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Abstract
1.	 Site occupancy models (SOMs) are a common tool for studying the spatial ecology 

of wildlife. When observational data are collected using passive monitoring field 
methods, including camera traps or autonomous recorders, detections of animals 
may be temporally autocorrelated, leading to biased estimates and incorrectly 
quantified uncertainty. We presently lack clear guidance for understanding and 
mitigating the consequences of temporal autocorrelation when estimating occu-
pancy models with camera trap data.

2.	 We use simulations to explore when and how autocorrelation gives rise to biased 
or overconfident estimates of occupancy. We explore the impact of sampling de-
sign and biological conditions on model performance in the presence of auto-
correlation, investigate the usefulness of several techniques for identifying and 
mitigating bias and compare performance of the SOM to a model that explicitly 
estimates autocorrelation. We also conduct a case study using detections of 22 
North American mammals.

3.	 We show that a join count goodness-of-fit test previously proposed for identify-
ing clustered detections is effective for detecting autocorrelation across a range 
of conditions. We find that strong bias occurs in the estimated occupancy inter-
cept when survey durations are short and detection rates are low. We provide a 
reference table for assessing the degree of bias to be expected under all condi-
tions. We further find that discretizing data with larger windows decreases the 
magnitude of bias introduced by autocorrelation. In our case study, we find that 
detections of most species are autocorrelated and demonstrate how larger detec-
tion windows might mitigate the resulting bias.

4.	 Our findings suggest that autocorrelation is likely widespread in camera trap data 
and that many previous studies of occupancy based on camera trap data may 
have systematically underestimated occupancy probabilities. Moving forward, 
we recommend that ecologists estimating occupancy from camera trap data use 
the join count goodness-of-fit test to determine whether autocorrelation is pre-
sent in their data. If it is, SOMs should use large detection windows to mitigate 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2024 The Author(s). Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0001-8015-7494
https://orcid.org/0000-0002-2947-6665
mailto:bgoldst2@ncsu.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.14359&domain=pdf&date_stamp=2024-05-31


1178  |    GOLDSTEIN et al.

1  |  INTRODUC TION

The hierarchical site occupancy model (SOM) is one of the most 
common tools that ecologists use to analyse ecological field data 
(MacKenzie et al., 2002). The SOM is used to estimate the proba-
bility that a species is present at each of a number of sites when 
detection is imperfect, that is, surveys can fail to detect the species 
even if it truly occupies the surveyed area. Today, the SOM is often 
estimated using data collected by passive monitoring, such as with 
acoustic recorders or camera traps (Furnas, 2020; Kays et al., 2020). 
These sampling methods produce detections of animals in continu-
ous time. The continuous survey period can be ‘discretized’ into a se-
ries of detection–nondetection data for use in the SOM framework.

Estimating the SOM with data collected under continuous-time 
passive monitoring protocols such as camera traps poses an apparent 
problem. The SOM was originally developed to describe traditional 
discrete field surveys, in which a target species is observed or not on 
each of several surveys at clearly defined sites. Data collected under 
passive monitoring protocols do not satisfy the model's assump-
tions as originally stated. Most prominent among these assumptions 
is the ‘closure’ assumption, which states that the occupancy state 
of the surveyed area is constant (closed) across replicate observa-
tions. For data collected by camera traps, which may survey tens of 
square metres for several weeks, the target species is rarely present 
in the survey area for the duration of the study. Ecologists resolve 
this mismatch via an ‘asymptotic’ interpretation of the occupancy 
process where a site surveyed by a camera is defined as ‘occupied’ 
throughout the survey period if an individual of the species occu-
pies the survey area for any amount of time (Efford & Dawson, 2012; 
Latif et al., 2016). The parameters of the SOM are then estimated as 
usual. Under the asymptotic interpretation, inference still depends 
on meeting other assumptions of the SOM. To extend ecological in-
ference beyond the small areas surveyed by each camera, these as-
sumptions include that the placement of cameras on the landscape 
is representative of the study area. This requires that sites follow, for 
example, that they are selected using random or stratified random 
placement or are placed on a systematic grid (Burton et al., 2015).

When the SOM is estimated using data collected under a contin-
uous survey protocol, there is a risk that assumption violations occur 
in addition to those which are resolved via the asymptotic interpre-
tation of occupancy. In particular, when discretizing continuous-time 
data, ecologists risk inducing nonindependence between replicate 
surveys. Nonindependence could arise if there are unmodeled, tem-
porally structured variables that drive detection, such as weather. 

Another likely source of nonindependence is animal behaviour: 
Individuals may remain at or near a site for days, with the same indi-
vidual triggering a camera multiple times before moving on (Neilson 
et al., 2018). The reverse may also occur—a slow moving animal that 
uses the surveyed area might happen to remain in another part of 
its home range for the duration of the survey period, leading to au-
tocorrelated nondetections. We refer to any such temporally struc-
tured nonindependence between consecutive surveys as ‘temporal 
autocorrelation’.

Temporally autocorrelated detection events violate the assump-
tions of the SOM regardless of their cause or the interpretation 
framework. Autocorrelated detections result in pseudoreplication, 
whereby non-independent events are treated as independent. 
Failure to consider nonindependence in modelling can lead to over-
confident estimates of model parameters (Hurlbert,  1984). In an 
occupancy model, pseudoreplicated detections can cause bias since 
the occupancy model's estimate of imperfect detection is directly in-
formed by the number of supposedly independent detection events 
at occupied sites (see ‘Generating autocorrelated detections’).

