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PLMP — Point-Line Minimal Problems
in Complete Multi-View Visibility

Timothy Duff ¥, Kathlén Kohn

Abstract—We present a complete classification of all minimal
problems for generic arrangements of points and lines completely
observed by calibrated perspective cameras. We show that there are
only 30 minimal problems in total, no problems exist for more than
6 cameras, for more than 5 points, and for more than 6 lines. We
present a sequence of tests for detecting minimality starting with
counting degrees of freedom and ending with full symbolic and
numeric verification of representative examples. For all minimal
problems discovered, we present their algebraic degrees, i.e.the
number of solutions, which measure their intrinsic difficulty. It
shows how exactly the difficulty of problems grows with the number
of views. Importantly, several new minimal problems have small
degrees that might be practical in image matching and 3D recon-
struction.

Index Terms—23D reconstruction, minimal problems, multi-view
geometry.

1. INTRODUCTION

INIMAL problems [1], [2], [3], [4], [5], [6], [7], [8],

(91, [101, [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]
play an important role in 3D reconstruction [30], [31], [32],
image matching [33], visual odometry [34], [35] and visual
localization [36], [37], [38]. Many minimal problems have been
described and solved, and new minimal problems are constantly
appearing. In this paper, we present a step towards a complete
characterization of all minimal problems for points, lines, and
their incidences in calibrated multi-view geometry. This is a
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grand challenge, especially when dealing with partial visibility
due to occlusions and missing detections. Here we provide a
complete characterization for the case of complete multi-view
visibility.

Informally, a minimal problem is a 3D reconstruction problem
that recovers camera poses and world coordinates from given
images such that random input instances have a finite positive
number of solutions. In particular, random measurement errors
do not change the number of solutions.

Contribution: We give a complete classification of minimal
problems for generic arrangements of points and lines, including
their incidences, completely observed by any number of cali-
brated perspective cameras. We consider calibrated scenarios,
as it avoids many degeneracies [40].

We show that there are exactly 30 minimal point-line problems
(up to an arbitrary number of lines in the case of two views)
when considering complete visibility (Table I). In particular,
there is no such minimal problem for seven or more cameras.
For 6, 5, 4 and 3 cameras, there are 1, 3, 6 and 17 minimal
problems, respectively. For two views, there are three com-
binatorial constellations of five points which yield minimal
problems. We observe that each minimal point-line problem has
at most five points and at most six lines (except for arbitrarily
many lines in the case of two views). Problems 50002 [1],
32003 [41], [42], 3010q, 1040 [43] have been known before,
all other 26 minimal problems in Table I, as far as we know, are
new.

For each minimal problem, we compute its algebraic degree
which is its number of solutions over the complex numbers for
generic images. This degree measures the intrinsic difficulty of a
minimal problem. We observe how this degree generally grows
with the number of cameras, but we also found several minimal
problems with small degrees (32, 40 and 64), which might be
practical in image matching and 3D reconstruction [32].

We consider generic minimal problems, i.e., the problems
that have a finite number of complex solutions and are generic
in the sense that random noise in image measurements does
not change the number of solutions. For instance, the classical
problem of five points in two views [1] is minimal, and one
can add arbitrarily many lines to the arrangement in 3-space; as
long as it contains five points in sufficiently generic position, it
is still minimal. On the other hand, the problem of four points
in three views [44], [45], [46], [47] is overconstrained when all
measurements and equations are used. It becomes inconsistent
for noisy image measurements. Thus, it is not a minimal problem
for us.
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TABLE I
ALL BALANCED POINT-LINE PROBLEMS, MODULO ADDING ARBITRARILY MANY LINES TO THE PROBLEMS WITH 2 VIEWS
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— —— |_—
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Degree | 544" 360 552 480 264 432 328 480 240 64 216
m views| 3 3 3 3 3 3 3 3 2 2 2 2 2
pipdifi2 | 3002, 3002, 2111y 2103; 2103, 21033 3100, 2201, 5000, 41005 32005 3200, 23005
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Minimal| Y Y Y Y Y Y Y N Y Y Y N N
Degree | 312 224 40 144 144 144 64 20 16 12
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Some problems are not uniquely identified by their vector (p g ;p5 1 1). To make the identification unique, we extend the vector by a subscript «, which
is the maximum number of lines adjacent to the same point in the case of at least three views or the maximum number of points on a common line in
the case of two views. Degrees marked with * have been computed with numerical methods, the others with symbolic algorithms; see Section 7.
Problem 32005 has all five points in a single 3D plane: it corresponds to the calibrated homography relative pose computation [41], [42]; see Section

8.1

Fig. 1.

(1-st row) Points (red) and lines (blue) get detected independently
as well as in arrangements with points incident to lines [25], [39]. (2-nd row)
Examples of some interesting arrangements of points and lines providing new
minimal problems. See Table I for the complete classification of minimal prob-
lems for points, lines and their arrangements in multiple images with complete
multi-view visibility.

We assume complete visibility, i.e.all points and lines are
observed in all images, and all observed information is used
to formulate minimal problems. Complete point-line incidence
correspondences arise when, e.g., SIFT point features [48] are
considered together with their orientation, lines are constructed
from matched affine frames [49], or obtained as simultaneous
point and line detections [25], Fig. 1.1 On the other hand, we do
not cover cases that require partial visibility, e.g., 3 PPP + 1 PPL

IReal images from [39] were provided S. Ramalingam [25].

in [43]. Full account for partial visibility is a much harder task
and will be addressed in the future.

We explicitly model point-line incidences. Several lines may
be incident to a single point (n-quiver) and several points may
be dependent by lying on a single line. We assume that such re-
lations are not broken by image noise, since they are constructed
by the feature detection process.

Our problem formulation uses direct geometrical determinan-
tal constraints as in [50], [51], not multi-view tensors, since
it works for any number of cameras and can model point-line
incidences. On the other hand, our formulation is not the most
economical for the minimal problem with five independent
points in two views (50002 in Table I). This problem has de-
gree 20 in our formulation while the degree is only 10 when
reformulated [52] as a problem of finding the essential matrix.?

The first version of this paper appeared in [54]. Here we
provide additional details: (i) we discuss planar configurations
of points in space, (ii) give full implementation details on how
to compute the algebraic degree and check for minimality of
a problem, and (iii) show concrete examples that allow us to
reproduce our results.

Structure of the Paper: The paper is organized as follows. We
review previous work in Section II. Section III defining the main
concepts is followed by the problem specification in Section I'V.
All candidates for minimal problems satisfying balanced counts

2Proving that the minimal problems with three or more views cannot be
reformulated in a way that decreases the degrees that we report, or finding
reformulations, may require more advanced algebraic techniques and presents
a challenge for the future research. Preliminary results in this direction have
already been reported in [53].
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of degrees of freedom are identified in Section V. Section VI
presents our parameterization of the problems for computational
purposes. Procedures for checking minimality and computing
degrees using symbolic and numerical methods from algebraic
geometry are outlined in Section VII. Full implementation de-
tails and a discussion on planar point configurations are given
in Section VIII.

II. RELATED WORK

Here we review the most relevant work for point-line inci-
dences and minimal problems. See [19], [20], [43] for references
on minimal problems in general. Using correspondences of
non-incident points and lines in three uncalibrated views was
considered in works on the trifocal tensor [55]. The early work
on point-line incidences [50] introduced n-quivers, i.e.points
incident with n lines in uncalibrated views, and studied minimal
problems arising from three 1-quivers in three affine views
and three 3-quivers in three perspective views, as well as the
overconstrained problem of four 2-quivers in three views.

