǫ ∗
[ |∇f |2

f

]

(v).

Using EDCT 39 again, we reduce the problem to showing in the limit ǫ ↓ 0
∫

R3

〈v〉γbǫ ∗
[ |∇f |2

f

]

dv →
∫

R3

〈v〉γ |∇f |
2

f
dv.

We use SACRE once more and place the convolution onto the weight term
∫

R3

〈v〉γbǫ ∗
[ |∇f |2

f

]

dv =

∫

R3

[bǫ ∗ 〈·〉γ] |∇f |
2

f
dv.

Now, we are in a position to apply the classical Dominated Convergence Theorem. We notice
that we have the pointwise convergence

[bǫ ∗ 〈·〉γ] → 〈v〉γ.

Furthermore, using Lemma 45, we can estimate bǫ∗〈·〉γ uniformly in ǫ to find the domination

[bǫ ∗ 〈·〉γ] |∇f |
2

f
≤ C〈v〉γ |∇f |

2

f
.

Using Theorem 41, the finite entropy-dissipation assumption (A3), and uniformly bounded
entropy (A2) (remember the constant in Theorem 41 depends also on bounds for the entropy)
we know that the right-hand side belongs to L1

v a.e. t ∈ (0, T ). Therefore, for a.e. t ∈ (0, T )
the conditions of the Dominated Convergence Theorem are satisfied so we have the integral
convergence

∫

R3

[bǫ ∗ 〈·〉γ] |∇f |
2

f
dv →

∫

R3

〈v〉γ |∇f |
2

f
dv.

We have closed the argument for the convergence of (35) after retracing the previous esti-
mates with EDCT 39.
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6.3.2 Term 1○

We seek to show in the limit ǫ ↓ 0,

∫∫

R6

ff∗|v − v∗|γ|v × (bǫ ∗ aǫ)|2dv∗dv =
∫

R3

(∫

R3

f∗|v − v∗|γdv∗
)

f |v × (bǫ ∗ aǫ)|2dv

→
∫

R3

(∫

R3

f∗|v − v∗|γdv∗
) |v ×∇f |2

f
dv

(37)

using the same strategy of nested applications of EDCT 39 like in the previous Section 6.3.1.
We will encounter difficulty when trying to use Jensen’s inequality due to the cross Fisher
information term. As in the previous Section 6.3.1, we have written this double integral over
v, v∗ as a single integral over v. By EDCT 39 and Lemma 43, it suffices to show the integral
convergence of

∫

R3

〈v〉γf |v × (bǫ ∗ aǫ)|2dv →
∫

R3

〈v〉γ |v ×∇f |2
f

(38)

to obtain the integral convergence of (37). Pointwise, we can make the following manipula-
tions

v × (bǫ ∗ aǫ) = v ×
(∫

R3

Gǫ(v − w)∇ log(f ∗Gǫ(w))dw

)

= v ×
(∫

R3

∇Gǫ(v − w) log(f ∗Gǫ(w))dw

)

=

∫

R3

w ×∇Gǫ(v − w) log(f ∗Gǫ(w))dw

=

∫

R3

Gǫ(v − w)w ×∇ log(f ∗Gǫ(w))dw, (39)

where we have used the radial symmetry of Gǫ to get the cancellation (v−w)×∇Gǫ(v−w) = 0
and the twisted integration by parts Lemma 46 (we note that we not pick any signs in the
integration by parts, as the variable w appears with a minus sign in the arguments of Gǫ).

We apply Cauchy-Schwarz, multiply and divide by 〈w〉γ, and use Lemma 45 to obtain

|v × (bǫ ∗ aǫ)|2 ≤
(∫

R3

Gǫ(v − w) 〈w〉−γ dw

)(∫

R3

Gǫ(v − w) 〈w〉γ
∣
∣
∣
∣
w × ∇f ∗Gǫ(w)

f ∗Gǫ(w)

∣
∣
∣
∣

2

dw

)

.γ 〈v〉−γ

(
∫

R3

Gǫ(v − w) 〈w〉γ
∣
∣
∣
∣
w × ∇f ∗Gǫ(w)

f ∗Gǫ(w)

∣
∣
∣
∣

2

dw

)

.

