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Abstract

We present a complete classification of minimal problems for generic arrangements of points and lines in space observed
partially by three calibrated perspective cameras when each line is incident to at most one point. This is a large class of
interesting minimal problems that allows missing observations in images due to occlusions and missed detections. There is
an infinite number of such minimal problems; however, we show that they can be reduced to 140,616 equivalence classes by
removing superfluous features and relabeling the cameras. We also introduce camera-minimal problems, which are practical
for designing minimal solvers, and show how to pick a simplest camera-minimal problem for each minimal problem. This
simplification results in 74,575 equivalence classes. Only 76 of these were known; the rest are new. To identify problems
having potential for practical solving of image matching and 3D reconstruction, we present several natural subfamilies of
camera-minimal problems as well as compute solution counts for all camera-minimal problems which have fewer than 300

solutions for generic data.

Keywords Minimal problems - Calibrated cameras - 3D reconstruction

1 Introduction

Minimal problems (Agarwal et al., 2017; Byrdd et al., 2008;
Bhayani et al., 2020; Barath et al., 2017; Barath, 2018;
Barath & Hajder, 2018; Camposeco et al., 2016; Elqursh
& Elgammal, 2011; Hartley & Li, 2012; Kukelova et al.,
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2008; Kuang & Astrém, 2013a; 2013b; Kneip et al., 2012;
Larsson et al., 2017a; 2017b; 2017¢c; Mirzaei & Roumeli-
otis, 2011; Miraldo et al., 2018; Nistér, 2004; Ramalingam
& Sturm, 2008; Stewenius et al., 2006; Saurer et al., 2015;
Salaiin et al., 2016; Ventura et al., 2015), which we study,
are 3D reconstruction problems recovering camera poses and
world coordinates from given images such that random input
instances have a finite positive number of solutions. They
are important basic computational tasks in 3D reconstruc-
tion from images (Snavely et al., 2006, 2008; Schonberger
& Frahm, 2016), image matching (Rocco et al., 2018), visual
odometry and localization (Nistér et al., 2004; Alismail et
al., 2011; Sattler et al., 2017; Taira et al., 2018). Recently,
a complete characterization of minimal problems for points,
lines and their incidences in calibrated multi-view geometry
appeared for the case of complete multi-view visibility (Duff
et al., 2019). In this paper, we extend the characterization
to an important class of problems under partial multi-view
visibility.

We provide a complete classification of minimal prob-
lems for generic arrangements of points and lines in space
observed partially by three calibrated perspective cameras
when each line is incident to at most one point. There is an
infinite number of such minimal problems; however, we show


http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-01992-1&domain=pdf
http://orcid.org/0000-0003-2065-6309
http://orcid.org/0000-0002-4627-8812
http://orcid.org/0000-0002-9216-3514
http://orcid.org/0000-0001-6325-0072

International Journal of Computer Vision (2024) 132:3302-3323

3303

that they can be reduced to 140,616 equivalence classes of
reduced minimal problems by removing superfluous features
and relabeling the cameras. We compute a full description of
each class in terms of the incidence structure in 3D and vis-
ibility of each 3D feature in images. All problems in every
equivalence class have the same algebraic degree, i.e. the
number of solutions over the complex numbers.

When using minimal solvers to find correct image matches
by RANSAC (Fischler & Bolles, 1981; Ragurametal.,2013),
we often aim to recover camera parameters only. We name
such reconstruction problems camera-minimal and reserve
“minimal” for when we aim to recover 3D structure as well.
Note that minimal problems are also camera-minimal but
not vice versa. For instance, 50 out of the 66 problems given
in Kileel (2017) are non-minimal yet they all are camera-
minimal.

As an example, consider the problem from Kileel (2017)
with 3 point-point-point (PPP) and 1 point-point-line (PPL)
correspondence; see Fig. 1a. It is camera-minimal, i.e. there
are 272 (in general complex) camera solutions, but it is not
minimal since the line of the PPL correspondence cannot
be recovered uniquely in 3D. To make the problem mini-
mal, the line would have to be seen in one more view; see
Fig. 1b featuring pictogram encoding of problems in three
views that we use in this article. In applications, e.g. Hruby
et al. (2022), the problem in Fig. l1a is used as a relaxation
of the 4-points-in-3-views problem, where an auxiliary line
is introduced in one of the images but there is no need to
recover the corresponding line in 3D space.

From the minimal problem in the bottom of Fig. Ib, we
can remove the line from the second view without losing
camera-minimality. We apply the same principle to every
minimal problem: We delete superfluous features in images
that can be removed without loosing camera-minimality to
obtain a simplest camera-minimal problem. Those we call
terminal camera-minimal problems.

We show that, up to relabeling cameras, there are 74,575
such problems. They form the comprehensive list worth
studying, as a solver for any camera-minimal problem can
be derived from a solver for some problem on this list. Only
76 of the 74,575 terminal camera-minimal problems were
known—~66 problems listed in Kileel (2017) plus 10 addi-
tional cases from Duff et al. (2019)—the remaining 74,499,
to the best of our knowledge, are new! We find all terminal
camera-minimal problems with less than 300 solutions for
generic data and present other interesting cases that might
be important for practical solving of image matching and 3D
reconstruction.

Characterizing minimal problems under partial visibil-
ity, which allows for missing observations in images due
to occlusions and missed detections, is very hard. Previous
results in Duff et al. (2019) treat the case of full visibility
with no restrictions on the number of cameras and types of

incidences, resulting in 30 minimal problems. By contrast,
we construct a long list of interesting problems under par-
tial visibility, even with our restrictions, i.e. having exactly
three cameras and having each line incident to at most one
point!. These restrictions make the task of enumerating prob-
lems tractable while making it still possible to account for
very practical incidence cases where several existing feature
detectors are applicable. For instance, SIFT (Lowe, 2004)
and LAF (Matas et al., 2002) provide quivers (points with one
direction attached), which can be interpreted as lines through
the points and used to compute relative camera poses (Fabbri
et al., 2023).

2 Previous Work

A large number of minimal problems have appeared in the lit-
erature. See eg. references above, (Duffetal.,2019; Kukelova
et al., 2017; Kileel, 2017; Larsson et al., 2018), and all ref-
erences therein for work on general minimal problems. Here
we review the most relevant work for minimal problems in
three views related to point-line incidences and their classi-
fication.

Correspondences of non-incident points and lines in three
uncalibrated views are considered in early works on the tri-
focal tensor (Hartley, 1997). Point-line incidences in the
uncalibrated setup are introduced in Johansson et al. (2002)
as n-quivers (points incident with n lines) and minimal prob-
lems for three 1-quivers in three affine views and three
3-quivers in three perspective views are derived. General
uncalibrated multi-view constraints for points, lines and their
incidences are presented in Ma et al. (2004). Non-incident
points and lines in three uncalibrated images also appear in
Oskarsson et al. (2001; 2004) and Kabhl et al., (2001). The
cases of four points and three lines, two points and six lines,
and nine lines are studied (Larsson et al., 2017); constructs a
solver for nine lines. Works (Fabbri et al., 2012, 2020; Fabbri
& Kimia, 2016) look at lines incident to points which arise
from tangent lines to curves and (Fabbri et al., 2023) presents
a solver for that case. Results (Agarwal et al., 2017; Aholt &
Oeding, 2014; Aholt et al., 2013; Joswig et al., 2016; Duff et
al., 2019; Trager, 2018; Trager et al., 2016) introduced some
of the techniques that are useful for classifying classes of
minimal problems.

Work (Kileel, 2017) classifies camera-minimal problems
in 3 calibrated views that can be formulated with linear con-
straints on the trifocal tensor (Hartley & Zisserman, 2003).
It presents 66 camera-minimal problems, all covered in our
classification as terminal camera-minimal problems. Among

I Under this restriction, in two cameras, the only reduced (camera-
)minimal problem is the five-point problem. See Sect.10 for an
explanation.
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Fig.1 Relaxation of the
4-points-in-3-views problem
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(b) Camera-minimal (top) and
minimal  (bottom)  problems.

(a) Camera-minimal problem with 272 solutions. (Shaded features are not visible.)

them are 16 reduced minimal problems, out of which 2 are
with full visibility and 14 with partial visibility. The remain-
ing 50 problems are not minimal.

A complete characterization of minimal problems for
points, lines and their incidences in calibrated multi-view
geometry for the case of complete multi-view visibility is pre-
sented in Duff et al. (2019). It gives 30 minimal problems.
Among them, 17 problems include exactly three cameras
but only 12 of them (30021, 3002,, 3010¢, 20053, 20054,
20055, 20137, 20133, 20211, 10244, 1032,, 1040¢ in Table 1
of Duff et al. (2019)) meet our restrictions on incidences.
These 12 cases are all terminal camera-minimal as well
as reduced minimal. Notice that the remaining 5 problems
(31009, 21031, 21032, 21033, 21115 in Table 1 of Duff et al.
(2019)) are not considered in this paper because collinearity
of more than two points cannot be modeled in the setting of
this paper.

This paper can be seen as an extension of Kileel (2017)
and Duff et al. (2019) to a much larger class of problems in
three calibrated views under partial multi-view visibility.

3 Glossary of Assumptions, Properties and
Concepts

Here we provide a glossary of assumptions, properties and
concepts used in the paper. Our aim is to give a concise and
intuitive exposition of concepts used.

1. Realizability of Z—the incidence relations are realizable
by some point-line arrangement in R3.

2. Completeness of Z7—every incidence which is auto-
matically implied by the incidences in Z must also be
contained in Z.

3. Completeness of O—if a camera observes two lines that
meet according to Z, then it observes their point of inter-
section.

