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ABSTRACT   35 

Reverse osmosis and nanofiltration are used to purify feedwaters that contain a range of harmful 36 

organic solutes. The rejection of many of these solutes is poorly understood due to our limited 37 

ability to experimentally measure removal of any given compound. In this work, we present a 38 

machine learning approach that predicts organic solute rejection using molecular fingerprints that 39 

encode chemical structure features, such as functional groups and rings, into simple binary vectors. 40 

We trained machine learning models on a database of 1906 membrane rejection measurements 41 

including 228 organic compounds and 39 types of reverse osmosis and nanofiltration membranes. 42 

Three types of molecular fingerprint models (structural key, circular, and path based) were 43 

compared, and we observed that the Molecular Access System (MACCS) structural key had high 44 

performance (coefficient of determination of 0.87 with the testing set), fast calculation time due to 45 

its short bit-length, and easy interpretability. In addition to evaluating prediction performance, 46 

Shapley Additive Explanations (SHAP) analysis was implemented to gain a better molecular-scale 47 

understanding of membrane rejection, identifying molecular substructures that are important in 48 

determining their rejection. Overall, this work presents a method to predict the rejection of 49 

compounds that uses readily available molecular structure information and improves our ability to 50 

understand rejection mechanisms.  51 

 52 
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Graphical Abstract 55 
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 58 

Highlights 59 

• Machine learning models for solute rejection used molecular fingerprints as input. 60 
 61 

• The models showed comparable performance to traditional models. 62 
 63 

• MACCS was found to be the best fingerprint for membrane rejection applications. 64 
 65 

• SHAP and clustering help interpret how chemical features affect rejection. 66 
  67 
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1. Introduction 68 

3.6 billion people experience water scarcity at least one month per year, and water shortages are 69 

becoming more severe because of climate change and increasing water demands [1]. Processes 70 

that utilize unconventional water resources such as desalination, brine treatment, and water reuse 71 

have the potential to sustainably alleviate water stress by augmenting clean water supplies beyond 72 

those available from existing water resources. Reverse osmosis (RO) and nanofiltration (NF) are 73 

widely considered in advanced water treatment trains because of their ability to remove a broad 74 

spectrum of compounds, including salts and harmful organic contaminants, more reliably than 75 

other processes [2]. In addition to water treatment, RO and NF are increasingly considered in a 76 

broad suite of separations including drug purification, protein concentration, and food processing 77 

[3–6]. 78 

Emerging water treatment applications, such as municipal and industrial wastewater reuse, 79 

include myriad organic compounds in the feed streams. Some of these compounds, such as 1,4-80 

dioxane and N-nitrosodimethylamine (NDMA), are of particular concern because they are known 81 

to be harmful to human health and are well-documented as being poorly removed by membrane 82 

processes [7]. However, many other potentially harmful compounds exist in feedwaters with 83 

poorly understood rejection in NF and RO [8]. It is thus of critical importance to develop the ability 84 

to determine the removal of a broad range of compounds in membrane systems.  To date, much of 85 

our understanding of membrane rejection has relied on experimental measurements of rejection 86 

for individual compounds in studies that generally examined between 5 and 30 compounds [9–11]. 87 

These individual experimental measurements provide valuable insights, but alternative methods 88 

are necessary to approximate rejection of the multitude of compounds in feedwaters and develop 89 

a greater understanding of rejection mechanisms [12,13]. 90 

Machine Learning (ML) models are powerful tools to address complex real-world 91 

problems in many science and engineering fields related to material development, chemical 92 

processing, biomedical studies, and environmental science [14]. ML models are constructed from 93 

data, enabling complicated non-linear relationships to be captured in predictive algorithms. In the 94 

field of membrane separations, ML models have been used to predict rejection of emerging 95 

compounds based on collected rejection data, membrane properties, and compound properties [15–96 

19]. These ML methods have been valuable for the selection of a suitable membrane for a given 97 
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application and been used to relate operating conditions and membrane properties to process 98 

performance [20,21]. 99 

Despite their growing utility in membrane science, current ML algorithms used to predict 100 

rejection are unable to predict the removal of new compounds without known molecular properties 101 

and face challenges in describing the mechanisms by which compound molar structure influences 102 

rejection. Previous ML models for membrane rejection have used input parameters based on 103 

compound descriptions such as molecular weight, dipole moment, and octanol-water partition 104 

coefficient [14,22,23]. While these descriptors can effectively quantify the physicochemical 105 

properties of a compound, they lack the ability to intuitively express structural information and 106 

atom connectivity [24,25]. Recent rejection studies have found that the interactions between 107 

functional groups and aromatic rings on compounds and polyamide membranes are strongly 108 

related to rejection [26–28], and considering the molecular structure is therefore critical to 109 

understand how functional groups and their positions within the molecule influence membrane 110 

rejection [29]. Moreover, phenomena such as proton dissociation, which enhances rejection 111 

through strong electrostatic repulsion, are closely related to molecular structures [30,31]. To gain 112 

molecular-level mechanistic insights into membrane rejection, models that include details on 113 

molecular structure are therefore needed [14,32]. Furthermore, some experimental molecular 114 

descriptors, such as acid dissociation constants and octanol-water partition coefficients, are not 115 

readily available for certain compounds, meaning it is not possible to predict the rejection of new 116 

and poorly studied compounds using existing ML methods. 117 

Converting organic compound information into detailed features that can be understood by 118 

computers is essential to use machine learning to predict membrane rejection and for other 119 

chemical applications [33] . Molecular fingerprints (MFs) are a promising tool to present detailed 120 

molecular structure information. MFs transform chemical structural features into binary vectors 121 