Remembering that this majorant holds pointwise on the integrand of (38), we multiply by
〈v〉γ f(v) and obtain

〈v〉γ f(v)|v × (bǫ ∗ aǫ)|2 . f

(
∫

R3

Gǫ(v − w) 〈w〉γ
∣
∣
∣
∣
w × ∇f ∗Gǫ(w)

f ∗Gǫ(w)

∣
∣
∣
∣

2

dw

)

.
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Now, we recognise a convolution inside the brackets. Hence, using SACRE we can re-write

∫

R3

f

(
∫

R3

Gǫ(v − w) 〈w〉γ
∣
∣
∣
∣
w × ∇f ∗Gǫ(w)

f ∗Gǫ(w)

∣
∣
∣
∣

2

dw

)

dv =

∫

R3

〈v〉γ |v ×∇f ∗Gǫ(v)|2
f ∗Gǫ(v)

dv.

Using EDCT 39, we need to show the convergence of the right-hand side. Here, it is now
possible to use Jensen’s inequality after some more manipulations.

Claim 47.
|v ×∇f ∗Gǫ(v)|2

f ∗Gǫ(v)
≤
∫

R3

Gǫ(v − w)
|w ×∇f(w)|2

f(w)
dw. (40)

Proof of Claim 47. We start by repeating a similar argument to (39). Using that Gǫ is
radially symmetric and the twisted integration by parts Lemma 46 we obtain

v ×∇f ∗Gǫ(v) = v ×
(∫

R3

∇Gǫ(v − w)f(w)dw

)

=

∫

R3

w ×∇Gǫ(v − w)f(w)dw

=

∫

R3

Gǫ(v − w) (w ×∇wf(w))
︸ ︷︷ ︸

=:F (w)

dw.

Therefore, since β : (F, f) 7→ |F |2
f

is jointly convex in F ∈ R
3 and f > 0, we apply Jensen’s

inequality with Gǫ as the reference probability measure to the left-hand side of (40) to see

|v ×∇f ∗Gǫ(v)|2
f ∗Gǫ(v)

=
|F ∗Gǫ|2
f ∗Gǫ

(v) = β(Gǫ ∗ F, Gǫ ∗ f)(v)

= β

(∫

R3

F (v − w)Gǫ(w)dw,

∫

R3

f(v − w)Gǫ(w)dw

)

≤
∫

R3

β(F (v − w), f(v − w))Gǫ(w)dw =

∫

R3

|(v − w)×∇F (v − w)|2
f(v − w)

Gǫ(w)dw,

which proves the claim.

Continuing, by EDCT 39, we seek to establish the integral convergence of

∫

R3

〈v〉γ
[ |F |2
f

∗Gǫ

]

(v)dv =

∫

R3

[〈·〉γ ∗Gǫ](v)
|v ×∇f(v)|2

f(v)
dv.

Finally, the integrand of the right-hand side has a majorant due to Lemma 45

[〈·〉γ ∗Gǫ](v)
|v ×∇f(v)|2

f(v)
. 〈v〉γ |v ×∇f(v)|2

f(v)
.

Once again, using Theorem 41 and Assumptions (A3) and (A2), we obtain that for a.e.
t ∈ (0, T ) the right hand side belongs to L1

v(R
3). Using Dominated Convergence theorem, we
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see that the integral converges. Tracing back the estimates, this takes care of the convergence
of the term 1○ and establishes the convergence in (38).

We note that the estimates in the previous subsections not only establish the a.e. point-
wise convergence of (32), but also the majorisation

∫∫

R6

1

2
ff∗

∣
∣
∣
∣
∇̃
[
δHǫ

δµ

]∣
∣
∣
∣

2

dv∗dv ≤ C

∫∫

R6

1

2
ff∗

∣
∣
∣
∣
∇̃
[
δH
δµ

]∣
∣
∣
∣

2

dv∗dv, a.e. t ∀ǫ > 0,

where

C . || 〈·〉−γ f(t)||
L∞

(

0,T ;L1∩L
3−η

3+γ−η (R3)

) + || 〈·〉2−γ f(t)||
L∞

(

0,T ;L1∩L
3−η

3+γ−η (R3)

)

by Lemma 43. Hence, using assumption (A3) and (32) we can apply Lebesgue DCT to pass
to the limit in the time integral and show the desired chain rule Claim 38.