4. Genericity of C,,—the points and lines in the views are in
generic positions with respect to the specified incidences
7, i.e. random noise in image measurements does not

@ Springer

change the number of solutions when the incidences from
3D are not broken by noise in images.

5. Complete visibility—all points and lines are observed in
all images and all observed information is used to formu-
late minimal problems.

6. Partial visibility—some points and lines may be forgotten
when projecting into images.

7. PLgP—each line in 3D is incident to at most k points.
8. Dominant—*“almost all” 2D images have a solution (i.e.
a 3D arrangement and cameras yielding the images)

9. Balanced—the number of DOF (i.e. the dimensions of
varieties) describing cameras and preimages in 3D are
equal to the number of DOF describing image measure-
ments.

10. Minimal—balanced and dominant. This is equivalent to
that “almost all” images in 2D have a positive finite num-
ber of solutions.

11. Camera-Minimal—the number of solutions in camera
parameters is finite and positive (despite that infinitely
many solutions may exist for 3D structures).

12. Reduced problem—a problem where all viewed features
imply nontrivial constraints on the cameras

13. Degree of a minimal problem—the number of point-line
configurations and camera poses consistent with generic
image data

14. Camera-degree of a camera-minimal problem—the num-
ber of camera poses consistent with generic image data

4 Problem Specification

Our results apply to problems in which points, lines, and
point-line incidences are partially observed. We model inter-
secting lines by requiring that each intersection point of two
lines has to be one of the points in the point-line problem.

Definition 1 A point-line problem is a tuple (p,l,Z, O)
specifying that p points and / lines in space satisfy a given
incidence relation

Tc{l,...,pyx{l,....0},
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where (i, j) € Z means that the i-th point is on the j-th line,
and are projected to m = |O] views with

O =P, L), ..., (Pm, Lm))

describing which points and lines are observed by each
camera—view v contains exactly the points in P, C
{1,..., p}andthe linesin £, C {1,...,1}.

For 7 we assume realizability—the incidence relations are
realizable by some point-line arrangement in R*—and com-
pleteness—every incidence which is automatically implied
by the incidences in Z must also be contained in Z.

For O we assume that if a camera observes two lines that
meet according to 7 then it observes their point of intersec-
tion.

Let us briefly explain why the assumptions on 7 are
needed. Note that, for instance, the realizability assump-
tion implies that two distinct lines cannot have more than
one point in common. In other words, the incidence relation
T ={(1,1),(1,2),(2,1),(2,2)} is non-realizable. We also
remark that related notions of realizability (also called rep-
resentability) are well-studied in matroid theory. The Fano
plane is perhaps the best-known example of a non-realizable
point-line relation. We refer to Oxley (2022, Chapter 6) for
a detailed treatment of these concepts. For an example of an
incidence relation that is not complete, consider 4 lines con-
tained in a common plane where we do not specify one of
their intersection points:

7={1,1),1,2),(2,2),
(2,3),3,3),3,1),4, 1),4,4,5,2),65,49).

Since the fourth line also intersects the third line in a point,
two incidences (6,3) and (6,4) are missing.

Consider now our assumption on O in Definition 6. This is
completely natural—the set Z of incidences describes all the
knowledge about which lines intersect in space, as well as in
the images. An instance of a point-line problem is specified

by the following data:

(1) A point-line arrangement in space consisting of p
points X1,...,Xp and [ lines Ly, ..., L; in P3 which are
incident exactly as specified by Z. Hence, the point X; is on
the line L if and only if (i, j) € Z. We write

X1 = {(x, Lye (P’ x (Gr3) VG, ) eT: X e L,-}

for the associated variety of point-line arrangements. Note
that this variety also contains degenerate arrangements,
where not all points and lines have to be pairwise distinct

or where there are more incidences between points and lines
than those specified by Z.

(2) A list of m calibrated cameras which are represented
by matrices

P =R |t1]s'--’Pm:[Rm|tm]

with Ry, ..., Ry € SOB) and t1, ..., 1, € R>.

(3) The joint image consisting of the projections {x, ; |
i € Py} C P? of the points X1, ..., X, and the projections
{ev,.,' | j € Ly} C GI,Z of the lines Ly, ..., L; by the
cameras Pp, ..., P, tothe views v = 1, ..., m. We denote
byp=>"_,|Pyland 2 = Y7, |L,] the total numbers of
observed points and lines, and write

Vp11.0 = {(x, 0) e (Pz)p X (G1,2)k

Yvo=1,....mYieP,VjeLl,:
(i, j) el = xyi €ly,j

for the image variety which consists of all m-tuples of 2D-
arrangements of the points and lines specified by O which
satisfy the incidences specified by Z. We note that an m-tuple
in YV, 7,0 is not necessarily a joint image of a common
point-line arrangement in P3.

Given a joint image, we want to recover an arrangement in
space and cameras yielding the given joint image. We refer to
a pair of such an arrangement and such a list of m cameras as
a solution of the point-line problem for the given joint image.

To fix the arbitrary space coordinate system (Hartley &
Zisserman, 2003), we set P; = [I | 0] and the first coordinate
of 1, to 1. So our camera configurations are parameterized
by

Co = {(Pl,...,Pm) c <R3X4)m

P =[R; | t;], R € SO(3), t; € R?,
Ri=1,t1=0,0n1=1 ’

We will always assume that the camera positions in an
instance of a point-line problem are sufficiently generic such
that the points and lines in the views are in generic positions
with respect to the specified incidences Z.

We say that a point-line problem is minimal if a generic
image tuple in J,, ; 7, has a nonzero finite number of solu-
tions. We may phrase this formally:

Definition2 Let®,; 7.0 : X, 1 7%xCp -+ V) ;17,0 denote
the joint camera map, which sends a point-line arrangement
in space and m cameras to the resulting joint image. We say
that the point-line problem (p, [, Z, O) is minimal if

e &, 7.0 is adominant map,” i.e. a generic element (x, )
in V), ; 7,0 has a solution, so @;’II’I’O(x, £) # ¥, and

2 In birational geometry, dominant maps are analogs of surjective maps.
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o the preimage (D;,II,I, O(x, £) of a generic element (x, £) in
Yp.1.7,0 s finite.

Remark 3 We require the joint camera map in Definition 2
to be dominant because we want solutions to minimal prob-
lems to be stable under perturbation of the image data that
preserves the incidences Z. A classical example of a prob-
lem which is not stable under perturbation in images is the
problem of four points in three calibrated views (Nistér &
Schaftalitzky, 2006).

Over the complex numbers, the cardinality of the preim-
age (b;,ll,I, o (X, £) is the same for every generic joint image
(x, £) of a minimal point-line problem (p, I, Z, O). We refer
to this cardinality as the degree of the minimal problem.

In many applications, one is only interested in recovering
the camera poses, and not the points and lines in 3D. Hence,
we say that a point-line problem is camera-minimal if, given
a generic image tuple in ), ; 7 0, it has a nonzero finite
number of possible camera poses. Formally, this means:

Definition4 Lety : &), ; 7xCy — Cy denote the projection
onto the second factor. We say that the point-line problem
(p,1,Z, O) is camera-minimal if

e its joint camera map @, ; 7 ¢ is dominant, and

° y(@;’ll’z’ O(x, £)) is finite for a generic element (x, £) in
yp,l,I,O .

The cardinality over C of a generic V(q);,lz,z,o(x* £)) is the
camera-degree of (p,1,Z, O).

Remark5 Every minimal point-line problem is camera-
minimal, but not necessarily the other way around. In
the setting of complete visibility (i.e. where every camera
observes all points and all lines), both notions coincide (Duff
et al., 2019, Cor. 2).

In Duff et al. (2019), all minimal point-line problems with
complete visibility are described, including their degrees. It
is a natural question if one can extend the classification in
Duff et al. (2019) to all point-line problems with partial vis-
ibility. A first obstruction is that there are minimal point-line
problems for arbitrarily many cameras, whereas the result in
Duff et al. (2019) shows that minimal point-line problems
with complete visibility exist only for at most six views.
Moreover, as we see in the following sections, deriving a
classification for partial visibility seems more difficult and
involves more elaborate tools. Hence, in this article, we only
aim for classifying point-line problems in three views; the
case of two views is much simpler and discussed in Sect. 10.
We also restrict our attention to point-line problems satisfy-
ing the following assumption:

Definition 6 We say that a point-line problem is a PL, P if
each line in 3D is incident to at most one point.

@ Springer

This assumption makes our analysis easier, since the point-
line arrangement in space of a PL{P is a collection of the
following independent local features:

e free line (i.e. a line which is not incident to any point), and
e point with k pins where k = 0, 1, 2, ... (i.e. a point with
k incident lines).

In the following, we shortly write pin for a line passing
through a point. We stress that a pin refers only to the line
itself, rather than the incident point. A first consequence of
restricting our attention to PL;Ps is the following fact.

Lemma 7 The degree and camera-degree of a minimal PL P
coincide.

The assumption of minimality cannot be completely relaxed,
as Examble 31 shows that Lemma 7 fails for general point-
line problems. All proofs of the results above and those to
follow may be found in Sect. 12, towards the end of the
manuscript.

We will see that there are infinitely many (camera-
)minimal PL{Ps in three views. However, we can partition
them into finitely many classes such that all PL{Ps in the
same class are closely related; in particular, they have the
same (camera-)degree. For this classification, we pursue the
following strategy:

Step 1: We introduce reduced PL1Ps as the canonical repre-
sentatives of the finitely many classes of minimal PL{Ps we
aim to find (see Sect. 5).

Step 2: Basic principles from algebraic geometry brought up
in Duff et al. (2019) imply

Lemma 8 A point-line problem (p, 1, T, O) is minimal if and
only if

e itisbalanced, i.e. dim(X, ;7 x Cp) = dim(Y, 1, 7,0), and
e its joint camera map © | 7 © is dominant.

