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3. We show that a join count goodness-of-fit test previously proposed for identify-
ing clustered detections is effective for detecting autocorrelation across a range
of conditions. We find that strong bias occurs in the estimated occupancy inter-
cept when survey durations are short and detection rates are low. We provide a
reference table for assessing the degree of bias to be expected under all condi-
tions. We further find that discretizing data with larger windows decreases the
magnitude of bias introduced by autocorrelation. In our case study, we find that
detections of most species are autocorrelated and demonstrate how larger detec-
tion windows might mitigate the resulting bias.

4. Our findings suggest that autocorrelation is likely widespread in camera trap data
and that many previous studies of occupancy based on camera trap data may
have systematically underestimated occupancy probabilities. Moving forward,
we recommend that ecologists estimating occupancy from camera trap data use
the join count goodness-of-fit test to determine whether autocorrelation is pre-

sent in their data. If it is, SOMs should use large detection windows to mitigate
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1 | INTRODUCTION

The hierarchical site occupancy model (SOM) is one of the most
common tools that ecologists use to analyse ecological field data
(MacKenzie et al., 2002). The SOM is used to estimate the proba-
bility that a species is present at each of a number of sites when
detection is imperfect, that is, surveys can fail to detect the species
even if it truly occupies the surveyed area. Today, the SOM is often
estimated using data collected by passive monitoring, such as with
acoustic recorders or camera traps (Furnas, 2020; Kays et al., 2020).
These sampling methods produce detections of animals in continu-
ous time. The continuous survey period can be ‘discretized’ into a se-
ries of detection-nondetection data for use in the SOM framework.
Estimating the SOM with data collected under continuous-time
passive monitoring protocols such as camera traps poses an apparent
problem. The SOM was originally developed to describe traditional
discrete field surveys, in which a target species is observed or not on
each of several surveys at clearly defined sites. Data collected under
passive monitoring protocols do not satisfy the model's assump-
tions as originally stated. Most prominent among these assumptions
is the ‘closure’ assumption, which states that the occupancy state
of the surveyed area is constant (closed) across replicate observa-
tions. For data collected by camera traps, which may survey tens of
square metres for several weeks, the target species is rarely present
in the survey area for the duration of the study. Ecologists resolve
this mismatch via an ‘asymptotic’ interpretation of the occupancy
process where a site surveyed by a camera is defined as ‘occupied’
throughout the survey period if an individual of the species occu-
pies the survey area for any amount of time (Efford & Dawson, 2012;
Latif et al., 2016). The parameters of the SOM are then estimated as
usual. Under the asymptotic interpretation, inference still depends
on meeting other assumptions of the SOM. To extend ecological in-
ference beyond the small areas surveyed by each camera, these as-
sumptions include that the placement of cameras on the landscape
is representative of the study area. This requires that sites follow, for
example, that they are selected using random or stratified random
placement or are placed on a systematic grid (Burton et al., 2015).
When the SOM is estimated using data collected under a contin-
uous survey protocol, there is a risk that assumption violations occur
in addition to those which are resolved via the asymptotic interpre-
tation of occupancy. In particular, when discretizing continuous-time
data, ecologists risk inducing nonindependence between replicate
surveys. Nonindependence could arise if there are unmodeled, tem-
porally structured variables that drive detection, such as weather.

bias and more accurately quantify uncertainty in occupancy model parameters.
Ecologists should not use gaps between detection periods, which are ineffective

at mitigating temporal structure in data and discard useful data.

autocorrelation, bias, camera trap, occupancy

Another likely source of nonindependence is animal behaviour:
Individuals may remain at or near a site for days, with the same indi-
vidual triggering a camera multiple times before moving on (Neilson
et al., 2018). The reverse may also occur—a slow moving animal that
uses the surveyed area might happen to remain in another part of
its home range for the duration of the survey period, leading to au-
tocorrelated nondetections. We refer to any such temporally struc-
tured nonindependence between consecutive surveys as ‘temporal
autocorrelation’.

Temporally autocorrelated detection events violate the assump-
tions of the SOM regardless of their cause or the interpretation
framework. Autocorrelated detections result in pseudoreplication,
whereby non-independent events are treated as independent.
Failure to consider nonindependence in modelling can lead to over-
confident estimates of model parameters (Hurlbert, 1984). In an
occupancy model, pseudoreplicated detections can cause bias since
the occupancy model's estimate of imperfect detection is directly in-
formed by the number of supposedly independent detection events
at occupied sites (see ‘Generating autocorrelated detections’).

Ecologists have investigated several aspects of the autocorrela-
tion problem in camera trap studies, but little practical guidance
exists. In a simulation study, Neilson et al. (2018) showed that an-
imal movement resulted in biased occupancy estimates. However,
most treatments of the effect of animal movement on occupancy
estimation focus on implications for the occupancy-abundance rela-
tionship (Bollen et al., 2023; Linden et al., 2017; Parsons et al., 2017;
Stauffer et al., 2021). Some SOM extensions and alternatives have
been proposed to deal with temporal structure in replicate surveys
(Guillera-Arroita et al., 2011; Hines et al., 2010). These models may
reduce bias and improve inference in most cases; however, since the
SOM continues to dominate occupancy modelling, it is worthwhile
to develop clear guidance for ecologists to mitigate the impact of au-
tocorrelation on the performance of the SOM applied to camera trap
data. To this end, Wright et al. developed a goodness-of-fit test that
may be able to identify nonindependence between replicate surveys
(Wright et al., 2016), though the usefulness of this test across sam-
pling conditions has not been tested. In terms of mitigating bias due
to autocorrelation, some authors have discussed choosing a detec-
tion window—the temporal bin used to discretize data—in such a way
as to enforce independence between detection events at a site, but
to our knowledge, no studies exist producing evidence-based rec-
ommendations for the detection window.

