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Abstract—Continuous subgraph matching (CSM) is a key
building block in many graph mining applications. Previous
research has primarily focused on CSM algorithms on CPU.
However, due to the dynamic nature of input graphs and the data
movement bottlenecks, it has been challenging to efficiently run
CSM on heterogeneous systems with GPUs. This work proposes
the first system that exploits GPU to accelerate CSM. The main
idea of our system is to cache the frequently accessed graph data
in GPU memory so that most of the data communication between
CPU and GPU can be avoided during the matching process.
To identify the frequent data, we propose an efficient frequency
estimation technique based on random walks on the input graph.
We also provide an end-to-end design that achieves efficient
dynamic graph updates on the CPU and efficient incremental
matching on the GPU. The experiments show that our system
significantly improves the performance of CSM compared to
existing CPU solutions and supports CSM on extremely large
graphs.

Index Terms—Continuous Subgraph Matching, GPU

I. INTRODUCTION

Subgraph matching, which involves finding all matches
of a query pattern () in a data graph G, is a fundamen-
tal task in graph analytics. It is widely used for retrieving
information from graph-structured data in various domains,
including bioinformatics [1], social network analysis [2], and
cybersecurity [2].

While subgraph matching on static graphs has been exten-
sively studied in the past decade [3], [4], [5], [6], [7], [8], [9],
there is a growing interest in supporting subgraph matching
on dynamic graphs. The task is often referred to as continuous
subgraph matching (CSM). Fig. 1 shows an example of CSM.
Given a data graph Gy and a query pattern (). Gy has one
subgraph (v, vy, v5, vg) that matches Q. If an edge (vy,v3) is
added to Gy, the updated graph (G; contains a new subgraph
(vo, v1,v2,v3) that matches Q. If the edge (vy4, vg) is removed
from G at the next step, the subgraph (va, vy, v5, vg) Will no
longer be a match of ) and should be removed from the
matching results.

CSM can be useful in many scenarios. For example, the
message transmission on a social network can be modeled as
a dynamic graph, and CSM can be used to detect the spread of
rumors [10]. The financial transactions among bank accounts
are also a dynamic graph, and CSM can be used to monitor
suspected transaction patterns such as money laundering [11].
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Fig. 1: An example of continuous subgraph matching.

Different algorithms and optimizations have been proposed
for CSM [12], [13], [14], [15]. An early work [12] simply
re-matches the query pattern on the data graph every time the
data graph is updated. More recent work [13], [14], [16], [15]
adopts an incremental matching approach, where the query
pattern is only matched on the updated edges of the data graph.
Their basic idea is to treat the dynamic data graph as multiple
constantly updating tables and model CSM as an Incremental
View Maintenance (IVM) problem [17], [18] (explained in
more detail in Sec. II).

Despite their different optimizations, the existing CSM
systems are all CPU-based. As subgraph matching is NP-
hard, it is always desirable to use GPU to accelerate the
computation. Although many GPU-based systems have been
proposed for static subgraph matching [19], [8], [9], utilizing
GPUs to accelerate continuous subgraph matching faces a
major challenge. Since the data graph is constantly updated
and can easily exceed the GPU memory capacity, we must
store the graph on CPU. A matching procedure on GPU
involves a lot of data access from the CPU, which can
significantly slow down the system.

Previous work [20] has proposed data caching for static
subgraph matching on large graphs that cannot fit on a GPU.
They divide the graph vertices into small bins and copy the
k-hop neighbors of vertices in each bin to the GPU for
processing. Here, k is the diameter of the query pattern,
which ensures that the vertices copied onto the GPU include
all vertices accessed in the matching process. Since many
vertices are accessed multiple times during matching, caching



them on the GPU reduces redundant accesses from the CPU
and achieves better performance than a naive implementation.
However, this method does not work for CSM. First, their
“bin packing” algorithm for dividing the vertices involves an
expensive clustering procedure. While the overhead can be
justified for static graphs because the k-hop neighbors can be
reused by different query patterns, it cannot be amortized in a
dynamic setting. Second, the k-hop neighbors of a small batch
of updated edges can still be very large and exceed the GPU
memory.

We propose a fine-grained data caching method to achieve
efficient continuous subgraph matching on a GPU for large
graphs. Our method is based on an important observation that
the vertices are accessed in a highly skewed frequency distribu-
tion, and most of the k-hop vertices are actually not accessed
during matching. Even within the accessed vertices, only a
tiny fraction is frequently accessed. If we select the vertices
that are frequently accessed and cache them on the GPU,
it will significantly reduce CPU-GPU data communication.
The remaining question is how to obtain the most frequently
accessed vertices for matching a batch of incoming edges.

To obtain the frequent vertices, we perform multiple random
walks from the updated edges on the data graph and estimate
the access frequency of different vertices on the CPU. Our ran-
dom walk strategy ensures that the estimated access frequency
is an unbiased estimation of the true access frequency. We then
copy the neighbor lists of the most frequently accessed vertices
to the GPU and run an exact incremental matching procedure
on GPU. Since the distribution of data access frequency is
highly skewed for real-world graphs, the matching process
only accesses data on GPU most of the time. If it requires
vertices that are not on the GPU, data can be accessed from the
CPU main memory through the GPU zero-copy mechanism.

In summary, we make the following contributions:

e Our work is the first to support continuous subgraph
matching on a CPU-GPU system and achieve state-
of-the-art performance by overcoming the data transfer
bottleneck between the CPU and GPU.

Our system provides an end-to-end design that supports
both efficient dynamic graph maintenance on the CPU
and efficient subgraph matching on the GPU.

We proposed an efficient random walk technique to
identify the most frequently accessed vertices for data
caching on GPU.

We developed an efficient CUDA kernel for incremental
subgraph matching on GPU.

We evaluated our system using a variety of query patterns
and input graphs and compared it with two CPU baselines and
four naive GPU implementations. The experiments show that
our system addresses the data movement bottleneck in naive
GPU implementations, and achieves 1.4x to 2.9x speedups
(with an average of 1.8x) against the best naive GPU version.
Our system also significantly outperforms the CPU baselines
(including a state-of-the-art CPU system [15]), achieving 1.4x
to 11.4x speedups (with an average of 4.1x) against the best
CPU implementation.
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II. BACKGROUND

This section gives a formal definition of the continuous
subgraph graph matching problem and describes a join-based
algorithm for solving the problem. We also provide a back-
ground on CPU-GPU data communication to facilitate our
discussion.

