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ABSTRACT

Reverse osmosis and nanofiltration are used to purify feedwaters that contain a range of harmful
organic solutes. The rejection of many of these solutes is poorly understood due to our limited
ability to experimentally measure removal of any given compound. In this work, we present a
machine learning approach that predicts organic solute rejection using molecular fingerprints that
encode chemical structure features, such as functional groups and rings, into simple binary vectors.
We trained machine learning models on a database of 1906 membrane rejection measurements
including 228 organic compounds and 39 types of reverse osmosis and nanofiltration membranes.
Three types of molecular fingerprint models (structural key, circular, and path based) were
compared, and we observed that the Molecular Access System (MACCS) structural key had high
performance (coefficient of determination of 0.87 with the testing set), fast calculation time due to
its short bit-length, and easy interpretability. In addition to evaluating prediction performance,
Shapley Additive Explanations (SHAP) analysis was implemented to gain a better molecular-scale
understanding of membrane rejection, identifying molecular substructures that are important in
determining their rejection. Overall, this work presents a method to predict the rejection of
compounds that uses readily available molecular structure information and improves our ability to

understand rejection mechanisms.

Keywords: Machine learning, molecular fingerprints, reverse osmosis, nanofiltration, solute

rejection
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e Machine learning models for solute rejection used molecular fingerprints as input.
e The models showed comparable performance to traditional models.
e MACCS was found to be the best fingerprint for membrane rejection applications.

e SHAP and clustering help interpret how chemical features affect rejection.
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1. Introduction

3.6 billion people experience water scarcity at least one month per year, and water shortages are
becoming more severe because of climate change and increasing water demands [1]. Processes
that utilize unconventional water resources such as desalination, brine treatment, and water reuse
have the potential to sustainably alleviate water stress by augmenting clean water supplies beyond
those available from existing water resources. Reverse osmosis (RO) and nanofiltration (NF) are
widely considered in advanced water treatment trains because of their ability to remove a broad
spectrum of compounds, including salts and harmful organic contaminants, more reliably than
other processes [2]. In addition to water treatment, RO and NF are increasingly considered in a
broad suite of separations including drug purification, protein concentration, and food processing

[3-6].

Emerging water treatment applications, such as municipal and industrial wastewater reuse,
include myriad organic compounds in the feed streams. Some of these compounds, such as 1,4-
dioxane and N-nitrosodimethylamine (NDMA), are of particular concern because they are known
to be harmful to human health and are well-documented as being poorly removed by membrane
processes [7]. However, many other potentially harmful compounds exist in feedwaters with
poorly understood rejection in NF and RO [8]. It is thus of critical importance to develop the ability
to determine the removal of a broad range of compounds in membrane systems. To date, much of
our understanding of membrane rejection has relied on experimental measurements of rejection
for individual compounds in studies that generally examined between 5 and 30 compounds [9-11].
These individual experimental measurements provide valuable insights, but alternative methods
are necessary to approximate rejection of the multitude of compounds in feedwaters and develop

a greater understanding of rejection mechanisms [12,13].

Machine Learning (ML) models are powerful tools to address complex real-world
problems in many science and engineering fields related to material development, chemical
processing, biomedical studies, and environmental science [14]. ML models are constructed from
data, enabling complicated non-linear relationships to be captured in predictive algorithms. In the
field of membrane separations, ML models have been used to predict rejection of emerging
compounds based on collected rejection data, membrane properties, and compound properties [ 15—

19]. These ML methods have been valuable for the selection of a suitable membrane for a given
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application and been used to relate operating conditions and membrane properties to process

performance [20,21].

Despite their growing utility in membrane science, current ML algorithms used to predict
rejection are unable to predict the removal of new compounds without known molecular properties
and face challenges in describing the mechanisms by which compound molar structure influences
rejection. Previous ML models for membrane rejection have used input parameters based on
compound descriptions such as molecular weight, dipole moment, and octanol-water partition
coefficient [14,22,23]. While these descriptors can effectively quantify the physicochemical
properties of a compound, they lack the ability to intuitively express structural information and
atom connectivity [24,25]. Recent rejection studies have found that the interactions between
functional groups and aromatic rings on compounds and polyamide membranes are strongly
related to rejection [26-28], and considering the molecular structure is therefore critical to
understand how functional groups and their positions within the molecule influence membrane
rejection [29]. Moreover, phenomena such as proton dissociation, which enhances rejection
through strong electrostatic repulsion, are closely related to molecular structures [30,31]. To gain
molecular-level mechanistic insights into membrane rejection, models that include details on
molecular structure are therefore needed [14,32]. Furthermore, some experimental molecular
descriptors, such as acid dissociation constants and octanol-water partition coefficients, are not
readily available for certain compounds, meaning it is not possible to predict the rejection of new

and poorly studied compounds using existing ML methods.

Converting organic compound information into detailed features that can be understood by
computers is essential to use machine learning to predict membrane rejection and for other
chemical applications [33] . Molecular fingerprints (MFs) are a promising tool to present detailed
molecular structure information. MFs transform chemical structural features into binary vectors
(0’s and 1°s) that account for the absence or presence of molecular substructures [34,35]. Recently,
multiple studies successfully built data-driven models using MFs as input data to predict molecular
properties including the refractive index, viscosity, acid dissociation constant, and reaction rate of
organic compounds with hydroxyl radical [35-38]. A key advantage of MFs is that they can encode
information using Simplified Molecular Input Line Entry System (SMILES) codes, which are
available for any compound with a known chemical structure. In addition, MFs can be combined

with other analysis techniques such as Clustering and Shapley Additive Explanations (SHAP),
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which are evaluation tools to find similarity and disparity of data and explain the input and output
relationships [39]. For example, the binary vector information from MF can enhance the pattern
recognition power of clustering by coupling molecular sub-structure information and rejection
behavior. In addition, ML models do not provide clear relations between input and output, and
thus, explainable machine learning techniques such as SHAP can help to unveil the decision-
making process of ML models. In studying RO and NF membrane rejection, the combination of
MF data and advanced analysis techniques has potential to elucidate the interplay of different
molecular fragments and membranes to reveal complex RO/NF membrane rejection mechanisms
[15-19]. However, no studies to date have used MFs generated from organic solutes to predict

these solutes’ rejection in RO and NF water treatment processes.

In this study, we compare three different molecular fingerprint categories (path-based,
circular, and structural key) to develop ML models for predicting contaminant rejection and
examining the potential of MFs in explaining underlying rejection mechanisms. The models are
trained with the different fingerprints and 1906 rejection measurements for 228 unique organic
compounds. The prediction performances of the trained models are quantified through evaluation
metrics such as the coefficient of determination and the Spearman coefficient. We change the
parameters for fingerprints (e.g. maximum path length, maximum radius, structural key number)
to explore the optimal fingerprints in terms of prediction power, calculation expense, and
interpretability. Molecular fragments created by each fingerprint and the analyses of clustering and
SHAP are used to gain an understanding of molecular-scale compound-membrane interactions.
Our analysis provides a valuable tool for rejection prediction and yields insights into compound

properties that dictate rejection.

2. Materials and Methods

2.1. Dataset shape

Membrane properties, compound properties, SMILES notation for each compound, and rejection
values were obtained from the previous literature [ 14,40]. The dataset included 1906 experimental
rejection data points for 228 organic compounds and 39 types of RO and NF membranes. The
distribution of membrane materials is as follows: there are 1,317 samples of polyamide membranes,

501 samples of poly(piperazinamide) membranes, 69 samples of polyethersulfone membranes, and
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19 samples of cellulose acetate membranes. The retrieved SMILES notations for the organic
compounds were converted into three classes of MFs: path-based, circular, and structural key.
RDKit and Morgan fingerprints were chosen as the path-based and circular fingerprints,
respectively. Molecular Access System (MACCS) and PubChem fingerprints were chosen as

structural key fingerprints.

