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ABSTRACT

Cooperative perception is the key approach to augment the per-

ception of connected and automated vehicles (CAVs) toward safe

autonomous driving. However, it is challenging to achieve real-time

perception sharing for hundreds of CAVs in large-scale deployment

scenarios. In this paper, we propose AdaMap, a new high-scalable

real-time cooperative perception system, which achieves assured

percentile end-to-end latency under time-varying network dynam-

ics. To achieve AdaMap, we design a tightly coupled data plane

and control plane. In the data plane, we design a new hybrid lo-

calization module to dynamically switch between object detection

and tracking, and a novel point cloud representation module to

adaptively compress and reconstruct the point cloud of detected

objects. In the control plane, we design a new graph-based object

selection method to un-select excessive multi-viewed point clouds

of objects, and a novel approximated gradient descent algorithm to

optimize the representation of point clouds. We implement AdaMap

on an emulation platform, including realistic vehicle and server

computation and a simulated 5G network, under a 150-CAV trace

collected from the CARLA simulator. The evaluation results show

that, AdaMap reduces up to 49x average transmission data size at

the cost of 0.37 reconstruction loss, as compared to state-of-the-

art solutions, which verifies its high scalability, adaptability, and

computation efficiency.
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Figure 1: An illustrative example of cooperative perception.

1 INTRODUCTION

Autonomous driving and advanced driving assistance system [20,

39, 45, 48] generally control the vehicle and react to diversified road-

way environments based on the local perception obtained from the

perspective of the ego vehicle. To achieve robust perception, con-

nected and automated vehicles (CAVs) [12, 37] are equipped with a

variety of onboard sensors, such as cameras, LiDAR, and radar. How-

ever, these line-of-sight sensors can be contaminated under diverse

roadway conditions [1], e.g., vision occlusion, extreme weather,

and sensor failures, which may lead to incomplete and inaccurate

information in the local perception [19, 25]. In addition, the limited

view angle of the ego vehicle might confuse and even mislead the

local perception. An example in [27] illustrates that a horse-drawn

carriage is recognized as a truck or sedan intermittently by Tesla

Autopilot. As a result, recent controversial accidents [35, 38] of

pilot commercial deployment raises widespread concerns about

autonomous driving techniques, in terms of safety, reliability, and

availability.

Cooperative perception [9, 43, 47] has been extensively investi-

gated to overcome the limitations of local perception in CAVs. As

illustrated in Fig. 1, cooperative perception allows the sharing of

perception data (e.g., point clouds, images and locations) among

vehicles (i.e., V2V [13]) and infrastructures (i.e., V2I [36]), such as

lampposts and edge servers. Thus, the ego vehicle can utilize the

shared perception data to augment its local perception (e.g., reduc-

ing occluded areas and extending sensing ranges) for achieving

high-safety driving [1, 25]. In particular, LiDAR point clouds are

widely adopted in cooperative perception [9, 30], which attributes

to the unique property of privacy-preserving and weather-proof.

In cooperative perception, the key goal is to achieve real time shar-

ing for assuring the freshness of shared information [1, 15, 34].

Given that commercial off-the-shelf LiDARs are with 10 Hz sam-

pling rates, the end-to-end latency of perception sharing should be

below 100 milliseconds, if not less. The shared perception data with

unsatisfied latency provides trivial information regarding roadway

environments [25], e.g., the location shift of 50mph vehicles can be

more than 2 meters under 100ms delay.
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Figure 2: Number of sharing point clouds under different vehicle

traffic.

It is, however, challenging to achieve real-time and large-scale

cooperative perception, especially under time-varying network dy-

namics. For example, given the 1+ million/s point clouds of commer-

cial 32-thread LiDARs, the required wireless data rate to support

10 CAVs could reach up to 400 Mbps [34], which would lead to

unsustainable network subscription fees for service providers. Re-

cent works [15, 31, 34] investigated transmitting only interested

areas/objects (rather than the whole raw point cloud) to selective

CAVs, and obtained very promising reductions in the over-the-air

transmission data size. However, existing works are focused on

supporting a limited number of CAVs (e.g., less than ten), which

still require considerable networking resources in large-scale de-

ployment scenarios (e.g., 100+ CAVs). According to the forecast of

Automotive Edge Computing Consortium (AECC), more than 50%

of cars on the road in the United States will have connected features

by 2025 [11]. As a result, the cooperative perception system requires

to support a massive number of CAVs, e.g., a 5G base station (1-mile

radius coverage) may include hundreds of CAVs in metropolitan

areas. In Fig. 2, we show the total number of points to be transmit-

ted in existing works (i.e., VIPS [34] and Where2comm [15]) under

different number of CAVs, based on our collected CARLA traces

(see Sec. 6). To support the cooperative perception for 150 CAVs,

Where2comm generates more than 3 millions points per frame,

which needs to be transmitted over-the-air via wireless networks.

Moreover, existing works cannot adapt to time-varying network

dynamics in automotive edge computing (e.g., radio channel and

traffic variation), which thus fail to assure consistent end-to-end

latency for real-time cooperative perception [15, 34]. Therefore,

it is dispensable to investigate high-scalable cooperative percep-

tion with percentile latency assurance toward future large-scale

deployment scenarios.

In this paper, we propose AdaMap, a new real-time cooperative

perception system, that achieves high-scalable perception sharing

with assured percentile latency under time-varying network dynam-

ics. The fundamental idea is two-fold. 1) We adaptively represent

the point cloud of objects to achieve higher compression ratios by

trading off reconstruction losses. This is based on the observation

that, although reconstructed point clouds have perceivable recon-

struction losses, they maintain sufficient structural details of point

clouds regarding original objects. 2) We dynamically select objects

detected by individual CAVs to reduce the total number of inter-

ested objects to be transmitted and processed. This is based on the

observation that, removing duplicated multi-viewed point clouds

have only trivial degradation, regarding the aggregated fidelity of

objects. In AdaMap, we build an edge-based global map, which

�������	�
��

�������

	
���
���

�

����

��������
���

������
����

�

�����������

��

����
����

������������
��

�����������

��

� ��
����

!
���
��������
���
�
���

�

"�
�������

���	���


����������

	
�������

�������
�#�

�
���
��

Figure 3: Overview of AdaMap.

aggregates the uploaded objects from individual CAVs, monitors

and tracks aggregated objects, and broadcasts periodical updates to

update the local map in all CAVs. Besides, by reusing the historical

point clouds of objects, AdaMap could further reduce the trans-

mission data size of all CAVs over time substantially. In particular,

we achieve AdaMap by designing a tightly coupled data plane and

control plane.

The data plane of AdaMap is to process raw point clouds in indi-

vidual CAVs into sharable object descriptors (e.g., location and point

cloud of vehicles). We design the data plane with two key modules.

First, we design a new hybrid object localization module to adap-

tively switch between object detection and tracking, which reduces

26x inference time at the cost of a minimal 0.02m localization error

on average. Second, we design a new flexible representation module

to compress point clouds into low-dim latents based on variational

autoencoder (VAE), which can achieve up to 64x compression ratio

at the cost of 0.48 reconstruction loss on average.

The control plane of AdaMap is to adapt the data plane by opti-

mizing the selection of detected objects and representation factor

(RF) of selected objects in individual CAVs. To address the unique

optimization problem in AdaMap, we design the control plane to

be compute-efficient with three key steps. First, we decompose

the problem into fully-distributed subproblems in individual CAVs,

which mitigates communication overheads incurred in centralized

optimization. Second, we design a new graph-based object selection

method to selectively remove duplicated multi-viewed point clouds,

by evaluating the metric of space density. Third, we design a new

approximated gradient descent algorithm to optimize the RF of

selected objects, which assures the percentile end-to-end latency

under network dynamics.

