L)

Check for

updates

2023 IEEE/ACM Symposium on Edge Computing (SEC)

AdaMap: High-Scalable Real-Time Cooperative Perception at the
Edge

Qiang Liu, Yongjie Xue, Yuru Zhang
University of Nebraska-Lincoln
qiang.liu@unl.edu

ABSTRACT

Cooperative perception is the key approach to augment the per-
ception of connected and automated vehicles (CAVs) toward safe
autonomous driving. However, it is challenging to achieve real-time
perception sharing for hundreds of CAVs in large-scale deployment
scenarios. In this paper, we propose AdaMap, a new high-scalable
real-time cooperative perception system, which achieves assured
percentile end-to-end latency under time-varying network dynam-
ics. To achieve AdaMap, we design a tightly coupled data plane
and control plane. In the data plane, we design a new hybrid lo-
calization module to dynamically switch between object detection
and tracking, and a novel point cloud representation module to
adaptively compress and reconstruct the point cloud of detected
objects. In the control plane, we design a new graph-based object
selection method to un-select excessive multi-viewed point clouds
of objects, and a novel approximated gradient descent algorithm to
optimize the representation of point clouds. We implement AdaMap
on an emulation platform, including realistic vehicle and server
computation and a simulated 5G network, under a 150-CAV trace
collected from the CARLA simulator. The evaluation results show
that, AdaMap reduces up to 49x average transmission data size at
the cost of 0.37 reconstruction loss, as compared to state-of-the-
art solutions, which verifies its high scalability, adaptability, and
computation efficiency.

CCS CONCEPTS

« Networks — Network algorithms; « Computing methodolo-
gies — Machine learning;

KEYWORDS

Cooperative Perception, Point Cloud Compression, Automotive
Edge Computing

ACM Reference Format:

Qiang Liu, Yongjie Xue, Yuru Zhang and Dawei Chen, Kyungtae Han. 2023.
AdaMap: High-Scalable Real-Time Cooperative Perception at the Edge. In
The Eighth ACM/IEEE Symposium on Edge Computing (SEC °23), December
6-9, 2023, Wilmington, DE, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3583740.3626612

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC °23, December 6-9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12...$15.00
https://doi.org/10.1145/3583740.3626612

14

Dawei Chen, Kyungtae Han
Toyota InfoTech Labs
{dawei.chen1,kt han}@toyota.com

Edge Server

() P
y ET:

Global View

Figure 1: An illustrative example of cooperative perception.

1 INTRODUCTION

Autonomous driving and advanced driving assistance system [20,
39, 45, 48] generally control the vehicle and react to diversified road-
way environments based on the local perception obtained from the
perspective of the ego vehicle. To achieve robust perception, con-
nected and automated vehicles (CAVs) [12, 37] are equipped with a
variety of onboard sensors, such as cameras, LIDAR, and radar. How-
ever, these line-of-sight sensors can be contaminated under diverse
roadway conditions [1], e.g., vision occlusion, extreme weather,
and sensor failures, which may lead to incomplete and inaccurate
information in the local perception [19, 25]. In addition, the limited
view angle of the ego vehicle might confuse and even mislead the
local perception. An example in [27] illustrates that a horse-drawn
carriage is recognized as a truck or sedan intermittently by Tesla
Autopilot. As a result, recent controversial accidents [35, 38] of
pilot commercial deployment raises widespread concerns about
autonomous driving techniques, in terms of safety, reliability, and
availability.

Cooperative perception [9, 43, 47] has been extensively investi-
gated to overcome the limitations of local perception in CAVs. As
illustrated in Fig. 1, cooperative perception allows the sharing of
perception data (e.g., point clouds, images and locations) among
vehicles (i.e., V2V [13]) and infrastructures (i.e., V2I [36]), such as
lampposts and edge servers. Thus, the ego vehicle can utilize the
shared perception data to augment its local perception (e.g., reduc-
ing occluded areas and extending sensing ranges) for achieving
high-safety driving [1, 25]. In particular, LIDAR point clouds are
widely adopted in cooperative perception [9, 30], which attributes
to the unique property of privacy-preserving and weather-proof.
In cooperative perception, the key goal is to achieve real time shar-
ing for assuring the freshness of shared information [1, 15, 34].
Given that commercial off-the-shelf LIDARs are with 10 Hz sam-
pling rates, the end-to-end latency of perception sharing should be
below 100 milliseconds, if not less. The shared perception data with
unsatisfied latency provides trivial information regarding roadway
environments [25], e.g., the location shift of 50mph vehicles can be
more than 2 meters under 100ms delay.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583740.3626612&domain=pdf&date_stamp=2024-08-07

e s N -
SO —— Where2comm 3 -
e] ,

c c

O3

Ll SRS IR oo v e N S R -

0 15 30 45 60 75 90 105 120 135 150
Number of vehicles

Figure 2: Number of sharing point clouds under different vehicle
traffic.

It is, however, challenging to achieve real-time and large-scale
cooperative perception, especially under time-varying network dy-
namics. For example, given the 1+ million/s point clouds of commer-
cial 32-thread LiDARSs, the required wireless data rate to support
10 CAVs could reach up to 400 Mbps [34], which would lead to
unsustainable network subscription fees for service providers. Re-
cent works [15, 31, 34] investigated transmitting only interested
areas/objects (rather than the whole raw point cloud) to selective
CAVs, and obtained very promising reductions in the over-the-air
transmission data size. However, existing works are focused on
supporting a limited number of CAVs (e.g., less than ten), which
still require considerable networking resources in large-scale de-
ployment scenarios (e.g., 100+ CAVs). According to the forecast of
Automotive Edge Computing Consortium (AECC), more than 50%
of cars on the road in the United States will have connected features
by 2025 [11]. As a result, the cooperative perception system requires
to support a massive number of CAVs, e.g., a 5G base station (1-mile
radius coverage) may include hundreds of CAVs in metropolitan
areas. In Fig. 2, we show the total number of points to be transmit-
ted in existing works (i.e., VIPS [34] and Where2comm [15]) under
different number of CAVs, based on our collected CARLA traces
(see Sec. 6). To support the cooperative perception for 150 CAVs,
Where2comm generates more than 3 millions points per frame,
which needs to be transmitted over-the-air via wireless networks.
Moreover, existing works cannot adapt to time-varying network
dynamics in automotive edge computing (e.g., radio channel and
traffic variation), which thus fail to assure consistent end-to-end
latency for real-time cooperative perception [15, 34]. Therefore,
it is dispensable to investigate high-scalable cooperative percep-
tion with percentile latency assurance toward future large-scale
deployment scenarios.

In this paper, we propose AdaMap, a new real-time cooperative
perception system, that achieves high-scalable perception sharing
with assured percentile latency under time-varying network dynam-
ics. The fundamental idea is two-fold. 1) We adaptively represent
the point cloud of objects to achieve higher compression ratios by
trading off reconstruction losses. This is based on the observation
that, although reconstructed point clouds have perceivable recon-
struction losses, they maintain sufficient structural details of point
clouds regarding original objects. 2) We dynamically select objects
detected by individual CAVs to reduce the total number of inter-
ested objects to be transmitted and processed. This is based on the
observation that, removing duplicated multi-viewed point clouds
have only trivial degradation, regarding the aggregated fidelity of
objects. In AdaMap, we build an edge-based global map, which

15

CAVs Point Clouds Servers
Lo, et s,
¥ .
— 2 S—
Object
L

Local Map T - Global Map

Trajectory Perspective ((())) Object Matchin

Modeling Transformation /{) &
(Control Plane ‘_ Representation | : ... Representation

Optimization (Encoder) Descriptors (Decoder)

Figure 3: Overview of AdaMap.

aggregates the uploaded objects from individual CAVs, monitors
and tracks aggregated objects, and broadcasts periodical updates to
update the local map in all CAVs. Besides, by reusing the historical
point clouds of objects, AdaMap could further reduce the trans-
mission data size of all CAVs over time substantially. In particular,
we achieve AdaMap by designing a tightly coupled data plane and
control plane.

The data plane of AdaMap is to process raw point clouds in indi-
vidual CAVs into sharable object descriptors (e.g., location and point
cloud of vehicles). We design the data plane with two key modules.
First, we design a new hybrid object localization module to adap-
tively switch between object detection and tracking, which reduces
26x inference time at the cost of a minimal 0.02m localization error
on average. Second, we design a new flexible representation module
to compress point clouds into low-dim latents based on variational
autoencoder (VAE), which can achieve up to 64x compression ratio
at the cost of 0.48 reconstruction loss on average.

The control plane of AdaMap is to adapt the data plane by opti-
mizing the selection of detected objects and representation factor
(RF) of selected objects in individual CAVs. To address the unique
optimization problem in AdaMap, we design the control plane to
be compute-efficient with three key steps. First, we decompose
the problem into fully-distributed subproblems in individual CAVs,
which mitigates communication overheads incurred in centralized
optimization. Second, we design a new graph-based object selection
method to selectively remove duplicated multi-viewed point clouds,
by evaluating the metric of space density. Third, we design a new
approximated gradient descent algorithm to optimize the RF of
selected objects, which assures the percentile end-to-end latency
under network dynamics.