(0’s and 1’s) that account for the absence or presence of molecular substructures [34,35]. Recently, 122 

multiple studies successfully built data-driven models using MFs as input data to predict molecular 123 

properties including the refractive index, viscosity, acid dissociation constant, and reaction rate of 124 

organic compounds with hydroxyl radical [35–38]. A key advantage of MFs is that they can encode 125 

information using Simplified Molecular Input Line Entry System (SMILES) codes, which are 126 

available for any compound with a known chemical structure. In addition, MFs can be combined 127 

with other analysis techniques such as Clustering and Shapley Additive Explanations (SHAP), 128 
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which are evaluation tools to find similarity and disparity of data and explain the input and output 129 

relationships [39]. For example, the binary vector information from MF can enhance the pattern 130 

recognition power of clustering by coupling molecular sub-structure information and rejection 131 

behavior. In addition, ML models do not provide clear relations between input and output, and 132 

thus, explainable machine learning techniques such as SHAP can help to unveil the decision-133 

making process of ML models. In studying RO and NF membrane rejection, the combination of 134 

MF data and advanced analysis techniques has potential to elucidate the interplay of different 135 

molecular fragments and membranes to reveal complex RO/NF membrane rejection mechanisms 136 

[15–19]. However, no studies to date have used MFs generated from organic solutes to predict 137 

these solutes’ rejection in RO and NF water treatment processes. 138 

In this study, we compare three different molecular fingerprint categories (path-based, 139 

circular, and structural key) to develop ML models for predicting contaminant rejection and 140 

examining the potential of MFs in explaining underlying rejection mechanisms. The models are 141 

trained with the different fingerprints and 1906 rejection measurements for 228 unique organic 142 

compounds. The prediction performances of the trained models are quantified through evaluation 143 

metrics such as the coefficient of determination and the Spearman coefficient. We change the 144 

parameters for fingerprints (e.g. maximum path length, maximum radius, structural key number) 145 

to explore the optimal fingerprints in terms of prediction power, calculation expense, and 146 

interpretability. Molecular fragments created by each fingerprint and the analyses of clustering and 147 

SHAP are used to gain an understanding of molecular-scale compound-membrane interactions. 148 

Our analysis provides a valuable tool for rejection prediction and yields insights into compound 149 

properties that dictate rejection.  150 

 151 

2. Materials and Methods 152 

2.1. Dataset shape  153 

Membrane properties, compound properties, SMILES notation for each compound, and rejection 154 

values were obtained from the previous literature [14,40]. The dataset included 1906 experimental 155 

rejection data points for 228 organic compounds and 39 types of RO and NF membranes. The 156 

distribution of membrane materials is as follows: there are 1,317 samples of polyamide membranes, 157 

501 samples of poly(piperazinamide) membranes, 69 samples of polyethersulfone membranes, and 158 
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19 samples of cellulose acetate membranes. The retrieved SMILES notations for the organic 159 

compounds were converted into three classes of MFs: path-based, circular, and structural key. 160 

RDKit and Morgan fingerprints were chosen as the path-based and circular fingerprints, 161 

respectively. Molecular Access System (MACCS) and PubChem fingerprints were chosen as 162 

structural key fingerprints.  163 

Table 1 summarizes the information available in the input datasets excluding the MFs. The 164 

datasets used for model training contained three membrane properties (membrane molecular 165 

weight cut-off (MWCO), membrane water contact angle, and solution pH), three operating 166 

conditions (pressure, measurement time, and initial concentration), and MFs that represent the 167 

molecular structural and chemical properties. We note that insufficient data were available for 168 

membrane surface charge in the original dataset, so solution pH was used as an indirect feature of 169 

membrane surface charge because solution pH governs the extent of protonation on the membrane 170 

surface [41]. The distribution of output (rejection, R) demonstrated a severely left-skewed shape 171 

since rejection values tended to be high, with most rejection values greater than 90%. In this study, 172 

the original R distribution, -log(1-R) transformation, and -sqrt(1-R) transformation were examined 173 

to address skewing of the data and allow for improved fitting resolution; the -sqrt(1-R) 174 

transformation was finally applied on the output because the sqrt(1-R) transformation best shifted 175 

the left-skewed distribution closer to a normal distribution. All input and output values were scaled 176 

from 0 to 1 to render the range of values equal for training, and then the outputs were transformed 177 

back to the original scale when evaluating model performance. The raw dataset and processed 178 

dataset are available in a GitHub repository (https://github.com/leesang-boulder/machine-179 

learning_molecular-fingerprint_RO-NF-rejection), and the detailed descriptions about MFs can be 180 

found in the next section. 181 

Table 1. Overall distribution of the input data from previous literature including 1906 data 182 

points, 228 organic compounds, and 39 types of RO and NF membranes. 183 

 pH 
Membrane 
MWCO 
(Da) 

Membrane 
water 
contact 
angle (°) 

Pressure 
(kPa) 

Measurement 
time (min) 

Initial 
concentration of 
compound 
(mg/L) 

Rejection 
(%) 

