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Abstract: Nitrate contamination of ground water is a serious problem due to the intensive agricultural
activities needed to feed the world’s growing population. While effective, drinking water treatment
using commercial ion exchange polymers is often too expensive to be employed. At the same time, lig-
nocellulosic waste from crop production—an abundant source of the renewable polymer cellulose—is
often burned to clear fields. This results in not only adverse health outcomes, but also wastes a
valuable resource. In this study, wheat straw was pretreated to extract cellulose, then selectively oxi-
dized with periodate, crosslinked with an alkyl diamine (1,7-diaminoheptane or 1,10-diaminodecane),
and functionalized with a quaternary ammonium compound ((2-aminoethyl)trimethyl ammonium
chloride) to generate a cellulose-based anion exchange polymer. This polymer lowered aqueous
nitrate concentrations to health-based drinking water standards. Unlike commercial ion exchange
polymers, its synthesis did not require the use of toxic epichlorohydrin or flammable solvents. The
pretreatment conditions did not significantly affect nitrate uptake, but the crosslinker chain length
did, with polymers crosslinked with 1,10-diaminodecane showing no nitrate uptake. Agricultural-
waste-based anion exchange polymers could accelerate progress toward the sustainable development
goals by providing low-cost materials for nitrate removal from water.

Keywords: nitrate; ion exchange; wheat straw; groundwater contamination; agricultural waste;
lignocellulosic biomass

1. Introduction

Nitrate has been called the world’s most widespread ground water pollutant [1-3] due
to the intensive and expanding agricultural production needed to feed the world’s growing
population [3,4]. The consumption of nitrate at levels above the U.S. [5] and World Health
Organization (WHO) [6] drinking water standards (10-11 mg/L as N, or 0.7-0.8 mM) leads
to methemoglobinemia in infants [7]. Nitrate consumption also increases the risk of certain
cancers, thyroid disease, and neural tube defects via the in vivo formation of N-nitroso
compounds that are carcinogens and teratogens, even at concentrations below U.S. and
WHO drinking water standards [3].

In the United States, 5.6 million people are served by community water systems with
nitrate concentrations greater than 5 mg/L as N (half the U.S. drinking water standard), a
level that is associated with adverse health impacts [8]. Furthermore, evidence indicates
that nitrate pollution of ground water disproportionally impacts low-income and minority
individuals in the United States [8,9]. Small communities often lack resources for additional
treatment [10,11] and may simply abandon nitrate-impacted wells [12]. For low-income
families, ion-exchange-based water filters for point-of-use treatment for nitrate removal
may consume a disproportionately large fraction of household income [13]. Lower-cost
alternatives to commercial anion exchange polymers for efficient nitrate removal from
drinking water supplies are therefore needed to address this significant domestic and
worldwide water quality problem.
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Commercial ion exchange polymers are not only expensive, but are also unsustainable
as they employ a petroleum-based polystyrene or polyacrylic “backbone” and a divinylben-
zene crosslinking agent [14]. Their manufacture also requires highly hazardous chemicals
such as epichlorohydrin for crosslinking and functionalization [15]. According to the
Globally Harmonized System (GHS) for the Classification and Labeling of Chemicals [16],
epichlorohydrin is acutely toxic (toxicity classification 1—the most toxic) via oral ingestion,
dermal contact, or inhalation [17]. At the same time, much of the embodied energy in
agricultural waste—in the form of the renewable polymer cellulose—is wasted instead of
being applied for useful purposes such as the preparation of anion exchange polymers. Fur-
thermore, in much of the world, agricultural residues are burned in the fields, e.g., [18,19],
contributing to acute air pollution episodes and chronic health effects caused by exposure
to fine particulate matter [20].

A number of studies have utilized cellulose as a renewable “backbone” for biomass-
waste-based anion exchange polymers, using wastes such as sugarcane bagasse [21,22], wheat
straw [23-27], rice husks [21,22,28], sawdust, bark, and seed hulls from trees [22,29-31],
peat [29], persimmon tea leaves [22], corn stalks [26,32], corn cobs [33], and coconut
wastes [22,33]. In all these studies, however, cellulose functional groups were activated with
epichlorohydrin [22] to facilitate bonding between cellulose and a cationic functional group
responsible for nitrate uptake. These studies also used flammable solvents such as pyridine
and dimethylformamide [22]. The use of such hazardous materials limits the safe preparation
of these ion exchange polymers to well-controlled settings and highly trained individuals.