Uncalibrated multi-view constraints for points, lines and their
incidences appeared in [56]. In [51], non-incident points and
lines in uncalibrated views were studied and four points and
three lines in three views, two points and six lines in three
views, and nine lines in three views cases were presented. The
solver for the latter case has recently appeared in [57]. Absolute
pose of cameras with unknown focal length from 2D-3D quiver
correspondences has been solved in [11] for two points and
1-quiver, for one 1-quiver and one 2-quiver, and for four lines.
See the discussion in [11] for more details on other absolute pose
methods based on points and lines.

In [58], [59], an important case, when lines incident to points
arise from tangent lines to curves, is presented. It motivates
the case with three points and tangent lines at two points (case
3002; in Table I). Work [25] presents several minimal problems
for generalized camera absolute pose computation from 2D-3D
correspondences of non-incident points and lines with focus
on cases when a closed-form solution could be found. In [6],
[15], parallelism and perpendicularity of lines in space were
exploited to find calibrated relative pose from lines and points.
Recent work [60] investigates calibrated relative camera pose
problems from two views with 2-quivers (called ray-point-ray,
RPR, features) with known angles between the 3D lines gen-
erating the quivers. Minimal problems for finding the relative
pose from three such correspondences for the generic as well as
several more specific cases is derived. Our closest generalization
of this result is that one can obtain calibrated relative pose of
three cameras from one 2-quiver and two independent points in
three views without knowing angles in 3D. Recently, minimal
problems were constructed for local multi-features including
lines incident to points as well as more complex features [22],
[23], [24], [61], [62]. They build on SIFT directions [48] or
more elaborate local affine features [49] to reduce the number
of samples needed in RANSAC [63] to verify tentative matches.

The Most Relevant Previous Work: Recent theoretical re-
sults [21], [64], [65], [66], [67], [68] made steps towards char-
acterizing some of the classes of minimal problems. The most
relevant work [43] provided a classification for three calibrated

views that can be formulated using linear constraints on the
trifocal tensor [40].

In [43], 66 minimal problems for three calibrated views were
presented and their algebraic degrees computed. The lowest de-
gree 160 has been observed for one PPP and four PPL constraints
while the highest degree 4912 has been observed for 11 PLL con-
straints. Classification [43] missed many minimal problems for
complete visibility since they cannot be formulated using linear
constraints on the trifocal tensor. Out of 66 problems in [43] the
ones that can be modeled with complete visibility are (1 PPP + 4
LLL)and (3 PPP + 1 LLL). These two minimal problems appear
as 1040y and 3010 in Table I. The other 15 minimal problems
in three views that we discovered do not appear in [43] since the
point-line incidences were not considered.

Work [69] extended the classification of [43] to many more
calibrated trifocal minimal problems. It shows that infinitely
many minimal problems under partial visibility (and when each
line is incident to at most one point) can be grouped into 140616
equivalence classes by removing superfluous features and rela-
beling the cameras. The work used techniques and approaches
developed in the conference version of this paper [54].

III. NOTATION AND CONCEPTS

We use nomenclature from [40] for basic concepts in ge-
ometry of computer vision. See [70] for the fundamentals of
algebraic geometry, including Grobner bases.

SO(3) stands for the special orthogonal group, i.e.rotations,
defined algebraically as 3 x 3 matrices R such that RR" =T
and det(R) = 1. We note that the dimension of SO(3) is three.

For u in R3, the skew-symmetric matrix [u], in R®*® repre-
sents the cross product with u in R3, ie.u]x v =wu x v for all
vin R3.

Points in space are in the projective space P2, whereas image
points are in P2, So points are represented by homogeneous
coordinates.

We sometimes refer to the concept of algebraic varieties. A
projective variety is the common zero set of a system of homo-
geneous polynomial equations. If the polynomials are defined
in N + 1 homogeneous variables, the projective variety lives
in PV, Similarly, an affine variety is the common zero set of
a system of polynomial equations which are not necessarily
homogeneous. If the polynomials are defined in /N variables
over the ground field I, the affine variety lives in . For any
subset S of either PN or FV, the Zariski closure S of S is the
smallest projective, resp. affine, variety containing .S.

The Grassmannians G 3 and G 5, which are the sets of
all lines in P? and P2, respectively, are examples of smooth
projective varieties. The Grassmannian G1 5 of lines in P2 is
isomorphic to P2 as every line in the projective plane is uniquely
defined by a single linear equation with three homogeneous
coordinates as coefficients. The Grassmannian G 3 of lines in
IP3 can be seen as a projective variety via its embedding into IP®
defined by its Pliicker coordinates.

A line in IP3 is defined by two linear equations. We write the
homogeneous coefficients of these two equations as the two rows

ap aip a2 ag

of a 2 X 4 matrix . The six maximal minors
bo by by b
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of this matrix form the Pliicker coordinates of the line in P3:
pij = a;bj — a;b;. Every line in P? is uniquely defined by its
six Pliicker coordinates. Moreover, the Pliicker coordinates of a
line in P? satisfy the equation po1p23 — po2p13 + Pospiz = 0.
In addition, every projective tuple (po1 : po2 : Pos : P12 : P13 :
pa3) € PP satisfying the equation po1pa3 — po2p13 + pospiz =
0 is the Pliicker coordinates of a line in 3.

This shows that the Grassmannian G 3 is the zero set of
the polynomial equation pg1pa3 — po2p13 + Po3pi2 = 0 in P5.
Furthermore, the Pliicker coordinates of a line in P? serve as
homogeneous coordinates defining the line. So we can represent
both points and lines in P2 as well as P2 by homogeneous
coordinates.

A variety X is said to be irreducible if it is not the union of two
proper subvarieties, i.e.if it cannot be written as X = X; U X»
where X and X, are non-empty subvarieties of X which are
not equal to X. For instance, Grassmannians are irreducible.

Throughout our article, we consider an arbitrary ground field
F unless explicitly specified. For different purposes we use
different fields. For instance, the minimal problems we study
are clearly defined over the field R of real numbers. When
setting up systems of polynomial equations, coefficients orig-
inate from the field Q of rational numbers. Solutions of the
equations are in the field C of complex numbers. We carry
out symbolic computations in a finite field Z,, for a prime p
for the sake of exactness and computational efficiency. Nu-
merical algorithms use floating point to approximate complex
numbers.

IV. PROBLEM SPECIFICATION

Our main result applies to problems in which points, lines, and
point-line incidences are observed. We first introduce a point-
line problem as a tuple (p, [, Z, m) specifying that p points and [
lines in space, which are incident according to a given incidence
relation Z C {1,...,p} x {1,...,1} (i.e.(i,j) € Z means that
the ¢th point is on the jth line) are projected to m views. So
a point-line problem captures the numbers of points, lines and
views as well as the incidences between points and lines. We
will model intersecting lines by requiring that each intersection
point of two lines has to be one of the p points in the point-line
problem. Throughout this article we will only consider incidence
relations which can be realized by a point-line arrangement in
P3. In particular, two distinct lines cannot be incident to the
same two distinct points. In addition, we will always assume
that the incidence relation Z is complete in the sense that every
incidence which is automatically implied by the incidences in Z
must also be contained in Z. An instance of a point-line problem
is specified by the following data:

1) A point-line arrangement in space consisting of p points

X1,...,Xpand [ lines Lq,...,L; in P3 which are inci-
dent exactly as specifiedby Z C {1,...,p} x {1,...,1}.
Hence, the point X; is on the line L; if and only if
(4,7) € Z. We write

Xpiz =

{(X, L) € (P3)’ x (Gys) | V(i,j) €T : X, € Lj}

for the associated variety of point-line arrangements. Note
that this variety also contains degenerate arrangements,
where not all points and lines have to be pairwise distinct
or where there are more incidences between points and
lines than those specified by Z.