25th 
Percentile 7.0 100 41.4 500 10 0.053 72.06 

50th 
Percentile 7.0 152 53.8 690 10 0.5 90.82 

75th 
Percentile 7.0 300 63.2 1000 300 10.0 96.90 
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Min value 2.2 65 14.4 240 10 0.00072 0 

Max value 11 460 79.4 3500 5760 2000 100 

 184 

2.2. Molecular fingerprints generation  185 

Molecular fingerprints (MFs) encode the structural information of chemical compounds into 186 

binary vectors. Each binary value (0 or 1) indicates whether a certain molecular fragment exists in 187 

a compound and the position of the binary vector displays which molecular fragment it is. This 188 

molecular representation enables the computationally efficient management and comparison of 189 

chemical structures (e.g. Tanimoto and Dice similarity coefficients) [42]. Fingerprinting has 190 

played a key role in virtual screening, quantitative structure-property relationships (QSPR) 191 

analysis, similarity-based compound search, target molecule ranking, and other chemical 192 

compound discovery processes [43]. Moreover, previous studies proved that fingerprinting is 193 

useful for ML models to predict variables that are highly dependent on molecular structures [44–194 

48]. 195 

There are five main categories of 2D fingerprints, namely structural key fingerprints, 196 

topological or path-based fingerprints, circular fingerprints, pharmacophore, and neural 197 

fingerprints. Three categories of fingerprints were applied in this study to convert SMILES into 198 

binary vectors: path-based (RDKit), circular (Morgan), and structural key (PubChem and 199 

Molecular Access System, MACCS). The generating algorithm of each fingerprint is briefly 200 

displayed in Figure 1A. Path-based fingerprints encode all possible connectivity for the fragments 201 

of a compound following a linear path along the molecular graph from a central atom up to a given 202 

maximum length. Under a path-based approach, any compound can produce a meaningful 203 

fingerprint; however, bit collision can be an issue because a bit can be set by multiple different 204 

fragments [49]. RDKit was used as the path-based fingerprint, and maximum path lengths of 1 and 205 

3 and bit lengths of 1024 and 32768 were implemented. Although it increases computational 206 

complexity, an expanded bit length of 32768 was used for the maximum path length of 3 to avoid 207 

bit collision; a detailed explanation of bit collision counts can be found in Section 2 of the 208 

Supporting Information (Figure S4). The circular fingerprint utilizes a similar approach to the path-209 

based fingerprint but constructs fragments within a radius of the starting atom instead of on linear 210 

paths. The circular Morgan fingerprint was used with a maximum radius of 1 and 3 (which denotes 211 

the radial distance from the center atom), and bit lengths of 4096 and 16384 were chosen. 212 
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Structural key fingerprints define the bits depending on the presence and absence in the compound 213 

of certain fragments from a given list of structural keys. Therefore, these fingerprints are 214 

meaningful when the molecules’ fragments are well-represented by the pre-defined keys [49]. 215 

PubChem and MACCS were used as structural key fingerprints. PubChem fingerprints are based 216 

on 881 structural keys defined by the PubChem database system. MACCS uses 166 keys 217 

developed by the Molecular Design Limited (MDL) Information Systems. During data generation, 218 

one dummy bit was padded to the head of the MACCS keys, which resulted in 167 keys in total. 219 

 220 

Figure 1. (A) Schematic diagrams of fingerprints used in the study. The pre-defined keys for 221 

structural key fingerprints are arbitrary keys, and not related to PubChem and MACCS 222 
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fingerprints. (B) Overall workflow of this study demonstrating the input data processing, model 223 

development procedures, and approaches for model interpretation. 224 

2.3. Model development  225 

Three different algorithms (linear Stochastic Gradient Descent, Support Vector Machine, and 226 

Extreme Gradient Boosting) were used and compared for training preliminary models. In addition, 227 

randomized hyperparameter search was implemented for fine-tuning the three models. This 228 

algorithm selection stage is important for evaluating the performance of each algorithm model and 229 

the suitability of an algorithm for our data characteristics. Detailed comparisons between 230 

algorithms can be found in Section 1 of the Supporting Information (Figure S1-3). XGBoost 231 

(Extreme Gradient Boosting) algorithm was chosen to build main models for predicting 232 

contaminant rejection with multiple fingerprint datasets (Figure 1B) based on its high prediction 233 

performance, low tendency for overfitting, resistance to outliers, and ability to handle a large 234 

number of input features as shown in Section 1 of the Supporting Information. XGBoost falls 235 

under the category of ensemble methods. The algorithm creates a series of additive estimators, 236 

where each estimator in the series is fit to the residual errors of the previous estimator. Training is 237 

generally fast and capable of handling overfitting due to improved regularization [50]. The 238 

algorithm has a small probability to predict a value outside of the given output range (rejection 0–239 

100%), so we defined boundary conditions to ensure predicted values always fall in this range. 240 

Incremental learning was used to handle the 70 samples with the same output value (100% 241 

rejection) with different inputs. Conceptual explanation about incremental learning can be found 242 

in Figure S5. In each cycle, 50% of the training set was randomly selected to train the model, and 243 

positive normally distributed random noises (1% mean and 0.5% standard deviation of the 100% 244 

rejection) were deducted from the 100% rejection values to jitter the points. This process was 245 

repeated over 100 cycles and the coefficients of a model were incrementally updated at each cycle. 246 