We implement AdaMap on an emulation platform, which in-

cludes realistic vehicle and server computation and a simulated

5G network. We finish more than 4000 lines of codes to imple-

ment AdaMap, which is ready-to-deploy in real-world vehicles and

servers. We extensively evaluate AdaMap in terms of efficacy, scal-

ability, and adaptability, under a CARLA dataset with 150 CAVs at

100 time frames. The results show that, AdaMap reduces up to 49x

over-the-air transmission data size at the cost of only 0.37 recon-

struction loss, as compared to state-of-the-art solutions. Notably,

AdaMap can achieve 89.4% end-to-end latency within 100ms for

150 CAVs, given only 0.2MHz wireless bandwidth in 5G networks,

which sheds light on large-scale cooperative perception deployment

in the future.
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2 SYSTEM OVERVIEW

The goal of AdaMap is to achieve high-scalable perception sharing

among CAVs with assured percentile latency under time-varying

network dynamics. Besides, AdaMap needs tomaintain high-fidelity

objects regarding their aggregated point clouds, for further usage

of autonomous driving pipelines, such as 3D scene understanding.

To achieve the goal, we design AdaMap with a tightly coupled data

plane and control plane in a fully distributed manner, shown in

Fig. 3. 1) The object localization module localizes interested ob-

jects on the LiDAR point clouds, including 3D bounding boxes,

orientations, and labels. 2) The perspective transformation mod-

ule transforms detected objects from the local coordinate of CAVs

into the global coordinate. 3) Then, the control plane applies to

optimize the object selection and representation factor (RF) of se-

lected objects in individual CAVs. 4) The representation (encoder)

module encodes the point cloud of only selected objects into low-

dim latents, according to the optimization results from the control

plane. 5) An object descriptor will be built for each selected object,

where CAVs will send all object descriptors to their associated edge

servers. 6) The representation (decoder) module at the edge server

decodes received latents and reconstructs the point cloud of objects.

7) The object matching module matches and updates received ob-

jects within historical objects in the global map. New updates of

AdaMap will be periodically broadcasted to all CAVs.

3 DATA PLANE DESIGN

In this section, we describe the data plane, including object lo-

calization, point cloud representation, perspective transformation,

trajectory modeling, and object matching.

3.1 Hybrid Object Localization

Object localization module is to localize and extract interested ob-

jects (e.g., pedestrians and cars) from 3D point clouds perceived by

the ego vehicle. In AdaMap, we focus on only dynamic objects, e.g.,

moving cars and scooters, rather than stationary backgrounds (e.g.,

buildings and trees), which could be provided by high-definition

(HD) maps. Extracting only dynamic objects will substantially re-

duce the total data size of point clouds to the edge server [31].

Given a point cloud, the output of object localization includes the

3D bounding boxes and the extracted point cloud of each detected

object.

To localize objects in point clouds, there are generally two ap-

proaches, i.e., detection and tracking, can be used in AdaMap. On

the one hand, existing deep neural network (DNN) based object

detection solutions [14, 18] are generally compute-intensive, which

would greatly squeeze the end-to-end latency allowance for fol-

lowing data plane modules. The state-of-the-art PointPillars [18]

consumes 26.4 ± 4.7 ms to process point clouds in our CARLA

dataset under NVIDIA RTX 3090 and Intel i7 CPU, which already

occupies more than a quarter of the 100ms end-to-end latency al-

lowance in AdaMap. On the other hand, existing object tracking

solutions can achieve real time inference, while their tracking accu-

racy varies under different roadway situations, such as acceleration

and braking (see Table 1 and Fig. 21). For example, Kalman filter [40]

has been widely used for tracking in various application domains,

where its inference time can be as low as sub-milliseconds.

Table 1: Comparison among object localization methods

Method localization error

(m)

inference time (ms)

Tracking 0.12± 0.16 0.73 ± 0.71

Detection 0.07 ± 0.04 26.41 ± 4.73

Ours 0.09 ± 0.05 1.02 ± 0.98
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Figure 4: The hybrid object localization.

To this end, we propose a new hybrid object localization module,

as shown in Fig. 4, to reduce the inference time at the cost of

a minimal degradation of localization error. The basic idea is to

adaptively switch between object detection and tracking, where

the inference time can be considerably reduced by invoking object

tracking at runtime. This is based on the observation that, object

tracking can achieve considerable accurate localization in most

cases in AdaMap. On the one hand, the location of objects are

aggregated in the object matching module (see Sec. 3.5), which

helps to correct the localization error in individual CAVs. On the

other hand, the location of objects are updated frequently (e.g.,

maximum 100ms latency), where fine-grained historical locations

help to improve the accuracy of trajectory modeling (see Sec. 3.4).

However, it is challenging to determine when to switch between

object tracking and detection. Because we do not have the ground-

truth of object locations in real-world deployment, and thus it is

difficult to evaluate the localization accuracy of object tracking.

To solve this issue, we define a new metric, named relative local-

ization error (RLE), as the Euclidean distance between the location

derived by the object tracking and detection. In other words, we con-

sider the location generated by object detection as the ground-truth

at runtime. In each time slot, we calculate the relative localization

error (RLE) based on the derived locations of detection and track-

ing. The input of object detection and tracking are the whole raw

point cloud and historical locations of previous detected objects,

respectively. Then, we determine which localization method will

be used, for the next time slot. For example, we select to use object

tracking if the RLE is below a given threshold (empirically set as

0.5m in AdaMap). In the next time slot, the object tracking will

be invoked to derive the output of 3D bounding boxes, which will

hide the inference time of object detection. Otherwise, the object

detection will be invoked at runtime, where its inference time will

be included in the data plane of AdaMap. Note that, object detection

and tracking will be performed in parallel at any time slots. For

example, if we decide to use object tracking in the next time slot,

the object detection will still be needed to derive the ground-truth

location and calculate the RLE.

In Table. 1, we show the localization error and inference time

under different object localization methods. As compared to object
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Figure 5: The representation module with early-exit tunnels.

detection (i.e., PointPillars), our method reduces 96.1% inference

time at the cost of only additional 0.02m localization error. As

compared to the object tracking (i.e., Kalman Filter), our method

reduces 25% localization error, while the inference time is only

increased 0.29ms on average. These results show that, our proposed

hybrid localization methods can substantially accelerate the object

localization at the cost of negligible degradation on localization

losses.

3.2 Flexible Point Cloud Representation

The representationmodule is to represent point clouds by using low-

dim vectors, where the vectors should be able to accurately recover

the original point clouds afterward. In AdaMap, the information of

objects (e.g., locations and point clouds) will be uploaded to edge

servers and shared with all CAVs, where point clouds dominate

the overall data size of object descriptors (see Sec. 3.6). Although

the data size of point clouds of individual objects are relatively

small (e.g., a few Kbits for 1000 points), the aggregated data size

of thousands of objects (if not more) will require considerable net-

working resources. General-purpose compression solutions (e.g.,

Zstandard [10]) can be used to compress and decompress point

clouds at runtime. However, the achieved compression ratios are

typically limited for detected objects in AdaMap (e.g., 1.91 ± 0.06

for Zstandard), which mainly attributes to the sparse point clouds

(e.g., 992 ± 1206 points in our CARLA dataset) of detected objects.

To this end, we propose a new flexible point cloud representation

module based on variational autoencoder (VAE) [17]. As an unsu-

pervised learning technique, an autoencoder generally includes an

encoder that compresses the input data (e.g., point cloud) into low-

dim latents with a fixed length, and a decoder that reconstructs the

original data from the latents. Different from general-purpose com-

pression solutions, autoencoders show great potentials to achieve

high compression ratios under low reconstruction losses [25], for

seen point clouds in the training dataset. However, the reconstruc-

tion loss might be very high for unseen point clouds (e.g., new car

models), as they are not in the training dataset.