2) A list of m calibrated cameras which are represented by

matrices
Py =[Ry|t1],..., Py =[Rm | tm]
with Ry, ..., R, € SO(3)and ty,...,t,, € F3.
3) The joint image consisting of the projections
T 1y Typ € P2 of the points X1,..., X, and the

projections £, 1,...,4,; € Gy of the lines Ly,..., 1L,
by the cameras Pi,..., P, tothe v =1,...,m views.
We write

Vi Z,m = {(-T,@ € (PQ)wX (G172>ml ‘ Yo=1,...,m

V(i,§) € T 5 w0 € oy}

for the image variety which consists of all m-tuples of
two-dimensional point-line arrangements which satisfy
the incidences specified by Z. This is a generalization of
joint image previously introduced in [71], [72].

Given a joint image, we want to recover an arrangement in
space and cameras yielding the given joint image. We refer to
a pair of such an arrangement and such a list of m cameras as
a solution of the point-line problem for the given joint image.
We note that an m-tuple in ), ; 7., does not necessarily admit
a solution, i.e.a priori it does not have to be a joint image of a
common point-line arrangement in 3-space.

To fix the arbitrary space coordinate system [40], we set P; =
[1]0] and the first coordinate of ¢5 to 1. Hence, our camera
configurations are parameterized by

Co = {(P1,...,Pp) € (F¥H™ | P, = [R; | t,],
R; €80(3),t; € F3 Ry =1,t; =0,ty; = 1}.

We will always assume that the camera positions in an instance
of a point-line problem are sufficiently generic such that the
following three natural conditions are satisfied for each camera:
First, two distinct lines or points in the given arrangement in 3-
space are viewed as distinct lines or points. Second, a point and a
line in the space arrangement, which are not incident in 3-space,
are viewed as non-incident. Third, three non-colinear points in
the space arrangement are viewed as non-colinear points.

We say that a point-line problem is minimal if a generic image
tuple in V), ; 7, has a nonzero finite number of solutions. We
may phrase this definition formally:

Definition 1: Let (I)p,l,l',m : Xp,l,l' X Cpy -—2 pr’Lm denote
the joint camera map, which sends a point-line arrangement in
space and m cameras to the resulting joint image. We say that
the point-line problem (p, 1, Z, m) is minimal if

e ®, 7, is adominant map,’ i.e. a generic element (z, £) in

Yp.1.7,m has a solution, so @;})Lm(x, £) # 0, and

3Dominant maps are analogs of surjective maps in birational geometry.
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-1

e the preimage ® ; 7,

Yp.,1.z,m 1s finite.

Remark 1: For a given a minimal problem (p,l,Z,m), the
joint camera map ®,;7,, maps A, ;7 x C, onto a con-
structible subset of V), ; 7, of the same dimension. Given a
solution for a generic jointimage (x, ) when F = R or C, there
exists a ball around (z, ¢), say B.(z, /), and for each solution
(X,0)e @1, (x,f)aball Bs(X,C) such that

p,L,I,m

Q1 7.m (Bs(X,C)) C Be(x,£).

(x,£) of a generic element (x,¢) in

In this sense, we may deduce that solutions to minimal problems
are stable under perturbation of the data.

The joint camera map ®,, ; 7, reflects that we want to recover
world points and lines as well as camera poses from a given joint
image. In the case of complete visibility, this is equivalent to
only recovering camera poses. We formalize this observation in
Lemma 2 and Corollary 2.

Over the complex numbers, the cardinality of the preimage
CIJ;j,Lm(m, ?) is the same for every generic joint image (x,{)
of a minimal point-line problem (p,!,Z,m). We refer to this
cardinality as the degree of the minimal problem. Our goal is
to list all minimal point-line problems and to compute their
degrees. For this, we pursue the following strategy:

Step 1: A classical statement from algebraic geometry states
for a dominant map ¢ : X --» Y from a variety X to another
variety Y that the preimage ! (y) of a generic point ¢ in Y has
dimension dim(X') — dim(Y"). When ¢ is a linear map between
linear spaces, this is simply the rank-nullity theorem of linear al-
gebra. As the generic preimage of the joint camera map ®,,; 7.,
associated to a minimal point-line problem (p, [, Z, m) is zero-
dimensional, we see that every minimal point-line problem must
satisfy the equality dim(X, ;7 x Cp,) = dim(Y, 17,m). This
motivates the following definition.

Definition 2: We say that a point-line problem (p, [, Z,m) is
balanced if dim(X,, ;7 % Cy,) = dim(Vp 1.7,m)-

As we have now established that all minimal point-line prob-
lems are balanced, we classify all balanced point-line problems
in Section V. We will see that there are only finitely many such
problems, explicitly given in Table I, up to arbitrarily many lines
in the case of two views; see Remark 2.

Step 2: The classical statement from algebraic geometry men-
tioned above further implies that a balanced point-line problem
(p,1,Z,m)is minimal if and only if its joint cameramap @, ; 7.,
is dominant. Hence, to determine the exhaustive list of all
minimal point-line problems, we only have to check for each
balanced point-line problem in Table I if its joint camera map is
dominant. We perform this check computationally, as described
in Section VII.

Step 3: Finally, we use symbolic and numerical computations
to calculate the degrees of the minimal point-line problems. We
describe these computations in Section VII.

V. BALANCED POINT-LINE PROBLEMS

To understand balanced point-line problems we need to derive
formulas for the dimensions of the varieties X),; 7, C,, and
Ypi7,m- As SO(3) is three-dimensional, and we set the first

camera to [I|0] and one parameter in the second camera to 1,
the parameter space of camera configurations for m > 2 has
dimension dim(C,,) = 6m — 7.

Let us now consider a generic point-line arrangement in
X1, z. Some of its points may be dependent on other points, in
the sense that such a dependent point lies on a line spanned by
two other points. In any arrangement of points in 3-space, each
minimal set of independent points has the same cardinality. For
our arrangement of p points we denote this cardinality by p
(the upper index f stands for free). We write pd = p — p' for the
number of dependent points. Each free point is defined by three
parameters. A dependent point X is only defined by one further
parameter after the two points, which span the line containing X,
are defined. In total, the p points in our arrangement are defined
by 3 p! + pd parameters. Each of the [ lines in our arrangement
is either incident to zero, one or at least two points. We refer to
lines which are incident to no points as free lines. We denote the
number of free lines by If. As the Grassmannian G 3 of lines is
four-dimensional, each free line is defined by four parameters.
A line which is incident to a fixed point is defined by only two
parameters. We denote the number of lines which are incident to
exactly one point by [* (the upper index a stands for adjacent).
Finally, each of the remaining [ — If — [? lines is incident to at
least two points and thus already uniquely determined by the
two points. Hence, we have derived

dim(X,,7) = 3p" +pd + 41" + 217 1)

In particular, we see that we might as well assume that there is
no line passing through two or more points, as such lines do not
contribute to our parameter count.