The objective of this work was to use cellulose obtained from wheat straw to develop
anion exchange polymers for nitrate uptake, using less hazardous chemical procedures
from the fields of fabric cationization, amphiphilic oil/water stabilizers, and others [34-46],
without the need for epichlorohydrin, pyridine, or dimethylformamide. This approach
has the potential to accelerate progress toward United Nations Sustainable Development
Goal 6 (“Ensure availability and sustainable management of water and sanitation for all”),
particularly Target 6.6 (“. . .restore water-related ecosystems, including. . .aquifers. ..”) [47].
The global production of wheat is third after corn and rice [48], and is estimated to be more
than 529 million tons per year [49]. Thus, wheat straw is an abundant, and for the most part,
currently wasted source of renewable cellulose that can be recycled for water treatment.

2. Materials and Methods
2.1. Overview

Overall, the process for the preparation of anion exchange polymers employed in
this study (Figure 1) is the pretreatment of wheat straw with an acid or base for cellu-
lose (Figure 1A) extraction, followed by periodate oxidation to form dialdehyde cellu-
lose (Figure 1B), amination with a crosslinker (Figure 1C) and cationic functional group
(Figure 1D) to form an imine (also called a Schiff base), followed by reduction with sodium
borohydride to form a strong covalent bond between the crosslinker, cationic functional
group, and the cellulose polymer (Figure 1E). None of the crosslinkers or the quaternary
ammonium compound employed in this study had GHG oral, dermal, or inhalation tox-
icity classifications of 1, 2, or 3 (classifications that are considered fatal or toxic upon
exposure [16]) [17]. Water was used as the solvent.

Evidence for the formation of dialdehyde cellulose upon periodate treatment (Figure 1B)
comes from infrared spectroscopy [42], thermogravimetric analysis [35], and the loss of
crystallinity (measured by X-ray diffraction) upon the opening of the cellulose glucopyranose
ring [35]. Evidence for imine (C=N) (Figure 1C,D) and amine (C-N) (Figure 1E) functional
groups upon amination and the reduction of dialdehyde cellulose comes from infrared
spectroscopy [42,45], elemental analysis [45], and thermogravimetric analysis [35].
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ACS), potassium permanganate (KMnOy, Certified ACS), sodium borohydride (NaBHy,
99%), and lithium nitrate (LiNO3, 99%). The following chemicals were from TCI America
(Portland, OR, USA): 1,7-diaminoheptane (C;H1g3Np, >98%) and 1,10-diaminodecane,
(C10H24N3, >98%). Acetic acid (CH3COOH, 99%), (2-aminoethyl)-trimethyl ammonium
chloride hydrochloride (C5H16CI; Ny, 99%), and sodium oxalate (NapCyOy, Certified ACS)
were from Sigma-Aldrich, St. Louis, MO, USA. The remaining chemicals and their sources
were as follows: cupric sulfate (CuSO4-5H,0, ACS Grade, Avantor, Radnor, PA, USA)
and sodium molybdate dihydrate (NaMoO,-2H,0, >99.5%, EMD Millipore, Burlington,
MA, USA). The ResinTech SIR-100-HP anion exchange polymer was from ResinTech Inc.,
Camden, NJ, USA.

