
GCSM: GPU-Accelerated Continuous Subgraph

Matching for Large Graphs

Yihua Wei

University of Iowa

yihua-wei@uiowa.edu

Peng Jiang

University of Iowa

peng-jiang@uiowa.edu

Abstract—Continuous subgraph matching (CSM) is a key
building block in many graph mining applications. Previous
research has primarily focused on CSM algorithms on CPU.
However, due to the dynamic nature of input graphs and the data
movement bottlenecks, it has been challenging to efficiently run
CSM on heterogeneous systems with GPUs. This work proposes
the first system that exploits GPU to accelerate CSM. The main
idea of our system is to cache the frequently accessed graph data
in GPU memory so that most of the data communication between
CPU and GPU can be avoided during the matching process.
To identify the frequent data, we propose an efficient frequency
estimation technique based on random walks on the input graph.
We also provide an end-to-end design that achieves efficient
dynamic graph updates on the CPU and efficient incremental
matching on the GPU. The experiments show that our system
significantly improves the performance of CSM compared to
existing CPU solutions and supports CSM on extremely large
graphs.

Index Terms—Continuous Subgraph Matching, GPU

I. INTRODUCTION

Subgraph matching, which involves finding all matches

of a query pattern Q in a data graph G, is a fundamen-

tal task in graph analytics. It is widely used for retrieving

information from graph-structured data in various domains,

including bioinformatics [1], social network analysis [2], and

cybersecurity [2].

While subgraph matching on static graphs has been exten-

sively studied in the past decade [3], [4], [5], [6], [7], [8], [9],

there is a growing interest in supporting subgraph matching

on dynamic graphs. The task is often referred to as continuous

subgraph matching (CSM). Fig. 1 shows an example of CSM.

Given a data graph G0 and a query pattern Q. G0 has one

subgraph (v2, v4, v5, v6) that matches Q. If an edge (v1, v3) is

added to G0, the updated graph G1 contains a new subgraph

(v0, v1, v2, v3) that matches Q. If the edge (v4, v6) is removed

from G1 at the next step, the subgraph (v2, v4, v5, v6) will no

longer be a match of Q and should be removed from the

matching results.

CSM can be useful in many scenarios. For example, the

message transmission on a social network can be modeled as

a dynamic graph, and CSM can be used to detect the spread of

rumors [10]. The financial transactions among bank accounts

are also a dynamic graph, and CSM can be used to monitor

suspected transaction patterns such as money laundering [11].

This work was supported by NSF award CNS-2311610.

�� ��

�� ��

(a) Query Q

�� ��

��

��
��

��
��

(b) Data graph G0

�� ��

��

��
��

��
��

�� ��

��

��
��

��
��

�������� ��� ����������� ���

(c) Graph update: G0 +∆E0

Fig. 1: An example of continuous subgraph matching.

Different algorithms and optimizations have been proposed

for CSM [12], [13], [14], [15]. An early work [12] simply

re-matches the query pattern on the data graph every time the

data graph is updated. More recent work [13], [14], [16], [15]

adopts an incremental matching approach, where the query

pattern is only matched on the updated edges of the data graph.

Their basic idea is to treat the dynamic data graph as multiple

constantly updating tables and model CSM as an Incremental

View Maintenance (IVM) problem [17], [18] (explained in

more detail in Sec. II).

Despite their different optimizations, the existing CSM

systems are all CPU-based. As subgraph matching is NP-

hard, it is always desirable to use GPU to accelerate the

computation. Although many GPU-based systems have been

proposed for static subgraph matching [19], [8], [9], utilizing

GPUs to accelerate continuous subgraph matching faces a

major challenge. Since the data graph is constantly updated

and can easily exceed the GPU memory capacity, we must

store the graph on CPU. A matching procedure on GPU

involves a lot of data access from the CPU, which can

significantly slow down the system.

Previous work [20] has proposed data caching for static

subgraph matching on large graphs that cannot fit on a GPU.

They divide the graph vertices into small bins and copy the

k-hop neighbors of vertices in each bin to the GPU for

processing. Here, k is the diameter of the query pattern,

which ensures that the vertices copied onto the GPU include

all vertices accessed in the matching process. Since many

vertices are accessed multiple times during matching, caching

1046

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00097

2
0
2
4
 I

E
E

E
 I

n
te

rn
at

io
n
al

 P
ar

al
le

l
an

d
 D

is
tr

ib
u
te

d
 P

ro
ce

ss
in

g
 S

y
m

p
o
si

u
m

 (
IP

D
P

S
)

| 9
7
9
-8

-3
5
0
3
-8

7
1
1
-7

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

P
D

P
S

5
7
9
5
5
.2

0
2
4
.0

0
0
9
7

them on the GPU reduces redundant accesses from the CPU

and achieves better performance than a naive implementation.

However, this method does not work for CSM. First, their

“bin packing” algorithm for dividing the vertices involves an

expensive clustering procedure. While the overhead can be

justified for static graphs because the k-hop neighbors can be

reused by different query patterns, it cannot be amortized in a

dynamic setting. Second, the k-hop neighbors of a small batch

of updated edges can still be very large and exceed the GPU

memory.

We propose a fine-grained data caching method to achieve

efficient continuous subgraph matching on a GPU for large

graphs. Our method is based on an important observation that

the vertices are accessed in a highly skewed frequency distribu-

tion, and most of the k-hop vertices are actually not accessed

during matching. Even within the accessed vertices, only a

tiny fraction is frequently accessed. If we select the vertices

that are frequently accessed and cache them on the GPU,

it will significantly reduce CPU-GPU data communication.

The remaining question is how to obtain the most frequently

accessed vertices for matching a batch of incoming edges.

To obtain the frequent vertices, we perform multiple random

walks from the updated edges on the data graph and estimate

the access frequency of different vertices on the CPU. Our ran-

dom walk strategy ensures that the estimated access frequency

is an unbiased estimation of the true access frequency. We then

copy the neighbor lists of the most frequently accessed vertices

to the GPU and run an exact incremental matching procedure

on GPU. Since the distribution of data access frequency is

highly skewed for real-world graphs, the matching process

only accesses data on GPU most of the time. If it requires

vertices that are not on the GPU, data can be accessed from the

CPU main memory through the GPU zero-copy mechanism.

In summary, we make the following contributions:

• Our work is the first to support continuous subgraph

matching on a CPU-GPU system and achieve state-

of-the-art performance by overcoming the data transfer

bottleneck between the CPU and GPU.

• Our system provides an end-to-end design that supports

both efficient dynamic graph maintenance on the CPU

and efficient subgraph matching on the GPU.

• We proposed an efficient random walk technique to

identify the most frequently accessed vertices for data

caching on GPU.

• We developed an efficient CUDA kernel for incremental

subgraph matching on GPU.

We evaluated our system using a variety of query patterns

and input graphs and compared it with two CPU baselines and

four naive GPU implementations. The experiments show that

our system addresses the data movement bottleneck in naive

GPU implementations, and achieves 1.4x to 2.9x speedups

(with an average of 1.8x) against the best naive GPU version.

Our system also significantly outperforms the CPU baselines

(including a state-of-the-art CPU system [15]), achieving 1.4x

to 11.4x speedups (with an average of 4.1x) against the best

CPU implementation.

II. BACKGROUND

This section gives a formal definition of the continuous

subgraph graph matching problem and describes a join-based

algorithm for solving the problem. We also provide a back-

ground on CPU-GPU data communication to facilitate our

discussion.

A. Problem Definition

A graph G is defined as G = (V,E,L), consisting of a

set of vertices V , a set of edges E, and a labeling function L
that assigns labels to vertices. A graph G′ = (V ′, E′, L′) is a

subgraph of graph G = (V,E, L) if V ′ is a subset of V , E′

is a subset of E, and L′(v) = L(v), for all v in V ′.

Definition 1 (Isomorphism). Two graphs Ga = (Va, Ea, La)
and Gb = (Vb, Eb, Lb) are isomorphic if there is a bijective

function f : Va ⇒ Vb such that (vi, vj) ∈ Ea if and only

if (f(vi), f(vj)) ∈ Eb and La(vi) = Lb(f(vi)), La(vj) =
Lb(f(vj)).

The subgraph matching problem is defined as finding all the

subgraphs in G that are isomorphic to a given query graph Q.