We identify a finite list of reduced balanced PLPs in three
views that contains all reduced minimal PLPs (see Sect. 6).
Step 3: We explicitly describe the relation of reduced camera-
minimal problems to reduced minimal ones, which implies
that there are only finitely many reduced camera-minimal
PLPs in three views (see Sect.7).

Step 4: For each of the finitely many balanced PLPs identi-
fied in Step 2, we check if its joint camera map is dominant.
This provides us with a complete catalog of all reduced
(camera-)minimal PL;Ps in three views (see Sect. 8).

In addition to the classification, we compute the camera-
degrees of all reduced camera-minimal PLPs in three views
whose camera-degrees are less than 300 (see Sect. 9 for this
and related results on natural subfamilies of PL{Ps.)



International Journal of Computer Vision (2024) 132:3302-3323

3307

5 Reduced PLPs

From a given PL(P (p, [, Z, O) we can obtain a new PLP
by forgetting some points and lines, both in space and
in the views. Formally, if 7 C {1,...,p} and £ C
{1,...,1} are the sets of points and lines which are not
forgotten, the new PL{P is (p/,l',Z’, O') with p’ = |P/|,
V' =1L, ={G,j) eZT|ieP,je L} ad
O =P, LY, .... (P, L)), where P, = P, NP’ and
L), = L, N L. This induces natural projections IT and &
between the domains and codomains of the joint camera maps
which forget the points and lines not in P’ and £'.

®=9%,,70
Xp1 7 X Cpp —=========mmme > Vp 1, 7,0
m Ir
Xyp1 XCp ——=m—mmmmmm——— SY 0oy
P AT " P = q)p/,// 7o yp 4T 0

In the following, we shortly write ® = ®,; 7 0 and ¢’ =
(Dp/,l’,I’,O"

Definition 9 We say that (p, [, Z, O) is reducible to (p’, I,
T/, 0 if

e for each forgotten point, at most one of its pins is kept, and
e a generic solution §" = ((X', L"), P) € Xy y 17 x Cn
of (p',1I',7', ©') can be lifted to a solution of (p,!,Z, O)
for generic input images in 7 ~!1(®’(5’)). In other words,
for a generic S’ = ((X',L"),P) € Xy 1 X Cp and a
generic (x, £) € 7~ 1(®/(§’)), there is a point-line arrange-
ment (X, L) € X, ; 7 such that ®((X, L), P) = (x, ¢) and
(X, L),P) =S

Theorem 10 If a PLP is minimal and reducible to another
PL1 P, then both are minimal and have the same degree.

We can partition all (infinitely many) minimal PL; Ps in three
views into finitely many classes using this reduction process.
Each class is represented by a unique PL;P that is reduced,
i.e. not reducible to another PLP.

Theorem 11 A minimal PL1P (p,1,Z, O) in three views is
reducible to a unique reduced PL\P (p’,1',T', O"). The cor-
responding projection Tl forgets:

e cvery pin that is observed in exactly two views such that
bothviews also observe the point of the pin (it does not matter
if the third view observes the point or not, but it must not see

the line), e.g. ANRNE is reduced to| * | ° |*

e cvery free line that is observed in exactly two views to

reduce‘\‘/‘ ‘to‘ ‘ ‘ ‘

e every point that has exactly one pin and is viewed like

10 get

e every point together with its single pin if it is viewed like
NNEPEEE

In addition, applying inverses of these reductions to a mini-
mal PL\P in three views results in a minimal PLP.

Hence, it is enough to classify all reduced minimal PLPs.
We will see that there are finitely many reduced minimal
PLPs in three views. To count them, we need to understand
how they look.

Theorem 12 A reduced minimal PLiP in three views has at
most one point with three or more pins. If such a point exists,
e it has at most seven pins,

e and the point and all its pins are observed in all three
views.

All other local features are viewed as in Table 1.

6 Balanced PL1Ps

A reduced minimal PLP in three views is uniquely deter-
mined by a signature, a vector consisting of 27 numbers
(c7,...,¢3,C20, 03,1’ ..., f), that specifies how often each
local feature occurs in space and how often it is observed
in a certain way by the cameras. By Theorem 12, the local
features in such a PLP are free lines or points with at most
seven pins. We denote by f the number of free lines and
write c3, c4, ..., c7 for the numbers of points with three,
four, ..., seven pins. By Theorem 12, these local features
are completely observed by the cameras; moreover at most
¢; can equal 1. The row “#” in Table 1 shows our notation
for the numbers of points with zero, one or two pins that are
viewed in a certain way. For instance, c¢2 ¢ counts how many
points with two pins are completely observed by the cameras.
Moreover, Cg,] , 0}2”1 , C%,l are the numbers of points with two

pins that are partially observed like‘\‘ \ ‘ ‘or‘ A\ ‘\‘ ‘

or . Here the upper index a, b, ¢ distinguishes

the three different permutations of this local feature in the
three views (note: as the two pins can be relabeled, there are
only three and not six permutations). Similarly, upper indices
distinguish different permutations of partially viewed points
with at most one pin; see Table 1. We also note that assigning
arbitrary 27 non-negative integers to c7, ..., f describes a
unique PL{ P in three views, which is reduced by construction

(see Thm. 11 and 12) but not necessarily minimal.

Due to Lemma 8, every minimal PLP (p, [, Z, O) is bal-
anced, i.e. it satisfies dim(&X), ; 7 x Cp) = dim(Y,; 7.0).
To compute the dimension of X}, ; 7, we need to know the
degrees of freedom of each local feature in 3-space. For free
lines and points with at most two pins, this is given in the row
“3D” in Table 1. More generally, a point in space with k pins
has 3 4 2k degrees of freedom. Hence, a reduced minimal

@ Springer
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Table 1 How points with two / one / zero pins and free lines can be observed in the three views of a reduced minimal PL; P (up to permuting the

views)
. NN N N e \
/ pd ' yd ° o o o AN
O (I A A A o o y
34 iy 4P i3 6.1
# 2.0 cg]l €1,0 c]bj C?,3 €0,0 CS,] f
4 iy C{,z i3 0.1
3D 7 7 5 4
2D 12 8 8 6

The rows “3D” and “2D” show the degrees of freedom of each local feature in 3-space and in the three views. The row “#” fixes notation for a

signature introduced in Sect. 6
PLP in three views satisfies

dim(X) 1, 7) = 17¢7 + 15¢6 + 13¢5 + 11cy
+9c3+T(c20+ 4+ +5 )
+5(ro+cd e+ el et
+efs+cls+ely)

+3(co0 +cfy +chy +cky)+4Af

Similarly, the degrees of freedom of each local feature in the
three views are shown in row “2D” in Table 1. For instance,

if a point with two pins is viewed like , then it has

eight degrees of freedom in the three views: 24141 in the
first view, 2 in the second view, and 2 in the third view. Since
a point with k pins for k = 3, ..., 7 is completely observed
by the cameras, it has 3(2 + k) degrees of freedom in the
three views. Therefore, we have

dim(Y, ; 7,0) = 27c7 + 24c + 21c5 + 18c4 + 15¢3
+12c2,0 +8(ch + 5, +¢5 )
+9c1,0 +8(c§ | + ¢} +f )
TS+ o] )
+6(ci 3 + 0117,3 +¢i3)

+ 6c0,0 + 4(cg | + 08,1 +co,) +6f.

ey

Asdim(C3) = 11, the balanced equality dim(X), ; 7 X Cp) =
dim(}Y, ; 7,0) for a reduced minimal PL;P in three views is

@ Springer

11 =dim(Y,; 7,0) — dim(X,; 1), i.e.

11 = 10c7 + 9c6 + 8cs + Tea + 6¢3 + 5c20 + (¢4 + 5 +¢5)
i+ 3 el F ) F2AS el y)
+(cf s+l s+

+3c00+ (cfy + by +c§ ) +2f.
(2)

The linear equation (2) has 845161 non-negative integer solu-
tions. Each of these is a signature that represents a PL;P in
three views which is reduced and balanced. Thus, it remains
to check which of the 845161 signatures represent minimal
PL{Ps. Some of the 845161 solutions of (2) yield label-
equivalent PL1Ps, i.e. PL{Ps which are the same up to
relabeling the three views. It turns out that there are 143494
such label-equivalence classes of PLPs given by solutions
to (2). So all in all, we have to check 143494 PLPs for mini-
mality, namely one representative for each label-equivalence
class. For further details about this enumeration procedure,
we refer to Sect. 13.1.

7 Camera-Minimal PL1Ps

As in the case of minimal problems, we can understand all
camera-minimal PL; Ps from the reduced ones (see also The-
orem 20).

Theorem 13 If a PL|P is reducible to another PL|P, then
either none of them is camera-minimal or both are camera-
minimal. In the latter case, their camera-degrees are equal.

In order to understand how reduced camera-minimal PL;Ps
look, in comparison to reduced minimal PL{Ps as described
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in Theorem 12, we define a pin to be dangling if it is viewed
by exactly one camera. Dangling pins are not determined
uniquely by the camera observations, and hence they appear
in PLPs that are camera-minimal but not minimal.

Theorem 14 The local features of a reduced camera-minimal
PL1P in three views are viewed as described in Theorem 12
plus as in the following three additional cases:

* 1\

point with two pins,
both are dangling

NEIDE

point with two pins,
one of which is dangling

point with one pin,
which is dangling

Remark 15 For a dangling pin L of a reduced camera-
minimal PL; P, the point X incident to the pin L is uniquely
reconstructible. Since L is viewed by exactly one camera, it
belongs to the planar pencil of lines which are incident to
X and have the same image as L. Thus we see that L is not
uniquely reconstructible from its image.

