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Abstract

This paper builds the theoretical foundations for dynamic mode decomposition (DMD) of control-affine dynamical systems
by leveraging the theory of vector-valued reproducing kernel Hilbert spaces (RKHSs). Specifically, control Liouville operators and
control occupation kernels are introduced to separate the drift dynamics from the input dynamics. A given feedback controller is
represented through a multiplication operator and a composition of the control Liouville operator and the multiplication operator
is used to express the nonlinear closed-loop system as a linear total derivative operator on RKHSs. A spectral decomposition of a
finite-rank representation of the total derivative operator yields a DMD of the closed-loop system. The DMD generates a model
that can be used to predict the trajectories of the closed-loop system. For a large class of systems, the total derivative operator is
shown to be compact provided the domain and the range RKHSs are selected appropriately. The sequence of models, resulting
from increasing-rank finite-rank representations of the compact total derivative operator, are shown to converge to the true system
dynamics, provided sufficiently rich data are available. Numerical experiments are included to demonstrate the efficacy of the

developed technique.
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I. INTRODUCTION

PECTRAL methods for identification of nonlinear systems utilize representations of unknown, finite-dimensional
nonlinear dynamics, in discrete or continuous time, as linear operators over infinite dimensional spaces (cf. [1]). In
the discrete-time case, this linear operator is a composition operator called the Koopman operator [2]. In the continuous time
case, it is a total derivative operator called the Liouville operator [3] (or the Koopman generator, in special cases where it
can be obtained as the limit of a sequence of Koopman operators with decreasing sample times [4, Section 7.5]). In dynamic
mode decomposition (DMD), trajectories of a dynamical system are used to construct a finite-rank representation of the

aforementioned linear operator [5]. The finite-rank representation is then diagonalized and the resultant eigenfunction and
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eigenvalues are used to provide a representation of the identity function. This representation provides the dynamic modes of
the system as vector-valued coefficients attached to the eigenfunctions. Thereafter, a state trajectory can be predicted as a sum
of exponential functions multiplied by the dynamic modes (cf. [3], [5], [6]).

The primary application area of Koopman spectral analysis of dynamical systems has been fluid dynamics, where DMD is
compared with proper orthogonal decomposition (POD) for nonlinear fluid equations (cf. [7]). DMD has also been employed in
the study of stability properties of dynamical systems [8], [9], neuroscience [10], financial trading [11], feedback stabilization
[12], optimal control [13], modeling of dynamical systems [14]-[16], and model-predictive control [17]. For a generalized
treatment of DMD as a Markov model, see [18].

Extensions of the idea of Koopman operator-based DMD to systems with control can be loosely categorized in three
categories: spectral analysis of the drift (zero-input) dynamics [19], input-parameterized Koopman operators [20], and
reformulation as an autonomous state-control dynamical system [21]. These methods rely on discretization of continuous-
time systems, either for computation (when Koopman operators are used), or for analysis (when Koopman generators are
used), and as such, are only applicable to systems that admit a globally well-defined discretization (i.e., systems that cannot
escape to infinity in finite time starting from any initial condition). When dealing with Koopman generators, the data required
for a spectral decomposition typically include the time derivative of the state, which is not generally available. Recently,
inspired by the notion of occupation measures [22] defined on Banach spaces of continuous functions, the authors in [23]
defined analogous objects on reproducing kernel Hilbert spaces (RKHSs). The so-called occupation kernels, when combined
with operators such as the Liouville operator, provide a method for spectral analysis of continuous-time systems directly,
without the need for discretization.

The paradigm shift afforded by occupation kernels arises through the consideration of the state trajectory as the fundamental
unit of data [23]. This paper, along with the preliminary results reported in [24], build on the foundations developed in [23] to
address DMD of control-affine dynamical systems. To address systems with control, the occupation kernels are augmented by
the control signals, resulting in the so-called control occupation kernels, and the Liouville operator is extended to include the
input dynamics, to yield the so-called control Liouville operator [24]. The extension in [24] utilizes the theory of vector-valued
RKHSs (vvRKHSs), introduced in [25] and [26], and extensively studied in a machine learning context in [27], [28], and
[29]. Multiplication operators that map between scalar-valued and vector-valued RKHSs are also utilized to define a total
derivative operator that represents the dynamics of the closed-loop system controlled using a feedback controller. Using the
control occupation kernels, the control Liouville operators, and the multiplication operators, a technique for discretization-free
DMD of control-affine, continuous-time, nonlinear systems is developed. The developed control-Liouville DMD (CLDMD) and
singular control-Liouville DMD (SCLDMD) methods yield a predictor that can predict the closed-loop behavior of a system
under any given locally Lipschitz continuous feedback controller by measuring its response to different open-loop control
signals.

The definitions of control occupation kernels and control Liouville operators used in this paper were first reported in the
conference paper [24]. In that paper, a finite-rank representation of the closed-loop total derivative operator is indirectly derived

through its adjoint. In this paper, a finite-rank representation of the closed-loop total differential operator is obtained directly,



resulting in a simpler DMD algorithm. Furthermore, this paper includes a novel singular value decomposition (SVD)-based
finite-rank representation of a new total derivative operator which converges in norm to the true operator with increasing rank
under a compactness assumption and given sufficiently rich data. Examples of general classes of nonlinear systems where the
new total derivative operators are compact are also provided to justify the compactness assumptions.

The paper is structured as follows. Section II formulates the prediction problem. Section III summarizes the overall approach.
Section IV introduces the concept of vvRKHSs. Section V introduces the control occupation kernels, the control Liouville
operators, and the multiplication operators needed to develop a representation of a closed-loop nonlinear system in terms of
linear operators on a set of Hilbert spaces. Section VI introduces an SVD-based approach to DMD. Section VII introduces an
eigendecomposition-based approach to DMD. Section VIII introduces the computational tools required to generate the finite-
rank representations. Section IX presents numerical experiments to validate the developed technique. Section X discusses the

results of the numerical experiments, and Section XI concludes the paper.

II. PROBLEM STATEMENT

Given Carathéodory solutions {7, : [0,T;] — R"}}, of a nonlinear control-affine system of the form

&= f(z) +g(@)ui(t), x(0) = 7u,(0) M

under Lebesgue measurable, bounded control inputs {u; : [0,7;] — R™}M,  the objective of this paper is to provide an

operator theoretic approach for the analysis of the closed loop system

b= f(@) + g(e)n(2) = Fu(w), @)

where © € R™ is the state, p : R® — R™ is a locally Lipschitz continuous feedback controller, f : R™ — R" and
g : R™ — R™ ™ are locally Lipschitz continuous functions corresponding to the drift dynamics and the control effectiveness
matrix, respectively, and & denotes the time derivative of x. The observed control trajectories and control inputs will allow
for the construction of a finite-rank representation of the so-called control Liouville operator, which is a generalization of the
Liouville operator introduced in [3].