In this study, we investigate the impact of autocorrelated cam-
era trap detections and provide concrete, practical guidance for
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estimating occupancy. We first discuss autocorrelation in the con-
text of a data-generating model by building intuition about how
non-independent detections affect the estimation of detection
and occupancy processes in the SOM. We then conduct a simula-
tion study to investigate the conditions under which autocorrela-
tion impacts model performance. We investigate the impact of
varying the detection window used to discretize continuous-time
data, an issue relevant to any analysis of observational data pro-
duced by continuous-time monitoring, including camera traps or
passive acoustic surveys, which has nonetheless received little at-
tention in the literature. We then illustrate the impact of model-
ling choices using a case study of camera trap data from across the
United States. We present a set of practical recommendations for
assessing whether autocorrelation causes biologically relevant bias
in estimates of animal occupancy and inference on species' habitat

associations.

2 | METHODS
2.1 | Generating autocorrelated detections

Here, we present a data-generating model for producing detec-
tion-nondetection data in a hierarchical occupancy framework
with autocorrelated detections. See Table 1 for a glossary of im-
portant terms.

First, consider the SOM as applied to camera trap data. At each
of N sites, a camera is deployed, generating continuous-time detec-
tions over a period of T days. We typically discretize this continuous-
time data into J replicate detections of some length. For example, if
sampling for 20 days, we might choose to use 1-day detection events
such that T = J = 20, or we might choose 5-day detection windows,
in which case J = 4. We refer to these J survey periods as ‘occasions’,
and the duration of an occasion is the ‘detection window’. The SOM
is defined by the following set of equations:

Yii e Bernoulli(z;p;;)
iid .
z; ~Bernoulli(y)
logit(p;;) = logit(po) + Baxz,

logit (w;) = logit(wo) + B1Xy,

where y; is 0 if the species was not detected during the jth occasion
atsite i and 1 if it was; y; is the probability that site i is occupied; and
pj is the probability of detecting the species during the jth occasion
at site i, if site i is occupied. In the following simulation, occupancy
and detection are each linearly determined by a site-level covariates
x4 and x,. The parameters y and p, are the occupancy and detec-
tion probabilities when x,; = 0 and x,; = O, respectively (mean occu-

pancy and detection if x, and x, are scaled), while the parameters g,
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and B, are the effects of the covariates on occupancy and detection,
respectively.

To induce autocorrelation, we adapt a model given by Hines et al.
developed to describe autocorrelation in transect sampling (Hines
et al., 2010). The Hines et al. occupancy model (hereafter ‘the clus-
tered model’) adds a temporally autocorrelated site use process to
the occupancy-detection hierarchy (Figure 1). The clustered model

is defined by the following equations:
iid . .
yij | wi; ~Bernoulli(w;;z;;) forj =1 ... J
w4 | z; % Bernoulli(z;8)
wij | i, Wij_q e Bernoulli(z;(0(1 —wij;_q) +0'w;j_q) ) forj=2 ... J
iid .
z; ~Bernoulli(y;)
logit(;;) = logit(mg) + 71Xa;

logit (v;) = logit(wg) + Boxy,

[4

0= —"——
0+ (1-90")

The clustered model's occupancy process is identical to that of
the SOM. The true site-level occupancy state, z; is a Bernoulli ran-
dom variable with occupancy probability y;. We can parameterize
y; as logit-linked to a linear model via a probability-scale occupancy
intercept, wo, and 4, the logit-scale effect of site covariate x;. Then,
conditional on occupancy, we define a temporally autocorrelated

site use process. The site use latent state, w;;, has a value of 1 if the

iy
species used the area surveyed by the camera during the jth sam-
pling occasion at site i, and O if it did not. The probability of site
use is determined by two parameters, 8 and @', which correspond to
the probabilities that the species uses the site in one occasion given
that it did not or did use the site during the previous occasion. The
probability of site use during the first occasion, j = 1, is the asymp-
totic mean of site use, 8. Finally, detections arise as Bernoulli random
variables conditional on site use. The probability of detecting the
species on the jth occasion at site i, given that the site is in use, is z;;.
In this model, we parameterize z;; as a logit-linear model with prob-
ability scale intercept 7y and parameter g, representing the effect of
the site-level covariate x, on detection.

The relative values of the parameters 6 and 8’ determine the
degree of autocorrelation in the site use process. We define the

strength of autocorrelation as % When % =1, no autocorrela-
o

v

(Figure 1). Under the clustered model, we refer to the quantity

tion occurs, while when = > 1, detections are autocorrelated
n05 as the ‘detection rate’, as it gives the expected number of
detections per unit time at occupied sites when all covariates are
0. The SOM's equivalent to this parameter is py. To make compar-
isons between autocorrelation levels with a constant model, we
hold the detection rate fixed while adjusting the autocorrelation

strength.