Ecologists have investigated several aspects of the autocorrela-
tion problem in camera trap studies, but little practical guidance 
exists. In a simulation study, Neilson et al.  (2018) showed that an-
imal movement resulted in biased occupancy estimates. However, 
most treatments of the effect of animal movement on occupancy 
estimation focus on implications for the occupancy–abundance rela-
tionship (Bollen et al., 2023; Linden et al., 2017; Parsons et al., 2017; 
Stauffer et al., 2021). Some SOM extensions and alternatives have 
been proposed to deal with temporal structure in replicate surveys 
(Guillera-Arroita et al., 2011; Hines et al., 2010). These models may 
reduce bias and improve inference in most cases; however, since the 
SOM continues to dominate occupancy modelling, it is worthwhile 
to develop clear guidance for ecologists to mitigate the impact of au-
tocorrelation on the performance of the SOM applied to camera trap 
data. To this end, Wright et al. developed a goodness-of-fit test that 
may be able to identify nonindependence between replicate surveys 
(Wright et al., 2016), though the usefulness of this test across sam-
pling conditions has not been tested. In terms of mitigating bias due 
to autocorrelation, some authors have discussed choosing a detec-
tion window—the temporal bin used to discretize data—in such a way 
as to enforce independence between detection events at a site, but 
to our knowledge, no studies exist producing evidence-based rec-
ommendations for the detection window.

In this study, we investigate the impact of autocorrelated cam-
era trap detections and provide concrete, practical guidance for 

bias and more accurately quantify uncertainty in occupancy model parameters. 
Ecologists should not use gaps between detection periods, which are ineffective 
at mitigating temporal structure in data and discard useful data.

K E Y W O R D S
autocorrelation, bias, camera trap, occupancy
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estimating occupancy. We first discuss autocorrelation in the con-
text of a data-generating model by building intuition about how 
non-independent detections affect the estimation of detection 
and occupancy processes in the SOM. We then conduct a simula-
tion study to investigate the conditions under which autocorrela-
tion impacts model performance. We investigate the impact of 
varying the detection window used to discretize continuous-time 
data, an issue relevant to any analysis of observational data pro-
duced by continuous-time monitoring, including camera traps or 
passive acoustic surveys, which has nonetheless received little at-
tention in the literature. We then illustrate the impact of model-
ling choices using a case study of camera trap data from across the 
United States. We present a set of practical recommendations for 
assessing whether autocorrelation causes biologically relevant bias 
in estimates of animal occupancy and inference on species' habitat 
associations.

2  |  METHODS

2.1  |  Generating autocorrelated detections

Here, we present a data-generating model for producing detec-
tion–nondetection data in a hierarchical occupancy framework 
with autocorrelated detections. See Table 1 for a glossary of im-
portant terms.

First, consider the SOM as applied to camera trap data. At each 
of N sites, a camera is deployed, generating continuous-time detec-
tions over a period of T days. We typically discretize this continuous-
time data into J replicate detections of some length. For example, if 
sampling for 20 days, we might choose to use 1-day detection events 
such that T = J = 20, or we might choose 5-day detection windows, 
in which case J = 4. We refer to these J survey periods as ‘occasions’, 
and the duration of an occasion is the ‘detection window’. The SOM 
is defined by the following set of equations:

where yij is 0 if the species was not detected during the jth occasion 
at site i  and 1 if it was; � i is the probability that site i  is occupied; and 
pij is the probability of detecting the species during the jth occasion 
at site i , if site i  is occupied. In the following simulation, occupancy 
and detection are each linearly determined by a site-level covariates 
x1 and x2. The parameters �0 and p0 are the occupancy and detec-
tion probabilities when x1,i = 0 and x2,i = 0, respectively (mean occu-
pancy and detection if x1 and x2 are scaled), while the parameters �1 

and �2 are the effects of the covariates on occupancy and detection, 
respectively.

To induce autocorrelation, we adapt a model given by Hines et al. 
developed to describe autocorrelation in transect sampling (Hines 
et al., 2010). The Hines et al. occupancy model (hereafter ‘the clus-
tered model’) adds a temporally autocorrelated site use process to 
the occupancy–detection hierarchy (Figure 1). The clustered model 
is defined by the following equations:

The clustered model's occupancy process is identical to that of 
the SOM. The true site-level occupancy state, zi, is a Bernoulli ran-
dom variable with occupancy probability � i. We can parameterize 
� i as logit-linked to a linear model via a probability-scale occupancy 
intercept, �0, and �1, the logit-scale effect of site covariate x1. Then, 
conditional on occupancy, we define a temporally autocorrelated 
site use process. The site use latent state, wi,j, has a value of 1 if the 
species used the area surveyed by the camera during the jth sam-
pling occasion at site i , and 0 if it did not. The probability of site 
use is determined by two parameters, � and �′, which correspond to 
the probabilities that the species uses the site in one occasion given 
that it did not or did use the site during the previous occasion. The 
probability of site use during the first occasion, j = 1, is the asymp-
totic mean of site use, �. Finally, detections arise as Bernoulli random 
variables conditional on site use. The probability of detecting the 
species on the jth occasion at site i , given that the site is in use, is �i,j . 
In this model, we parameterize �i,j as a logit-linear model with prob-
ability scale intercept �0 and parameter �2 representing the effect of 
the site-level covariate x2 on detection.