A. Problem Definition

A graph G is defined as G = (V, E, L), consisting of a
set of vertices V, a set of edges F, and a labeling function L
that assigns labels to vertices. A graph G’ = (V/, E', L") is a
subgraph of graph G = (V, E, L) if V' is a subset of V, E’
is a subset of F, and L'(v) = L(v), for all v in V",

Definition 1 (Isomorphism). Two graphs G, = (V,,, E,, L,)
and Gy = (V, Ep, Lp) are isomorphic if there is a bijective
function f : V, = V, such that (v;,v;) € Eq if and only
if (f(vi), f(vj)) € Ep and Lo(v;) = Ly(f(vi)), La(vj) =
Ly(f(v5))-

The subgraph matching problem is defined as finding all the
subgraphs in G that are isomorphic to a given query graph Q.
A continuous subgraph matching (CSM) procedure aims to
find the matching subgraphs of a given query in a dynamic
graph.

Conventionally, a dynamic graph is modeled as a sequence
of edge updates [(eq,P), (e1,),...] applied to an initial
graph Gy. Here, e; represents an edge, and the symbol &
can be either + or —, meaning an edge insertion or deletion.
A newly inserted edge may consist of new vertices, while the
deleted edges only involve existing vertices. The edge updates
generate a sequence of graph snapshots [Go,G1,Go,.. ]
where G411 = G @ ey.

CSM can be conducted on a dynamic graph with either
single-edge updates or batch updates. In the single-edge set-
ting, a matching procedure is invoked at each edge update
(ex,®) to find all the subgraphs that contain e;. Depending
on whether ey, is inserted or deleted, the subgraphs are either
added or deleted from the previous matching result. In the
batch setting, CSM computes the incremental subgraphs for a
batch of edges simultaneously. A more rigorous description of
the CSM algorithm is given below.

B. Worst-Case Optimal Join for CSM

It is well-known that subgraph matching on a static graph
can be considered as a multi-way join on graph edges [21],
[22], [23]. For example, matching @) in Gy in Fig. 1 is equiv-
alent to R(Uo,ul) X R(UO,UQ) X R(UI,UQ) X R(Ul,u?,) X
R(us,u3) where R(u;,u;) is a relation that contains the edges
in the data graph that can be mapped to the edge (u;,u;) in the
query graph. R(ug,u1) X R(ug,us) returns a list of subgraphs
with two edges connected on a common vertex mapped to
up. Suppose the result of the first join is R(ug,uy, us). We
can see that R(ug,u1,us) X R(uy,us) returns the subgraphs
in R(ug,uy,us) with the two vertices mapped to u; and
ug connected. Each join operation extends an edge on some
partially matched subgraphs until all the edges in the query



// iterate over edges in Gy that
// match (ug,u1)
for ((xo,z1) € E) {
//xo is connected to x¢ and 1
for (xg € N(zo) N N(z1)) {
//x3 is connected to xz; and xa
for (x3 € N(xz1) N N(xz2)) {
output (xo, 1, x2,x3); } } }

//iterate over edges in AFE that

//match (ug,u1)

for ((zo,z1) € AE) {
//ARy joins with updated R, R}
for (xa € N'(zo) N N'(z1)) {
//and with updated R}, R

for (x3 € N'(z1) N N'(z2)) {
output (zo, 1,22, 23); } } }

//iterate over edges in AFE that
//match (ug,us2)
for ((zo,z2) € AE) {
//ARs joins with R; and Rg
for (z1 € N(zo) N N'(z2)) {
//and with updated R} and Rj
for (x3 € N'(z1) N N'(z2)) {
output (zo, ®1,x2,23); } } }

(a) Matching @ on Go

(b) AM;

(c) AM3

//iterate over edges in AFE that
//match (u1,us)
for ((z1,w2) € AE) {
//AR3 joins with R; and Rs
for (xo € N(z1) N N(z2)) {
//and with updated R) and R
for (x3 € N'(z1) N N'(z2)) {
output (o, 1, %2,%3); } } }

//iterate over edges in AFE that
//match (u1,us)
for ((z1,73) € AE) {

//AR4 joins with Ry

for (xzg € N(z1)) {

//and with Ra, R3, and updated R}

for (w2 € N(zo) N N(z1) N N'(z3)) {
output (xo,®1,x2,3); } } }

//iterate over edges in AFE that
//match (uz,us)
for ((w2,x3) € AE) {

//ARs joins with Ra

for (xzg € N(z2)) {

//and with Ry, R3, R4

for (x1 € N(xzg) N N(z2) N N(z3))
output (zo, z1, T2, x3) ; }

(d) AMs3

(e) AM4

(H AMs

Fig. 2: Continuous subgraph matching implemented as worst-case optimal join. E represents the edges in the initial graph.
AF represents a batch of edge updates. N and N’ represent the original and the updated neighbor lists respectively.

pattern are matched. More formally, for any query pattern @),
its matching subgraphs in a data graph GG can be computed as
Me(uyu,)CB(Q) Uz, uy) where E(Q) is the edge set of the
query graph and R(ug,uy) = {e(vy,vy) C E(G)|L(vy) =
L(ug) A L(vy) = L(uy)}.

Based on the connection between subgraph matching and
multi-way join, CSM can be modeled as an Incremental View
Maintenance (IVM) problem [17], [18], which joins multiple
constantly updating tables Ry,..., R, where m is number
of edges in the query pattern. Instead of joining from scratch
after each update, it only computes an incremental join result
for the update. Suppose the update to relation R; is AR; and
R, = R; + AR, is the table after the update. The incremental
join result AM can be computed as

AM; = ARy ) Ry x ... x R,

AM; =Ry ... X\ AR; x Rj | M ... x R},
AM,, = Ry X Ry X R3 X ... x AR, (1)
AM = | ) AM;.
i=1

The formula can be verified by subtracting the join result
before the update (i.e., 1 X ... X R,) from the join result
after the update (i.e., (Ry + ARy) X ... X (R, + ARy,)).
Readers are referred to [13] for a more detailed explanation.
In continuous subgraph matching, R;(u,,u,) is a relation
corresponding to an edge (ug,u,) in the query graph. AR;
includes the updated edges (either added or deleted) that can
be mapped to (ug, uy).