QSURDI' SUOWIIO)) dANEAI) d[qedr[dde dy) Aq POUIdA0S dIe SA[IIE V() 98N JO SN J0f AIRIqIT SUI[UQ AJ[IAN UO (SUOHIPUOI-PUE-SULI} WO KI[IM " ATRIQIOUI[UO,/:SAY) SUOHIPUOY) PUE SWID [, Y} S “[$707/80/50] U0 AIRIqIT SUIUQ AS[IM ‘6SEHT X0 1Z-1+0T/1111°01/10p/wod Ka[im AIeiqrjaur[uo-sjeunofsaq,/:sdny woiy papeofumo( L ‘4707 0121407



Methods in Ecology and Evo EEEZ%?E?VM:AL

GOLDSTEIN ET AL.

TABLE 1 Glossary of key terms used in this paper.

Term

Deployment

Sampling occasion

Detection window

Detection gap

Occupancy state

Occupancy probability

Site use

Detection probability

Detection rate

Autocorrelation

Cumulative detection
probability (CDP)

Realized CDP

Estimated CDP

Definition
A continuous sampling period at a single camera

A temporal subdivision of a deployment used as a replicate detection in a discrete occupancy-type model. A
sampling occasion is associated with either a detection or nondetection datum

The amount of time used to delineate sampling occasions within each camera (e.g. 1day, 7 days)

A period of inactivity between sampling occasions (e.g. Odays, 1day). For example, a 23-day deployment could
be subdivided into sampling occasions with 7-day windows and 1-day gaps between them

The binary condition representing whether the area surveyed by a camera was used by the target species during
the deployment (0 =not occupied, 1=occupied)

The model parameter having values [0, 1] giving the Bernoulli probability that a camera's occupancy state was 1

The process describing whether individual animals of the target species exist in a deployment's sampled area on
a particular occasion. Under the asymptotic interpretation of the SOM, site use is confounded with detection
and is implicitly assumed to be independent across sampling occasions. In the clustered model, site use is
modelled explicitly as a temporally structured process

A model parameter with model-specific meanings. In the SOM, detection probability is the probability of
observing the species, during a single sampling occasion, at an occupied camera

In this paper, we use ‘detection rate’ to unify detection probability concepts across models by describing
the rate at which detections occur in the realized data. The mean detection rate at occupied sites is pg in the
occupancy model and 740 in the clustered model (see section ‘Generating autocorrelated detections’)

A phenomenon whereby detections that are close to one another (e.g., in time) O are more similar than expected
under an assumption of independence. In this study, we focus on autocorrelation—that is, nonindependence—
between consecutive sampling occasions within a deployment

The probability that a camera whose sampled area is truly occupied will detect the species in at least one survey
occasion across the entire deployment

In simulated data with known occupancy states, the realized CDP of a given data set is calculated as the number
of deployments with 21 detection divided by the number of truly occupied deployments

The estimated CDP can be calculated from the parameter estimates associated with a fitted model at the
deployment level, or summarized across sites (e.g. median), based on the estimated detection probabilities at
each sampling occasion (Equation 13)

We can illustrate introducing autocorrelation with the following 2.2 | Detection windows and gaps in the literature

example (Figure 2). First, we simulate a data set under the clustered
model with 80 cameras each deployed for 21 days with mean oc-
cupancy yo = 0.6, mean detection probability 7, = 0.4, and site use
probability 8 = ¢ =8 = 0.4. In this case, % =1, so no autocorrela-
tion occurs. Second, we simulate a data set using the same underly-
ing occupancy process but introduce autocorrelation. We hold the
mean detection rate z,0 fixed at 0.16 while setting the autocorrela-
tion strength to% = 10, yielding parameters =, = 0.4, 8 ~ 0.087 and
0’ ~ 0.87. Graphically, the autocorrelated data contain many con-
secutive detections, compared to the data generated without au-
tocorrelation, which are more mixed (Figure 2a). Additionally, while
the number of detections per site with at least one detection is the
same between the two data sets (Figure 2b), the total number of
sites with detections is lower in the autocorrelated case (Figure 2c).
By reducing # while holding 7[05 fixed, the probability of an animal
beginning to use the survey area is reduced. When the true value
of % =1, and no autocorrelation occurs, the clustered occupancy
model produces data equivalent to that generated by an SOM with
pij = 57:”-, and we expect the SOM to accurately estimate wy and g,
. When data are generated with autocorrelation, then estimating
the SOM is equivalent to estimating the clustered occupancy model
under the erroneous assumption that% =1

To estimate discrete-time models such as the SOM or the clus-
tered model with data collected in continuous time, one chooses
a fixed time interval over which to discretize observations into a
series of detection-nondetection data. For example, if a camera
is deployed for 10 days, a common choice is to divide the sampling
into 10 24-h occasions. We refer to this as a choice to use a 1-
day ‘detection window’ (Table 1). Choosing a particular detection
window is necessary whenever camera trap data are used to fit a
discrete-time SOM or SOM extension, but the optimal detection
window is unclear.