The relative values of the parameters � and �′ determine the 
degree of autocorrelation in the site use process. We define the 
strength of autocorrelation as �

′

�
. When �

�

�
= 1, no autocorrela-

tion occurs, while when 𝜃′

𝜃
> 1, detections are autocorrelated 

(Figure 1). Under the clustered model, we refer to the quantity 
�0� as the ‘detection rate’, as it gives the expected number of 
detections per unit time at occupied sites when all covariates are 
0. The SOM's equivalent to this parameter is p0. To make compar-
isons between autocorrelation levels with a constant model, we 
hold the detection rate fixed while adjusting the autocorrelation 
strength.
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We can illustrate introducing autocorrelation with the following 
example (Figure 2). First, we simulate a data set under the clustered 
model with 80 cameras each deployed for 21 days with mean oc-
cupancy �0 = 0.6, mean detection probability �0 = 0.4, and site use 
probability � = �� = � = 0.4. In this case, �

�

�
= 1, so no autocorrela-

tion occurs. Second, we simulate a data set using the same underly-
ing occupancy process but introduce autocorrelation. We hold the 
mean detection rate �0� fixed at 0.16 while setting the autocorrela-
tion strength to �

�

�
= 10, yielding parameters �0 = 0.4, � ≈ 0.087 and 

�� ≈ 0.87. Graphically, the autocorrelated data contain many con-
secutive detections, compared to the data generated without au-
tocorrelation, which are more mixed (Figure 2a). Additionally, while 
the number of detections per site with at least one detection is the 
same between the two data sets (Figure 2b), the total number of 
sites with detections is lower in the autocorrelated case (Figure 2c). 
By reducing � while holding �0� fixed, the probability of an animal 
beginning to use the survey area is reduced. When the true value 
of �

�

�
= 1, and no autocorrelation occurs, the clustered occupancy 

model produces data equivalent to that generated by an SOM with 
pi,j = ��i,j, and we expect the SOM to accurately estimate �0 and �1
. When data are generated with autocorrelation, then estimating 
the SOM is equivalent to estimating the clustered occupancy model 
under the erroneous assumption that �

�

�
= 1.

2.2  |  Detection windows and gaps in the literature

To estimate discrete-time models such as the SOM or the clus-
tered model with data collected in continuous time, one chooses 
a fixed time interval over which to discretize observations into a 
series of detection–nondetection data. For example, if a camera 
is deployed for 10 days, a common choice is to divide the sampling 
into 10 24-h occasions. We refer to this as a choice to use a 1-
day ‘detection window’ (Table 1). Choosing a particular detection 
window is necessary whenever camera trap data are used to fit a 
discrete-time SOM or SOM extension, but the optimal detection 
window is unclear.

When autocorrelation occurs in camera trap data, the choice of 
detection window may influence the degree of bias in estimates of oc-
cupancy parameters. In an extreme example, if the detection window 
is 1 month, it is unlikely that autocorrelated processes like animal move-
ment will link detections between 1-month long sampling occasion and 
the next, but if the detection window is 1 s, an individual animal making 
its way through the surveyed area will regularly be detected during mul-
tiple sampling occasions. In the latter case, the amount of independent 
information regarding animal detectability is inflated.

Similarly, authors might choose to impose a detection gap, a pe-
riod of downtime in between each sampling occasion during which any 

TA B L E  1  Glossary of key terms used in this paper.

Term Definition

Deployment A continuous sampling period at a single camera

Sampling occasion A temporal subdivision of a deployment used as a replicate detection in a discrete occupancy-type model. A 
sampling occasion is associated with either a detection or nondetection datum

Detection window The amount of time used to delineate sampling occasions within each camera (e.g. 1 day, 7 days)

Detection gap A period of inactivity between sampling occasions (e.g. 0 days, 1 day). For example, a 23-day deployment could 
be subdivided into sampling occasions with 7-day windows and 1-day gaps between them

Occupancy state The binary condition representing whether the area surveyed by a camera was used by the target species during 
the deployment (0 = not occupied, 1 = occupied)

Occupancy probability The model parameter having values [0, 1] giving the Bernoulli probability that a camera's occupancy state was 1

Site use The process describing whether individual animals of the target species exist in a deployment's sampled area on 
a particular occasion. Under the asymptotic interpretation of the SOM, site use is confounded with detection 
and is implicitly assumed to be independent across sampling occasions. In the clustered model, site use is 
modelled explicitly as a temporally structured process

Detection probability A model parameter with model-specific meanings. In the SOM, detection probability is the probability of 
observing the species, during a single sampling occasion, at an occupied camera

Detection rate In this paper, we use ‘detection rate’ to unify detection probability concepts across models by describing 
the rate at which detections occur in the realized data. The mean detection rate at occupied sites is p0 in the 
occupancy model and �0� in the clustered model (see section ‘Generating autocorrelated detections’)

Autocorrelation A phenomenon whereby detections that are close to one another (e.g., in time) 0 are more similar than expected 
under an assumption of independence. In this study, we focus on autocorrelation—that is, nonindependence—
between consecutive sampling occasions within a deployment

Cumulative detection 
probability (CDP)

The probability that a camera whose sampled area is truly occupied will detect the species in at least one survey 
occasion across the entire deployment

Realized CDP In simulated data with known occupancy states, the realized CDP of a given data set is calculated as the number 
of deployments with ≥1 detection divided by the number of truly occupied deployments

Estimated CDP The estimated CDP can be calculated from the parameter estimates associated with a fitted model at the 
deployment level, or summarized across sites (e.g. median), based on the estimated detection probabilities at 
each sampling occasion (Equation 13)
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detections are discarded (e.g. Ferreguetti et al., 2015). For instance, 
one could divide a 23-day deployment into three sampling occasions 
with a 7-day window, imposing a 1-day gap between each occasion 
during which any detections are discarded. Gaps create separation be-
tween consecutive samples and seem to reduce the degree of depen-
dence between consecutive surveys. However, using gaps reduces the 
content of information available for modelling, which could be undesir-
able, particularly for species that are rarely detected.