The testing set that was not seen during the training was used for evaluation. To verify the models’ 247 

validity and robustness, datasets were randomly split into a training set and a testing set with a 248 

ratio of 4 to 1 using the stratified splitting with 10 bins. Even with the transformation used to make 249 

the dataset more uniform in output distribution, the datasets were significantly imbalanced with 250 

few points in the low rejection range, so a stratified split was applied with 5 bins to preserve the 251 

percentage of samples for each bin in the training and testing sets. In addition, it was wrapped with 252 
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a Bayesian optimization wrapper to fine-tune XGBRegressor’s parameters while implementing 253 

incremental learning. 5-fold cross validation was implemented for this hyperparameter tuning and 254 

training stages. ‘max_depth’, ‘learning_rate’, ‘n_estimators’, ‘min_child_weight’, ‘subsample’, 255 

‘colsample_bytree’, ‘reg_alpha’, ‘reg_lambda’, and ‘gamma’ were the parameters to be tuned. To 256 

evaluate model performance, the mean square error (MSE), Spearman coefficient, and coefficient 257 

of determination were calculated with each training and testing set, respectively. Coefficient of 258 

determination is commonly used to evaluate prediction models and allow for comparison with 259 

previous studies [14,51]. Spearman coefficients are used to assess non-linear relationships and are 260 

therefore useful for membrane rejection data, which relies on complex interactions between 261 

membrane properties, operating conditions, and compounds. All the procedures above were 262 

executed with the XGBoost and scikit-learn libraries in Python. The datasets and codes used to 263 

generate the results were deposited in a GitHub repository (https://github.com/leesang-264 

boulder/machine-learning_molecular-fingerprint_RO-NF-rejection).     265 

2.4. Clustering and Shapley values for model analysis  266 

Clustering is a powerful unsupervised machine learning technique that can help to group similar 267 

data points. Clustering can help to identify patterns and relationships between different groups of 268 

data points. By examining the characteristics of each cluster, we can understand what makes them 269 

similar or different. T-distributed Stochastic Neighborhood Embedding (t-SNE) was used for 270 

nonlinear dimension reduction and clustering, which can be found in the Scikit Learn Library in 271 

Python. The number of clusters is a hyperparameter, so the inertia (sum of distance squares 272 

between a central point and data points in clusters) curve was drawn for finding a suitable number 273 

of clusters with the MACCS fingerprint as high-dimensional input data. Based on the inertia curve 274 

(see Figure S6), the number of clusters was decided as 4. The MACCS fingerprint was used to 275 

implement the clustering of the 228 organic compounds. Sub-dataset was generated with 276 

conditions of MWCO < 225 Da and pH = 7 to eliminate the effects of MWCO and pH, and focus 277 

on the effect of the molecular structures. A point on the plot represents an organic compound, and 278 

the values of the x and y axes are equivalent to the reduction of 167 structural keys of MACCS. 279 

The averaged rejections of the compounds were displayed with colors.  280 

Shapley additive explanations (SHAP) were used for evaluating the influence of each 281 

single input feature on rejection. The process is based on cooperative game theory that analyzes 282 
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the significance of each input variable in the outcome [52]. With SHAP, models are trained with 283 

all possible combinations of the input variables, and the differences of the predicted outcome 284 

including and excluding an input variable of interest are computed. The obtained SHAP scores can 285 

be either positive or negative to present the trends of output, and the scores indicate which 286 

compound fragments (input) most affect rejection (output) and thus help explain the rejection 287 

mechanisms. Molecular fragments of compounds were drawn using the RDKit library to further 288 

investigate molecular structures that are important in determining rejection. The importance score 289 

of a feature was obtained by averaging absolute SHAP values of each data point for the feature. 290 

 291 

3. Results and Discussion 292 

3.1. Validation of learning process and prediction performance  293 

The learning processes and prediction performances of the three types of MF models (path-based, 294 

circular, and structural key) were evaluated with data divided into training and testing sets with 295 

stratified split, and the results indicated that models were well-trained. The datasets included the 296 

same input features and output rejections, except the type of MF used as input was varied. Figure 297 

2A–C shows the learning curves with different fingerprints where the maximum path length for 298 

the path-based fingerprint was 3, the maximum radius for the circular fingerprint was 3, and the 299 

bit length of the PubChem fingerprint was 881. The default maximum path length and radius are 300 

7 in RDKit, and here we chose 3 because organic compounds in the data are small compared to 301 

other molecules studied in RDKit (e.g., pharmacoactive organic molecules) and larger lengths 302 

increase computational time and likelihood of overfitting. The learning curves are broadly used to 303 

see how models learn and minimize errors over time. Figure 2A-C demonstrate that error decreases 304 

with an increasing number of iterations, eventually reaching a lower limit of error at a high number 305 

of iterations. For the circular and PubChem fingerprints, the testing errors did not start increasing 306 

after hitting the minimum; suggesting that the models were not overfit, which would be reflected 307 

by testing error increasing while training error decreases. For example, the testing error during the 308 

learning process with the circular fingerprint was about 0.0013, and the training error was 23% 309 

lower at around 0.0010. On the other hand, the testing error of the path-based model increased by 310 

16% from the 90th iteration to the end of the 100th iteration, which indicates that the model may 311 

start being overfitted at approximately the 90th iteration and should likely be stopped early.  312 
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 313 