A An auxiliary PDE for Lemma 35

In this section, we fix ǫ > 0 throughout and study weak solutions to the following PDE

{
∂tµ = ∇ · {µφR1

∫

Rd φR1∗ψR2
(v − v∗)|v − v∗|γ+2Π[v − v∗](J

ǫ
0 − J ǫ

0∗)dµ(v∗)}
µ(0) = µ0

. (41)

We assume the initial data µ0 belongs to P2(R
d). For R1, R2 > 0, the functions 0 ≤

φR1
, ψR2

≤ 1 are smooth cut-off functions used to approximate the identity function in
different ways.

φR1
(v) =

{
1, |v| ≤ R1

0, |v| ≥ R1 + 1
, ψR2

(z) =

{
0, |z| ≤ 1/R2

1, |z| ≥ 2/R2
.

For ǫ > 0, J ǫ
0 is the gradient of first variation of Hǫ applied to µ0, meaning

J ǫ
0 = ∇Gǫ ∗ log[µ0 ∗Gǫ] ∈ C∞(Rd;Rd).

The main result of this section is

Theorem 48. Fix ǫ, R1, R2 > 0, γ ∈ R, and µ0 ∈ P2(R
d). Then, there is a global unique

weak solution µ ∈ C([0,+∞); P2(R
d)) to (41).

By Lemma 31, we know that J ǫ
0 is uniformly bounded (with constant depending on ǫ and

µ0 only through bounds on its second moment). The purpose of φR1
, φR1∗ is to cut off the

growth of J ǫ
0, J

ǫ
0∗ to ensure that the ‘velocity field’ in the right-hand side of (41) is globally

Lipschitz (it is, in fact, smooth and compactly supported). The ψR2
(v− v∗) term avoids the

possible singularities coming from the weight |v − v∗|γ+2 for soft potentials γ < 0.
The construction of the solution in Theorem 48 is given in two steps. Firstly, a local

well-posedness theory established to some finite time interval T > 0 which depends on
ǫ, γ, R1, R2 and µ0. Secondly, the time of existence (and uniqueness) is extended to +∞
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since T depends on µ0 only through its second moment which is conserved by the evolution
of (41).

We fix T > 0 to be determined explicitly later. Our strategy is to employ a fixed point
argument in the space C([0, T ];P2(R

d)) which we will equip with the following metric

d(µ, ν) := sup
t∈[0,T ]

W2(µ(t), ν(t)), µ, ν ∈ C([0, T ];P2(R
d)),

where W2 is the 2-Wasserstein distance on P2(R
d). We have closely followed the procedure

in [10] with appropriate modifications for this setting.

Remark 49. Since we are cutting off the ‘velocity’ field at radius R1, R2, the growth of
J ǫ
0 is inconsequential. Hence the results of this section can be applied when replacing the

convolution kernel of J ǫ
0 with general tailed exponential distributions Gs,ǫ(v) for s > 0.

For µ ∈ P2(R
d), we will denote by U [µ](v) the following function

U [µ](v) := −φR1

∫

Rd

φR1∗ψR2
(v − v∗)|v − v∗|γ+2Π[v − v∗](J

ǫ
0 − J ǫ

0∗)dµ(v∗),

so that the PDE in (41) can be written as a nonlinear transport/continuity equation

∂tµ(t) = −∇ · {µ(t)U [µ(t)]} .

To fix ideas, the weak formulation of (41) is such that the following equality holds for all
test functions τ ∈ C∞

c (Rd) and times t ∈ [0, T ]

∫

Rd

τ(v)dµr(v)−
∫

Rd

τ(v)dµ0(v)

=

∫ t

0

∫

Rd

φR1
∇τ(v) ·

∫

Rd

φR1∗ψR2
(v − v∗)|v − v∗|γ+2Π[v − v∗](J

ǫ
0 − J ǫ

0∗)dµs(v∗)dµs(v)ds.

Thanks to all the smooth cutoffs from φR1
, φR1∗, and ψR2

and µ0 ∈ P2(R
d), we can enlarge

the class of test functions to smooth functions with quadratic growth. In particular, by
choosing τ(v) = |v|2 and symmetrising the right-hand side by swapping v ↔ v∗, we see that
the second moment of µ0 is conserved along the evolution of (41).