A continuous subgraph matching (CSM) procedure aims to

find the matching subgraphs of a given query in a dynamic

graph.

Conventionally, a dynamic graph is modeled as a sequence

of edge updates [(e0,⊕), (e1,⊕), . . .] applied to an initial

graph G0. Here, ei represents an edge, and the symbol ⊕
can be either + or −, meaning an edge insertion or deletion.

A newly inserted edge may consist of new vertices, while the

deleted edges only involve existing vertices. The edge updates

generate a sequence of graph snapshots [G0, G1, G2, . . .]
where Gk+1 = Gk ⊕ ek.

CSM can be conducted on a dynamic graph with either

single-edge updates or batch updates. In the single-edge set-

ting, a matching procedure is invoked at each edge update

(ek,⊕) to find all the subgraphs that contain ek. Depending

on whether ek is inserted or deleted, the subgraphs are either

added or deleted from the previous matching result. In the

batch setting, CSM computes the incremental subgraphs for a

batch of edges simultaneously. A more rigorous description of

the CSM algorithm is given below.

B. Worst-Case Optimal Join for CSM

It is well-known that subgraph matching on a static graph

can be considered as a multi-way join on graph edges [21],

[22], [23]. For example, matching Q in G0 in Fig. 1 is equiv-

alent to R(u0, u1) �� R(u0, u2) �� R(u1, u2) �� R(u1, u3) ��
R(u2, u3) where R(ui, uj) is a relation that contains the edges

in the data graph that can be mapped to the edge (ui, uj) in the

query graph. R(u0, u1) �� R(u0, u2) returns a list of subgraphs

with two edges connected on a common vertex mapped to

u0. Suppose the result of the first join is R(u0, u1, u2). We

can see that R(u0, u1, u2) �� R(u1, u2) returns the subgraphs

in R(u0, u1, u2) with the two vertices mapped to u1 and

u2 connected. Each join operation extends an edge on some

partially matched subgraphs until all the edges in the query

1047

// iterate over edges in G0 that

// match (u0, u1)
for ((x0, x1) ∈ E) {

//x2 is connected to x0 and x1

for (x2 ∈ N(x0) ∩ N(x1)) {

//x3 is connected to x1 and x2

for (x3 ∈ N(x1) ∩ N(x2)) {

output(x0, x1, x2, x3); } } }

(a) Matching Q on G0

//iterate over edges in ∆E that

//match (u0, u1)
for ((x0, x1) ∈ ∆E) {

//∆R1 joins with updated R′

2
, R′

3

for (x2 ∈ N ′(x0) ∩ N ′(x1)) {

//and with updated R′

4
, R′

5

for (x3 ∈ N ′(x1) ∩ N ′(x2)) {

output(x0, x1, x2, x3); } } }

(b) ∆M1

//iterate over edges in ∆E that

//match (u0, u2)
for ((x0, x2) ∈ ∆E) {

//∆R2 joins with R1 and R′

3

for (x1 ∈ N(x0) ∩ N ′(x2)) {

//and with updated R′

4
and R′

5

for (x3 ∈ N ′(x1) ∩ N ′(x2)) {

output(x0, x1, x2, x3); } } }

(c) ∆M2

//iterate over edges in ∆E that

//match (u1, u2)
for ((x1, x2) ∈ ∆E) {

//∆R3 joins with R1 and R3

for (x0 ∈ N(x1) ∩ N(x2)) {

//and with updated R′

4
and R′

5

for (x3 ∈ N ′(x1) ∩ N ′(x2)) {

output(x0, x1, x2, x3); } } }

(d) ∆M3

//iterate over edges in ∆E that

//match (u1, u3)
for ((x1, x3) ∈ ∆E) {

//∆R4 joins with R1

for (x0 ∈ N(x1)) {

//and with R2, R3, and updated R′

5

for (x2 ∈ N(x0) ∩ N(x1) ∩ N ′(x3)) {

output(x0, x1, x2, x3); } } }

(e) ∆M4

//iterate over edges in ∆E that

//match (u2, u3)
for ((x2, x3) ∈ ∆E) {

//∆R5 joins with R2

for (x0 ∈ N(x2)) {

//and with R1, R3, R4

for (x1 ∈ N(x0) ∩ N(x2) ∩ N(x3)) {

output(x0, x1, x2, x3); } } }

(f) ∆M5

Fig. 2: Continuous subgraph matching implemented as worst-case optimal join. E represents the edges in the initial graph.

∆E represents a batch of edge updates. N and N ′ represent the original and the updated neighbor lists respectively.

pattern are matched. More formally, for any query pattern Q,

its matching subgraphs in a data graph G can be computed as

��e(ux,uy)⊆E(Q) R(ux, uy) where E(Q) is the edge set of the

query graph and R(ux, uy) = {e(vx, vy) ⊆ E(G)|L(vx) =
L(ux) ∧ L(vy) = L(uy)}.

Based on the connection between subgraph matching and

multi-way join, CSM can be modeled as an Incremental View

Maintenance (IVM) problem [17], [18], which joins multiple

constantly updating tables R1, . . . , Rm where m is number

of edges in the query pattern. Instead of joining from scratch

after each update, it only computes an incremental join result

for the update. Suppose the update to relation Ri is ∆Ri and

R′
i = Ri +∆Ri is the table after the update. The incremental

join result ∆M can be computed as

∆M1 = ∆R1 �� R′
2 �� ... �� R′

m

∆Mi = R1 �� ... �� ∆Ri �� R′
i+1 �� ... �� R′

m

∆Mm = R1 �� R2 �� R3 �� ... �� ∆Rm

∆M =

n
⋃

i=1

∆Mi.

(1)

The formula can be verified by subtracting the join result

before the update (i.e., R1 �� ... �� Rn) from the join result

after the update (i.e., (R1 + ∆R1) �� ... �� (Rn + ∆Rn)).
Readers are referred to [13] for a more detailed explanation.

In continuous subgraph matching, Ri(ux, uy) is a relation

corresponding to an edge (ux, uy) in the query graph. ∆Ri

includes the updated edges (either added or deleted) that can

be mapped to (ux, uy).
Since CSM can be computed by multi-way joins, previous

work [13], [24] has employed worst-case optimal join (WCOJ)

algorithms (e.g., Leapfrog Triejoin [25]) for CSM. When

applied to subgraph matching, it joins multiple edge lists on a

common vertex at each step, instead of binary joining an edge

at each step. The algorithm can be expressed as nested loops,

as shown in Fig. 2. The loop in Fig. 2a matches Q in Fig. 1a on

the initial graph G0. The algorithm first iterates over all graph

edges that match (u0, u1). Since u2 is adjacent to both u0 and

u1, the nodes that match u2 can be computed by performing

a set intersection on N(x0) and N(x1). Next, since u3 is

connected to both u1 and u2, the nodes that match u3 can be

computed as the set intersection of N(x1) and N(x2). Once

all the pattern vertices are matched, the matching subgraph is

outputted in the innermost loop.

Since Q has five edges, we need five nested loops to com-

pute ∆M1 to ∆M5. Fig. 2b shows the nested loop for comput-

ing ∆M1. It iterates over all edges in ∆E that match (u0, u1),
which correspond to ∆R1 in (1). Because ∆R1(u0, u1)
joins with the updated R′

2(u0, u2), R′
3(u1, u2), R′

4(u1, u3),
R′

5(u2, u3), the program computes matching nodes for u2 by

performing set intersections on updated neighbor lists N ′(x0)
and N ′(x1). The matching nodes for u3 are also computed

with the updated neighbor lists. The remaining loops are

generated based on a similar argument.

It is known that the WCOJ algorithm has a time complexity

bounded by the worst-case output size of the join result [22].

Therefore, the join operations in Formula (1) has a time

complexity bounded by the size of ∆Mi, which follows the

AGM inequality [26]:

|∆Mi| ≤
i−1
∏

j=1

|Rj |
µj · |∆Ri|

µi ·
m
∏

j=i+1

|R′
j |
µj (2)

where μ = (μ1, . . . , μm) is a fractional edge cover of

the query pattern Q, which follows the constraints μj >
0, ∀j ∈ {1, . . . ,m} and ∀v ∈ V (Q),

∑

e∈E(Q),v∈e μe ≥ 1.

The time complexity of continuous subgraph matching is

O(
∑m

i=1 |∆Mi|).

