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1. Introduction

Rogue waves are unusually large, mysterious, and suddenly appearing surface water waves that can be
dangerous even to large ships [1]. Their counterparts in optics and many other physical fields have also been
reported [2—4]. Due to their unexpected nature and potential damage, rogue waves have been heavily studied
in the physical and mathematical communities in recent years. Physically, a lot of laboratory experiments on
rogue waves have been performed in diverse fields such as optical fibers [5-8], water tanks [9-12], superfluid
helium [13], plasma [14,15], and Bose-Einstein condensates [16]. Mathematically, rogue wave studies have
been greatly facilitated by the fact that, many integrable equations that govern diverse physical processes,
such as the nonlinear Schrodinger (NLS) equation for wave packet evolution in deep water, optical fibers,
plasma, and Bose-Einstein condensates [17-23], and the Manakov system for light transmission in randomly
birefringent optical fibers [24], admit explicit solutions that exhibit rogue-wave characteristics. The first such
solution was reported by Peregrine in the NLS equation [25]. This Peregrine solution starts from a slightly
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perturbed constant-amplitude background wave. Then, it develops a localized peak that is three times the
height of the background. Afterwards, this peak decays and merges to the background again. This is a rogue
wave since its transient peak is much higher than its original wave amplitude, and this peak appears and
disappears unexpectedly. It turns out that the Peregrine solution is just the simplest (fundamental) rogue
wave in the NLS equation. More intricate NLS rogue waves that could reach even higher transient peak
amplitudes or multiple peaks were later discovered [26-32]. In addition, rogue waves were also derived for
many other integrable systems such as the Manakov system [33-38] and so on. These analytical expressions
of rogue waves shedded much light on the intricate rogue wave dynamics and guided their observations in
laboratory experiments [5-14,16].

Pattern formation in rogue waves is an important question, since such information allows prediction
of later rogue wave shapes from earlier rogue wave forms. One of the simplest rogue patterns is a rogue
triplet, which comprises three fundamental rogue waves forming a triangle in the space-time plane. Such
rogue triplets have been reported theoretically in many integrable equations [27,28,31,32,36,37] and observed
experimentally in both water tanks and randomly birefringent optical fibers [8,12]. Beyond rogue triplets,
more sophisticated rogue patterns comprising Peregrine waves forming shapes such as pentagons, heptagons,
and rings have also been reported for the NLS equation [29,39-41]. In addition, it was revealed in [41] that
those sophisticated patterns would reliably arise when one of the internal parameters in NLS rogue wave
solutions gets large, and their shapes are predicted asymptotically by root structures of the Yablonskii—
Vorob’ev polynomial hierarchy through a dilation and rotation (each nonzero root of the hierarchy predicts
the spatial-temporal location of a Peregrine wave). In [42], it was further revealed that those NLS rogue
patterns associated with root structures of the Yablonskii—Vorob’ev polynomial hierarchy are universal and
would arise in many other integrable systems, such as the derivative NLS equations, the Boussinesq equation,
and the Manakov system.

Given the importance of the NLS equation in diverse physical disciplines, an important question is
whether this equation admits other types of rogue patterns. If so, what special polynomials can be used
to predict those patterns?

In this paper, we show that the NLS equation does admit many new rogue patterns. These patterns
arise when multiple internal parameters in rogue wave solutions get large, and their shapes are predicted
asymptotically by root structures of Adler-Moser polynomials through a simple dilation. Adler—-Moser
polynomials are generalizations of the Yablonskii—Vorob’ev polynomial hierarchy, and their root structures
are much more diverse than those of the Yablonskii—Vorob’ev polynomial hierarchy. As a consequence, we
report many new rogue patterns in the NLS equation, such as heart-shaped structures, fan-shaped sectors,
and others. Our analytical predictions for these new patterns based on root structures of Adler—-Moser
polynomials are compared to true rogue solutions, and excellent agreement is demonstrated.

2. Preliminaries

The NLS equation is

1
iug + o Uaz + |u*u = 0. (1)

This equation governs nonlinear wave packet evolution in numerous physical systems such as deep water,
optical fibers, plasma, and two-component Bose-Einstein condensates [17-20,23].