Our first step is to look at the level of the characteristic equation associated to (41).

Lemma 50 (Characteristic equation). For any T > 0, µ ∈ C([0, T ];P2(R
d)) and v0 ∈ R

d,
there exists a unique solution v ∈ C1((0, T );Rd) ∩ C([0, T ];Rd) to the following ODE

dv

dt
= U [µ(t)](v), v(0) = v0.

Furthermore, the growth rate satisfies

|v(t)| ≤ max{|v0|, R1 + 1}, ∀t ∈ [0, T ].
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Proof. U [µ(t)](·) is smooth and compactly supported uniformly in t, so classical Cauchy-
Lipschitz theory gives existence and uniqueness of solution v with the promised regularity.

For the estimate on the growth rate, note that U [µ] has support contained in BR1+1.
Points outside this ball do not change in time according to this ODE.

We will denote by Φt
µ the flow map associated to this ODE, so that

d

dt
Φt

µ(v0) = U [µ(t)](Φt
µ(v0)), Φ0

µ(v0) = v0.

It is known that, given ν ∈ C([0, T ];P2(R
d)), the curve of probability measures µ(t) =

Φt
ν#µ0 is a weak solution to

∂tµ(t) = −∇ · {µ(t)U [ν(t)]} , µ(0) = µ0.

Here, Φt
ν#µ0 is the push-forward measure of µ0 defined in duality with τ ∈ Cb(R

d) by

∫

Rd

τ(v)d(Φt
ν#µ0)(v) =

∫

Rd

τ(Φt
ν(v))dµ0(v).

We seek to find a fixed point to the map µ 7→ Φt
µ#µ0 as it would weakly solve (41). To

better understand the properties of this map, we need to establish estimates on the flow map
through U as a function of time and measures.

Lemma 51 (L∞ estimate for velocity field). There exists a constant C = C(ǫ, γ, R1, R2, µ0) >
0 such that for every T > 0 and ν ∈ C([0, T ];P2(R

d)), we have

|U [ν(t)](v)| ≤ C, ∀t ∈ [0, T ], v ∈ R
d.

Proof. Estimate for γ ≥ −2:
We have the following three inequalities

|v − v∗|γ+2 .γ |v|γ+2 + |v∗|γ+2, ||Π[v − v∗]|| ≤ 1, J ǫ
0 .ǫ,µ0

1

due to the range of γ, boundedness of Π, and Lemma 31, respectively. These three inequalities
provide the estimate

|U [ν(t)](v)| .γ,ǫ,µ0
φR1

(v)

∫

Rd

φR1
(v∗)(|v|γ+2 + |v∗|γ+2)dνt(v∗),

where we have dropped ψR2
altogether. For the integral term, we apply Hölder’s inequality

taking advantage of the compact support of φR1
and the unit mass of νt to further obtain

|U [ν(t)](v)| .γ,ǫ,µ0
φR1

(v)(R2+γ
1 + 〈v〉2+γ)

∫

Rd

dνt(v∗) .R1
φR1

(v)〈v〉2+γ.

Again, since φR1
has compact support, we can brutally estimate the polynomial to conclude.

Estimate for γ < −2:
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Unlike the previous case, we change one of the inequalities due to the unavailability of a
triangle inequality and use

ψR2
(v − v∗)|v − v∗|γ+2 . 1/Rγ+2

2 , ||Π[v − v∗]|| ≤ 1, J ǫ
0 .ǫ,µ0

1.

From these inequalities and the compact support of φR1
, we have

|U [ν(t)](v)| .γ,ǫ,µ0,R2
φR1

(v)

∫

Rd

φR1
(v∗)dνt(v∗) ≤ 1,

which concludes the proof.

The next result follows exactly as in [10].

Lemma 52 (Time continuity of flow map). Let C = C(ǫ, γ, R1, R2, µ0) > 0 be the same
constant from Lemma 51. Then for any T > 0, and ν ∈ C([0, T ];P2(R

d)) we have

||Φt
ν − Φs

ν ||L∞(Rd) ≤ C|t− s|.

Our next objective is to establish the regularity of the flow map with respect to the
measures in the subscript. To simplify the subsequent lemmata, let us use the notation in
the following

Lemma 53. Define

F : (v, w) ∈ R
d × R

d 7→ φR1
(v)φR1

(w)ψR2
(v − w)|v − w|γ+2Π[v − w](J ǫ

0(v)− J ǫ
0(w)).