Similar to the robot manipulator examples in [30] most Euler-Lagrange systems with invertible inertia matrices can be
expressed in the control-affine form. The Euler-Lagrange equations are used to describe a large class of physical systems
(cf. [31]), and as such, various methods for control and identification of nonlinear systems in the Euler-Lagrange form have
been studied in detail over the years (see, e.g., [32]-[34]). Since most physical systems of practical importance such as robot
manipulators [35] and ground, air, and maritime vehicles and vessels [30] have inertia matrices that are invertible over large

operating regions, control-affine models encompass a large class of physical systems.

III. OPERATORS AND DYNAMIC MODE DECOMPOSITION

In this section, the general idea behind the developed operator-theoretic DMD approach is introduced. The approach relies

on representation of a closed loop dynamical system as an operator that maps between suitable function spaces. For the



motivational discussion in this section, assume that given functions f, g, and p, and RKHSs ﬁd and ﬁT defined on a compact

set X C R™, there exist a set, D (Ap,) C Hy and a total derivative operator Ap, : D (Ap,) — H, such that

(R1) for all h € D (Ap,), Ap,h = %FM € H,, where % is a row vector, and .
(R2) hia; € D(Ap,) forall j =1,---,n, where hig = |h; 41, -+ hian| is the identity function, with components
defined as hiq ;(z) = z; for all z € X.

Note that the total derivative operator A, above is the Liouville operator (or the Koopman generator) with symbol F, = f+gpu
as defined in [3]. As such, a DMD of the closed loop system could be obtained using the methods presented in [3] provided
data generated by the closed loop system & = F,(x) is available. The objective in this paper is to develop a model of the
system using a feedback-agnostic data set. That is, given any feedback controller i : R™ — R™ and a data set recorded by
exciting the open-loop system & = f(z) + g(z)u using control signals v = u; : [0,T;] = R™, i =1,..., M, we aim to build

a predictive model of the closed loop system & = F),(z).

A. The Eigendecomposition Approach

If Hy = H,, ¢ is an eigenfunction of A, with eigenvalue A, and +, is a controlled trajectory arising from (2), then it

follows that

ACOOD 20, ) (1) +9 OO 0)

=[AF, 6] (7. (£)=A(7u (1))

Hence, ¢(7,(t)) = e*d(7,(0)).

If the the span of the eigenfunctions {¢;}{, of Ap, is dense in H,, then the identity function can be decomposed using
the eigenfunctions as hiq(x) = limas 00 Zi\il & mdi(x), where & ar € C™ are the dynamic modes of the closed loop system.

Moreover, it follows that

M
Yult) = hia(yu(t)) = im0 & ari(7(0))e™", 3)
i=1

where A; denotes the eigenvalue corresponding to the eigenfunction ¢;, and the coefficients &; s depend on M because the
eigenfunctions are not generally orthogonal.

If the eigenfunctions, the eigenvalues, and the modes could be computed from data, then a finite truncation of (3) could be
used as a predictive model. However, since the operator A, cannot generally be expected to be bounded, even the existence
of eigenfunctions cannot be guaranteed.

The idea in DMD is to construct a finite rank (say rank M) approximation (say A F,,m) of Ap,. Then, the eigenfunctions
{biar} M, the eigenvalues {\; rr}M,, and the modes {& s}, of Ap, v are computed and used as proxies in a finite
truncation of (3) to generate a predictive model.

If the operators A F,,M can be shown to converge to Ag, in the norm topology, then given any € > 0, there exists M
such that for all ¢ = 1,..., M, the pairs (éz M, /A\L M) are approximate eigenpairs for the true operator Ar,. That is, for all

t=1,...,M and for all x € X,

[A F, gi;l M} (z) — 5\1 Mél M (z)| < e. The approximate eigenpairs can then be used to obtain



a model that, given rich enough data and a large enough M, can accurately predict the system trajectories in X over a finite
horizon.

While requirements (R1) and (R2) above, compactness of the Liouville operator, and density of the eigenfunctions in H, are
difficult to guarantee in general, empirical evidence suggests that the eigenfunctions q@l M are expressive enough to approximate
hiq,; in a variety of applications [3]. Since q@l m are computed as linear combinations of reproducing kernels or occupation
kernels, the empirical evidence could be explained by the postulate that the approximate eigenfunctions inherit universality
properties of the reproducing kernels and the occupation kernels [23]. A theoretical examination of the expressiveness of the
approximate eigenfunctions for a specific operators, Hilbert spaces, and data set is out of the scope of this article.

Convergence of the finite-rank representation to the true operator in the norm topology is also typically impossible to guarantee
in the eigendecomposition-based DMD framework [3], [21]. As such, similar to most DMD techniques, the eigendecomposition
approach, while well-motivated by the theory presented in this paper, is a heuristic technique. On the other hand, as shown
in [36], obtaining norm convergence of finite rank representations to the true Liouville operator is possible in an SVD-based

framework.

B. The Singular Value Decomposition Approach

In the SVD-based framework, two different RKHSs fld and flr are selected as the domain and the co-domain of A Fuo
respectively. If the domain and the range RKHSs are selected carefully, then for a large class of nonlinear systems, the operator
AF, can be shown to be compact. Compactness trivially ensures satisfaction of Requirement (R1) above. Requirement (R2)
can be met by proper selection of Hy (see Section VI). Compactness also allows for the construction of the needed sequence
flp,“ M that converges to Ag, in the norm topology. The left and right singular functions of A F,,m can then be used to
generate a sequence of system models that converges to the true system model.

In particular, the closed-loop model & = f(x) + g(z)u(x) can be expressed in terms of the total derivative operator as

. Ohiq
i =

1
(@) | f(x T = [AF, hid] (), “)
O { (z) g( )} () F,hid

where the notation AFH hiq is used to denote the operator AFH acting on every row of the vector-valued function hjq. If
Afp, : Hy; — H, is a compact operator, then there exist singular values {o;};~; C R, left singular functions {¢;};~, C Hy,
and right singular functions {¢;};~, C H, such that
oo
&= 0i(hia, ) g, Vi), (&)
i=1

-
where the notation (hiq, ¢;) 7, is used to denote the n—vector {(hid L g, s ---» (hidm,®i)g, | - The idea in singular
’ d ’ d

DMD is to use the SVD of A F,,M as a proxy in a finite truncation of (5) to construct a predictive model.



C. Related Work

Operator-based DMD methods for systems with control can be loosely categorized in three categories: spectral analysis
of the drift (zero-input) dynamics [19], input-parameterized Koopman operators [20], and reformulation as an autonomous
state-control dynamical system [21].

If data can be collected for the system with zero inputs, or if the system is affine in control, then techniques such as dynamic
mode decomposition with control (DMDc) [14], sparse nonlinear system identification with control (SINDYc) [37], extended
dynamic mode decomposition with control (EDMDc) [21], bilinearization [38], etc., can be utilized to estimate eigenvalues
and eigenfunctions of the Koopman operator, or the Koopman generator, of the drift (zero-input) dynamics. In the case of
control-affine systems, the eigenvalues and eigenfunctions can also be utilized to solve a wide variety of problems including,
but not limited to, reachability [38], optimal control [39], model-based predictive control, [40], and observer synthesis [19].