In practice, detection windows vary. In a review of camera trap 
methods, Burton et  al.  (2015) found that occupancy modellers 
working with camera trap data used detection windows varying 
in duration from 1 to 15 days, with a median duration of 5 days 
(Burton et al., 2015). To provide updated context for the recom-
mendations in this study, we conducted a brief review of the use 
of detection windows and detection. We randomly selected 100 
papers published in the last 10 years associated with the search 
terms ‘occupancy’ and ‘camera trap’. We noted the detection win-
dows and detection gaps used in each paper. For full details, see 
the Supplemental Materials.

2.3  |  Simulation study

2.3.1  |  Simulation 1: Impact of autocorrelation 
on the SOM

In the first phase of the simulation, we evaluated how the perfor-
mance of the SOM changed when autocorrelation was induced in 
the detection process.

Strong autocorrelation may bias occupancy estimation only 
under certain sampling conditions or in certain systems. To investi-
gate this, we varied levels of four parameters of the data-generating 
model (mean abundance �0, mean detection rate �0�, detection 
breakdown � ∕�0 and autocorrelation strength �

′

�
) and two effort 

parameters (number of cameras and duration of sampling at each 
camera). We list these parameters, their interpretations and the 
levels we considered in Table 2. At each combination of these vari-
ables, we simulated 1000 data sets using a 1-day detection window 
and a 0-day detection gap, then estimated the SOM.

We evaluated the performance of the occupancy model under 
each simulation condition in terms of inference and prediction. 
To characterize variation in inference, we calculated the median 
absolute error in the estimates of the occupancy parameters 
(�0 and �1), the median standard error of the estimates of these 
parameters, and the rates at which 95% confidence intervals of 
parameters contained the true value, each across 1000 replicate 
simulations. To track predictive performance, we calculated the 
root mean squared error (RMSE) of each fit model according to 
the formula

where � i is the true simulated occupancy probability at camera i , �̂ i 
is the estimated occupancy probability at camera i  and N is the total 
number of cameras (Zulian et al., 2021).

For each fitted model, we also calculated the true cumulative de-
tection probability (CDP) and the model estimated CDP. True CDP 
was calculated as the number of sites with detections divided by the 
number of truly occupied sites. At one camera, estimated CDP is 
calculated as

For each model, we calculate the median ĈDP across all sites.

2.3.2  |  Simulation 2: Goodness-of-fit checking

Ecologists commonly use goodness-of-fit checks to identify discrep-
ancies between assumed and realized data distributions (MacKenzie 
& Bailey,  2004). A candidate goodness-of-fit test for identifying 
autocorrelation in data is the join count test given by Wright et al. 
(hereafter ‘join count test’) which compares the observed count 
of consecutive detections to a bootstrapped expectation (Wright 
et al., 2016). To evaluate the performance of this test, we simulated 
an additional 1000 data sets under each combination of system and 
sampling parameters in Simulation 1. We estimated the SOM with 
each data set, then conducted the join count test on each fitted 
model. We tracked the rate at which the join count test produced 
evidence of bad model fit (p-value < 0.05) under each simulation 
condition.

RMSE =

√

√

√

√
1

N

1…N
∑

i

(

�̂ i−� i

)2

ĈDPi = 1 −
(

1− p̂i
)J

F I G U R E  1  Unifying the perspectives of the clustered occupancy 
model and the SOM. At one camera, both models assume that 
occupancy is constant throughout the study duration. Under the 
asymptotic interpretation of occupancy, the camera is occupied 
if it is used by the species at any point during the study period. 
The clustered model explicitly separates a site use process from 
an autocorrelated detection process. In the SOM, site use and 
detection are confounded, and it is assumed that no autocorrelation 
occurs in site use, that is, � = ��.
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2.3.3  |  Simulation 3: Choosing a detection 
window and detection gap

In a subsequent exercise, we simulated detection histories using 
various detection windows and detection gaps. To represent the 
data manipulation process from which windows and gaps arise, 
data were first simulated under the clustered model with 1-day 
windows and 0-day gaps, then aggregated. During the aggrega-
tion process, incomplete sampling occasions were discarded: for 
example, simulating data under a 21-day sampling scenario with a 
detection window of 5 and a detection gap of 1 yielded three 5-
day periods each buffered by 1 day, with 4 days of discarded data 
at the end of sampling.

We fixed state parameters at �0 = 0.4, �0� = 0.3 and � ∕�0 = 1 
and the number of sites at 80, one case from Simulation 1 where 
the 1–0 SOM produced biased estimates. We allowed the total 
amount of effort at each site to take values of 21 days, 35 days 
or 70 days. We varied detection windows from 1 day to 20 days 

and detection gaps from 0 to 3 days. We did not consider com-
binations of design parameters where the length of one window 
and gap exceeded half the total sampling duration. At each com-
bination of these three parameters, we simulated 1000 data sets, 
estimated the SOM and evaluated model performance following 
Simulation 1.