In AdaMap, we design the representation module based on VAE

for the following reasons. First, we can obtain the structure model

of almost all vehicles on the market and collect their point clouds

in advance to be a complete training dataset. Because the majority

of vehicles on the road are with specific models defined by their

manufacturers. With the complete training dataset, the VAE will be

trained to obtain minimal reconstruction losses, which assures the

Table 2: Reconstruction loss under different RFs

RF 4 8 16 32 64

Loss 0.26 ± 0.1 0.32 ± 0.1 0.38 ± 0.3 0.46 ± 0.3 0.48 ± 0.4

accurate reconstruction of point clouds in edge servers1. Second,

we adopt VAE rather than conventional autoencoder, where the

generated latents of VAE serve as not only the low-dim representa-

tion but also the feature of point clouds in the latent space [17, 25].

By introducing a regularization term in the loss function, VAE reg-

ularizes the latent space, where similar input point clouds would

generate similar latents. These unique features would be useful for

further improving AdaMap, such as increasing matching accuracy

via feature-aware object matching and enhancing the generaliza-

tion of representation via adversarial training (see Sec. 8). However,

we found that using VAE with fixed-length latents (i.e., fixed com-

pression ratios) cannot adapt to time-varying network dynamics in

AdaMap. In particular, CAVs usually experience varying radio chan-

nel qualities under high-speed mobility, where their non-stationary

volatile wireless data rates would lead to fluctuating radio trans-

mission latency.

To address this issue, we design an flexible representationmodule

with multiple early-exit tunnels between the encoder and decoder.

As shown in Fig. 5, the representation module consists of a base

encoder followed by multiple tail layers, and multiple head layers

followed by a base decoder. We denote an early-exit tunnel as the

pair of a tail and a head layer with the corresponding dimension

of latent space. For example, we may create 256x128x64 tail layers

and 64x128x256 head layers, where three early-exit tunnels will

be enabled, including the outermost (256 dim), middle (128 dim),

and innermost (64 dim). The innermost early-exit tunnel generates

latents with the lowest dimension (i.e., the highest compression

ratio), and obtains the highest reconstruction loss. In contrast, the

outermost early-exit tunnel obtains the lowest compression ratio

and the reconstruction loss in the meantime. With this unique

design, our proposed flexible representationmodule allows dynamic

configuration of representation factor (RF) at runtime, without the

need for retraining. Here, we define representation factor (RF) as the

ratio between the dimension of input point clouds and the generated

latents under individual early-exit tunnels in the representation

module.

Next, we design the process for training the proposed represen-

tation module. First, we create the VAE to include only the base

encoder, the outermost early-exit tunnel (e.g., 256-dim tail and head

layer), and the base decoder. Second, we train the VAE extensively

and freeze all of its parameters. Third, we add an additional early-

exit tunnel, and train the VAE by updating only the parameters of

the newly added tunnel, such as the 128-dim tail and head layer.

We repeat the second and third steps to add more early-exit tunnels

toward the final representation module. Note that, the represen-

tation module cannot be trained as a whole (e.g., in one training

process), because it will break the early-exit mechanism, where

1With a complete training dataset, partial-view point clouds can be represented and
even completed with a high quality and accuracy [21, 44].
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Figure 6: Inference time of rep-

resentation module.

Figure 7: Reconstruction loss of

representation module.

the generated latents will not be able to recover the original point

clouds in the decoder, except the innermost tunnel.

In addition, we design the loss function of the representation

module to include the regularization loss and the reconstruction loss.

First, the regularization loss is defined as 𝐷𝐾𝐿 [𝑞(𝑧 |𝑥) |𝑝 (𝑧)], where
𝑥 are the input point clouds and 𝑧 are the sampled latents. Here,

𝐷𝐾𝐿 is the KL-divergence to evaluate the difference between the

probability distribution of latents and a prior distribution (Gaussian

𝑝 (𝑧) ∼ N (0, 1)). Second, the reconstruction loss is defined as the

weighted sum of Chamfer Distance (CD) [42] and EarthMover’s

Distance (EMD) [41], which are the widely used metrics to evaluate

the difference between point clouds. Specifically, the metric of

CD and EMD are mainly focused on the local and global scale,

respectively. This is based on our observation that, using merely CD

or EMD will result in significant loss on global and local details in

reconstructed point clouds, respectively. Hence, the reconstruction

loss is expressed as

𝑙𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐶𝐷 + 𝛽 · 𝐿𝑜𝑠𝑠𝐸𝑀𝐷 , (1)

where 𝛽 is the non-negative weight factor.

Table 2 shows the reconstruction loss achieved by the represen-

tation module under different RFs, where all input point clouds

are re-sampled into 1024 points. We can see the tradeoff between

compression ratios and reconstruction losses, where a higher RF

generally leads to a higher reconstruction loss. As compared to the

average 0.26 reconstruction loss under RF 4, an additional 0.22 loss

can trade for 16x more compression ratio under RF 64. Fig. 6 shows

the inference time of the representation module under different

RFs. As more tail and head layers need to be computed for larger

RFs, their inference times increase moderately. Note that, although

one-time inference of the representation module is minimal, the

aggregated computation time for all objects in individual CAVs is

non-negligible.

3.3 Perspective Transformation

The perspective transformation module is to transform the objects

in the local coordinate of individual CAVs to the global coordinate

system in the edge server. We denote the 3D location of an object

𝑃𝑙 = [𝑋,𝑌, 𝑍, 1] in the local coordinate. Hence, the object’s location

in the global coordinate 𝑃𝑔 can be calculated as 𝑃𝑔 = 𝑃𝑙 × 𝑇𝑙2𝑔 ,

where 𝑇𝑙2𝑔 is the 4x4 transformation matrix defined as

𝑇𝑙2𝑔 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐𝑝𝑐𝑦 −𝑐𝑟 𝑠𝑦 + 𝑐𝑦𝑠𝑝𝑠𝑟 𝑐𝑟𝑐𝑦𝑠𝑝 + 𝑠𝑟 𝑠𝑦 𝑋
𝑐𝑝𝑠𝑦 𝑐𝑟𝑐𝑦 + 𝑠𝑝𝑠𝑟 𝑠𝑦 𝑐𝑟 𝑠𝑝𝑠𝑦 − 𝑐𝑦𝑠𝑟 𝑌
−𝑠𝑝 𝑐𝑝𝑠𝑟 𝑐𝑝𝑐𝑟 𝑍
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
, (2)

where 𝑐 and 𝑠 denote sine and cosine operations, and 𝑝, 𝑟,𝑦 are

the pitch, roll, and yaw, respectively. At runtime, the transforma-

tion matrix could be obtained by using high-precision GPS and

simultaneous localization and mapping (SLAM) techniques [26].

3.4 Trajectory Modeling

The trajectory modeling module is to model and predict the future

path of dynamic objects (e.g., vehicles, scooters and pedestrians),

based on their historical locations. In AdaMap, the trajectory mod-

eling will be utilized to track all identified objects in both the object

localization module (see Sec. 3.1) and object matching module (see

Sec. 3.5). Although there are extensive solutions developed for tra-

jectory modeling, e.g., deep learning-based [2, 3], they generally

have high computation complexity and thus lead to extra com-

putation latency at runtime. In AdaMap, we achieve trajectory

modeling by using Kalman filter, which has proven robustness and

computational efficiency under various application scenarios, such

as robotics, UAVs, and aerospace.

The Kalman filter comprises two primary stages, namely the

prediction stage and the correction stage. In the prediction stage, it

uses the previous state estimation as the input to generate a forecast

of the current state. In the correction stage, the predicted state

obtained in the prediction stage is adjusted based on the current

observed state. Without loss of generality, we define the state as

[𝑋,𝑌,𝑑𝑋 , 𝑑𝑌 ], where 𝑋 and 𝑌 are the current location of the CAV,

and 𝑍 is omitted. The 𝑑𝑋 and 𝑑𝑌 are the velocity of the CAV, which

are initialized as zeros.