Table 1 summarizes the information available in the input datasets excluding the MFs. The
datasets used for model training contained three membrane properties (membrane molecular
weight cut-off (MWCO), membrane water contact angle, and solution pH), three operating
conditions (pressure, measurement time, and initial concentration), and MFs that represent the
molecular structural and chemical properties. We note that insufficient data were available for
membrane surface charge in the original dataset, so solution pH was used as an indirect feature of
membrane surface charge because solution pH governs the extent of protonation on the membrane
surface [41]. The distribution of output (rejection, R) demonstrated a severely left-skewed shape
since rejection values tended to be high, with most rejection values greater than 90%. In this study,
the original R distribution, -log(1-R) transformation, and -sqrt(1-R) transformation were examined
to address skewing of the data and allow for improved fitting resolution; the -sqrt(1-R)
transformation was finally applied on the output because the sqrt(1-R) transformation best shifted
the left-skewed distribution closer to a normal distribution. All input and output values were scaled
from 0 to 1 to render the range of values equal for training, and then the outputs were transformed
back to the original scale when evaluating model performance. The raw dataset and processed
dataset are available in a GitHub repository (https://github.com/leesang-boulder/machine-
learning_molecular-fingerprint RO-NF-rejection), and the detailed descriptions about MFs can be

found in the next section.

Table 1. Overall distribution of the input data from previous literature including 1906 data

points, 228 organic compounds, and 39 types of RO and NF membranes.

Memb Membrane Initial
embrane water Pressure Measurement concentration of | Rejection
pH MWCO 3 o o
(Da) contact (kPa) time (min) compound (%)
_ angle (°) (mg/L)
t!
25 . 7.0 100 41.4 500 10 0.053 72.06
Percentile
50th
. 7.0 152 53.8 690 10 0.5 90.82
Percentile
75th
. 7.0 300 63.2 1000 300 10.0 96.90
Percentile
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Min value 2.2 65 14.4 240 10 0.00072 0

Max value 11 460 79.4 3500 5760 2000 100

2.2. Molecular fingerprints generation

Molecular fingerprints (MFs) encode the structural information of chemical compounds into
binary vectors. Each binary value (0 or 1) indicates whether a certain molecular fragment exists in
a compound and the position of the binary vector displays which molecular fragment it is. This
molecular representation enables the computationally efficient management and comparison of
chemical structures (e.g. Tanimoto and Dice similarity coefficients) [42]. Fingerprinting has
played a key role in virtual screening, quantitative structure-property relationships (QSPR)
analysis, similarity-based compound search, target molecule ranking, and other chemical
compound discovery processes [43]. Moreover, previous studies proved that fingerprinting is
useful for ML models to predict variables that are highly dependent on molecular structures [44—

48].

There are five main categories of 2D fingerprints, namely structural key fingerprints,
topological or path-based fingerprints, circular fingerprints, pharmacophore, and neural
fingerprints. Three categories of fingerprints were applied in this study to convert SMILES into
binary vectors: path-based (RDKit), circular (Morgan), and structural key (PubChem and
Molecular Access System, MACCS). The generating algorithm of each fingerprint is briefly
displayed in Figure 1 A. Path-based fingerprints encode all possible connectivity for the fragments
of a compound following a linear path along the molecular graph from a central atom up to a given
maximum length. Under a path-based approach, any compound can produce a meaningful
fingerprint; however, bit collision can be an issue because a bit can be set by multiple different
fragments [49]. RDKit was used as the path-based fingerprint, and maximum path lengths of 1 and
3 and bit lengths of 1024 and 32768 were implemented. Although it increases computational
complexity, an expanded bit length of 32768 was used for the maximum path length of 3 to avoid
bit collision; a detailed explanation of bit collision counts can be found in Section 2 of the
Supporting Information (Figure S4). The circular fingerprint utilizes a similar approach to the path-
based fingerprint but constructs fragments within a radius of the starting atom instead of on linear
paths. The circular Morgan fingerprint was used with a maximum radius of 1 and 3 (which denotes

the radial distance from the center atom), and bit lengths of 4096 and 16384 were chosen.
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Structural key fingerprints define the bits depending on the presence and absence in the compound
of certain fragments from a given list of structural keys. Therefore, these fingerprints are
meaningful when the molecules’ fragments are well-represented by the pre-defined keys [49].
PubChem and MACCS were used as structural key fingerprints. PubChem fingerprints are based
on 881 structural keys defined by the PubChem database system. MACCS uses 166 keys
developed by the Molecular Design Limited (MDL) Information Systems. During data generation,
one dummy bit was padded to the head of the MACCS keys, which resulted in 167 keys in total.

A Path length =0 Path length = 1 Path length = 2 Structural keV
- fingerprint
H - s H 6/ H gerp
\center Pre-defined key 1: O
Path-based atom M Pre-defined key 2: C
fingerprint

Pre-defined key 3: >= 4H
Pre-defined key 4: >= 16C

Pre-defined key 5: C-C

/H Pre-defined key 6: C=C
0, 0 Pt Pre-defined key 7: O-C-C=N
- center l -
Circular atom I . Pre-defined key 8: C-C-C-C-C-C
fingerprint :
e.g. PubChem 881 keys,
MACCS 166 keys
Radius =0 Radius =1 Radius = 2
Compile input data Build and test model Interpret results
Molecular fingerprints for 228 organic compounds Build models with XGBoost Prediction of
SMILES codes Molecular fingerprints solute rejection
(e-9., Oclecceet) 1 [eee] 0] 1] 0 [eee] 0 sy +
Binarization r[ \—{ ITT | rt: f | I
y mportance of molecular
" features
/ \, VAN . Rl heatad
\\\—’f/’ /\:;"7 E B4
7/ + Ay
+ Test model performance T SHAPvalue
Membrane properties (e.g., molecular weight cutoff) Split train & test +
Clustering analysis
+ Spearman coefficient
.0 "
Operating conditions (e.g., pressure) Pearson coefficient .?

Figure 1. (A) Schematic diagrams of fingerprints used in the study. The pre-defined keys for
structural key fingerprints are arbitrary keys, and not related to PubChem and MACCS
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fingerprints. (B) Overall workflow of this study demonstrating the input data processing, model

development procedures, and approaches for model interpretation.