A different approach to operator theoretic analysis of systems with control is via input-parameterized Koopman operators
[20]. The central idea in this family of methods is that if the input is constant, then the dynamical system is autonomous, and as
such, admits a Koopman operator. Given a set of possible input levels, an input-parameterized family of Koopman operators (or
generators) can thus be constructed [39]. This observation is particularly useful when utilized for spectral analysis of control-
affine systems, where Koopman generators are themselves affine in control. The state of the system can thus be predicted using
a linear combination of a finite number of input-parameterized Koopman generators [41]. In addition to motivating DMDc and
EDMDc, input-parameterized Koopman generators can also be used for various control and estimation tasks [42].

Systems with control can also be analyzed by studying operators that operate on a more general set of observables. Instead
of observables that are functions of the state in the typical Koopman framework, the observables here are functions of the
state and the control [20], [21]. The methods in this category include Koopman with inputs and control (KIC) [20] and linear
and bilinear predictors [21]. The KIC approach is cogent if the control signal itself is produced by a dynamical system, and
leads to useful heuristics when it is not. In [21], the shift operator is used as the dynamics of the control signal to develop
a Koopman operator that operates on observables defined on an infinite-dimensional state space that includes the space of
all possible control sequences. Spectral analysis of this operator with carefully selected observables yields linear and bilinear
predictors for the underlying nonlinear system. Applications of this approach include model-based predictive control [21],
robust model-based predictive control [43], and system identification [44].

In this paper, the operator Ag, is constructed as a composition of two operators, a differential operator that maps from
H, into a vwRKHS and a multiplication operator that maps from the vvRKHS either back into Hy (the eigendecomposition

approach) or into H, (the SVD approach) (see Fig. 1).

IV. VECTOR-VALUED REPRODUCING KERNEL HILBERT SPACES

In this section, properties of vvRKHSs relevant to topic under consideration are reviewed. The review relies heavily on the
discussion given in [29].
Definition 1: Let ) be a Hilbert space, and let H be a Hilbert space of functions from a set X to ). The Hilbert space H

is a vRKHS if for every v € Y and = € X, the functional f — (f(x),v)y is bounded.



A vvRKHS is a direct generalization of a “scalar-valued” RKHS, since for a fixed v € ), the collection of functions {g(x) =
(f(z),v)y : f € H} forms an RKHS of scalar-valued functions.

By the Riesz representation theorem, for each x € X and v € ), there exists a unique function K, , € H such that
(f,Kyw)u = (f(z),v)y for all f € H. The fact that the mapping v — K, , is linear over ) yields a linear operator K :
Y — H, defined as K, = v — K, ,, called the kernel centered at x, associated with H. The operator K : X x X — LY, ),
defined as K (z,y) := K} K,, where K} : H — Y is the adjoint of K, and L(), Y) is the space of linear operators from ) to ),
is called the reproducing kernel of H. For any f € H, xz € X, and v € Y, we have (K f,v)y = (f, K;v)g = (f(z),v)y, and
as a result, the reproducing property K f = f(z). With f = K,v, we see that for all v € ), [K,v](z) = K K,v = K(z, y)v.

In the particular case that Y = R", K (x,y) is a real-valued n X n matrix for fixed x,y € X. As a result one can construct
several examples of vector-valued kernels. Indeed, given a scalar-valued RKHS H over X, with the corresponding reproducing
kernel K : X x X — R, and a positive definite matrix, A € R"*", the operator (z,) — AK (z,y) that maps from X x X
to £ (R",R™) is a reproducing kernel of a vvRKHS.

Similar to scalar-valued kernels, it can be shown that the span of vector-valued kernels is dense in .

Proposition 1: The span of the set E := {K;, :v € ) and € X}, is dense in H.

Proof. Suppose that h € E-, then given a fixed z € X, (h, K, ,)g = (h(z),v)y = 0 for all v € J. Hence, h(z) =0 € ).
Since = was arbitrarily selected, h = 0 € H. Thus, E+ = {0} and span(F) = (E+)+ = H. O

As a consequence of Proposition 1, given € > 0 and h € H, there is a finite linear combination of vector-valued kernels that
approximate h with an error smaller than e in the Hilbert space norm.

In the following development, unless otherwise specified, it is assumed that X C R" is compact, the Hilbert space ) is
selected to be C1*(m+1) with the usual definitions of vector norms and inner products, H 4 and I}T are RKHSs of continuously
differentiable functions from X to C, and H is a vwRKHS of continuous functions from X to C'*("+1)  The reproducing
kernel of H is denoted by K : X x X — L(R'*(m+1) R1*(m+1)) and the reproducing kernels of Hy and H,. are denoted by
Ki: XxX —>Rand K, : X x X = R, respectively. When the domain and the range RKHSs are identical, the subscripts
d and r are omitted. The Hilbert space ) is selected to be a space of row vectors to accommodate the row vector convention

for partial derivatives. As such, the linear operation of K, on v € Y is expressed as K , = v/

V. CLOSED LOOP NONLINEAR SYSTEMS AS OPERATORS OVER RKHSS

To solve the problem as stated in Section II in a vvRKHS framework, the closed-loop nonlinear system is expressed in
terms of operators over two RKHSs and a vvRKHS. A majority of the definitions and propositions in this section were first
introduced in [24]. The definitions are included here for completeness and the proofs of most of the propositions are more

detailed than the corresponding proofs in [24].

A. Control Liouville Operators and Multiplication Operators

Representation of a controlled system in terms of operators can be realized using the so-called control Liouville Operator.



Definition 2: Let f : R™ — R™ and g : R™ — R™*™ be locally Lipschitz continuous functions and the set

be the domain of the operator, Ay, : D(Af,) — H, given as

A0 = 520 [ 0) gt
The operator Ay 4 is called the control Liouville operator corresponding to f and g over H.
Control Liouville operators are a direct generalization of the more traditional Liouville operators, where the drift dynamics
and control effectiveness components of the dynamics are separated on the operator theoretic level. Vector-valued RKHSs arise
naturally in this context, where the partial derivative of h € D(Ay ;) with respect to x is a row vector of dimension n, and
through a dot product with f and multiplication by the matrix g, the result of the operation of Af, on h is a row vector with
dimension m + 1.

The control Liouville operator does not depend on the control input, and as such, is not sufficient by itself for prediction of
system behavior. An additional operator is thus required to complete the construction of the operator Ar, alluded to in Section
III. The controller is incorporated in the developed framework via a multiplication operator. The inclusion of this multiplication
operator, in addition to the newly defined control Liouville operator, sets the theoretical foundations of DMD of controlled
systems apart from the uncontrolled case studied in [3] and [36].

Definition 3: For a continuous function v : X — ), the multiplication operator with symbol v, denoted by M,, : D(M,,) —

H,., is defined as

(M A () = (h(-), v(-)p,

where D(M,) := {h € H : x — (h(z),v(z))y € H,}.