When autocorrelation occurs in camera trap data, the choice of
detection window may influence the degree of bias in estimates of oc-
cupancy parameters. In an extreme example, if the detection window
is 1month, it is unlikely that autocorrelated processes like animal move-
ment will link detections between 1-month long sampling occasion and
the next, but if the detection window is 1s, an individual animal making
its way through the surveyed area will regularly be detected during mul-
tiple sampling occasions. In the latter case, the amount of independent
information regarding animal detectability is inflated.

Similarly, authors might choose to impose a detection gap, a pe-
riod of downtime in between each sampling occasion during which any
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Detection data | [
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FIGURE 1 Unifying the perspectives of the clustered occupancy
model and the SOM. At one camera, both models assume that
occupancy is constant throughout the study duration. Under the
asymptotic interpretation of occupancy, the camera is occupied

if it is used by the species at any point during the study period.

The clustered model explicitly separates a site use process from

an autocorrelated detection process. In the SOM, site use and
detection are confounded, and it is assumed that no autocorrelation
occurs in site use, that is, 6§ = ¢'.

detections are discarded (e.g. Ferreguetti et al., 2015). For instance,
one could divide a 23-day deployment into three sampling occasions
with a 7-day window, imposing a 1-day gap between each occasion
during which any detections are discarded. Gaps create separation be-
tween consecutive samples and seem to reduce the degree of depen-
dence between consecutive surveys. However, using gaps reduces the
content of information available for modelling, which could be undesir-
able, particularly for species that are rarely detected.

In practice, detection windows vary. In a review of camera trap
methods, Burton et al. (2015) found that occupancy modellers
working with camera trap data used detection windows varying
in duration from 1 to 15days, with a median duration of 5days
(Burton et al., 2015). To provide updated context for the recom-
mendations in this study, we conducted a brief review of the use
of detection windows and detection. We randomly selected 100
papers published in the last 10years associated with the search
terms ‘occupancy’ and ‘camera trap’. We noted the detection win-
dows and detection gaps used in each paper. For full details, see
the Supplemental Materials.

2.3 | Simulation study

2.3.1 | Simulation 1: Impact of autocorrelation
on the SOM

In the first phase of the simulation, we evaluated how the perfor-
mance of the SOM changed when autocorrelation was induced in
the detection process.
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Strong autocorrelation may bias occupancy estimation only
under certain sampling conditions or in certain systems. To investi-
gate this, we varied levels of four parameters of the data-generating
model (mean abundance y, mean detection rate z,6, detection
breakdown 6/, and autocorrelation strength %) and two effort
parameters (number of cameras and duration of sampling at each
camera). We list these parameters, their interpretations and the
levels we considered in Table 2. At each combination of these vari-
ables, we simulated 1000 data sets using a 1-day detection window
and a 0-day detection gap, then estimated the SOM.

We evaluated the performance of the occupancy model under
each simulation condition in terms of inference and prediction.
To characterize variation in inference, we calculated the median
absolute error in the estimates of the occupancy parameters
(wo and B,), the median standard error of the estimates of these
parameters, and the rates at which 95% confidence intervals of
parameters contained the true value, each across 1000 replicate
simulations. To track predictive performance, we calculated the
root mean squared error (RMSE) of each fit model according to

the formula

1..N

Z(VA/;—W,')Z

i

RMSE =

Zl-

where y; is the true simulated occupancy probability at camera i, ;
is the estimated occupancy probability at camera i and N is the total
number of cameras (Zulian et al., 2021).

For each fitted model, we also calculated the true cumulative de-
tection probability (CDP) and the model estimated CDP. True CDP
was calculated as the number of sites with detections divided by the
number of truly occupied sites. At one camera, estimated CDP is

calculated as

—

CDP, = 1- (1-p;)’

For each model, we calculate the median CDP across all sites.

2.3.2 | Simulation 2: Goodness-of-fit checking

Ecologists commonly use goodness-of-fit checks to identify discrep-
ancies between assumed and realized data distributions (MacKenzie
& Bailey, 2004). A candidate goodness-of-fit test for identifying
autocorrelation in data is the join count test given by Wright et al.
(hereafter ‘join count test’) which compares the observed count
of consecutive detections to a bootstrapped expectation (Wright
et al., 2016). To evaluate the performance of this test, we simulated
an additional 1000 data sets under each combination of system and
sampling parameters in Simulation 1. We estimated the SOM with
each data set, then conducted the join count test on each fitted
model. We tracked the rate at which the join count test produced
evidence of bad model fit (p-value < 0.05) under each simulation
condition.
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FIGURE 2 Comparing data generated with no autocorrelation to data generated with strong autocorrelation. (a) Two simulated detection
histories. Both comprise 21 replicate detections at each of 80 identical sites. The data generated with strong autocorrelation (right panel)
contain visually striking strings of repeat detections, while detections in the data set generated with no autocorrelation appear randomly
dispersed. (b) The two data sets are roughly equal in the average number of detections per site with at least one detection. (c) However,

the fraction of truly occupied sites with at least one detection—the realized cumulative detection probability (CDP)—is lower in the
autocorrelated data set. When estimating the occupancy model, this will lead to an overestimation of the cumulative detection probability

and a subsequent underestimation of occupancy.