We derive the dimension of the image variety Y, ; 7, Sim-
ilarly. Since we assume all camera positions to be sufficiently
generic, each camera views exactly p' independent points, p<
dependent points, I free lines and [* lines which are incident
to exactly one of the points. Each independent point is defined
by two parameters, whereas each dependent point is defined by
a single parameter. A free line is defined by two parameters.
A line which is incident to a fixed point is defined by a single
parameter. All in all, we have that

dim(Vp,1.z,m) = m (2p" + p* + 218 +17). 2)

Note that there is no balanced point-line problem for a single
camera. For m > 1 cameras, combining dim(C,,) = 6m — 7
with (1) and (2) yields that a point-line problem is balanced if
and only if

3p 4 pt + 4l L2010 6m —T=m (2p" +pt + 218 +17).
This is equivalent to

6m—7=(2m—3)p" +(m—1)p? +2(m—2)I 4+ (m—2)I*.
3

Lemma 1: Every balanced point-line problem with at least
five points has exactly two cameras.

Proof: Suppose (p,1,Z,m) is a balanced point-line problem
with m > 1 cameras and at least five points, i.e.pf + pd >5.In
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this case, the equality (3) implies
6m—7> (2m—3)p' +(m—1)(5-p") = (p' +5)m—(2p +5),
which is equivalent to

200" = 1) > (' = 1)m. )

Among the five or more points at least two have to be (by
definition) independent, i.e.p’ > 1. So (4) yields m < 2. O
Theorem 1: There is no balanced point-line problem with
seven or more cameras.
Proof: Let (p,1,Z, m) be abalanced point-line problem with
m > T cameras. By equality (3), we have

5=p" +p® mod (m—2). )

This implies pf + p > 5if m > 8, which contradicts Lemma 1,
and thus we have only one remaining case to check: m = 7.
From (5) and Lemma 1, we have p' + pd = 0 in the case of
seven cameras. It means that there are no points, and thus there
cannot be lines which are incident to points. So we have pf =0,
pd =0, 1* =0, and (3) reduces to 35 = 10If, which is clearly
not possible. So there are no balanced point-line problems with
seven or more cameras. 0

Theorem 2: There are 34 balanced point-line problems with
3,4, 5 or 6 cameras. They are all listed in Table I.

Proof: We consider the different cases for 3 < m < 6 and

reason by cases.

® m = 6: Due to (5) and Lemma 1, every balanced point-
line problem with six cameras must have exactly one
point. So we have pf =1, pd =0, and (3) reduces to
5 =2I' + 2. This gives us three possibilities: (I,1%) €
{(2,1),(1,3),(0,5)} (see first row of Table I).

® m = 5:Dueto (5) and Lemma 1, every balanced point-line
problem with five cameras must have exactly two points. So
we have pf =2, pd =0, and (3) reduces to 3 = 20f + [,
This gives us two possibilities: (If,1*) € {(1,1),(0,3)},
which yield three point-line problems (see the first row of
Table I).

® m = 4: Due to (5) and Lemma 1, every balanced point-
line problem with four cameras must have either one
point or three points. Let us first consider the case of
a single point. Here we have pf =1, p? =0, and (3)
reduces to 6 = 2{f + [*. This gives us four possibilities:
(I5,1%) € {(3,0),(2,2), (1,4), (0,6)} (see first row of Ta-
ble I). Second, we consider balanced point-line problems
with four cameras and three points. If all three points
are independent, (3) reduces to 1 = 21F + 12, which has
a single solution: (If,1*) = (0,1). If not all three points
are independent, we have pf = 2, pd = 1, and (3) reduces
to 2 = 2If 4 /2. This gives us two possibilities: (If,1*) €
{(1,0),(0,2)}, which yield three point-line problems (see
the first two rows of Table I for all four point-line problems
with four cameras and three points).

e m = 3: We first observe that each balanced point-line
problem with three cameras must have at least one point.
Otherwise we would have pf = 0,p? = 0and[* = 0,50 (3)
would reduce to 11 = 2If, which is impossible. Let us first
consider the case of a single point. Here we have pf = 1,

pd = 0, and (3) reduces to 8 = 2if + [*. This gives us five
possibilities: (If,1%) € {(4,0), (3,2),(2,4),(1,6),(0,8)}
(see second row of Table I). Second, in the case of
two points, we have pf =2, p =0, and (3) reduces to
5 = 2If + 1. This gives us three possibilities: (If,[%) €
{(2,1),(1,3),(0,5)}, which yield six point-line prob-
lems (see second row of Table I). Third, we consider
the case of three points. If all three points are inde-
pendent, (3) reduces to 2 = 2If 4 /2. The two solutions
(If,1*) € {(1,0),(0,2)} yield three point line problems
(see last two rows of Table I). If not all three points are
independent, we have pf =2, pd =1, and (3) reduces to
3 = 2iIf 4 2. The two solutions (If,1*) € {(1,1),(0,3)}
yield four point-line problems (see last row of Table I).
Finally, we consider balanced point-line problems with
three cameras and four points. We see from (3) that not
all four points can be independent. Hence, we either have
pf =3 and p? = 1 such that (3) reduces to 0 = 2If + 2,
which has a single solution (If,7*) = (0,0), or we have
pf =2 and p? = 2 such that (3) reduces to 1 = 2If + 2,
which also has a single solution (If,1*) = (0,1) (see the
last row of Table I) [l
Remark 2: For the case of two cameras, we see from (3) that
the number of free and incident lines do not contribute to the
parameter count for balanced point-line problems. In fact, (3)
reduces form = 2to 5 = p’ + pd. Hence, we have the classical
minimal problem of recovering five points from two camera
images. More precisely, a point-line problem with two cameras is
balanced if and only if it has five points. Therefore, it is irrelevant
how many lines are contained in the arrangement or how many
points are independent. There are 5 combinatorial possibilities
to distribute dependent and independent points (see the last row
of Table I).
Corollary 1: There are 39 balanced point-line problems,
modulo any number of lines in the case of two views. They
are listed in Table I.

VI. ELIMINATING WORLD POINTS AND LINES

In order to do computations, it is customary to describe
problems with implicit equations that do not depend on the world
variables. Before we describe such equations, let us phrase the
elimination of the world variables geometrically.

We consider the Zariski closure of the graph of the joint
camera map:

Inc = {(X7 07 Y) S Xp,l,Z X Cm X yp,l,I,m ‘
Y =0,,7m(X,C)}.

The joint camera map ®,,; 7., is dominant if and only if the
projection 7y : Inc — Y, 1.7, onto the last factor is dominant
(since this is the projection from the graph of ®,; 7, on
its codomain). Moreover, the cardinality of the preimage of a
generic point Y € Y, ; 7., under both maps ®,, ; 7 ,,, and 7y is
the same.

To make computations simpler, we want to derive the same
statement for the following restricted incidence variety, which
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does not include the 3D structure X, ; 7:

Inc' = {(C,Y) € Con X Ypiz.m |

X € Xp,lg_' Y = q)p,l,I,m(Xa C)}

We have the canonical projections on the right, where m¢ y
omits the first factor and 7) projects onto the last factor:

Y
Inc > yp,LI,m
Wc,yl /
’ i
Inc

Lemma 2: If m > 2, a generic point (C,Y) € Inc’ has a
single point in its preimage under 7¢ y.