Given the continuous function 7z : R™ — R1*™*1 derived from a feedback controller i : R™ — R™ as Ji(x) := [1 u(:z:)T} ,
T
the corresponding multiplication operator M : D(My) — H, is given as Mzh = 2 + h(x) {1 u(:c)T} and D(My) =

{h€e H:z~— h(z) {1 ,u(:c)T] : € H,}. The operator MzA¢ , maps from D(A;,) C Hy to H,, and plays the role of the
operator Ar, described in Section III. In the above construction, it is assumed that the image of Ay , falls within the domain
of M. This assumption is not easy to verify in general, but it is trivially met in the example presented in Section VI, where the
RKHSs are Bargmann-Fock spaces restricted to the set of real numbers. The control Liouville operator will be assumed to be
compact in Section VI and densely defined in Section VII. Further comments on the density and the compactness assumptions,

including examples of systems and RKHSs for which these assumptions are met, are provided in the respective sections.

B. Control Occupation Kernels

To facilitate the computation of a finite-rank representation of Ap, = MpzAyf,, and subsequently, the approximate

eigenfunctions required for DMD, trajectories of controlled dynamical systems are embedded within vvRKHSs using the
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Fig. 1. A schematic diagram of the construction presented in Section V. The RKHSs are represented by filled circles. The squares at the endpoints of the
dashed arrows passing through the circles indicate the domains and co-domains of the functions contained in the RKHSs. The thick arrows between the
RKHSs indicate operators.

so-called control occupation kernels. Control occupation kernels arise from a generalization of the idea of occupation kernels
introduced in [23] as follows.

Definition 4 ([23]): Given a continuous function 7 : [0,7] — X, an RKHS of continuous functions H, and the bounded
functional 7 : H — C defined as Th = fOT h(~(7))dr for all h € H the unique function T, € H that satisfies Th = (h,T,) 5
for all h € H is called the occupation kernel corresponding to vy in H.

Note that the existence of a unique occupation kernel follows from the Riesz representation theorem. An extension of the
definition above to systems with control results in the following notion of a control occupation kernel.

Definition 5 ({24]): Given a bounded measurable function u : [0, 7] — R™, a continuous function + : [0, 7] — X, and the

bounded functional 7 : H — C, defined as

T 1
Th = / B+ (1)) dt, Vhe H,
0 u(t)
the unique function I, ,, € H that satisfies Th = (h,I', ) g for all h € H is called the control occupation kernel corresponding
to u and v in H.
Control occupation kernels can be expressed in terms of the reproducing kernels of H to facilitate computation.

Proposition 2 ([24]): The control occupation kernel I'y ,, € H, corresponding to © and -y, can be expressed as

Ly u(z) = /OT Hl u(t)T} Kv(t):| (z)dt, (6)
and the norm of I', ,, is given as
Il = / : / ' [1 uw] K(+(7), (1)) u;) dtdr.

Proof. For z € X and v € C'*(m+1),

(Cra(2), Oty = (T 0Kt = /OT 0K (4(0) u(lt) dt = /OT<[UKI] (4(1). [1 u<t>T]>WM i
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-f ey ] o= ([ wor] )0,
T
:< /O Hl u(ﬂ K,Y(t)} (:c)dt,u> . )

C1lx(m+1)
As (7) holds for all v € C*(m+1_(6) follows. The expression for the norm of I, ,, follows from || u[|% = (Dyu. Ty u)

and the defining properties of I, ,,. o

C. Control Liouville Operators and Control Occupation Kernels

There is a direct connection between the adjoints of densely defined control Liouville operators and control occupation
kernels that correspond to admissible (see Definition 7) control signals, u, and their corresponding controlled trajectories,
Yu, that satisfy (2). To illustrate the connection, the construction of adjoints of densely defined operators is revisited in the
following.

Definition 6: The domain of the adjoint of A : D(A) — H, with D(A) C Hy, is defined as
D(A*):={he H|¢— (A, h)y is bounded on D (A)}.

If D(A) is dense in Hg, then the functionals ¢ + (A, ), may be extended uniquely to functionals that are bounded over
all of H,. As a result, for each h € D (A*), the Riesz representation theorem guarantees the existence of a unique function
A*h € Hy such that (A*h, ¢) 5 = (Ap, ), for all ¢ € D(A). The operator h — A*h is defined as the adjoint of A.

The following proposition formalizes the relationship between control occupation kernels and control Liouville operators for
trajectories of the system under admissible control signals.

Definition 7: A bounded, measurable control signal v : [0,7] — R™ is called admissible for the initial value problem (1)
over the time interval [0,T) and the domain X, if the corresponding Carathéodory solution =y, : [0,7] — R™ is contained
within X.

Proposition 3 ([24]): If f and g correspond to a densely defined control Liouville operator, Ay, : D(Af ) — H, with
D(Ay,) C Hy and u is an admissible control signal for the initial value problem (1) over the time interval [0,77], with a

corresponding controlled trajectory 7, then Iy , € D(A}Z) q) and

A;’_’gr'yu,u = Kd(a’Yu(T)) - Kd(a’Yu(O)) (8)

Proof. To demonstrate that ', ., is in D(A% ) it must be shown that the mapping h — (A 4h, I, u)n is a bounded

functional. Note that

T
(gt el = [ RO | Fe(0) g6 ol
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where $(-) and J(+) denote the real and imaginary parts of a complex vector, respectively. The functional h — (As h, Ty, W) H

is thus bounded with norm not exceeding || Kq(-, v (T)) — Ka(-, 7. (0))]| 7,- By the definition of the adjoint, (9) implies (8). [

D. Properties of Multiplication Operators

In this section, multiplication operators that map from vvRKHSs to scalar-valued RKHSs are studied. Many of the
propositions in this section have been established for scalar-valued RKHSs (cf. [45]-[47]), and are proved using similar
methods.

The following proposition investigates the interaction between adjoints of multiplication operators and reproducing kernels
of scalar-valued RKHSs.

Proposition 4 ([24]): If v : X — Y corresponds to a densely defined multiplication operator M, : D (M,) — H, with
D (M,) C H, then for each z € X, K,(-,z) is in the domain of M} and

MK, (-, 2) = Ky () (10)

v

Proof. Let h € D(M,), then

<leh7 KT(') I)>HT = <h(:E), V(x»)} = <ha Km,u(ac)>H'

Hence, the mapping h — (M, h, K, (-, x)) g is a bounded functional with norm bounded by || K , (x| #, and as such, K.(-,z)

is in the domain of M. Moreover, the equation

<leh7 KT('a ‘T»flr = <h’ Kva(1)>H’

along with the definition of the adjoint, establishes (10). O

Proposition 4, along with the density of the kernels K (-,x) in H implies that the adjoint of the multiplication operator is also
densely defined.

Proposition 5 ([24]): Multiplication operators are closed operators.