C. CPU-GPU Communication

In a CPU-GPU system, the GPU is connected to CPU

through PCIe or NVLink. A program running on the GPU

can directly access its global memory. However, because the

size of the global memory is limited (typically 10∼30GB

1048

on a modern GPU), the data of a program may exceed the

GPU memory limit. In such cases, we must store data in the

CPU main memory and synchronize data between the CPU

and GPU. This is often referred to as “out-of-core” GPU

computation in the literature [27]. CUDA provides three ways

for CPU-GPU data communication[28]: 1) DMA, 2) unified

memory, and 3) zero-copy access.

The DMA API (cudaMemcpy) is efficient for transferring

large blocks of data between CPU and GPU. It uses a copy

engine to asynchronously move the data over PCIe rather than

loads and stores. It offloads the computing units on GPU, leav-

ing them free for other work. However, DMA is not efficient

for transferring small data because every DMA request incurs

an overhead for packing the data and setting up the communi-

cation. Unified memory enables a GPU kernel to access data

on the CPU directly, without explicit data transfer operations.

This is accomplished by allocating a chunk of managed

memory on the CPU (through cudaMallocManaged) and

mapping it into the GPU address space. When the GPU kernel

attempts to access the mapped data, the GPU automatically

transfers the pages that contain the data between the CPU and

GPU. This simplifies programming and supports caching for

the accessed pages. However, unified memory is not efficient

for fine-grained data access, as the data are always transferred

at page granularity (4KB), which wastes PCIe bandwidth. In

contrast, zero-copy is most suitable for fine-grained data access

between the CPU and GPU. It directly loads (or stores) data

on the CPU in cache lines (128B). Compared to DMA and

unified memory, it does not have the communication setup

overhead and only copies data that are needed. However, zero-

copy access stalls the GPU kernel. The GPU computing units

must wait for the data access to finish before it can continue

execution. Our system uses a combination of DMA and zero-

copy access for synchronizing graph data between CPU and

GPU and achieves high performance by caching the most

frequently accessed data on the GPU.

III. OVERVIEW OF GCSM

The goal of our system is to use GPU to accelerate the

computation in Fig. 2. Since previous work has mapped the

static matching procedure in Fig. 2a onto GPU [9], [8], [19],

[20], the focus of this work is to efficiently run the incremental

matching procedures (Fig. 2b-f) on GPU. The main challenge

is how to support real-world graphs that do not fit on GPU.

Our system is designed based on an important observation:

Although a batch of edges may have many vertices in its k-

hop neighborhood, only a small fraction of them are frequently

accessed during the matching procedure. Our experiments with

different input graphs and query patterns show that the top 5%

of most frequently accessed vertices account for over 80% of

the memory access (see Fig. 15a). This strong data locality

indicates that the program could greatly benefit from data

caching on the GPU if we can identify the most frequently

accessed vertices.

To obtain the most frequently accessed vertices, we propose

to run multiple random walks from the updated edges on the

���� � ���

�������������	
�	���

���
��
���
������
��
����

���
���
���������
	
�	
�
����

����
�	���������	
��
�
	������
����� ���
����
	
�

��
��
��!
	�
�

��������	
������

���������	�����

��������	��
�
	��	��������	
������

���������

��������	��
���

���

Fig. 3: Workflow of GCSM.

CPU. Our random walk strategy ensures that frequent vertices

are more likely to be accessed during sampling, and thus, the

sampled vertices have a large overlap with the most frequently

accessed vertices in the actual matching. In fact, we can obtain

an unbiased estimation of the access frequency of vertices

based on the sampling results. Details of our random walk

technique are described in Sec. IV.

Once the frequent vertices are obtained, their neighbor lists

are packed and sent to the GPU as cached data for exact

matching on GPU. During the matching procedure, GPU

accesses the neighbor lists from the cache whenever possible.

If a neighbor list is not cached on GPU, the GPU reads data

directly from CPU memory. The main challenge is how to

support efficient access to both the original and new neighbor

lists (N and N ′ in Fig. 2) and how to achieve efficient

data transfer for the dynamically updated neighbor lists from

CPU to GPU. We explain our data structure design and GPU

implementation in Sec. V.

Fig. 3 shows the workflow of our system. For every batch of

edge updates ∆Ek, our system maintains the dynamic graph

and performs incremental matching in five steps:

1 The edge updates ∆Ek are appended to the neighbor lists

of Gk on the CPU.

2 Multiple random walks from the updated edges are gen-

erated on the CPU to obtain a set of frequent vertices;

3 The neighbor lists of the frequent vertices are packed and

copied to the GPU;

4 An exact incremental matching procedure is executed on

the GPU;

5 The graph data are reorganized on the CPU to ensure the

neighbor lists of Gk+1 are sorted.

IV. OBTAINING FREQUENT VERTICES

An important step of our system is to identify the vertices

that can serve as the optimal cache data for the matching task

on GPU. The procedure should meet two requirements: 1) Its

overhead must be small compared to the exact matching on the

GPU; 2) To ensure good cache efficiency, the identified ver-

tices should have substantial overlap with the most frequently

1049

��

��

��� ��

��

��

��� ������ ��� ���� ���

���� ��� ���� ���

�� ��

(a) An example execution tree

��� ��

��

��� ��

���� ���

���� ���

���� ���

�����

�����

(b) Two sampled paths

Fig. 4: Sampling multiple paths from an execution tree.

accessed vertices during exact matching. To achieve these two

goals, we propose a frequency estimation technique based on

random walks on the graph.

A. Estimating Access Frequency with Random Walk

Consider the exact matching procedure in Fig. 2. The

execution of each nested loop can be depicted as a tree

structure where different tree levels represent different loop

levels and each tree node represents one iteration of the loop.

For example, Fig. 4a shows the execution tree of the nested

loop in Fig. 2b with G0 and ∆E from Fig. 1. The first tree

level contains two nodes representing the two edges (v3, v1)
and (v6, v4) in ∆E. (For simplicity of illustration, we did not

include the reverse edges (v1, v3) and (v4, v6) in the drawing.)

The node (v3, v1) has one child node v2 which represents the

intersection of N ′(v3) and N ′(v1). Similarly, the node (v6, v4)
has one child node v5 representing the intersection of N ′(v6)
and N ′(v4). The nodes in the third tree level represent the

iterations of the innermost loop in Fig. 2b. We differentiate a

‘node’ in the execution tree from a vertex in the graph. The

computation in each node of the tree requires accessing the

neighbor lists of multiple vertices, as shown in the parenthesis

in Fig. 4a.

Our main idea for obtaining frequent vertices with minimal

overhead is to sample multiple paths from the execution tree

instead of executing the entire tree. The sampling process can

be considered as conducting multiple random walks on the

data graph guided by the matching procedure. Specifically,

we start by randomly selecting one edge from ∆E, with a

probability of 1/|∆E|. From the sampled edge, we compute

the set of matching vertices V for the next pattern vertex. We

then randomly select one vertex from V , with a probability

of 1/|V |. After the matching vertex is selected, we decide

whether to continue the walk with a probability of |V |/D,

where D is the maximum degree of the data graph. Fig. 4b

shows two example paths sampled from the execution tree in

Fig. 4a.

During the random walk, we record the access to each vertex

at each step (shown in the parenthesis in Fig. 4b). Suppose a

random walk generates a path of k nodes in the execution

tree. We know that the first node is sampled at probability

1/|∆E|, and the remaining nodes are sampled at probability

(1/|Vi|) · (|Vi|/D) = 1/D. An unbiased estimation of the

access frequency of different vertices can be obtained as

C̃v =
k

∑

i=1

|∆E| ·Di−1 · cv,i. (3)

Here, cv,i is equal to 1 if vertex v is accessed in the ith node

of the random walk, and 0 otherwise.

Our random walk technique is reminiscent of the neighbor

sampling technique for approximate subgraph matching [29],

[30]. However, unlike the previous technique, which samples

an entire path of the execution tree and estimates the number

of subgraphs at the bottom level, our random walk may

stop at any level of the tree, and it estimates the access

frequency of vertices at all levels. It is clear that a single

random walk will not be sufficient for obtaining a good set

of frequent vertices. To reduce the estimation variance, we

generate multiple random walks and use the average of C̃v as

our estimate. The effectiveness of our method in identifying

frequent vertices is summarized below.