2.3.4  |  Simulation 4: Estimating the clustered 
occupancy model

In some cases, estimating a model that explicitly accounts for au-
tocorrelation may be the best strategy. However, such models 
have more complex hierarchical structure, so they may produce 
estimates with increased uncertainty and worse or comparable pre-
dictive power than simpler models (Pautrel et al., 2024). To assess 
the costs and benefits of using a more complex model, we investi-
gate how the clustered model used to generate the data performs 

F I G U R E  2  Comparing data generated with no autocorrelation to data generated with strong autocorrelation. (a) Two simulated detection 
histories. Both comprise 21 replicate detections at each of 80 identical sites. The data generated with strong autocorrelation (right panel) 
contain visually striking strings of repeat detections, while detections in the data set generated with no autocorrelation appear randomly 
dispersed. (b) The two data sets are roughly equal in the average number of detections per site with at least one detection. (c) However, 
the fraction of truly occupied sites with at least one detection—the realized cumulative detection probability (CDP)—is lower in the 
autocorrelated data set. When estimating the occupancy model, this will lead to an overestimation of the cumulative detection probability 
and a subsequent underestimation of occupancy.

 2041210x, 2024, 7, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14359, W
iley O

nline Library on [05/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



    |  1183GOLDSTEIN et al.

in comparison to the SOM in a simulation and case study. At each 
combination of system and effort variables (Table 2), we simulated 
an additional 1000 data sets. We fit each to both the SOM and the 
clustered occupancy model. We tracked the performance, in terms 
of inference and prediction, of both models as in Simulation 1.

In all four simulations, we estimated the SOM via maximum likeli-
hood estimation with the package ‘unmarked’ (Fiske & Chandler, 2011). 
We estimated the clustered model using custom code in R with the 
compiled hidden Markov model distribution provided in the R pack-
age nimbleEcology (Goldstein et  al.,  2020). Parallel processing was 
executed using the R package ‘parabar’ v1.1.0 (Constantin,  2023). 
All analysis was conducted in R version 4.3.1 with visualizations pro-
duced using the R package ‘ggplot2’ (Wickham, 2016). We provide 
all code used to conduct simulations in an accompanying repository 
(Goldstein et al., 2024).

2.4  |  Case study: Snapshot USA

To develop practical recommendations for dealing with autocorrela-
tion in real camera trap data, we conducted a case study using cam-
era trap observations of North American mammals. We retrieved 
camera sequences and deployment metadata from Snapshot USA's 
2020 season (Kays et al., 2022). Snapshot USA cameras were dis-
tributed across the continent in arrays of 5–65 cameras. Within each 
array, cameras were placed a minimum distance of 200 m apart. Sites 
were selected so as to be random with respect to animal movement: 
Cameras were not baited and were not intentionally aimed at at-
tractants like game trails or water sources (Kays et  al., 2022). For 
modelling, we identified all species observed on at least 100 camera 
days. For each species, we removed all camera deployments outside 
the species range (IUCN [International Union for Conservation of 
Nature], 2023). At each deployment, we then divided the sampling 
duration into 24-h occasions beginning at noon of the first day. We 

constructed a detection history at each site indicating whether the 
species was detected during each occasion.

To construct ecologically realistic occupancy submodels, we re-
trieved values of four covariates at each deployment. We retrieved 
estimates of maximum annual temperature at a 2.5 arc-minute resolu-
tion from the MERRAclim climate data set (Vega et al., 2017), percent 
forest cover at a 1-km resolution (Jung et al., 2020) and estimated can-
opy height in 2019 at 30 m resolution (Potapov et al., 2021). For these 
three variables, each camera was associated with the covariate value 
of the raster cell in which it occurred. We also computed the distance 
to the nearest road at each camera (Meijer et al., 2018).

For each species, we estimated three SOMs using detection 
windows of 1 day and 10 days. For comparison, we also fit the clus-
tered occupancy model to each single-species data set using 1-day 
intervals. We scaled and centred all four covariates separately for 
each species. In all three models, we included percent forest cover 
and maximum temperature as covariates on occupancy and canopy 
height and log-scale distance to road as covariates on detection. 
These simple occupancy models were designed to be sufficiently 
realistic while remaining generalizable across species with different 
ranges and life histories. We found maximum likelihood estimates of 
model parameters and calculated estimated CDP. To assess evidence 
of autocorrelation, we applied the join count test to each species' 
1-day window model, adjusting p-values for multiple testing by con-
trolling the false discovery rate (Benjamini & Hochberg, 1995).

3  |  RESULTS

3.1  |  Detection windows and gaps in the literature

Of 100 papers using camera trap data to estimate occupancy that 
were randomly selected from a Web of Science query, 66 papers 
qualified for analysis and 62 clearly reported the choice of detection 

TA B L E  2  Sampling and occupancy system parameters considered in Simulation 1.