Since CSM can be computed by multi-way joins, previous
work [13], [24] has employed worst-case optimal join (WCOJ)
algorithms (e.g., Leapfrog Triejoin [25]) for CSM. When
applied to subgraph matching, it joins multiple edge lists on a
common vertex at each step, instead of binary joining an edge
at each step. The algorithm can be expressed as nested loops,
as shown in Fig. 2. The loop in Fig. 2a matches () in Fig. la on
the initial graph G. The algorithm first iterates over all graph
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edges that match (ug, u1). Since usg is adjacent to both v and
w1, the nodes that match uy can be computed by performing
a set intersection on N(zp) and N(z1). Next, since ugz is
connected to both u; and wus, the nodes that match us can be
computed as the set intersection of N(x1) and N(x3). Once
all the pattern vertices are matched, the matching subgraph is
outputted in the innermost loop.

Since @ has five edges, we need five nested loops to com-
pute AM; to AM;. Fig. 2b shows the nested loop for comput-
ing AM;. It iterates over all edges in AFE that match (ug, u1),
which correspond to AR; in (1). Because AR;(ug,uq)
joins with the updated R (ug,us2), R5(u,us2), Rj(u,us),
R (u2,us3), the program computes matching nodes for uy by
performing set intersections on updated neighbor lists N'(z)
and N'(z1). The matching nodes for ug are also computed
with the updated neighbor lists. The remaining loops are
generated based on a similar argument.

It is known that the WCOJ algorithm has a time complexity
bounded by the worst-case output size of the join result [22].
Therefore, the join operations in Formula (1) has a time
complexity bounded by the size of AM;, which follows the
AGM inequality [26]:

i—1 m
AM;| < [ 1Ry - AR T 1Ry

j=1 j=i+1

2

where = (u1,...,4m) is a fractional edge cover of
the query pattern @, which follows the constraints p; >

0,vj € {1,...,m} and Vv € V(Q)7Ze€E(Q),v€e:u’€ > 1.
The time complexity of continuous subgraph matching is

O(CiLy [AM]).

C. CPU-GPU Communication

In a CPU-GPU system, the GPU is connected to CPU
through PCle or NVLink. A program running on the GPU
can directly access its global memory. However, because the
size of the global memory is limited (typically 10~30GB



on a modern GPU), the data of a program may exceed the
GPU memory limit. In such cases, we must store data in the
CPU main memory and synchronize data between the CPU
and GPU. This is often referred to as “out-of-core” GPU
computation in the literature [27]. CUDA provides three ways
for CPU-GPU data communication[28]: 1) DMA, 2) unified
memory, and 3) zero-copy access.

The DMA API (cudaMemcpy) is efficient for transferring
large blocks of data between CPU and GPU. It uses a copy
engine to asynchronously move the data over PCle rather than
loads and stores. It offloads the computing units on GPU, leav-
ing them free for other work. However, DMA is not efficient
for transferring small data because every DMA request incurs
an overhead for packing the data and setting up the communi-
cation. Unified memory enables a GPU kernel to access data
on the CPU directly, without explicit data transfer operations.
This is accomplished by allocating a chunk of managed
memory on the CPU (through cudaMallocManaged) and
mapping it into the GPU address space. When the GPU kernel
attempts to access the mapped data, the GPU automatically
transfers the pages that contain the data between the CPU and
GPU. This simplifies programming and supports caching for
the accessed pages. However, unified memory is not efficient
for fine-grained data access, as the data are always transferred
at page granularity (4KB), which wastes PCle bandwidth. In
contrast, zero-copy is most suitable for fine-grained data access
between the CPU and GPU. It directly loads (or stores) data
on the CPU in cache lines (128B). Compared to DMA and
unified memory, it does not have the communication setup
overhead and only copies data that are needed. However, zero-
copy access stalls the GPU kernel. The GPU computing units
must wait for the data access to finish before it can continue
execution. Our system uses a combination of DMA and zero-
copy access for synchronizing graph data between CPU and
GPU and achieves high performance by caching the most
frequently accessed data on the GPU.

III. OVERVIEW OF GCSM

The goal of our system is to use GPU to accelerate the
computation in Fig. 2. Since previous work has mapped the
static matching procedure in Fig. 2a onto GPU [9], [8], [19],
[20], the focus of this work is to efficiently run the incremental
matching procedures (Fig. 2b-f) on GPU. The main challenge
is how to support real-world graphs that do not fit on GPU.

Our system is designed based on an important observation:
Although a batch of edges may have many vertices in its k-
hop neighborhood, only a small fraction of them are frequently
accessed during the matching procedure. Our experiments with
different input graphs and query patterns show that the top 5%
of most frequently accessed vertices account for over 80% of
the memory access (see Fig. 15a). This strong data locality
indicates that the program could greatly benefit from data
caching on the GPU if we can identify the most frequently
accessed vertices.

To obtain the most frequently accessed vertices, we propose
to run multiple random walks from the updated edges on the
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Fig. 3: Workflow of GCSM.

CPU. Our random walk strategy ensures that frequent vertices
are more likely to be accessed during sampling, and thus, the
sampled vertices have a large overlap with the most frequently
accessed vertices in the actual matching. In fact, we can obtain
an unbiased estimation of the access frequency of vertices
based on the sampling results. Details of our random walk
technique are described in Sec. IV.

Once the frequent vertices are obtained, their neighbor lists
are packed and sent to the GPU as cached data for exact
matching on GPU. During the matching procedure, GPU
accesses the neighbor lists from the cache whenever possible.
If a neighbor list is not cached on GPU, the GPU reads data
directly from CPU memory. The main challenge is how to
support efficient access to both the original and new neighbor
lists (N and N’ in Fig. 2) and how to achieve efficient
data transfer for the dynamically updated neighbor lists from
CPU to GPU. We explain our data structure design and GPU
implementation in Sec. V.

Fig. 3 shows the workflow of our system. For every batch of
edge updates AE}, our system maintains the dynamic graph
and performs incremental matching in five steps:

@

The edge updates A E, are appended to the neighbor lists
of G, on the CPU.