3.5 Predictive Object Matching

The object matching module is to match multi-viewed objects re-

ceived from individual CAVs, combine and update them into in-

dividual objects in the global map. In AdaMap, objects might be

detected intermittently under complex roadway environments, such

as miss-detection in object detection and vision blocking. Besides,

all modules in the data plane might introduce noises and errors

in real-world deployment [34], such as inaccurate detection and

tracking, and transformation matrix error. Hence, it is non-trivial to

accurately match multi-viewed dynamic objects under large-scale

deployment scenarios.

To this end, we develop a predictive-based matching method

by evaluating the predictive location, rather than last-observed

location, of objects at runtime. Specifically, we predict the location

of all objects in the global map by using the trajectory modeling

module at each time frame. Denote 𝑔 as the observed geo-location

of an object in the world coordinate, we match it with the object

𝑖 = argmin𝑘∈K ‖𝑔 − 𝑔𝑘 ‖
2, where 𝑔𝑘 is the predicted location of the

𝑘th object in the global map.
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3.6 Object Descriptor

In AdaMap, we build the structure of object descriptor to include

all the sharable information regarding an individual object to be

transmitted. To describe an object, an object descriptor incorporates

the following attributes, i.e., location, orientation, 3D bounding box,

label, confidence, speed, trajectory model, latents, and certain meta-

data, such as the number of raw point cloud and time stamp. The

global map is mainly composed of object descriptors for all objects.

For the periodical updates, only changed attributes will be included

in the object descriptor and broadcasted to all CAVs.

4 CONTROL PLANE DESIGN

In this section, we describe the control plane, including system

model, problem formulation, and solution design.

4.1 System Model

We consider a generic mobile network, including multiple con-

nected and automated vehicles (CAVs), wireless base stations (BSs),

and edge computing servers. As described in the data plane in Sec. 3,

CAVs periodically (e.g., 10Hz) upload the descriptor of detected ob-

jects to their associated edge servers in a time-slotted manner. Edge

servers will be responsible for further post-processing of object

descriptors (e.g., the decoder representation module), in a first-

come-first-serve manner. Note that, we design the control plane of

AdaMap from the perspective of service providers, which means

that network transmission generally becomes a blackbox2. Without

loss of generality, we consider the association between CAVs and

BSs and edge servers are pre-determined, and focus on adapting

the data plane towards diversified networking and computation

dynamics in AdaMap.

For the 𝑖th CAV, we denote O𝑖 = {𝑜𝑖1, 𝑜
𝑖
2, ..., 𝑜

𝑖
𝐾𝑖
} as the set of

detected objects, where 𝐾𝑖 is the number of total detected objects

of the 𝑖th CAV. Denote A𝑖 = {𝑎𝑖1, 𝑎
𝑖
2, ..., 𝑎

𝑖
𝐾 } as the set of selection

indicator. Note that, 𝑎𝑖
𝑘
= 1 means the 𝑘th detected object in the

𝑖th CAV is selected to be transmitted to edge servers, otherwise the

object will not be transmitted. Furthermore, we denote the set of

representation factor (RF) of the 𝑖th CAV as R𝑖 = {𝑟 𝑖1, 𝑟
𝑖
2, ..., 𝑟

𝑖
𝐾𝑖
},

where 𝑟 𝑖
𝑘
is the RF for the 𝑘th object. The action space of RFs are

constrained by the minimum 𝑟min and maximum 𝑟max, defined by

the representation module in the data plane. For example, a point

cloud will go through the encoder and all the followed tail layers, if

its RF is the maximum 𝑟max to generate the most condensed latents.

Fidelity Model. In AdaMap, we define the fidelity of an object

as the difference between its input and reconstructed point cloud.

Without loss of generality, we measure the difference by mostly

adopting the loss function of the representation module in the

data plane. Specifically, given the discrete early-exit tunnels in the

representation module, the fidelity is defined as

𝑓 (𝑟 |𝑠) = −(𝐿𝑜𝑠𝑠𝐶𝐷 + 𝛽 · 𝐿𝑜𝑠𝑠𝐸𝑀𝐷 ), (3)

where 𝑟 is the RF of the object and 𝑠 is the auxiliary state. The

𝐿𝑜𝑠𝑠𝐶𝐷 and 𝐿𝑜𝑠𝑠𝐸𝑀𝐷 are the loss of CD [42] and EMD [41], re-

spectively. The rationale of introducing the auxiliary state is based

2Although network slicing techniques [24] may create a network slice with isolated
resources to support AdaMap, it is impractical to assign exact radio resources to
individual CAV transmissions in the time scale of subseconds.

on the following observation. In Fig. 7, we observe that the recon-

struction loss of individual objects relate to not only their RFs but

also the total number of their raw point clouds. Given a fixed RF,

the resulted fidelity are largely distributed, but can be generally

determined by the total number of raw point cloud. In other words,

the averaged fidelity regardless the auxiliary state 𝑠 cannot provide
the effective guidance when optimizing individual objects in CAVs.

Therefore, the overall fidelity of AdaMap is defined as

𝐹 =
𝑁∑
𝑖=1

𝐾𝑖∑
𝑘=1

𝛼𝑖𝑘 · 𝑓 (𝑟 𝑖𝑘 |𝑠) . (4)

LatencyModel. The end-to-end latency is defined as the elapsed

time of completing the whole data plane for individual CAVs, in-

cluding vehicle-side processing, radio transmission, and server-side

processing. Under the complex and unpredictable network and com-

puting dynamics, the data plane is with probabilistic transmission

and computation time. In particular, we conduct an experiment to

measure the computation time of the representation module under

more than 10K objects. As shown in Fig. 6, the computation time

of the representation module under all RFs is 1.72 ± 0.53ms. Based

on the above observation, it is difficult to derive a deterministic

formulation for end-to-end latency in AdaMap.

To accurately represent the uncertainty in AdaMap, we build the

latency model by incorporating multiple probabilistic parts as

𝐿𝑖 =
𝐾∑
𝑘=1

𝛼𝑖𝑘 ·

(
𝑐𝑣 (𝑟

𝑖
𝑘
)

𝑅𝑖𝑣
+
𝑑 (𝑟 𝑖

𝑘
)

𝑅𝑖𝑤
+
𝑐𝑒 (𝑟

𝑖
𝑘
)

𝑅𝑖𝑒
+ 𝐵𝑖

)
, (5)

which includes four parts, i.e., vehicle-side processing, radio trans-

mission, server-side post-processing, and aggregated latency 𝐵𝑖 .
Here, we focus on the optimization of RF and object selection in

the control plane, so the incurred latency of all other modules are

aggregated, such as detection and tracking in the CAV, and object

matching in the edge server. The first vehicle-side processing la-

tency is defined as the ratio between the computation complexity

of the encoder representation module 𝑐𝑣 (𝑟
𝑖
𝑘
) and the computation

capacity of the CAV 𝑅𝑖𝑣 . The second radio transmission latency is

defined as the ratio between the size of generated latents 𝑑 (𝑟 𝑖
𝑘
)

and the experienced wireless data rate 𝑅𝑖𝑤 . Note that, we design
an approximated model for this radio transmission latency. This

is because, we are optimizing AdaMap from the perspective of

service providers who cannot control network transmission (e.g.,

radio resource allocation [22, 23]) and server computation. The

third server-side processing latency is defined as the ratio between

the computation complexity of the decoder representation mod-

ule 𝑐𝑒 (𝑟
𝑖
𝑘
) and the experienced computation capacity of the CAV

𝑅𝑖𝑒 . Note that, 1) non-optimization variables (i.e., 𝑅𝑖𝑣, 𝑅
𝑖
𝑒 ) and static

functions (i.e., 𝑐𝑣 (𝑟
𝑖
𝑘
), 𝑑 (𝑟 𝑖

𝑘
), 𝑐𝑒 (𝑟

𝑖
𝑘
)) can be profiled under frozen

implementation of the representation module; 2) the end-to-end

latency is probabilistic, even under the given RF 𝑟 𝑖
𝑘
.