2.3. Model development

Three different algorithms (linear Stochastic Gradient Descent, Support Vector Machine, and
Extreme Gradient Boosting) were used and compared for training preliminary models. In addition,
randomized hyperparameter search was implemented for fine-tuning the three models. This
algorithm selection stage is important for evaluating the performance of each algorithm model and
the suitability of an algorithm for our data characteristics. Detailed comparisons between
algorithms can be found in Section 1 of the Supporting Information (Figure S1-3). XGBoost
(Extreme Gradient Boosting) algorithm was chosen to build main models for predicting
contaminant rejection with multiple fingerprint datasets (Figure 1B) based on its high prediction
performance, low tendency for overfitting, resistance to outliers, and ability to handle a large
number of input features as shown in Section 1 of the Supporting Information. XGBoost falls
under the category of ensemble methods. The algorithm creates a series of additive estimators,
where each estimator in the series is fit to the residual errors of the previous estimator. Training is
generally fast and capable of handling overfitting due to improved regularization [50]. The
algorithm has a small probability to predict a value outside of the given output range (rejection 0—
100%), so we defined boundary conditions to ensure predicted values always fall in this range.
Incremental learning was used to handle the 70 samples with the same output value (100%
rejection) with different inputs. Conceptual explanation about incremental learning can be found
in Figure S5. In each cycle, 50% of the training set was randomly selected to train the model, and
positive normally distributed random noises (1% mean and 0.5% standard deviation of the 100%
rejection) were deducted from the 100% rejection values to jitter the points. This process was
repeated over 100 cycles and the coefficients of a model were incrementally updated at each cycle.
The testing set that was not seen during the training was used for evaluation. To verify the models’
validity and robustness, datasets were randomly split into a training set and a testing set with a
ratio of 4 to 1 using the stratified splitting with 10 bins. Even with the transformation used to make
the dataset more uniform in output distribution, the datasets were significantly imbalanced with
few points in the low rejection range, so a stratified split was applied with 5 bins to preserve the

percentage of samples for each bin in the training and testing sets. In addition, it was wrapped with
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a Bayesian optimization wrapper to fine-tune XGBRegressor’s parameters while implementing
incremental learning. 5-fold cross validation was implemented for this hyperparameter tuning and
training stages. ‘max_depth’, ‘learning rate’, ‘n_estimators’, ‘min_child weight’, ‘subsample’,
‘colsample bytree’, ‘reg_alpha’, ‘reg lambda’, and ‘gamma’ were the parameters to be tuned. To
evaluate model performance, the mean square error (MSE), Spearman coefficient, and coefficient
of determination were calculated with each training and testing set, respectively. Coefficient of
determination is commonly used to evaluate prediction models and allow for comparison with
previous studies [14,51]. Spearman coefficients are used to assess non-linear relationships and are
therefore useful for membrane rejection data, which relies on complex interactions between
membrane properties, operating conditions, and compounds. All the procedures above were
executed with the XGBoost and scikit-learn libraries in Python. The datasets and codes used to
generate the results were deposited in a GitHub repository (https:/github.com/leesang-

boulder/machine-learning molecular-fingerprint. RO-NF-rejection).
2.4. Clustering and Shapley values for model analysis

Clustering is a powerful unsupervised machine learning technique that can help to group similar
data points. Clustering can help to identify patterns and relationships between different groups of
data points. By examining the characteristics of each cluster, we can understand what makes them
similar or different. T-distributed Stochastic Neighborhood Embedding (t-SNE) was used for
nonlinear dimension reduction and clustering, which can be found in the Scikit Learn Library in
Python. The number of clusters is a hyperparameter, so the inertia (sum of distance squares
between a central point and data points in clusters) curve was drawn for finding a suitable number
of clusters with the MACCS fingerprint as high-dimensional input data. Based on the inertia curve
(see Figure S6), the number of clusters was decided as 4. The MACCS fingerprint was used to
implement the clustering of the 228 organic compounds. Sub-dataset was generated with
conditions of MWCO < 225 Da and pH = 7 to eliminate the effects of MWCO and pH, and focus
on the effect of the molecular structures. A point on the plot represents an organic compound, and
the values of the x and y axes are equivalent to the reduction of 167 structural keys of MACCS.

The averaged rejections of the compounds were displayed with colors.

Shapley additive explanations (SHAP) were used for evaluating the influence of each

single input feature on rejection. The process is based on cooperative game theory that analyzes
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the significance of each input variable in the outcome [52]. With SHAP, models are trained with
all possible combinations of the input variables, and the differences of the predicted outcome
including and excluding an input variable of interest are computed. The obtained SHAP scores can
be either positive or negative to present the trends of output, and the scores indicate which
compound fragments (input) most affect rejection (output) and thus help explain the rejection
mechanisms. Molecular fragments of compounds were drawn using the RDKit library to further
investigate molecular structures that are important in determining rejection. The importance score

of a feature was obtained by averaging absolute SHAP values of each data point for the feature.

3. Results and Discussion

3.1. Validation of learning process and prediction performance

The learning processes and prediction performances of the three types of MF models (path-based,
circular, and structural key) were evaluated with data divided into training and testing sets with
stratified split, and the results indicated that models were well-trained. The datasets included the
same input features and output rejections, except the type of MF used as input was varied. Figure
2A—C shows the learning curves with different fingerprints where the maximum path length for
the path-based fingerprint was 3, the maximum radius for the circular fingerprint was 3, and the
bit length of the PubChem fingerprint was 881. The default maximum path length and radius are
7 in RDKit, and here we chose 3 because organic compounds in the data are small compared to
other molecules studied in RDKit (e.g., pharmacoactive organic molecules) and larger lengths
increase computational time and likelihood of overfitting. The learning curves are broadly used to
see how models learn and minimize errors over time. Figure 2A-C demonstrate that error decreases
with an increasing number of iterations, eventually reaching a lower limit of error at a high number
of iterations. For the circular and PubChem fingerprints, the testing errors did not start increasing
after hitting the minimum; suggesting that the models were not overfit, which would be reflected
by testing error increasing while training error decreases. For example, the testing error during the
learning process with the circular fingerprint was about 0.0013, and the training error was 23%
lower at around 0.0010. On the other hand, the testing error of the path-based model increased by
16% from the 90™ iteration to the end of the 100™ iteration, which indicates that the model may

start being overfitted at approximately the 90" iteration and should likely be stopped early.

12
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Figure 2. (A—C) Learning curves and (D—F) fit curves of models trained with different molecular
fingerprints to compare the distributions of the measured and predicted data. The maximum path
length and bit length for the path-based fingerprint were 3 and 32768, respectively. The maximum
radius and bit length for the circular fingerprint were 3 and 16384, respectively. The bit length of
the PubChem fingerprint was 881. Light black and red colors correspond to single data points,

whereas darker shades correspond to a high density of overlapping data points.

After training, measured rejections and predicted rejections were compared (Figure 2D—F),
and mean square error (MSE), Spearman coefficient, and coefficient of determination of the three
fingerprint models were calculated (Table 2). MSE values in the learning curves were obtained
using scaled rejections, and the MSE values in Table 2 are reported with rejections in the original
scale (0-100%). All three fingerprint models (path-based, circular, and PubChem) had high
Spearman coefficients (greater than 0.98) with the training sets. For the testing sets, the Spearman
coefficients of the path-based, circular, and PubChem models decreased to 0.91, 0.93, and 0.92,

respectively. The coefficient of determination results were similar to the Spearman results in that

13



329
330
331

332
333
334
335

336

337
338
339
340
341
342
343
344
345
346
347
348
349
350

the coefficient of determination with the training sets were high (greater than 0.96), and the
coefficients with the testing sets fell in the range of 0.84—0.88 with the path-based model again

showing the lowest coefficient.

Table 2. Training and testing performances of the models with different fingerprint algorithms
and their parameters. Mean squared error (MSE), Spearman coefficient, and coefficient of
determination (R?) of percent rejection were used as evaluation metrics. Spearman coefficient and

coefficient of determination are unitless, and MSE has units squared rejection percentage.