Theorem 1. Suppose the access frequency of two vertices x
and y are Cx and Cy in an exact matching procedure and Cx =
(1 + α)Cy with α > 0. The probability that our estimation

method incorrectly ranks y before x is bounded as

Pr[C̃x < C̃y] ≤
(n− 1)(2 + α)|∆E|Dn−2

α2MCy

. (4)

Here, n ≥ 2 is the pattern size, and M is the number of

generated random walks.

Formula (4) indicates that the probability of incorrect rank-

ing is smaller for vertices with a larger difference between Cx

and Cy . As more random walks are drawn (i.e., a larger M),

this probability can be decreased to an arbitrarily small value.

To achieve an estimation that correctly ranks the vertices with

confidence δ, we set the right-hand side of (4) to be ≤ 1− δ
and compute the minimum number of random walks needed

to achieve the confidence level:

M ≥
(n− 1)(2 + α)|∆E|Dn−2

α2(1− δ)Cy

. (5)

Assuming the query pattern size n is a constant w.r.t. the input

graph size, a random walk takes constant time. Formula (5)

represents the time complexity of our estimation algorithm.

The formula indicates that fewer random walks are needed

for more frequent vertices (i.e., vertices with larger Cy).

Since Cy is unknown before the matching procedure, in

practice, we can set M to a small value initially. Once we

obtain the estimated access frequency of different vertices

based on the M random walks, we can set Cy in (5) to the

smallest estimated frequency and check if our initial M is

large enough. If not, we calculate a new M based on (5),

collect more samples, and re-estimate the access frequency.

Proof. For each node t at level i of the execution tree, we

define a variable yt and let yt = 1 if v is accessed in node t,
and yt = 0 if v is not accessed. The number of accesses to v
in an exact matching can be written as Cv =

∑n

i=1

∑

t∈Si
yt,

1050

where Si represents all nodes at level i of the tree. We then

define a random variable Yt and let Yt = yt if tree node t
is sampled in a single walk, and Yt = 0 if it is not sampled.

We can see that E[Yt] = Ptyt + (1 − Pt) · 0 = Ptyt where

Pt = 1/(|∆E|·Di−1), and the cv,i in (3) is equal to
∑

t∈Si
Yt.

It follows that

E[C̃v] = E

[

k
∑

i=1

|∆E| ·Di−1 · cv,i

]

= E

[

n−1
∑

i=1

∑

t∈Si

Yt

Pt

]

=
n−1
∑

i=1

∑

t∈Si

E

[

Yt

Pt

]

=

n−1
∑

i=1

∑

t∈Si

yt = Cv.

(6)

This validates that our estimation of access frequency in (3) is

unbiased. The variance of Yt is Pt(yt−Ptyt)
2+(1−Pt)(0−

Ptyt)
2 = (1− Pt)Pty

2
t . It follows that

Var[C̃v] = Var

[

n−1
∑

i=1

∑

t∈Si

Yt

Pt

]

≤ (n− 1)
n−1
∑

i=1

Var

[

∑

t∈Si

Yt

Pt

]

≤ (n− 1)
n−1
∑

i=1

(

|∆E|Di−1
∑

t∈Si

y2t

)

≤ (n− 1)|∆E|Dn−2Cv.

(7)

The third step above is due to the independent sampling of

t ∈ Si. According to the law of large numbers, the sample

average of M random walks converges to the expected value

Cv and its variance is Var[C̃v]/M . Next, we define a random

variable e = C̃ − C. It is easy to see that Pr[C̃x < C̃y] =
Pr[ex− ey −E[ex− ey] < −αCy]. According to Chebyshev’s

inequality [31], we have

Pr[C̃x < C̃y] ≤
Var[ex − ey]

α2C2
y

=
Var[C̃x] + Var[C̃y]

α2C2
y

. (8)

Plugging (7) into (8), we obtain (4).

B. Multiple Random Walks with One Single Execution

According to (4), we need to generate many random walks

to achieve a confident estimation. If we run the nested loop for

each walk, the sampling process will be slow due to redundant

set operations and poor data locality between different runs. To

accelerate the process, we propose a novel implementation that

merges multiple random walks into one single execution of the

nested loop. Specifically, at the beginning of each iteration at

loop level i, we generate a random number Bi to indicate the

number of times the iteration is sampled in the M runs. Since

the random walk samples a loop iteration (i.e., a neighboring

node) with a fixed probability at each step, the number of times

a node is sampled (i.e., Bi) follows a binomial distribution.

It is obvious that B1 follows a binomial distribution with

the number of trials M and sampling probability 1/|∆E|. If

B1 ≥ 1, which means the iteration is sampled at least once, we

continue to the second loop level. If B1 = 0, which means the

iteration is not sampled in the M runs, we skip the iteration

and proceed to the next iteration in the first loop. Similarly, for

an iteration at loop level i, the number of times it is executed

�� ��

�� �� ��

�� �� �� �� �� ��

�� ��

�� �� ���

�� �� ��

��� ��
���	���

���
�

Fig. 5: Maintenance of graph data structure on the CPU for

the graph update in Fig. 1. New edges (colored in green) are

appended to the end of corresponding neighbor lists; Deleted

edges (colored in orange) are marked as negative values.

follows a binomial distribution with the number of trials Bi−1

and sampling probability 1/D. This simulated execution is

equivalent to M independent random walks but with much

better data locality and no redundant set operations.

We keep updating the estimated frequency of different

vertices based on (3) without materializing the random walks,

so the space complexity of our estimation procedure is O(|V |).

V. EXACT INCREMENTAL MATCHING WITH CACHED DATA

ON GPU

The main task of our system is to compute the exact

incremental matching result on the GPU. The computation

involves set operations on both the original and updated

neighbor lists, as shown in the nested loop in Fig. 2. To achieve

high performance, we need to 1) efficiently access the neighbor

lists with minimal data transfer between the CPU and GPU,

2) perform fast set intersection on the neighbor lists, and 3)

efficiently update the graph data on the CPU. This section

describes the key designs and implementations of our system

to achieve the goals.

A. Graph Data Structure on CPU

We store the data graph as adjacency lists in CPU

memory, as shown in Fig. 5. For each vertex, we al-

locate a contiguous memory space on the CPU (using

cudaHostAlloc) to store its neighbors. Then, we map

the allocated memory into the GPU address space (using

cudaHostGetDevicePointer). Two arrays are used to

store the addresses of the neighbor lists: one (pHost) for the

CPU addresses and one (pDevice) for the GPU addresses. The

CPU addresses are used by the CPU to maintain the graph

data structure. The GPU addresses are used by the GPU for

accessing the neighbor lists during the matching procedure.

Upon each graph update, the following four steps are executed

on the CPU:

1) The new edges are appended to the end of their corre-

sponding neighbor lists. To achieve fast edge insertion, we

preallocate the array of each neighbor list to double the

size of the initial number of neighbors. If an array is full,

1051

a new array with double capacity will be allocated and

initialized with the existing data. This ensures an average

of O(1) time complexity for edge insertion.

2) If new vertices are added, we allocate an array with an

initial size of the average degree of the graph for each new

vertex. The CPU and GPU addresses of the new arrays are

appended to the end of pHost and pDevice. Similar to the

neighbor lists, we preallocate some extra space for pHost
and pDevice to achieve efficient insertion of new vertices.

3) The edges to be deleted are marked. In our implementation,

we simply set the neighbor index v to −v to indicate the

edge is removed. Since the neighbor lists are always sorted

after an update, each edge deletion can be done with a

binary search on the neighbor list.

4) Each updated neighbor list is reorganized by removing the

deleted edges and sorting the remaining elements. This step

can be done with a merge-sort procedure in linear time for

each updated neighbor list.

B. Data Preparation for GPU

�� ��������

����	� ����
 ��� ��
��� ��

�	 ��
����� �	 �� ���

Fig. 6: Graph data sent to

GPU in DCSR format.