Figure 2. (A–C) Learning curves and (D–F) fit curves of models trained with different molecular 314 

fingerprints to compare the distributions of the measured and predicted data. The maximum path 315 

length and bit length for the path-based fingerprint were 3 and 32768, respectively. The maximum 316 

radius and bit length for the circular fingerprint were 3 and 16384, respectively. The bit length of 317 

the PubChem fingerprint was 881. Light black and red colors correspond to single data points, 318 

whereas darker shades correspond to a high density of overlapping data points.  319 

 320 

After training, measured rejections and predicted rejections were compared (Figure 2D–F), 321 

and mean square error (MSE), Spearman coefficient, and coefficient of determination of the three 322 

fingerprint models were calculated (Table 2). MSE values in the learning curves were obtained 323 

using scaled rejections, and the MSE values in Table 2 are reported with rejections in the original 324 

scale (0–100%). All three fingerprint models (path-based, circular, and PubChem) had high 325 

Spearman coefficients (greater than 0.98) with the training sets. For the testing sets, the Spearman 326 

coefficients of the path-based, circular, and PubChem models decreased to 0.91, 0.93, and 0.92, 327 

respectively. The coefficient of determination results were similar to the Spearman results in that 328 
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the coefficient of determination with the training sets were high (greater than 0.96), and the 329 

coefficients with the testing sets fell in the range of 0.84–0.88 with the path-based model again 330 

showing the lowest coefficient. 331 

Table 2. Training and testing performances of the models with different fingerprint algorithms 332 

and their parameters. Mean squared error (MSE), Spearman coefficient, and coefficient of 333 

determination (R2) of percent rejection were used as evaluation metrics. Spearman coefficient and 334 

coefficient of determination are unitless, and MSE has units squared rejection percentage.  335 

Name Fingerprint 
parameter 

Bit 
length 

Train 
MSE(% 
rejection2) 

Test 
MSE(% 
rejection2) 

Train 

Spearman 

Test 

Spearman 

Train 

R2  

Test 

R2 

Path-based 3 
Maximum 
path length 

3 
32768 2.60 6.03 0.98 0.91 0.96 0.84 

Circular 3 Maximum 
radius 3 16384 1.92 5.25 0.99 0.93 0.99 0.88 

PubChem - 881 1.37 5.61 0.99 0.92 0.99 0.86 

 336 

To compare the performance of ML algorithms using MFs to prior ML work, results from 337 

11 previous studies that used ML to evaluate membrane rejection are summarized in Table 3 [22–338 

24,40,53–59]. The datasets used in prior work included information on different combinations of 339 

molecular properties, membrane properties, membrane fabrication conditions, operating 340 

conditions, and RO and NF membrane rejections. Although the most common ML algorithm used 341 

for prior studies has been neural networks, gradient boosting has recently become popular. The 342 

ranges of the data size varied widely from 19 to 1906 rejection points for aqueous systems and up 343 

to 6910 rejection points for datasets using organic solvents. Although some studies did not report 344 

performance metrics that can be compared to those in this work, the available coefficients of 345 

determination with the testing set (R2 test) fell in the range between 0.84 and 0.99. Our work had 346 

a coefficient of determination of 0.88 with the testing set. Direct comparison of these values is 347 

difficult since data sets and study methods are widely varied. However, these results indicate that 348 

predictive performances of the fingerprint-based models introduced in this work are comparable 349 

to those of prior work that used molecular descriptors or other metrics.  350 
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Table 3. Summary of previous studies using machine learning to predict contaminant rejection in nanofiltration (NF), reverse osmosis 

(RO), and pervaporation (PV). Note that the root mean square error (RMSE) and mean absolute error (MAE) values have been 

adjusted to the same scale. 

Ref. Year Algorithm Process Data 
size Input feature Output feature RMSE 

train 
RMSE 
test 

MAE 
train 

MAE 
test 

R2 
train 

R2 
test 

RMSE 
CV 

R2 
CV 

[60] 2000 Neural Net NF 342 operating conditions, salt 
type, membrane type solute rejection         

[61] 2008 Neural Net RO 50 solute properties 
passage/sorbed/

rejected 
fractions 

        

[62] 2009 Neural Net RO/NF 124 solute properties solute rejection   6.113 4.56 0.91 0.97   

[63] 2015 Neural Net RO/NF 965 
solute properties, 

membrane properties, 
operating conditions 

solute rejection 10.78 11.53   0.921 0.904   

[64] 2016 Neural Net RO/NF 436 - solute rejection         

[65] 2020 Random Forest RO/NF 701 
solute properties, 

membrane properties, 
operating conditions 

solute rejection 2.5 9.2   0.947 0.907   

[66] 2020 Genetic 
Algorithm NF 19 solute properties solute rejection         

[67] 2021 

Neural Net, 
Support Vector 
Machine, 

Random Forest 

NF 6910 
solute properties, 

membrane properties, 
operating conditions 

solvent 
permeance, 
solute rejection 

4.42 12.14   0.989 0.914   

[58] 2022 

Extreme Gradient 
Boosting, 
Categorical 
Gradient 
Boosting 

NF 1524 
monomer, fabrication 
conditions, operating 

conditions 

water 
permeability, 
solute rejection 

4.17 11.74   0.980 0.840   

[68] 2022 

Partial Least 
Square, 

Convolutional 
Neural Net 

NF 6910 
solute properties, 

membrane properties, 
operating conditions 

solute rejection       7.95 0.89 

[59] 2022 
Gradient 

Boosting, Kernel 
Ridge 

PV 681 
molecular fragments, 
membrane properties, 
operating conditions 

solvent flux, 
separation 
factor 

  0.077 0.126 0.995 0.987   

This 
study 2024 Extreme Gradient 

Boosting RO/NF 1906 
molecular fingerprints, 
membrane properties, 
operating conditions 

solute rejection 1.92 5.25   0.99 0.88   
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3.2. Effect of varying fingerprint hyperparameters on model performance and bit collision  308 