The next theorem relates minimal and camera-minimal
PLPs. By adding more constraints to images, we make con-
figurations in space uniquely reconstructible.

Theorem 16 The following replacements in images lift a
reduced camera-minimal PL1P in three views to a reduced
minimal PL1P (cf. Thm. 14 and Table 1):

N XN N XN
ree AN g e ) KN P R I AN

Moreover, the camera-degrees of both PL1Ps are the same.

This has two important implications for classifying
(camera-)minimal PLPs. First, reversing the replacements in
Theorem 16 transforms each reduced camera-minimal PL;P
in three views into a terminal PL;P of the same camera-
degree.

Definition 17 We say that a camera-minimal PLP in three
views is terminal if it is reduced and does not view local

featureslike‘\‘\‘ ‘or‘\‘\‘ ‘or‘\\ .‘/‘.

Hence, to classify all camera-minimal PL{Ps in three views,
it is enough to find the terminal ones.

Secondly, Theorem 16 implies for minimal PL;Ps the fol-
lowing corollary.

Corollary 18 Consider a minimal PL|P in three views. After

replacing a single occurrence of M with ‘ * M

(or the other way around), the resulting PL1 P is minimal and
has the same degree.

At the end of Sect.6, we defined two PL{Ps to be label-
equivalent if they are the same up to relabeling the views. We
note that the swap described in Corollary 18 does not preserve
the label-equivalence class of a PL{P. Instead, we say that
two PLPs in three views are swap&label-equivalent if one
can be transformed into the other by relabeling the views and
applying (any number of times) the swap in Corollary 18.
We conclude that either all PL1Ps in the same swap&label-
equivalence class are minimal and have the same degree, or
none of them is minimal. Moreover, the lift in Theorem 16
yields the following.

Corollary 19 The swap&label-equivalence classes  of
reduced minimal PL{Ps in three views are in a camera-
degree preserving one-to-one correspondence with the label-
equivalence classes of terminal camera-minimal PL1Ps in
three views.

Hence, we do not have to check minimality for all 143494
label-equivalence classes of PL;Ps given by solutions to (2),
that we found at the end of Sect. 6. Instead it is enough to
consider the swap&label-equivalence classes of the solu-
tions to (2). It turns out that there are 76446 such classes.
So to find all (camera-)minimal PL;Ps in three views, we
only have to check 76446 PLPs for minimality, namely
one representative for each of the swap&label-equivalence
classes. Finally, we present the analog to Theorem 11 and
describe how all camera-minimal PLPs are obtained from
the reduced camera-minimal ones.

Theorem 20 A camera-minimal PL|P in three views is
reducible to a unique reduced PL P. The corresponding pro-
Jjection forgets:

e everything that is forgotten in Theorem 11

e every line (free or pin) that is not observed in any view

e every free line that is observed in exactly one view to reduce

N el L]

e every pin that is observed in exactly one view such that the
view also observes the point of the pin (it does not matter if
the other two views observe the point or not, but they must

not see the line), e.g. .. is reduced to m

e every point without pins that is observed in at most one

view, e.g. m is reduced to D:D

e every point that has exactly one pin if the point is not

observed in any view, e.g. a pin viewed like
becomes a free line viewed like

e every point together with its single pin if it is viewed like

N Jogel L1

e cvery point together with all its pins if the point has at
least two pins and the point is not observed in any view, e.g.

. is reduced to D:I:‘
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Table 2 Distribution of

camera-degrees of terminal @
camera-minimal PLPs in three deg 64 80 144 160
calibrated views with: (a) # pr 13 9 3 547

camera-degree less than 300, (b)
at most one pin per point and
camera-degree less than 500 deg 80 160 216 240
#pr 9 173 4 80
deg 384 392 400 408

#pr 2 9 14 2

216 224 240 256 264 272 288

2 159 2 2 11 4

256 264 272 288 304 312 320 352 360 368 376

2 2 1 5 2 213 3 9 3 1

416 424 432 448 456 464 472 480 488 496

100 2 7 11 4 1 96 12 9

8 Checking Minimality

To show that a balanced point-line problem (p, [,Z, O) is
minimal, it is equivalent to show that the Jacobian of the joint
cameramap ®,; 7 o atsome point (X, P) € &, ; 7xCp, has
full rank, i.e. rank given by the formula in equation (1). This
follows from Lemma 8, as explained in Duff et al. (2019). On
the implementation level, this minimality criterion requires
writing down local coordinates for the various projective
spaces and Grassmannians. To take advantage of fast exact
arithmetic and linear algebra, we ran each test with random
inputs (X, P) over a finite field [F, for some large prime ¢q.
We observe that false positives® for these tests are impossi-
ble. To guard against false negatives, we re-run the test on
remaining non-minimal candidates for different choices of
g. Moreover, as a byproduct of our degree computations,
we obtain yet another test of minimality, following the same
procedure as Duff et al., (2019, Algorithm 1).

The computation described above detects non-minimality
for 2878 of the 143,494 label-equivalence classes of PLPs
given by solutions to (2). Among the 76,446 swap&label-
equivalence classes, 1871 are not minimal.

Result 21 In three calibrated views, up to relabeling cam-
eras, there are

e 140,616 = 143, 494 — 2878 reduced minimal PL{Ps and
o 74,575 = 76,446 — 1871 terminal camera-minimal
PL,Ps.

9 Computing Degrees

From the perspective of solving minimal problems, it is
highly desirable to compute all degrees of our minimal
PLPs. In particular, we wish to identify problems with small
degrees that may be of practical interest. Since some prob-
lems in this list are known from prior work (Kileel, 2017)
to have large degrees (> 1000), our main technique is a

3 Since we are testing minimality, being minimal is the positive out-
come. See Sect. 13.2 for detailed explanation why false positives cannot
occur.
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monodromy approach based on numerical homotopy con-
tinuation. Our implementation in Macaulay2 (Grayson &
Stillman, xxx; Duff et al., 2018) is similar to that used in
prior work (Duff et al., 2019). The next result shows that
there are many interesting problems with small degrees that
are solvable with existing solving technology (Fabbri et al.,
2023; Larsson et al., 2015).

Result 22 There are 759 (up to relabeling cameras) termi-
nal camera-minimal PL|Ps in three calibrated views with
camera-degree less than 300. Their camera-degree distribu-
tion is shown in Table 2(a).

It is also interesting to look at problems with simple inci-
dence structure, since they are easier to detect in images. This
motivates the following.

Definition 23 We say that a point-line problemisa P L, P if
each line in 3D is incident to at most « points.

Definition 23 generalizes Definition 6 of PL{Ps to get a
hierarchy of subfamilies of point-line problems: PLoP C
PL,PCPLPC...

For instance, PLoPs consist of free points and free lines only*.
The family of PL;Ps contains many problems involving at
most one pin per point—see Result 24 and Table 2(b). Such
features are readily provided by the SIFT (Lowe, 2004) detec-
tor. PL{Ps can also include features with two pins per point,
which are readily provided by the LAF (Matas et al., 2002)
detector, which can also be used to get PL,Ps if all 3 LAF
points are used. More complex incidences (e.g. PL3Ps) can
be obtained from line t-junction detectors (Xia et al., 2014).

Result 24 There are 9533 (up to relabeling cameras) termi-
nal camera-minimal PL1Ps in three calibrated views which
have at most one pin per point. 694 of them have camera-
degree less than 500. Their camera-degree distribution is
shown in Table 2(b).

Result 25 There are 51 (up to relabeling cameras) reduced
minimal PLyPs in three calibrated views. They are depicted
together with their degrees in Table 3.

4 We note that reduced minimal PLPs are terminal.
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Table 3 Reduced minimal PLyPs and their degrees. Points not visible in a given view are indicated in grey. Five-point subproblems are indicated

in red
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Note that there are four problems in Table 3 that are exten-
sions of the classical minimal problem of five points in two
views. This implies that the relative pose of the two cameras
can be determined from the five point correspondences (high-
lighted inred). As to the remaining camera, each of these four
problems can be interpreted as a camera registration problem
(the first one is known as P3P (Kneip et al., 2011)): given a set
of points and lines in the world and their images for a camera,
find that camera pose. Note that the solution counts indicate
that there are 8, 4, 8, and 8 solutions to the corresponding
four camera registration problems. Similar degrees were pre-
viously reported for camera registration from 3D points and
lines for perspective and generalized cameras (Chen, 1990;
Dhome et al., 1989; Miraldo & Araujo, 2015; Miraldo et al.,
2018; Ramalingam et al., 2011).

Result 26 We determined all PLy Ps in three calibrated views
that are extensions of the five-points minimal problem. Of
them, up to relabeling cameras,

e 6300 are reduced minimal,

e 61 of the 6300 correspond to camera registration problems
(see Sect. 11)

o 3648 are terminal camera-minimal.

10 Note on Partial Visibility in Two Views

Let us recall that we consider reduced minimal and reduced
camera-minimal PL Ps in three views, since there is only one
such PL{P in two views, namely the five-points problem.
To argue this, we first notice that free lines cannot occur
in a reduced PLP in two views. Indeed, if there was a free
line—no matter if it is observed in both views, one view, or
not at all—we could forget the free line both in 3D and in

the images to reduce the PL{P (i.e. forgetting the free line
satisfies Definition 9 of reducibility).

Secondly, we argue that pins cannot appear in a reduced
PLP in two views. To see this we distinguish several cases,
depending on how often a hypothetical pin is observed in the
views.

e If there exists a pin in 3D that is not observed in any of the
two views, then the PL{P would be reducible by simply
forgetting that pin.

e Ifapinin 3D is observed in exactly one of the two views,
it could either appear as a pin or as a free line in that view
(i.e. depending on whether that view also observes the
point of the pin or not).