Proof. Suppose that {h,}5>, C D(M,), h, — h € H, and M, h, — W € H,. To show that M, is a closed operator, it
must be shown that W (x) = (h(x),v(z))y for all z € X, and thus h € D(M,) by definition and M, h = W. Let v € Y and

x € X, then

W(I) = lim <Mth5KT('7'r)>flr = lim <hnaKm,u(w)>H = <h7Km,V(:E)>H = <h(I)5V(I)>ya

n—roo n—roo

where the first equality follows since norm convergence in H, implies pointwise convergence and the third inequality follows

from continuity of the inner product on H. O

The following proposition demonstrates how multiplication operators My, with symbols 7 given as f(z) =

[1 u(:c)T} , Vo € R", connect occupation kernels I'y, with feedback control occupation kernels I, 0.
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Proposition 6: If u : X — R™ is a continuous function, 7t : X — Y is defined as (z) := {1 u(z)T} ,Vox € X, the
corresponding multiplication operator Mz : D (Mz) — H,, with D (Mz) C H, is densely defined, I, € H, is the occupation
kernel corresponding to a continuous function ~y : [0,7] — X in H,, and [T 0| 7 is finite, then I'y is in the domain of
Mz and

MLy =T o (11)

Proof. Let h € D (My). Using definitions 4 and 5, it can be concluded that

T T
<Mﬁh,Fw>g:/ <h(7(t)),ﬁ(v(t))>ydt:/ Ry @) +3 (R (v (1)) dt = (0T o) s (12)
0 0 n(y(t))

Since the norm of the functional h +— (Mpzh,T',) 5 is bounded, by [Ty, ;0| ;;» Which in turn, is finite by assumption, it can

be concluded that I', € D(Mg) As a result, (12) implies (11) and the proof of the proposition is complete. O

Remark 1: If the reproducing kernel K for the vvRKHS is derived from the reproducing kernel K of an RKHS via
multiplication by a positive definite matrix, then finiteness of ||I"; .o+ ;; follows from Proposition 2 and continuity of x, 7,

and K.

E. Compact and Densely Defined Operators for DMD

As noted in Section III, DMD relies on computation of eigenfunctions of a finite-rank representation of an operator that
represents the dynamical system. The eigenfunctions of the finite-rank representations can be shown to converge to the
eigenfunctions of the true operator if the finite-rank representations themselves converge to the true operator in the norm
topology and the true operator is compact [21]. Koopman operators, Koopman generators, and Liouville operators are typically
not compact if their domains and co-domains are viewed as subsets of the same RKHS [21], [36], [48] (see Remark 2).

As noted in [36], Liouville operators corresponding to a large class of dynamical systems are compact provided the domain
and the range RKHSs are selected appropriately. However, since the domain and the range RKHSs need to be different,
the resulting operators do not admit eigenfunctions. In Section VI, it is shown that when the domain and the range RKHSs
are different, an SVD-based approach can be used to estimate the system dynamics. The SVD-based approach relies on
compactness of the total derivative operator and generates sequences of singular values and singular functions that converge to
the true singular values and singular functions. As shown in Section VI, compact total derivative operators result from bounded
multiplication operators and compact control Liouville operators, both of which exist for a large class of dynamical systems
and feedback laws.

In Section VII, an eigendecomposition-based DMD approach is developed that lacks convergence guarantees but generates
useful heuristic approximations of the eigenfunctions under the weaker assumption that the total derivative operator is densely
defined. As shown in Section VII, a densely defined total derivative operator results from a densely defined multiplication

operator whose range is a subset of the domain of a densely defined control Liouville operator. As discussed in Section VII,
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such multiplication operators and control Liouville operators also exist for a large class of dynamical systems and feedback
laws.

In the following, for an operator A and finite collections of functions d and r, in the domain and the range of the operator,
respectively, the notation A|q is used to denote the operator A restricted to the set spand, and the notation [A]’; is used to

denote a matrix representation of the finite-rank operator P,.A|q, where P, denotes the projection operator onto spanr.

VI. A SINGULAR VALUE DECOMPOSITION APPROACH TO DMD

With careful selection of the domain and range RKHSs, the total derivative operator Mz A, can be made to be compact.
While the provided framework includes a large class of dynamical systems, a complete characterization of RKHSs and symbols

that yield compact differential operators and bounded multiplication operators is out of the scope of this paper.

A. Existence of Bounded Multiplication Operators and Compact Differential Operators

The discussion in this section closely follows [36], where a similar result is obtained for systems without control. Consider
the exponential dot product kernel with parameter p, defined as K 5(x,y) = exp (Lﬁy) In the single variable case, the native
space! for this kernel is the restriction of the Bargmann-Fock space to real numbers, denoted by Fg (R). This space consists
of the set of functions of the form h(z) = > - arz®, where the coefficients satisfy >, |lax|® 5*k! < oo, and the norm is
given by ||h||§ => o |lak|® *k!. Note that the set of polynomials in z is a subset of FZ (R). Extension of this definition to

.. . . . slel e
the multivariable case yields the space Fp~2 (R™) where the collection of monomials, z®£—, with multi-indices « € N™ forms

Val
. 2 . . . ~ ~ . . 2 2
an orthonormal basis®. In this setting, provided p2 < p1, differential operators from F7 (R™) to F 5 (R™) can be shown to be
compact.

Proposition 7: If ps < p1, then the differential operators % : F ﬁ21 (R") - F ﬁ22 (R™), are compact fori =1,...,n.

Proof. To facilitate the clarity of exposition, the proof is written for functions of a single variable. Extension to functions of
several variables using multi-indices is conceptually straightforward. Let h € F ﬁ21 (R) be given by h(z) = > pe, araz®, with

% =Y reo bra®, where b, = (k + 1)aj41. The norm of the derivative in Fg2 (R) is given by
oh
Ox

_ o\ (k—1)
If po < p; then there exists a constant C' < oo such that ﬁﬁl (g—f) < C for all k£ € N. As a result,

2 0o oo k+ 1 [)2 k . 0o k [)2 (k—1)
= Sl b = 3 o (2) = S el £ (2) gt
P2 — =0 P1 P1 =0 P1 \ P1

|22|° < Cnl?,

which establishes boundedness of the differential operator % D FZ (R) — F3,(R).

To prove compactness, we construct a sequence of finite-rank operators that converge, in norm, to %. Let apy =
{1,z,...,2M} be the first M monomials in z, and let P,,, be the projection onto the span of these monomials. Consider the

sequence {P,,, %} of finite-rank operators. Let h € Fpgl (R) be given by h(z) = Y 2, arz”. Then,

'The native space of a symmetric positive semidefinite kernel K is the unique RKHS of which K is the reproducing kernel. Such an RKHS is guaranteed
to exist by the Moore—Aronszajn theorem [49].
Por a € N*, ol =]7; a5, || = 30 4 v, and 2 = [}, .
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= 3 GV laa PR k)= Y (k1) > larn P (k4 1)t

amM o T o
X X
0 0 P2 k=M+1 k=M+1 k=M+1

‘P on  onl]F & (o) S (@)Ugﬂ) S
P

- p\ Y
< > wrr(Z) g

k=M+1

(k+1) : oh _ oh
) =0, and as a result, lim/—o0 || Pay, 32 — 22

>

= 0. Therefore, the

. . % 2
If po < p1 then llmMﬁmZk:MH(k—i—l)Q( ' azHﬁ2

2
1

™

operator norm

F2 (R
P 0 0 72 (®) L HPOCZ\/I%_%”ﬁ2
oM — A = sup
Ox O F2 (R)  heFZ (R) 1Al 5,
converges to zero as M — oo, which establishes compactness of % : Fﬁ21 (R) — Fg2 (R). O

Remark 2: Note that if po < pq then F [321 (R™) C Fp?2 (R™) [36, Proposition 5.1]. In this case, one can view the differential
operators as maps from ng (R™) to itself. However, when viewed as such, the differential operators may not be compact.