In the previous section, we found that all three fingerprint types (path-based, circular, and 309 

structural key) were able to produce comparable predictive performances when applied to the 310 

rejection dataset. We also observed that the path-based model became more susceptible to 311 

overfitting compared to the other models. In this section, we vary the hyperparameters of MFs 312 

(maximum path length for the path-based fingerprint, maximum radius for the circular fingerprint, 313 

and length of the pre-defined structural keys for the PubChem fingerprint) to further investigate 314 

how the simulation conditions affect the performance and interpretability of the models. The 315 

hyperparameters control the maximum boundary of fragmentation, and hence, the molecular 316 

fragments of a compound can change based on the hyperparameter size. The default 317 

hyperparameters used in the previous section were 3 for the maximum path length in the RDKit 318 

path-based fingerprint, 3 for the maximum radius in the circular fingerprint, and 881 pre-defined 319 

structural keys for the PubChem fingerprint, respectively. We selected length or radius of 3 320 

because the organic compounds in the data are relatively small compared to other compounds 321 

studied using fingerprints, such as proteins and macromolecules. The maximum path length of 1, 322 

maximum radius of 1, and the MACCS fingerprint as a shorter structural key fingerprint (167 keys) 323 

were additionally used to compare performances and changes in calculation time.  324 

The predictive performances with different hyperparameters showed that the test 325 

coefficient of determination of the path-based model noticeably dropped when the path length was 326 

changed from 3 to 1, with values of 0.84 and 0.78, respectively (Figure 3). The coefficient of 327 

determination of the circular and PubChem models did not considerably change when lower 328 

hyperparameters were used (the coefficient varied by 0.01). In the case of the circular fingerprints, 329 

this indicates that the organic compounds in the data are not large and the circular radius of 1 was 330 

enough to represent the compounds. The Spearman coefficients, which are good at estimating 331 

monotonic association between two variables, were similar (0.90–0.93) for different fingerprints 332 

and hyperparameters because non-linearity of the Spearman coefficient makes its evaluation less 333 

restrictive than the coefficient of determination.   334 
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 335 

Figure 3. Comparing prediction performance and calculation time of different types of molecular 336 

fingerprints (path-based, circular, and structural key) with different hyperparameters. Structural 337 

key fingerprints showed the fastest calculation times while maintaining high prediction 338 

performance as indicated by a high coefficient of determination of the testing set. Further 339 

information on prediction performance and calculation times is shown in Table S2. 340 

 341 

Calculation time of the different fingerprints and hyperparameters was also evaluated 342 

(Figure 3). For a given fingerprint and hyperparameter, calculation times were estimated using the 343 

shortest fingerprint bit length that avoided bit collision, which occurs when different substructures 344 

are stored in the same bit [69]. Bit collision typically only happens in the hashed style fingerprints 345 

(in this study, the path-based and circular MFs) as a result of short bit lengths, and can lead to 346 

inaccurate interpretation of rejection behavior. Increasing the bit length to prevent bit collision 347 

results in larger calculation times, and small amounts of bit collision may be considered acceptable 348 

in some ML work. However, we chose to avoid bit collision in this study since substructures were 349 

later used for rejection analysis, and bit collision would interfere with this analysis. In our tests, 350 

the path-based fingerprint with a maximum path length of 3 and a bit length of 32768 had the 351 

longest calculation time (2154 seconds). The long calculation time indicates that the path-based 352 

fingerprint with the maximum length of 3 holds the highest number of combinations of 353 
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substructures among six different cases; this high number of combinations possibly explains the 354 

overfitting observed in Figure 2A. The circular fingerprint with the maximum radius of 3 required 355 

16384 bits for no bit collision, and its calculation time was 1011 seconds. Structural key 356 

fingerprints including PubChem and MACCS had low bit lengths and calculation times compared 357 

to other fingerprints. Their lengths were below 1000 bits, and the calculation times were only 78 358 

and 33 seconds for PubChem and MACSS, respectively.  359 

The analysis of various MF types and hyperparameters showed the coefficient of 360 

determination and Spearman coefficient of PubChem, MACCS, and circular fingerprint models 361 

were all similarly high. However, the path-based fingerprint models with the maximum path length 362 

of 1 and 3 gave lower prediction performance than other cases. We hypothesize that this is because 363 

the path-based fingerprint model with the maximum path length of 3 suffered from overfitting, 364 

even with the training algorithm minimizing overfitting due to sparse data in the larger substructure 365 

information, and the path-based fingerprint model with the maximum path length of 1 generated 366 

less meaningful substructures to predict rejection due to the low substructure path length. Circular 367 

and structural key fingerprints were able to reach higher prediction performances than the path-368 