2.3. Acid or Base Pretreatment

Wheat straw was ground to pass a No. 14 sieve (1.4 mm), then chemically pretreated
with acid or base under either “mild” or “high” temperature and pressure conditions,
which are described below and summarized in Table 1. For the mild temperature and
pressure acid pretreatment, 10 g of wheat straw was added to 120 mL of 0.4% w/w sulfuric
acid, then heated for four hours at 60 °C under ambient pressure [51,52]. For the mild
temperature and pressure base pretreatment, 10 g of wheat straw was added to 150 mL of
0.72% w/w NaOH, then heated for 1.5 h at 110 °C under ambient pressure [53,54]. After
mild acid or base pretreatment, the wheat straw was dried at 60 °C [55], then rinsed with
deionized (DI) water until the pH reached a constant value. For the high temperature and
pressure acid or base pretreatment, 1.25 g of wheat straw was added to 25 mL of 1% w/w
sulfuric acid or sodium hydroxide in a sealed serum bottle no more than one third full, then
heated in a pressure cooker (Instant Pot 6 Qt. Max, Instant Brands, Kanata, ON, Canada) at
15 psig and 120 °C for 1.5 h [56]. After pretreatment, the wheat straw was rinsed until the
rinsate pH was constant, then oven-dried for at least 12 h at 60 °C [55].

Table 1. Mild and high temperature and pressure acid and base pretreatment conditions. The
conditions labeled with IDs 1-3 are referenced in subsequent figures and Table 2.

Mild Acid (ID 1) Mild Base (ID 2) High Acid High Base (ID 3)
Concentration of acid 0.4% H,50, 0.72% NaOH 1% H,S0, 1% NaOH
or base
Duration and o o o o

4hat60°C 1.5hat110°C 1.5hat120°C 1.5hat120°C

temperature
Pressure Atmospheric Atmospheric 15 psig 15 psig
Ratio of acid or base to 12mL per g 15mL per g 20 mL per g 20 mL per g
wheat straw wheat straw wheat straw wheat straw wheat straw

2.4. Periodate Oxidation

Periodate was used to oxidize the C2 and C3 hydroxyl groups in cellulose to aldehydes,
e.g., [34] (Figure 1B). One gram of pretreated wheat straw was soaked in 100 mL of either
0.031 M or 0.12 M sodium periodate, which are concentrations of periodate equal to one
half (0.031 M) and two times (0.12 M) the estimated stoichiometric amount required to
oxidize the C2 and C3 hydroxyl groups, assuming that the acid or base-pretreated wheat
straw was mainly cellulose with a molecular weight of 162.14 g/mol. The treatment
duration was one [57] or ten [36,58] days on a reciprocating Cole Parmer Ping-Pong Shaker
(51504-00, Vernon Hills, IL, USA) at 75 rpm. The periodate solution was pre-adjusted to
pH 4.25 with HCI [57], and the treatment was performed in foil-wrapped polyethylene
bottles to prevent periodate photodegradation [36,57,58]. After oxidation, the wheat straw
was centrifuged, washed with DI water, and air-dried. UV absorbance spectroscopy
(280 nm, Shimadzu UV-1601 Spectrophotometer (Shimadzu Corporation, Missouri City,
TX, USA) [36] confirmed that excess periodate remained in the supernatant after ten days
of treatment with 0.12 M periodate.
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Table 2. Cu# and estimated concentration of aldehyde functional groups for chemically pretreated and periodate oxidized wheat straw. Uncertainties are standard
deviations of the means of triplicate samples. Polymer IDs (first column) and acid and base pretreatment conditions (second and third columns) are given in Table 1.

Cu# (g Cu/100 g Solid) Cu# (g Cu/100 g Solid) Aldehyde Concentration

Polymer ID Pretreatment Temperature & Perlodfite Oxidation Time (before Periodate (after Periodate (umol/g) (after Periodate
Pressure Concentration (M) (Days) 1o A A

Oxidation) Oxidation) Oxidation)

acid mild 0.031 1 0.706 £ 0.061 5.30 £ 0.49 87.1+£82

1 acid mild 0.031 10 0.706 £ 0.061 5.30 + 0.18 87.1+3.0
acid high 0.12 1 1.48 +£0.49 5.29 £ 0.18 87.0+3.1

acid high 0.12 10 1.48 +£0.49 4.56 + 0.37 748 £ 6.1

base mild 0.031 1 0.211 £ 0.000 4.65 + 0.96 764 +16.1

2 base mild 0.031 10 0.211 + 0.000 5.58 £ 0.06 918+ 1.0
base mild 0.12 1 0.211 + 0.000 5.51 £0.10 90.6 £1.7

base high 0.12 1 0.317 £ 0.001 5.40 £+ 0.32 88.8 £ 5.0

3 base high 0.12 10 0.317 £ 0.001 6.30 £ 0.18 103.1£29
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2.5. Determination of the Copper Number