4.2 Problem Formulation

In the control plane design, the objective is to maximize the expec-

tation of overall fidelity while meeting the percentile requirement

of end-to-end latency. To achieve the goal, we focus on optimizing

the selection and RF of detected objects in all CAVs. Therefore, we
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formulate the control plane problem as

P0 : max
A𝑖 ,R𝑖 ,∀𝑖

E[𝐹 ] (6)

𝑠 .𝑡 . 𝑃𝑟𝑜𝑏 (𝐿𝑖 ≤ 𝐻 ) ≥ 𝑝,∀𝑖 (7)

𝑟 𝑖𝑘 ∈ [𝑟min, .., 𝑟max],∀𝑖, 𝑘 (8)

𝛼𝑖𝑘 ∈ [0, 1],∀𝑖, 𝑘, (9)

where E[·] is the operator of expectation. Besides, 𝐻 is the given

latency requirement (e.g., 100ms) and 𝑝 is the percentage threshold,

such as 90%. The constraint in Eq. 7 assures that there are at least 𝑝
percentage CAVs have less than 𝐻 end-to-end latency.

Challenges. The challenges of solving the above problem is

multi-fold. First, the problem has to be solved in a fully distributed

approach. In existing centralized approaches, the optimization is

completed in a central server, where non-trivial communication

delay and bandwidth overheads are incurred, especially when sup-

porting large-scale geo-distributed users. In the distributed scenario,

global information (e.g., locations and wireless data rate) is gener-

ally absent when conducting the optimization in individual CAVs.

Second, the problem involves multiple probabilistic parts in both

the objective function and constraints, which falls into the field of

stochastic programming. Due to the uncertainty in the problem,

existing optimization methods (e.g., gradient descents [5]) cannot

be directly applied. Third, the distributed optimization needs to

be compute-efficient for runtime decisions. The transmission and

computation in the data plane can only be proceeded until the

optimization decision is derived. Given the stringent end-to-end

latency requirement, the optimization time itself has to be minimal,

such as less than 10ms.

4.3 Algorithm Design

In this section, we design a new control algorithm to effectively

solve the problem P0 as follows. First, we decompose the problem

into multiple fully-distributed subproblems, where each subprob-

lem is focused on optimizing the selection and RF of objects in

individual CAVs. The rationale of problem decomposition lies in

the observation that, only two non-optimization variables (i.e., wire-

less data rate 𝑅𝑖𝑤 and server computation capacity 𝑅𝑖𝑒 ) couple the
problem P0. These subproblems will be addressed independently

in corresponding CAVs at runtime. Second, we optimize the object

selection to minimize the total number of selected objects with-

out compromising the overall fidelity. The rationale behind is that,

objects are generally viewed by multiple CAVs, where removing

excessive point clouds will not decrease its aggregated fidelity per-

ceivably. Third, we optimize the RF for only selected objects to meet

the percentile latency constraint based on Lagrangian primal-dual

method. To deal with the uncertainty in the latency and fidelity

models, we design an approximated gradient descent method in

solving the inner primal subproblem, inspired by the sample aver-

age approximation (SAA) [16].

4.3.1 Problem Decomposition. We observe that the problem P0 is

mainly coupled by the experienced wireless data rate 𝑅𝑖𝑤 ,∀𝑖 and
server computation capacity 𝑅𝑖𝑒 ,∀𝑖 , which are not optimization

variables. Given the blackbox property of radio transmission from

the perspective of service providers, the future wireless data rate

needs to be predicted no matter in the server (centralized) or ve-

hicle (distributed) sides. Besides, the first-come-first-serve edge

servers can hardly be accurately managed and modeled in terms of

the experienced computation capacity of individual CAVs, which

generally leads to uncontrollable blackbox. Hence, we decompose

the problem P0 into fully distributed subproblems in individual

CAVs. Without loss of generality, the subproblem in the 𝑖th CAV is

expressed as

P1 : max
A𝑖 ,R𝑖

E[𝐹𝑖 ] (10)

𝑠 .𝑡 . 𝑃𝑟𝑜𝑏 (𝐿𝑖 ≤ 𝐻 ) ≥ 𝑝, (11)

(8), (9),

where the experienced wireless data rate 𝑅𝑖𝑤 and server computa-

tion capacity 𝑅𝑖𝑒 will be predicted at runtime in CAVs.

4.3.2 Graph-Based Object Selection. Here, we focus on optimizing

the selection of detected objects in individual CAVs. The goal is

to un-select excessive multi-viewed point clouds of CAVs as many

as possible, which corresponds to reducing the total number of

object descriptors to be transmitted over-the-air and processed in

edge servers. The challenge of object selection lies in the complex

aggregated fidelity, i.e., the fidelity after post-processing (e.g., reg-

istration, fusion) of multi-viewed point clouds of CAVs. In other

words, it is difficult to evaluate the impact of aggregated fidelity if

any multi-viewed point clouds are removed.

To tackle this issue, we design a new graph-based selection

method to selectively remove multi-viewed point clouds of objects.

In particular, we introduce a metric (named space density), which

is defined as the density of point clouds in a given 3D space. The

proposed selection method iterates to remove objects, as long as

the space density of objects are larger than the given threshold.

The rationale behind is that, excessive point clouds on the lim-

ited surface contributes negligible improvement on the fidelity of

objects. Because non-penetration LiDAR sensors can only scan

the surface of objects, excessive point clouds will densely overlay

on the surface without providing new structural information. In

AdaMap, the multi-viewed point clouds of the identical object will

be registered and stitched together, where overlayed points will be

mostly combined at the end.

The proposed object selection method is achieved as follows.

First, we partition the 3D bounding box of detected objects into

multiple 3D sub-spaces, such as 1𝑚3 cubes. Because LiDARs in

CAVs can only perceive partial of an object (i.e., less than 180 de-

grees). For example, we can consider that two multi-viewed point

clouds of an object are both on the same side. If we use the 3D

bounding box of the object as a whole space, the object selection

method would un-select all other multi-viewed point clouds, which

will lead to imbalance space density. In AdaMap, we partition the

3D bounding box of objects into 4 sub-spaces. Second, for each 3D

sub-space, we need to obtain the number of point cloud of objects

for comparing with the given threshold. However, we do not have

the exact numbers, because the ego CAV cannot communication

with other CAVs under the fully-distributed control plane. To this

end, we predict the number of point clouds by leveraging the Li-

DAR scanning mechanism, which generally perceives 360-degree

surroundings with even distributed points.
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Third, we iteratively remove multi-viewed point clouds for each

sub-space of the object. We build a directional star-like graph (𝑉 , 𝐸),
where the center vertex is the current detected object. Besides, ver-

tices 𝑉 also include other potential multi-viewed CAVs, and edges

𝐸 denote the predicted number of point clouds. In each iteration,

we sum up the total number of point clouds of existing edges 𝐸,
and compared with the given threshold of space density. The edge

𝑒 with the least edge value (i.e., the number of point cloud) will

be removed, if the sum of remaining edges is still larger than the

threshold. The above process iterates until the threshold is met.

Note that, although the object selection is optimized in each CAV

independently, all CAVs share the same global information (e.g.,

trajectory modeling and point cloud prediction), from the periodical

updates of AdaMap. As a result, the optimization result of object

selection in all CAVs would be nearly the same, even if under the

fully distributed scenarios in AdaMap.