2.1. General bilinear rogue wave solutions

Rogue wave solutions in this NLS equation have been derived by various methods before [27,30-32]. The
most explicit forms of these rogue wave solutions are the ones that were derived by the bilinear method
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in [31] and then further simplified in [41]. These simplified bilinear rogue wave solutions of the Nth order

are
un (@, t) = ZLett, (2)
0o
On = det ( ¢(?1 o ), (3)
1<igj<nN T

- min(%,5) 1

(]5/; = Z e Si—y(xT(n) +vs)S;_,(x~ (n) +vs), (4)
v=0
tf=x+it+n, x5, =0, (5)
z + 22k (it) N i

Tapi1 = k1) +aoke1, Typpn = (@00)" (6)

where Si(x) with x = (z1, 22, ...) are Schur polynomials defined by the generating function

Z Si(x)e® = exp <Z mkek> ) (7)
k=0 k=1

s = (0, 82,0, s4,...) are coefficients from the expansion

isjv I B\tanh <;>} , (8)

j=1

the asterisk * represents complex conjugation, and as, as, .. .,asny_1 are free irreducible complex parameters
which control the shape of this rogue wave solution.
When N = 1, the above solution is u1(x,t) = 41 (x,t) €', where

4(1 + 2it)

(e t) =1 = T e

This is the fundamental rogue wave in the NLS equation that was discovered by Peregrine in [25].

2.2. Adler-Moser polynomials and their root structures

Adler-Moser polynomials were proposed by Adler and Moser [43], who expressed rational solutions of the
Korteweg—de Vries equation in terms of those polynomials. In a different context of point vortex dynamics, it
was discovered unexpectedly that the zeros of these polynomials also form stationary vortex configurations
when the vortices have the same strength but positive or negative orientations, and the numbers of those
positive and negative vortices are consecutive triangular numbers [44,45].

Adler-Moser polynomials Oy (z) can be written as a determinant [45]

91(2) 90(2’) cee 92,]\7(2)
93(2’) 92(2’) e 04,]\](2’)
QN(Z) = CN . . . . 5 (10)
ton-1(2) Oan—2(2) -+ On(2)
where 6y (z) are Schur polynomials defined by
Z@k(z)ek = exp ze—i—Zﬁ;jesz , (11)
k=0 j=1
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Fig. 1. Three sample root structures of ©5(z) for parameter values (K1, k2, K3, k1) given in Eq. (12). In all panels, —7 < Re(z),Im(z) <

7.

Op(z) =0iftk <0, cy = H;V:l(Zj — 1! and k;(j > 1) are arbitrary complex constants. Note that our
k; constant is slightly different from that in [45] by a factor of —1/(2j + 1), and this different parameter
definition will be more convenient for our purpose. The determinant in (10) is a Wronskian since we can
see from Eq. (11) that 0} (z) = 0x_1(z), where the prime denotes differentiation. In addition, these Oy (z)
polynomials are monic with degree N(N+1)/2, which can be seen by noticing that the highest z term of 6 (2)
is z¥ /k!, and the determinant in (10) with 6, (2) replaced by its highest z term can be explicitly calculated
as zV(N+1/2 [31]. Adler-Moser polynomials reduce to the Yablonskii-Vorob’ev polynomial hierarchy when
all k; constants are set as zero except for one of them [41]. Thus, we can view Adler-Moser polynomials as
generalizations of the Yablonskii—Vorob’ev polynomial hierarchy.
The first few Adler—Moser polynomials are

= 25 — 15k, 2% + 45k92 — 45K7,
= 210 _ 45,27 + 315k92° — 1575/-@323
+ 4725k Ko2® — AT25K3 2 — AT25K3 4 4725k k3.

Root structures of Adler—Moser polynomials are important to us, since we will link them to rogue wave
patterns in the later text. Due to the free complex parameters {x;} in them, their root structures will be
understandably very diverse — much more diverse than root structures of Yablonskii—Vorob’ev hierarchy
polynomials. Indeed, when setting all {x;} as zero except for one of them, we get root structures of
Yablonskii—Vorob’ev hierarchy polynomials which are in the shape of triangles, pentagons, heptagons, and
so on. When we continuously change those {;} values, we will get root structures which smoothly deform
from one type of Yablonskii—Vorob’ev root structure to another, such as from a triangle to a pentagon. In
this process, uncountably infinite new root shapes will be generated. These roots are generically simple roots.
Indeed, if a root happens to be a multiple root, it will split into simple roots when the complex parameters
{k;} are slightly perturbed. For this reason, we will focus on the case when all roots of On(z) are simple in
this article. In this case, O (z) will have N(N + 1)/2 roots.