2.3.3 | Simulation 3: Choosing a detection
window and detection gap

In a subsequent exercise, we simulated detection histories using
various detection windows and detection gaps. To represent the
data manipulation process from which windows and gaps arise,
data were first simulated under the clustered model with 1-day
windows and O-day gaps, then aggregated. During the aggrega-
tion process, incomplete sampling occasions were discarded: for
example, simulating data under a 21-day sampling scenario with a
detection window of 5 and a detection gap of 1 yielded three 5-
day periods each buffered by 1day, with 4 days of discarded data
at the end of sampling.

We fixed state parameters at y, = 0.4, 7,6 =0.3and 8 /7y =1
and the number of sites at 80, one case from Simulation 1 where
the 1-0 SOM produced biased estimates. We allowed the total
amount of effort at each site to take values of 21days, 35days
or 70days. We varied detection windows from 1day to 20days

and detection gaps from O to 3days. We did not consider com-
binations of design parameters where the length of one window
and gap exceeded half the total sampling duration. At each com-
bination of these three parameters, we simulated 1000 data sets,
estimated the SOM and evaluated model performance following
Simulation 1.

2.3.4 | Simulation 4: Estimating the clustered
occupancy model

In some cases, estimating a model that explicitly accounts for au-
tocorrelation may be the best strategy. However, such models
have more complex hierarchical structure, so they may produce
estimates with increased uncertainty and worse or comparable pre-
dictive power than simpler models (Pautrel et al., 2024). To assess
the costs and benefits of using a more complex model, we investi-
gate how the clustered model used to generate the data performs
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TABLE 2 Sampling and occupancy system parameters considered in Simulation 1.

Simulation parameter Type Interpretation Simulated levels
Number of sites Sampling How many cameras were deployed? 40, 80, 120
Sampling effort Sampling For how many days was each camera deployed? 21,35,70
Occupancy probability (w) System Average probability that a site is occupied 0.3,0.4,0.5,0.6
Mean detection rate (,,05) System Average probability of detection at an occupied site. Number ~ 0.15, 0.2, 0.25,0.3
of overall detections increases as this value increases
Detection breakdown (5/”0) System Relative importance of site use vs. imperfect detection in 1/3,1
driving nondetections at occupied sites. Site use increases in
importance as this value decreases
Autocorrelation strength (&) System Strength of autocorrelation in site use. If this valueis> 1,the 1,5, 10
0 species is more likely to use the site during time t if they used
the site during time t-1. In all figures, ‘strong autocorrelation’
refers to% = 10 and ‘no autocorrelation’ refers to% =1l
Effect of occupancy covariate (4,) System The logit-scale effect of a simulated site-level occupancy 0.5
covariate
Effect of detection covariate (f,) System The logit-scale effect of a simulated site-level detection -0.5
covariate

in comparison to the SOM in a simulation and case study. At each
combination of system and effort variables (Table 2), we simulated
an additional 1000 data sets. We fit each to both the SOM and the
clustered occupancy model. We tracked the performance, in terms
of inference and prediction, of both models as in Simulation 1.

In all four simulations, we estimated the SOM via maximum likeli-
hood estimation with the package ‘unmarked’ (Fiske & Chandler,2011).
We estimated the clustered model using custom code in R with the
compiled hidden Markov model distribution provided in the R pack-
age nimbleEcology (Goldstein et al., 2020). Parallel processing was
executed using the R package ‘parabar’ v1.1.0 (Constantin, 2023).
All analysis was conducted in R version 4.3.1 with visualizations pro-
duced using the R package ‘ggplot2’ (Wickham, 2016). We provide
all code used to conduct simulations in an accompanying repository
(Goldstein et al., 2024).

2.4 | Case study: Snapshot USA

To develop practical recommendations for dealing with autocorrela-
tion in real camera trap data, we conducted a case study using cam-
era trap observations of North American mammals. We retrieved
camera sequences and deployment metadata from Snapshot USA's
2020 season (Kays et al., 2022). Snapshot USA cameras were dis-
tributed across the continent in arrays of 5-65 cameras. Within each
array, cameras were placed a minimum distance of 200 m apart. Sites
were selected so as to be random with respect to animal movement:
Cameras were not baited and were not intentionally aimed at at-
tractants like game trails or water sources (Kays et al., 2022). For
modelling, we identified all species observed on at least 100 camera
days. For each species, we removed all camera deployments outside
the species range (IUCN [International Union for Conservation of
Nature], 2023). At each deployment, we then divided the sampling
duration into 24-h occasions beginning at noon of the first day. We

constructed a detection history at each site indicating whether the
species was detected during each occasion.

To construct ecologically realistic occupancy submodels, we re-
trieved values of four covariates at each deployment. We retrieved
estimates of maximum annual temperature at a 2.5 arc-minute resolu-
tion from the MERRACclim climate data set (Vega et al., 2017), percent
forest cover at a 1-km resolution (Jung et al., 2020) and estimated can-
opy height in 2019 at 30m resolution (Potapov et al., 2021). For these
three variables, each camera was associated with the covariate value
of the raster cell in which it occurred. We also computed the distance
to the nearest road at each camera (Meijer et al., 2018).