Simulation parameter Type Interpretation Simulated levels

Number of sites Sampling How many cameras were deployed? 40, 80, 120

Sampling effort Sampling For how many days was each camera deployed? 21, 35, 70

Occupancy probability (�0) System Average probability that a site is occupied 0.3, 0.4, 0.5, 0.6

Mean detection rate (�0�) System Average probability of detection at an occupied site. Number 
of overall detections increases as this value increases

0.15, 0.2, 0.25, 0.3

Detection breakdown (� ∕�0) System Relative importance of site use vs. imperfect detection in 
driving nondetections at occupied sites. Site use increases in 
importance as this value decreases

1/3, 1

Autocorrelation strength (�
′

�
) System Strength of autocorrelation in site use. If this value is > 1, the 

species is more likely to use the site during time t if they used 
the site during time t-1. In all figures, ‘strong autocorrelation’ 
refers to �

�

�
= 10 and ‘no autocorrelation’ refers to �

�

�
= 1

1, 5, 10

Effect of occupancy covariate (�1) System The logit-scale effect of a simulated site-level occupancy 
covariate

0.5

Effect of detection covariate (�2) System The logit-scale effect of a simulated site-level detection 
covariate

−0.5
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1184  |    GOLDSTEIN et al.

window used (Figure  S1). The most common choice of detection 
window was 1 day (18 papers), followed by 5 days (15 papers) and 
7 days (7 papers). The longest window we observed was 60 days, 
and no study in our sample used a detection window of less than 
1 day. Notably, only two of 66 papers indicated using detection gaps. 
Larger detection windows were typically presented as increasing the 
per-occasion detection rates to improve model convergence, rather 
than as a means of addressing autocorrelation. The median sampling 
duration was 35 days, though surveys ranged from only 5 days to 
more than 3 years at each site.

3.2  |  Simulation study

3.2.1  |  Simulation 1 results: Impact of 
autocorrelation on the SOM

Across 864 simulation conditions, SOMs fit to data simulated with-
out autocorrelation showed no systematic bias under any conditions. 
We provide results across all conditions in Supplemental Table S1 
and are visualized in Figures S2–S9. When autocorrelation was in-
troduced, systematic bias occurred when estimating the occupancy 
intercept under certain conditions (Figure 3a). The most important 
determinant of bias in the presence of autocorrelation was sampling 
duration. In the worst case, logit-scale systematic bias in the inter-
cept was −0.4 (a 16% underestimation). When the sampling period 
was extended from 21 days to 35 days, logit-scale bias was reduced 
to −0.26 (an 11% underestimation). When the sampling period was 
70 days, the worst-case bias in occupancy was a logit-scale bias of 
−0.1 (a 4% underestimation). Autocorrelation also led to bias in esti-
mating the effect of a covariate on occupancy (Figure 3b), which like 
the occupancy intercept was biased downward when autocorrela-
tion was strong and sampling duration was low. A low-magnitude 
(<0.05) positive bias persists in cases of long survey times, which 
is observed across autocorrelation simulation conditions (Figure S6). 
This positive bias, which is masked by autocorrelation-driven nega-
tive bias at low survey durations, decreases towards 0 as the number 
of sites increases (Figure S7).

Models fit to data with autocorrelation also showed worse 
predictive performance. RMSE in predictions of occupancy at out-
of-sample sites increased under conditions matching those that 
produced biased occupancy estimates (Figure  3c). In the worst 

simulation scenarios, RMSE increased by 106%, from 0.066 to 0.136, 
when autocorrelation was introduced.

Across all simulation conditions, error in estimating cumulative 
detection probability (CDP) corresponded to bias in estimating the 
occupancy intercept (Figure 4). This relationship was strongly linear 
(R2

= 0.945). This suggests that the effect of autocorrelation on bias 
is mediated through its effect on estimated CDP.

3.2.2  |  Simulation 2 results: 
Goodness-of-fit checking

Across all conditions, the join count test goodness-of-fit test yielded 
evidence of autocorrelation in 0.3% of simulations where no autocor-
relation was present, and 93% of simulations where autocorrelation 
was present. The power of the join count test to detect autocorrela-
tion depended on sample size and occupancy rate (Figure  5): The 
test detected autocorrelation 76% of the time in moderately auto-
correlated data sets simulated at 40 cameras with mean occupancy 
of 0.3, and 100% of the time in data sets simulated at 120 cameras 
with mean occupancy of 0.6.

3.2.3  |  Simulation 3 results: Choosing a detection 
window and detection gap

Choice of detection window had a substantial impact on model per-
formance (Figure 6). When bias occurred in the baseline (1-day win-
dow, 0-day gap) model, increasing the detection window decreased 
bias in the occupancy estimate. For example, in the 21-day sampling 
scenario, the use of a 10-day window decreased the magnitude 
of bias by more than half compared to a 1-day window, and in the 
35-day scenario, the use of the maximum possible 17-day window 
reduced bias by more than 90% (Figure 6a,b). Larger detection win-
dows were associated with larger uncertainties (Figure 6c), but those 
uncertainties better reflected the true coverage of the 95% confi-
dence intervals (Figure 6d). In cases where the baseline model was 
unbiased, changing the detection window had little effect on model 
performance.