As shown in [36], multiplication operators can be shown to be bounded provided their symbols are polynomial.

Proposition 8: If ps < p1, then for any polynomial function p : R™ — R, the multiplication operator M, : F ﬁ21 (R") —

FZ (R"), defined as [Mh] (x) = p(z)h(z), is bounded.
Proof. See [36, Lemma 3.2]. O

Proposition 8 trivially extends to vvRKHSs defined using diagonal reproducing kernels.

Proposition 9: Let F p2 (R™) denote the native (row) vvRKHS of a diagonal reproducing kernel defined as K (x,y) :=
diag([f{pl(x,y), o Kp7n+1(x7y):|). If pp < p for i = 1,...,m + 1, then given any set of polynomials p;,
i = 1,...,m + 1, the multiplication operator Mp, . p,.., = F3(R") — FZ2(R"), defined as [M,, .. ,h](zx) =

h(z) {Pl (), ..., pm+1($)]’ is bounded. On the other hand, if p < p; for i = 1,...,m + 1, then for any component-wise
T
polynomial function y = [/le o /Lm:| : R" — R™, the multiplication operator My : F(R") — Fg(R"), defined as

T
[Mﬁh] (ZC) = h(l') |:17 lu,l(.’L'), ey ,Um(ff)] N is bounded.
Proof. Follows from arguments similar to Lemma 3.2 from [36]. O

Since Koopman operators are generally unbounded for any nonlinear system [48], the above propositions make a strong
case for spectral analysis of continuous-time systems in the Liouville operator (or Koopman generator) framework as opposed

to discretization and subsequent application of the Koopman operator framework.

B. Finite-rank Representation of the Closed Loop Total Derivative Operator

Since the dynamic modes may only be extracted from the composition of Mz with Ay ¢, an explicit finite-rank representation
of Ay, and My is needed to determine the dynamic modes of the resultant system. In the following, finite collections of
linearly independent vectors, d™, ™, M, and rM are selected to establish the needed finite-rank representation. Since the
adjoint of Ay, maps control occupation kernels to kernel differences (Proposition 3), the span of the collection of kernel

differences

dM = {Kd(a’yul(TZ)) - Kd('vﬁ)/ui (O))}f\il C Hd (13)
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M
is selected to be the domain of Ay 4. The corresponding Gram matrix is denoted by Ggnr = ((di, d;) I:Id) . The output of
ij=1

Ay 4 is projected onto the span of the control occupation kernels

BM =T, W CH (14)

=1

M

before application of My;. The corresponding Gram matrix is denoted by Ggn = ((ﬁi, Bj) H)i i1

span dM
- ~

~ _— Pd]\/f ; Af’g -

a Post MyzPaus Ay g|gns A
: v |

1

MzAg spanrM P

! ~
* Prhf
-

. My span M

Fig. 2. A schematic diagram of the finite-rank representation of the total derivative operator.

Since the adjoint of M maps occupation kernels to control occupation kernels of the form I'y, .0+, (Proposition 6), the
derivation also requires the collection
M _ M
w - {F'Yui;HO'Yui }i:l CH (15)
of feedback control occupation kernels in H corresponding to the trajectories -y,,, and control signals oy, . Finally, the result

of My is projected onto the span of the occupation kernels
PM={r, }' CH,. (16)

The corresponding Gram matrix is denoted by G,.m» = ( (ri,75) Hr) M v

A rank-M representation of the operator MyzAy , is then given by P.v MypPgm Ag g Py - Hy — spanr™ | where P,
Py, and Pgn denote projection operators onto span M, spand™, and span M, respectively. The construction is illustrated
in Fig. 2.

Under the compactness assumptions and given rich enough data so that the spans of {d;}2,, {r;}$2;, and {5,}2, are
dense in ﬁd, ﬁr, and H, respectively, the sequence of finite-rank operators { P, Mz Pgum A fngdM}i.}:l can be shown to
converge, in norm topology, to Mz Ay ;. To facilitate the proof of convergence, we recall the following result from [3].

Lemma 1: Let H and G be RKHSs defined on X C R™ and let Ay : H — G be a finite-rank operator with rank N. If the
spans of {d;}$2, and {r;}$2, are dense in H and G, respectively, then for all € > 0, there exists M (N) € N such that for all

i>M(N)and h € H, |[Ayh — AyPyhl|g < €|kl and [Axh — P Axhllg < €[] -

Proof. See the proof of [3, Theorem 2]. o
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The convergence result for Liouville operators on Bargmann-Fock spaces restricted to the set of real numbers follows from
the following more general result.
Proposition 10: If B : H — H, is a bounded linear operator, A : Hy— Hisa compact operator, and the spans of {d;}5°,,

{ri}2,, and {B;}32, are dense in Hy, H,, and H, respectively, then limpus o |BA - PTAIBPﬁMAPdAIHg: = 0, where

H||g; denotes the operator norm of operators from Hy to H,..

Proof. Let {An}3_, be a sequence of rank-N operators converging, in norm, to A. For an arbitrary h € Hg,

|BAh — Poss BPgu APyuh|| 7 < ||[BAR — BAnh|| g+ ||BAnh — P BPgss TPyach|
< |[BAh — BANh| g, + |BAxh — BANPyuh| g+ ||BANParch — BPgu Ax Py h| -

+ HBPﬁMANPth — PTMBP[}MANPthHgT + HPTMBPﬁMANPth — PTMBPﬁMAPthHﬁT .

Assuming that the operator norm of B is B,

HBAh — PTMBPBMAPthHgT <B |AR — ANh”H +B |[Anh — ANPthHH +B ||ANPth - PﬁMANPthHH

+ ||BPgst AN Pyssh — Poss BPgu Ay Paneh|| iy + B An Pysrh — APyl -

Using the fact that Ay and BPgu AN Pju are finite-rank operators, Lemma 1, can be used to conclude that for all € > 0,

there exists M (N) € N such that for all i > M (N)
|BAh — P BPgi APyih|| 5 < Bl|Ah — Anh| y + 3Bel|hl g, + B || AnPaih — APyih] -

Since Apn converges to A in norm, given € > 0, there exists N € N such that for all j > N, and g € fld |Ag — Ajg||H <

€llgllz,- Thus, for all j > N and i > M (j),

BAh — P« BPsi APyhl| ;< 5Be|h] g, B

The convergence result for control Liouville operators on Bargmann-Fock spaces restricted to the set of real numbers can then
be stated as follows. .