For each species, we estimated three SOMs using detection
windows of 1day and 10days. For comparison, we also fit the clus-
tered occupancy model to each single-species data set using 1-day
intervals. We scaled and centred all four covariates separately for
each species. In all three models, we included percent forest cover
and maximum temperature as covariates on occupancy and canopy
height and log-scale distance to road as covariates on detection.
These simple occupancy models were designed to be sufficiently
realistic while remaining generalizable across species with different
ranges and life histories. We found maximum likelihood estimates of
model parameters and calculated estimated CDP. To assess evidence
of autocorrelation, we applied the join count test to each species'
1-day window model, adjusting p-values for multiple testing by con-
trolling the false discovery rate (Benjamini & Hochberg, 1995).

3 | RESULTS
3.1 | Detection windows and gaps in the literature
Of 100 papers using camera trap data to estimate occupancy that

were randomly selected from a Web of Science query, 66 papers
qualified for analysis and 62 clearly reported the choice of detection
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window used (Figure S1). The most common choice of detection
window was 1day (18 papers), followed by 5days (15 papers) and
7 days (7 papers). The longest window we observed was 60days,
and no study in our sample used a detection window of less than
1day. Notably, only two of 66 papers indicated using detection gaps.
Larger detection windows were typically presented as increasing the
per-occasion detection rates to improve model convergence, rather
than as a means of addressing autocorrelation. The median sampling
duration was 35days, though surveys ranged from only 5days to

more than 3years at each site.

3.2 | Simulation study

3.2.1 | Simulation 1 results: Impact of
autocorrelation on the SOM

Across 864 simulation conditions, SOMs fit to data simulated with-
out autocorrelation showed no systematic bias under any conditions.
We provide results across all conditions in Supplemental Table S1
and are visualized in Figures S2-S9. When autocorrelation was in-
troduced, systematic bias occurred when estimating the occupancy
intercept under certain conditions (Figure 3a). The most important
determinant of bias in the presence of autocorrelation was sampling
duration. In the worst case, logit-scale systematic bias in the inter-
cept was -0.4 (a 16% underestimation). When the sampling period
was extended from 21 days to 35days, logit-scale bias was reduced
to -0.26 (an 11% underestimation). When the sampling period was
70days, the worst-case bias in occupancy was a logit-scale bias of
-0.1 (a 4% underestimation). Autocorrelation also led to bias in esti-
mating the effect of a covariate on occupancy (Figure 3b), which like
the occupancy intercept was biased downward when autocorrela-
tion was strong and sampling duration was low. A low-magnitude
(<0.05) positive bias persists in cases of long survey times, which
is observed across autocorrelation simulation conditions (Figure Sé).
This positive bias, which is masked by autocorrelation-driven nega-
tive bias at low survey durations, decreases towards O as the number
of sites increases (Figure S7).

Models fit to data with autocorrelation also showed worse
predictive performance. RMSE in predictions of occupancy at out-
of-sample sites increased under conditions matching those that
produced biased occupancy estimates (Figure 3c). In the worst

simulation scenarios, RMSE increased by 106%, from 0.066 to 0.136,
when autocorrelation was introduced.

Across all simulation conditions, error in estimating cumulative
detection probability (CDP) corresponded to bias in estimating the
occupancy intercept (Figure 4). This relationship was strongly linear
(R2 = 0.945). This suggests that the effect of autocorrelation on bias
is mediated through its effect on estimated CDP.

3.2.2 | Simulation 2 results:
Goodness-of-fit checking

Across all conditions, the join count test goodness-of-fit test yielded
evidence of autocorrelation in 0.3% of simulations where no autocor-
relation was present, and 93% of simulations where autocorrelation
was present. The power of the join count test to detect autocorrela-
tion depended on sample size and occupancy rate (Figure 5): The
test detected autocorrelation 76% of the time in moderately auto-
correlated data sets simulated at 40 cameras with mean occupancy
of 0.3, and 100% of the time in data sets simulated at 120 cameras

with mean occupancy of 0.6.

3.2.3 | Simulation 3 results: Choosing a detection
window and detection gap

Choice of detection window had a substantial impact on model per-
formance (Figure 6). When bias occurred in the baseline (1-day win-
dow, O-day gap) model, increasing the detection window decreased
bias in the occupancy estimate. For example, in the 21-day sampling
scenario, the use of a 10-day window decreased the magnitude
of bias by more than half compared to a 1-day window, and in the
35-day scenario, the use of the maximum possible 17-day window
reduced bias by more than 90% (Figure 6a,b). Larger detection win-
dows were associated with larger uncertainties (Figure 6c), but those
uncertainties better reflected the true coverage of the 95% confi-
dence intervals (Figure 6d). In cases where the baseline model was
unbiased, changing the detection window had little effect on model
performance.

Detection gaps were not helpful in mitigating the impacts of
autocorrelation. Introducing detection gaps did not meaningfully
change bias in the model (Figure 6a,b). Instead, detection gaps were

FIGURE 3 Effect of autocorrelation on estimating occupancy parameters. (a and b) Each tile shows the change in median absolute error
of an occupancy submodel parameter estimate across 1000 replicate simulations when strong autocorrelation is introduced (%: 10) at one
simulation condition. All results reflect a model with 1-day detection windows and no detection gaps. (a) Absolute median error in estimating
the occupancy intercept in a strong autocorrelation condition compared to estimating data with no autocorrelation. Bias increases as the
detection rate decreases, mean occupancy probability increases and sampling time decreases. (b) Absolute median error in estimating the
effect of a site covariate on occupancy. Bias follows a similar pattern to the intercept, but the magnitude of bias is much less, and noise
becomes relevant (note that panel B reports error on the logit scale of the covariate effect, while panel a reports error on the probability
scale). (c) Change in predictive error (RMSE) between strong autocorrelation and no autocorrelation simulation conditions. Predictive error
increases when occupancy increases, detection rate decreases and sampling time decreases, a pattern matching that of induced bias in

panels (a and b).
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associated with greater uncertainty in model estimates in low-

information scenarios (Figure 6c) as information was discarded.