During the graph update on

the CPU, our system selects

the most frequent vertices

based on the estimated fre-

quency and packs their neigh-

bor lists into a contiguous

chunk of memory. The data

is stored in a Doubly Com-

pressed Sparse Row (DCSR) format, which consists of three

arrays: rowidx, rowptr, and colidx. The rowidx array, which

is sorted by vertex indices, records selected vertices. The

colidx array stores the neighbors of the selected vertices

contiguously. For a vertex with an un-updated neighbor list,

we simply copy the neighbor list to the array. For an updated

neighbor list, we copy the data after Step-3 above. That is,

the deleted neighbors are marked, and the new neighbors are

appended to the end of the list. The rowptr array stores

the offsets of the neighbor lists in colidx. Each entry in

rowptr stores two offsets: one for the starting location of the

original neighbor list, and one for the starting location of the

appended new neighbors. If a selected vertex does not have

new neighbors, the second offset is set to -1.

Fig. 6 shows an example of the DCSR data structure with

the graph update in Fig. 5. Suppose v3 and v4 are selected

for caching. The two vertex indices are stored in rowidx, and

their neighbor lists are stored in colidx. The neighbors of v3
start from location 0, and the new neighbor starts from location

1, so its offset is rowptr[0] = (0, 1). The neighbors of v4 start

from location 2, and there is no new neighbor, so its offset is

rowptr[0] = (2,−1). The last entry of rowptr indicates the

length of colidx.

Note that the sizes of the three arrays are known before data

copying. The lengths of rowidx and rowptr are determined

by the number of selected vertices, and the length of colidx
is determined by the sum of degrees of selected vertices. This

allows us to allocate the three arrays contiguously with a single

memory allocation on the CPU and send the packed data to

GPU global memory with a single DMA transaction.

C. Parallel Incremental Matching on GPU

Once the data is cached on GPU, a GPU kernel for

incremental matching is invoked to execute the nested loops in

Fig. 2. We build the kernel on top of a recent GPU subgraph

matching system called STMatch [9]. The system reportedly

achieves state-of-the-art performance for static matching tasks

on a GPU by managing the intermediate data using a stack

data structure and incorporating a series of code optimization

techniques.

To adapt STMatch for incremental matching, the first mod-

ification we make is to support access to both the original and

new neighbor lists in the matching procedure (denoted as N
and N ′ in Fig. 2). Since the new neighbors are appended to the

end of each neighbor list, we can treat N ′ as N ∪∆N where

∆N are the appended neighbors, and perform set operations

involving N ′ separately for N and ∆N . Since N and ∆N
are sorted, we can exploit the existing code optimizations in

STMatch (including code motion and unrolled set intersection

with SIMD parallelism [9]) for each term on the right-hand

side. For a neighbor list with deleted edges, since the deleted

neighbors are marked by negative values, we simply skip the

negative indices when accessing N ′.

The second adaptation we need to make is to efficiently

utilize the data cached on the GPU. STMatch assumes that

the entire graph is stored on GPU, and it only accesses GPU

global memory for neighbor lists. In our setting, most of the

graph data is maintained on the CPU, and only a small number

of selected vertices are cached on the GPU. To access data

from the GPU cache whenever possible, we need to look up

the vertex in the cache before every access. This can be done

efficiently by performing a binary search on the rowidx array

in Figure 6. If the target vertex is found in rowidx, we load

its neighbors from the corresponding location in colidx on the

GPU. If the target vertex is not found in rowidx, we obtain

the starting address of the vertex’s neighbor list on the CPU

(from the pDevice array in Figure 5), and then load the data

from the CPU memory by GPU zero-copy access.

To ensure that the matching procedure accesses consistent

data, the graph reorganization on CPU (Step-4 in Sec. V-A) is

conducted after the matching is completed on the GPU. Our

experiments show that the overhead of graph reorganization is

negligible compared to the matching task.

VI. EXPERIMENTAL RESULTS

This section provides an evaluation of GCSM by compar-

ing it with three naive GPU implementations and two CPU

systems.

A. Experimental Setup

Platform: Our experiments are conducted on a CPU-GPU

system with two Intel Xeon Gold 6226R 2.9GHz CPUs (32

cores in total) and an Nvidia RTX3090 GPU. The GPU is

connected to the CPUs through PCIe. The CPUs have 512GB

1052

TABLE I: Data graphs.

Graph # Vertices # Edges Max deg. Size (GB)

Amazon (AZ) 0.4M 2.4M 1367 0.019

RoadNetPA (PA) 1.08M 1.5M 9 0.022

RoadNetCA (CA) 1.96M 2.7M 12 0.037

LiveJournal (LJ) 3.1M 77.1M 18311 0.308

Friendster (FR) 65.6M 3612M 5214 28.9

SF3K-fb (SF3K) 33.4M 5824M 4328 46.4

SF10K-fb (SF10K) 100.2M 18809M 4485 151.1

(a) Q1 (b) Q2 (c) Q3

(d) Q4 (e) Q5 (f) Q6

Fig. 7: Query graphs.

RAM, and the GPU has 24GB global memory. The test

platform runs a Ubuntu-20.04. Our system was developed in

C++ and CUDA (which is the language provided by Nvidia

to program its GPUs). All the CPU code was compiled using

GCC 9.4.0 with O3 optimization, and the GPU code was

compiled using NVCC 11.2.

Datasets and query graphs: Table I lists the data graphs

used in our experiments. Among the data graphs, AZ, LJ,

PA, CA, and FR are from the SNAP dataset [32], while

SF3K and SF10K are random graphs generated by the LDBC

graphalytics [33]. Following the existing research on streaming

graphs [15], [34], [16], we generate dynamic graphs from

static graphs. For FR, SF3K, and SF10K, we randomly select

12 × 8192 edges from each data graph to construct the edge

updates. For AZ, LJ, PA, and CA, we randomly select 10% of

edges from the original graph, following the settings in [15],

[34]. Each selected edge is marked as either insertion or

deletion with equal probability. The edges marked for insertion

are removed from the data graph. If all the incident edges of a

vertex are removed, the vertex is also removed from the graph.

We use six query graphs from size-5 to size-7, as shown in

Fig. 7.

Baselines: We compare our system with four naive GPU

implementations. The first implementation (UM) uses GPU

unified memory. All the neighbor lists of the data graph are

allocated as unified memory on the CPU and are directly

accessed by the GPU kernel in pages during the matching

procedure. The second GPU implementation (ZP) uses GPU

zero-copy access. All the neighbor lists are allocated as pinned

memory on the CPU and are mapped to the GPU address

space. The GPU kernel can directly access the neighbor lists

on the CPU in cache lines. The third GPU implementation

(VSGM) employs the caching technique proposed in [20],

which copies the neighbor lists of all k-hop neighbors of

the updated edges onto the GPU before matching. During the

matching, the GPU kernel only accesses GPU memory. The

fourth GPU baseline (Naive) adopts a similar configuration

to our system. It caches the neighbor lists of certain nodes

on the GPU while keeping most of the graph data in CPU

memory. However, it uses node degree as an estimate of access

frequency. For a fair comparison, all the GPU versions use the

same GPU kernel adapted from STMatch [9] for the matching

task.

We also compare our system with two CPU baselines. The

first baseline is RapidFlow (RF) [15], which is a state-of-

the-art continuous subgraph matching system on the CPU

featuring optimized matching order. To achieve the matching

order optimization, RapidFlow uses an index data structure

to store the candidate vertices for each pattern vertex. The

index data structure consumes a lot of memory and causes

system crashes for large graphs. Therefore, we compare our

system with RapidFlow only using small graphs (AZ and LJ)

for which RapidFlow does not crash on our platform. To show

the benefit of GPU processing for large graphs, we implement

a CPU system based on the nested loops in Fig. 2, which

always start the matching process from the updated edges. For

a fair comparison, our CPU code uses the same stack-based

implementation [9] and the same matching order as our GPU

code.

Settings: We execute the GPU code by launching 82 thread

blocks, each containing 1024 threads on the GPU. The CPU

code is run with 32 CPU threads. The original code of Rapid-

Flow was single-threaded, so we parallelized its outermost

loop that iterates over the candidate vertices for the first pattern

vertex. Our CPU code is also parallelized at the outermost loop

that iterates over the updated edges. For our GPU system,

we set the number of random walks M to |∆E|Dn−2/32n.

Since the matching kernel (STMatch) uses about 10GB GPU

memory, the maximum GPU buffer size is set to 14GB. Nodes

with the highest estimated frequency are cached in the GPU

buffer. In all our testcases, the neighbor lists of all nodes

sampled by the random walk procedure take less than 2GB and

fit in the GPU buffer. Since a node is sampled at least once,

this means that nodes with an estimated frequency greater or

equal to |∆E| are cached on GPU.