We implement AdaMap on an emulation platform, which in-
cludes realistic vehicle and server computation and a simulated
5G network. We finish more than 4000 lines of codes to imple-
ment AdaMap, which is ready-to-deploy in real-world vehicles and
servers. We extensively evaluate AdaMap in terms of efficacy, scal-
ability, and adaptability, under a CARLA dataset with 150 CAVs at
100 time frames. The results show that, AdaMap reduces up to 49x
over-the-air transmission data size at the cost of only 0.37 recon-
struction loss, as compared to state-of-the-art solutions. Notably,
AdaMap can achieve 89.4% end-to-end latency within 100ms for
150 CAVs, given only 0.2MHz wireless bandwidth in 5G networks,
which sheds light on large-scale cooperative perception deployment
in the future.

2 SYSTEM OVERVIEW

The goal of AdaMap is to achieve high-scalable perception sharing
among CAVs with assured percentile latency under time-varying
network dynamics. Besides, AdaMap needs to maintain high-fidelity
objects regarding their aggregated point clouds, for further usage
of autonomous driving pipelines, such as 3D scene understanding.
To achieve the goal, we design AdaMap with a tightly coupled data
plane and control plane in a fully distributed manner, shown in
Fig. 3. 1) The object localization module localizes interested ob-
jects on the LiDAR point clouds, including 3D bounding boxes,
orientations, and labels. 2) The perspective transformation mod-
ule transforms detected objects from the local coordinate of CAVs
into the global coordinate. 3) Then, the control plane applies to
optimize the object selection and representation factor (RF) of se-
lected objects in individual CAVs. 4) The representation (encoder)
module encodes the point cloud of only selected objects into low-
dim latents, according to the optimization results from the control
plane. 5) An object descriptor will be built for each selected object,
where CAVs will send all object descriptors to their associated edge
servers. 6) The representation (decoder) module at the edge server
decodes received latents and reconstructs the point cloud of objects.
7) The object matching module matches and updates received ob-
jects within historical objects in the global map. New updates of
AdaMap will be periodically broadcasted to all CAVs.

3 DATA PLANE DESIGN

In this section, we describe the data plane, including object lo-
calization, point cloud representation, perspective transformation,
trajectory modeling, and object matching.

3.1 Hybrid Object Localization

Object localization module is to localize and extract interested ob-
jects (e.g., pedestrians and cars) from 3D point clouds perceived by
the ego vehicle. In AdaMap, we focus on only dynamic objects, e.g.,
moving cars and scooters, rather than stationary backgrounds (e.g.,
buildings and trees), which could be provided by high-definition
(HD) maps. Extracting only dynamic objects will substantially re-
duce the total data size of point clouds to the edge server [31].
Given a point cloud, the output of object localization includes the
3D bounding boxes and the extracted point cloud of each detected
object.

To localize objects in point clouds, there are generally two ap-
proaches, i.e., detection and tracking, can be used in AdaMap. On
the one hand, existing deep neural network (DNN) based object
detection solutions [14, 18] are generally compute-intensive, which
would greatly squeeze the end-to-end latency allowance for fol-
lowing data plane modules. The state-of-the-art PointPillars [18]
consumes 26.4 + 4.7 ms to process point clouds in our CARLA
dataset under NVIDIA RTX 3090 and Intel i7 CPU, which already
occupies more than a quarter of the 100ms end-to-end latency al-
lowance in AdaMap. On the other hand, existing object tracking
solutions can achieve real time inference, while their tracking accu-
racy varies under different roadway situations, such as acceleration
and braking (see Table 1 and Fig. 21). For example, Kalman filter [40]
has been widely used for tracking in various application domains,
where its inference time can be as low as sub-milliseconds.

16

Table 1: Comparison among object localization methods

Method localization error inference time (ms)
(m)

Tracking 0.12+ 0.16 0.73 £ 0.71

Detection 0.07 = 0.04 26.41 £ 4.73

Ours 0.09 £ 0.05 1.02 + 0.98
Hybrid Object Localization 3
< 8
8 2D Object Tracking =
o l selection for e
= i =
‘§ Historical locations ‘ ’ RLE %-n-e-x-t-t-lmg- Switch —» &
a
E f @
E‘——»{ 3D Object Detection 2
=
o

Figure 4: The hybrid object localization.

To this end, we propose a new hybrid object localization module,
as shown in Fig. 4, to reduce the inference time at the cost of
a minimal degradation of localization error. The basic idea is to
adaptively switch between object detection and tracking, where
the inference time can be considerably reduced by invoking object
tracking at runtime. This is based on the observation that, object
tracking can achieve considerable accurate localization in most
cases in AdaMap. On the one hand, the location of objects are
aggregated in the object matching module (see Sec. 3.5), which
helps to correct the localization error in individual CAVs. On the
other hand, the location of objects are updated frequently (e.g.,
maximum 100ms latency), where fine-grained historical locations
help to improve the accuracy of trajectory modeling (see Sec. 3.4).
However, it is challenging to determine when to switch between
object tracking and detection. Because we do not have the ground-
truth of object locations in real-world deployment, and thus it is
difficult to evaluate the localization accuracy of object tracking.

To solve this issue, we define a new metric, named relative local-
ization error (RLE), as the Euclidean distance between the location
derived by the object tracking and detection. In other words, we con-
sider the location generated by object detection as the ground-truth
at runtime. In each time slot, we calculate the relative localization
error (RLE) based on the derived locations of detection and track-
ing. The input of object detection and tracking are the whole raw
point cloud and historical locations of previous detected objects,
respectively. Then, we determine which localization method will
be used, for the next time slot. For example, we select to use object
tracking if the RLE is below a given threshold (empirically set as
0.5m in AdaMap). In the next time slot, the object tracking will
be invoked to derive the output of 3D bounding boxes, which will
hide the inference time of object detection. Otherwise, the object
detection will be invoked at runtime, where its inference time will
be included in the data plane of AdaMap. Note that, object detection
and tracking will be performed in parallel at any time slots. For
example, if we decide to use object tracking in the next time slot,
the object detection will still be needed to derive the ground-truth
location and calculate the RLE.

In Table. 1, we show the localization error and inference time
under different object localization methods. As compared to object

Early-Exit Tunnels

L . -
E O I Tt] ‘ O é
5 - @) o O @) E
- e. (== 3
imp 2 O o 3 ==
5 () @) @) E
£ o @ 8
>3
— = &

Base Tail Head Base

encoder layers layers decoder

Figure 5: The representation module with early-exit tunnels.

detection (i.e., PointPillars), our method reduces 96.1% inference
time at the cost of only additional 0.02m localization error. As
compared to the object tracking (i.e., Kalman Filter), our method
reduces 25% localization error, while the inference time is only
increased 0.29ms on average. These results show that, our proposed
hybrid localization methods can substantially accelerate the object
localization at the cost of negligible degradation on localization
losses.

3.2 Flexible Point Cloud Representation

The representation module is to represent point clouds by using low-
dim vectors, where the vectors should be able to accurately recover
the original point clouds afterward. In AdaMap, the information of
objects (e.g., locations and point clouds) will be uploaded to edge
servers and shared with all CAVs, where point clouds dominate
the overall data size of object descriptors (see Sec. 3.6). Although
the data size of point clouds of individual objects are relatively
small (e.g., a few Kbits for 1000 points), the aggregated data size
of thousands of objects (if not more) will require considerable net-
working resources. General-purpose compression solutions (e.g.,
Zstandard [10]) can be used to compress and decompress point
clouds at runtime. However, the achieved compression ratios are
typically limited for detected objects in AdaMap (e.g., 1.91 + 0.06
for Zstandard), which mainly attributes to the sparse point clouds
(e.g., 992 + 1206 points in our CARLA dataset) of detected objects.

To this end, we propose a new flexible point cloud representation
module based on variational autoencoder (VAE) [17]. As an unsu-
pervised learning technique, an autoencoder generally includes an
encoder that compresses the input data (e.g., point cloud) into low-
dim latents with a fixed length, and a decoder that reconstructs the
original data from the latents. Different from general-purpose com-
pression solutions, autoencoders show great potentials to achieve
high compression ratios under low reconstruction losses [25], for
seen point clouds in the training dataset. However, the reconstruc-
tion loss might be very high for unseen point clouds (e.g., new car
models), as they are not in the training dataset.

