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Abstract— The representation of a nonlinear dynamical sys-
tem as infinite-dimensional linear operator over a Hilbert
space of functions enables the study of the nonlinear system
via pseudo-spectral analysis of the corresponding operator.
In this paper, we develop a novel operator representation of
discrete-time, control-affine nonlinear dynamical systems. We
also demonstrate that this representation can be used to predict
the behavior of the closed-loop system in response to a given
feedback law. The representation is learned using recorded
snapshots of the system state resulting from arbitrary, poten-
tially open-loop control inputs. We thereby extend the predictive
capabilities of dynamic mode decomposition to discrete-time
nonlinear systems that are affine in control. We validate the
method using two numerical experiments by predicting the
response of a controlled Duffing oscillator to a known feedback
law. The advantages of the developed method relative to existing
techniques in the literature are also demonstrated.

I. INTRODUCTION

In this paper, a novel representation of discrete-time
control-affine nonlinear systems as infinite-dimensional
linear operators over reproducing kernel Hilbert spaces
(RKHSs) is introduced. This effort is inspired by the method
first developed in [1], which introduced similar operator
representations for continuous-time dynamical systems. The
idea of representing a nonlinear system as an infinite-
dimensional linear operator in Hilbert space was first put
forth by B.O. Koopman in [2] and the resulting composition
operator is aptly known as the Koopman operator. This
higher-dimensional space is typically referred to as the
feature space or lifted space and the Koopman operator acts
as a composition operator on the lifted space. In recent years,
dynamic mode decomposition (DMD) and other data-driven
methods have seen a resurgence due to the abundance of data
and increased the availability of computational power [3]. An
example of the application of DMD can be seen in the fluid
mechanics community, where modal decomposition of fluid
flows is accomplished [4], [5]. In a more general sense, DMD
is intimately connected to the Koopman operator as DMD
is one method used to approximate the Koopman operator
associated with the dynamical system [5], [6].

The Koopman approach is amenable to spectral methods
in linear operator theory in certain cases, e.g. see [7], but
spectral convergence cannot be guaranteed in general; there-
fore, Koopman DMD methods are pseudo-spectral numerical
methods. Despite this theoretical limitation, Koopman DMD
and Liouville DMD methods in both continuous and discrete
time have been shown to exhibit remarkable predictive
accuracy over finite-time horizons [3]. Moreover, Koopman
DMD allows one to study dynamical systems without direct
knowledge of the dynamics, as Koopman DMD is strictly

data driven and requires no knowledge of the dynamical sys-
tem [3]. For measurements corrupted by noise or in the case
of stochastic systems, robust approximations of the Koopman
operator can be formulated [8]. The ultimate goal of DMD
is to develop a data-driven model via an eigendecomposition
of the Koopman operator, under the assumption that the
full-state observable (the identity function) is in the span of
the eigenfunctions [7]. The addition of control adds greater
difficulty to data-driven methods like DMD, as the Koopman
operator associated with the dynamical system depends upon
the control input. Furthermore, in discrete time, the Koopman
operator is generally not linear in its symbol, which makes
separating the influence of the controller from the drift
dynamics challenging. Despite the difficulty, there have been
several successful methods for generalizing Koopman DMD
for dynamical systems with control in results such as [9],
[10]–[14].

The method presented in [11] yields a DMD routine
to represent a general nonlinear system with control as a
control-affine linear system. This idea is generalized in [10]
with extended DMD (eDMD), providing greater predictive
power. Furthermore, for a general discrete-time, nonlinear
dynamical system with control, the authors in [10] utilize the
shift operator to describe the time evolution of the control
signal. Also, in discrete-time, separation of the control input
from the state can be achieved via first order approximations
[15]. For continuous-time dynamical systems, the Koopman
canonical transform (see [16]) is used in [9] to leverage a
formulation of the dynamical system in the lifted space as a
control-affine, bilinear system, called the Koopman bilinear
form (KBF). The KBF is then amenable to the design of
feedback laws using techniques from optimal control.