Proof: Y = (x,{) consists of points © = (z1,1,...,Tm,p)
and lines ¢ = (¢11,...,4y ) in the m views. Each point
Tyi € P2 in a view v is pulled back via the vth camera to a
line in 3-space. As m > 2, the m pull-back lines for generic*
21,45 - - -, T, INtETsect in a unique point in P3. Similarly, each
line /,, ; ina view v is pulled back via the vth camera to a plane in
P3. Asm > 2, the m generic pull-back planes for Ligyeooslmj
intersect in a unique line in P3. ]

Corollary 2: A balanced point-line problem (p,l,Z,m) is
minimal if and only if the projection 7, is dominant. In that
case, the degree of the minimal problem is the cardinality of the
preimage ﬂs,fl(Y) of a generic joint image Y € YV}, ; 7., over
the complex numbers.

Proof: As we have observed in Step 2 in Section 1V, a
balanced point-line problem is minimal if and only if its joint
camera map ®,,; 7., is dominant. This happens if and only if
7y is dominant. Due to Lemma 2, this is equivalent to that 7r3, is
dominant. Similarly, fora genericY" € ), ; 7., the cardinalities
of the preimages @;}Lm(Y), 775,1(Y) and 7r’y*1(Y) coincide
due to Lemma 2. ]

We note that it is possible to describe the variety Inc’ as
a component of the variety cut out by the equations that we
establish in the remainder of this section.

For any instance of a point-line problem, the solutions must
satisfy certain equations defined in terms of joint images (x, £) €
Yp.1.z,m- Our scheme for generating such equations relies on an
alternate representation of (x, £) defined solely in terms of lines.
The equations result from two types of constraints. The first type
of constraint is a line correspondence (LC): if {1,. .., £, are
images of the same world line, with respective homogeneous
coordinates 1, ...,1,, € F3*! then

rank [PlTll PQTlg Pglm} < 2. (6)

That is, the planes with homogeneous coordinates P/1; share a
common line in P3. We distinguish two classes of lines in P2 :
1) Visible lines define valid line correspondences. Besides
m [ observed lines in the joint image, for generic x there
is a unique visible line between any two observed points.
Taken across all views, any pair of points thus provides a

line correspondence which must be satisfied.
2) Two generic visible lines suffice to define a point. We may
use an additional set of (non-corresponding) ghost lines to

4Genericity implies, for instance, that x1 ,i and 3 ; are not epipoles.

eyl
X
oY)
3
je)
—
[¢)
—
=

el

xample (2)
£

y

Example (3)

Fig. 2. Encoding problems with visible and ghost lines.

define any points which meet fewer than two visible lines.
A generic ghost line contains exactly one observed point
— it is simply a device for generating equations.’
Thus we obtain common point (CP) constraints: given visible
and ghost lines 1,, 1, .. .1, 5, which meet z, ;, the projection of
the ¢th point in the view v € 1, ..., m, we must have

rank [P{11 1 Pllng] <3, i=1,....,p. (D

We may encode a point-line problem by specifying some
number of visible lines, some number of ghost lines, and which
of these lines are incident at each point. We illustrate this
encoding with several examples appearing in Fig. 2:

Example 1:

1) Consider the point-line problem labeled “20135” in

Table I. The lines explicitly drawn in the table together
with a visible line between the two free points, as in Fig. 2,
suffice to define the scene for generic data.

2) Consider now the problem labeled “2011;” in Table I. The
encoding given in Fig. 2 includes the given lines, a visible
line between the given points, as well as a single ghost line
needed to define one of the points.

3) Finally, consider the problem labeled “32003” in Table I.
The extra visible lines appearing in Fig. 2 fix the positions
of all points.

LC and CP constraints immediately translate into determinan-
tal conditions: the 3 x 3 minors of the matrix in (6) must vanish
for each visible line, and the 4 x 4 minors of the matrix in (7)
must vanish for each point. Thus, we obtain explicit polynomials
for each point-line problem once we fix some encoding and the
cameras parametrization, i.e.a rational map G : F6™~7 — C,,,.
In our computations, we define G via the Cayley parametrization
for SO(3):

R([(L b, C]) =+ [[a7 b, CHX)(I - [[a7 b, c]]x)_l' (®)

3“Canonical” ghost lines, which are rows of [z], are often used to eliminate
point « from equations by [c]x z = 0 [40], [56].
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Algorithm 1: (Minimal).
Input: (p,l,Z, m), a balanced point-line problem.
Output: “Y” if the problem is minimal; “N”’ otherwise.
1. J(C,Y) « 2ECY)
2:  Take random Cy € C,, and random X, € &}, ; 7.
30 Yo+ @p.7,m(Xo, Co)
4: return“Y” if rank J(Cp,Yy) = 6m — 7, else “N.”

Algorithm 2: (Degree).
Input: (p,l,Z, m), a point-line minimal problem.
Output: The degree of this problem.
1: Take arandom Yy € YV, 1.7.m.-
2: Compute the Grébner basis B of the ideal generated by
F(O, YO) C ]F[C}
3:  return the number of monomials in variables C' not
divisible by the leading monomials of B.

VII. CHECKING MINIMALITY & COMPUTING DEGREES

Denote by F' = F}, ; 7., the system of polynomials resulting
from a given point-line problem (p, [, Z, m) using our construc-
tion of the LC and CP constraints in Section VI with the cameras
parameterization GG plugged in. The variety of points satisfying
F(C,Y) = 0 contains Inc as an irreducible component.

Remark 3: The variety of points satisfying F'(C,Y) =0
may also have spurious components corresponding to solutions
(C,Y) where the ranks of the matrices (6) or (7) are smaller
than desired. Such spurious solutions do not correspond to world
lines in G 3 and must be ruled out. These spurious components
are naturally avoided by sampling a point on Inc’. For implicit
symbolic calculations, the spurious solutions may be eliminated
by including inequations enforcing nonvanishing of the minors
of size one smaller.

The following algorithm checks minimality of a point-line
problem locally; geometrically this amounts to passing to the
tangent space of Inc’.

Proof of Correctness for Algorithm 1 In the terminology
described in the beginning of Section VI, the algorithm checks
if the conditions of the Inverse Function Theorem hold at a
generic point on Inc’. If they do, the map 7 is dominant, since
in a neighborhood of Y, the map has an inverse: i.e if ¥ is
near Yy then there is C' near Cj satisfying F/(C,Y) = 0. If
these conditions do not hold generically, ), is not dominant.
By Corollary 2, the given point-line problem is minimal if and
only if 7, is dominant. O

For the minimal problems with two and three views we use the
following symbolic algorithm to compute their degrees, i.e., the
cardinality of the preimage of a generic jointimage Y € YV, 1. 7.m
under the projection 3, (by Corollary 2).

Proof of Correctness: Using Grobner bases to solve a sys-
tem of polynomial equations is a standard technique in com-
putational nonlinear algebra. Since we are interested only in
the solution count, not the solutions, we are able to carry out
computations relatively quickly; see Remark 4. g

Remark4: Algorithms 1 and 2 are valid over an arbitrary field
F. Our main problem is stated over Q, the rational numbers, but

-

Circulating along the path in the parameter space (downstairs) creates
a path meeting all solutions (upstairs).

Fig. 3.

since the algorithms rely heavily on symbolic techniques such
as Grobner bases we use the so-called modular technique: we
perform computations over a finite field, namely IF = Z,, for
p < 215, There is a slight chance that this approach fails for a
particular exceptional “unlucky” prime p, but it is possible to
compute the result using several primes and confirm it over Q
via rational reconstruction.