Multiple random walks from the updated edges are gen-
erated on the CPU to obtain a set of frequent vertices;
The neighbor lists of the frequent vertices are packed and
copied to the GPU;

An exact incremental matching procedure is executed on
the GPU;

The graph data are reorganized on the CPU to ensure the
neighbor lists of G are sorted.

@ ® @ ©

IV. OBTAINING FREQUENT VERTICES

An important step of our system is to identify the vertices
that can serve as the optimal cache data for the matching task
on GPU. The procedure should meet two requirements: 1) Its
overhead must be small compared to the exact matching on the
GPU; 2) To ensure good cache efficiency, the identified ver-
tices should have substantial overlap with the most frequently
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Fig. 4: Sampling multiple paths from an execution tree.

accessed vertices during exact matching. To achieve these two
goals, we propose a frequency estimation technique based on
random walks on the graph.

A. Estimating Access Frequency with Random Walk

Consider the exact matching procedure in Fig. 2. The
execution of each nested loop can be depicted as a tree
structure where different tree levels represent different loop
levels and each tree node represents one iteration of the loop.
For example, Fig. 4a shows the execution tree of the nested
loop in Fig. 2b with Gy and AFE from Fig. 1. The first tree
level contains two nodes representing the two edges (vs,v1)
and (vg,v4) in AE. (For simplicity of illustration, we did not
include the reverse edges (v1,v3) and (v4,vg) in the drawing.)
The node (v3, v1) has one child node vy which represents the
intersection of N'(v3) and N’(vy). Similarly, the node (vg, v4)
has one child node v5 representing the intersection of N'(vg)
and N’(vy4). The nodes in the third tree level represent the
iterations of the innermost loop in Fig. 2b. We differentiate a
‘node’ in the execution tree from a vertex in the graph. The
computation in each node of the tree requires accessing the
neighbor lists of multiple vertices, as shown in the parenthesis
in Fig. 4a.

Our main idea for obtaining frequent vertices with minimal
overhead is to sample multiple paths from the execution tree
instead of executing the entire tree. The sampling process can
be considered as conducting multiple random walks on the
data graph guided by the matching procedure. Specifically,
we start by randomly selecting one edge from AFE, with a
probability of 1/|AE|. From the sampled edge, we compute
the set of matching vertices V' for the next pattern vertex. We
then randomly select one vertex from V, with a probability
of 1/|V|. After the matching vertex is selected, we decide
whether to continue the walk with a probability of |V|/D,
where D is the maximum degree of the data graph. Fig. 4b
shows two example paths sampled from the execution tree in
Fig. 4a.

During the random walk, we record the access to each vertex
at each step (shown in the parenthesis in Fig. 4b). Suppose a
random walk generates a path of k£ nodes in the execution
tree. We know that the first node is sampled at probability
1/|AE|, and the remaining nodes are sampled at probability
(1/|Vi) - (|Vi|/ D) 1/D. An unbiased estimation of the
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access frequency of different vertices can be obtained as

k
Co=Y |AE[-D" "¢y, (3)
i=1
Here, c, ; is equal to 1 if vertex v is accessed in the 7th node
of the random walk, and O otherwise.

Our random walk technique is reminiscent of the neighbor
sampling technique for approximate subgraph matching [29],
[30]. However, unlike the previous technique, which samples
an entire path of the execution tree and estimates the number
of subgraphs at the bottom level, our random walk may
stop at any level of the tree, and it estimates the access
frequency of vertices at all levels. It is clear that a single
random walk will not be sufficient for obtaining a good set
of frequent vertices. To reduce the estimation variance, we
generate multiple random walks and use the average of C,, as
our estimate. The effectiveness of our method in identifying
frequent vertices is summarized below.

Theorem 1. Suppose the access frequency of two vertices x
and y are C,; and C), in an exact matching procedure and C, =
(1 4+ a)C, with a > 0. The probability that our estimation
method incorrectly ranks y before x is bounded as

(n—1)(2 + a)|AE| D2
a?MC, ’

Here, n > 2 is the pattern size, and M is the number of
generated random walks.

Pr[C, < C,] < 4

Formula (4) indicates that the probability of incorrect rank-
ing is smaller for vertices with a larger difference between C,
and Cy. As more random walks are drawn (i.e., a larger M),
this probability can be decreased to an arbitrarily small value.
To achieve an estimation that correctly ranks the vertices with
confidence 4, we set the right-hand side of (4) to be <1—§
and compute the minimum number of random walks needed
to achieve the confidence level:

(n—1)(2 + a)|AE| D2
a2(1-0)C, ’

Assuming the query pattern size n is a constant w.r.t. the input
graph size, a random walk takes constant time. Formula (5)
represents the time complexity of our estimation algorithm.
The formula indicates that fewer random walks are needed
for more frequent vertices (i.e., vertices with larger C).
Since C, is unknown before the matching procedure, in
practice, we can set M to a small value initially. Once we
obtain the estimated access frequency of different vertices
based on the A random walks, we can set C,, in (5) to the
smallest estimated frequency and check if our initial M is
large enough. If not, we calculate a new M based on (5),
collect more samples, and re-estimate the access frequency.

M > (&)

Proof. For each node t at level ¢ of the execution tree, we
define a variable y, and let y, = 1 if v is accessed in node ¢,
and y; = 0 if v is not accessed. The number of accesses to v
in an exact matching can be written as C,, = Y .| Dtes, Yo



where S; represents all nodes at level 7 of the tree. We then
define a random variable Y; and let Y; = y; if tree node ¢
is sampled in a single walk, and Y; = 0 if it is not sampled.
We can see that E[Y;] = Py, + (1 — P,) - 0 = Py, where
P, =1/(|AE|-D'""), and the ¢, ; in (3) is equal to ), .5 Y}
It follows that

k
E[C,) =E |3 |AE- D1 ec,, E[Zzﬂ
i=1 i=1tesS
n—1 n— (6)
-> 5| } S u-
i=1teS; i=1tes;

This validates that our estimation of access frequency in (3) is
unbiased. The variance of Y; is P;(y; — Pyy.)? + (1 — P,)(0 —