The aforementioned methods demonstrate the ability
to predict the response of both discrete-time [10] and
continuous-time [9] dynamical systems to open-loop inputs.
The algorithm developed in this paper offers an advan-
tage over the methods from [9]–[15], since in addition to
a predictive model, it also estimates eigenfunctions, and
consequently, a Koopman invariant subspace of the closed-
loop system. A key contribution here is the extension of
the method presented in [1] to the discrete-time case. The
operator representation presented in [1] relies on linearity
of differential and multiplication operators to separate the
influence of the controlled and the uncontrolled part of the
system dynamics. In discrete time, the differential operators
need to be replaced by composition operators, and composi-
tion operators are typically not linear in their symbol. Herein
lies the difficulty of extending continuous-time DMD results



to discrete-time DMD results, as separation of the effect of
the control input from the effect of the drift dynamics is
nontrivial.

In this paper, we take an operator-theoretic approach to
DMD with a novel operator definition that accounts for the
effect of control and the discrete-time nature of the problem.
The algorithm is referred to as discrete control Liouville
DMD or DCLDMD for brevity. To accomplish DCLDMD,
the discrete, nonlinear dynamical system is represented as
a composition of two operators acting on a Hilbert space
of functions. The first operator mimics the effects of a
composition operator, which maps from a reproducing kernel
Hilbert space (RKHS) to a vector-valued RKHS (vvRKHS).
In order to account for the effect of control, we make use of a
multiplication operator which maps functions in the vvRKHS
back into the RKHS. In doing so, we obtain an approximate
representation of the dynamical system as a composition of
the aforementioned operators.

The paper is organized into the following sections. Section
II establishes the mathematical background for dynamic
mode decomposition with discrete control Liouville opera-
tors. Section III contains the problem description. Section IV
provides the derivation for discrete control Liouville dynamic
mode decomposition, as well as outlining the DCLDMD
algorithm. Section VII contains the numerical experiments
involving the Duffing oscillator. Lastly, section VIII con-
cludes the paper.

II. BACKGROUND

In this section, we provide a brief overview of RKHSs and
vvRKHSs and their role in DCLDMD.

Definition 1: An RKHS H̃ over a set X ⊂ Rn is a Hilbert
space of functions f : X → C such that for all x ∈ X the
evaluation functional Exf := f(x) is bounded. By the Riesz
representation theorem, there exists a function K̃x ∈ H̃ such
that f(x) = ⟨f, K̃x⟩H̃ for all f ∈ H̃ .

The snapshots of a dynamical system are embedded into
an RKHS via a kernel map x 7→ K̃(·, x) := K̃x. Moreover,
the span of the set {K̃x : x ∈ X} is dense in H̃ .

Proposition 1: If A := {K̃x : x ∈ X}, then span A = H̃ .
Proof: To show that the span of the set {K̃x : x ∈ X}

is dense in H̃ amounts to showing that (A⊥)⊥ = H̃ . Let
h ∈ A⊥, then ⟨h, K̃x⟩ = h(x) = 0. Hence h ≡ 0 on X .
Thus A⊥ = {0}.

In order to account for the effect of control, we make use
of a vvRKHS.

Definition 2: Let Y be a Hilbert space, and let H be a
Hilbert space of functions from a set X to Y . The Hilbert
space H is a vvRKHS if for every ū ∈ Y and x ∈ X , the
functional f 7→ ⟨f(x), ū⟩Y is bounded.

To each x ∈ X and ū ∈ Y , we can associate a linear
operator over a vvRKHS given by (x, ū) 7→ Kx,ū, following
[1]. The function Kx,ū is known as the kernel operator and
the span of these functions constitutes a dense set in the
respective vvRKHS [1, Proposition 1]. Given a function f ∈
H , the reproducing property of Kx,ū implies ⟨f,Kx,ū⟩H =
⟨f(x), ū⟩Y . For more discussion on vvRKHSs see [17].

III. PROBLEM STATEMENT

Consider a control-affine, discrete-time dynamical system
of the form

xk+1 = F (xk) +G(xk)uk, (1)
where x ∈ Rn is the state, u ∈ Rm is the control input,
F : Rn → Rn and G : Rn → Rn×m are functions
corresponding to the drift dynamics and the control effec-
tiveness, respectively. We refer to the individual functions
which comprise the columns of G by Gj : Rn → Rn, for
1 ≤ j ≤ m. Given a feedback law µ : Rn → Rm and a set
of data points {(xk, xk+1, uk)}nk=1, where uk are arbitrary
(potentially open-loop) control inputs, the goal is to predict
the response of the system in (1) to the feedback law µ.