Of the uncountably infinite root structures of Adler—-Moser polynomials, we illustrate only three of them
for brevity. These three samples are for Os(z; K1, ke, k3, K4), with three sets of (K1, ko, k3, k4) values as

(i,i,1,1), (5i/3,1,51/7, —5i/9), (1,1,1,1). (12)
the second set should be (5i/3, -i, 5i/7, -5i/9)
Their root structures are displayed in Fig. 1(a, b, ¢), respectively. In these panels, every root is a simple
root. The (a) panel shows a heart-shaped structure, (b) shows a fan-shaped circular sector, and (c) shows a
two-arc structure combined with a triangle.
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3. Analytical predictions for rogue patterns with multiple large internal parameters

Rogue wave solutions uy (z,t) in Eq. (2) contain N —1 free internal complex parameters ag, as, ..., Gan—_1.
If only one of those parameters is large, then the resulting rogue pattern is predicted by root structures of
Yablonskii—Vorob’ev hierarchy polynomials, see [41]. In this section, we consider patterns of these rogue
solutions when multiple of these internal parameters are large.

Specifically, suppose parameters as, as, . ..,aan—1 in uy(x,t) are of the following form
agjr = rj A¥HL 1< <N -1, (13)
where A > 1 is a large positive constant, and (k1, K2,...,~n—_1) are O(1) complex constants not being all

zero. Suppose also that roots of the Adler-Moser polynomial Oy (z) with parameters {«;} are all simple.
Then, our analytical prediction on the pattern of this rogue wave solution uy (z,t) is given by the following
theorem.

Theorem 1. If all roots of On(z) are simple, then the Nth order rogue wave un(z,t) in Eq. (2) with its
internal large parameters (as, as, . ..,asn—1) as given by Eq. (13) would asymptotically split into N(N +1)/2
fundamental (Peregrine) rogue waves of the form @iy (x — &o,t —to) €%, where 11 (x,t) is given in Eq. (9), and
positions (Lo, fo) of these Peregrine waves are given by

fo + ’L.{() = ZoA, (14)

with zo being every one of the N(N + 1)/2 simple roots of On(z). The error of this Peregrine wave
approzimation is O(A~1). Expressed mathematically, when (x—20)? + (t—to)? = O(1), we have the following
solution asymptotics

un(z,t; a3, a5, ..., ao8_1) = Gy (x — Zo,t — tg) e® + O (A_l) .

When (z,t) is not in the neighborhood of any of these Peregrine waves, un (x,t) would asymptotically approach
the constant-amplitude background e® as A — +oco.

This theorem indicates that the rogue pattern is asymptotically a simple dilation of the root structure
of the underlying Adler-Moser polynomial by a factor of A, with each root predicting the location of a
Peregrine wave in the (z,t) plane according to Eq. (14). Thus, this theorem establishes a direct connection
between rogue patterns and root structures of Adler—Moser polynomials.

One may notice that in the present case of multiple large parameters, the rogue pattern is a simple dilation
of the root structure of an Adler-Moser polynomial, while in the previous case of a single large parameter as
studied in [41], the rogue pattern was a dilation and rotation of the root structure of a Yablonskii—Vorob’ev
hierarchy polynomial. The reason our current rogue pattern does not involve rotation to the root structure
is that, the Adler-Moser polynomial contains free complex constants {r;}, which automatically put its root
structure in proper orientation to match the rogue pattern. Comparatively, a Yablonskii—Vorob’ev hierarchy
polynomial does not contain such free complex constants, and thus the orientation of its root structure is
fixed. In this case, in order for its root structure to match the orientation of the rogue wave, a proper rotation
is needed.