In AdaMap, we design the representation module based on VAE
for the following reasons. First, we can obtain the structure model
of almost all vehicles on the market and collect their point clouds
in advance to be a complete training dataset. Because the majority
of vehicles on the road are with specific models defined by their
manufacturers. With the complete training dataset, the VAE will be
trained to obtain minimal reconstruction losses, which assures the

17

Table 2: Reconstruction loss under different RFs

RF 4 8 16 32 64

Loss 0.26+0.1 032+0.1 038+0.3 046+03 048+0.4

accurate reconstruction of point clouds in edge servers!. Second,
we adopt VAE rather than conventional autoencoder, where the
generated latents of VAE serve as not only the low-dim representa-
tion but also the feature of point clouds in the latent space [17, 25].
By introducing a regularization term in the loss function, VAE reg-
ularizes the latent space, where similar input point clouds would
generate similar latents. These unique features would be useful for
further improving AdaMap, such as increasing matching accuracy
via feature-aware object matching and enhancing the generaliza-
tion of representation via adversarial training (see Sec. 8). However,
we found that using VAE with fixed-length latents (i.e., fixed com-
pression ratios) cannot adapt to time-varying network dynamics in
AdaMap. In particular, CAVs usually experience varying radio chan-
nel qualities under high-speed mobility, where their non-stationary
volatile wireless data rates would lead to fluctuating radio trans-
mission latency.

To address this issue, we design an flexible representation module
with multiple early-exit tunnels between the encoder and decoder.
As shown in Fig. 5, the representation module consists of a base
encoder followed by multiple tail layers, and multiple head layers
followed by a base decoder. We denote an early-exit tunnel as the
pair of a tail and a head layer with the corresponding dimension
of latent space. For example, we may create 256x128x64 tail layers
and 64x128x256 head layers, where three early-exit tunnels will
be enabled, including the outermost (256 dim), middle (128 dim),
and innermost (64 dim). The innermost early-exit tunnel generates
latents with the lowest dimension (i.e., the highest compression
ratio), and obtains the highest reconstruction loss. In contrast, the
outermost early-exit tunnel obtains the lowest compression ratio
and the reconstruction loss in the meantime. With this unique
design, our proposed flexible representation module allows dynamic
configuration of representation factor (RF) at runtime, without the
need for retraining. Here, we define representation factor (RF) as the
ratio between the dimension of input point clouds and the generated
latents under individual early-exit tunnels in the representation
module.

Next, we design the process for training the proposed represen-
tation module. First, we create the VAE to include only the base
encoder, the outermost early-exit tunnel (e.g., 256-dim tail and head
layer), and the base decoder. Second, we train the VAE extensively
and freeze all of its parameters. Third, we add an additional early-
exit tunnel, and train the VAE by updating only the parameters of
the newly added tunnel, such as the 128-dim tail and head layer.
We repeat the second and third steps to add more early-exit tunnels
toward the final representation module. Note that, the represen-
tation module cannot be trained as a whole (e.g., in one training
process), because it will break the early-exit mechanism, where

'With a complete training dataset, partial-view point clouds can be represented and
even completed with a high quality and accuracy [21, 44].

4.0
g ! vy
o
3.5 D.BEO
E 3.0 06 =
- w
225 o 04 @
=20 *28
[} 0.0
c
g 15 5K o
(-
£1.0 RN
05 32
epresEm (LI 1K S
0.0 Aon g 4 0 S
RF64 RF32 RF16 RF8 RF4 Ctor

Figure 6: Inference time of rep- Figure 7: Reconstruction loss of

resentation module. representation module.

the generated latents will not be able to recover the original point
clouds in the decoder, except the innermost tunnel.

In addition, we design the loss function of the representation
module to include the regularization loss and the reconstruction loss.
First, the regularization loss is defined as D [q(z|x)|p(z)], where
x are the input point clouds and z are the sampled latents. Here,
Dk is the KL-divergence to evaluate the difference between the
probability distribution of latents and a prior distribution (Gaussian
p(z) ~ N(0,1)). Second, the reconstruction loss is defined as the
weighted sum of Chamfer Distance (CD) [42] and EarthMover’s
Distance (EMD) [41], which are the widely used metrics to evaluate
the difference between point clouds. Specifically, the metric of
CD and EMD are mainly focused on the local and global scale,
respectively. This is based on our observation that, using merely CD
or EMD will result in significant loss on global and local details in
reconstructed point clouds, respectively. Hence, the reconstruction
loss is expressed as

)

loss = Losscp + f - LosSEMD.,

where f is the non-negative weight factor.

Table 2 shows the reconstruction loss achieved by the represen-
tation module under different RFs, where all input point clouds
are re-sampled into 1024 points. We can see the tradeoff between
compression ratios and reconstruction losses, where a higher RF
generally leads to a higher reconstruction loss. As compared to the
average 0.26 reconstruction loss under RF 4, an additional 0.22 loss
can trade for 16x more compression ratio under RF 64. Fig. 6 shows
the inference time of the representation module under different
RFs. As more tail and head layers need to be computed for larger
RFs, their inference times increase moderately. Note that, although
one-time inference of the representation module is minimal, the
aggregated computation time for all objects in individual CAVs is
non-negligible.

3.3 Perspective Transformation

The perspective transformation module is to transform the objects
in the local coordinate of individual CAVs to the global coordinate
system in the edge server. We denote the 3D location of an object
P; = [X,Y, Z, 1] in the local coordinate. Hence, the object’s location
in the global coordinate Py can be calculated as Py = P; X Tjyg,

18

where Tjy is the 4x4 transformation matrix defined as

CpCy —CrSytcySpsr CreySp+spsy X

TlZg _| sy crey +5SpSrsy CrspSy —cySr Y L@
=Sp CpSr cpcr Z
0 0 0 1

where ¢ and s denote sine and cosine operations, and p,r,y are
the pitch, roll, and yaw, respectively. At runtime, the transforma-
tion matrix could be obtained by using high-precision GPS and
simultaneous localization and mapping (SLAM) techniques [26].

3.4 Trajectory Modeling

The trajectory modeling module is to model and predict the future
path of dynamic objects (e.g., vehicles, scooters and pedestrians),
based on their historical locations. In AdaMap, the trajectory mod-
eling will be utilized to track all identified objects in both the object
localization module (see Sec. 3.1) and object matching module (see
Sec. 3.5). Although there are extensive solutions developed for tra-
jectory modeling, e.g., deep learning-based [2, 3], they generally
have high computation complexity and thus lead to extra com-
putation latency at runtime. In AdaMap, we achieve trajectory
modeling by using Kalman filter, which has proven robustness and
computational efficiency under various application scenarios, such
as robotics, UAVs, and aerospace.

The Kalman filter comprises two primary stages, namely the
prediction stage and the correction stage. In the prediction stage, it
uses the previous state estimation as the input to generate a forecast
of the current state. In the correction stage, the predicted state
obtained in the prediction stage is adjusted based on the current
observed state. Without loss of generality, we define the state as
[X,Y,dx,dy]|, where X and Y are the current location of the CAV,
and Z is omitted. The dx and dy are the velocity of the CAV, which
are initialized as zeros.

3.5 Predictive Object Matching

The object matching module is to match multi-viewed objects re-
ceived from individual CAVs, combine and update them into in-
dividual objects in the global map. In AdaMap, objects might be
detected intermittently under complex roadway environments, such
as miss-detection in object detection and vision blocking. Besides,
all modules in the data plane might introduce noises and errors
in real-world deployment [34], such as inaccurate detection and
tracking, and transformation matrix error. Hence, it is non-trivial to
accurately match multi-viewed dynamic objects under large-scale
deployment scenarios.

To this end, we develop a predictive-based matching method
by evaluating the predictive location, rather than last-observed
location, of objects at runtime. Specifically, we predict the location
of all objects in the global map by using the trajectory modeling
module at each time frame. Denote g as the observed geo-location
of an object in the world coordinate, we match it with the object
i = argmingc g ||g — gi ||%, where gy is the predicted location of the
kth object in the global map.

3.6 Object Descriptor

In AdaMap, we build the structure of object descriptor to include
all the sharable information regarding an individual object to be
transmitted. To describe an object, an object descriptor incorporates
the following attributes, i.e., location, orientation, 3D bounding box,
label, confidence, speed, trajectory model, latents, and certain meta-
data, such as the number of raw point cloud and time stamp. The
global map is mainly composed of object descriptors for all objects.
For the periodical updates, only changed attributes will be included
in the object descriptor and broadcasted to all CAVs.

4 CONTROL PLANE DESIGN

In this section, we describe the control plane, including system
model, problem formulation, and solution design.

4.1 System Model

We consider a generic mobile network, including multiple con-
nected and automated vehicles (CAVs), wireless base stations (BSs),
and edge computing servers. As described in the data plane in Sec. 3,
CAVs periodically (e.g., 10Hz) upload the descriptor of detected ob-
jects to their associated edge servers in a time-slotted manner. Edge
servers will be responsible for further post-processing of object
descriptors (e.g., the decoder representation module), in a first-
come-first-serve manner. Note that, we design the control plane of
AdaMap from the perspective of service providers, which means
that network transmission generally becomes a blackbox?. Without
loss of generality, we consider the association between CAVs and
BSs and edge servers are pre-determined, and focus on adapting
the data plane towards diversified networking and computation
dynamics in AdaMap.