Pyy)? = (1 — P,)Py?. Tt follows that
Var[C,] = Var ZZ :| (n—1) ZVM Z
i=1tesS; tes;
n—1
<(n-1)> <|AED’ S yt> (n —1)|AE|D"2C,.
1=1 tesS;

)

The third step above is due to the independent sampling of
t € S;. According to the law of large numbers, the sample
average of M random walks converges to the expected value
C, and its variance is Var[C,]/M. Next, we define a random
variable ¢ = C' — C. It is easy to see that Pr[C, < C,] =
Prle; — ey, —Ele; —e,] < —aCy]. According to Chebyshev’s
inequality [31], we have

5 5 Varle, —e,]  Var[C,] + Var[C,]
Pr[C, < C,] < a2c2 yl _ w22 Y2 (8)
Plugging (7) into (8), we obtain (4).
O

B. Multiple Random Walks with One Single Execution

According to (4), we need to generate many random walks
to achieve a confident estimation. If we run the nested loop for
each walk, the sampling process will be slow due to redundant
set operations and poor data locality between different runs. To
accelerate the process, we propose a novel implementation that
merges multiple random walks into one single execution of the
nested loop. Specifically, at the beginning of each iteration at
loop level i, we generate a random number B; to indicate the
number of times the iteration is sampled in the M runs. Since
the random walk samples a loop iteration (i.e., a neighboring
node) with a fixed probability at each step, the number of times
a node is sampled (i.e., B;) follows a binomial distribution.
It is obvious that B; follows a binomial distribution with
the number of trials M and sampling probability 1/|AE|. If
By > 1, which means the iteration is sampled at least once, we
continue to the second loop level. If By = 0, which means the
iteration is not sampled in the M runs, we skip the iteration
and proceed to the next iteration in the first loop. Similarly, for
an iteration at loop level 7, the number of times it is executed
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pDevice

Fig. 5: Maintenance of graph data structure on the CPU for
the graph update in Fig. 1. New edges (colored in green) are
appended to the end of corresponding neighbor lists; Deleted
edges (colored in orange) are marked as negative values.

follows a binomial distribution with the number of trials B;
and sampling probability 1/D. This simulated execution is
equivalent to M independent random walks but with much
better data locality and no redundant set operations.

We keep updating the estimated frequency of different
vertices based on (3) without materializing the random walks,
so the space complexity of our estimation procedure is O(|V]).

V. EXACT INCREMENTAL MATCHING WITH CACHED DATA
ON GPU

The main task of our system is to compute the exact
incremental matching result on the GPU. The computation
involves set operations on both the original and updated
neighbor lists, as shown in the nested loop in Fig. 2. To achieve
high performance, we need to 1) efficiently access the neighbor
lists with minimal data transfer between the CPU and GPU,
2) perform fast set intersection on the neighbor lists, and 3)
efficiently update the graph data on the CPU. This section
describes the key designs and implementations of our system
to achieve the goals.

A. Graph Data Structure on CPU

We store the data graph as adjacency lists in CPU
memory, as shown in Fig. 5. For each vertex, we al-
locate a contiguous memory space on the CPU (using
cudaHostAlloc) to store its neighbors. Then, we map
the allocated memory into the GPU address space (using
cudaHostGetDevicePointer). Two arrays are used to
store the addresses of the neighbor lists: one (pHost) for the
CPU addresses and one (pDeuvice) for the GPU addresses. The
CPU addresses are used by the CPU to maintain the graph
data structure. The GPU addresses are used by the GPU for
accessing the neighbor lists during the matching procedure.
Upon each graph update, the following four steps are executed
on the CPU:

1) The new edges are appended to the end of their corre-
sponding neighbor lists. To achieve fast edge insertion, we
preallocate the array of each neighbor list to double the
size of the initial number of neighbors. If an array is full,



a new array with double capacity will be allocated and
initialized with the existing data. This ensures an average
of O(1) time complexity for edge insertion.

If new vertices are added, we allocate an array with an
initial size of the average degree of the graph for each new
vertex. The CPU and GPU addresses of the new arrays are
appended to the end of pHost and pDewvice. Similar to the
neighbor lists, we preallocate some extra space for pHost
and pDewvice to achieve efficient insertion of new vertices.
The edges to be deleted are marked. In our implementation,
we simply set the neighbor index v to —v to indicate the
edge is removed. Since the neighbor lists are always sorted
after an update, each edge deletion can be done with a
binary search on the neighbor list.

Each updated neighbor list is reorganized by removing the
deleted edges and sorting the remaining elements. This step
can be done with a merge-sort procedure in linear time for
each updated neighbor list.

2)

3)

4)

B. Data Preparation for GPU

During the graph update on
the CPU, our system selects
the most frequent vertices
based on the estimated fre-
quency and packs their neigh- colidx ’172
bor lists into a contiguous
chunk of memory. The data Fig. 6 Graph data sent to
is stored in a Doubly Com- GPU in DCSR format.
pressed Sparse Row (DCSR) format, which consists of three
arrays: rowidx, rowptr, and colidx. The rowidx array, which
is sorted by vertex indices, records selected vertices. The
colidx array stores the neighbors of the selected vertices
contiguously. For a vertex with an un-updated neighbor list,
we simply copy the neighbor list to the array. For an updated
neighbor list, we copy the data after Step-3 above. That is,
the deleted neighbors are marked, and the new neighbors are
appended to the end of the list. The rowptr array stores
the offsets of the neighbor lists in colidr. Each entry in
rowptr stores two offsets: one for the starting location of the
original neighbor list, and one for the starting location of the
appended new neighbors. If a selected vertex does not have
new neighbors, the second offset is set to -1.

Fig. 6 shows an example of the DCSR data structure with
the graph update in Fig. 5. Suppose vs and v, are selected
for caching. The two vertex indices are stored in rowidz, and
their neighbor lists are stored in colidz. The neighbors of v3
start from location 0, and the new neighbor starts from location
1, so its offset is rowptr[0] = (0, 1). The neighbors of vy start
from location 2, and there is no new neighbor, so its offset is
rowptr[0] = (2, —1). The last entry of rowptr indicates the
length of colidz.

Note that the sizes of the three arrays are known before data
copying. The lengths of rowidz and rowptr are determined
by the number of selected vertices, and the length of colidx
is determined by the sum of degrees of selected vertices. This
allows us to allocate the three arrays contiguously with a single

rowptr W
7/ N
vy |V5 I‘Vﬁ‘

V1
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memory allocation on the CPU and send the packed data to
GPU global memory with a single DMA transaction.