4. Numerical confirmation

Now, we numerically verify Theorem 1 by comparing its predictions with true rogue-wave solutions. This
comparison will be done only for fifth-order rogue waves wus(x, t) for brevity. Such fifth-order solutions have
internal complex parameters (as, as, az, ag).
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Fig. 2. Comparison between true rogue solutions |u(x,t)| (upper row) and their analytical predictions (lower row) for N = 5 and
A = 5. From left to right columns: (K1, k2, k3, ka) = (i,1,1,1), (5i/3,1,5i/7,—5i/9), (1,1,1,1). In all panels, —30 < z,t < 30.

the second set should be (5i/3, -i, 5i/7, -5i/9)

We will do this comparison on three examples. Internal parameter values in these three examples are of
the form (13) with A = 5, which is large as desired, and their (k1, K2, K3, k4) values are given in Eq. (12).
These r; values are used since root structures of Adler-Moser polynomials O5(z) for these values have been
displayed in Fig. 1. For these three sets of internal parameters, true rogue wave solutions are plotted in the
upper three panels of Fig. 2, respectively. It is seen that each panel comprises 15 lumps (Peregrine waves)
in the (z,t) plane. In the first panel, these 15 Peregrine waves form a heart-shaped structure, with another
mini-heart in its interior. In the second panel, these 15 Peregrine waves form a fan-shaped structure. In the
third panel, these 15 Peregrine waves form two vertically-oriented arcs plus a smaller triangle on their right
side.

Our analytical predictions |uép ) (x,t)| for these rogue waves from Theorem 1 can be assembled into a
simple formula, s

(@) =1+ (Jan@ 2§t~ 1) -1), (15)

j=1

where 1 (z,t) is the Peregrine wave given in (9), and their positions (:%(()j),f(()j)) are given by (14) with zg
being every one of the N(N +1)/2 = 15 simple roots of the Adler—Moser polynomial O5(z). These predicted
solutions for the same (a3, as, a7, ag) values as in the true solutions are plotted in the lower three panels of
Fig. 2. When compared to the root structures of the Adler—Moser polynomial ©5(z) in Fig. 1, our predicted
rogue patterns in these lower panels are obviously a simple dilation of those root structures, by a factor of
A =5, with each root replaced by a Peregrine wave, as Theorem 1 says.

When comparing the true rogue solutions in the upper row to their analytical predictions in the lower
row, we can clearly see that they agree with each other very well. In fact, one can hardly notice the difference
between them, which is an indication that our prediction in Theorem 1 is highly accurate.

Quantitatively, we have also measured the error of our analytical predictions versus the A value, similar
to what we did in Fig. 5 of Ref. [41]. That error analysis confirmed that the error does decay in proportion
to A~1, as Theorem 1 predicts. Thus, Theorem 1 is fully confirmed numerically. Details of this quantitative
comparison are omitted here for brevity.

5. Proof of Theorem 1

In this section, we prove the analytical predictions on NLS rogue patterns in Theorems 1. The main idea
of our proof resembles that in Ref. [41] for a single large internal parameter case.

6



B. Yang and J. Yang Applied Mathematics Letters 148 (2024) 108871

To derive the large-parameter asymptotics of the rogue wave solution upy(z,t) in Eq. (2), we need
asymptotic expressions for the determinant o, in Eq. (3). For this purpose, we first use determinant identities
and the Laplace expansion to rewrite o, as [31]

1
oy = E det —Soicq1—p. (xT(n) + ;s
" 1<i,j<N[2VJ 2i-1-0; (%" () +5)
0<v) <va<-<vNy<2N—1

1 _
et oS, )+ ). (16)

where S, =0 if & < 0.
When internal parameters (as,as,...,aan—1) are of the form (13) with A > 1, and z,t = O(4) or
smaller, we have

Sp(xt(n) +vs) = Sy, (xf, VSa, Ty, VUS4, . . ) =Sk (27,0,K14%,0,K24°,...) 1+ O(A*Z)]
= Si(¥) [1+0(A7%)], (17)

where v = (x +it+n,0,k143,0,K94°,0, .. ) From the definition (7) of Schur polynomials, one can see
that the polynomial Sy (V) is related to 6x(z) in (11) as

Sk(¥) = AM6,.(2), (18)

where 2 = A~ (z + it +n).