Algorithms 1 and 2 were implemented and executed in the
Macaulay?2 [73] computer algebra system.® Due to limitations
of Grobner basis algorithms we were unable to compute the
degrees of any of the problems with m > 3 with our imple-
mentation of Algorithm 2. On the other hand, the degrees of all
minimal problems in Table I are within reach for the monodromy
method, a technique based on numerical homotopy continuation.
Specifically, we follow the monodromy solver framework out-
lined in [74] carrying out computation via a Macaulay2 package
MonodromySolver®. Similar techniques have been success-
fully employed in a number of studies in applied algebraic
geometry [75], [76], [77].

Imagine the projection 7}, : Inc’ — Y,1.7,m as the cover map
from top to the bottom in Fig. 3. The seed solution (Cy, Yp)
produced as in Algorithm 1 is one of the solutions that project to
Y\ at the bottom. Since the Galois group of 773, acts transitively
on the solutions, one can create enough random paths connecting
Y and an auxiliary point Y7 so that walking on the liftings of the
bottom paths, it is possible to visit all solutions that are above
Y, and, hence, discover the degree.

VIII. IMPLEMENTATION DETAILS

In this section, we describe the Macaulay2 [73] implemen-
tation of our computations through a series of guided exam-
ples. Each subsection provides commentary for a dedicated
Macaulay? file:

Besides these examples and setup code providing the core
functionality, there are several scripts which automate the com-
putations reported in the main text.

6 Available at https://github.com/timduff35/PLMP
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VIII-A
VIII-B
VIII-C
VIII-D
VIII-E

“PLMP-3200_3.m2"
“example-2111_1-unrolled.m2"
“example-2111_1.m2"
“example-2111_1-jacobian.m2"
“example-2111_l-numerical .m2"

We begin by verifying that the constraints described in Sec-
tion VI give the same number of solutions in (R, t) as classical
approaches in the well-known planar calibrated homography
problem; see Section VIII-A. In the remaining sections, we
illustrate our computations on a running example. We give de-
tails for our symbolic degree computation and minimality check
in Sections VIII-B and VIII-D. Section VIII-C demonstrates
the automated setup script used for this problem. Finally, in
Section VIII-E we give an overview of the numerical methods
used to compute degrees for problems with more than three
cameras.

A. Example: 32003 — Planar Calibrated Homography

Here we further investigate 32005 problem. More precisely,
we show that the number 12 reported in our table agrees with
the classical formulations.

Problem 32003 has five points on two lines with one point in
common to both lines. Hence, all five points are in a single 3D
plane. This corresponds to the relative calibrated camera pose
from homography [41], [42]. It first computes a homography
between the two images using four point correspondences. The
fifths correspondence is determined by the four and automat-
ically satisfies the homography. Having four correspondences,
a single solution, A € R3*3 viewed as in P?, is obtained and
then decomposed into multiple possible rotations, translations,
normals and a scales.

The decomposition problem can be formulated as follows [41]

A=dR+TN"

with rotation R, translation 7', normal /N and scale d.

The decomposition of a homography matrix A, which was
developed in [41], is based on the SVD. It generates 8, resp. 4,
solution in a generic situations with | N||? = 1, resp. N3 = 1,
dehomogenization. The following Macaulay2 code shows that
the degree over the complex numbers is 24, resp. 12, in a generic
situations with || N||? = 1, resp. N3 = 1.

Rng = QQ[r_(1,1)..r _(3,3),t_1..t_3,n 1..n_3,d]
R = transpose(genericMatrix(Rng,r (1,1),3,3))
T = genericMatrix(Rng,t_1,3,1)

N = genericMatrix(Rng,n 1,3,1)

A = random(QQ~3,QQ"3

I = ideal(A - d*R-T*transpose(N)) +

ideal (transpose(R)*R-id_(QQR"3)) +
ideal(det(R)-1) +
ideal (transpose (N)*N-1)
dim I, degree I
o7 = (0, 24)
I = ideal(A - d*R-T*transpose(N)) +
ideal (transpose(R)*R-id_(QQR"3)) +
ideal(det(R)-1) +
ideal(n_3-1)
dim I, degree I
o7 = (0, 12)

We used a linear constraint to dehomogenize when computing
the degree of 32003 problem over the complex numbers and
obtained its degree equal to 12, which is in agreement with the
above homography formulation.

B. Computing the Degree Symbolically “from Scratch”

We work over the finite field Z1gg07:

FF = ZZ,/10007

We define point data in P2 in three views over Z o7 consistent
with the problem “2111;”). This is represented as a list of three
matrices in Macaulay?2:

i2 : P = {matrix{{-2639,-4936,1789},
{2653,-591,-643%},
{1,1,1}3,
matrix{{-3868,-1776,3174%},
{3669,-4143,-1982%},
{1,1,1}},
matrix{{-1889,-1604,4629%},
{-473,-4513,-4210},
{1,1,1}3}};

The matrix is best viewed in an output buffer using the
netList command:

i3 : netList P

o +
03 = || -2639 -4936 1789 | |
|| 2653 -591 -643 | |
1 1 1 I
et +
|| -3868 -1776 3174 ||
|| 3669 -4143 -1982 ||
1 1 1 Il
o +
|| -1889 -1604 4629 ||
|| -473 -4513 -4210 ||
1 1 1 Il
ettt +

The first two columns of each matrix in P were ran-
domly generated, while the last column is (projectively) a ran-
dom Zgoo7-linear combination of the first two. This reflects
the dependence of the third point on the first two in each
view.

In general, we encode point-line problems by specifying
the number of visible lines, the number of ghost lines, and,
for each point, a list of labels of lines passing through
it. For problem “2111;” this is accomplished as follows:

D = (3,2,{{1,2},{1,3},{1,4}})
nlLines = D#0 + D#1
lineIncidences = D#2

The list L contains random line matrices (homogeneous co-
ordinates of lines as in rows) consistent with P and the encoding
D:

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 05,2024 at 15:43:48 UTC from IEEE Xplore. Restrictions apply.



430 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 1, JANUARY 2024

i8 : netList L

E e et +
08 = || 107 4376 3187 ||
|| 3897 -4638 2998 ||
|l -1009 2785 -4328 ||
|| 2883 -1540 1031 ||
Il -1517 -713 3879 ||
et e L L Lt +
|| 3783 -1437 275 ||
|l 2926 -687 -1310 ||
|| -2582 -2466 1236 ||
|l -2721 -1085 -1127 ||
Il 3072 4259 1727 ||
R et T Lt e +
|| -1563 -4868 -1852 ||
|| -968 -960 -1036 ||
|| -3676 382 1454 ||
|l 1795 2177 -4909 ||
Il 2696 -1409 1206 ||
o +

‘We may verify that the first row of each matrix in L represents
a free line, that the second row gives a line through all points,
the third rows gives a “pinned line” through the first point, and
the fourth and fifth rows give ghost lines through the second and
third points, respectively.

i9 : netList apply(L,P,(1,c)-> 1xc)

09 =

-2291 0

Now, we define a polynomial ring over FF with indeterminates
for the 11 unknown camera parameters:

R = FF[r_(1,1), r_(1,2), r_(1,3),
r_(2,1), r_(2,2), r_(2,3),
t_(1,1), t_(2,1),t_(1,2), t_(2,2), t_(2,3)]

The next line defines a list Rs to be a list representing each

of the camera matrices’ rotations.
Rs = {matrix{{1,0,0},{0,1,0},{0,0,1}},
matrix{{ -r_(1,1)"2-r_(1,2)"2+r_(1,3)"2+1,
-2%r_(1,2)*r_(1,3)+2xr_(1,1),
2xr_(1,1)*r_(1,3)+2*xr_(1,2) },