C. Parallel Incremental Matching on GPU

Once the data is cached on GPU, a GPU kernel for
incremental matching is invoked to execute the nested loops in
Fig. 2. We build the kernel on top of a recent GPU subgraph
matching system called STMatch [9]. The system reportedly
achieves state-of-the-art performance for static matching tasks
on a GPU by managing the intermediate data using a stack
data structure and incorporating a series of code optimization
techniques.

To adapt STMatch for incremental matching, the first mod-
ification we make is to support access to both the original and
new neighbor lists in the matching procedure (denoted as N
and N’ in Fig. 2). Since the new neighbors are appended to the
end of each neighbor list, we can treat N’ as N U AN where
AN are the appended neighbors, and perform set operations
involving N’ separately for N and AN. Since N and AN
are sorted, we can exploit the existing code optimizations in
STMatch (including code motion and unrolled set intersection
with SIMD parallelism [9]) for each term on the right-hand
side. For a neighbor list with deleted edges, since the deleted
neighbors are marked by negative values, we simply skip the
negative indices when accessing N'.

The second adaptation we need to make is to efficiently
utilize the data cached on the GPU. STMatch assumes that
the entire graph is stored on GPU, and it only accesses GPU
global memory for neighbor lists. In our setting, most of the
graph data is maintained on the CPU, and only a small number
of selected vertices are cached on the GPU. To access data
from the GPU cache whenever possible, we need to look up
the vertex in the cache before every access. This can be done
efficiently by performing a binary search on the rowidx array
in Figure 6. If the target vertex is found in rowidz, we load
its neighbors from the corresponding location in colidz on the
GPU. If the target vertex is not found in rowidz, we obtain
the starting address of the vertex’s neighbor list on the CPU
(from the pDevice array in Figure 5), and then load the data
from the CPU memory by GPU zero-copy access.

To ensure that the matching procedure accesses consistent
data, the graph reorganization on CPU (Step-4 in Sec. V-A) is
conducted after the matching is completed on the GPU. Our
experiments show that the overhead of graph reorganization is
negligible compared to the matching task.

VI. EXPERIMENTAL RESULTS

This section provides an evaluation of GCSM by compar-
ing it with three naive GPU implementations and two CPU
systems.

A. Experimental Setup

Platform: Our experiments are conducted on a CPU-GPU
system with two Intel Xeon Gold 6226R 2.9GHz CPUs (32
cores in total) and an Nvidia RTX3090 GPU. The GPU is
connected to the CPUs through PCle. The CPUs have 512GB



TABLE I: Data graphs.

Graph # Vertices | # Edges | Max deg. | Size (GB)

Amazon (AZ) 0.4M 2.4M 1367 0.019
RoadNetPA (PA) 1.08M 1.5M 9 0.022
RoadNetCA (CA) 1.96M 2.TM 12 0.037
LiveJournal (LJ) 3. 1M 77.1M 18311 0.308
Friendster (FR) 65.6M 3612M 5214 28.9
SF3K-fb (SF3K) 33.4M 5824M 4328 46.4
SF10K-fb (SFI10K) 100.2M 18809M 4485 151.1

(@ Q1 (b) Q2

(d) Q4 (e) Q5

Fig. 7: Query graphs.

RAM, and the GPU has 24GB global memory. The test
platform runs a Ubuntu-20.04. Our system was developed in
C++ and CUDA (which is the language provided by Nvidia
to program its GPUs). All the CPU code was compiled using
GCC 9.4.0 with O3 optimization, and the GPU code was
compiled using NVCC 11.2.

Datasets and query graphs: Table I lists the data graphs
used in our experiments. Among the data graphs, AZ, LJ,
PA, CA, and FR are from the SNAP dataset [32], while
SF3K and SF10K are random graphs generated by the LDBC
graphalytics [33]. Following the existing research on streaming
graphs [15], [34], [16], we generate dynamic graphs from
static graphs. For FR, SF3K, and SF10K, we randomly select
12 x 8192 edges from each data graph to construct the edge
updates. For AZ, L], PA, and CA, we randomly select 10% of
edges from the original graph, following the settings in [15],
[34]. Each selected edge is marked as either insertion or
deletion with equal probability. The edges marked for insertion
are removed from the data graph. If all the incident edges of a
vertex are removed, the vertex is also removed from the graph.
We use six query graphs from size-5 to size-7, as shown in
Fig. 7.

Baselines: We compare our system with four naive GPU
implementations. The first implementation (UM) uses GPU
unified memory. All the neighbor lists of the data graph are
allocated as unified memory on the CPU and are directly
accessed by the GPU kernel in pages during the matching
procedure. The second GPU implementation (ZP) uses GPU
zero-copy access. All the neighbor lists are allocated as pinned
memory on the CPU and are mapped to the GPU address
space. The GPU kernel can directly access the neighbor lists
on the CPU in cache lines. The third GPU implementation
(vsGM) employs the caching technique proposed in [20],
which copies the neighbor lists of all k-hop neighbors of
the updated edges onto the GPU before matching. During the
matching, the GPU kernel only accesses GPU memory. The
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fourth GPU baseline (Naive) adopts a similar configuration
to our system. It caches the neighbor lists of certain nodes
on the GPU while keeping most of the graph data in CPU
memory. However, it uses node degree as an estimate of access
frequency. For a fair comparison, all the GPU versions use the
same GPU kernel adapted from STMatch [9] for the matching
task.