For the ith CAV, we denote O; = {oi, o;, O;C-} as the set of
detected objects, where Kj is the number of total detected objects

of the ith CAV. Denote A; = {a’i, a;, a}'(} as the set of selection
indicator. Note that, a;‘c = 1 means the kth detected object in the
ith CAV is selected to be transmitted to edge servers, otherwise the
object will not be transmitted. Furthermore, we denote the set of

representation factor (RF) of the ith CAV as R; = {r{, ré, r}<}

where r]i is the RF for the kth object. The action space of RFs are
constrained by the minimum rp,;, and maximum rmax, defined by
the representation module in the data plane. For example, a point
cloud will go through the encoder and all the followed tail layers, if
its RF is the maximum rmax to generate the most condensed latents.

Fidelity Model. In AdaMap, we define the fidelity of an object
as the difference between its input and reconstructed point cloud.
Without loss of generality, we measure the difference by mostly
adopting the loss function of the representation module in the
data plane. Specifically, given the discrete early-exit tunnels in the
representation module, the fidelity is defined as

f(rls) = =(Losscp + f - Lossgmp). ®3)
where r is the RF of the object and s is the auxiliary state. The

Losscp and Lossgyp are the loss of CD [42] and EMD [41], re-
spectively. The rationale of introducing the auxiliary state is based

2Although network slicing techniques [24] may create a network slice with isolated
resources to support AdaMap, it is impractical to assign exact radio resources to
individual CAV transmissions in the time scale of subseconds.

19

on the following observation. In Fig. 7, we observe that the recon-
struction loss of individual objects relate to not only their RFs but
also the total number of their raw point clouds. Given a fixed RF,
the resulted fidelity are largely distributed, but can be generally
determined by the total number of raw point cloud. In other words,
the averaged fidelity regardless the auxiliary state s cannot provide
the effective guidance when optimizing individual objects in CAVs.
Therefore, the overall fidelity of AdaMap is defined as

N K;

F= ZZO{;—C -f(r]ils).

i=1 k=1

©)

Latency Model. The end-to-end latency is defined as the elapsed
time of completing the whole data plane for individual CAVs, in-
cluding vehicle-side processing, radio transmission, and server-side
processing. Under the complex and unpredictable network and com-
puting dynamics, the data plane is with probabilistic transmission
and computation time. In particular, we conduct an experiment to
measure the computation time of the representation module under
more than 10K objects. As shown in Fig. 6, the computation time
of the representation module under all RFs is 1.72 + 0.53ms. Based
on the above observation, it is difficult to derive a deterministic
formulation for end-to-end latency in AdaMap.

To accurately represent the uncertainty in AdaMap, we build the
latency model by incorporating multiple probabilistic parts as

Ko [eo(rl) d(rl) ce(rl)
L= Za,’<~ Rik + Rik + Rik +B; |, (5)
k=1 v w e

which includes four parts, i.e., vehicle-side processing, radio trans-
mission, server-side post-processing, and aggregated latency B;.
Here, we focus on the optimization of RF and object selection in
the control plane, so the incurred latency of all other modules are
aggregated, such as detection and tracking in the CAV, and object
matching in the edge server. The first vehicle-side processing la-
tency is defined as the ratio between the computation complexity
of the encoder representation module cv(r]ic) and the computation
capacity of the CAV RY. The second radio transmission latency is
defined as the ratio between the size of generated latents d (r”c)
and the experienced wireless data rate R,. Note that, we design
an approximated model for this radio transmission latency. This
is because, we are optimizing AdaMap from the perspective of
service providers who cannot control network transmission (e.g.,
radio resource allocation [22, 23]) and server computation. The
third server-side processing latency is defined as the ratio between
the computation complexity of the decoder representation mod-
ule ce(r]i) and the experienced computation capacity of the CAV
RL. Note that, 1) non-optimization variables (i.e., R}, R.) and static
functions (i.e., cv(r/i), d(r]’;), ce(r/i)) can be profiled under frozen
implementation of the representation module; 2) the end-to-end
latency is probabilistic, even under the given RF r]’;.

4.2 Problem Formulation

In the control plane design, the objective is to maximize the expec-
tation of overall fidelity while meeting the percentile requirement
of end-to-end latency. To achieve the goal, we focus on optimizing
the selection and RF of detected objects in all CAVs. Therefore, we

formulate the control plane problem as

Py : E[F 6
0 AR, B (©)
s.t. Prob(L; < H) = p,Vi (7)

r]i € ["mins - "max], Vi, k ®)

ap € [0,1],Yik, 9)

where E[:] is the operator of expectation. Besides, H is the given
latency requirement (e.g., 100ms) and p is the percentage threshold,
such as 90%. The constraint in Eq. 7 assures that there are at least p
percentage CAVs have less than H end-to-end latency.

Challenges. The challenges of solving the above problem is
multi-fold. First, the problem has to be solved in a fully distributed
approach. In existing centralized approaches, the optimization is
completed in a central server, where non-trivial communication
delay and bandwidth overheads are incurred, especially when sup-
porting large-scale geo-distributed users. In the distributed scenario,
global information (e.g., locations and wireless data rate) is gener-
ally absent when conducting the optimization in individual CAVs.
Second, the problem involves multiple probabilistic parts in both
the objective function and constraints, which falls into the field of
stochastic programming. Due to the uncertainty in the problem,
existing optimization methods (e.g., gradient descents [5]) cannot
be directly applied. Third, the distributed optimization needs to
be compute-efficient for runtime decisions. The transmission and
computation in the data plane can only be proceeded until the
optimization decision is derived. Given the stringent end-to-end
latency requirement, the optimization time itself has to be minimal,
such as less than 10ms.

4.3 Algorithm Design

In this section, we design a new control algorithm to effectively
solve the problem Py as follows. First, we decompose the problem
into multiple fully-distributed subproblems, where each subprob-
lem is focused on optimizing the selection and RF of objects in
individual CAVs. The rationale of problem decomposition lies in
the observation that, only two non-optimization variables (i.e., wire-
less data rate R, and server computation capacity R.) couple the
problem Py. These subproblems will be addressed independently
in corresponding CAVs at runtime. Second, we optimize the object
selection to minimize the total number of selected objects with-
out compromising the overall fidelity. The rationale behind is that,
objects are generally viewed by multiple CAVs, where removing
excessive point clouds will not decrease its aggregated fidelity per-
ceivably. Third, we optimize the RF for only selected objects to meet
the percentile latency constraint based on Lagrangian primal-dual
method. To deal with the uncertainty in the latency and fidelity
models, we design an approximated gradient descent method in
solving the inner primal subproblem, inspired by the sample aver-
age approximation (SAA) [16].

4.3.1 Problem Decomposition. We observe that the problem Py is
mainly coupled by the experienced wireless data rate R, Vi and
server computation capacity Ré,\ﬁ, which are not optimization
variables. Given the blackbox property of radio transmission from
the perspective of service providers, the future wireless data rate

20

needs to be predicted no matter in the server (centralized) or ve-
hicle (distributed) sides. Besides, the first-come-first-serve edge
servers can hardly be accurately managed and modeled in terms of
the experienced computation capacity of individual CAVs, which
generally leads to uncontrollable blackbox. Hence, we decompose
the problem Py into fully distributed subproblems in individual
CAVs. Without loss of generality, the subproblem in the ith CAV is
expressed as

Py : E[F; 10
1 ;?Ia%(l [Fi] (10)
s.t. Prob(L; < H) > p, (11)

8), (9,

where the experienced wireless data rate R, and server computa-
tion capacity R, will be predicted at runtime in CAVs.

4.3.2 Graph-Based Object Selection. Here, we focus on optimizing
the selection of detected objects in individual CAVs. The goal is
to un-select excessive multi-viewed point clouds of CAVs as many
as possible, which corresponds to reducing the total number of
object descriptors to be transmitted over-the-air and processed in
edge servers. The challenge of object selection lies in the complex
aggregated fidelity, i.e., the fidelity after post-processing (e.g., reg-
istration, fusion) of multi-viewed point clouds of CAVs. In other
words, it is difficult to evaluate the impact of aggregated fidelity if
any multi-viewed point clouds are removed.

To tackle this issue, we design a new graph-based selection
method to selectively remove multi-viewed point clouds of objects.
In particular, we introduce a metric (named space density), which
is defined as the density of point clouds in a given 3D space. The
proposed selection method iterates to remove objects, as long as
the space density of objects are larger than the given threshold.
The rationale behind is that, excessive point clouds on the lim-
ited surface contributes negligible improvement on the fidelity of
objects. Because non-penetration LiDAR sensors can only scan
the surface of objects, excessive point clouds will densely overlay
on the surface without providing new structural information. In
AdaMap, the multi-viewed point clouds of the identical object will
be registered and stitched together, where overlayed points will be
mostly combined at the end.