B. Comparison with Naive GPU Implementations

Fig. 8 to Fig. 11 show the average execution time of

different implementations for one batch of edge updates.

For different data graphs and query patterns, our system is

consistently faster than the naive zero-copy implementation

(ZP), achieving 1.4 to 2.9x speedups, with an average of

1.81x. The speedups are due to the reduced data access to

the neighbor lists on the CPU. As labeled in the figures, our

caching mechanism reduces the CPU memory access by 1.3x

to 6.7x times compared with naive zero-copy.

The overhead of estimating frequent vertices and copying

their neighbor lists to GPU (i.e., Step-2 and Step-3 in Fig. 3)

are included in the execution time of GCSM in Fig. 8 to Fig. 10.

Details of the breakdown overhead are given in Table II. We

can see that the overhead of frequency estimation is small,

accounting for less than 10% of the total execution time

1053

	

	

�		

�
	

�		

�

� �

�
��
��

�
�
��

�
��

��
��
�
�
��

��
�
��
��

�

�!��

��� "#��

(a) Q1

	

�

�

�	

�

�
�
� �

�

�
�
�	

�
�
�

�����

����� �����

(b) Q2

�

��

��

��

��

��

��

��

$�

�
�
� �

�

�
�
�	

�
�
�

�����

����������

(c) Q3

	

�		

"		

�		

�		

�			

��		

�

� �

�
��
��

�
�
��

�
��

��
��
�
�
��

��
�
��
��

�

�"��
��"��

�����

(d) Q4

%

�%%%

�%%%

�%%%

�%%%

�%%%

�%%%

�
�
� �

�

�
�
�	

�
�
�

�	����

�����

������

(e) Q5

%

�%%

�%%

�%%

%%

�%%%

��%%

��%%

�
�
� �

�

�
�
�	

�
�
�

�����

��

�����

(f) Q6

Fig. 8: Execution time for matching different query patterns

from a batch of 4096 edges on FR graph. Data access sizes

from CPU are labeled on each bar.

&

&

�&&

�
&

�&&

�

� �

�
��
��

�
�
��

�
��

��
��
�
�
��

��
�
��
��

�

�"��
����

����

(a) Q1

�

�

�

�

�

�
�
� �

�

�
�
�	

�
�
�

�����

 ����

�����

(b) Q2

�

�

�

�

�
�
� �

�

�
�
�	

�
�
�

�� ��

 ����

�����

(c) Q3

	

�	

�	

�	

'	

�		

��	

��	

�

� �

�
��
��

�
�
�	

��

��
��
�
�
��

��
�
��
��

�

�����

(��

�	(��

(d) Q4

%

�%

�%

�%

�%

�%

�%

�%

�
�
� �

�

�
�
��
�

�
�
�

�%���

����

����

(e) Q5

�

�

�

�

�

��

��

��

��

�
�
� �

�

�
�
��
�

�
�
�

����

�����

����

(f) Q6

Fig. 9: Execution time for matching different query patterns

from a batch of 4096 edges on SF3K graph.

in most cases. The percentage decreases as the pattern size

becomes larger. The overhead of copying the neighbor lists

of frequent vertices to GPU is also small, accounting for less

than 5% of total execution time in most cases.

The results also indicate that the naive caching policy based

on node degree (Naive) is ineffective. Its performance is

almost the same as zero-copy (which accesses all data from

CPU memory). This is because the access of nodes during the

matching procedure depends on the query pattern and updated

edges. Having a high node degree does not necessarily result

in more frequent access.

Continuous subgraph matching exhibits data locality not

only because most real-world graphs have a skewed degree

distribution, but also because the matching is performed on

small batches of updated edges. The performance results on

RoadNetPA and RoadNetCA (where all nodes have a small

degree) validate that our system is still efficient when the input

)

�)

�))

��)

�))

��)

))

�

� �

�
��
��

�
�
�	

��

��
��
�
�
��

��
�
��
��

�

�� ��

�)���

�����

(a) Q1

�

�

�

�

�

�
�
� �

�

�
�
��
�

�
�
�

�����

�����

������

(b) Q2

�

�

�

�

�
�
� �

�

�
�
��
�

�
�
�

������

�����

����

(c) Q3

)

�)

�))

��)

�))

��)

�

� �

�
��
��

�
�
�	

��

��
��
�
�
��

��
�
��
��

�

�!���

�����

�� ��

(d) Q4

!

��

���

���

���

�
�
� 	

�

�
�

�

�
�
��

�����

�����

�����

(e) Q5

�

�

��

��

��

��

��

�
�
� 	

�

�
�

�

�
�
��

����

����

����

(f) Q6

Fig. 10: Execution time for matching different query patterns

from a batch of 8192 edges on SF10K graph.

�

��

��

��

��

��

�
�� �

�

�
��
�

�
�
��

�
�
�
�
�
��
�
�
��
��

	
�

�
��

����
����

����

(a) PA-MC3

��

���

���

���

���

���

�
�
	

�

�
�

�
�

�
�
��

�	��������

�����

(b) PA-MC4

�

	��

��

���

���

��

���

���

���

�
�
� �

�

�
�
��
�

�
�
��

���� ����

�����

(c) PA-MC5

	

	

�	

�	

	

�	

�
�� ��

��
��

�
�
��

�
��

��
��
�
�
��
��

�
��
�

 !

����������
�����

(d) CA-MC3

�

��

���

���

"��

"��

���

�
�
� �

�

�
�
��
�

�
�
��

����������

�����

(e) CA-MC4

�

	��

��

���

���

��

���

���

���

�
�
� �

�

�
�
��
�

�
�
��

�
�� �
��

�����

(f) CA-MC5

Fig. 11: Execution time for counting size-3, 4, and 5 motifs

on RoadNetPA and RoadNetCA. The batch size is set to 4096.

graph is less skewed. As shown in Fig. 11, GCSM achieves

1.6x to 2.0x speedups against the zero-copy implementation

and 1.6x to 2.1x speedups against the naive caching policy.

Note that we tested the performance with all size-3, 4, and

5 motifs instead of specific patterns in this case because the

listed patterns in Fig. 7 rarely exist in the road nets.

We also test the performance of naive unified memory

implementation (UM). The execution time is not plotted in the

figures because it is much longer than other versions, making

the figures out of scale. For the test cases in Fig. 8 to Fig. 11,

UM is 69x to 210x slower than the naive zero-copy.

To compare with VSGM, which copies all k-hop neighbors

of the updated edges onto GPU, we have to use smaller batch

sizes (128 for SF3K and 64 for SF10K) to fit the data into

GPU memory. Figure 13 shows the breakdown of execution

time for processing one batch of edge updates with both VSGM

and GCSM. We can see that the subgraph matching kernel

takes almost the same amount of time in GCSM as in VSGM,

indicating that our system incurs little overhead of CPU data

1054

�

�

��

��

��

��

*�+�	�+
��	*���	 ��� ��
 ��*
	

�
��

�
��
�
�
��

��
�
��
��

�

���
������

�

�����

���	

��+

���

���
��� ��� ��� ��* ��*

(a) SF3K-Q6

�

��

���

���

���������������� ��� ��� ��� ��

�������� �

!�

�""�

����

�#�

�#�

�#�
�#� �#� �#� �#� �#�

(b) SF10K-Q5

Fig. 12: Execution time of different batch size for matching

Q6 on SF3K graph and Q5 on SF10K graph. The speedups

of GCSM against zero-copy are marked above the line.

TABLE II: Overhead of frequency estimation (FE) and data

copying (DC) in percentage of total execution time.

FR SF3K SF10K

FE DC FE DC FE DC

Q1 5.1% 1.6% 3.2% 2.1% 2.2% 1.7%

Q2 15.0% 3.6% 14.2% 6.5% 8.1% 4.3%

Q3 0.6% 0.1% 17.3% 5.3% 8.2% 12.7%

Q4 0.3% 0.1% 0.8% 0.4% 0.5% 0.6%

Q5 0.2% 0.1% 1.2% 0.5% 0.9% 0.6%

Q6 0.1% 0.1% 3.7% 0.8% 5.3% 1.7%

access. Although VSGM avoids accessing data from the CPU

entirely, it requires copying much more data to the GPU before

the matching process. This results in a much longer data copy

time and thus much worse overall performance.