In this paper, the set X is selected to be a compact subset
of Rn, the set Y is selected to be C1×(m+1), H̃ denotes an
RKHS of continuous functions from X to C, and H denotes
a vvRKHS of continuous functions from X to Y .

IV. OPERATOR REPRESENTATION OF CONTROLLED
DISCRETE-TIME SYSTEMS

A linear operator can be associated with the dynami-
cal system in (1), as a composition of two operators: a
composition-like discrete Liouville operator and a multipli-
cation operator. This operator representation is derived in this
section.

A. A Composition-like Kernel Propagation Operator

The technical lemma below and the proposition that fol-
lows are needed for the kernel propagation operator to be
well-defined.

Lemma 1: The set Ω ⊂ H , defined as Ω := {Kx,ū : x ∈
X,u ∈ Rm, and ū :=

(
1 u⊤) ∈ Y}, satisfies Ω⊥ = {0}.

Proof: Let h ∈ Ω⊥. The reproducing property of Kx,ū

implies that for all u ∈ Rm and x ∈ X ,
〈
h(x),

(
1 u⊤)〉

Y =

⟨h,Kx,ū⟩H . Since h ∈ Ω⊥ and Kx,ū ∈ Ω, we conclude
that ⟨h,Kx,ū⟩H = 0. As a result, for each fixed x ∈ X
and for all u ∈ Rm, we have

〈
h(x),

(
1 u⊤)〉

Y = 0. That
is,

〈
ℜ (h(x)) ,

(
1 u⊤)〉

Y + i
〈
ℑ (h(x)) ,

(
1 u⊤)〉

Y = 0,
where ℜ (h(x)) denotes the real part of h(x) and ℑ (h(x))
denotes the imaginary part of h(x). Since the only such
h(x) ∈ Y is the zero vector, we conclude that h = 0.

Proposition 2: Let Lz ∈ H be a function such that for all
tuples (x, u, y) satisfying y = F (x) +G(x)u, we have〈

[Lz](x),
(
1 u⊤)〉

Y = K̃z(y). (2)

For all z ∈ X , the map K̃z 7→ Lz is a well-defined operator.
Proof: For a given z ∈ X , suppose there are two

functions, L1
z and L2

z , each of which satisfy (2) given above.
Then, for any tuple (x, y, u) which satisfies y = F (x) +
G(x)u,〈

[L1
z](x),

(
1 u⊤)〉

Y =
〈
[L2

z](x),
(
1 u⊤)〉

Y ,

and therefore,
〈
[L1

z](x)− [L2
z](x),

(
1 u⊤)〉

Y = 0.
Using the reproducing property,〈

[L1
z]− [L2

z],Kx,ū

〉
H

= 0 (3)
for all vectors in the set Ω := {Kx,ū : x ∈ X and ū ∈ Y |
ū =

(
1 u⊤) , u ∈ Rm}.



As a result, [L1
z] − [L2

z] ∈ Ω⊥, where ⊥ denotes the
orthogonal complement of Ω ⊂ Y .

Since Ω⊥ = {0} according to lemma 1, we conclude that
for all z ∈ X , [L1

z] = [L2
z]. That is, the operator K̃z 7→ Lz is

well defined on the set {K̃z}z∈X . Linearity of the operator
then implies that it is also well-defined on D := {h + ig ∈
H̃ | h, g ∈ span{K̃z}z∈X}.

Definition 3: Let AF,G : D (AF,G) → H be the operator
with domain D (AF,G) := D that maps, for each z ∈ X , the
function K̃z to a function [AF,GK̃z] ∈ H such that for all
tuples (x, u, y) satisfying y = F (x) +G(x)u, we have〈[

AF,GK̃z

]
(x),

(
1 u⊤)〉

Y
= K̃z(y). (4)

A few remarks regarding definition 3 are in order.
The kernel propagation operator AF,G is composition-like
in the sense that if a linear kernel K̃z(x) = z⊤x is
used, one could define AF,G explicitly as AF,GK̃z =
[K̃z(F (·)), K̃z(G1(·)), · · · , K̃z(Gm(·))]. In that case, due
to linearity of the kernel,

〈[
AF,GK̃z

]
(x),

(
1 u⊤)〉

Y
=

K̃z(F (x)) +
∑m

j=1 K̃z(Gj(x))uj = K̃z(y). That is, similar
to the Koopman operator for autonomous systems, the oper-
ator AF,G, when composed with the inner product operation
in a RKHS with a linear kernel, propagates the observable
K̃z one step forward in time.