The proposed object selection method is achieved as follows.
First, we partition the 3D bounding box of detected objects into
multiple 3D sub-spaces, such as 1m> cubes. Because LiDARSs in
CAVs can only perceive partial of an object (i.e., less than 180 de-
grees). For example, we can consider that two multi-viewed point
clouds of an object are both on the same side. If we use the 3D
bounding box of the object as a whole space, the object selection
method would un-select all other multi-viewed point clouds, which
will lead to imbalance space density. In AdaMap, we partition the
3D bounding box of objects into 4 sub-spaces. Second, for each 3D
sub-space, we need to obtain the number of point cloud of objects
for comparing with the given threshold. However, we do not have
the exact numbers, because the ego CAV cannot communication
with other CAVs under the fully-distributed control plane. To this
end, we predict the number of point clouds by leveraging the Li-
DAR scanning mechanism, which generally perceives 360-degree
surroundings with even distributed points.

Third, we iteratively remove multi-viewed point clouds for each
sub-space of the object. We build a directional star-like graph (V, E),
where the center vertex is the current detected object. Besides, ver-
tices V also include other potential multi-viewed CAVs, and edges
E denote the predicted number of point clouds. In each iteration,
we sum up the total number of point clouds of existing edges E,
and compared with the given threshold of space density. The edge
e with the least edge value (i.e., the number of point cloud) will
be removed, if the sum of remaining edges is still larger than the
threshold. The above process iterates until the threshold is met.

Note that, although the object selection is optimized in each CAV
independently, all CAVs share the same global information (e.g.,
trajectory modeling and point cloud prediction), from the periodical
updates of AdaMap. As a result, the optimization result of object
selection in all CAVs would be nearly the same, even if under the
fully distributed scenarios in AdaMap.

4.3.3 Approximated Gradient Descent. Here, we focus on optimiz-
ing the RF for only selected objects in individual CAVs. The chal-
lenges of RF optimization lie in 1) the percentile constraint of la-
tency, and 2) the probabilistic fidelity and latency models.

To tackle the percentile constraint Eq. 11 in the subproblem,
we design a two-layer iterative approach based on the Lagrangian
primal-dual method [5]. The basic idea is to adaptively weight
and incorporate the constraint into the objective function Eq. 10,
which converts the constrained subproblem P; into a series of
unconstrained subproblems. First, we relax the discrete variables
R; into continuous variables denoted by R;. Second, we build the
Lagrangian as

G(Ri, 1) = E[Fi] + A (Prob(L; < H) - p),
where a non-negative multiplier A is introduced to weight the con-
straint. Then, the subproblem Py can be addressed by alternatively

addressing the primal and dual subproblem. Specifically, the dual
subproblem is expressed as

(12)

A" = arg max G(Ri,A). (13)
A>0
In contrast, the primal subproblem is expressed as
R; =arg max G(R;,), (14)

Ri€(8)

where ﬁf denotes the optimal continuous RFs. In the outer layer,
the dual subproblem is solved under the given RFs, by using the
sub-gradient descent [5]. In the inner layer, the primal subproblem
is solved under the given the multiplier 1. As the convergence of the
two-layer iteration, the obtained continuous RFs will be discretized
into the discrete values in [7min, .-, "rmax]-

Due to the probabilistic parts in the above primal subproblem,
its falls into the field of stochastic programming [33]. We observe
that these probabilistic parts are dependent on only the represen-
tation module, which is generally offline trained before its real-
world deployment in AdaMap. Hence, we can offline evaluate the
representation module extensively to peek at the uncertainty of
the primal subproblem. Specifically, we vary the RFs, measure the
resulted probabilistic fidelity and latency, and collect the measure-
ment datasets, as shown in Fig. 7. Given the collected datasets, we
solve the primal subproblem by using gradient descent methods,
which is described as follows. First, we select arbitrary initial RFs.

21

Algorithm 1: Approximated Gradient Descent

Input: f(é , "min> "max

Output: R;
1 Offline collect measurement datasets D;
2 Initialize multiplier A and start point R;;
3 form=1,2,...do

4 [#% solve primal subproblem x s /[
5 forn=1,2,..do
6 Deviate ﬁi via adding random noises Ny;
7 Sample fidelity and latency from datasets O, under
A; and R; + N,;
8 Build linear regression models for fidelity F; and
latency L;;
9 Calculate gradients based on regressed models;
10 | Update R; via one-step gradient descent;
1 /s solve dual subproblem = x [;
12 Calculate the achieved percentile latency;
13 | Update multiplier A via sub-gradient descent;

4 Discretize R; to R; in [Fmin, "max];

[

5 return R;;

-

Second, we deviate the current RFs and sample the corresponding
probabilistic parts (i.e., fidelity F; and latency L;) from the measure-
ment datasets. Third, we build an approximated local model for both
fidelity and latency functions (i.e., F; and L;) with respect to RFs (i.e.,
Ri) by using compute-efficient linear regression techniques. Fourth,
we calculate the gradients based on the approximated models and
use gradient descent to conduct a one-step update to the current
RFs. The above process will be iterated toward its convergence.
The pseudo code of the approximated gradient descent algorithm
is shown in Alg. 1.

5 SYSTEM IMPLEMENTATION

We implement AdaMap on a desktop computer with Intel i7 CPU
and RTX 3090 GPU under Ubuntu 20.04. The AdaMap system is
implemented with mainly three parts, i.e., vehicles, the simulated
network, and servers, where only object descriptors will be trans-
mitted. Due to the intractable complexity of conducting real-world
experiments for hundreds of realistic vehicles, we choose to run all
the data plane on the same desktop computer. Given the limited
computation capacity of the desktop computer (e.g., CPU cores and
GPU memory), we execute the data plane of all CAVs sequentially
and collect their vehicle-part computation latencies and transmis-
sion data sizes individually. At runtime, the simulated network
takes the necessary information (e.g., vehicle locations and trans-
mission data sizes) as the input and simulates the transmission
latency of individual CAVs. Specifically, the simulated network is
achieved by using a 5G system-level simulator [28], where the ur-
ban micro (UM, Street Canyon) radio channel is adopted and the
base station (BS) is located in the center of all CAVs by default®.
Then, the servers continue the post-processing of the data plane

3The evaluation results of different vehicle-BS distance can be found in Fig. 18 and
Fig. 19 in Sec. 6.

201 — adamap 7 FiEr " — AdaMap s ﬁf\
S08{ —— Where2comm Sos / ——vIPS S 250
- CE = e |
0 16l VIPS < Where2comm | " 2as X
< —— AdaMap-Lite / / < I —— AdaMap-Lite & 240 ’1 _1 l‘
> f f > E’ '
5 04 504 T 53 \ m A ﬂ ‘ F
: (s B 2ol A Y ! f I
g 0.2 _'J / / I 0.2 j/ & 20 1l l‘l X
O 0.0 = - 3 0.0 225 U

10! 102 10 00 05 1.0 15 20 2.5 3.0 3.5 4.0 : % o e %0 00

Latency (ms) Loss Frame

Figure 8: Cumulative probability of latency. Figure 9: Cumulative probability of losses.

accordingly. Finally, the latency of vehicle-part computation, net-
work transmission, and server-part computation are aggregated to
calculate the end-to-end latency of individual CAVs. To implement
AdaMap, we have finished more 4000 lines of codes in Python. Note
that, the AdaMap implementation is ready for real-world deploy-
ments, where only trivial networking configurations (e.g., pairing
IP addresses) are needed to deploy on realistic cars and servers.

In the data plane, we use state-of-the-art PointPillars [18] as
the 3D object detector. The threshold in our hybrid localization
module is empirically tested and set to be 0.5m. To achieve the
representation module, we adopt the PointNet [29] as the base
encoder, and multiple fully-connected layers for the base decoder.
The early-exit tunnels are implemented with 256x128x64x32 and
32x64x128x256, where all input point clouds are resampled to 1024
points. In other words, four discrete early-exit tunnels are available
and thus the action space of RFs are [4, 8, 16, 32, 64]. In the loss
function of the representation module, the weight f = 0.0001.

In the control plane, the percentile p = 0.99 and the latency
threshold H = 100ms for meeting the requirement of 10Hz LiDARs.
We use 4 partitions for individual CAVs, where the threshold for
the space density is 1024 per sub-space. This is based on our exper-
imental measurement in CARLA, where 4096 points are generally
sufficient to represent vehicles.

To collect the dataset for AdaMap evaluation, we use CARLA
simulator under the town5 with 150 vehicles and automatic nav-
igation. We collect more than 100 time frames at 10Hz interval.
The dataset includes the raw data of LIDAR and the ground-truth
transformation matrix T, for each vehicle at all time frames, at the
total size of 82GB. The specification of LIDARs are 64-thread, 2.4M/s
data rate, and 50m sensing range, where LiDARs are mounted on
the 1 meter above the vehicle’s roof.