1. If the single view seeing the pin also observes its
point, the PL; P is reducible by forgetting the pin.

2. If the single view seeing the pin does not observe
its point, that view cannot observe any of the other
pins of that point either (due to our assumptions on
O at the end of Definition 1). Hence, no matter how
the other view observes that point and its other pins,
the PL{P is reducible by forgetting the point together
with all of its pins.

e If a pin in 3D is observed in both views, it could appear
as either a pin or a free line in either of the views.

1. If both views also observe the point of the pin, the
PL,P is reducible by forgetting the pin.

2. If at least one of the two views does not observe the
point of the pin, then we may argue as in case 2 above
that such a view cannot observe any of the other pins
of that point either. Once again, the PLP is reducible
by forgetting the point together with all of its pins.
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P =P,,7,0
Xp,l,I X Cm """""""""" e yp,l,I,O
n| |
Xp’,l',I’ X Cm """"""""" ” yp’,l’,I’,O’

P = ¢'p/7l/,1/,0/

Fig.2 Two PL;Ps and their joint camera maps related by a forgetting
map I1. The upper PL; P is reducible to the lower PL; P iff the forgetting
map I1 is feasible and satisfies the lifting property

Finally, a PL{P which observes a point without pins in at
most one of its views is reducible by forgetting that point.
All in all, we conclude that reduced PL;Ps in two views can
only consist of points without pins which are observed in
both views. The only such (camera-)minimal problem is the
five-points problem.

11 Note on Camera Registration Problems

Among the minimal problems we discovered that there are
extensions of the classical five-point problem in two views
that can be interpreted as camera registration problems; see
Table 4.

Remark 27 Extension of reduced camera-minimal problems
by means of camera registration problems is one simple con-
struction for (camera-)minimal problems in arbitrarily many
views.

12 Proofs
12.1 Proofs of Theorems 10 and 13

We start by investigating the implications of the two condi-
tions in Definition 9 of reducibility. When obtaining a new
PL\P (p/,I', 7', O') from a given PL P (p, 1, Z, O) by for-
getting some of its points and lines, the induced projections IT
and 7 between the domains and codomains of the joint cam-
era maps yield the commutative diagram in Fig.2. We call
IT the forgetting map, and note that the map 7 between the
image varieties is completely determined by the forgetting
map I1. If the forgetting map IT satisfies the first condition in
Definition 9 (i.e. for each forgotten point, at most one of its
pins is kept), we say that it is feasible. The second condition
in Definition 5 we refer to as the lifting property.

Lemma 28 If the forgetting map 11 is feasible, then both T1
and 7 are surjective and have irreducible fibers® of equal
dimension.

3 A fiber of a map is the preimage over a single point in its codomain.
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Proof We first show that IT is surjective and has irreducible
fibers of the same dimension. We may assume that IT forgets
either a single point or a single line, as a every feasible for-
getting map is the composition of several feasible forgetting
maps which forget either one point or one line. Moreover,
the composition of several surjective maps with irreducible
fibers of equal dimension is again surjective and has irre-
ducible fibers of the same dimension.

Let us first assume that IT forgets a single line. If this line
is the pin of a point, each fiber of IT is the set of lines in P>
through that point; this set is isomorphic to P2 If IT forgets
a free line, its fibers are isomorphic to G 3. In both cases,
the forgetting map IT is surjective.

Now let us assume that IT forgets a single point. As IT is
feasible, this point is incident to at most one line in space.
Depending on if it is incident to one or zero lines, the fibers
of IT are isomorphic to either P! or P3. In either case, I is
surjective.

To show that 7 is surjective with irreducible fibers of equal
dimension, we apply a nearly-identical proof as above to the
m factors of 7 corresponding to the different views. O

For a feasible forgetting map I1, we write dim(fiber(I1)),
resp. dim(fiber(r)), for the dimensions of the fibers of
I1, resp. w. Moreover, we denote by cdeg(p, [, Z, O) the
camera-degree of a point-line problem (p, [, Z, O). We will
also use this notation for point-line problems which are not
camera-minimal: in that case, the camera-degree is either
zero (if the joint camera map is not dominant) or co.

Lemma 29 Consider Fig. 2 with a feasible forgetting map T1.

1. If the upper joint camera map ® is dominant, so is the
lower one @’

2. cdeg(p',l', T, 0" > cdeg(p, 1, Z, O).

3.If (p,1,Z,0) is minimal, then dim(fiber(IT)) <
dim(fiber(m)).

Proof For a generic image (x', £') € Y,y i 77,0 of the lower
PLP, we consider a generic image (x,¢) € =~ '(x', £') of
the upper PL{P. Every solution S € ®~!(x, £) of the upper
PL P yields a solution IT(S) of the lower PL P with the same
cameras. This shows the first two parts of the assertion.

For the third part, since the joint camera map @ of a min-
imal PLP is dominant, we use part 1 to see that the lower
joint camera map @’ is also dominant. This implies:

dim(Xp/,l/,I/ X Cm) > dim(yp/,,/j/,@/)
Il Il
dim(XpJ’I X Cpp) — dim(fiber(IT)) dim(yp’ll,@) — dim(fiber())

Since each minimal PL,P is balanced, i.e. dim(X), ;7 x
Cn) = dim(Y,; 7,0), this concludes the proof. m]
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Table4 Cameraregistration: minimal problems that can be determined as relative pose problems for two views appended with a minimal registration

problem for the third camera
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Lemma 30 Consider Fig.2 with a feasible forgetting map T1
that satisfies the lifting property.

1. ® is dominant & ®' is dominant.
2. cdeg(p/,l',T', 0 = cdeg(p, 1, T, O).
3. dim(fiber(IT)) > dim(fiber(r)).

Proof We can pick a generic image of the upper PL|P, by
first choosing a generic image (x", £') € Y,y 7 o of the
lower PL{P and then considering a generic image (x, £) €
771 (x’, €') in its fiber. If ®’ is dominant, a generic solution
S" € & ~1(x’, ¢) of the lower PL; P can be lifted to a solution
S € & !(x, £) of the upper PLP with the same cameras.
Together with Lemma 29, this shows the first two parts of the
assertion. For the third part, we consider a generic element
S" € X, i 77 % Cp. By the lifting property, we have that

dim(fiber(IT)) = dim(I1~'(8")) >

dim(zx ~(®'(S"))) = dim(fiber(r)).
O

ProofofLemma 7 Let (p,l,Z, ©) be a minimal PL|P with
camera-degree d. Fix (x,£) € YV,;7 0 generic and let

y (CD;IIIO(x,Z)) = {Py,..., P;}. We may assume that

CD;,]I’I’ O(x, £) is a nonempty finite set; we wish to show it
contains d elements. We begin by lifting Py, ..., P4 to par-
tial solutions in Gll 3 X Cm, 1.e. by reconstructing lines in 3D.
Our first observation is that each of the / world lines must
be viewed at least twice. Indeed, if a line was observed at
most once, then even if it is a pin (i.e. it passes though a point
in 3D) there would be an at least one-dimensional family
of world lines yielding the same view (and possibly passing
through the pin point). This contradicts our assumption that
the PL1P (p, I, Z, O) is minimal.
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Now since each world line is observed in at least two
views, it can be uniquely recovered from fixed cameras; in
other words, each camera solution P; extends uniquely to a
partial solution (L;, P;) € (G&l]’3 X Cy, . To conclude that there
are exactly d lifts

(X1, LD, P1) oo (Xa, La), Pa) € @) 7 o(x, 0),

we note that the condition that each X; is a lifted solution
of the partial solution (L;, P;) is given by linear equations
depending on P; and L;. Thus, there is either a unique or
infinitely many such X;, but since the PL P (p,l,Z, O) is
minimal, the latter cannot hold. O

Example 31 Lemma 7 does not hold for point-line problems
in general. Here we present a minimal PL4P whose degree is
double its camera-degree.

Consider the variety Xy s 7 of point-line arrangements
consisting of five free points (red in Fig.3) and five lines
(and four additional black points) where one of the lines (in
black) intersects the other four (colorful) lines (in the four
black extra points), i.e.

T={(1,1),2,2),3,3),4,4),(,5),(2,5), (3,5, 4,5)}.

We are interested in the PL4P in two views where both views
observe the five free points and the first four (colorful) lines,
but not the fifth (black) line and none of the (black) extra
points; see Fig. 3.

Clearly this point-line problem contains the classical five-
point problem as a subproblem. In fact, it is reducible to
the five-point problem by forgetting all five lines plus the
four extra points. To see this we have to check the lifting
property: for fixed camera poses, adding the first four lines
to their views uniquely recovers these four lines in space. For
generic four lines L1, ..., L4 (shown in blue, green, orange
and pink in Fig.3) in 3D, there are two lines (the black one
and the grey one) which intersect Ly, ..., L4 (Sottile, 2006).
Hence, every solution to the five-point problem can be lifted
to a solution of the PL4P in Fig.3 in two ways.

By Lemma 30, we see that the PL4P is camera-minimal
and has the same camera-degree as the five-point problem,
namely 20. Moreover, the PL4P is balanced since its reduc-
tion to the balanced five-point problem removes 16 degrees
of freedom both in 3D and in the views. Hence, the PL4P we
constructed is indeed minimal. Since each of the 20 solutions
of the five-points problem can be lifted to two solutions of
the PL4P, we have shown that its degree is 40.