In the case of nonlinear kernels, an explicit expression for
the operator AF,G cannot be derived. However, the implicit
definition above, which achieves one-step propagation of the
kernels by definition, is still useful for DMD.

Since the set D is dense in H , the kernel propagation
operator AF,G is densely defined. As such, the adjoint A∗

F,G

exists and can be defined through its domain.
Definition 4: The domain of the adjoint A∗

F,G of AF,G

is defined as D(A∗
F,G) := {f ∈ H : h 7→

⟨AF,Gh, f⟩H is bounded on D(AF,G)}.
Note that for all x ∈ X and ū ∈ Y , the kernel functions

Kx,ū of H are in the domain of the adjoint A∗
F,G. Indeed, if

AF,Gh ∈ H , ⟨AF,Gh,Kx,ū⟩ is bounded by definition 2 and
hence Kx,ū ∈ D(A∗

F,G).

B. Multiplication Operators

Let ν : X → R1×(m+1) ⊂ Y be a continuous function.
The multiplication operator with symbol ν is denoted as Mν :
D(Mν) → H̃ . For a function h ∈ D(Mν), we define the
action of the multiplication operator on h as

[Mνh](·) = ⟨h(·), ν(·)⟩Y ,
where the domain of the multiplication operator is given as

D(Mν) := {h ∈ H | x 7→ ⟨h(x), ν(x)⟩Y ∈ H̃}.
For completeness, we recall the interaction between mul-

tiplication operators and kernel operators from [1]. The
interaction is used to calculate the finite-rank representation
of the composition of the multiplication operator with the
kernel propagation operator from Definition 3.

Proposition 3: Suppose that ν : X → R1×(m+1) corre-
sponds to a densely defined multiplication operator Mν :
D(Mν) → H̃ and K̃ : X × X → R is the kernel function

of the RKHS H̃ . Then, for all x ∈ X , K̃x ∈ D(M∗
ν ), where

M∗
ν is the adjoint of Mν , and M∗

ν K̃x = Kx,ν(x).
The composition of the kernel propagation operator from
Definition 3 and the multiplication operator can be used to
define the discrete control Liouville operator.

C. The Discrete Control Liouville Operator

Taking the composition of AF,G and M(1,µ⊤), for a known
feedback law µ : Rn → Rm, the evolution of an observable
along trajectories of the dynamical system can be described
in terms of an infinite-dimensional linear operator.

Definition 5: Let ν :=
(
1 µ⊤). The discrete control

Liouville operator corresponding to the closed-loop system
xk+1 = F (xk) +G(xk)µ(xk)

is defined as the composition MνAF,G : D(MνAF,G)→ H̃ .
The discrete control Liouville operator governs the flow
of observables in D(MνAF,G) ⊆ H̃ along trajectories of
the discrete-time dynamical system as [MνAF,Gh](xk) =〈
[AF,Gh](xk),

(
1 µ(xk)

⊤)〉
Y = h(xk+1). Furthermore,

the composition MνAF,G is a linear operator by linearity
of the inner product and by Definition 3.

V. DISCRETE-TIME CONTROL LIOUVILLE DMD

In order to represent the infinite-dimensional discrete con-
trol Liouville operator as a finite-dimensional operator, we
select bases α =

{
K̃xi

}n

i=1
⊂ H̃ and β = {Kxi,ūi

}ni=1 ⊂
H , where ūi :=

(
1 u⊤

i

)
∈ Y . DMD is then performed via

an eigendecomposition of the finite-dimensional representa-
tion.