We compare AdaMap with the following state-of-the-art cooper-
ative perception systems:

e VIPS [34]: VIPS is a state-of-the-art vehicle-to-infrastructure
(V2I) solution for cooperative perception. Its basic idea is
to transmit only the interested objects to the ego vehicle,
without point cloud compression. For a fair comparison, we
implement VIPS to use off-the-shelf compression library (i.e.,
Zstandard) to transmit only detected objects (rather than the
whole raw point cloud) of individual vehicles.

e Where2comm [15]: Where2comm is a representative vehicle-
to-vehicle (V2V) solution for extending the perception range
of vehicles. Its basic idea is to share only interested areas (e.g.,
vision occlusion) between vehicles. For a fair comparison, we

22

Figure 10: Detailed object selection under
AdaMap.

implement Where2comm to use Zstandard compression li-
brary to transmit point clouds of the whole blind spot among
individual vehicles.

o AdaMap-Lite: The AdaMap-Lite adopts the data and control
plane of AdaMap, but it selects all the detected objects and
uses the maximum RF at all time frames.

6 PERFORMANCE EVALUATION

In this section, we evaluate AdaMap to answer the following ques-
tions. 1) How AdaMap performs compared to state-of-the-art solu-
tions? 2) How AdaMap scales under different roadway traffic and
network conditions? 3) How AdaMap adapts to network dynamics?
4) How individual components in the data and control plane im-
pact the overall performance of AdaMap? In particular, we evaluate
AdaMap with two key metrics, including percentile end-to-end
latency and average reconstruction loss. Note that, as existing so-
lutions adopt the lossless point cloud compression library, their
reconstruction losses are always zeros.

6.1 Overall Performance

We evaluate the overall latency and loss performance, which in-
dicates the efficacy of cooperative perception systems. Fig. 8 and
Fig. 9 show the cumulative probability of end-to-end latency and
reconstruction loss achieved by different solutions under 150 CAVs.
For the latency performance, AdaMap reduces 9.8x and 49x on av-
erage as compared to VIPS and Where2comm, respectively. Under
limited networking resources (i.e., 200KHz radio bandwidth), ex-
isting solutions consume 0.42 + 1.5s and 2.12 + 2.4s to complete
the perception sharing for all CAVs, which cannot be tolerated in
real world deployment. In contrast, AdaMap achieves 70ms latency
on average, where 89.4% CAVs have less than 100ms end-to-end
latency. Note that, we evaluate AdaMap with p = 0.99 by default,
which indicates that the percentile latency constraint in Eq. 7 is not
fully satisfied here. We found the key reason is the limited number
of discrete RFs in AdaMap, where the data plane supports only a to-
tal of 5 RFs. When the continuous RFs are discretized, the achieved
optimality is compromised to a certain extent. In other words, this
gap would be bridged by developing more fine-grained RFs in real-
world deployment. For the loss performance, AdaMap achieves 0.37
reconstruction loss on average, where 95% CAVs are with less than
0.63 loss. Note that, Table 2 shows the reconstruction loss under
RF 64 is 0.48 on average, where the resulted visual effects are gen-
erally acceptable for autonomous driving pipeline as illustrated in
Fig. 22. These results verify that AdaMap can achieve high-scalable

50

40
Frame

60

Figure 11: Detailed RF optimization under Figure 12: Loss performance under different

107 E AdaMap S E AdaMap
< 0.8{ Wmm AdaMap-Lite & 10°; mmm AdaMap-Lite
s = VIPS £ . VIPS
g @0'6‘ B \Where2comm 3, , | HE Where2comm
@ = o4 . 21074
G 5
o 0.2

10! 4
0.0

Number of Vehicle

100 150 50 100

Number of Vehicle

150

Figure 13: Latency performance under

AdaMap. number of CAVs. different number of CAVs.
0.50 ; ‘ ; = —
—h— i : : .
\ 0.2MHz bandwidth | € T o] W AdaMap
0.45 1A —#&— 0.3MHz bandwidth -] VIPS 4 7 103{ M AdaMap-Lite
s 34
2 om0 \ 2 10 gy £ m VIPS
2 0. \‘ L 102 —— AdaMap-Lite > B Where2comm
- o | g 1074
0.35 \\\ \ g 10! = AdaMap-reuse - ©
= -
L " £
0.30 I] ¢ 101 4
— = 10711 v ; ; ; |
50 100 150 200 250 300 20 40 60 80 100 0.1 0.2 0.3

99-percentile latency (ms)

Figure 14: Pareto boundary of AdaMap.

real-time cooperative perception by using very limited networking
resources.

Besides, we dissect AdaMap in details regarding how the control
plane optimizes the object selections and representation factors
(RFs). Fig. 10 and Fig. 11 show the percent of selected objects and
optimized RFs over 100 time frames. It can be seen that, AdaMap
adaptively selects 23.6% objects on average, which indicates that a
large portion of multi-viewed point clouds of objects are duplicated
in terms of contributing to the overall fidelity. Hence, we observe
that the transmission size of all CAVs are significantly reduced,
which generally improves the latency performance under fixed
networking resources. In addition, we observe that optimized RFs
in AdaMap are distributed from ryj, = 4 to rmax = 64 in Fig. 11.
Generally, AdaMap would choose the RF with the highest com-
pression ratio for trading off the latency performance under heavy
traffic scenarios, such as traffic jam. However, AdaMap rarely uses
RF 64 (only 0.55%) but uses RF 32 at the probability of 20.9%. This
might be attributed to 1) the mechanism of evenly vehicle dispatch
in CARLA simulator generally leads to non-heavy traffic scenarios;
2) the object selections in AdaMap reduce the number of objects to
be transmitted before the RF optimization.

6.2 Scalability

We evaluate the scalability of AdaMap by varying the number of
CAVs and percentile latency requirement. Fig. 12 and Fig. 13 show
the reconstruction loss and end-to-end latency achieved by dif-
ferent solutions under different number of CAVs. It can be seen
that, AdaMap can always maintain the percentile latency, while
existing solutions experience exponential increment on their la-
tency performances. In particular, AdaMap achieves 27.1ms latency
on average when there are 50 CAVs, where the optimized RFs are
mostly focused on RF 4 (98.6%). Moreover, AdaMap reduces the

Frame

Figure 15: Transmission size under different
solutions.

23

Radio bandwidth (MHz)

Figure 16: Latency performance under
different radio bandwidth.

average reconstruction loss by 23.8% as compared to that in high
traffic (150 CAVs).

In Fig. 14, we obtain the Pareto boundary of AdaMap by vary-
ing the 99-percentile latency requirement under 150 CAVs. We
observe that AdaMap can achieve the lowest 99-percentile latency
of 57.7ms at the cost of 0.49 reconstruction loss, and the lowest loss
of 0.29 when the latency requirement is loosen to 298ms. To push
the boundary towards even lower loss and latency, one of feasible
approaches is to increase available networking resources, such as
radio bandwidth. In particular, the achieved 99-percentile latency
of 138ms under 200KHz can be further reduced to 102ms with the
same average loss of 0.36, when the radio bandwidth is expanded
to 300KHz. Fig. 15 shows the total transmission size of all CAVs
under different solutions in 100 frames. The transmission size is
determined by not only the number of total selected objects but
also the average size of each objects. In AdaMap, we transmit only
selected objects, where each object is compressed by using the rep-
resentation module with high compression ratios. Hence, AdaMap
reduces on average 89.7% and 98.12% transmission size as compared
to VIPS and Where2comm, respectively. In particular, benefit from
the object matching in AdaMap, we can track all the objects in the
global map. Hence, considering the reusing of historical point cloud
of objects, we observe that AdaMap-Reuse further reduces 98.1%
as compared to original AdaMap. Besides, AdaMap-Reuse obtains
97.8% and 99.95% reduction on the transmission size as compared
to VIPS and Where2comm, respectively. These results demonstrate
that AdaMap is highly scalable to tackle large-scale traffic scenarios.

6.3 Adaptability

We evaluate the adaptability of AdaMap by varying radio bandwidth
and channel qualities. Fig. 16 shows the impact of radio bandwidth
on the latency of different solutions. With 100KHz more radio
bandwidth, VIPS and Where2comm reduce 25.3% and 50.1% average

100

1.0 e
Emm RF 4 = AdaMap = AdaMap
X 801 WWE RF8 0.8| mmm AdaMap-Lite =10°{ mmm AdaMap-Lite
2 B RF 16 g | = VIPS E mm VIPS
| " 064
® BN RF 32 2~ mm Where2comm > B Where2comm
f 4
§ a0 WM RF64 = o4 EJlo2
3 3
& 204 0.2
101<
0 0.0
0.1 0.2 0.3 80 130 180 230 80 130 180 230

Radio bandwidth (MHz)

Average vehicle-BS distance (m)

Figure 17: Detailed RF optimization under Figure 18: Loss performance under different

different radio bandwidth.

average vehicle-BS distances.

Average vehicle-BS distance (m)

Figure 19: Latency performance under

different average vehicle-BS distances.