4.3.3 Approximated Gradient Descent. Here, we focus on optimiz-

ing the RF for only selected objects in individual CAVs. The chal-

lenges of RF optimization lie in 1) the percentile constraint of la-

tency, and 2) the probabilistic fidelity and latency models.

To tackle the percentile constraint Eq. 11 in the subproblem,

we design a two-layer iterative approach based on the Lagrangian

primal-dual method [5]. The basic idea is to adaptively weight

and incorporate the constraint into the objective function Eq. 10,

which converts the constrained subproblem P1 into a series of

unconstrained subproblems. First, we relax the discrete variables

R𝑖 into continuous variables denoted by R̂𝑖 . Second, we build the

Lagrangian as

G(R̂𝑖 , 𝜆) = E[𝐹𝑖 ] + 𝜆 (𝑃𝑟𝑜𝑏 (𝐿𝑖 ≤ 𝐻 ) − 𝑝) , (12)

where a non-negative multiplier 𝜆 is introduced to weight the con-

straint. Then, the subproblem P1 can be addressed by alternatively

addressing the primal and dual subproblem. Specifically, the dual

subproblem is expressed as

𝜆∗ = argmax
𝜆≥0

G(R̂𝑖 , 𝜆). (13)

In contrast, the primal subproblem is expressed as

R̂∗
𝑖 = arg max

R̂𝑖 ∈ (8)
G(R̂𝑖 , 𝜆), (14)

where R̂∗
𝑖 denotes the optimal continuous RFs. In the outer layer,

the dual subproblem is solved under the given RFs, by using the

sub-gradient descent [5]. In the inner layer, the primal subproblem

is solved under the given the multiplier 𝜆. As the convergence of the
two-layer iteration, the obtained continuous RFs will be discretized

into the discrete values in [𝑟min, .., 𝑟max].

Due to the probabilistic parts in the above primal subproblem,

its falls into the field of stochastic programming [33]. We observe

that these probabilistic parts are dependent on only the represen-

tation module, which is generally offline trained before its real-

world deployment in AdaMap. Hence, we can offline evaluate the

representation module extensively to peek at the uncertainty of

the primal subproblem. Specifically, we vary the RFs, measure the

resulted probabilistic fidelity and latency, and collect the measure-

ment datasets, as shown in Fig. 7. Given the collected datasets, we

solve the primal subproblem by using gradient descent methods,

which is described as follows. First, we select arbitrary initial RFs.

Algorithm 1: Approximated Gradient Descent

Input: Â𝑖 , 𝑟min, 𝑟max

Output: R̂𝑖

1 Offline collect measurement datasets D;

2 Initialize multiplier 𝜆 and start point R̂𝑖 ;

3 for𝑚 = 1, 2, ... do
4 /∗∗ solve primal subproblem ∗ ∗ /;

5 for 𝑛 = 1, 2, ... do

6 Deviate R̂𝑖 via adding random noises 𝑁𝑜 ;

7 Sample fidelity and latency from datasets D, under

Â𝑖 and R̂𝑖 + 𝑁𝑜 ;

8 Build linear regression models for fidelity 𝐹𝑖 and

latency 𝐿𝑖 ;

9 Calculate gradients based on regressed models;

10 Update R̂𝑖 via one-step gradient descent;

11 /∗∗ solve dual subproblem ∗ ∗ /;

12 Calculate the achieved percentile latency;

13 Update multiplier 𝜆 via sub-gradient descent;

14 Discretize R̂𝑖 to R𝑖 in [𝑟min, 𝑟max];

15 return R𝑖 ;

Second, we deviate the current RFs and sample the corresponding

probabilistic parts (i.e., fidelity 𝐹𝑖 and latency 𝐿𝑖 ) from the measure-

ment datasets. Third, we build an approximated local model for both

fidelity and latency functions (i.e., 𝐹𝑖 and 𝐿𝑖 ) with respect to RFs (i.e.,
R𝑖 ) by using compute-efficient linear regression techniques. Fourth,

we calculate the gradients based on the approximated models and

use gradient descent to conduct a one-step update to the current

RFs. The above process will be iterated toward its convergence.

The pseudo code of the approximated gradient descent algorithm

is shown in Alg. 1.

5 SYSTEM IMPLEMENTATION

We implement AdaMap on a desktop computer with Intel i7 CPU

and RTX 3090 GPU under Ubuntu 20.04. The AdaMap system is

implemented with mainly three parts, i.e., vehicles, the simulated

network, and servers, where only object descriptors will be trans-

mitted. Due to the intractable complexity of conducting real-world

experiments for hundreds of realistic vehicles, we choose to run all

the data plane on the same desktop computer. Given the limited

computation capacity of the desktop computer (e.g., CPU cores and

GPU memory), we execute the data plane of all CAVs sequentially

and collect their vehicle-part computation latencies and transmis-

sion data sizes individually. At runtime, the simulated network

takes the necessary information (e.g., vehicle locations and trans-

mission data sizes) as the input and simulates the transmission

latency of individual CAVs. Specifically, the simulated network is

achieved by using a 5G system-level simulator [28], where the ur-

ban micro (UMi, Street Canyon) radio channel is adopted and the

base station (BS) is located in the center of all CAVs by default3.

Then, the servers continue the post-processing of the data plane

3The evaluation results of different vehicle-BS distance can be found in Fig. 18 and
Fig. 19 in Sec. 6.
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Figure 8: Cumulative probability of latency. Figure 9: Cumulative probability of losses. Figure 10: Detailed object selection under

AdaMap.

accordingly. Finally, the latency of vehicle-part computation, net-

work transmission, and server-part computation are aggregated to

calculate the end-to-end latency of individual CAVs. To implement

AdaMap, we have finished more 4000 lines of codes in Python. Note

that, the AdaMap implementation is ready for real-world deploy-

ments, where only trivial networking configurations (e.g., pairing

IP addresses) are needed to deploy on realistic cars and servers.

In the data plane, we use state-of-the-art PointPillars [18] as

the 3D object detector. The threshold in our hybrid localization

module is empirically tested and set to be 0.5m. To achieve the

representation module, we adopt the PointNet [29] as the base

encoder, and multiple fully-connected layers for the base decoder.

The early-exit tunnels are implemented with 256x128x64x32 and

32x64x128x256, where all input point clouds are resampled to 1024

points. In other words, four discrete early-exit tunnels are available

and thus the action space of RFs are [4, 8, 16, 32, 64]. In the loss

function of the representation module, the weight 𝛽 = 0.0001.
In the control plane, the percentile 𝑝 = 0.99 and the latency

threshold 𝐻 = 100𝑚𝑠 for meeting the requirement of 10Hz LiDARs.

We use 4 partitions for individual CAVs, where the threshold for

the space density is 1024 per sub-space. This is based on our exper-

imental measurement in CARLA, where 4096 points are generally

sufficient to represent vehicles.

To collect the dataset for AdaMap evaluation, we use CARLA

simulator under the 𝑡𝑜𝑤𝑛5 with 150 vehicles and automatic nav-

igation. We collect more than 100 time frames at 10Hz interval.

The dataset includes the raw data of LiDAR and the ground-truth

transformation matrix𝑇𝑙2𝑔 for each vehicle at all time frames, at the

total size of 82GB. The specification of LiDARs are 64-thread, 2.4M/s

data rate, and 50m sensing range, where LiDARs are mounted on

the 1 meter above the vehicle’s roof.