3.2.4 | Simulation 4 results: Estimating the
clustered occupancy model

We estimated the clustered occupancy model used to generate the
autocorrelated data to 1000 data sets under each sampling condi-
tion. The clustered occupancy model produced effectively unbi-
ased estimates of mean occupancy under all conditions, except
when autocorrelation was very strong and sampling durations were

short, in which case the clustered model overestimated occupancy

-0.05

Bias in occu. intercept

-0.10

0.00 0.05 0.10 0.15 0.20
Error in estimated CDP (Window = 1)

FIGURE 4 Across 864 simulation conditions (blue points), mean
error in estimated cumulative detection probability (CDP) was
strongly correlated with mean logit-scale bias in the estimated
occupancy intercept. The blue line shows the best-fit line for

a linear relationship between estimated CDP and the bias in
estimating the occupancy intercept.

(Figure S2). However, under this condition, the clustered model still
outperformed the SOM by RMSE (Figure S3).

3.3 | Case study: Snapshot USA

We identified 23 species with sufficient Snapshot USA data for anal-
ysis. One species, the desert cottontail (Sylvilagus audubonii), was
excluded due to insufficient variation in the covariates of interest
across its range, leaving 22 modelled species. A full list of species
with data summary statistics is available in Table S2.

We applied the join count test to the fitted SOM using 1-day win-
dows for each species. Adjusted p-values for 20 of 22 species were
less than 0.05, indicating evidence of autocorrelated detections for
those 20 species (Figure 7). Across species, 10-day detection win-
dows yielded consistently higher estimates of occupancy probabil-
ities compared to 1-day windows (Figure 7b). The clustered model
also produced consistently higher occupancy estimates. However,
we observed no change in point estimates of the effect of forest
and temperature on occupancy when changing the detection win-
dow (Figure 7b). The 10-day SOM and the clustered model were
associated with comparable low-magnitude increases in parameter
uncertainty compared to the 1-day SOM (Figure 3c).

4 | DISCUSSION

In this study, we investigated the consequences of having unmod-
eled temporal structure in detections produced by continuous-time
camera trap sampling when estimating occupancy. In simulations,
temporal autocorrelation in detections biased occupancy estimates
downward. Autocorrelation inflates detection probabilities, leading
to overestimation of CDP. Consequently, the probability of occu-
pancy at sites with no detections is underestimated and bias occurs.
Bias was strongest in the occupancy intercept, with relative effects
of covariates being subject to less bias, and bias was strongest when

Autocorr. str. = 1 | ‘
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FIGURE 5 Performance of the join count test for identifying autocorrelation in simulated data. The join count test had a very low false-
positive rate, almost never indicating that autocorrelation was present when it was not. When autocorrelation was present (2nd and 3rd
panels), the join count test indicated as such 76%-100% of the time, with better performance as the number of deployments and mean
occupancy rate increased. Results are summarized across all simulation conditions using a 1-day detection window and no detection gap; full

results are shown in Figure S10.
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FIGURE 6 Consequences of varying the detection window and detection gap. All results come from data simulated under the parameters
vy =04, po§ =0.3and 5/710 = 1 at 80 sites. Note that errors in occupancy estimates are reported on the logit scale in this figure. (a)
Increasing the detection window reduced error in estimated CDP and (b) error in the estimate of mean occupancy probability, while
detection gaps had no meaningful effect on either. (c) Increasing the window increased standard error in the estimate of mean occupancy
when autocorrelation occurred. Detection gaps also increased standard error. (d) In the most problematic simulation condition (low sampling
and strong autocorrelation) the coverage of the 95% confidence interval was below 90%.

camera deployments were short. When true CDPs were close to 1
due to long sampling durations, bias was very small even when auto-
correlation was strong.

To investigate autocorrelation in an empirical data set, we
conducted a case study modelling the occupancy of 22 mammals
based on detections from a camera trapping network across North
America. We found evidence of 1-day temporal autocorrelation in

these data in 20 of 22 species studied, suggesting that autocor-
related detections are present in camera trap data across a variety
of taxa and life-history traits. Results were consistent with the sim-
ulation, where bias occurred in the occupancy intercept but not in
the estimates of relative effects of covariates on occupancy. Bias
in 1-day models was mostly mitigated by the use of longer (10-day)
detection windows. Furthermore, 10-day models produced larger
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FIGURE 7 Results from a case study estimating occupancy with camera trap data from Snapshot USA. (a) Goodness-of-fit tests yielded

evidence of autocorrelation in detections of 20/22 species. (b) Estimates

of the occupancy intercept yielded by 10-day window site

occupancy models (SOMs) and by the clustered model were higher than those produced by a 1-day window SOM. Point estimates of the
effects of temperature and forest cover did not change. (c) Ten-day window SOMs and clustered models had higher uncertainty in model
estimates, consistent with simulation results, where estimates based on larger detection windows were wider and more accurate.

estimates of uncertainty, comparable to those obtained from the
clustered model. This suggests that, even when point estimates
were unbiased, occupancy parameter estimates derived from SOMs
with 1-day windows were overconfident.