We also compare our system with two CPU baselines. The

first baseline is RapidFlow (RF) [15], which is a state-of-
the-art continuous subgraph matching system on the CPU
featuring optimized matching order. To achieve the matching
order optimization, RapidFlow uses an index data structure
to store the candidate vertices for each pattern vertex. The
index data structure consumes a lot of memory and causes
system crashes for large graphs. Therefore, we compare our
system with RapidFlow only using small graphs (AZ and LJ)
for which RapidFlow does not crash on our platform. To show
the benefit of GPU processing for large graphs, we implement
a CPU system based on the nested loops in Fig. 2, which
always start the matching process from the updated edges. For
a fair comparison, our CPU code uses the same stack-based
implementation [9] and the same matching order as our GPU
code.
Settings: We execute the GPU code by launching 82 thread
blocks, each containing 1024 threads on the GPU. The CPU
code is run with 32 CPU threads. The original code of Rapid-
Flow was single-threaded, so we parallelized its outermost
loop that iterates over the candidate vertices for the first pattern
vertex. Our CPU code is also parallelized at the outermost loop
that iterates over the updated edges. For our GPU system,
we set the number of random walks M to |AE|D"~2/32".
Since the matching kernel (STMatch) uses about 10GB GPU
memory, the maximum GPU buffer size is set to 14GB. Nodes
with the highest estimated frequency are cached in the GPU
buffer. In all our testcases, the neighbor lists of all nodes
sampled by the random walk procedure take less than 2GB and
fit in the GPU buffer. Since a node is sampled at least once,
this means that nodes with an estimated frequency greater or
equal to |AF] are cached on GPU.

B. Comparison with Naive GPU Implementations

Fig. 8 to Fig. 11 show the average execution time of
different implementations for one batch of edge updates.
For different data graphs and query patterns, our system is
consistently faster than the naive zero-copy implementation
(ZP), achieving 1.4 to 2.9x speedups, with an average of
1.81x. The speedups are due to the reduced data access to
the neighbor lists on the CPU. As labeled in the figures, our
caching mechanism reduces the CPU memory access by 1.3x
to 6.7x times compared with naive zero-copy.

The overhead of estimating frequent vertices and copying
their neighbor lists to GPU (i.e., Step-2 and Step-3 in Fig. 3)
are included in the execution time of GCSM in Fig. 8 to Fig. 10.
Details of the breakdown overhead are given in Table II. We
can see that the overhead of frequency estimation is small,
accounting for less than 10% of the total execution time



N
o
o

=
@
=}

=
1S)
o

Execution Time (sec)

50 5168-48GB_____|
16GB
0
N R
W & é,?@\

(a) Q1
1200 6000
1000 5000

800 |-
600 |-
400 |-

B
200 -B8F---118GB24GH 1000 -
0

4000 |-
3000 -
2000 |-

Execution Time (sec)

& T & Tt
(d) Q4 (e) Q5 (f) Q6

Fig. 8: Execution time for matching different query patterns
from a batch of 4096 edges on FR graph. Data access sizes
from CPU are labeled on each bar.

o Rr N W &~ 0

N R @
& Tt

(a) QI

70
60
50
40
30
20
10

16
14
12
10

oN &~

Fig. 9: Execution time for matching different query patterns
from a batch of 4096 edges on SF3K graph.

in most cases. The percentage decreases as the pattern size
becomes larger. The overhead of copying the neighbor lists
of frequent vertices to GPU is also small, accounting for less
than 5% of total execution time in most cases.

The results also indicate that the naive caching policy based
on node degree (Naive) is ineffective. Its performance is
almost the same as zero-copy (which accesses all data from
CPU memory). This is because the access of nodes during the
matching procedure depends on the query pattern and updated
edges. Having a high node degree does not necessarily result
in more frequent access.

Continuous subgraph matching exhibits data locality not
only because most real-world graphs have a skewed degree
distribution, but also because the matching is performed on
small batches of updated edges. The performance results on
RoadNetPA and RoadNetCA (where all nodes have a small
degree) validate that our system is still efficient when the input
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Fig. 10: Execution time for matching different query patterns
from a batch of 8192 edges on SF10K graph.
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Fig. 11: Execution time for counting size-3, 4, and 5 motifs
on RoadNetPA and RoadNetCA. The batch size is set to 4096.

graph is less skewed. As shown in Fig. 11, GCSM achieves
1.6x to 2.0x speedups against the zero-copy implementation
and 1.6x to 2.1x speedups against the naive caching policy.
Note that we tested the performance with all size-3, 4, and
5 motifs instead of specific patterns in this case because the
listed patterns in Fig. 7 rarely exist in the road nets.

We also test the performance of naive unified memory
implementation (UM). The execution time is not plotted in the
figures because it is much longer than other versions, making
the figures out of scale. For the test cases in Fig. 8 to Fig. 11,
UM is 69x to 210x slower than the naive zero-copy.

To compare with VSGM, which copies all k-hop neighbors
of the updated edges onto GPU, we have to use smaller batch
sizes (128 for SF3K and 64 for SF10K) to fit the data into
GPU memory. Figure 13 shows the breakdown of execution
time for processing one batch of edge updates with both VSGM
and GCSM. We can see that the subgraph matching kernel
takes almost the same amount of time in GCSM as in VSGM,
indicating that our system incurs little overhead of CPU data

1054



150

--ZP

100

£ 15 “A-Naive

50

Execution Time

8192409620481024 512 256 128 64
Batch Size

(b) SFI0K-QS

81924096 20481024 512 256 128 64
Batch Size

(a) SF3K-Q6
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TABLE II: Overhead of frequency estimation (FE) and data
copying (DC) in percentage of total execution time.

FR SF3K SF10K
FE DC FE DC FE DC
Ql 51% | 1.6% 32% | 2.1% 2.2% 1.7%
Q2 | 150% | 3.6% 142% | 6.5% 8.1% 4.3%
Q3 0.6% | 0.1% 17.3% | 5.3% 82% | 12.7%
Q4 03% | 0.1% 0.8% | 0.4% 0.5% 0.6%
Q5 02% | 0.1% 12% | 0.5% 0.9% 0.6%
Q6 0.1% | 0.1% 3.7% | 0.8% 53% 1.7%

access. Although VSGM avoids accessing data from the CPU
entirely, it requires copying much more data to the GPU before
the matching process. This results in a much longer data copy
time and thus much worse overall performance.

To show the efficiency of our system on different batch
sizes, we test the performance with eight batch sizes from
8192 to 64 on SF3K and SF10K. As shown in Fig. 12, the
execution time is almost proportional to the batch size. Our
system achieves 1.8x to 2.9x speedups (with an average of
2.1x) against zero-copy, and 1.6x to 2.8x speedups (with an
average of 1.9x) against the naive degree-based cache policy.