. . . Train Test Train Test Train Test

W F‘“gerp?‘“ lB“th MSE(%  MSE(% ; i

parameter leng rejection?) rejection?) Spearman Spearman R R
Maximum

Path-based 3 path length 32768 2.60 6.03 0.98 0.91 0.96 0.84

3

Circular3 ~ Maximum - crq, 1.92 5.5 0.99 0.93 0.99 0.88
radius 3

PubChem . 881 1.37 5.61 0.99 0.92 0.99 0.86

To compare the performance of ML algorithms using MFs to prior ML work, results from
11 previous studies that used ML to evaluate membrane rejection are summarized in Table 3 [22—
24,40,53-59]. The datasets used in prior work included information on different combinations of
molecular properties, membrane properties, membrane fabrication conditions, operating
conditions, and RO and NF membrane rejections. Although the most common ML algorithm used
for prior studies has been neural networks, gradient boosting has recently become popular. The
ranges of the data size varied widely from 19 to 1906 rejection points for aqueous systems and up
to 6910 rejection points for datasets using organic solvents. Although some studies did not report
performance metrics that can be compared to those in this work, the available coefficients of
determination with the testing set (R? test) fell in the range between 0.84 and 0.99. Our work had
a coefficient of determination of 0.88 with the testing set. Direct comparison of these values is
difficult since data sets and study methods are widely varied. However, these results indicate that
predictive performances of the fingerprint-based models introduced in this work are comparable

to those of prior work that used molecular descriptors or other metrics.
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Table 3. Summary of previous studies using machine learning to predict contaminant rejection in nanofiltration (NF), reverse osmosis

(RO), and pervaporation (PV). Note that the root mean square error (RMSE) and mean absolute error (MAE) values have been

adjusted to the same scale.

. Data RMSE RMSE MAE MAE R? R? RMSE R’
Ref. Year Algorithm Process size Input feature Output feature train s train test train test cv cv
operating conditions, salt Lo
[60] 2000 Neural Net NF 342 type, membrane type solute rejection
passage/sorbed/
[61] 2008 Neural Net RO 50 solute properties rejected
fractions
[62] 2009 Neural Net RO/NF 124 solute properties solute rejection 6.113 456 091 0.97
solute properties,
[63] 2015 Neural Net RO/NF 965 membrane properties, solute rejection  10.78  11.53 0.921 0.904
operating conditions
[64] 2016 Neural Net RO/NF 436 - solute rejection
solute properties,
[65] 2020 Random Forest RO/NF 701 membrane properties, solute rejection 2.5 9.2 0.947  0.907
operating conditions
Genetic . L
[66] 2020 Algorithm NF 19 solute properties solute rejection
Neural Net, .
Support Vector solute properties, solvent
[67] 2021 Machine NF 6910 membrane properties, permeance, 442 1214 0.989 0914
Random Forest operating conditions solute rejection
Extreme Gradient
Boosting, monomer, fabrication water
[58] 2022 Categorical NF 1524 conditions, operating permeability, 4.17  11.74 0.980 0.840
Gradient conditions solute rejection
Boosting
Partial Least .
Square solute properties, o
[68] 2022 quare, NF 6910 membrane properties, solute rejection 7.95 0.89
Convolutional operating conditions
Neural Net p &
Gradient molecular fragments, solvent flux,
[59] 2022  Boosting, Kernel PV 681 membrane properties, separation 0.077 0.126 0.995 0.987
Ridge operating conditions factor
. . molecular fingerprints,
This = 5y Bxtreme Gradient o \p 906 membrane properties,  solute rejection 192 5.25 099  0.88
study Boosting

operating conditions
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3.2. Effect of varying fingerprint hyperparameters on model performance and bit collision

In the previous section, we found that all three fingerprint types (path-based, circular, and
structural key) were able to produce comparable predictive performances when applied to the
rejection dataset. We also observed that the path-based model became more susceptible to
overfitting compared to the other models. In this section, we vary the hyperparameters of MFs
(maximum path length for the path-based fingerprint, maximum radius for the circular fingerprint,
and length of the pre-defined structural keys for the PubChem fingerprint) to further investigate
how the simulation conditions affect the performance and interpretability of the models. The
hyperparameters control the maximum boundary of fragmentation, and hence, the molecular
fragments of a compound can change based on the hyperparameter size. The default
hyperparameters used in the previous section were 3 for the maximum path length in the RDKit
path-based fingerprint, 3 for the maximum radius in the circular fingerprint, and 881 pre-defined
structural keys for the PubChem fingerprint, respectively. We selected length or radius of 3
because the organic compounds in the data are relatively small compared to other compounds
studied using fingerprints, such as proteins and macromolecules. The maximum path length of 1,
maximum radius of 1, and the MACCS fingerprint as a shorter structural key fingerprint (167 keys)

were additionally used to compare performances and changes in calculation time.

The predictive performances with different hyperparameters showed that the test
coefficient of determination of the path-based model noticeably dropped when the path length was
changed from 3 to 1, with values of 0.84 and 0.78, respectively (Figure 3). The coefficient of
determination of the circular and PubChem models did not considerably change when lower
hyperparameters were used (the coefficient varied by 0.01). In the case of the circular fingerprints,
this indicates that the organic compounds in the data are not large and the circular radius of 1 was
enough to represent the compounds. The Spearman coefficients, which are good at estimating
monotonic association between two variables, were similar (0.90-0.93) for different fingerprints
and hyperparameters because non-linearity of the Spearman coefficient makes its evaluation less

restrictive than the coefficient of determination.

16



335

336
337
338
339
340

341

342
343
344
345
346
347
348
349
350
351
352
353

Circular

0.9 (max. radius = 1)
Structural key A
(MACCS) A Circular
| (max. radius = 3)
- m
% 0.85 Structural key
- (PubChem) Q@
8 Path-based
.; (max. path length = 3)
(o]
E‘E 0.8
@ Path-based
(max. path length = 1)
0.75
10 100 1000 10000

Calculation time (s)

Figure 3. Comparing prediction performance and calculation time of different types of molecular
fingerprints (path-based, circular, and structural key) with different hyperparameters. Structural
key fingerprints showed the fastest calculation times while maintaining high prediction
performance as indicated by a high coefficient of determination of the testing set. Further

information on prediction performance and calculation times is shown in Table S2.

Calculation time of the different fingerprints and hyperparameters was also evaluated
(Figure 3). For a given fingerprint and hyperparameter, calculation times were estimated using the
shortest fingerprint bit length that avoided bit collision, which occurs when different substructures
are stored in the same bit [69]. Bit collision typically only happens in the hashed style fingerprints
(in this study, the path-based and circular MFs) as a result of short bit lengths, and can lead to
inaccurate interpretation of rejection behavior. Increasing the bit length to prevent bit collision
results in larger calculation times, and small amounts of bit collision may be considered acceptable
in some ML work. However, we chose to avoid bit collision in this study since substructures were
later used for rejection analysis, and bit collision would interfere with this analysis. In our tests,
the path-based fingerprint with a maximum path length of 3 and a bit length of 32768 had the
longest calculation time (2154 seconds). The long calculation time indicates that the path-based

fingerprint with the maximum length of 3 holds the highest number of combinations of
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substructures among six different cases; this high number of combinations possibly explains the
overfitting observed in Figure 2A. The circular fingerprint with the maximum radius of 3 required
16384 bits for no bit collision, and its calculation time was 1011 seconds. Structural key
fingerprints including PubChem and MACCS had low bit lengths and calculation times compared
to other fingerprints. Their lengths were below 1000 bits, and the calculation times were only 78

and 33 seconds for PubChem and MACSS, respectively.