= == T T
! % AdaMap 1.04
: A No_Represent E‘ /'—
0.4 ® @ No_Adapt 20.8 / ¢
* WV No_Select 2 /// \ 3 .
903 L @ No_Track o6 T m— T | e
o () G
a round truth RF 4 RF 8
0.2 % 0.4 1 —— 3D detection
01 g 0.2 —— Hybrid localization
3 —— Kalman filter
0.0 A 0.0 : . R 3
100 150 200 250 300 0.0 0.2 0.4 0.6 0.8 0 | T i et a ’
Average latency (ms) Localization error (m) RF 16 RF 32 RF 64

Figure 20: Impact of individual components

Figure 21: Localization errors under
different methods.

Figure 22: Example of reconstructed

in AdaMap.

latency than that under 200KHz radio bandwidth, respectively. In
contrast, AdaMap and AdaMap-Lite maintain the percentile latency
by adaptively optimizing RFs, where the reconstruction loss is
reduced by 23.2% on average under 100KHz more radio bandwidth.
Fig. 17 shows the detailed RF optimization under different radio
bandwidth. We see that, the average RF is increased from 13.5 when
the bandwidth is 200KHz to 9.1 under 300KHz bandwidth. Under
more radio bandwidth, AdaMap can intelligently adapt to available
network resources to reduce the reconstruction loss and improve
the overall fidelity.

Fig. 18 and Fig. 19 depict the impact of radio channel qualities
on the performance of different solutions. Specifically, this result is
collected by changing the location of the base station (BS) in the
simulated network to vary the distance between vehicles and base
stations. The larger vehicle-BS distance generally indicates lower
achievable wireless data rates and higher fluctuations in the mean-
time. We observe that, AdaMap can always satisfy the percentile
latency requirements, at the cost of increasing the average recon-
struction loss. These results verify that AdaMap can effectively
adapt to time-varying network dynamics.

6.4 Design of Data Plane

We evaluate the data plane in terms of localization error and re-
construction loss. In Fig. 21, we show the cumulative probability
of localization error, which is measured by the Euclidean distance
between the predicted and ground-truth location. It can be seen
that, our hybrid localization module achieves 0.19m localization
error with the probability of 95%. As compared to purely object
detection, our hybrid localization module obtains 96.1% reduction
on the inference time at the cost of only 0.02m localization loss.
Besides, we illustrate the visual effects of the point cloud recon-
structed by the representation module (see Sec. 3) under different

24

point clouds.

Table 3: Computation time of data plane modules

Modules Inference time (ms)
Object Localization 0.061 + 0.023
Representation 1.72 £ 0.53
Perspective Transformation 0.006 + 0.012
Object Matching 0.014 + 0.023

representation factors (RFs) in Fig. 22. It can be seen that, the re-
constructed point cloud under RF 4 is very close to the original
point cloud structurally. Although the reconstructed point cloud
under RF 64 is relatively far from the original, we believe it still
provides sufficient structural details for following autonomous driv-
ing pipeline, such as 3D scene understanding (more discussions in
Sec. 8). Note that, we implemented the representation module with
relatively small DNNs, which indicates that its reconstruction loss
could be further reduced by using larger DNNs with efficient and
sophisticated neural network architectures [21].

In Table 3, we show the computing time of individual data plane
modules in AdaMap. With the unique design in the hybrid localiza-
tion module, AdaMap only spends negligible delay on localizing
interested objects. In particular, the most time-consuming mod-
ule is the representation module (1.72ms on average), which in-
volves the computation of DNNs. Note that, all these modules are
very compute-efficient and can be completed in a few milliseconds,
which justifies the computation efficiency of data plane in AdaMap.

6.5 Impact of Individual Components

We evaluate individual components in contributing to the overall
performance of AdaMap. Overall, we observe that AdaMap achieves
the best performance in terms of meeting the percentile latency
while reducing the reconstruction loss. Without using the repre-
sentation module in the data plane, No_Represent relies on existing
off-the-shelf compression, which increases 4.63x average latency

with no reconstruction loss. Without using the object selection in
the control plane, No_Select transmits all detected objects, which
results in higher optimized RFs and higher reconstruction loss.
Without using the hybrid detection and tracking in the data plane,
No_Track relies on only object detection to localize interested ob-
jects, which squeezes the latency allowance for following data plane
modules, and leads to worse performance on both latency and loss.
Besides, No_Adapt uses only RF 4 all the time, which cannot adapt
to network dynamics and thus fails the percentile latency require-
ment.

7 RELATED WORK

Cooperative perception has been increasingly studied to augment
the perception for the ego vehicle towards safe autonomous driving.
AVR [31] shares raw point clouds among vehicles to extend their
sensing ranges and reduces the transmission size by selecting only
dynamic objects and motion vectors. F-cooper [9] introduced the
first feature-level fusion solution to combine both voxels and fea-
tures of different LiIDAR point clouds, which improves the accuracy
of 3D object detection in the ego vehicle. Recently, infrastructure-
assisted solutions emerge to tackle the exponential increment of
transmission data size under vehicle-to-vehicle (V2V) approaches.
EdgeSharing [19] leveraged edge computing servers to maintain a
global map, that aggregates various crowdsourced data (e.g., raw
point clouds and features), to assist the localization, detection, and
matching for individual CAVs. To improve the scalability of coop-
erative perception, multiple works (e.g., AutoCast [30], VIPS [34],
and Where2comm [15]) further exploited the spatial correlation
and individual needs among CAVs to reduce the transmission data
size. However, these works cannot scale in large-scale deployment
with hundreds of CAVs (if not more), such as block and community
scales, in terms of networking resource demand and end-to-end
latency assurance.

Edge computing is expected to shape and revolutionize the
future automotive industry with low-latency accessible resources,
where computation offloading provides promising computation
acceleration [6-8, 46]. DeepDecision [32] outlined an optimiza-
tion framework to determine the offloading strategy for compute-
intensive workloads, while balancing the detection accuracy, energy
consumption, and network data usage. Edge-SLAM [4] is designed
to split the computation modules of visual simultaneous localiza-
tion and mapping(Visual-SLAM) between mobile devices and edge
servers, to accelerate the overall computation by leveraging the
high computation capacity at edge servers. LiveMap [25] intro-
duced a new collaborative computing framework to intelligently
and adaptively place partial computation workloads in vehicles and
edge servers, during the construction of real-time dynamic map at
the edge. However, existing works are mostly focused on central-
ized optimization with deterministic system models, which incurs
significant communication delay and overhead under large-scale
cooperative perception scenarios.

8 DISCUSSION

The main focus of this work lies in the fundamental trade-offs be-
tween the latency and fidelity in large-scale cooperative perception

25

systems. One of the key designs is the representation module for
lossy compression of point clouds, which allows adaptive balancing
between latent dimensions and reconstruction losses at runtime.
From the visualization results in Fig. 22, we believe that our imple-
mentation of the representation module remains noticeable rooms
for further improvement, in terms of reducing reconstruction losses.
We envision two potential directions of improving its implementa-
tion as follows. First, the design of its loss function might be further
enhanced to balance local detail and global similarity, e.g., linear
searching of the weight factor f. Second, the design of its neural
network architecture could be further optimized to improve the
training performance, e.g., neural architecture search (NAS) and
automatic hyper-parameter tuning.

In addition, one of the limitations of the representation module
is the unpredictable (e.g., potentially catastrophic) reconstruction
losses under unseen point clouds in the training dataset. This limi-
tation may be alleviated by 1) building a complete training dataset
as much as possible to cover diversified point clouds; 2) enhancing
its generalization by adopting robust and adversarial training tech-
niques; 3) predicting the reconstruction loss (refer to Fig. 7) and
resort to lossless compression techniques if the predicted loss is too
high.

Furthermore, the evaluation of this work is based on accurate
local-to-global conversion matrix and non-contaminated sensory
data, which might not be available in real-world deployment scenar-
ios. The robustness of cooperative perception systems would need
further extensive evaluation under real-world experiments, such as
the error propagation under detection errors and localization shifts.
Besides, the corresponding countermeasures demand for further
exploratory study, experimental testing, and real-world validation.

9 CONCLUSION

In this paper, we presented AdaMap, a new high-scalable real-time
cooperative perception system. We designed a tightly coupled data
plane and control plane to achieve AdaMap. In the data plane, we
designed the hybrid localization module to accelerate the object
localization, and the flexible representation module to trade accept-
able reconstruction losses for higher compression ratios. In the
control plane, we designed the object selection method to mitigate
the excessive multi-viewed point clouds, and the approximated
gradient descent algorithm to online optimize the representation
factor (RF) under time-varying network dynamics. We evaluated
AdaMap in an emulation platform to show its scalability, adaptabil-
ity and computation efficiency. The evaluation results showed that,
AdaMap can assure percentile latency requirements and reduce up
to 49x transmission data size at the cost of 0.37 reconstruction loss
than state-of-the-art solutions. We believe that, AdaMap sheds the
light on large-scale real-time cooperative perception deployment
in future scenarios.