We compare AdaMap with the following state-of-the-art cooper-

ative perception systems:

• VIPS [34]: VIPS is a state-of-the-art vehicle-to-infrastructure

(V2I) solution for cooperative perception. Its basic idea is

to transmit only the interested objects to the ego vehicle,

without point cloud compression. For a fair comparison, we

implement VIPS to use off-the-shelf compression library (i.e.,

Zstandard) to transmit only detected objects (rather than the

whole raw point cloud) of individual vehicles.

• Where2comm [15]: Where2comm is a representative vehicle-

to-vehicle (V2V) solution for extending the perception range

of vehicles. Its basic idea is to share only interested areas (e.g.,

vision occlusion) between vehicles. For a fair comparison, we

implement Where2comm to use Zstandard compression li-

brary to transmit point clouds of the whole blind spot among

individual vehicles.

• AdaMap-Lite: The AdaMap-Lite adopts the data and control

plane of AdaMap, but it selects all the detected objects and

uses the maximum RF at all time frames.

6 PERFORMANCE EVALUATION

In this section, we evaluate AdaMap to answer the following ques-

tions. 1) How AdaMap performs compared to state-of-the-art solu-

tions? 2) How AdaMap scales under different roadway traffic and

network conditions? 3) How AdaMap adapts to network dynamics?

4) How individual components in the data and control plane im-

pact the overall performance of AdaMap? In particular, we evaluate

AdaMap with two key metrics, including percentile end-to-end

latency and average reconstruction loss. Note that, as existing so-

lutions adopt the lossless point cloud compression library, their

reconstruction losses are always zeros.

6.1 Overall Performance

We evaluate the overall latency and loss performance, which in-

dicates the efficacy of cooperative perception systems. Fig. 8 and

Fig. 9 show the cumulative probability of end-to-end latency and

reconstruction loss achieved by different solutions under 150 CAVs.

For the latency performance, AdaMap reduces 9.8x and 49x on av-

erage as compared to VIPS and Where2comm, respectively. Under

limited networking resources (i.e., 200KHz radio bandwidth), ex-

isting solutions consume 0.42 ± 1.5s and 2.12 ± 2.4s to complete

the perception sharing for all CAVs, which cannot be tolerated in

real world deployment. In contrast, AdaMap achieves 70ms latency

on average, where 89.4% CAVs have less than 100ms end-to-end

latency. Note that, we evaluate AdaMap with 𝑝 = 0.99 by default,

which indicates that the percentile latency constraint in Eq. 7 is not

fully satisfied here. We found the key reason is the limited number

of discrete RFs in AdaMap, where the data plane supports only a to-

tal of 5 RFs. When the continuous RFs are discretized, the achieved

optimality is compromised to a certain extent. In other words, this

gap would be bridged by developing more fine-grained RFs in real-

world deployment. For the loss performance, AdaMap achieves 0.37

reconstruction loss on average, where 95% CAVs are with less than

0.63 loss. Note that, Table 2 shows the reconstruction loss under

RF 64 is 0.48 on average, where the resulted visual effects are gen-

erally acceptable for autonomous driving pipeline as illustrated in

Fig. 22. These results verify that AdaMap can achieve high-scalable
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Figure 11: Detailed RF optimization under

AdaMap.

Figure 12: Loss performance under different

number of CAVs.

Figure 13: Latency performance under

different number of CAVs.

Figure 14: Pareto boundary of AdaMap. Figure 15: Transmission size under different

solutions.

Figure 16: Latency performance under

different radio bandwidth.

real-time cooperative perception by using very limited networking

resources.

Besides, we dissect AdaMap in details regarding how the control

plane optimizes the object selections and representation factors

(RFs). Fig. 10 and Fig. 11 show the percent of selected objects and

optimized RFs over 100 time frames. It can be seen that, AdaMap

adaptively selects 23.6% objects on average, which indicates that a

large portion of multi-viewed point clouds of objects are duplicated

in terms of contributing to the overall fidelity. Hence, we observe

that the transmission size of all CAVs are significantly reduced,

which generally improves the latency performance under fixed

networking resources. In addition, we observe that optimized RFs

in AdaMap are distributed from 𝑟min = 4 to 𝑟max = 64 in Fig. 11.

Generally, AdaMap would choose the RF with the highest com-

pression ratio for trading off the latency performance under heavy

traffic scenarios, such as traffic jam. However, AdaMap rarely uses

RF 64 (only 0.55%) but uses RF 32 at the probability of 20.9%. This

might be attributed to 1) the mechanism of evenly vehicle dispatch

in CARLA simulator generally leads to non-heavy traffic scenarios;

2) the object selections in AdaMap reduce the number of objects to

be transmitted before the RF optimization.

6.2 Scalability

We evaluate the scalability of AdaMap by varying the number of

CAVs and percentile latency requirement. Fig. 12 and Fig. 13 show

the reconstruction loss and end-to-end latency achieved by dif-

ferent solutions under different number of CAVs. It can be seen

that, AdaMap can always maintain the percentile latency, while

existing solutions experience exponential increment on their la-

tency performances. In particular, AdaMap achieves 27.1ms latency

on average when there are 50 CAVs, where the optimized RFs are

mostly focused on RF 4 (98.6%). Moreover, AdaMap reduces the

average reconstruction loss by 23.8% as compared to that in high

traffic (150 CAVs).

In Fig. 14, we obtain the Pareto boundary of AdaMap by vary-

ing the 99-percentile latency requirement under 150 CAVs. We

observe that AdaMap can achieve the lowest 99-percentile latency

of 57.7ms at the cost of 0.49 reconstruction loss, and the lowest loss

of 0.29 when the latency requirement is loosen to 298ms. To push

the boundary towards even lower loss and latency, one of feasible

approaches is to increase available networking resources, such as

radio bandwidth. In particular, the achieved 99-percentile latency

of 138ms under 200KHz can be further reduced to 102ms with the

same average loss of 0.36, when the radio bandwidth is expanded

to 300KHz. Fig. 15 shows the total transmission size of all CAVs

under different solutions in 100 frames. The transmission size is

determined by not only the number of total selected objects but

also the average size of each objects. In AdaMap, we transmit only

selected objects, where each object is compressed by using the rep-

resentation module with high compression ratios. Hence, AdaMap

reduces on average 89.7% and 98.12% transmission size as compared

to VIPS and Where2comm, respectively. In particular, benefit from

the object matching in AdaMap, we can track all the objects in the

global map. Hence, considering the reusing of historical point cloud

of objects, we observe that AdaMap-Reuse further reduces 98.1%

as compared to original AdaMap. Besides, AdaMap-Reuse obtains

97.8% and 99.95% reduction on the transmission size as compared

to VIPS and Where2comm, respectively. These results demonstrate

that AdaMap is highly scalable to tackle large-scale traffic scenarios.

6.3 Adaptability

We evaluate the adaptability of AdaMap by varying radio bandwidth

and channel qualities. Fig. 16 shows the impact of radio bandwidth

on the latency of different solutions. With 100KHz more radio

bandwidth, VIPS andWhere2comm reduce 25.3% and 50.1% average
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Figure 17: Detailed RF optimization under

different radio bandwidth.

Figure 18: Loss performance under different

average vehicle-BS distances.

Figure 19: Latency performance under

different average vehicle-BS distances.

Figure 20: Impact of individual components

in AdaMap.

Figure 21: Localization errors under

different methods.
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Figure 22: Example of reconstructed

point clouds.

latency than that under 200KHz radio bandwidth, respectively. In

contrast, AdaMap and AdaMap-Lite maintain the percentile latency

by adaptively optimizing RFs, where the reconstruction loss is

reduced by 23.2% on average under 100KHz more radio bandwidth.

Fig. 17 shows the detailed RF optimization under different radio

bandwidth. We see that, the average RF is increased from 13.5 when

the bandwidth is 200KHz to 9.1 under 300KHz bandwidth. Under

more radio bandwidth, AdaMap can intelligently adapt to available

network resources to reduce the reconstruction loss and improve

the overall fidelity.