Proof of Theorems 10 and 13 Theorem 13 immediately fol-
lows from parts 1 and 2 of Lemma 30. To complete the proof
of Theorem 10, suppose the upper PL|P (p, [, Z, O) is min-
imal. From parts 3 of lemmas 29 and 30, we have that IT and
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7 have equal fiber dimensions. It follows that the lower PL| P
(p/,I',T', @) is balanced, since

dim(&X,y 77 x Cp) = dim(X), ; 7 x Cp) — dim(fiber(IT))
= dim(Y),7,0) — dim(fiber (7))
=dimYVy r.17.0).

Moreover, from part 1 of Lemma 29 we have that &’ is dom-
inant; so (p’, ', Z’, ©’) is minimal.

For generic image data (x’, £') € Y,y 77,0 and (x, £) €
7~ 1(x’, £'), it remains to show that the finite sets ®~1(x, £)
and (®)~!(x’, ¢’) have the same cardinality. By Theorem 13,
we already know this for the camera solutions y (CID_1 (x, 8))
andy ((®)~!(x’, €')) . Since both problems are minimal, we
are done by Lemma 7. O

12.2 Theorems 11,12, 14 and 20

In this subsection, we give full details on how the local fea-
tures appearing in Theorems 11, 12,14 and 20 are derived.
The first Lemma 32 explains why unobserved features can-
not occur in neither minimal nor reduced problems. The next
two Lemmas 33 and 34 give reduction rules for pins.

Lemma 32 Consider a PL P in three views. If some point or
line in space is not observed in any view, then the PL1P is
reducible and not minimal.

e For an unobserved line, the reduction forgets the line.

e For an unobserved point with at most one pin, the reduc-
tion forgets the point.

e Foranunobserved point with at least two pins, the reduc-
tion forgets the point and all its pins.

Proof For each bullet we check that the associated forgetting
map IT satisfies the conditions in the definition of reducibility.
Feasibility holds vacuously for the first two bullets and is
also easily seen for the third. Lifting solutions in the first two
bullets is also trivial since I'T only forgets what is not observed
at all. This argument also shows that dim(fiber(I1)) > 0 =
dim(fiber(r)), so by part 3 of Lemma 29 the PL{P cannot
be minimal in the first two bullets.

To verify the lifting property for the third bullet, we note
that at most one of the pins can occur in each of the three
views. By the first bullet, we may assume that all pins are
visible. With these assumptions, it follows that the point has
at most three pins. Hence, we are left with the following three
cases:

Now we can easily check that the lifting property is satis-
fied in each of these three cases. For instance, for the last row
(i.e. a point with three pins), the preimage of any three pins

viewed like . under fixed cameras is three planes
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Fig.3 The five-point problem
in two views can be combined
with the classical Schubert
four-line problem to obtain a
minimal PL4P with degree 40
and camera-degree 20

An arrangement of 5 lines and 9
points in 3D space. The grey line is
not part of the arrangement.

3-space views dim(fiber(IT)) dim(fiber (7))

point with 2 pins 7 4

NN
N

\

point with 3 pins 9 6

point with 2 pins

in space which necessarily intersect in a point. Thus we can
pick that point plus any three lines passing through that point
and contained in the respective planes to lift solutions. This
shows that the PLP is reducible as described in the third bul-
let. Moreover, we see that dim(fiber(IT)) > dim(fiber(sr))
holds in all three cases depicted above, so the PL{P cannot
be minimal by part 3 of Lemma 29. O

Lemma 33 Consider a PL1P in three views. If some pin is
observed in exactly one view such that the view also observes
the point of the pin, then the PL1P is not minimal and it is
reducible by forgetting the pin.

Proof The forgetting map IT which forgets the pin is clearly
feasible. It also satisfies the lifting property: for a fixed
arrangement of cameras that view the point X of the pin,
no matter how the pin is viewed in its single view, there is
in fact a pencil of lines through X yielding that view. This
shows that the PL;P is reducible. Moreover, this reduction
satisfies that

dim(fiber(IT)) = 2 > 1 = dim(fiber(7));

so by part 3 of Lemma 29 the PL{P cannot be minimal. O

A projection to two images that
forgets all black features.

Lemma 34 Consider a PL\P in three views. If some pin is
observed in exactly two views such that both views also
observe the point of the pin, then the PL{P is reducible by
forgetting the pin.

Proof The forgetting map IT which forgets the pin is clearly
feasible. Is also satisfies the lifting property: for a fixed
arrangement of cameras that view the point X of the pin,
no matter how the pin is viewed in its two views, since it
also passes through X in both views, there is a unique line in
3D through X yielding these two views. This shows that the
PLP is reducible. O

With the above lemmas in hand, we are able to enumerate
a finite list of local features that may appear in a reduced
(camera-)minimal PL; P in three views as well as a finite list
of reduction rules to obtain such a PL;P. To aid in this task,
we list all possible ways in which free lines and points with
0, 1 or 2 pins are viewed, and classify them according to
whether or not a) they may appear in a minimal problem and
b) they are reducible.

Lemma 35 below dispenses with cases involving local
features with free lines and points with up to two pins that
are already handled by Lemma 32, 33, or 34. The remaining
cases are shown in Table 6. For each of these local features,
we may forget either a point and/or some number of lines.
Table 6 lists all feasible forgetting maps IT for each observed
local feature. From this, we classify which observations of
local features a) may appear in minimal problems and b) are
reducible.

To determine reducibility of an observed local feature,
we simply have to check if one of the listed feasible for-
getting maps satisfies the lifting property. Finding out if a
local feature can be observed in a certain way in a minimal
problem, is more subtle. We use the following two rules to
exclude observed local features from appearing in minimal
problems:
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Table5 Local features observed in three views pertaining to Theorems
2,3, 5, and 7 with examples

can occur in
a minimal

problem?
YES NO
Theorem 3 Theorem 5
reduced
Theorem 2 Theorem 7
reducible

N N

e ByPart3of Lemma?29,ifdim(fiber(I1)) > dim(fiber(w))
for some feasible forgetting map I1, then the observed
local feature cannot occur in any minimal PL;P.

e A dangling pin (i.e. a pin in 3D which is observed in a
single view) cannot occur in any minimal PL{P.

All observations of local features which we cannot exclude
from minimal problems using the two rules described above,
we allow a priori to be part of minimal PL|Ps. We mark this
in Table 6 with a “yes” in the column “minimal”®.

Finally, depending on the outcomes reducibilty and min-
imality checks, we assign each observed local feature listed
in Table 6 to one of the Theorems 11, 12, 14 and 20. The
possible assignments are illustrated in Table 5.

Lemma 35 All possibilities of how free lines and points with
at most two pins are observed in three views are either treated
by Lemmas 32, 33, 34 or appear in Table 6.

Proof By Lemma 32, we only have to record the cases where
each point and line is observed at least once. All such cases
for free points and free lines are depicted in rows 1-6 of
Table 6. So we are left to discuss points with one or two pins.

Points with one pin We are distinguishing the different
cases by how often the pin and its point are observed in the
three views. We use the short notation A : p to denote that the
pin resp. its point is viewed A resp. p times. By Lemma 32,
we have that A, p € {1, 2, 3}.

1:1 By Lemma 33, we are left with the case where the pin
and its point do not appear in the same view; see row 7
of Table 6.

1:2 By Lemma 33, we can exclude the cases where one view
sees the pin together with its point. Hence, we get that
one view sees the pin and the other two views observe its
point; see row 8 of Table 6.

1:3 Here all three views observe the point and one of them
also sees the pin. This is already handled by Lemma 33
and thus does not appear in Table 6.

© Our computations described in Sect. 8 verify that actually each of the
observed features marked as minimal in Table 6 does appear in some
minimal PLP.
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2:1 Both such cases are shown in rows 9 and 10 of Table 6.

2:2 By Lemma 34, we may assume that the two views which
see the pin do not both observe its point; see row 11 of
Table 6.

2:3 Here all three views observe the point and two of them
also see the pin. This is already handled by Lemma 34
and thus does not appear in Table 6.

3:1 —3:3 These cases are depicted in rows 12, 13 and 14 of
Table 6.

Points with two pins We are distinguishing the different
cases by how often each pin is observed in the three views.
We use the short notation A1 : A3 to denote that the first resp.
second pin is viewed A resp. A, times. By Lemma 32, we
have that A1, A; € {1, 2, 3}.

1:1 By Lemma 33, we can exclude the cases where a view
that sees one of the pins also observes the point. So we
get that each view observing one of the pins does neither
see the point nor the other pin; see row 15 of Table 6.

1:2 By Lemma 33, we are left with the cases where the view
observing the first pin does not see the point. So that view
cannot see the other pin either. The other two views both
observe the second pin, and at least one of them has to
view the point. By Lemma 34, we may assume that the
point is not observed by both of these views; see row 16
of Table 6.

1:3 Here all three views observe the second pin and one of
them also sees the first pin, so also the point. This is
already handled by Lemma 33 and does not appear in
Table 6.

2:2 By Lemma 34, we can exclude the cases where two views
observe both pins. Hence, we are left with the situation
where one view sees both pins (and their point), and the
other two views see one pin each. Again by Lemma 34,
we may assume that none of the latter two views observes
the point; see row 17 of Table 6.

2:3 There are exactly two views where both pins, and hence
the point are seen. We apply Lemma 34 to see that this
does not appear in Table 6.

3:3 See row 18 of Table 6.

m}

Next, we prove Lemmas 36, 38, and 39, which address
the cases involving three or more pins. Along the way, we
prove Lemma 37, which will also be useful in establishing
Theorem 16.

Lemma 36 Consider a PL{P in three views. If a point with
at least three pins is not completely observed in the views
(i.e. at least one view does not see at least one pin), then the
PL1 P is reducible by one of the cases in Lemmas 32, 33, 34.
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Proof 1If the point X or one of its pins is not observed in any
view, then we are in the setting of Lemma 32. Hence, we
assume that the point X and each of its pins is viewed at least
once. Let us first assume that the point X is viewed by exactly
one camera. The other two views can each see at most one
of its pins. Since X has at least three pins in 3D, at least one
of its pins must be only viewed by the same camera which
sees the point X. This situation is handled by Lemma 33.