The dominant contribution in the Laplace expansion (16) of o, comes from two index choices, v =
0,1,...,.N—1),and v = (0,1,...,N —2,N).

With the first index choice, in view of Egs. (17)-(18), the determinant involving x*(n) inside the
summation of (16) is asymptotically

N(N+1)

aAT T On(R) [1+0(A7?)], (19)

where a = 2_N(N_1)/20R,1. Let us define (o,%9) by Eq. (14), i.e., 290 = A=Y (20 + ify), where z( is a simple
root of the Adler-Moser polynomial @y (z). Then, when (x,t) is in the O(1) neighborhood of (i, %), we
expand Oy (2) around 2 = zp. Recalling O (z9) = 0, we get

On(2) = A7 [(z — &) +i(t — fo) + n] On(20) [1+ 0 (A7H)].

Inserting this equation into (19), the determinant involving x*(n) inside the summation of (16) becomes

N(N+1)

[(z—20) +i(t—fo) +n] aA™ = Of(20) [1+0(A7H)].

Similarly, the determinant involving x~(n) inside this summation becomes
R N(N+1)
[(z—&0) —i(t—fo) —n] « A= = Op(5) [1+0 (A7Y)].
Next, we consider the contribution from the second index choice of v = (0,1,..., N —2, N). For this index
choice, the determinant involving x*(n) inside the summation of (16) becomes
1 N(N+1)—2

F0ATTT 0N (%) [1+0(A7?)].

When (z,t) is in the O(1) neighborhood of (2, o), the above term is asymptotically equal to

1 N(N+41)—2

F0ATT T On(20) [L+ 0 (ATH)],

7
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Similarly, the determinant involving x~(n) inside the summation of (16) becomes

Lo A T o () 140 (A7)
Summarizing the above two dominant contributions in the Laplace expansion (16), we find that
on(z,1) = o B (z0)|" AVNTD2
x (@ = 20)% + (t — o) = 2in (t — o) — n® + ﬂ x [1+0(A7)]. (20)
Since the root zp has been assumed simple, O} (z9) # 0. Thus, the above leading-order asymptotics for

on(z,t) does not vanish. Therefore, when A is large and (z,t) in the O(1) neighborhood of (£, o), we get
from (20) that

01 it it 4[1 4 2i(t — tAO)] -1
uny(z,t) = —e" =€ | 1— = +O (A7), 21
N( ) oo ( 1+4(3§7i‘0)2+4(t7t0)2 ( ) ( )
which is a Peregrine wave @y (x—2, t—fo) €'*, and the error of this Peregrine prediction is O (A~'). Theorem 1
is then proved.

6. Conclusions and discussions

In this paper, we have reported many new rogue patterns in the NLS equation which are predicted by root
structures of new special polynomials. Specifically, we have shown that when multiple internal parameters in
the rogue wave solutions are large, many new rogue patterns would arise, including heart-shaped structures,
fan-shaped structures, and others. Analytically, these rogue patterns are determined by root structures of
Adler—Moser polynomials. If all roots of the Adler—Moser polynomial are simple, then the rogue pattern is
simply a dilation of the Adler-Moser-polynomial’s root structure, with each root replaced by a Peregrine
wave. Since Adler—-Moser polynomials contain free complex parameters, their root structures would be very
diverse. As a result, NLS rogue waves could assume much more varied spatial-temporal patterns beyond
those reported earlier.

Since NLS rogue waves have been observed in diverse physical systems [5,6,9-14,16], these new NLS rogue
patterns open up more varieties of rogue dynamics which could be verified in experiments too.

The previous NLS rogue patterns associated with root structures of the Yablonskii—Vorob’ev polynomial
hierarchy were later found to be universal and would appear in many other integrable systems [41,42]. The
present rogue patterns associated with Adler-Moser polynomials are expected to be universal as well, and
they should arise in other integrable systems too when multiple internal parameters in rogue waves of those
integrable equations are large. This prospect will be pursued in the near future.

Our rogue-pattern predictions in this article were made under the assumption that all roots of the
Adler—Moser polynomial are simple. A very interesting question is what will happen if some roots of the
Adler-Moser polynomial are not simple. This question is still open that merits further studies.
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