The analysis of various MF types and hyperparameters showed the coefficient of
determination and Spearman coefficient of PubChem, MACCS, and circular fingerprint models
were all similarly high. However, the path-based fingerprint models with the maximum path length
of 1 and 3 gave lower prediction performance than other cases. We hypothesize that this is because
the path-based fingerprint model with the maximum path length of 3 suffered from overfitting,
even with the training algorithm minimizing overfitting due to sparse data in the larger substructure
information, and the path-based fingerprint model with the maximum path length of 1 generated
less meaningful substructures to predict rejection due to the low substructure path length. Circular
and structural key fingerprints were able to reach higher prediction performances than the path-
based fingerprint cases. Structural key fingerprints had the lowest calculation times, and the shorter
pre-defined structural keys of MACCS were especially fast to compute. MACCS may therefore
be preferred over other fingerprints such as PubChem, circular, and path-based fingerprints to
analyze membrane rejection of organic compounds because of the combination of performance

and speed.
3.3. Model interpretation with SHAP and clustering analyses

The use of MFs in rejection models allows us to interpret the role of specific molecular
substructures in determining overall rejection performance. We used SHAP analysis to investigate
the interpretability of each algorithm by evaluating the importance of individual molecular
substructures and input features. In addition, we demonstrated how the relation between molecular

fragments and rejection mechanisms can be derived using a clustering technique.

SHAP importance scores were compared for the different datasets to identify which input
parameters most substantially impacted the rejection (Figure 4). We first examined the importance
of membrane properties and operating conditions. All cases show very clear trends correlating

rejection with membrane molecular weight cut-off (MWCO) and pH with importance scores of
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0.49 and 0.16, respectively. High MWCO decreased steric rejection of compounds. High pH
increased rejection since a high pH value results in more negatively charged membranes and, in

some instances, more negatively charged compounds.
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Figure 4. SHAP values describing the importance of input features in determining membrane
rejection for different fingerprints and hyperparameters. Input features include operating
conditions, membrane properties, and molecular fingerprint bit number. Higher and lower SHAP
values for a given feature indicate that the feature is related to increases or decreases in the output
rejection value, respectively. Red color indicates an input feature’s value is high, and blue color

indicates an input feature’s value is low. For example, high MWCO values (red points) have
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negative SHAP values. This means high MWCO membranes are related to a decrease in the output
membrane rejection. Similarly, low MWCO values (blue points) have positive SHAP values,
meaning that low membrane MWCO is related to an increase in rejection. The magnitude of the

SHAP value corresponds to the change in rejection related to a given input feature.

Thus, the higher pH enhances electric repulsion between membranes and the compounds [70]. The
results of measurement time indicate that shorter measurement times are associated with higher
rejection values, while longer measurement times tend to result in lower rejection values. This
probably arises because prolonged measurements offer a more accurate representation of steady-
state system performance, capturing the impact of factors such as adsorption that short-term tests
may overlook. Other membrane properties and operating conditions including contact angle,

operating pressure, and type of membrane did not show consistent trends with all algorithms.

Analysis of the individual MF substructures with SHAP also provided some insights on
the physical implications of molecular structures on membrane rejection. Figure 4 lists the feature
codes for MFs that showed high importance scores (structure schematics are shown in Table S3-
S6). Some of the substructures with high impacts on membrane rejection were associated with
molecular size or charge. The presence of a tetrahedral group of non-H atoms bonded to a central
carbon atom (285 Path-based 1, 24343 Path-based 3, 5405 Path-based 3, 113 MACCS, 2163
Circular 1, and 14451 Circular 3) led to high rejections presumably because this structure is
correlated with a branched and bulky molecule, and thus, it indicates a larger size and shape [71].
There were functional groups frequently appearing over different fingerprints, such as carboxyl (-
COOH), hydroxyl (-OH), and carbonyl (C=0O) groups, which are related to electric charge and
polarity. For example, organic acids (e.g., salicylic acid, clofibric acid, and benzoic acid) in the
dataset contain the -COOH substructure. The hydrogen in -COOH can be deprotonated and result
in a negative charge at neutral pH, which increases rejection due to strong electrostatic repulsion
[72]. It is noteworthy that the presence of fluorine was found to be of high importance in the SHAP
results (384 Path-based 1, 27961 Path 3, 24 PubChem, and 43 MACCS). However, this is likely
linked to the large molecular size correlated with fluorination, rather than the effect of the fluorine
itself. The dataset has 9 PFAS (perfluoroalkyl substances), and all the compounds have long

carbon chains containing 7—-19 fluorine atoms with the average molecular weight of PFAS being
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67% higher than the average molecular weight of the entire dataset. The PFAS therefore showed
high rejections of 86-98% due to their long chains, and fluorine indirectly represented large

molecular size.

To further investigate the association between fingerprint substructures and rejection, we
analyzed the molecular fragments of MACCS structural key fingerprints. In the previous
subsection, we found that MACCS fingerprints are possibly the most efficient candidate for
studying membrane rejection based on fast computation time and higher accuracy. MACCS
fingerprints are also more interpretable because they are based on the presence or absence of
specific structural features in a molecule. Each bit in these fingerprints corresponds to a particular
structural feature, so it is relatively straightforward to understand what each bit represents. The
top-ranked fragments can explain the interactions between compounds and membranes in a
straightforward manner. In Figure 5, the 12 most important substructures of MACCS and their
importance scores are displayed. The importance score was obtained by averaging absolute SHAP
values in Figure 4. MACCS features 113, 126, 146, and 164 were important because the presence
of rings or a tetrahedral geometry with non-H atoms is related to increased molecular size, e.g. the
average McGowan molecular volume of compounds having tetrahedrons is 32% higher than the
average McGown molecular volume of the entire data. Feature 124 represented carboxylic groups,
and features 141 and 147 represented the counts of oxygen in compounds. Larger amounts of
oxygen are possibly linked to negative surface charge due to oxygenated groups often having high
electronegativity. Features 91, 92, 142, and 150 were associated with alkyl groups, which can
affect size and polarity. Overall, the easily identifiable molecular features in the MACCS
fingerprint, combined with SHAP analysis, allowed us to identify solute molecular structures most

strongly linked to rejection.
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Figure 5. The 12 most important MACCS fingerprint features (importance score greater than 0.05).
Feature importance scores were obtained from the SHAP analysis. Note that MWCO and pH have

the first and second highest importance scores, and they are presented on the graph for comparison.

Unsupervised clustering algorithms can group molecules based on similarities in their
fingerprints without prior labeling and reveal natural groupings or patterns in the data, often
uncovering relationships that are not immediately apparent. Clustering analysis was used to
categorize compounds based on their molecular structures and connect the clusters’ rejection
behaviors to their structural similarities and disparities. The analysis, which used MACCS
fingerprints, revealed distinct clusters of compounds with different characteristics. Figure 6A
shows four clusters with their mean and individual compound rejection values. Figure 6B
demonstrates the most shared sub-structures in a cluster by counting frequently appeared
fingerprint sub-structures. The top-10 features for each cluster can be found in Table S8. Cluster
2 is the cluster with the highest average cluster rejection (86%) and the least molecular structure
variation; it contained compounds such as diltiazem, lidocaine, and propyphenazone which share
common features, such as one or more benzene rings with various side chains and functional