Detection gaps were not helpful in mitigating the impacts of 
autocorrelation. Introducing detection gaps did not meaningfully 
change bias in the model (Figure 6a,b). Instead, detection gaps were 

F I G U R E  3  Effect of autocorrelation on estimating occupancy parameters. (a and b) Each tile shows the change in median absolute error 
of an occupancy submodel parameter estimate across 1000 replicate simulations when strong autocorrelation is introduced (�

′

�
 = 10) at one 

simulation condition. All results reflect a model with 1-day detection windows and no detection gaps. (a) Absolute median error in estimating 
the occupancy intercept in a strong autocorrelation condition compared to estimating data with no autocorrelation. Bias increases as the 
detection rate decreases, mean occupancy probability increases and sampling time decreases. (b) Absolute median error in estimating the 
effect of a site covariate on occupancy. Bias follows a similar pattern to the intercept, but the magnitude of bias is much less, and noise 
becomes relevant (note that panel B reports error on the logit scale of the covariate effect, while panel a reports error on the probability 
scale). (c) Change in predictive error (RMSE) between strong autocorrelation and no autocorrelation simulation conditions. Predictive error 
increases when occupancy increases, detection rate decreases and sampling time decreases, a pattern matching that of induced bias in 
panels (a and b).
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associated with greater uncertainty in model estimates in low-
information scenarios (Figure 6c) as information was discarded.

3.2.4  |  Simulation 4 results: Estimating the 
clustered occupancy model

We estimated the clustered occupancy model used to generate the 
autocorrelated data to 1000 data sets under each sampling condi-
tion. The clustered occupancy model produced effectively unbi-
ased estimates of mean occupancy under all conditions, except 
when autocorrelation was very strong and sampling durations were 
short, in which case the clustered model overestimated occupancy 

(Figure S2). However, under this condition, the clustered model still 
outperformed the SOM by RMSE (Figure S3).

3.3  |  Case study: Snapshot USA

We identified 23 species with sufficient Snapshot USA data for anal-
ysis. One species, the desert cottontail (Sylvilagus audubonii), was 
excluded due to insufficient variation in the covariates of interest 
across its range, leaving 22 modelled species. A full list of species 
with data summary statistics is available in Table S2.

We applied the join count test to the fitted SOM using 1-day win-
dows for each species. Adjusted p-values for 20 of 22 species were 
less than 0.05, indicating evidence of autocorrelated detections for 
those 20 species (Figure 7). Across species, 10-day detection win-
dows yielded consistently higher estimates of occupancy probabil-
ities compared to 1-day windows (Figure 7b). The clustered model 
also produced consistently higher occupancy estimates. However, 
we observed no change in point estimates of the effect of forest 
and temperature on occupancy when changing the detection win-
dow (Figure  7b). The 10-day SOM and the clustered model were 
associated with comparable low-magnitude increases in parameter 
uncertainty compared to the 1-day SOM (Figure 3c).

4  |  DISCUSSION

In this study, we investigated the consequences of having unmod-
eled temporal structure in detections produced by continuous-time 
camera trap sampling when estimating occupancy. In simulations, 
temporal autocorrelation in detections biased occupancy estimates 
downward. Autocorrelation inflates detection probabilities, leading 
to overestimation of CDP. Consequently, the probability of occu-
pancy at sites with no detections is underestimated and bias occurs. 
Bias was strongest in the occupancy intercept, with relative effects 
of covariates being subject to less bias, and bias was strongest when 

F I G U R E  4  Across 864 simulation conditions (blue points), mean 
error in estimated cumulative detection probability (CDP) was 
strongly correlated with mean logit-scale bias in the estimated 
occupancy intercept. The blue line shows the best-fit line for 
a linear relationship between estimated CDP and the bias in 
estimating the occupancy intercept.

F I G U R E  5  Performance of the join count test for identifying autocorrelation in simulated data. The join count test had a very low false-
positive rate, almost never indicating that autocorrelation was present when it was not. When autocorrelation was present (2nd and 3rd 
panels), the join count test indicated as such 76%–100% of the time, with better performance as the number of deployments and mean 
occupancy rate increased. Results are summarized across all simulation conditions using a 1-day detection window and no detection gap; full 
results are shown in Figure S10.
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    |  1187GOLDSTEIN et al.

camera deployments were short. When true CDPs were close to 1 
due to long sampling durations, bias was very small even when auto-
correlation was strong.

To investigate autocorrelation in an empirical data set, we 
conducted a case study modelling the occupancy of 22 mammals 
based on detections from a camera trapping network across North 
America. We found evidence of 1-day temporal autocorrelation in 

these data in 20 of 22 species studied, suggesting that autocor-
related detections are present in camera trap data across a variety 
of taxa and life-history traits. Results were consistent with the sim-
ulation, where bias occurred in the occupancy intercept but not in 
the estimates of relative effects of covariates on occupancy. Bias 
in 1-day models was mostly mitigated by the use of longer (10-day) 
detection windows. Furthermore, 10-day models produced larger 

F I G U R E  6  Consequences of varying the detection window and detection gap. All results come from data simulated under the parameters 
�0 = 0.4, p0� = 0.3 and � ∕�0 = 1 at 80 sites. Note that errors in occupancy estimates are reported on the logit scale in this figure. (a) 
Increasing the detection window reduced error in estimated CDP and (b) error in the estimate of mean occupancy probability, while 
detection gaps had no meaningful effect on either. (c) Increasing the window increased standard error in the estimate of mean occupancy 
when autocorrelation occurred. Detection gaps also increased standard error. (d) In the most problematic simulation condition (low sampling 
and strong autocorrelation) the coverage of the 95% confidence interval was below 90%.
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estimates of uncertainty, comparable to those obtained from the 
clustered model. This suggests that, even when point estimates 
were unbiased, occupancy parameter estimates derived from SOMs 
with 1-day windows were overconfident.