Given an observable h ∈ H̃ , let h̃ := Pαh =
∑n

i=1 ãiK̃xi

be the projection of h onto spanα. One can recover a finite
rank proxy of the discrete control Liovuille operator by
observing its action restricted to spanα ⊂ H̃ and projecting
the output MνAF,Gh̃ back onto spanα. That is, recovering
the finite-rank proxy amounts to writing PαMνAF,Gh̃ as∑n

i=1 b̃iK̃xi
and finding a matrix that relates the coefficients

{ãi}ni=1 and {b̃i}ni=1. For brevity of notation, let ã :=(
ã1 . . . ãn

)⊤
and b̃ :=

(
b̃1 . . . b̃n

)⊤
. The coefficients

can be computed by solving the linear system of equations
(see [1] and [7])

G̃

b̃1
...
b̃n

 =

⟨MνPβAF,Gh̃, K̃x1
⟩H̃

...
⟨MνPβAF,Gh̃, K̃xn⟩H̃

 , (5)

where G̃ = {K̃(xi, xj)}ni,j=1 is the kernel gram matrix for
α. Since the kernel functions in α ⊂ H̃ are in the domain of
the adjoint of the multiplication operator (see proposition 3),
for all j, ⟨MνPβAF,Gh̃, K̃xj

⟩H̃ = ⟨AF,Gh̃, PβM
∗
ν K̃xj

⟩H .
Furthermore, by linearity of AF,G,

⟨AF,Gh̃, PβM
∗
ν K̃xj ⟩H =

n∑
i=1

ãi⟨AF,GK̃xi , PβM
∗
ν K̃xj ⟩H

=
n∑

i=1

ãi⟨AF,GK̃xi ,
n∑

k=1

wk,jKxk,ūk
⟩H ,



where {wk,j}nk=1 are weights in the projection of M∗
ν K̃xj

onto spanβ and wj :=
(
w1,j . . . wn,j

)⊤
. Thus,

⟨AF,Gh̃, PβM
∗
ν K̃xj ⟩H =

n∑
i,k=1

ãiw
∗
k,j⟨AF,GK̃xi ,Kxk,ūk

⟩H

=
n∑

i=1

n∑
k=1

ãiw
∗
k,j⟨[AF,GK̃xi ](xk),

(
1 uk

⊤)⟩Y = ã⊤Ĩw∗
j ,

where Ĩ =

(〈
[AF,GK̃xi

](xk),
(
1 uk

⊤)〉
Y

)n

i,k=1

is com-

puted using the fact that
〈
[AF,GK̃xi

](xk),
(
1 uk

⊤)〉
Y

=

K̃xi
(xk+1) (here w∗ denotes the complex conjugate of w).

Since M∗
ν maps K̃xj

to Kxj ,ν(xj), the coefficients wj in
the projection of Kxj ,ν(xj) onto span β ⊂ H are solutions
of

G

w1,j

...
wn,j

 =

⟨Kxj ,ν(xj),Kx1,ū1
⟩H

...
⟨Kxj ,ν(xj),Kxn,ūn

⟩H

 , (6)

where G =
(〈
Kxi,ūi

,Kxj ,ūj

〉
H

)n
i,j=1

and ν(xj) =(
1 µ(xj)

⊤). If a diagonal kernel operator Kxi
:=

diag
(
K̃x1 . . . K̃xm+1

)
is used, with K̃xj = K̃xi for

1 ≤ j ≤ m+1, then the inner products in G can be computed
as

⟨Kxi,ūi
,Kxj ,ūj

⟩H = ⟨Kxi,ūi
(xj),

(
1 u⊤

j

)
⟩Y =(

1 u⊤
i

)
K̃(xj , xi)

(
1 u⊤

j

)⊤
. (7)

Letting I⊤j denote the column vector on the right-hand side
of (6), he jth row of I is given by

Ij =
(
⟨Kxj ,ν(xj),Kx1,ū1

⟩
H
, . . . , ⟨Kxj ,ν(xj),Kxn,ūn

⟩
H

)
.

The complete finite-rank representation of the DCLDMD
operator is then recovered as [MνPβAF,G]

α
α = G̃†IG†Ĩ⊤,

where the subscript α denotes the restriction of the operator
to the spanα; the superscript α denotes projection of the
output onto spanα; and (·)† denotes the Moore-Penrose
pseudoinverse.

A. Discrete Control Liouville Dynamic Mode Decomposition

DMD can be accomplished via an eigendecomposition
of the finite-rank proxy of discrete control Liovuille op-
erator. Let {vi, λi}ni=1 be the eigenvalue-eigenvector pairs
of the matrix [MνPβAF,G]

α
α. Following [7], if vj is an

eigenvector of the matrix [MνPβAF,G]
α
α, then the function

φj =
∑n

i=1(vj)iK̃xi is an eigenfunction of the operator
PαMνPβAF,G|α, where the subscript i in (vj)i denotes the
i-th component of the eigenvector vj .