Theoerm 1: Let pg € R, 04 € R, p, € R, and p = |:P1 . pm+1] € R™t! be parameters such that p, < p;, p; < 04,
and g < pg fori=1,...,m+1. Let Hy = F2 (R"), G4 = F2 (R"), H, = F2 (R"), and H = F(R"). If f, g, and yu are
component-wise polynomial, and if the spans of the collections {d;}$2,, {r;}52,, and {5}, are dense in Hy, H,, and H,

respectively, then limp/ o0 || MzAf,g — Post MPgas Ag g Py | g; =0.

Proof. Propositions 7, 8, and 9 imply that My is bounded and Ay, is compact. Since multiplication operators are linear by

definition, the theorem follows from Proposition 10. O

C. Matrix Representation of the Finite-rank Operator

To formulate a matrix representation of the finite-rank operator P,.x Mz Pgm Ay Py, the operator is restricted to span M
to yield the operator P MyPgu Ay g|gn @ span d™ — spanr™. For brevity of exposition, the superscript M is suppressed

hereafter and d, /3, w, and r are interpreted as M —dimensional vectors.
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Proposition 11: If h = §7d € spand is a function with coefficients d € RM and if g = P, MzPsAy 4h, then g = a'r,

where a = GjIG;ng&, I:= ((w;, Bj)H)j\é:l, and ()T denotes the Moore-Penrose pseudoinverse.
Proof. Propositions 3 and 6 imply that that for all j =1,---, M, A%  B; = d;, and M;r; = w;, respectively. Note that since

g is a projection of M;PgA¢ 4h onto spanr, g = a'r for any a that solves
<MHPﬁAf-,gh’T1>HT <Af.,ghaP5M%7’1>H
Gra = = :

(MzPgAggh,ra) g (Afg, PsMira),,

Furthermore, for all j =1, ---, M, PBMﬁ*rl = b;rﬁ, for any b; that solves

<Mﬁ*rjaﬂl>H <wjvﬁl>[—]
Ggb; = : = :
As a result, b := {bl, e bM] is a solution of
M
Gpb = (<wjvﬁi>H)i,j:1 =1
Substituting (18) into (17),
T Ax
(ArahbT8)y | | (0T 4558),
G"“a = = ’

(Apoh b8, | | (nohiA7,8)

-
where A})gﬁ is interpreted as A})gﬁ = A;gﬁh e A;)gﬁM} . Using A;)gﬁj =d; and h = 57d,
<5Td, bfd)m b{ Gad
Gra = = :
<5Td, de>Hd bLGdd

Selecting solutions of (17) and (19) that minimize the 2-norm of a and b;, respectively,
a=G/b"Gad = GTIGLGa6 = GFIG G

That is, a matrix representation [MzPsAy 4]’ of the operator P, MzPg Ay g|a is given by G;F I GEGd.

a7

(18)

19)

(20)

O

Note that matrix representations are generally not unique. Different representations may be obtained by selecting different

solutions of (17) and (19). In the case where the Gram matrices G, and Gg are nonsingular, equations (17) and (19) have

unique solutions, resulting in the unique matrix representation G, 11 GElGd.
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In the following section, the matrix representation [M;PgAy ]! is used to construct a data-driven representation of the

singular values and the left and right singular functions of P.M;PsAf g|a.

D. Singular Functions of the Finite-rank Operator

Recall that the tuples {(o;, ¢;, ¥;) f‘i 1> with 0; € R”, ¢; € ﬁd, and v; € ﬁr, are singular values, left singular vectors, and
right singular vectors of P.MzPsAy 4|q, respectively, if Vh € spand, P.MzP3Ayf gh = Zf\il o (h, ¢;) 7, The following
proposition states that the SVD of P, MzP3Ay 4|4 can be computed using matrices in the matrix representation [MzPs Ay 4|7,
developed in the previous section.

Proposition 12: If (W, %, V) is the SVD of G:FIGE with W = {wl, . wM}, V = |:U17 . 'UM]’ and ¥ =
diag ([017 o 0']\4:|)’ then for all ¢ = 1,..., M, o; are singular values of PTMFPﬂAf’gLi with left singular functions

#; := v, d and right singular functions 1; := w, r.

Proof. Let ¢; = v, d and ¢); = w, r and h = § " d. Then,
M M
P MgpPsAgpgh = o (h,¢i) g, <= PMpPsAp,d'd =" omwlr(s"dv/d)s
i=1 i=1
Using the finite-rank representation, the collection { (o, ¢, 1)}, is an SVD of P, M;PsAy 4|4, if for all § € RM,
T .- T T
(61G5Gaws) r= (Y (67 d v )y wl |7 @1
i=1

Simple matrix manipulations yield the chain of implications

M M
QD) =V eRM GFIG}Gd = 0, (5T d,v] d) g wi <= V6 eRM G IGFG6 = 0y (wiv] Ga) §
i=1 i=1
M M
< Gj]GEGd = Z o; (wiv;) Gy <— GjIGJr = Zaiwiv; = WEVT,
i=1 i=1
which proves the proposition. O

In the following section, the singular values and the left and right singular vectors are used, along with a finite truncation of

(5) to generate a data-driven model.

E. The SCLDMD Algorithm

Motivated by (4), assuming that hiq ; € H, for j =1,---,n, the system dynamics are approximated using the rank-\/

representation as & ~ Fj, a(x) := [P.MpPgAy ¢Pghia](x), where P.MpPgAy  Pyhiq denotes row-wise operation of the
operator PTMﬁpgA t,9Fa on the function hiq. Since PTMﬁpgA 1,9P4 converges to MHA f,¢ in norm as M — oo, and since

the space Fpgd (R™) contains hiq ; for j =1,--- ,n, the following result is immediate.

Corollary 1: Under the hypothesis of Theorem 1, limsoo (Subge x || Pt () = Fi(@)]| ) = 0.
2

Proof. Since the space ng (R™) contains hia,; for j =1,--- ,n, the functions Fu-,M-,j = Py MzPgs; Af gPiihigj and F, j =

MzAj ghig ; that denote the j—th row of F%M and F),, respectively, exist as members of ﬁr. Since =z +— Kr(x,x) =
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ITCE

exp (p—) is continuous and X is compact, there exists a real number K such that sup,¢ y Kr(x,x) = K. Theorem 1

can then be used to conclude that for all ¢ > 0 and j = 1,...,n, there exists M(j) € N such that for all ¢ > M(j),
2

HFu,iJ —F;

|

< 7:—;2 Using the reproducing property, for i > M := max; M(j),

2

Fus@) = F)[ = 30 (B~ ) Keom)) <3
=1

j=1

Frij—Fu;

As a result, for all € > 0 there exists M such that for all i > M,

sup
zeX

Fli(z) — F#(:E)H2 < % sup Ro(z,7)? = €,

which completes the proof. o

Using the definition of singular values and singular functions,

M
S Z oi&w,] r(x) = ESW Tr(x), (22)
i=1

where &; = <Pdhid,¢i>gd and & := [517 e gM].