{ —2%r_(1,2)*r_(1,3)-2%r_(1,1),
-r_(1,1)"2+r_(1,2)"2-r_(1,3)"2+1,
-2xr_(1,1)*r_(1,2)+2*xr_(1,3) 7},

{ 2%xr_(1,1)*r_(1,3)-2*xr_(1,2),
—2xr_(1,1)*r_(1,2)-2%r_(1,3),
r_(1,1)°2-r_(1,2)"2-r_(1,3)"2+1 }},

matrix{{ -r_(2,1)"2-r_(2,2)"2+r_(2,3) "2+1,
-2xr_(2,2)*r_(2,3)+2xr_(2,1),
2xr_(2,1)*xr_(2,3)+2xr_(2,2)},

{ -2xr_(2,2)*r_(2,3)-2*xr_(2,1),
-r_(2,1)"2+r_(2,2)"2-r_(2,3)"2+1,
—2%r_(2,1)*r_(2,2)+2*xr_(2,3) },

{ 2xr_(2,1)*r_(2,3)-2xr_(2,2),
-2xr_(2,1)*r_(2,2)-2*xr_(2,3),
r_(2,1)°2-r_(2,2)"2-r_(2,3)"2+1 }}};

Similarly, we may define a list of camera translations,

ts={matrix{{0},{0},{0}},
matrix{{t_(1,D},{t_(1,2)},{1}},
matrix{{t_(2, D}, {t_(2,2)},{t_(2,3)}}};

and a list of camera matrices

C = apply(Rs,ts, (R,t)->RIt);

The polynomials defining each line correspondence (LC) and
common point constraint (CP) will depend on C and certain sub-
matrices from L. The following functions return ideals generated
by these polynomials:

cl = (C,L’) -> minors(3,
matrix apply(C,L’, (c,1)->{1xc}),
Strategy=>Cofactor) ;

cp = (C,L’) -> minors(4,

matrix apply(C,L’,(c,1)->{1xc}),
Strategy=>Cofactor) ;

We let T be the ideal of camera poses consistent with L, which
may be constructed as follows:

Icl = sum(nVisibleLines,
i->cl1(C,L/(1->1"{i})));

Icp = sum(lineIncidences,
LINES->cp(C,L/(1->1"LINES)));

I = Icl + Icp;

At this point we must note that the matrices defined in Rs are
“scaled” so that the denominators appearing in the usual Cayley
parameterization of SO(3)—namely, dy = 75 | + 73 5 + 13 3 +
land dy = 73, + 75 5 4 3 3 + 1—do not appear. This scaling
has the effect of introducing spurious solutions to the deter-
minantal equations where these denominators may be zero. A
standard technique for eradicating these spurious solutions is via
introducing an auxiliary variable z and equation z (d; do) + 1
enforcing dy # 0 and dg # 0:

Rz = FF[z, gens R,
MonomialOrder=>{Eliminate 1}]
Iz = sub(I,Rz) + ideal (1+zx*

(r_(2,1)"2+r_(2,2)"2+r_(2,3) "2+1)*
(r_(1,1)"2+r_(1,2)"2+r_(1,3)"2+1));

We may compute a Grobner basis for the ideal Iz using
Macaulay2’s implementation of the F4 algorithm.

gblz = groebnerBasis(Iz, Strategy => "F4");

The monomial order for the ring Rz is a block-wise graded
reverse lexicographical ordering that eliminates the auxiliary
variable z. It follows [70] that the original ideal I is gener-
ated by the Grobner basis elements which do not contain this
variable.

gbI = selectInSubring(l,gblz);
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We get the dimension and degree of I by passing to the initial
ideal.

i23 : inI = ideal sub(leadTerm gbI,R);
023 : Ideal of R

i24 : dim inI

024 =0

i25 : degree inI

025 = 40

C. Computing the Degree Symbolically Using Setup Code

The following Macaulay?2 code replicates the entire Grobner
basis computation outlined in the previous section. Note that a
seed for the random number generator has been set to ensure a
reproducible result.

setRandomSeed 0;

gF_=322/nextPrime 10000;

isParametric = false;

D = (38,2,{{1,2},{1,3},{1,4}});

needs "problem-builder.m2";

gbIz = groebnerBasis(Iz, Strategy => "F4");

The script "problem-builder.m2” and its dependen-
cies automate tasks such as building equations and generating
point-line data. It assumes several global variables have been
defined:

e m — the number of cameras

e FF — the ground field

® isParametric — a Boolean determining how point-

line data are represented. A value of £alse indicates that
the data are set up randomly over the ground field. A value
of true means that point-line data are defined in terms of
parametric indeterminates, to be specialized later at some
fabricated point as in the minimality check described in the
next section.

e D — an encoding of the problem as described in the

previous section.

D. Minimality Check Via Jacobian

We now show how to check minimality without computing
degrees for “2111;.”

setRandomSeed 0;

m = 3;

FF = ZZ/nextPrime 10000

isParametric = true;

D = (3,2,{{1,2},{1,3},{1,4}});

needs "problem-builder-matrices.m2"

matrices = pointMatrices | lineMatrices;

As before, the CP and LC matrices are defined over a
polynomial ring in 11 indeterminates. However, the coefficient
ring is itself a polynomial ring in 27 indetermines, representing

the data defining an instance of the problem.

i8 : (numgens R, numgens coefficientRing R)

08 = (11, 27)

As in the pseudocode for the minimality check, we fabricate
a parameter point satisfying the LC and CP equations:

i9 : xy = fabricatedVectorFLPQ D;

38

1
09 : Matrix FF <--- FF

i10 : netList(lineMatrices/(
m->ker transpose sub(m,xy)))
Fmmm +
010 = |image | -2428 ||
| -1877 ||
| 1 Il
e +
|image | -1975 ||
| | 4507 ||
| 1 Il
e +
|image | 2657 ||
| -3077 ||
| 1 Il
Fmm +

i11 : netList(pointMatrices/(
m->ker sub(m,xy)))

The function goodMinors then checks minimality by
computing a subset of the equations whose Jacobian at xy
with respective to the 11 camera parameters has maximal
rank.

i12 : gm = goodMinors(pointMatrices,
lineMatrices,xy);

i13 : #gm

ol3 : 11

E. Computing Degrees Numerically

As an additional check, the degrees of minimal problems
with 2 and 3 cameras were re-computed using monodromy. [74]
This is a general, randomized technique for solving parametric
polynomial systems F'(c,y) = 0 for generic parameter values
y. We also used monodromy to compute the degrees of prob-
lems with 4 and 5 cameras. For the minimal problem with 6
cameras, monodromy did not terminate after several days, but
computed more than 180,000 solutions. Rather than provide
detailed pseudocode, we outline the salient features of this
approach:

® A generic point (cg,yo) € Inc’ (cf. Section VI) may be

sampled as in Algorithm 1. The point then satisfies all
line correspondence 6 and common point 7 constraints,
written F'(cg,y0) = 0. At any stage of the monodromy
computation, known solutions are numerically continued
along a fixed set of paths hg,...h;, where each h; :
[0,1] = YV,.1.7,m is a generic path connecting the solutions
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of F(-,y0) = 0 with those of some other fixed instance
F(-,y1) = 0. The solution paths obtained h;; : [0,1] —
Cpn satisfy F(h;(t), hi(t)) = 0 for all t € [0, 1], and are
computed with numerical predictor-corrector methods. Im-
portantly, the paths h; are randomized so as to avoid the
singular locus of Inc’ with probability-one. Our random-
ization scheme is analagous to the well-known -trick [78]
in homotopy continuation.

e Continuation along some path from ¢ = 0 to 1 followed
by continuation from 1 to 0 along another induces a per-
mutation of the solutions of F'(-,yo) = 0. The group of all
such permutations acts transitively by the irreducibility of
Inc’—thus all solutions may be discovered starting from
one. The algorithm maintains a set of correspondences be-
tween solutions along each path h;, and attempts the above
continuation step until no other correspondences may be
established.