C. Comparison with CPU Implementations

The execution time of our CPU implementation is included
in Fig. 8 to Fig. 10. The CPU implementation is slower
than the naive zero-copy implementation on GPU (for most
cases), validating the benefit of GPU processing for subgraph
matching. Our system achieves speedups ranging from 1.4x
to 11.4x, with an average of 4.1x, compared to the CPU
implementation.

The RapidFlow system runs out of CPU memory when
storing candidate vertices on the three large graphs. There-
fore, we compare the performance with RapidFlow using
two smaller graphs (AZ and LJ). The results are shown in
Fig.14. RapidFlow achieves comparable performance to our
CPU implementation in most cases, validating the efficiency
of our CPU baseline. However, due to its optimized matching
order, RapidFlow can be up to 7.7x faster than our CPU
implementation in some cases. This performance advantage
of RapidFlow is at the cost of extra memory consumption
for storing the candidate vertices for each pattern vertex.
Nevertheless, our GPU system outperforms RapidFlow by 1.6x
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Fig. 14: Performance comparison with RapidFlow.

to 4.4x in all cases. It will be interesting to reduce the memory
consumption of RapidFlow and incorporate its matching order
optimization into our system. We will leave the problem for
future work.

D. Effectiveness of Frequency Estimation

To show the effectiveness of our random walk technique
in identifying frequent vertices, we calculate the coverage of
accessed vertices within the GPU cache. Suppose S is the set
of most frequently accessed vertices during the exact matching
process and 7" is the set of vertices cached on the GPU. The
coverage is calculated as |S N T|/|S].

Figure 15b shows the coverage results for different test
cases at varying percentages of the most frequent vertices.
For SF3K, the coverages for the top 1% to top 5% frequent
vertices are nearly 100%. For SF10K, we achieve coverage of
more than 90% for the top 1% frequent vertices and coverage
of about 75% for the top 5% frequent vertices. For FR graph,
our method identifies all of the top 1% frequent vertices and
more than 91% of the top 5% frequent vertices. The coverage
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TABLE III: Graph reorganization time (in milliseconds).

|AE| = 4096 | |AE| = 8192
AZ 5 34
PA 03 s
CA 0.9 5
L] 31 84
FR 79 88
SF3K 58 64
SFI0K 6.7 95

decreases as percentage of vertices increases. However, since
more than 80% memory access is made to the top-5% vertices
(as shown in Fig. 15a), the cached data on GPU can save most
of the accesses to CPU during the matching process.

E. Graph Reorganization Overhead

So far we have evaluated Step-1 to Step-4 of our system
shown in Fig. 3. The last step of our system is to reorganize
the graph data on CPU. It involves removing the deleted edges
and sorting all the updated neighbor lists. While our system
is not designed to achieve the best performance for edge
insertion and deletion, We find the overhead of graph update
is almost negligible compared to the matching process. As
shown in Table III, the average time of graph reorganization
for a batch of edge updates is no more than a few milliseconds,
which is much smaller than the matching time in Fig. 8 to
Fig. 11. The graph reorganization overhead reduces as the
batch size decreases, and it is always negligible compared to
the matching time for batch sizes from 64 to 8192.

VII. RELATED WORKS

Static subgraph matching: The study of static subgraph
matching dates back to Ullmann [3], which proposes the
first backtracking algorithm for the task. Following Ullmann’s
work, many studies [4], [5], [35] propose optimizations for
the matching order to improve performance. They show that
a carefully selected matching order can greatly reduce the
search space of the algorithm. Automine [36] is a compiler
system that converts the backtracking algorithm into nested
loops and applies various loop optimization techniques to
accelerate the matching process. Another line of research treats
subgraph matching as multi-way join operations and improves
the performance by optimizing the join plans [24], [21], [13].
With the development of GPUs, many efforts have been made
to utilize the massive parallelism of GPU to accelerate static
subgraph matching [37], [23], [19], [8], [9]. CuTS [8] aims
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to solve the large memory consumption issue by introducing
a hybrid BFS-DFS execution strategy. However, it faces a
trade-off between memory consumption and load balance. To
address these problems, STMatch [9] proposes a stack-based
data structure to store intermediate subgraphs and employ
work-stealing to balance the workloads among computing
units on GPU. PBE [38] and VSGM [20] are two works
that focus on subgraph matching in distributed GPU systems,
allowing for matching on extremely large graphs.
Continuous subgraph matching: InclsoMatch [12] is the
first work that supports continuous subgraph matching on a
dynamic graph. Give an edge update, IncIsoMatch finds the
region in the data graph affected by the update for a query and
performs the matching again in the region. Graphflow [13]
avoids the repeated matching for each graph update and
computes the incremental matching results by performing
multi-way join operations. SJ-Tree [14] uses binary joins with
indexes to evaluate incremental matching results. It stores par-
tial results to reduce computation costs, but this approach can
lead to a memory explosion when processing large graphs (sj-
tree). TurboFlux [16] proposes a data-centric graph structure
that optimizes the storage of partial results to achieve a better
balance between memory consumption and re-computation
overhead. Based on TurboFlux [16], SymBi [39] proposes can-
didate vertices set pruning using query edges. Rapidflow [15]
is a state-of-the-art continuous subgraph matching system on
CPU, which features an optimal matching order selection and
a dual matching technique to eliminate redundant computation
caused by automorphisms.

Graph sampling: Sampling techniques have been used for
graph pattern matching in previous works. Motivo uses graph
coloring and adaptive sampling to accelerate motif count-
ing [40]. ScaleMine [41] employs sampling to estimate the
workload of different branches of the exploration process
and uses the information to improve load balance. SampleM-
ine [42] proposes a framework for applying random sampling
to different graph mining tasks based on loop perforation.
C-SAW [43] is a library for defining various random walk
algorithms on GPU. All these works focus on static graphs.
To the best of our knowledge, our work is the first to apply
random sampling to continuous subgraph matching, aiming to
improve data access efficiency for GPU processing.

VIII. CONCLUSION

In this work, we propose a system that exploits GPU to
accelerate continuous subgraph matching. The main challenge
is how to reduce data access from the CPU. We address
the problem by identifying the most frequent vertices with
a random-walk technique and caching the frequently accessed
neighbor lists on GPU. Our experimental results show that
our system achieves significant speedups against existing CPU
solutions and supports CSM on extremely large graphs.
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