To show the efficiency of our system on different batch

sizes, we test the performance with eight batch sizes from

8192 to 64 on SF3K and SF10K. As shown in Fig. 12, the

execution time is almost proportional to the batch size. Our

system achieves 1.8x to 2.9x speedups (with an average of

2.1x) against zero-copy, and 1.6x to 2.8x speedups (with an

average of 1.9x) against the naive degree-based cache policy.

C. Comparison with CPU Implementations

The execution time of our CPU implementation is included

in Fig. 8 to Fig. 10. The CPU implementation is slower

than the naive zero-copy implementation on GPU (for most

cases), validating the benefit of GPU processing for subgraph

matching. Our system achieves speedups ranging from 1.4x

to 11.4x, with an average of 4.1x, compared to the CPU

implementation.

The RapidFlow system runs out of CPU memory when

storing candidate vertices on the three large graphs. There-

fore, we compare the performance with RapidFlow using

two smaller graphs (AZ and LJ). The results are shown in

Fig.14. RapidFlow achieves comparable performance to our

CPU implementation in most cases, validating the efficiency

of our CPU baseline. However, due to its optimized matching

order, RapidFlow can be up to 7.7x faster than our CPU

implementation in some cases. This performance advantage

of RapidFlow is at the cost of extra memory consumption

for storing the candidate vertices for each pattern vertex.

Nevertheless, our GPU system outperforms RapidFlow by 1.6x

$

%

�

�

#

�

�

�

���� ����

�
#
�
�
�
&�
�
$
��
��

�
��
��
�	

�

�
���

(a) SF3K-Q1

�

���

���

���

���

�	
� �
��

���

(b) SF3K-Q2

�

���

���

���

���

��

�	
� �
��

����

(c) SF3K-Q3

�

�

�

�

�

��

���� ����

�
��
��
��
�
�
��
��

�
��
��
��

	

�
���

(d) SF10K-Q1

�

���

���

���

�	
� �
��

����

(e) SF10K-Q2

�

���

���

���

���

��

�	
� �
��

��
�

(f) SF10K-Q3

Fig. 13: Breakdown execution time of VSGM and GCSM.

‘DC’ includes the time for identifying the caching vertices and

copying their neighbor lists to GPU. ‘Match’ is the matching

kernel execution time on GPU.

�

���

���

���

���

���

�� ��� ���	

�
�"
�'
��
�
�
��
��

�
��
	�

�

(a) LJ-Q1

�

��

��

#�

��

���

� ��� ����

(b) LJ-Q2

�

��

����

�
��

� ��� ����

(c) LJ-Q3

�

���

���

���

���

�

�� ��� ���	

�
��

�
��
�
�
��
��

�
��
	�

�

(d) AZ-Q4

�

���

���

���

���

�

� ��� ����

(e) AZ-Q5

�

���

���

��#

���

� ��� ����

(f) AZ-Q6

Fig. 14: Performance comparison with RapidFlow.

to 4.4x in all cases. It will be interesting to reduce the memory

consumption of RapidFlow and incorporate its matching order

optimization into our system. We will leave the problem for

future work.

D. Effectiveness of Frequency Estimation

To show the effectiveness of our random walk technique

in identifying frequent vertices, we calculate the coverage of

accessed vertices within the GPU cache. Suppose S is the set

of most frequently accessed vertices during the exact matching

process and T is the set of vertices cached on the GPU. The

coverage is calculated as |S ∩ T |/|S|.
Figure 15b shows the coverage results for different test

cases at varying percentages of the most frequent vertices.

For SF3K, the coverages for the top 1% to top 5% frequent

vertices are nearly 100%. For SF10K, we achieve coverage of

more than 90% for the top 1% frequent vertices and coverage

of about 75% for the top 5% frequent vertices. For FR graph,

our method identifies all of the top 1% frequent vertices and

more than 91% of the top 5% frequent vertices. The coverage

1055

�

���

��

��!

%

%� � � ��
�
�

��
��
�
��

��
�
��
�
�
�	

�

�������	
������
���������������������

�������

������	

���
����

���
����

����

�����

(a) Memory Access Distribution

�

����

���

����

�

�� �� ��� ��� ��� ����

�
�
�
�
��

�

��������
������
���������������������

(b) Cache Coverage

Fig. 15: Memory access distribution and cache coverage of

incremental matching.

TABLE III: Graph reorganization time (in milliseconds).

|∆E| = 4096 |∆E| = 8192

AZ 1.5 3.4

PA 0.8 1.5

CA 0.9 1.5

LJ 3.1 8.4

FR 7.9 8.8

SF3K 5.8 6.4

SF10K 6.7 9.5

decreases as percentage of vertices increases. However, since

more than 80% memory access is made to the top-5% vertices

(as shown in Fig. 15a), the cached data on GPU can save most

of the accesses to CPU during the matching process.

E. Graph Reorganization Overhead

So far we have evaluated Step-1 to Step-4 of our system

shown in Fig. 3. The last step of our system is to reorganize

the graph data on CPU. It involves removing the deleted edges

and sorting all the updated neighbor lists. While our system

is not designed to achieve the best performance for edge

insertion and deletion, We find the overhead of graph update

is almost negligible compared to the matching process. As

shown in Table III, the average time of graph reorganization

for a batch of edge updates is no more than a few milliseconds,

which is much smaller than the matching time in Fig. 8 to

Fig. 11. The graph reorganization overhead reduces as the

batch size decreases, and it is always negligible compared to

the matching time for batch sizes from 64 to 8192.

VII. RELATED WORKS

Static subgraph matching: The study of static subgraph

matching dates back to Ullmann [3], which proposes the

first backtracking algorithm for the task. Following Ullmann’s

work, many studies [4], [5], [35] propose optimizations for

the matching order to improve performance. They show that

a carefully selected matching order can greatly reduce the

search space of the algorithm. Automine [36] is a compiler

system that converts the backtracking algorithm into nested

loops and applies various loop optimization techniques to

accelerate the matching process. Another line of research treats

subgraph matching as multi-way join operations and improves

the performance by optimizing the join plans [24], [21], [13].

With the development of GPUs, many efforts have been made

to utilize the massive parallelism of GPU to accelerate static

subgraph matching [37], [23], [19], [8], [9]. CuTS [8] aims

to solve the large memory consumption issue by introducing

a hybrid BFS-DFS execution strategy. However, it faces a

trade-off between memory consumption and load balance. To

address these problems, STMatch [9] proposes a stack-based

data structure to store intermediate subgraphs and employ

work-stealing to balance the workloads among computing

units on GPU. PBE [38] and VSGM [20] are two works

that focus on subgraph matching in distributed GPU systems,

allowing for matching on extremely large graphs.

Continuous subgraph matching: IncIsoMatch [12] is the

first work that supports continuous subgraph matching on a

dynamic graph. Give an edge update, IncIsoMatch finds the

region in the data graph affected by the update for a query and

performs the matching again in the region. Graphflow [13]

avoids the repeated matching for each graph update and

computes the incremental matching results by performing

multi-way join operations. SJ-Tree [14] uses binary joins with

indexes to evaluate incremental matching results. It stores par-

tial results to reduce computation costs, but this approach can

lead to a memory explosion when processing large graphs (sj-

tree). TurboFlux [16] proposes a data-centric graph structure

that optimizes the storage of partial results to achieve a better

balance between memory consumption and re-computation

overhead. Based on TurboFlux [16], SymBi [39] proposes can-

didate vertices set pruning using query edges. Rapidflow [15]

is a state-of-the-art continuous subgraph matching system on

CPU, which features an optimal matching order selection and

a dual matching technique to eliminate redundant computation

caused by automorphisms.

Graph sampling: Sampling techniques have been used for

graph pattern matching in previous works. Motivo uses graph

coloring and adaptive sampling to accelerate motif count-

ing [40]. ScaleMine [41] employs sampling to estimate the

workload of different branches of the exploration process

and uses the information to improve load balance. SampleM-

ine [42] proposes a framework for applying random sampling

to different graph mining tasks based on loop perforation.

C-SAW [43] is a library for defining various random walk

algorithms on GPU. All these works focus on static graphs.

To the best of our knowledge, our work is the first to apply

random sampling to continuous subgraph matching, aiming to

improve data access efficiency for GPU processing.