Based on this work, we recommend that anyone seeking to es-
timate occupancy with camera trap or other continuous-time data

consider the following recommendations.

1. Always check fitted SOMs for evidence of autocorrelation by
applying the join count test (Wright et al., 2016). A p-value of
less than 0.05 indicates strong evidence that autocorrelation is
present, though it does not necessarily mean that occupancy
estimates are biased. To aid in the uptake of this test, we
provide an R function for applying it to an ‘unmarked’ fitted
occupancy model object (see Supplemental Materials).

2. Use simulations to assess the degree of bias in occupancy estimates
expected under different degrees of autocorrelation. For a given
study, the most useful simulations will use the true number of sites
and sampling days per site with reasonable values of occupancy and
detection. We also provide a reference table that readers can use to
cross-reference their data characteristics (Table S1).

3. If autocorrelation is present when using a 1-day window, and sim-
ulations indicate that meaningful bias might occur, reprocess your
detection histories to maximize the length of the detection win-
dow. As a guideline, we propose windows of up to half the median
deployment duration. If sampling is very long and variable across
sites, a shorter window could be used to avoid losing information

at sites with shorter deployments, such as half the duration of the

25th quantile of sampling durations.

These recommendations are applicable to any occupancy model
fit to camera trap data with within-site temporal structure, including
most SOM extensions (e.g. dynamic or community occupancy mod-
els). Most such extensions disentangle occupancy from detection
based on the assumption that replicate detections at closed sites
are independent. Consequently, autocorrelation within closed sites
will lead to inflated CDP and estimates of occupancy that are biased
downward. The use of the join count test to check for autocorrela-
tion may be useful in such cases. Follow-up studies exploring the
consequences of autocorrelated detections on inference from SOM
extensions would be useful to provide additional guidance.

In many cases, such as in cases with large numbers of sites and
low cumulative detection probabilities, estimating the clustered
model directly may be a more straightforward strategy than refor-
matting data for use with the SOM. However, the clustered model
is more complex and may produce more uncertain estimates with
lower power to detect differences under typical sampling designs.
Ultimately, the focus of this study was to evaluate the performance
of the SOM, and further investigation into the performance of the
clustered model is necessary.

The strategies we recommend are less effective in low-information
contexts, so autocorrelation should be considered at the study design
stage of research in addition to the analysis stage. If sampling is in-
sufficient and few detections are generated, goodness-of-fit checks
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will have low power to detect autocorrelation and autocorrelation will
result in greater relative bias. More complicated models that explicitly
account for non-independent detections also perform worse in low-
information contexts. ldeally, ecologists should sample for as long as
is feasible under species-specific closure assumptions to maximize
the true cumulative detection probability at each site. When longer
deployments are infeasible, either due to pragmatic considerations
or because of population closure assumptions, ecologists should con-
sider using clustered or continuous time models, which may require
sampling at more sites for useful inference and which may introduce
additional computational obstacles (Guillera-Arroita et al., 2011; Hines
et al., 2010; Pautrel et al., 2024). Furthermore, the recommendations
we produce are not intended for studies where the primary goal is
inference on the detection process. The detection window deter-
mines the scale at which detection effects may be interpreted. When
conducting inference on detection, adjusting the size of the detec-
tion window may not be an appropriate solution. Ecologists aiming
to conduct inference on the detection process from data containing
autocorrelated detections should prioritize fitting models that give a
better representation of the process of interest, that is, a model that
explicitly estimates autocorrelation or one with a detection submodel
in continuous time (Guillera-Arroita et al., 2011; Hines et al., 2010). We
also note that different representations of temporal structure may fit
certain data sets more or less well. Ecologists conducting inference
on detection should test their findings for sensitivity to the choice of
detection model or use model selection.

Observations of wildlife generated by camera traps and auton-
omous acoustic recorders are increasingly used to estimate animal
occupancy (Furnas, 2020; Kays et al., 2020). Temporal noninde-
pendence can occur in any study where detections are temporally
structured; in camera trap data, they may arise due to animal move-
ment, but in other contexts, autocorrelation could be driven by miss-
ing temporally structured covariates, time-series effects, or other
unknown phenomena. Regardless of the cause, unmodeled nonin-
dependence leads to understated uncertainties and can cause bias
(Hurlbert, 1984). Here, we showed that temporal nonindependence
in temporally structured data can lead to underestimation of occu-
pancy when data are treated as arising from independent consecu-
tive surveys, as is common in the literature. Practitioners applying
old models to new methods should be vigilant for new sources of
nonindependence and should seek out practical strategies for miti-
gating consequent bias.
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Figure S8. Standard error of the occupancy intercept estimate across
simulation conditions and window sizes.

Figure S9. Error in estimating the cumulative detection probability
across simulation conditions.

Figure S10. Rate at which the Wright et al. join count goodness-of-fit
test indicated autocorrelated detections in data.
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