If φj is an eigenfunction of PαMνPβAF,G|α with eigen-
value λj , then

φj(xk+1) = MνAF,Gφj(xk) = λjφj(xk).

Hence, the eigenfunctions evolve linearly along the flow.
The normalized eigenfunctions are defined as φ̂j :=

1√
(v∗

j )
⊤G̃vj

∑n
i=1(vj)iK̃xi

.

Assuming that the j-th component identity function, gid,
defined as gid,j(x) := xj is in D(MνAF,G) ⊂ H̃ , for
each j = 1, 2, . . . , n, we can describe the evolution of

the full-state observable gid(x) = x as a linear combina-
tion of eigenfunctions of MνAF,G. This approach yields
a data-driven model of the closed-loop dynamical system
as a linear combination of eigenfunctions of the operator
PαMνPβAF,G|α. That is, for a given x0 ∈ X we have
a pointwise approximation of the flow of the closed-loop
system

xk+1 = F (xk) +G(xk)µ(xk) ≈
n∑

i=1

λk
i ξiφ̂i(x1). (8)

We refer to the vectors ξi as the Liouville Modes, these are
the coefficients required to represent the full-state observable
as a linear combination of the eigenfunctions. We can cal-
culate the modes by solving gid(x) = x =

∑n
i=1 ξiφi for

ξi, which yields ξ :=
(
ξ1 · · · ξn

)
= X(V ⊤G̃)†, where

V is the matrix of normalized eigenvectors of the finite-
rank representation [MνPβAF,G]

α
α and X :=

(
x1 . . . xn

)
is the data matrix. We refer to this method as the direct
reconstruction of the flow.

We can also formulate an indirect reconstruction of the
flow by considering the function Fµ := x 7→

∑n
i=1 λiξiφ̂i(x)

that approximates the closed loop dynamics under the feed-
back law µ as xk+1 ≈ Fµ(xk). The indirect method
generally performs better for approximating the nonlinear
dynamics; we hypothesize that the better performance is due
to the fact that indirect reconstruction yields a nonlinear
model of the flow, as opposed to the direct reconstruction,
where the estimated model is linear. Due to its superior
performance, we use the indirect reconstruction in the numer-
ical experiments in Section VII. The DCLDMD algorithm is
summarized in Algorithm 1.

VI. CONVERGENCE PROPERTIES OF DCLDMD
Discrete control Liouville DMD enjoys convergence

guarantees on par with current state-of-the-art Koopman
methods. That is, the sequence of finite-rank operators
Pn
αMνP

n
β AF,GP

n
α , where Pn denotes the projection onto

the n-dimensional span of α and β, respectively, converges to
the operator MνAF,G in the strong operator topology (SOT).
Underlying this fact is the assumption that as n → ∞, the
Gram matrices G̃ and G do not become rank deficient.

Theorem 1: If AF,G : H̃ → H and Mν : D(Mν) →
H̃ are bounded, and α := {K̃xn}∞n=1 ⊂ H̃ and
β := {Kxn,ūn}∞n=1 ⊂ H are two orthonormal se-
quences in H̃ and H , respectively, then for all f ∈ H̃ ,
limn→∞

∥∥∥Pn
αMνP

n
β AF,GP

n
α f −MνAF,Gf

∥∥∥
H̃

= 0.

Proof: Suppose f ∈ H̃ , then∥∥Pn
αMνP

n
β AF,GP

n
α f −MνAF,Gf

∥∥
H̃

=∥∥(Pn
α − I)MνP

n
β AF,GP

n
α f +Mν(P

n
β AF,GP

nf −AF,Gf)
∥∥
H̃

≤
∥∥(Pn

α − I)(MνP
n
β AF,GP

n
α f −MνAF,Gf)

∥∥
H̃
+

∥(Pn
α − I)MνAF,Gf∥H̃+

∥∥Mν(P
n
β AF,GP

n
α f −AF,Gf)

∥∥
H̃

≤ ∥(Pn
α − I)∥op

∥∥(MνP
n
β AF,GP

n
α f −MνAF,Gf)

∥∥
H̃
+

∥(Pn
α − I)MνAF,Gf∥H̃+

∥∥Mν(P
n
β AF,GP

n
α f −AF,Gf)

∥∥
H̃
,

where ∥·∥op denotes the operator norm. Since Mν is contin-
uous and ∥(Pn

α − I)∥op is bounded (by Parseval’s identity,



Algorithm 1 The DCLDMD algorithm
Input: Data points {(xk, yk, uk)}nk=1 that satisfy yk =

F (xk)+G(xk)uk, reproducing kernels K̃xj and Kxj ,ūj

for H̃ and H , respectively. A feedback law µ, kernel
parameter σ, and a regularization parameter ϵ.