Fig. 18 and Fig. 19 depict the impact of radio channel qualities

on the performance of different solutions. Specifically, this result is

collected by changing the location of the base station (BS) in the

simulated network to vary the distance between vehicles and base

stations. The larger vehicle-BS distance generally indicates lower

achievable wireless data rates and higher fluctuations in the mean-

time. We observe that, AdaMap can always satisfy the percentile

latency requirements, at the cost of increasing the average recon-

struction loss. These results verify that AdaMap can effectively

adapt to time-varying network dynamics.

6.4 Design of Data Plane

We evaluate the data plane in terms of localization error and re-

construction loss. In Fig. 21, we show the cumulative probability

of localization error, which is measured by the Euclidean distance

between the predicted and ground-truth location. It can be seen

that, our hybrid localization module achieves 0.19m localization

error with the probability of 95%. As compared to purely object

detection, our hybrid localization module obtains 96.1% reduction

on the inference time at the cost of only 0.02m localization loss.

Besides, we illustrate the visual effects of the point cloud recon-

structed by the representation module (see Sec. 3) under different

Table 3: Computation time of data plane modules

Modules Inference time (ms)

Object Localization 0.061 ± 0.023

Representation 1.72 ± 0.53

Perspective Transformation 0.006 ± 0.012

Object Matching 0.014 ± 0.023

representation factors (RFs) in Fig. 22. It can be seen that, the re-

constructed point cloud under RF 4 is very close to the original

point cloud structurally. Although the reconstructed point cloud

under RF 64 is relatively far from the original, we believe it still

provides sufficient structural details for following autonomous driv-

ing pipeline, such as 3D scene understanding (more discussions in

Sec. 8). Note that, we implemented the representation module with

relatively small DNNs, which indicates that its reconstruction loss

could be further reduced by using larger DNNs with efficient and

sophisticated neural network architectures [21].

In Table 3, we show the computing time of individual data plane

modules in AdaMap. With the unique design in the hybrid localiza-

tion module, AdaMap only spends negligible delay on localizing

interested objects. In particular, the most time-consuming mod-

ule is the representation module (1.72ms on average), which in-

volves the computation of DNNs. Note that, all these modules are

very compute-efficient and can be completed in a few milliseconds,

which justifies the computation efficiency of data plane in AdaMap.

6.5 Impact of Individual Components

We evaluate individual components in contributing to the overall

performance of AdaMap. Overall, we observe that AdaMap achieves

the best performance in terms of meeting the percentile latency

while reducing the reconstruction loss. Without using the repre-

sentation module in the data plane, No_Represent relies on existing

off-the-shelf compression, which increases 4.63x average latency
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with no reconstruction loss. Without using the object selection in

the control plane, No_Select transmits all detected objects, which

results in higher optimized RFs and higher reconstruction loss.

Without using the hybrid detection and tracking in the data plane,

No_Track relies on only object detection to localize interested ob-

jects, which squeezes the latency allowance for following data plane

modules, and leads to worse performance on both latency and loss.

Besides, No_Adapt uses only RF 4 all the time, which cannot adapt

to network dynamics and thus fails the percentile latency require-

ment.

7 RELATEDWORK

Cooperative perception has been increasingly studied to augment

the perception for the ego vehicle towards safe autonomous driving.

AVR [31] shares raw point clouds among vehicles to extend their

sensing ranges and reduces the transmission size by selecting only

dynamic objects and motion vectors. F-cooper [9] introduced the

first feature-level fusion solution to combine both voxels and fea-

tures of different LiDAR point clouds, which improves the accuracy

of 3D object detection in the ego vehicle. Recently, infrastructure-

assisted solutions emerge to tackle the exponential increment of

transmission data size under vehicle-to-vehicle (V2V) approaches.

EdgeSharing [19] leveraged edge computing servers to maintain a

global map, that aggregates various crowdsourced data (e.g., raw

point clouds and features), to assist the localization, detection, and

matching for individual CAVs. To improve the scalability of coop-

erative perception, multiple works (e.g., AutoCast [30], VIPS [34],

and Where2comm [15]) further exploited the spatial correlation

and individual needs among CAVs to reduce the transmission data

size. However, these works cannot scale in large-scale deployment

with hundreds of CAVs (if not more), such as block and community

scales, in terms of networking resource demand and end-to-end

latency assurance.

Edge computing is expected to shape and revolutionize the

future automotive industry with low-latency accessible resources,

where computation offloading provides promising computation

acceleration [6–8, 46]. DeepDecision [32] outlined an optimiza-

tion framework to determine the offloading strategy for compute-

intensive workloads, while balancing the detection accuracy, energy

consumption, and network data usage. Edge-SLAM [4] is designed

to split the computation modules of visual simultaneous localiza-

tion and mapping(Visual-SLAM) between mobile devices and edge

servers, to accelerate the overall computation by leveraging the

high computation capacity at edge servers. LiveMap [25] intro-

duced a new collaborative computing framework to intelligently

and adaptively place partial computation workloads in vehicles and

edge servers, during the construction of real-time dynamic map at

the edge. However, existing works are mostly focused on central-

ized optimization with deterministic system models, which incurs

significant communication delay and overhead under large-scale

cooperative perception scenarios.

8 DISCUSSION

The main focus of this work lies in the fundamental trade-offs be-

tween the latency and fidelity in large-scale cooperative perception

systems. One of the key designs is the representation module for

lossy compression of point clouds, which allows adaptive balancing

between latent dimensions and reconstruction losses at runtime.

From the visualization results in Fig. 22, we believe that our imple-

mentation of the representation module remains noticeable rooms

for further improvement, in terms of reducing reconstruction losses.

We envision two potential directions of improving its implementa-

tion as follows. First, the design of its loss function might be further

enhanced to balance local detail and global similarity, e.g., linear

searching of the weight factor 𝛽 . Second, the design of its neural

network architecture could be further optimized to improve the

training performance, e.g., neural architecture search (NAS) and

automatic hyper-parameter tuning.

In addition, one of the limitations of the representation module

is the unpredictable (e.g., potentially catastrophic) reconstruction

losses under unseen point clouds in the training dataset. This limi-

tation may be alleviated by 1) building a complete training dataset

as much as possible to cover diversified point clouds; 2) enhancing

its generalization by adopting robust and adversarial training tech-

niques; 3) predicting the reconstruction loss (refer to Fig. 7) and

resort to lossless compression techniques if the predicted loss is too

high.

Furthermore, the evaluation of this work is based on accurate

local-to-global conversion matrix and non-contaminated sensory

data, which might not be available in real-world deployment scenar-

ios. The robustness of cooperative perception systems would need

further extensive evaluation under real-world experiments, such as

the error propagation under detection errors and localization shifts.

Besides, the corresponding countermeasures demand for further

exploratory study, experimental testing, and real-world validation.

9 CONCLUSION

In this paper, we presented AdaMap, a new high-scalable real-time

cooperative perception system. We designed a tightly coupled data

plane and control plane to achieve AdaMap. In the data plane, we

designed the hybrid localization module to accelerate the object

localization, and the flexible representation module to trade accept-

able reconstruction losses for higher compression ratios. In the

control plane, we designed the object selection method to mitigate

the excessive multi-viewed point clouds, and the approximated

gradient descent algorithm to online optimize the representation

factor (RF) under time-varying network dynamics. We evaluated

AdaMap in an emulation platform to show its scalability, adaptabil-

ity and computation efficiency. The evaluation results showed that,

AdaMap can assure percentile latency requirements and reduce up

to 49x transmission data size at the cost of 0.37 reconstruction loss

than state-of-the-art solutions. We believe that, AdaMap sheds the

light on large-scale real-time cooperative perception deployment

in future scenarios.
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