The procedure followed the ASTM method D919-97 [59] and Dash [37], with the
following details. A mass of 0.3 g of air-dried periodate-treated wheat straw was mixed
with 1 mL of 0.40 N cupric sulfate and 19 mL of a solution containing 4.80 M sodium
carbonate and 1.04 M sodium bicarbonate, then heated for three hours at 100 °C [37].
Samples were then filtered (Whatman Grade 1, 110 mm) and washed, first with 50 mL
of boiling DI water, and then with 20 mL of 5% sodium carbonate [37]. The filter paper
and the solids therein were transferred to a 100 mL beaker and mixed with 5 mL of 5%
phosphomolybdic acid, prepared by mixing 50 g of sodium molybdate with 37.5 mL of
concentrated phosphoric acid, then adding the mixture to another that contained 875 mL
of DI water and 137.5 mL of concentrated sulfuric acid [37]. Phosphomolybdic acid turns
blue upon reaction with Cu(l) [60], and Cu(Il) is reduced to Cu(l) by oxidizable functional
groups [59] such as carbonyls [61]. The beaker contents were then filtered (Whatman Grade
1110 mm) and rinsed with DI water until the rinsate was colorless, indicating the complete
transfer of Cu(l) to the rinsate. The rinsate was then titrated with 0.05 N (0.01 M) potassium
permanganate until a faint pink endpoint was reached, indicating that all Cu(l) in the
sample was oxidized by potassium permanganate. Based on the titration results, the copper
number (Cu#) in units of g Cu per 100 g sample was calculated [59]:

Cu# = (6.36 x (V — B) x N)/W )

where V is the volume of potassium permanganate (mL) needed to titrate the rinsate, B is
the volume of potassium permanganate (mL) needed to titrate the blank rinsate, N is the
normality of potassium permanganate (0.05 N), and W is the mass of wheat straw (g).

The blank value (B) in Equation (1) was determined via the treatment and titration
of a fresh, unused filter, and accounts for the oxidation of the cellulose in the paper filter.
The Cu# was used to estimate the concentration of aldehyde groups in the sample using an
empirical relationship [61]:

Aldehyde content (umol/g) = (Cu# — 0.07)/0.06 2)

2.6. Crosslinking and Functionalization

The concentration of aldehyde functional groups (Equation (2)) was used to estimate
the required concentrations of compounds for the crosslinking and functionalization of the
pretreated and periodate-oxidized wheat straw using either 1,7-diaminoheptane (1,7-DAH)
or 1,10-diaminodecane (1,10-DAD) as the crosslinker, and (2-aminoethyl)trimethyl ammo-
nium chloride (ATAC) as the quaternary ammonium functional group. These compounds
are illustrated in Figure 2. The primary amine functional group (i.e., R-NH;) in each com-
pound (Figure 2) forms a bond with dialdehyde cellulose (Figure 1C,D). These aliphatic
amines have pK,s well above the pH (4.8-5.0) of nitrate adsorption experiments [62], indi-
cating that they were in the protonated form, and therefore that each amine or quaternary
ammonium functional group could potentially adsorb nitrate. Both 1,7-diaminoheptane
and 1,10-diaminodecane are comparable in size (1.00 nm and 1.40 nm) to the divinylben-
zene isomers (0.71-0.92 nm) that are commonly used as crosslinkers in commercial anion
exchange polymers. (All dimensions were estimated with Jmol [63]).