Output: {φ̂j , λj , ξj}nj=1

1: G̃← {K̃(xi, xj)}ni,j=1

2: Ĩ ← {K̃(xk+1, xi)}nk,i=1

3: G← {⟨Kxi,ūi
,Kxj ,ūj

⟩H}ni,j=1 (see (7))
4: I ← {⟨Kxj ,ν(xj),Kxi,ūi

⟩H}ni,j=1 (see (7))
5: Compute [MνPβAF,G]

α
α = G̃†IG†Ĩ⊤

6: Eigendecomposition: {vj , λj}nj=1 ← [MνPβAF,G]
α
α

7: Normalize the eigenfunctions: {φ̂j}nj=1 ← φ̂j =
1√

(v∗
j )

⊤G̃vj

∑n
i=1(vj)iK̃xi

8: Liouville modes: ξ ← X(V ⊤G̃)†

9: return {φ̂j , λj , ξj}nj=1

see [18, Section 3.1.11]), and since Pn
β AF,GP

n
α converges to

AF,G in the SOT [18, Page 172]), the first and the third terms
in the inequality above converge to 0 as n → ∞. The fact
that Pn

α converges to I in the SOT implies the convergence of
the second term to zero. Therefore, the sequence of operators
Pn
αMνP

n
β AF,GP

n
α converges to MνAF,G in the SOT.

Convergence in the SOT does not guarantee convergence of
the spectrum, but by Theorem 4 in [19], it does guaran-
tee that there is a subsequence of eigenvalue-eigenfunction
pairs of the finite-rank representation which converges to
an eigenvalue-eigenfunction pair of the true discrete control
Liouville operator.

VII. NUMERICAL EXPERIMENTS

As a demonstration of the efficacy of the developed
DCLDMD algorithm, we apply the method to the controlled
Duffing oscillator and compare it with the linear predictor
developed in [10].
Experiment 1: The controlled Duffing oscillator is a
nonlinear dynamical system with state-space form(

ẋ1

ẋ2

)
=

(
x2

−δx2 − βx1 − αx3
1

)
+

(
0

2 + sin(x1)

)
u (9)

where α, β, δ are coefficients in R, [x1, x2]
⊤ ∈ R2 is the

state, and u ∈ R is the control input. For the experiments
the parameters are selected to be: δ = 0, α = 1, and β = −1.

We descretize (9) using a time step of 0.01 seconds to
yield a discrete-time, control-affine dynamical system of
the form xk+1 = F (xk) + G(xk)uk. Using the tuples
{(xk, xk+1, uk)}nk=1 generated by the dynamical system, we
aim to predict the response of the system starting from
the initial condition x0 = [2,−2]⊤ to the feedback law
µ(xk) = −2x3

k,1 − xk,2 for a total of 5 seconds.
In the implementation of DCLDMD, we generate 1225

data points from initial conditions sampled from a 35 × 35
grid within the set [−5, 5] × [−5, 5] ⊂ R2 and the control
inputs are sampled uniformly from the interval [−8, 8] ⊂ R.

The Gaussian radial basis function kernel K̃(x, y) =

e
−∥x−y∥22

σ is used for H̃ , with kernel width σ = 20. For H ,
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Fig. 1. A comparison of indirectly reconstructed trajectories x̂1(t) and
x̂2(t) with the true trajectories x1(t) and x2(t) of the Duffing oscillator
resulting from the nonlinear feedback law µ in experiment 1.
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Fig. 2. A comparison between the linear predictor developed in [10] and the
indirect reconstruction via DCLDMD in experiment 2. Here, x̂i(t), xp,i(t),
and xi(t) represent the indirect reconstruction, the linear predictor, and the
actual trajectories, respectively, where i is a subscript denoting an element
of the state.

we associate to each pair {(xk, uk)}nk=1 a kernel Kxk,ūk
:=(

1 u⊤
k

)
Kxk

∈ H . Here we use the kernel operator Kxi
:=

diag
(
K̃x1 · · · K̃xm+1

)
where K̃xj (y) = e

−∥xj−y∥2
2

σ for
j = 1, . . . ,m+ 1, with σ = 20. Lastly, we select ε = 10−6

for regularization of the Gram matrices in order to ensure
invertibility of both G̃ and G, instead of the pseudoinverse,
in the finite-rank representation (see Algorithm 1).