® The stabilization-based stopping criterion previously de-
scribed comes with no theoretical guarantee of correct-
ness. However, heuristic arguments suggest that all so-
lutions are found with very high probability, even when
the number of paths j is small and for problems of
moderate-to-large degree. [74], [79] Multiple correct runs
for the problems in 2 and 3 views support this thesis,
increasing our confidence in the reported results. Nev-
ertheless, we explicitly mark in our table of results the
degrees which were only computed numerically with a “*”
(cf. [75].)

Computations were performed using the Macaulay2 package
MonodromySolver. We comment on some technical aspects
of these computations:

e To speed up time-intensive polynomial evaluation, poly-
nomials and rational functions appearing in F' are imple-
mented as straight-line programs rather than their dense
coefficient representations. This makes use of the package
SLPexpressions.

e [t is important to note that the CP and CL constraints
determining F' result in more equations than unknowns.
Taking all constraints into account is vital to the correctness
of the symbolic computations described in Sections VIII-B
and VIII-C. In the monodromy computation, there is more
flexibility—we may work with a square subsystem with
as many equations as unknowns which locally defines the
variety Inc’. Provided that the initial point (cg, o) € Inc’
is generic, all solution curves will remain on Inc’ with
probability-one.

e [npractice, we deal with numerical approximations to these
solution curves, which are subject to the well-known path-
Jjumping phenomenon of numerical continuation methods.
This means it is possible to compute extraneous solutions
satisfying only a square subsystem. To guard against this
possibility, the ranks of all CP and CL matrices were
computed numerically for each newly discovered solu-
tion by thresholding singular values. If any CP or CL
matrix did not yield the expected ranks of 3 or 2, the
solution was thrown out and not used to generate further
correspondences.

The output of the main function monodromySolve in-
cludes solution data for a chosen parameter point y;. This
solution data may be used as a start system for solving an instance
of the same problem via homotopy continuation. We illustrate
this for the minimal problem “2111;.”

We begin by loading the setup script

"numerical-problem-builder.m2".

setRandomSeed 0

m=3
(3,2,{{1,2},{1,3},{1,4}H

D =
Jpivots = {0, 1, 4, 5, 8, 9, 14, 29,

33, 44, 48, 57, 58, 59}
RERUNMONODROMY = false;
needs "numerical-problem-builder.m2"

The global variable Jpivots is a list indexing a square
subsystem of the LC and CP equations. These equations are
the same except that rotations and translations are repre-
sented in homogeneous coordinates (i.e. quaternion parame-
terization of SO(3))—yielding an extra three variables and
equations. The square subsystem, depending on parametric
indeterminates y € C%2 as well as ¢ € C!, is an object of
type GateMatrix which the setup script assigns to the vari-
able F. We may load the results of a previous monodromy
run for this problem and verify that the starting solutions are
valid:

i7 : (yStart, cStarts) =
readStartSys "2111_1-start";

i8 : max(cStarts/(c->
norm evaluate(F,c||yStart)))

08 = 2.49953543586694e-12
08 : RR (of precision 53)

‘We now consider the problem of reconstructing relative cam-
era poses

i1l3 : netlist rotations23
e +
013 = || .100226 -.858789 .502431 ||
[ .991267  .129682 .0239204 ||
|| -.0856987 .495646 .864287 ||
e +
] -.246694 .614271 .749542 | |
|| .828175 -.268025 .492228 | |
|| .503258 .742182 -.442603 | |
e +
il4 : netlList translations23
o +
014 = || .455949 ||
[ .00471457 ||
[l .771746 ||
o +
[l .74002 | |
[l .20217 | |
[l .774737 | |
o +

from line data in each view
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i15 : netList L

015 = || -.729481 -.373996 .5727 | |
|| -.617925 -.259526 .742169 | |
-.33284 -.499815 .799626 |
-.441933 -.298528 .845917 |
-.886353 -.145719 .439481 |
-.568543 .804717 -.170851 |
-.685669 .639348 -.347982 |
.881415 -.405026 .243023 |
.490952 -.819545 .295486 |
.158324 -.969189 .188695 |
-.518733 .16617  .838632 |
-.61258 .0842219 .785909 |
-.468687 -.259022 .844535 |
-.595602 -.232359 .768939 |
-.589568 .295501 .751724 |

The derived (parameter, solution) pair is defined by respective
variables yTarget, cTarget. The starting solutions are nu-
merically continued to solutions of F specialized at yTarget
using core functions for NumericalAlgebraicGeometry
in Macaulay?2.

PH’ = specialize(PH,yStart||yTarget);
cTargets = trackHomotopy(PH’, cStarts);

The following code filters the target solutions cTargets for
the ground-truth solution y.

cTargets2 = cTargets/(c—> (
R2params = take(c.Coordinates,{0,3});
Q2R (R2params,Normalized=>true))) ;
i=minPosition(
cTargets2/ (R2->
norm(R2-rotations23#0)));
y=(cTargets#i) .Coordinates;

We recover the original camera poses:

i23 : Q2R(take(y,{0,3}),Normalized=>true)

023 = | .100226 -.858789 .502431 |
| .991267 .129682 .0239204 |
| -.0856987 .495646 .864287 |

3 3

023 : Matrix CC <--- CC

53

i24 : Q2R(take(y,{4,7}),Normalized=>true)

024 = | -.246694 .614271 .749542 |
| .828175 -.268025 .492228 |
| .503258 .742182 -.442603 |

3 3

024 : Matrix CC <--- CC

53

i25 : transpose matrix take(y,{8,13})

025 = .455949

| |
| .00471457 |
| 771746 |
| .74002 |
| .20217 |
| 774737 |

IX. CONCLUSION

Our work characterizes a new class of minimal problems and
provides a complete classification of generic minimal problems
for complete visibility with calibrated cameras. One clear di-
rection for future work is to extend our results for the the fully
calibrated scenario towards partial calibration. It is also natural
to relax the assumption of complete visibility. In this direction,

the case of three views has already been addressed in follow-up
work [69].

Only a few of the cases appearing our classification had
been discovered prior to this work. Several new cases possess
a small number of solutions and hence call for constructing
efficient solvers [3], [17]. Two of the harder problems in our
classification, namely 3010y and 3002, have already been im-
plemented considerably more efficiently using homotopy con-
tinuation solvers [80], reaching sub-second run times. Despite
the fact that many of the degrees appearing in Table I are quite
large, recent work has showed that some of these problems can
be decomposed into sub-problems, allowing for more efficient
solutions; this idea has recently been successfully pursued in
the context of other minimal problems [81]. On the other hand,
for problems with unavoidably large degrees, learned homo-
topy continuation-based heuristics developed in [82] might still
provide efficient practical solutions. With continued advances
in matching and detecting line features in images, eg. [83],
[84], there is ample motivation for further study of the problems
introduced here, towards their eventual use in practical structure
from motion pipelines.
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