groups attached to the aromatic core (see Figure S7). Cluster 3 contained molecules with a long
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linear path and multiple oxygen atoms including glucose, xylose, and triethyleneglycol (see Figure
S7). On the other hand, Cluster 4, which showed the lowest average rejection, had very different
sub-structures and had zero fingerprint features over 80% appearance frequency. The cluster also
included small aldehydes and alcohols, which resulted in the low rejection in the range of 0 and
40%. It is noteworthy that Cluster 3 had a lower average molecular weight than Cluster 4, but
Cluster 3 still showed a higher average cluster rejection (77% vs. 61%), possibly due to its larger
molecular volume (e.g. increasing van der Waals radius), which made it difficult for a compound
to pass through the pore [73]. The clustering analysis showed that categorizing compounds based
on their molecular fingerprints can help pinpoint sub-structures affecting rejection and aids in

better defining classes of compounds with similar rejection behavior.
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Figure 6. (A) Clustering of compounds and their associated rejection. Each point represents a
unique chemical compound, and its color displays an average rejection of the compound. T-
distributed Stochastic Neighborhood Embedding (t-SNE) was used for nonlinear dimension
reduction from 167 to 2 keys (t-SNE 1 and t-SNE 2) and clustering based on MACCS fingerprints.
A sub-dataset with MWCO < 225 Da & pH = 7 was used in clustering. (B) Frequency appearance
of difference molecular features in each cluster. The appearance of all the MACCS features in each
cluster was counted and converted to a percentage by dividing the count by the number of

compounds in the cluster. Only the 10 most frequent features were shown, and the list of the

features can be found in Table S&.
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Conclusions

In this study, we analyzed membrane rejection of organic compounds using machine learning with
molecular fingerprint features, membrane properties, and operating conditions. The molecular
fingerprint-based approach estimates rejection accurately using structural information, bypassing
the need for experimental or computationally intensive molecular properties. Our model's
prediction performance, using molecular fingerprints, was comparable to previous studies on RO
and NF solute rejection with data-driven models. We compared three fingerprint generation
algorithms—path-based, circular, and structural key—with varying hyperparameters. The
MACCS structural key fingerprint demonstrated the best combination of predictive power,

calculation efficiency, and interpretability.

Our findings highlight that molecular fingerprints enhance our understanding and
visualization of molecular substructures influencing rejection in NF and RO. SHAP analysis
quantified the importance of individual molecular substructures (e.g., non-H atom bonded
tetrahedrons, ring structures, functional groups) in determining rejection, revealing sensible
rejection mechanisms. Clustering analysis grouped compounds by the MACCS fingerprint,
identifying common or unique substructures in each cluster, which were related to membrane
rejection. Future work may be able to further elucidate specific molecular structures that are
strongly linked to solute-membrane interactions impacting membrane rejection. Eventually, the
molecular-level insights into the rejection behavior can allow for the development of membranes

that have tailored rejection of target compounds.

Acknowledgements

The authors are grateful to financial support from the National Science Foundation under Award
Number CBET 2136835. S.L. acknowledges support from American Water Works Association —
HDR One Water Institute Scholarship.

Note

24



514
515

516

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

The authors declare no competing financial interest.

References

[1]

(2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

UN Water, UN World Water Development Report, Nature-based Solutions for
Water, (2018). http://repo.floodalliance.net/jspui/handle/44111/2726 (accessed July
25,2022).

C.Y. Tang, Z. Yang, H. Guo, J.J. Wen, L.D. Nghiem, E. Cornelissen, Potable Water
Reuse through Advanced Membrane Technology, Environ Sci Technol 52 (2018)
10215-10223. https://doi.org/10.1021/ACS.EST.8B00562

Q. Yang, K.Y. Wang, T.S. Chung, A novel dual-layer forward osmosis membrane
for protein enrichment and concentration, Sep Purif Technol 69 (2009) 269-274.
https://doi.org/10.1016/j.seppur.2009.08.002.

Y. Cui, T.S. Chung, Pharmaceutical concentration using organic solvent forward
osmosis for solvent recovery, Nature Communications 2018 9:1 9 (2018) 1-9.
https://doi.org/10.1038/s41467-018-03612-2.

K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen,
Forward osmosis for application in wastewater treatment: A review, Water Res 58
(2014) 179-197. https://doi.org/10.1016/j.watres.2014.03.045.

V. Sant’Anna, L.D.F. Marczak, I.C. Tessaro, Membrane concentration of liquid
foods by forward osmosis: Process and quality view, J Food Eng 111 (2012) 483—
489. https://doi.org/10.1016/j.jfoodeng.2012.01.032.

A. Egea-Corbacho Lopera, S. Gutiérrez Ruiz, J.M. Quiroga Alonso, Removal of
emerging contaminants from wastewater using reverse osmosis for its subsequent
reuse: Pilot plant, Journal of Water Process Engineering 29 (2019) 100800.
https://doi.org/10.1016/J.JWPE.2019.100800.

B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in
wastewaters and the environment: Current knowledge, understudied areas and
recommendations for future monitoring, Water Res 72 (2015) 3-27.
https://doi.org/10.1016/J.WATRES.2014.08.053.

J.L. Acero, F.J. Benitez, F.J. Real, E. Rodriguez, Elimination of selected emerging
contaminants by the combination of membrane filtration and chemical oxidation
processes, Water Air Soil Pollut 226 (2015) 1-14. https://doi.org/10.1007/S11270-
015-2404-8.

V.S. Babu, M. Padaki, L.P. D’Souza, S. Déon, R. Geetha Balakrishna, A.F. Ismail,
Effect of hydraulic coefficient on membrane performance for rejection of emerging
contaminants, Chemical Engineering Journal 334 (2018) 2392-2400.
https://doi.org/10.1016/J.CEJ.2017.12.027.

V. Yangali-Quintanilla, A. Sadmani, M. McConville, M. Kennedy, G. Amy, A
QSAR model for predicting rejection of emerging contaminants (pharmaceuticals,
endocrine disruptors) by nanofiltration membranes, Water Res 44 (2010) 373-384.
https://doi.org/10.1016/J.WATRES.2009.06.054.

25



555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

B.D. Coday, B.G.M. Yaffe, P. Xu, T.Y. Cath, Rejection of trace organic
compounds by forward osmosis membranes: A literature review, Environ Sci
Technol 48 (2014) 3612-3624. https://doi.org/10.1021/ES4038676

J. Radjenovi¢, M. Petrovi¢, F. Ventura, D. Barcel6, Rejection of pharmaceuticals in
nanofiltration and reverse osmosis membrane drinking water treatment, Water Res
42 (2008) 3601-3610. https://doi.org/10.1016/J.WATRES.2008.05.020.

N. Jeong, T. Chung, T. Tong, Predicting Micropollutant Removal by Reverse
Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?, Environ Sci
Technol 55 (2021) 11348-11359. https://doi.org/10.1021/ACS.EST.1C04041.

B. Van Der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, Influence of
molecular size, polarity and charge on the retention of organic molecules by
nanofiltration, ] Memb Sci 156 (1999) 29-41. https://doi.org/10.1016/S0376-
7388(98)00326-3.

J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, ] Memb Sci
107 (1995) 1-21. https://doi.org/10.1016/0376-7388(95)00102-1.

X.L. Wang, T. Tsuru, S.I. Nakao, S. Kimura, The electrostatic and steric-hindrance
model for the transport of charged solutes through nanofiltration membranes, J
Memb Sci 135 (1997) 19-32. https://doi.org/10.1016/S0376-7388(97)00125-7.
W.M. Deen, Hindered transport of large molecules in liquid-filled pores, AIChE
Journal 33 (1987) 1409-1425. https://doi.org/10.1002/AIC.690330902.

T. Chaabane, S. Taha, M. Taleb Ahmed, R. Maachi, G. Dorange, Coupled model of
film theory and the Nernst—Planck equation in nanofiltration, Desalination 206
(2007) 424—432. https://doi.org/10.1016/J.DESAL.2006.03.577.