VIII. CONCLUSION

In this work, we propose a system that exploits GPU to

accelerate continuous subgraph matching. The main challenge

is how to reduce data access from the CPU. We address

the problem by identifying the most frequent vertices with

a random-walk technique and caching the frequently accessed

neighbor lists on GPU. Our experimental results show that

our system achieves significant speedups against existing CPU

solutions and supports CSM on extremely large graphs.

REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

1056

[2] S. Noel, “A review of graph approaches to network security analytics,”
From Database to Cyber Security, pp. 300–323, 2018.

[3] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of

the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[4] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved
algorithm for matching large graphs,” in 3rd IAPR-TC15 workshop on

graph-based representations in pattern recognition. Citeseer, 2001, pp.
149–159.

[5] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification
hardness: An efficient algorithm for testing subgraph isomorphism,”
Proc. VLDB Endow., vol. 1, no. 1, p. 364–375, Aug. 2008. [Online].
Available: https://doi.org/10.14778/1453856.1453899

[6] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “Efficient subgraph
matching: Harmonizing dynamic programming, adaptive matching
order, and failing set together,” in Proceedings of the 2019 International

Conference on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1429–1446.
[Online]. Available: https://doi.org/10.1145/3299869.3319880

[7] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proceedings of the 2016

International Conference on Management of Data, 2016, pp. 1199–1214.

[8] L. Xiang, A. Khan, E. Serra, M. Halappanavar, and A. Sukumaran-
Rajam, “cuts: scaling subgraph isomorphism on distributed multi-gpu
systems using trie based data structure,” in Proceedings of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis, 2021, pp. 1–14.

[9] Y. Wei and P. Jiang, “Stmatch: accelerating graph pattern matching
on gpu with stack-based loop optimizations,” in Proceedings of the

International Conference on High Performance Computing, Networking,

Storage and Analysis, 2022, pp. 1–13.

[10] S. Wang and T. Terano, “Detecting rumor patterns in streaming social
media,” in 2015 IEEE international conference on big data (big data).
IEEE, 2015, pp. 2709–2715.

[11] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou, “Real-
time constrained cycle detection in large dynamic graphs,” Proceedings

of the VLDB Endowment, vol. 11, no. 12, pp. 1876–1888, 2018.

[12] W. Fan, X. Wang, and Y. Wu, “Incremental graph pattern matching,”
ACM Transactions on Database Systems (TODS), vol. 38, no. 3, pp.
1–47, 2013.

[13] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu,
“Graphflow: An active graph database,” in Proceedings of the 2017 ACM

International Conference on Management of Data, 2017, pp. 1695–1698.

[14] S. Choudhury, L. Holder, G. Chin, K. Agarwal, and J. Feo, “A selectivity
based approach to continuous pattern detection in streaming graphs,”
arXiv preprint arXiv:1503.00849, 2015.

[15] S. Sun, X. Sun, B. He, and Q. Luo, “Rapidflow: an efficient approach to
continuous subgraph matching,” Proceedings of the VLDB Endowment,
vol. 15, no. 11, pp. 2415–2427, 2022.

[16] K. Kim, I. Seo, W.-S. Han, J.-H. Lee, S. Hong, H. Chafi, H. Shin,
and G. Jeong, “Turboflux: A fast continuous subgraph matching system
for streaming graph data,” in Proceedings of the 2018 international

conference on management of data, 2018, pp. 411–426.

[17] R. Ramakrishnan, J. Gehrke, and J. Gehrke, Database management

systems. McGraw-Hill New York, 2003, vol. 3.

[18] T. Griffin and L. Libkin, “Incremental maintenance of views with
duplicates,” in Proceedings of the 1995 ACM SIGMOD international

conference on Management of data, 1995, pp. 328–339.

[19] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “Gsi: Gpu-friendly
subgraph isomorphism,” in 2020 IEEE 36th International Conference

on Data Engineering (ICDE). IEEE, 2020, pp. 1249–1260.

[20] G. Jiang, Q. Zhou, T. Jin, B. Li, Y. Zhao, Y. Li, and J. Cheng, “Vsgm:
View-based gpu-accelerated subgraph matching on large graphs,” in
Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ser. SC ’22. IEEE Press,
2022.

[21] A. Mhedhbi and S. Salihoglu, “Optimizing subgraph queries by
combining binary and worst-case optimal joins,” arXiv preprint

arXiv:1903.02076, 2019.

[22] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case optimal join
algorithms,” Journal of the ACM (JACM), vol. 65, no. 3, pp. 1–40,
2018.

[23] H.-N. Tran, J.-j. Kim, and B. He, “Fast subgraph matching on large
graphs using graphics processors,” in International Conference on

Database Systems for Advanced Applications. Springer, 2015, pp. 299–
315.

[24] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré,
“Emptyheaded: A relational engine for graph processing,” ACM Trans-

actions on Database Systems (TODS), vol. 42, no. 4, pp. 1–44, 2017.
[25] T. L. Veldhuizen, “Leapfrog triejoin: A simple, worst-case optimal join

algorithm,” in Proc. International Conference on Database Theory,
2014.

[26] A. Atserias, M. Grohe, and D. Marx, “Size bounds and query plans for
relational joins,” in 2008 49th Annual IEEE Symposium on Foundations

of Computer Science. IEEE, 2008, pp. 739–748.
[27] K. Shirahata, H. Sato, and S. Matsuoka, “Out-of-core gpu memory

management for mapreduce-based large-scale graph processing,” in
2014 IEEE International Conference on Cluster Computing (CLUSTER),
2014, pp. 221–229.

[28] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,”
2020. [Online]. Available: https://developer.nvidia.com/cuda-toolkit

[29] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting
and sampling triangles from a graph stream,” Proceedings of the VLDB

Endowment, vol. 6, no. 14, pp. 1870–1881, 2013.
[30] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica,

“{ASAP}: Fast, approximate graph pattern mining at scale,” in 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18), 2018, pp. 745–761.
[31] L. Wasserman, All of statistics : a concise course in statistical inference.

New York: Springer, 2010.
[32] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, Jun. 2014.
[33] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Man-

hardto, H. Chafio, M. Capotă, N. Sundaram, M. Anderson et al., “Ldbc
graphalytics: A benchmark for large-scale graph analysis on parallel and
distributed platforms,” Proceedings of the VLDB Endowment, vol. 9,
no. 13, pp. 1317–1328, 2016.

[34] X. Sun, S. Sun, Q. Luo, and B. He, “An in-depth study of continuous
subgraph matching,” Proceedings of the VLDB Endowment, vol. 15,
no. 7, pp. 1403–1416, 2022.

[35] H. He and A. K. Singh, “Query language and access methods for graph
databases,” in Managing and mining graph data. Springer, 2010, pp.
125–160.

[36] D. Mawhirter and B. Wu, “Automine: harmonizing high-level abstraction
and high performance for graph mining,” in Proceedings of the 27th

ACM Symposium on Operating Systems Principles, 2019, pp. 509–523.
[37] L. Wang and J. D. Owens, “Fast gunrock subgraph matching (gsm) on

gpus,” arXiv preprint arXiv:2003.01527, 2020.
[38] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-accelerated

subgraph enumeration on partitioned graphs,” in Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data, 2020,
pp. 1067–1082.

[39] S. Min, S. G. Park, K. Park, D. Giammarresi, G. F. Italiano, and W.-
S. Han, “Symmetric continuous subgraph matching with bidirectional
dynamic programming,” arXiv preprint arXiv:2104.00886, 2021.

[40] M. Bressan, S. Leucci, and A. Panconesi, “Motivo: Fast motif counting
via succinct color coding and adaptive sampling,” Proc. VLDB Endow.,
vol. 12, pp. 1651–1663, 2019.

[41] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour,
“Scalemine: Scalable parallel frequent subgraph mining in a single large
graph,” in SC’16: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. IEEE,
2016, pp. 716–727.

[42] P. Jiang, Y. Wei, J. Su, R. Wang, and B. Wu, “Samplemine: A framework
for applying random sampling to subgraph pattern mining through loop
perforation,” in Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, 2022, pp. 185–197.
[43] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-saw: A framework

for graph sampling and random walk on gpus,” in SC20: International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2020, pp. 1–15.

1057