For crosslinking and functionalization, 0.2 g of pretreated and periodate-oxidized
wheat straw was added to 100 mL of an aqueous solution containing both crosslinker and
functional group in a serum bottle [37]. The concentrations of the crosslinker and functional
group were each equal to approximately half the aldehyde concentration estimated using
Equation (2). These values were equal to 7.53 x 107> M, 8.65 x 107> M, and 9.77 x 107> M
for the mild-acid-, mild-base-, and high-base-pretreated wheat straw, respectively (IDs 1,
2, and 3 in Table 1). The solution pH was pre-adjusted to 4.5 with acetic acid [37], then
serum bottles were sealed with Teflon-lined rubber septa and aluminum crip seals and
heated in an incubator (Benchmark Scientific H2200-HC, £0.5 °C, Sayreville, NJ, USA)
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“Biomass blanks” containing only pretreated, oxidized wheat straw in DI water led
to nitrate ion-selective electrode potentials corresponding to a nitrate concentration of
approximately 10~ M. To correct for this, biomass blanks were prepared and analyzed
in parallel with the samples. The measured concentrations of the biomass blanks were
subtracted from the measured concentrations in the samples spiked with nitrate. Each
standard, biomass blank, and sample was prepared in duplicate.

3. Results
3.1. Polymer Characterization

The periodate treatment significantly increased the Cu# in wheat straw samples
pretreated under a range of conditions compared to the untreated wheat straw (Table 2).
The pretreatment and periodate oxidation of wheat straw under different conditions led to
similar Cu#s and concentrations of aldehyde functional groups estimated with Equation (2)
(Table 2). There was no pretreatment or periodate oxidation condition (acid or base, mild
or high temperature and pressure, periodate concentration, or periodate exposure time)
that yielded a Cu# significantly different from others in the same category (Figure A1),
although the base-pretreated wheat straw more often had the highest mean Cu# values
than the acid-pretreated wheat straw (Figure A2).



Water 2023, 15, 3594

8 of 15

SEM images of unamended wheat straw, as well as the polymers prepared from wheat
straw under different conditions, show the effects of pretreatment on polymer morphology
(Figure 3). The compact biomass structure of the unamended wheat straw (Figure 3a)
was disrupted by treatment under mild base conditions (Figure 3b) due to the alkaline
dissolution of lignin and hemicellulose that provides stiffness in the plant structure [64].
In another study, wheat straw treated under mild base conditions similar to those used
here showed only partial removal of lignin and hemicellulose [65]. Wheat straw treated
under high temperature and pressure conditions, on the other hand, showed complete
separation of cellulose fibers (Figure 3c), due to water release from the biomass matrix
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The nitrate adsorption capacity of the wheat straw polymer prepared in this study
could theoretically be increased by increasing the density of cationic functional groups.
This was attempted by employing a higher temperature and pressure in wheat straw
pretreatment in order to increase the available biomass surface area for periodate oxidation,
dialdehyde cellulose formation (Figure 1B), and subsequent amination for crosslinking and
functionalization (Figure 1C-E). While the Cu# and estimated aldehyde concentration in
this wheat straw were higher than in the wheat straw pretreated under mild acid or base
conditions (Table 2, ID 3), and it was mixed with proportionally greater concentrations
of 1,7-DAH and ATAC, the resulting polymer did not adsorb nitrate at all. This can be
attributed to the high temperature and pressure conditions during pretreatment (Table 1),
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possibly removing one or more reactive species capable of forming Schiff bases upon
crosslinking and functionalization (Figure 1C,D), and/or changing the physical polymer
structure in a way that hindered crosslinking and functionalization. Consistent with this
theory, the pretreatment of poplar wood with base (KOH) was shown to result in a greater
loss of acetyl functionality as the concentration of base increased [69]. In another study, the

Water 2023. 15. x FOR PEER REVIEvPTetreatment of wheat straw with increasing concentrations of NaOH resulted in a greater,

involved in crosslinking and functionalization.