C. Su, H. Yeo, Q. Xie, X. Wang, S. Zhang, Understanding and optimization of thin
film nanocomposite membranes for reverse osmosis with machine learning, J
Memb Sci 606 (2020) 118135. https://doi.org/10.1016/j.memsci.2020.118135.

T. Bonny, M. Kashkash, F. Ahmed, An efficient deep reinforcement machine
learning-based control reverse osmosis system for water desalination, Desalination
522 (2022). https://doi.org/10.1016/J.DESAL.2021.115443.

R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive
models in organic solvent nanofiltration: Solute rejection in pure and mixed
solvents, Sep Purif Technol 248 (2020) 117046.
https://doi.org/10.1016/J.SEPPUR.2020.117046.

Y. Ammi, L. Khaouane, S. Hanini, Prediction of the rejection of organic
compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes
using neural networks, Korean Journal of Chemical Engineering 2015 32:11 32
(2015) 2300-2310. https://doi.org/10.1007/S11814-015-0086-Y .

G. Ignacz, G. Szekely, Deep learning meets quantitative structure—activity
relationship (QSAR) for leveraging structure-based prediction of solute rejection in
organic solvent nanofiltration, ] Memb Sci 646 (2022) 120268.
https://doi.org/10.1016/J.MEMSCI.2022.120268.

S. Zhong, J. Hu, X. Yu, H. Zhang, Molecular image-convolutional neural network
(CNN) assisted QSAR models for predicting contaminant reactivity toward OH
radicals: Transfer learning, data augmentation and model interpretation, Chemical
Engineering Journal 408 (2021) 127998.
https://doi.org/10.1016/J.CEJ.2020.127998.

26



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Y. ling Liu, K. Xiao, A. qian Zhang, X. mao Wang, H. wei Yang, X. Huang, Y.F.
Xie, Exploring the interactions of organic micropollutants with polyamide
nanofiltration membranes: A molecular docking study, J Memb Sci 577 (2019)
285-293. https://doi.org/10.1016/J.MEMSCI.2019.02.017.

T. Fujioka, H. Kodamatani, W. Yujue, K.D. Yu, E.R. Wanjaya, H. Yuan, M. Fang,
S.A. Snyder, Assessing the passage of small pesticides through reverse osmosis
membranes, ] Memb Sci 595 (2020) 117577.
https://doi.org/10.1016/J.MEMSCI.2019.117577.

M.G. Shin, W. Choi, S.J. Park, S. Jeon, S. Hong, J.H. Lee, Critical review and
comprehensive analysis of trace organic compound (TOrC) removal with
polyamide RO/NF membranes: Mechanisms and materials, Chemical Engineering
Journal 427 (2022). https://doi.org/10.1016/J.CEJ.2021.130957.

T.R. Nickerson, E.N. Antonio, D.P. McNally, M.F. Toney, C. Ban, A.P. Straub,
Unlocking the potential of polymeric desalination membranes by understanding
molecular-level interactions and transport mechanisms, Chem Sci 14 (2023) 751—
770. https://doi.org/10.1039/D2SC04920A.

L. Xing, R.C. Glen, R.D. Clark, Predicting pKa by Molecular Tree Structured
Fingerprints and PLS, J Chem Inf Comput Sci 43 (2003) 870-879.
https://doi.org/10.1021/C1020386S.

L. Xing, R.C. Glen, Novel Methods for the Prediction of logP, pKa, and logD, J
Chem Inf Comput Sci 42 (2002) 796—805. https://doi.org/10.1021/CI010315D.

Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, K.
Leswing, V. Pande, MoleculeNet: A Benchmark for Molecular Machine Learning,
Chem Sci 9 (2017) 513-530. https://doi.org/10.48550/arxiv.1703.00564.

G. Hinselmann, L. Rosenbaum, A. Jahn, N. Fechner, A. Zell, JCompoundMapper:
An open source Java library and command-line tool for chemical fingerprints, J
Cheminform 3 (2011). https://doi.org/10.1186/1758-2946-3-3.

F.O. Sanches-Neto, J.R. Dias-Silva, L.H. Keng Queiroz Junior, V.H. Carvalho-
Silva, “pySiRC”: Machine Learning Combined with Molecular Fingerprints to
Predict the Reaction Rate Constant of the Radical-Based Oxidation Processes of
Aqueous Organic Contaminants, Environ Sci Technol 55 (2021) 12437-12448.
https://doi.org/10.1021/acs.est.1c04326.

Y. Ding, M. Chen, C. Guo, P. Zhang, J. Wang, Molecular fingerprint-based
machine learning assisted QSAR model development for prediction of ionic liquid
properties, J Mol Liq 326 (2021) 115212.
https://doi.org/10.1016/J.MOLLIQ.2020.115212.

S. Zhong, J. Hu, X. Fan, X. Yu, H. Zhang, A deep neural network combined with
molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl
radical rate constants of water contaminants, J] Hazard Mater 383 (2020) 121141.
https://doi.org/10.1016/J.JHAZMAT.2019.121141.

S. Zhong, K. Zhang, D. Wang, H. Zhang, Shedding light on “Black Box” machine
learning models for predicting the reactivity of HO radicals toward organic
compounds, Chemical Engineering Journal 405 (2021) 126627.
https://doi.org/10.1016/J.CEJ.2020.126627.

27



645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

P.G. Francoeur, D. Pefiaherrera, D.R. Koes, Active Learning for Small Molecule
pKa Regression; a Long Way To Go, (2022).
https://doi.org/10.26434/CHEMRXIV-2022-8W1QO0.

A Unified Approach to Interpreting Model Predictions, (n.d.).
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67
767-Abstract.html (accessed July 25, 2022).

S. Lee, J. Kim, Prediction of Nanofiltration and Reverse-Osmosis-Membrane
Rejection of Organic Compounds Using Random Forest Model, Journal of
Environmental Engineering 146 (2020) 04020127.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001806.

A. Martin, F. Martinez, J. Malfeito, L. Palacio, P. Pradanos, A. Hernandez, Zeta
potential of membranes as a function of pH: Optimization of isoelectric point
evaluation, ] Memb Sci 213 (2003) 225-230. https://doi.org/10.1016/S0376-
7388(02)00530-6.

S. Riniker, G.A. Landrum, Similarity maps - A visualization strategy for molecular
fingerprints and machine-learning methods, J Cheminform 5 (2013) 1-7.
https://doi.org/10.1186/1758-2946-5-43.

K. Gao, D.D. Nguyen, V. Sresht, A.M. Mathiowetz, M. Tu, G.-W. Wei, Are 2D
fingerprints still valuable for drug discovery? f, Phys. Chem. Chem. Phys 22
(2020) 8373. https://doi.org/10.1039/d0cp00305k.

D.S. Wigh, J.M. Goodman, A.A. Lapkin, A review of molecular representation in
the age of machine learning, Wiley Interdiscip Rev Comput Mol Sci (2022) e1603.
https://doi.org/10.1002/WCMS.1603.

Z. Cang, G.W. Wei, Integration of element specific persistent homology and
machine learning for protein-ligand binding affinity prediction, Int J Numer
Method Biomed Eng 34 (2018). https://doi.org/10.1002/CNM.2914.

Z. Cang, L. Mu, G.W. Wei, Representability of algebraic topology for biomolecules
in machine learning based scoring and virtual screening, PLoS Comput Biol 14
(2018) €1005929. https://doi.org/10.1371/JOURNAL.PCBI.1005929.