The function F is smooth and compactly supported. In particular, for every k, l ∈ N, there
is a constant C = C(ǫ, γ, R1, R2, µ0, k, l) > 0 such that

||Dk
vD

l
wF ||L∞(Rd×Rd) ≤ C.

More precisely, the constant C depends on µ0 only through bounds on its second moment as
in Lemma 31.

Proof. The compact support property comes from the factor of φR1
(v)φR1

(w) in the defini-
tion. The regularity comes from the avoidance of v = w due to the factor ψR2

(v − w).

Corollary 54 (Pointwise and measurewise regularity of U). Consider the constant C =
C(ǫ, γ, R1, R2, µ0, k, l) > 0 from Lemma 53 above. We have the following

1. Take C1 = C(ǫ, γ, R1, R2, µ0, 0, 1) > 0. For every T > 0; ν1, ν2 ∈ C([0, T ];P2(R
d)); t ∈

[0, T ]; v ∈ R
d we have the estimate

|U [ν1(t)](v)− U [ν2(t)](v)| ≤ C1W2(ν
1
t , ν

2
t ).

2. Take C2 = C(ǫ, γ, R1, R2, µ0, 1, 0) > 0. For every T > 0; ν ∈ C([0, T ];P2(R
d)); t ∈

[0, T ]; v1, v2 ∈ R
d we have the estimate

|U [ν(t)](v1)− U [ν(t)](v2)| ≤ C2|v1 − v2|.
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Remark 55. By considering the anti-symmetric property of F when swapping variables
v ↔ w, one really obtains C1 = C2. Their distinction in this corollary is artificial.

Proof. Item 1:
Firstly, for every t ∈ [0, T ] take π(t) ∈ P2(R

d×R
d) the 2-Wasserstein optimal transportation

plan connecting ν1(t) and ν2(t) which exists, see [51]. We estimate the difference with
notation from Lemma 53

|U [ν1(t)](v)− U [ν2(t)](v)| =
∣
∣
∣
∣

∫

Rd

F (v, w)dν1t (w)−
∫

Rd

F (v, w̄)dν2t (w̄)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫∫

R2d

F (v, w)− F (v, w̄)dπt(w, w̄)

∣
∣
∣
∣

≤ C1

∫∫

R2d

|w − w̄|dπt(w, w̄)

≤ C1W2(ν
1
t , ν

2
t ).

The first inequality uses a mean-value type estimate (in the second variable of F ) and the
second inequality uses Cauchy-Schwarz or equivalently, that W2 is stronger than W1.
Item 2:
As with item 1, we estimate the difference using F to find

|U [ν(t)](v1)− U [ν(t)](v2)| =
∣
∣
∣
∣

∫

Rd

F (v1, w)− F (v2, w)dνt(w)

∣
∣
∣
∣

≤
∫

Rd

|F (v1, w)− F (v2, w)|dνt(w)

≤ C2|v1 − v2|.

Once more, a mean-value type estimate is applied (in the first variable of F ) and we recall
νt is a probability measure.

The next result combines both items of Corollary 54 to estimate the regularity of the
flow map with respect to measures and follows exactly as in [10].

Lemma 56 (Continuity of flow map with respect to measures). For T > 0 fix any ν1, ν2 ∈
C([0, T ];P2(R

d)) and t ∈ [0, T ]. With C := C1 = C2 the same constants in Corollary 54,
we have the estimate

||Φt
ν1 − Φt

ν2 ||L∞(Rd) ≤ (eCt − 1)d(ν1, ν2),

recalling that d(ν1, ν2) = supt∈[0,T ]W2(ν
1
t , ν

2
t ).

It is by now classical how to obtain Theorem 48 from Corollary 54 and Lemma 56,
see [10, 15, 33] for instance. The time of existence can be given by any 0 < T < 1

C
log 2

where C > 0 is chosen as in Lemma 56 and the result follows by a fixed point argument.
The extension to all times is owed to the fact that C > 0 depends on the initial data µ0 only
through its second moment. This quantity is conserved through by the evolution of (41) and
so the maximal time of existence is +∞.
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