based fingerprint cases. Structural key fingerprints had the lowest calculation times, and the shorter 369 

pre-defined structural keys of MACCS were especially fast to compute. MACCS may therefore 370 

be preferred over other fingerprints such as PubChem, circular, and path-based fingerprints to 371 

analyze membrane rejection of organic compounds because of the combination of performance 372 

and speed. 373 

3.3. Model interpretation with SHAP and clustering analyses  374 

The use of MFs in rejection models allows us to interpret the role of specific molecular 375 

substructures in determining overall rejection performance. We used SHAP analysis to investigate 376 

the interpretability of each algorithm by evaluating the importance of individual molecular 377 

substructures and input features. In addition, we demonstrated how the relation between molecular 378 

fragments and rejection mechanisms can be derived using a clustering technique. 379 

SHAP importance scores were compared for the different datasets to identify which input 380 

parameters most substantially impacted the rejection (Figure 4). We first examined the importance 381 

of membrane properties and operating conditions. All cases show very clear trends correlating 382 

rejection with membrane molecular weight cut-off (MWCO) and pH with importance scores of 383 
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0.49 and 0.16, respectively. High MWCO decreased steric rejection of compounds. High pH 384 

increased rejection since a high pH value results in more negatively charged membranes and, in 385 

some instances, more negatively charged compounds. 386 

 387 

Figure 4. SHAP values describing the importance of input features in determining membrane 388 

rejection for different fingerprints and hyperparameters. Input features include operating 389 

conditions, membrane properties, and molecular fingerprint bit number. Higher and lower SHAP 390 

values for a given feature indicate that the feature is related to increases or decreases in the output 391 

rejection value, respectively. Red color indicates an input feature’s value is high, and blue color 392 

indicates an input feature’s value is low. For example, high MWCO values (red points) have 393 
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negative SHAP values. This means high MWCO membranes are related to a decrease in the output 394 

membrane rejection. Similarly, low MWCO values (blue points) have positive SHAP values, 395 

meaning that low membrane MWCO is related to an increase in rejection. The magnitude of the 396 

SHAP value corresponds to the change in rejection related to a given input feature. 397 

 398 

Thus, the higher pH enhances electric repulsion between membranes and the compounds [70]. The 399 

results of measurement time indicate that shorter measurement times are associated with higher 400 

rejection values, while longer measurement times tend to result in lower rejection values. This 401 

probably arises because prolonged measurements offer a more accurate representation of steady-402 

state system performance, capturing the impact of factors such as adsorption that short-term tests 403 

may overlook. Other membrane properties and operating conditions including contact angle, 404 

operating pressure, and type of membrane did not show consistent trends with all algorithms. 405 

Analysis of the individual MF substructures with SHAP also provided some insights on 406 

the physical implications of molecular structures on membrane rejection. Figure 4 lists the feature 407 

codes for MFs that showed high importance scores (structure schematics are shown in Table S3-408 

S6). Some of the substructures with high impacts on membrane rejection were associated with 409 

molecular size or charge. The presence of a tetrahedral group of non-H atoms bonded to a central 410 

carbon atom (285 Path-based 1, 24343 Path-based 3, 5405 Path-based 3, 113 MACCS, 2163 411 

Circular 1, and 14451 Circular 3) led to high rejections presumably because this structure is 412 

correlated with a branched and bulky molecule, and thus, it indicates a larger size and shape [71]. 413 

There were functional groups frequently appearing over different fingerprints, such as carboxyl (-414 

COOH), hydroxyl (-OH), and carbonyl (C=O) groups, which are related to electric charge and 415 

polarity. For example, organic acids (e.g., salicylic acid, clofibric acid, and benzoic acid) in the 416 

dataset contain the -COOH substructure. The hydrogen in -COOH can be deprotonated and result 417 

in a negative charge at neutral pH, which increases rejection due to strong electrostatic repulsion 418 

[72]. It is noteworthy that the presence of fluorine was found to be of high importance in the SHAP 419 

results (384 Path-based 1, 27961 Path 3, 24 PubChem, and 43 MACCS). However, this is likely 420 

linked to the large molecular size correlated with fluorination, rather than the effect of the fluorine 421 

itself. The dataset has 9 PFAS (perfluoroalkyl substances), and all the compounds have long 422 

carbon chains containing 7–19 fluorine atoms with the average molecular weight of PFAS being 423 
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67% higher than the average molecular weight of the entire dataset. The PFAS therefore showed 424 

high rejections of 86–98% due to their long chains, and fluorine indirectly represented large 425 

molecular size. 426 

To further investigate the association between fingerprint substructures and rejection, we 427 

analyzed the molecular fragments of MACCS structural key fingerprints. In the previous 428 

subsection, we found that MACCS fingerprints are possibly the most efficient candidate for 429 

studying membrane rejection based on fast computation time and higher accuracy. MACCS 430 

fingerprints are also more interpretable because they are based on the presence or absence of 431 

specific structural features in a molecule. Each bit in these fingerprints corresponds to a particular 432 

structural feature, so it is relatively straightforward to understand what each bit represents. The 433 

top-ranked fragments can explain the interactions between compounds and membranes in a 434 

straightforward manner.  In Figure 5, the 12 most important substructures of MACCS and their 435 

importance scores are displayed. The importance score was obtained by averaging absolute SHAP 436 