K. Wu, G.W. Wei, Quantitative Toxicity Prediction Using Topology Based
Multitask Deep Neural Networks, J Chem Inf Model 58 (2018) 520-531.
https://doi.org/10.1021/ACS.JCIM.7B00558.

K. Wu, Z. Zhao, R. Wang, G.W. Wei, TopP-S: Persistent homology-based multi-
task deep neural networks for simultaneous predictions of partition coefficient and
aqueous solubility, J] Comput Chem 39 (2018) 1444—-1454.
https://doi.org/10.1002/JCC.25213.

A. Cereto-Massagué, M.J. Ojeda, C. Valls, M. Mulero, S. Garcia-Vallvé, G.
Pujadas, Molecular fingerprint similarity search in virtual screening, Methods 71
(2015) 58—63. https://doi.org/10.1016/J.YMETH.2014.08.005.

T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (n.d.). https://doi.org/10.1145/2939672.

V. Yangali-Quintanilla, A. Sadmani, M. McConville, M. Kennedy, G. Amy, A
QSAR model for predicting rejection of emerging contaminants (pharmaceuticals,
endocrine disruptors) by nanofiltration membranes, Water Res 44 (2010) 373-384.
https://doi.org/10.1016/j.watres.2009.06.054.

28



691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

K. Aas, M. Jullum, A. Leland, Explaining individual predictions when features are
dependent: More accurate approximations to Shapley values, Artif Intell 298 (2021)
103502. https://doi.org/10.1016/J. ARTINT.2021.103502.

W.R. Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef, Predicting salt rejections at
nanofiltration membranes using artificial neural networks, Desalination 129 (2000)
147-162. https://doi.org/10.1016/S0011-9164(00)00057-6.

D. Libotean, J. Giralt, R. Rallo, Y. Cohen, F. Giralt, H.F. Ridgway, G. Rodriguez,
D. Phipps, Organic compounds passage through RO membranes, ] Memb Sci 313
(2008) 23-43. https://doi.org/10.1016/J.MEMSCI.2007.11.052.

V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G.
Amy, Artificial neural network models based on QSAR for predicting rejection of
neutral organic compounds by polyamide nanofiltration and reverse osmosis
membranes, ] Memb Sci 342 (2009) 251-262.
https://doi.org/10.1016/J.MEMSCI.2009.06.048.

L. Khaouane, Y. Ammi, S. Hanini, Modeling the Retention of Organic Compounds
by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated
Neural Networks, Arabian Journal for Science and Engineering 2016 42:4 42
(2016) 1443—1453. https://doi.org/10.1007/S13369-016-2320-2.

J. Hu, C. Kim, P. Halasz, J.F. Kim, J. Kim, G. Szekely, Artificial intelligence for
performance prediction of organic solvent nanofiltration membranes, ] Memb Sci
619 (2021) 118513. https://doi.org/10.1016/J.MEMSCI.2020.118513.

H. Gao, S. Zhong, W. Zhang, T. Igou, E. Berger, E. Reid, Y. Zhao, D. Lambeth, L.
Gan, M.A. Afolabi, Z. Tong, G. Lan, Y. Chen, Revolutionizing Membrane Design
Using Machine Learning-Bayesian Optimization, Environ Sci Technol 56 (2022)
2572-2581. https://doi.org/10.1021/ACS.EST.1C04373.

M. Wang, Q. Xu, H. Tang, J. Jiang, Machine Learning-Enabled Prediction and
High-Throughput Screening of Polymer Membranes for Pervaporation Separation,
ACS Appl Mater Interfaces 14 (2022). https://doi.org/10.1021/ACSAMI.1C22886.
W.R. Bowen, M.G. Jones, J.S. Welfoot, H.N.S. Yousef, Predicting salt rejections at
nanofiltration membranes using artificial neural networks, Desalination 129 (2000)
147-162. https://doi.org/10.1016/S0011-9164(00)00057-6.

D. Libotean, J. Giralt, R. Rallo, Y. Cohen, F. Giralt, H.F. Ridgway, G. Rodriguez,
D. Phipps, Organic compounds passage through RO membranes, ] Memb Sci 313
(2008) 23-43. https://doi.org/10.1016/J.MEMSCI.2007.11.052.

V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G.
Amy, Artificial neural network models based on QSAR for predicting rejection of
neutral organic compounds by polyamide nanofiltration and reverse osmosis
membranes, ] Memb Sci 342 (2009) 251-262.
https://doi.org/10.1016/J.MEMSCI.2009.06.048.

Y. Ammi, L. Khaouane, S. Hanini, Prediction of the rejection of organic
compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes
using neural networks, Korean Journal of Chemical Engineering 2015 32:11 32
(2015) 2300-2310. https://doi.org/10.1007/S11814-015-0086-Y.

L. Khaouane, Y. Ammi, S. Hanini, Modeling the Retention of Organic Compounds
by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated

29



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Neural Networks, Arabian Journal for Science and Engineering 2016 42:4 42
(2016) 1443—-1453. https://doi.org/10.1007/S13369-016-2320-2.

S. Lee, J. Kim, Prediction of Nanofiltration and Reverse-Osmosis-Membrane
Rejection of Organic Compounds Using Random Forest Model, Journal of
Environmental Engineering 146 (2020) 04020127.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001806.

R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive
models in organic solvent nanofiltration: Solute rejection in pure and mixed
solvents, Sep Purif Technol 248 (2020) 117046.
https://doi.org/10.1016/J.SEPPUR.2020.117046.

J. Hu, C. Kim, P. Halasz, J.F. Kim, J. Kim, G. Szekely, Artificial intelligence for
performance prediction of organic solvent nanofiltration membranes, ] Memb Sci
619 (2021) 118513. https://doi.org/10.1016/J. MEMSCI.2020.118513.

G. Ignacz, G. Szekely, Deep learning meets quantitative structure—activity
relationship (QSAR) for leveraging structure-based prediction of solute rejection in
organic solvent nanofiltration, ] Memb Sci 646 (2022) 120268.
https://doi.org/10.1016/J.MEMSCI.2022.120268.

S. Riniker, G.A. Landrum, Similarity maps - a visualization strategy for molecular
fingerprints and machine-learning methods, J Cheminform 5 (2013) 43.
https://doi.org/10.1186/1758-2946-5-43.

C. Bellona, J.E. Drewes, The role of membrane surface charge and solute physico-
chemical properties in the rejection of organic acids by NF membranes, ] Memb Sci
249 (2005) 227-234. https://doi.org/10.1016/J.MEMSCI.2004.09.041.

Y. Kiso, Y. Sugiura, T. Kitao, K. Nishimura, Effects of hydrophobicity and
molecular size on rejection of aromatic pesticides with nanofiltration membranes, J
Memb Sci 192 (2001) 1-10. https://doi.org/10.1016/S0376-7388(01)00411-2.
L.N. Breitner, K.J. Howe, D. Minakata, Effect of Functional Chemistry on the
Rejection of Low-Molecular Weight Neutral Organics through Reverse Osmosis
Membranes for Potable Reuse, Environ Sci Technol (2019) 11401-11409.
https://doi.org/10.1021/acs.est.9b03856.

J.R. Werber, C.J. Porter, M. Elimelech, A Path to Ultraselectivity: Support Layer
Properties to Maximize Performance of Biomimetic Desalination Membranes,
Environ Sci Technol 52 (2018) 10737-10747.
https://doi.org/10.1021/ACS.EST.8B03426.

30