Based on this work, we recommend that anyone seeking to es-
timate occupancy with camera trap or other continuous-time data 
consider the following recommendations.

1.	 Always check fitted SOMs for evidence of autocorrelation by 
applying the join count test (Wright et  al.,  2016). A p-value of 
less than 0.05 indicates strong evidence that autocorrelation is 
present, though it does not necessarily mean that occupancy 
estimates are biased. To aid in the uptake of this test, we 
provide an R function for applying it to an ‘unmarked’ fitted 
occupancy model object (see Supplemental Materials).

2.	 Use simulations to assess the degree of bias in occupancy estimates 
expected under different degrees of autocorrelation. For a given 
study, the most useful simulations will use the true number of sites 
and sampling days per site with reasonable values of occupancy and 
detection. We also provide a reference table that readers can use to 
cross-reference their data characteristics (Table S1).

3.	 If autocorrelation is present when using a 1-day window, and sim-
ulations indicate that meaningful bias might occur, reprocess your 
detection histories to maximize the length of the detection win-
dow. As a guideline, we propose windows of up to half the median 
deployment duration. If sampling is very long and variable across 
sites, a shorter window could be used to avoid losing information 

at sites with shorter deployments, such as half the duration of the 
25th quantile of sampling durations.

These recommendations are applicable to any occupancy model 
fit to camera trap data with within-site temporal structure, including 
most SOM extensions (e.g. dynamic or community occupancy mod-
els). Most such extensions disentangle occupancy from detection 
based on the assumption that replicate detections at closed sites 
are independent. Consequently, autocorrelation within closed sites 
will lead to inflated CDP and estimates of occupancy that are biased 
downward. The use of the join count test to check for autocorrela-
tion may be useful in such cases. Follow-up studies exploring the 
consequences of autocorrelated detections on inference from SOM 
extensions would be useful to provide additional guidance.

In many cases, such as in cases with large numbers of sites and 
low cumulative detection probabilities, estimating the clustered 
model directly may be a more straightforward strategy than refor-
matting data for use with the SOM. However, the clustered model 
is more complex and may produce more uncertain estimates with 
lower power to detect differences under typical sampling designs. 
Ultimately, the focus of this study was to evaluate the performance 
of the SOM, and further investigation into the performance of the 
clustered model is necessary.

The strategies we recommend are less effective in low-information 
contexts, so autocorrelation should be considered at the study design 
stage of research in addition to the analysis stage. If sampling is in-
sufficient and few detections are generated, goodness-of-fit checks 

F I G U R E  7  Results from a case study estimating occupancy with camera trap data from Snapshot USA. (a) Goodness-of-fit tests yielded 
evidence of autocorrelation in detections of 20/22 species. (b) Estimates of the occupancy intercept yielded by 10-day window site 
occupancy models (SOMs) and by the clustered model were higher than those produced by a 1-day window SOM. Point estimates of the 
effects of temperature and forest cover did not change. (c) Ten-day window SOMs and clustered models had higher uncertainty in model 
estimates, consistent with simulation results, where estimates based on larger detection windows were wider and more accurate.
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    |  1189GOLDSTEIN et al.

will have low power to detect autocorrelation and autocorrelation will 
result in greater relative bias. More complicated models that explicitly 
account for non-independent detections also perform worse in low-
information contexts. Ideally, ecologists should sample for as long as 
is feasible under species-specific closure assumptions to maximize 
the true cumulative detection probability at each site. When longer 
deployments are infeasible, either due to pragmatic considerations 
or because of population closure assumptions, ecologists should con-
sider using clustered or continuous time models, which may require 
sampling at more sites for useful inference and which may introduce 
additional computational obstacles (Guillera-Arroita et al., 2011; Hines 
et al., 2010; Pautrel et al., 2024). Furthermore, the recommendations 
we produce are not intended for studies where the primary goal is 
inference on the detection process. The detection window deter-
mines the scale at which detection effects may be interpreted. When 
conducting inference on detection, adjusting the size of the detec-
tion window may not be an appropriate solution. Ecologists aiming 
to conduct inference on the detection process from data containing 
autocorrelated detections should prioritize fitting models that give a 
better representation of the process of interest, that is, a model that 
explicitly estimates autocorrelation or one with a detection submodel 
in continuous time (Guillera-Arroita et al., 2011; Hines et al., 2010). We 
also note that different representations of temporal structure may fit 
certain data sets more or less well. Ecologists conducting inference 
on detection should test their findings for sensitivity to the choice of 
detection model or use model selection.

Observations of wildlife generated by camera traps and auton-
omous acoustic recorders are increasingly used to estimate animal 
occupancy (Furnas,  2020; Kays et  al.,  2020). Temporal noninde-
pendence can occur in any study where detections are temporally 
structured; in camera trap data, they may arise due to animal move-
ment, but in other contexts, autocorrelation could be driven by miss-
ing temporally structured covariates, time-series effects, or other 
unknown phenomena. Regardless of the cause, unmodeled nonin-
dependence leads to understated uncertainties and can cause bias 
(Hurlbert, 1984). Here, we showed that temporal nonindependence 
in temporally structured data can lead to underestimation of occu-
pancy when data are treated as arising from independent consecu-
tive surveys, as is common in the literature. Practitioners applying 
old models to new methods should be vigilant for new sources of 
nonindependence and should seek out practical strategies for miti-
gating consequent bias.
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