values in Figure 4. MACCS features 113, 126, 146, and 164 were important because the presence 437 

of rings or a tetrahedral geometry with non-H atoms is related to increased molecular size, e.g. the 438 

average McGowan molecular volume of compounds having tetrahedrons is 32% higher than the 439 

average McGown molecular volume of the entire data. Feature 124 represented carboxylic groups, 440 

and features 141 and 147 represented the counts of oxygen in compounds. Larger amounts of 441 

oxygen are possibly linked to negative surface charge due to oxygenated groups often having high 442 

electronegativity. Features 91, 92, 142, and 150 were associated with alkyl groups, which can 443 

affect size and polarity. Overall, the easily identifiable molecular features in the MACCS 444 

fingerprint, combined with SHAP analysis, allowed us to identify solute molecular structures most 445 

strongly linked to rejection. 446 
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 447 
Figure 5. The 12 most important MACCS fingerprint features (importance score greater than 0.05). 448 

Feature importance scores were obtained from the SHAP analysis. Note that MWCO and pH have 449 

the first and second highest importance scores, and they are presented on the graph for comparison.  450 

 451 

Unsupervised clustering algorithms can group molecules based on similarities in their 452 

fingerprints without prior labeling and reveal natural groupings or patterns in the data, often 453 

uncovering relationships that are not immediately apparent. Clustering analysis was used to 454 

categorize compounds based on their molecular structures and connect the clusters’ rejection 455 

behaviors to their structural similarities and disparities. The analysis, which used MACCS 456 

fingerprints, revealed distinct clusters of compounds with different characteristics. Figure 6A 457 

shows four clusters with their mean and individual compound rejection values. Figure 6B 458 

demonstrates the most shared sub-structures in a cluster by counting frequently appeared 459 

fingerprint sub-structures. The top-10 features for each cluster can be found in Table S8. Cluster 460 

2 is the cluster with the highest average cluster rejection (86%) and the least molecular structure 461 

variation; it contained compounds such as diltiazem, lidocaine, and propyphenazone which share 462 

common features, such as one or more benzene rings with various side chains and functional 463 

groups attached to the aromatic core (see Figure S7). Cluster 3 contained molecules with a long 464 
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linear path and multiple oxygen atoms including glucose, xylose, and triethyleneglycol (see Figure 465 

S7). On the other hand, Cluster 4, which showed the lowest average rejection, had very different 466 

sub-structures and had zero fingerprint features over 80% appearance frequency. The cluster also 467 

included small aldehydes and alcohols, which resulted in the low rejection in the range of 0 and 468 

40%. It is noteworthy that Cluster 3 had a lower average molecular weight than Cluster 4, but 469 

Cluster 3 still showed a higher average cluster rejection (77% vs. 61%), possibly due to its larger 470 

molecular volume (e.g. increasing van der Waals radius), which made it difficult for a compound 471 

to pass through the pore [73]. The clustering analysis showed that categorizing compounds based 472 

on their molecular fingerprints can help pinpoint sub-structures affecting rejection and aids in 473 

better defining classes of compounds with similar rejection behavior. 474 

 475 

 476 

Figure 6. (A) Clustering of compounds and their associated rejection. Each point represents a 477 

unique chemical compound, and its color displays an average rejection of the compound. T-478 

distributed Stochastic Neighborhood Embedding (t-SNE) was used for nonlinear dimension 479 

reduction from 167 to 2 keys (t-SNE 1 and t-SNE 2) and clustering based on MACCS fingerprints. 480 

A sub-dataset with MWCO < 225 Da & pH = 7 was used in clustering. (B) Frequency appearance 481 

of difference molecular features in each cluster. The appearance of all the MACCS features in each 482 

cluster was counted and converted to a percentage by dividing the count by the number of 483 

compounds in the cluster. Only the 10 most frequent features were shown, and the list of the 484 

features can be found in Table S8.  485 
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 486 
Conclusions 487 

In this study, we analyzed membrane rejection of organic compounds using machine learning with 488 

molecular fingerprint features, membrane properties, and operating conditions. The molecular 489 

fingerprint-based approach estimates rejection accurately using structural information, bypassing 490 

the need for experimental or computationally intensive molecular properties. Our model's 491 

prediction performance, using molecular fingerprints, was comparable to previous studies on RO 492 

and NF solute rejection with data-driven models. We compared three fingerprint generation 493 

algorithms—path-based, circular, and structural key—with varying hyperparameters. The 494 

MACCS structural key fingerprint demonstrated the best combination of predictive power, 495 

calculation efficiency, and interpretability. 496 

Our findings highlight that molecular fingerprints enhance our understanding and 497 

visualization of molecular substructures influencing rejection in NF and RO. SHAP analysis 498 

quantified the importance of individual molecular substructures (e.g., non-H atom bonded 499 

tetrahedrons, ring structures, functional groups) in determining rejection, revealing sensible 500 

rejection mechanisms. Clustering analysis grouped compounds by the MACCS fingerprint, 501 

identifying common or unique substructures in each cluster, which were related to membrane 502 

rejection. Future work may be able to further elucidate specific molecular structures that are 503 

strongly linked to solute-membrane interactions impacting membrane rejection. Eventually, the 504 

molecular-level insights into the rejection behavior can allow for the development of membranes 505 

that have tailored rejection of target compounds. 506 
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