A comparison between the true trajectories and the indi-
rectly reconstructed trajectories corresponding to the feed-
back law µ can be seen in Figure 1.
Experiment 2: In this experiment, we compare the predic-
tive capabilities of the indirect reconstruction via DCLDMD
with the linear predictor derived in [10]. The linear predictor
in [10] is of the form zk+1 = Azk + Buk with xk = Czk
and z being the lifted state (see [10] for more details). For a
given feedback law µ, we can estimate the response of the
Duffing oscillator described by equation (9) to the feedback
law µ by using the linear predictor zk+1 = Azk+Bµ(Czk).

For this experiment, we generate 1000 data points and
DCLDMD is implemented using the same kernels as in
Experiment 1, except the kernel widths are both set to
σ = 100. For regularization we set ε = 10−6. For the
linear predictor, extended DMD (eDMD) is performed with
the Gaussian radial basis functions as in [10]. For the initial
condition x0 = [2,−2]⊤ and the feedback law µ(xk) =
−2xk,1 − 2xk,2, we compare the predictions of the indirect
DCLDMD method and the linear predictor with the true
trajectories (see Figure 2).

A. Discussion
The experiments demonstrate the efficacy of DCLDMD

in an academic setting with the Duffing oscillator. The
experiments are done with no prior model knowledge, be-
sides the system being affine in control. The novelty of the



representation can be seen in the separation of the control
input and the state on the operator-theoretic level, while still
preserving the nonlinearity of the dynamical system. This is
opposed to the standard approach for discrete-time dynamical
systems where the lifted state zk ∈ RN can be approximated
as zk+1 ≈ Azk + Buk, with A ∈ RN×N and B ∈ R1×N

found using extended DMD. Unless the original nonlinear
system admits an exact lifting, which is not generally the
case, the trajectories of the linear lifted systems are expected
to diverge from the trajectories of the nonlinear system with
increasing prediction horizons.

In Experiment 2, specifically, in Figure 2, we observe
that as expected, the behavior of the linear predictor from
[10] diverges from the behavior of the nonlinear Duffing
oscillator under the given feedback law, while the indirect
reconstruction approach developed in this paper accurately
tracks the actual trajectory of the Duffing oscillator. We
postulate that the improved predictive capability can be
attributed to the fact that the indirect predictive model is
a nonlinear predictor, as opposed to the model from [10],
which is a linear predictor, albeit in a higher dimensional
lifted state space.

In both experiments, indirect reconstruction is used to esti-
mate the flow. The indirect reconstruction explicitly depends
upon the eigenfunctions of PαMνPβAF,G|α. Whether or not
we can always represent the full-state observable (i.e. the
flow) in terms of the eigenfunctions is not entirely clear, but
this is a standard assumption in the DMD literature. With
this assumption in mind, DCLDMD is termed a heuristic
approach for estimation of the dynamics. Regardless, the
numerical experiments in section VII demonstrate the ca-
pability of DCLDMD for prediction of the response of the
control-affine system to given feedback laws.

VIII. CONCLUSION

In this paper, a novel operator representation of a control-
affine nonlinear system is developed as a composition of a
multiplication operator and a composition-like kernel propa-
gation operator over an RKHS. The multiplication operator
takes advantage of the affine nature of the system to capture
the effect of control on the system behavior, while the
kernel-propagation operator captures the effect of the system
dynamics on the kernels of the underlying RKHS. The
resulting DMD algorithm is entirely data driven and requires
no model knowledge besides the dynamical system being
affine in control. Furthermore, the DCLDMD formulation
provides a novel way to separate the state from the control
input on the operator-theoretic level. This separation leads
to better prediction capabilities over existing methods, as
evidenced by the results of Experiment 2. Moreover, since
DCLDMD can be used to predict closed-loop trajectories of
a nonlinear system under feedback laws, it could potentially
be utilized for control synthesis, which is a topic for future
research.
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