It is left to consider the cases when X is viewed by at least
two cameras. Let us assume that the point X is observed in
exactly two views. As above, at least one of its pins is not
observed by the view not seeing X. So this pin has to be
observed in either one or both of the views which observe
the point X. This shows that the PL{P is reducible by either
Lemmas 33 or 34.

Finally, we assume that the point X is observed in all three
views. Since the point X and its pins are (by our assumption
in Lemma 36) not completely observed, one of its pins is
seen in either one or two views. This is reducible by either
Lemmas 33 or 34. O

Lemma 38 shows that a point with 8 pins cannot occur
in any reduced camera-minimal problem; for minimal prob-
lems in complete visibility, this is already aresultin Duff et al.
(2019). In the generality of camera-minimal problems, this
result does not follow immediately from Lemma 36. How-
ever, the next lemma lets us get around this, and also proves
part of Theorem 16.

Lemma 37 Applying any of the following replacements
in images of a PL1P in three views preserves camera-
minimality, camera-degrees, and reducedness:

N o NN N XN
JEIPNANEYES

Proof The three replacements have in common that they fix-
ate a dangling pin (when read from left to right) or create
a dangling pin (when read from right to left). We prove
the assertions in Lemma 37 for all three replacement rules
at once. For this, we consider a PL{P (p, [, Z, O) in three
views that views one of its local features as depicted on
the left of any of the three replacement rules. After apply-
ing that replacement rule (from left to right) once, we
obtain a new PL\P (p’,!’, 7', O’). Clearly, every solution
of (p/,I',I’, ©)is also a solution of (p, I, Z, O). Moreover,
forevery solution (X, P)of (p, 1, Z, O), thereisin facta one-
dimensional set {(X, P)} of solutions of ( p, 1, T, O)withthe
same camera poses P, where the 3D arrangements X differ
from the fixed 3D arrangement X exactly by the dangling
pin involved in the replacement rule. Hence, one of these
solutions (X, P) is also a solution of (p’,1’,Z’, ©). This
shows

cdeg(p,l,Z,0) =cdeg(p’,l',T', O;

in particular, (p,[,Z, O) is camera-minimal if and only if
(p',I',T', 0) is camera-minimal.

Furthermore, local features, which are observed in one
of the five different ways present in the three replacement
rules, are not reducible; see also rows 8, 11, 15, 16, and 17
in Table 6. This means that the reducibility / reducedness of
a point-line problem in three views does not depend on the
appearance of local features observed as in the three replace-
ment rules. More precisely, (p, [, Z, O) isreduced if and only
if (p/, ', 7", O) is reduced. O

Lemma 38 A reduced camera-minimal PL|P in three views
cannot have a point in 3D with eight pins.

Proof We assume by contradiction that there is a reduced
camera-minimal PL{P (p, [, Z, O) in three views which has
a point with eight pins in its 3D arrangement. By Lemma 36,
this point and all its pins are observed in all views. Since
(p,1,Z,0) is camera-minimal, its joint camera map is
dominant. In particular, we have that dim(X),; 7 x C3) >
dim(Yp,1,7,0), i.e.

11 > dim(Y) . 7,0) — dim(X)p, ;7). 3

If the 3D arrangement of (p, [, Z, O) consists only of the
point with its eight pins, then (3) is actually an equality, so
(p,1,Z, O)is aminimal PL;P completely observed by three
calibrated views. However, in Duff et al. (2019) it is shown
that this point-line problem is not minimal, a contradiction.

Hence, we see that the PL P (p, [, Z, O) has to contain at
least one other local feature. By Lemma 35, the only possible
local features are either points with at least three pins or the
local features listed in Table 6 which are not reducible (rows
3,5,6,8,9,11,13-18). Since points with k > 3 pins have to be
completely observed by Lemma 36, they have more degrees
of freedom in the 2D images (= 3(2 + k)) than in the 3D
arrangement (= 3+ 2k). Similarly, all non-reducible features
in Table 6, except rows 15 and 16, have more degrees of
freedom in the 2D images than in the 3D arrangement. Since
the inequality (3) has to hold for the PL;P (p, !, Z, O) and
the point with eight pins already makes this inequality tight,
we have shown the following:

(x) If the 3D arrangement of a reduced camera-minimal
PL P in three views contains a point with eight pins and at
least one additional local feature, then it contains a point

with two pins which is either viewed like -.
(row 15 in Table 6) or . (row 16 in Table 6).

In particular, the PL1P (p,l,Z, O) has to contain a point

with two pins viewed like ‘ * \‘ ‘ or ‘\‘ \‘ ‘ We
apply the replacements in Lemma 37 to obtain a new reduced
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camera-minimal PL; P in three views containing a point with

eight pins and a point with two pins viewed like ,

such that none of its points with two pins is observed like

NEISANN

nor ‘ This contradicts (x). O

Finally, we combine everything we have learned so far
about pins to bound the maximum number of pins per point
and the maximum number of points with many pins in
reduced camera-minimal PL;Ps in three views. Afterwards
we are ready to summarize our findings to provide proofs for
Theorems 2, 3, 5, and 7.

Lemma 39 A reduced camera-minimal PL|P in three views
has at most one point with three or more pins. If such a point
exists,

e [t has at most seven pins,
e And the point and all its pins are observed in all three
views.

Proof By Lemma 36, every point with three or more pins has
to be completely observed in a reduced PL{P in three views.
Hence, it is left to show that 1) at most one such point with
many pins exists, and that 2) it has at most seven pins.

For the first assertion, we denote by p the number of points
in 3D which have three or more pins. We consider the forget-
ting map IT which forgets everything, except these p points
with exactly three of their pins each. We obtain a diagram
as in Fig.2. Since this forgetting map IT is feasible and the
given (upper) PLP is camera-minimal, Lemma 29 implies
that the joint camera map of the resulting (lower) PLP is
dominant. In particular, the resulting PL; P satisfies

90 + 11 = dim(X, ;7 x C3) = dim(YVy r 7.0) = 15p,

i.e. 11 > 6p. Thus, we see that p < 1, which means that the
given (upper) PL;P has at most one point in 3D with three
or more pins.

Finally, we show that such a point has at most seven pins,
ifitexists. We assume p = 1 and denote by A > 3 the number
of pins at that point. We consider the forgetting map IT which
forgets everything, except that single point with its A pins.
As before, we see that the joint camera map of the resulting
lower PLP is dominant, which yields that

3420+ 11 =dim(Xy 77 x C3) > dim(Yy 1 1,01)
=32+,

so 8 > A. By Lemma 38, we have that A < 7, which con-
cludes the proof. O

Proof of Theorems 11 and 20 We first show that each PL;P
in three views is reducible to a unique reduced PLP. For
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this, we notice that a PL{P is reducible if and only if one of
the local features in its 3D arrangement is reducible. Hence,
we only have to check that each possible local feature is
reducible to a unique reduced local feature. By Lemmas 35
and 36, this assertion follows from examining the reducible
cases in Table 6 together with Lemmas 32 to 34.

Moreover, we obtain all reduction rules listed in The-
orem 20 by collecting the forgetting maps described in
Lemmas 32, to 34, as well as the reducible observed fea-
tures in Table 6. Among those, Lemma 34 as well as rows 2,
10, and 12 of Table 6 are applicable for minimal problems;
thus these reduction rules are listed in Theorem 11.

Finally, we address the last assertion in Theorem 11. Con-
sidering a commutative diagram as in Fig. 2 which is obtained
from one of the four reduction rules listed in Theorem 11, we
assume that the lower PL P is minimal and aim to prove that
the upper PLP is minimal as well. Since the lower PL{P is
minimal, it is balanced and its joint camera map is dominant.
By Lemma 30, the joint camera map of the upper PL P is also
dominant. Furthermore, the four forgetting maps IT listed in
Theorem 11 satisfy that dim(fiber(IT)) = dim(fiber(m)).
Since the lower PLP is balanced, we see from Lemma 28
that

dim(&X),; 7 x C3) = dim(X,/ ;77 x C3) + dim(fiber(IT))
= dim(Yy 1 .1,0) + dim(fiber (7))
= dim(yp,l,I,O)~

So the upper PL;P is also balanced, hence minimal. O

Proof of Theorems 12 and 14 The parts of Theorem 12 (and
Theorem 14) addressing points with three or more pins have
already been proven in Lemma 39. To find all ways of how
free lines and points with at most two pins can be observed by
reduced camera-minimal PL;Ps in three views, it is enough
(by Lemma 35) to gather the non-reducible observed features
in Table 6. Among those, the ones marked as minimal are
listed in Theorem 12, the others in Theorem 14. O

12.3 Theorem 16 and its corollaries

Proof of Theorem 16 The nature of the four replacements is
to introduce another image of the dangling pin into one of
the views. This makes this pin reconstructable in 3D in the
resulting PL P, but produces no additional constraint on the
cameras.

Formally, since the initial problem is reduced and camera-
minimal, Lemma 37 tells us that the resulting PL;P is also
reduced and camera-minimal, with the same camera-degree.
It is left to show that the resulting PL{P is indeed minimal.
By Theorem 14, we see that the resulting PL{P only has
local features as listed in Theorem 12, i.e. points with three
or more pins completely observed in all views plus some of
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the features shown in Table 1. All of these features can be
uniquely recovered in 3D for a fixed camera solution. O

Proof of Corolary 18 By Lemma 37, replacing a single occur-

rence of . in a minimal problem with ,

yields a camera-minimal problem with the same camera-

degree. Now we can replace‘ * ‘ ’ ‘/‘ With‘ * ‘\\‘/ to
obtain another camera-minimal PL{P of the same camera-
degree. As argued above, this resulting PL;P is actually
minimal. By Lemma 7, it has the same degree as the initial
minimal problem.