ACKNOWLEDGEMENT

This work is partially supported by the US National Science Foun-
dation under Grant No. 2321699.

REFERENCES

(1]

[2

—

3

=

(4

5

[

G

-

[7

—

(8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Fawad Ahmad et al. 2020. Carmap: Fast 3d feature map updates for automobiles.
In 17th { USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20). 1063-1081.

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li
Fei-Fei, and Silvio Savarese. 2016. Social Istm: Human trajectory prediction in
crowded spaces. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 961-971.

Florent Altché and Arnaud de La Fortelle. 2017. An LSTM network for highway
trajectory prediction. In 2017 IEEE 20th international conference on intelligent
transportation systems (ITSC). IEEE, 353-359.

Ali] Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar,
Steven Y Ko, and Karthik Dantu. 2022. Edge-SLAM: Edge-assisted visual simul-
taneous localization and mapping. ACM Transactions on Embedded Computing
Systems 22, 1 (2022), 1-31.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

Dawei Chen, Yin-Chen Liu, BaekGyu Kim, Jiang Xie, Choong Seon Hong, and
Zhu Han. 2020. Edge Computing Resources Reservation in Vehicular Networks:
A Meta-Learning Approach. IEEE Transactions on Vehicular Technology 69, 5
(2020), 5634-5646. https://doi.org/10.1109/TVT.2020.2983445

Dawei Chen, Haoxin Wang, and Kyungtae Han. 2023. Adaptive Delivery for
High Definition Map Using A Multi-Arm Bandit Approach. In 2023 32nd Wireless
and Optical Communications Conference (WOCC). 1-6. https://doi.org/10.1109/
WOCC58016.2023.10139782

Juan Chen et al. 2021. A DRL Agent for Jointly Optimizing Computation Offload-
ing and Resource Allocation in MEC. IEEE Internet of Things Journal (2021).

Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. 2019. F-cooper:
Feature based cooperative perception for autonomous vehicle edge computing
system using 3D point clouds. In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing. 88-100.

Yann Collet and Murray Kucherawy. 2018. Zstandard Compression and the appli-
cation/zstd Media Type. Technical Report.

Automotive Edge Computing Consortium. June. 2021. Break Down
the Barriers to Automotive Edge Adoption. White Paper. Auto-
motive Edge Computing Consortium. https://aecc.org/events/
breaking-down-the-barriers-to-automotive-edge-adoption/

David Elliott, Walter Keen, and Lei Miao. 2019. Recent advances in connected
and automated vehicles. journal of traffic and transportation engineering (English
edition) 6, 2 (2019), 109-131.

Ryuichi Fukatsu and Kei Sakaguchi. 2019. Millimeter-wave V2V communications
with cooperative perception for automated driving. In 2019 IEEE 89th vehicular
technology conference (VTC2019-Spring). IEEE, 1-5.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. 2020. Deep learning for 3d point clouds: A survey. IEEE transactions
on pattern analysis and machine intelligence 43, 12 (2020), 4338-4364.

Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. 2022.
Where2comm: Communication-efficient collaborative perception via spatial con-
fidence maps. Advances in neural information processing systems 35 (2022), 4874~
4886.

Sujin Kim, Raghu Pasupathy, and Shane G Henderson. 2015. A guide to sample
average approximation. Handbook of simulation optimization (2015), 207-243.
Diederik P Kingma, Max Welling, et al. 2019. An introduction to variational
autoencoders. Foundations and Trends® in Machine Learning 12,4 (2019), 307-392.
Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Os-
car Beijbom. 2019. Pointpillars: Fast encoders for object detection from point
clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 12697-12705.

Luyang Liu and Marco Gruteser. 2021. EdgeSharing: Edge assisted real-time
localization and object sharing in urban streets. In IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 1-10.

Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao Yao, Qingyang Zhang, and
Weisong Shi. 2020. Computing systems for autonomous driving: State of the art
and challenges. IEEE Internet of Things Journal 8, 8 (2020), 6469-6486.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. 2020. Morphing
and sampling network for dense point cloud completion. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 34. 11596-11603.

Qiang Liu, Nakjung Choi, and Tao Han. 2021. Constraint-Aware Deep Reinforce-
ment Learning for End-to-End Resource Orchestration in Mobile Networks. In
2021 IEEE 29th International Conference on Network Protocols (ICNP). IEEE, 1-11.
Qiang Liu, Nakjung Choi, and Tao Han. 2021. OnSlicing: online end-to-end net-
work slicing with reinforcement learning. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies. 141-153.
Qiang Liu, Tao Han, and Ephraim Moges. 2020. EdgeSlice: Slicing wireless edge
computing network with decentralized deep reinforcement learning. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS). IEEE,
234-244.

26

[25]

[26]

[27

[28]

[29

[30

[31]

[32

[33]

&
=t

[35

[36]

[37]

[43]

[44]

[45]

[46]

[47

[48]

Qiang Liu, Tao Han, Jiang Linda Xie, and BaekGyu Kim. 2021. LiveMap: Real-
Time Dynamic Map in Automotive Edge Computing. In IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 1-10.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015. ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE transactions on
robotics 31, 5 (2015), 1147-1163.

Online. 2022. Video appears to show a Tesla’s autopilot system confus-
ing horse-drawn carriage for truck. https://www.businessinsider.com/
video-tesla-autopilot-appears-to-confuse-horse-drawn- carriage-truck-2022-8
Edward J Oughton, Konstantinos Katsaros, Fariborz Entezami, Dritan Kaleshi, and
Jon Crowcroft. 2019. An open-source techno-economic assessment framework
for 5G deployment. IEEE Access 7 (2019), 155930—-155940.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 652—-660.

Hang Qiu et al. 2022. AutoCast: scalable infrastructure-less cooperative per-
ception for distributed collaborative driving. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services. 128—-141.
Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.
Avr: Augmented vehicular reality. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. 81-95.

Xukan Ran et al. 2018. Deepdecision: A mobile deep learning framework for
edge video analytics. In IEEE Conference on Computer Communications. IEEE,
1421-1429.

Alexander Shapiro and Andy Philpott. 2007. A tutorial on stochastic program-
ming. Manuscript. Available at www2. isye. gatech. edu/ashapiro/publications. html
17 (2007).

Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guoliang Xing, Jianwei Niu, and
Zhenchao Ouyang. 2022. VIPS: Real-time perception fusion for infrastructure-
assisted autonomous driving. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. 133-146.

Jack Stilgoe and Jack Stilgoe. 2020. Who killed elaine herzberg? Who’s Driving
Innovation? New Technologies and the Collaborative State (2020), 1-6.

Manabu Tsukada, Takaharu Oi, Akihide Ito, Mai Hirata, and Hiroshi Esaki. 2020.
AutoC2X: Open-source software to realize V2X cooperative perception among au-
tonomous vehicles. In 2020 IEEE 92nd Vehicular Technology Conference (VIC2020-
Fall). IEEE, 1-6.

Elisabeth Uhlemann. 2018. Time for autonomous vehicles to connect [connected
vehicles]. IEEE vehicular technology magazine 13, 3 (2018), 10-13.

Bill Vlasic and Neal E Boudette. 2016. Self-driving Tesla was involved in fatal
crash, US says. New York Times 302016 (2016).

Jiadai Wang, Jiajia Liu, and Nei Kato. 2018. Networking and communications in
autonomous driving: A survey. IEEE Communications Surveys & Tutorials 21, 2
(2018), 1243-1274.

Greg Welch, Gary Bishop, et al. 1995. An introduction to the Kalman filter. (1995).
Xin Wen, Peng Xiang, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen Zheng,
and Yu-Shen Liu. 2021. Pmp-net: Point cloud completion by learning multi-step
point moving paths. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 7443-7452.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. 2021.
Balanced chamfer distance as a comprehensive metric for point cloud completion.
Advances in Neural Information Processing Systems 34 (2021), 29088-29100.
Ruozhou Yu, Dejun Yang, and Hao Zhang. 2021. Edge-assisted collaborative
perception in autonomous driving: A reflection on communication design. In
2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 371-375.

Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. 2021.
Pointr: Diverse point cloud completion with geometry-aware transformers. In
Proceedings of the IEEE/CVF international conference on computer vision. 12498—
12507.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE access 8 (2020), 58443-58469.

Jing Zhang et al. 2018. Joint computation offloading and resource allocation
optimization in heterogeneous networks with mobile edge computing. IEEE
Access 6 (2018), 19324-19337.

Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu, Y Ethan Guo, Feng Qian, and
Z Morley Mao. 2021. Emp: Edge-assisted multi-vehicle perception. In Proceedings
of the 27th Annual International Conference on Mobile Computing and Networking.
545-558.

Adam Ziebinski, Rafal Cupek, Damian Grzechca, and Lukas Chruszczyk. 2017.
Review of advanced driver assistance systems (ADAS). In AIP Conference Pro-
ceedings, Vol. 1906. AIP Publishing.