1.6
1.4 Resintech SIR-
= 1.2 100-HP
=~ 1 k . -
o) e Mild acid (1,7-
g 0.8 DAH/ATAC)
= 0.6
OSU 0.4 ® Mild base (1,7-
' ® DAH/ATAC)
02 0 o
0 ®°
0O 05 1 15 2 25 3
C, (mM)
B g%i%‘é%s ﬁhtra 5 Eﬁgﬁl‘ebg’mlgaac‘i; - SFildhbase-pr re Sresier e%rlbodiactes o(%i{ 1ief wiheatsiraw
WasCI(‘:rgS 1r]1ﬂ g ara{g(%un I}fo o lazle Wl (I‘z ?M om t60 gsm %]k 11& ]Ig
ITOr bars are one stan ev1a 10N O e mean (6} up 1cate s mp es ome erro ars are not

s%llgaarf Asone g};ﬁ%ﬁg{%g%%}%lagtgf brgfsan of duplicate samples. Some error bars are not

visible as they are smaller than the data symbols.

I %5330 PR RRE Tl @VB TS R HISE BESERSEA IR SHSY
“’% hedretica mind (110° 1%%%” uncﬁ‘c}%ém edcé‘v%%‘%ﬁe““i%"“a f‘%“’%l?g
amh%%%%%%tgg‘ LR %Yt}ff%gure owRver thid Bolpiaet wadald tsffﬁ‘
trea%mgnt 1r1[ % tl% 1&% eas%ﬁel r e 1 mas sur dap artez% or 1rerl t E)Xl 1?61

arj?cfl% 0?51% { orrpail eﬁlﬁge C ﬁl)s%qél r?ﬁla%lr?‘{attlc(ﬁ}? iior Ccrloss
B 8&% R Xét’(%“g(ur% ¢ NG avel%t KGHE Wsaimateyds gﬁ%ﬁogl%%%%%;l%?
AR s AR gr&ﬁgheﬁémrhf&a%ea% ast Sﬂ%ﬂwfs%%%%%%eanglﬁfow&cﬁ% &
Refssnditions lable i dlorind Howasmige n‘é’é%tﬂWffsrw&g Xq%ﬁ?saefﬁ?“ﬁ%&ﬁ%
SiPRs s AT SRS ﬁs MingRebARsTidd JrahadsgRmiitaeatehddissan
8

é}}%agrllg E‘%ﬂﬁ&’g‘ﬁl@ﬁ}é Be&g%g %%8§5§H:ﬁ§géld1tlons during pretreatment (Table

), possi ly removing one or more reactive species capable of forming Schiff bases upon
&rQehielkisigrand functionalization (Figure 1C,D), and/or changing the physical polymer

strug{uge i3 Waxdbpohadered eosalinking A dmstianalization rongstsnipithdhis
Hbam&bﬁm%sﬁfimg arovend withrhase (Kitahie vaashamitsesiipasheater
Uoss f{peetpic westinBLis e thikrenserisaipmahRistonGEaveed: 0%, Frranaties §td,
hewrrbratmem Qb AsheRh o8 e potbnisr ettt ryasepicsians RfupPHdseliadama
dapatspinen pEbemicalidlete Mhlevhighpiy, aseanintemavithseetrt yensionnl geayesThl
ubabireRyoLyes T sFessliovking andritaspRealisal Would prevent it from being cleared
from hbeistildRastrpaetreatedivhagt sHdwl 6Eablo i Hadiry ahaldavarsginked rabil adaa-
teaprod licearrdianéne (drdp; VR igulec randidttionalides sttt ihubiarde eplafemany
oo hen egmpw e dadh ditgwin g)nifleMeridra Hu spdly bage wasraleq il pléefie v )
andratech pakectitumosie jere it dongere chavidgig threndrgrndie e bydneptwibjcitiplsié 1710-
HaAlkectmiiesedh dadodduvgsd quetibhdr adsd theffeuihemedlenduedtengrysainasniten
contrpdtingl pAdde6séd]i goterdjainate fferen gehfrsicalbnihspletd ds tineghydmdphitir, amprevaedl
ratnaenenovaleéficieak grmigpsoftom nitrate access. In polymer-based anion exchange
membranes, continuous, hydrophilic, ion-conducting pathways were required [71]. Fu-
ture experiments will optimize the type and concentration of the crosslinker and func-
tional group to promote nitrate access to the polymer surface.

4. Conclusions

Anion exchange polymers prepared from wheat straw without the use of epichloro-
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