Proof of Corollary 19 Starting from a terminal camera-
minimal PL P in three views, the lift in Theorem 16 produces
possibly several reduced minimal PL;Ps: these only differ
depending on whether the third or the fourth replacement in
Theorem 16 is applied to each point with one dangling pin

viewed like -- (up to relabeling the views). So all of

the resulting minimal problems lie in the same swap&label-
equivalence class.

Starting from a reduced minimal PL|P in three views,
we apply the replacements in Lemma 37, read from right

toleft,until‘\‘\‘ H\‘\‘ ‘,and‘\‘.‘/‘donot

appear any longer. This, by Definition 17, results in a terminal
problem. Moreover, all reduced minimal PL{Ps which are
related via the swaps in Corolary 18 yield the same resulting
terminal problem.

This explains the one-to-one correspondence in Coro-
lary 19. It preserves camera-degrees by Lemma 37. O

13 Computations
13.1 Swap&Label-Equivalence Classes of Signatures

As noted in Sect.6, each reduced minimal PL;P in three
views can be encoded as a signature, which is an inte-
ger solution to the dimension-count equation (2). Thus, a
signature is simply an integer vector of length 27. In gen-
eral, we can enumerate all nonnegative integer solutions
(k1,..., k) toark; + - - -+ ajk; = n by recursively solving
arky + - +aik = n — jay for j = |n/ay],...,0. The
result of this enumeration procedure is a list of solutions that
is sorted decreasingly with respect to the usual lexicographic
order on Z?’. This is how we computed all 845161 solutions
of (2).

For each signature, we find all PL{Ps which are the same
up to relabeling of the views—that is, we mod out the action
of the permutation group S3 that permutes the three views.
Note that if we take one representative of each orbit of this
action in the order they appear in the solution list from above,
this ensures that the lex order from this step is preserved.

The procedure above gives us 143494 label-equivalence
classes of reduced PLPs. It remains to extract a represen-
tative of each swap&label-equivalence class from this list.
Recall that a swap operation exchanges orderered local fea-

tures of the form ‘\‘ ’ ‘/‘ and‘ * ‘\\‘/ and that two
PLPs are swap &label-equivalent if they differ only by some
sequence of swaps and S3-permutations of the views. In
our implementation, the coordinates of the signature vectors
which participate in swaps are indexed from 12 to 17 inclu-
sive. They are arranged such that 12 resp. 13 index the ordered

local features - resp. —similarly for

14,15 and 16, 17. Thus, we may restrict attention to those
signatures whose coordinates 13, 15, and 17 equal zero; if
any of these coordinates is nonzero, then we may find a
swap&label-equivalent representative earlier in the list. To
see this, note that if we swap 13 to 12, 15 to 14, and 17 to
16, we get a lexicographically larger signature; moreover, the
signature is also lex-maximal in its label-equivalence class,
and hence occurs in the list of 143494 representatives.

The previous paragraph identifies ~ 40, 000 swap&label-
equivalent pairs, but does not yet yield a unique representative
for each class. To do this, we iterate over the list of remaining
signatures in order, maintaining a single representative per
swap&label-equivalence class encountered so far. For each
signature, we enumerate its S3-orbit and perform the swaps
13to 12, 15to 14, and 17 to 16 to each element in this orbit.
This operation produces 5 additional signatures, and we must
delete any that appear later in the list. In the end, we are left
with 76446 signatures.

13.2 Checking Minimality

As mentioned in Sect. 8, our rank check over the finite field
FF, may be susceptible to false negatives—in other words, it
is possible that we may incorrectly conclude that a problem
is not minimal due to unlucky random choices made dur-
ing the computation. On the other hand, false positives are
impossible—we now explain this in detail. Let (p,!,Z, O)
be any balanced point-line problem. If we parametrize cam-
eras by a rational map P : C'! — (3, then the exceptional
set of complex (X, ¢) such that the Jacobian of ®,; 7 © at
(X, P(t)) drops rank is Zariski-closed. It follows that there
is a point (Xo, #p) with integer coordinates outside of this
exceptional set. Passing to residues modulo some prime ¢,
the rank of the Jacobian at this point can only drop. Thus
if we find a point with a Jacobian of full rank modulo ¢,
then we may conclude that the joint camera map @, ; 7, ¢ is
dominant, i.e. that the balanced (p, [, Z, O) is minimal.
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Table 6 All ways to observe free lines and points with < 2 pins in 3 views (modulo cases treated by Lemma 32, 33, 34) and their appearance in Theorems 2, 3, 5 or 7. For each observed feature, all possible feasible

forgetting maps IT are listed, distinguished by the column “forget™: “P” (respectively “L”) denotes a forgotten point (respectively line.)

3D feature 2D Dim. of Dim. of Lifting
views Forget fiber (IT) fiber () property Reducible Minimal Thm
free line 1) L 4 2 yes yes no 20
2) L 4 4 yes yes yes 11
3) L 4 6 no no yes 12
point 4) P 3 2 yes yes no 20
5) P 3 4 no no yes 12
6) P 3 6 no no yes 12
point + 1 pin 7 L 2 2 no
P 1 2 No Yes No 20
P+L 5 4 Yes
9 L . : o
P 1 4 No No No 14
P+L 5 6 No
9) L 2 4 No
P 1 2 No No Yes 12
P+L 5 6 No
10) \ \ L 2 3 No
P 1 1 Yes Yes Yes 11
P+L 5 5 Yes
L]
11 - L 2 3 No
P 1 3 No No Yes 12
P+L 5 7 No
12) L 2 5 No
P 1 1 Yes Yes Yes 11
P+L 5 7 No
13) L 2 4 No
P 1 2 No No Yes 12
P+L 5 8 No
14) L 2 3 No
P 1 3 No No Yes 12
P+L 5 9 No
point + 2pins 15) 2 2 no
+L 4 4 No No No 14
P+ 3 4 No
P+l+L 7 6 No
16) 2 2 No
L 2 3 No
+L 4 5 No No No 14
P+ 3 3 No
P+L 3 5 No
P+I+L 7 7 No
17) 2 3 No
+L 4 6 No No Yes 12
P+ 3 4 No
P+I+L 7 8 No
18) 2 3 No
+L 4 6 No No Yes 12
P+ 3 6 No
P+L+L 7 12 No
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13.3 Computing Degrees

The main results of Sect.9, namely Results 22, 24 and 25,
are based on our computation of degrees for minimal and
camera-minimal problems using monodromy. In this context,
the term “monodromy” refers to a paradigm of numerical
continuation methods for solving parametrized polynomial
systems that collect solutions for random parameter values
in a one-by-one manner. We refer to Duff et al. (2018) for
a detailed description of the ideas involved and discussion
of implementation issues. Most relevant for our purposes is
that this computation can be aborted early; ignoring numer-
ical subtleties, we can then say that the number of solutions
obtained at this point is a lower bound on the degree.

Our implementation of degree computation has the option
of using one of two formulations. In the first, we solve explic-
itly for world features as well as camera matrices. In the
second, eliminated formulation, we only solve for camera
matrices using determinantal constraints as in Duff et al.,
(2019, Sec 6). Our computational results use the eliminated
formulation for efficiency. As a sanity check for some prob-
lems of interest, we ran monodromy until it stabilized for both
world and eliminated formulations to confirm the conclusion
of Lemma 1.

Since our degree computations are randomized and sus-
ceptible to the possible failures of numerical continuation
methods, our operational definition of “success” requires
that all algebraic constraints are satisfied by the solutions
collected and that either some target degree was exceeded
(eg. 300 in Result 22) or that monodromy has stabilized
in the sense that the random problem instances have col-
lected the same number of solutions with no further progress
after several iterations. We note that more sophisticated stop-
ping criteria are available for monodromy (Hauenstein &
Rodriguez, 2019; Leykin et al., 2018) but are generally much
more expensive. For problems of interest (eg. those appearing
in Kileel (2017); Duff et al. (2019) and Table 3), the stabi-
lization heuristic allowed us to recover all previously known
degrees, though some problems needed to be run more than
once due to numerical failures. We also reran several cases
appearing in Table 2 according to this criteria in order to gain
more confidence in the reported degree.

13.4 Finding Subfamilies

As noted in Sect. 9, there are several subfamilies of minimal
and camera-minimal PL;Ps that are of interest: namely, the
PLoPs occuring in Result 25, the PLPs with at most one pin
per point in Result 24, and the extensions of the five-point
problem from Result 26. We point out that the signature vec-
tors described in Sect.13.1 give a complete combinatorial
description of each problem; in particular, in which views
certain points and lines are seen and which incidences they

have. Thus, it is straightforward to enumerate these subfam-
ilies starting from the lists of reduced minimal and terminal
camera-minimal problems.

14 Conclusion

We have explicitly classified all reduced minimal and
camera-minimal problems in three calibrated views for con-
figurations of points and lines when lines contain at most one
point.

The number of (camera-)minimal problems in our clas-
sification is large. Apart from constructing a database of all
these problems, we identify interesting subfamilies where the
number of the problems is relatively small (see Tables 3 and
2 in this article and Table 4 in Sect. 11.)

Another part of our computational effort focused on deter-
mining algebraic degrees of the (camera-)minimal problems.
The degree of a problem provides a measure of complexity of
a solver one may want to construct. The smaller the degree,
the more plausible it is that a problem could be used in prac-
tice: Table 2 shows the degree distributions for problems of
degree less than 300.
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