The modes & can be computed using ¢; = v,' d as

<Pdhid,1, vle>Hd 5 ceey <Pdhid,1, de>Hd <5ird, d1>1:1d g eeey <5Id, dM>I:Id
£= : : = : : V=4"GaV,
<Pdhid,mvird>gd N ey <Pdhid;7“v&d>f[d <5;{d, d1>1:[d s ey <6;lrd, dM>I~_Id
where § = {517 . 5n]. Using the reproducing property of the reproducing kernel of Hy, the coefficients §; in the

projection of hiq,; onto d satisfy

((hia);d1) g, (Vs (T1)); = (7, (0));
Gadi= : = :
<(hid)i7dM>ﬁd (%LM (TM))i_('yuM (O))z
Letting D = ((, (Tj))i — (1 (O))Z)jjﬁjl it can be concluded that 6 ' G4 = D. Finally, the modes ¢ are given by £ = DV

and the estimated closed-loop model is given by
@~ Fyn(x) = DVEW 'r(z) = DGEITGlr(x) (23)

The SCLDMD technique is summarized in Algorithm 1. The characterization 1"%], = fOTj K (-,% ; (t)) dt of occupation

kernels, introduced in [23], is used on line 8.
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Algorithm 1 The SCLDMD algorithm

InpuE: T{ajectories {%i}ij\ip a feedback law p, a numerical integration procedure, reproducing kernels f(d, f(r, and K of
Hg, H,, and H, respectively, and regularization parameters €, and €.

Output: {&;,05,¢;, ¢;}L, y
t Gp = (o Ty ) ) (see (32)

i,j=1
M

2 Gy (<F7“1"F”J'>HT>Z-J-_1 (see (33))
M
3T+ (<F%“°”w’F”“f=“f‘>H)i,j:1 (see (35))
D (1, (13), = (3, (0)),) 7
(W,X,V) + SVD of GG (See Remark 3)
£+ DV
65 = Sty = (V)ig (K7, (T3)) = Kal- 7, (0)))
i = 0 Jo (W)igK (7, (1)) d
return {gja Tj,%j5 (bj }?il

R A A

VII. EIGENDECOMPOSITION APPROACH TO DMD

In this section, an alternative finite-rank representation of the operator MpA  , is presented, where its domain and range
are assumed to be subsets of the same RKHS H of complex-valued continuously differentiable functions, with a real-valued
reproducing kernel K. In particular, the finite-rank representation of MpAy4 is selected to be P.MyPsAy 4|, where the
domain and the range are both spanr. A consequence of this choice is that the finite-rank representation admits eigenfunctions
which could potentially generate an approximate invariant subspace of the closed-loop system.

While eigenfunctions of the finite-rank representation exist, they generally cannot be shown to converge to eigenfunctions
of the original operator, since the operators My and Ay 4 can no longer be assumed to be bounded and compact, respectively.
Instead, they are assumed to be densely defined. Since the operators are not defined everywhere, we need the additional
assumptions that 1) the image of Ay, is contained within the domain of Mgy, 2) the span of r is a subset of the domain
of Ay 4, and 3) the functions hiq ; can be well-approximated by linear combinations of the eigenfunctions of the finite-rank
representation for j = 1,...,n. Due to the lack of convergence guarantees and since the assumptions on spanr and hiq ; are
difficult to verify, the resulting algorithm, while useful, is heuristic in nature. Since unbounded operators over Hilbert spaces
of real-valued functions can have empty spectra, in this section, the RKHS H is assumed to be composed of complex-valued
functions of real variables of the form h : X — C.

The operators My and Ay , are densely defined in a large class of problems. For example, if the domain and range spaces
in Section VI-A are selected to have identical kernel parameters, then the resulting operators are densely defined [23], and the
image of Ay 4 is also contained within the domain of Mz. The assumption that spanr C D(Ay,4) can be removed in favor of
the assumption that the matrix that encodes the finite rank representation of MyAy , is approximately equal to the transpose

of the matrix that encodes the finite rank representation of the adjoint A}y gM; (see [24)).

A. Matrix Representation of the Finite-rank Operator

In this section, a matrix representation of the finite-rank representation is developed.
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Proposition 13: If h = §Tr € spanr is a function with coefficients § € CM, Ay , and My are densely defined, spanr C

D(Ay.4). span 8 C D(Mg), and g = P.MzPs Ay gh, then g = a'r with a = G IGITS.

-
Proof. The coefficients a = [al P M} € CM in the projection of M;PsAy,h € H onto spanr are given by the

solution of the linear system
(MpPsAys.gh,mi)
Gra = : . 24)

(MzPg Ay gh, ) g

T
A matrix representation of P, Mz Pg Ay 4|, relates the coefficients § = {51 P M] € CM of a functionh = § 'r € spanr,
with the coefficients a above. Using the properties of the multiplication operator and the control Liouville operator established

in the previous sections, the inner products (MzPgAy 4h,7;) 7 on the right hand side can be evaluated as

M M M
(MPsAggh,ri) = 6i (A gri, PEMirs) = > 6; <Af,gf°z'a > bk,jfwuk,uk>
i=1 i=1 k=1 "

where {bk,j}i\il C C are the coefficients in the projection of Mzr; € H onto span §, which can be computed by solving

b1, (Mri, Do) gy
Gg| | = : : (25)

bM,j <ME*TJ"F’Y‘LLM7U]\/I>H

Note that since the control occupation kernels 3; = I'y, ., the occupation kernels r; = I'y, , and the symbol 7z are all

real-valued functions, the coefficients b; ; are real numbers. The inner product can thus be further simplified as

M M
<MHPBAf,gh7Tj>f[ = 251 bk,j <TZ-,A})QF,Y%7W>H = 5ijja
=1 k=1

T . M -
where b; = |:b1 ;o bu J} ,and [ = (<ri, A}i qF%kyuk> ~) is the interaction matrix corresponding to H. Stacking
’ ' o H/ i k=1
the inner products on the left hand side in a column and selecting solutions of (24) and (25) that minimize the 2-norm of

- M
a and bj;, respectively, it can be concluded that a = GjIG;ITd, where [ = (<M£TJ’F’Y%7W>H)J. - is the interaction

matrix corresponding to H. A matrix representation [MzPgAy |7 € RM of the finite-rank representation P, MzP3 Ay 4|, of

the operator MzAy , is thus given by [MpPgAy |7 = GjIGEfT. O

In the following section, the matrix representation [MpPgAy |7 is used to construct a data-driven representation of the

eigenvalues and the eigenfunctions of P.MzPsAy 4|,

B. Eigenfunctions of the finite-rank representation

T
Given an eigenvalue \; € C and the corresponding eigenvector ¥; := [51) j o O, j] € CM of [M;P3Ay 4] and

-
the vector r := {7’1 TM] of occupation kernels in H, it is straightforward to show that ¢; = (1/ ,/ﬁ;Grﬁj) ﬁjTr
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is an eigenfunction of P.M;PsgAy |-, where ()T denotes the conjugate transpose. Indeed, by the definition of the matrix

[M;;PsAy,g)7, it can be seen that P, MyPs Ay gl = (1/\/516.5;) ([MpPsAsglity) = X; (Y \folG.5,) 0] 1.
Using the fact that r;(z) =T, (7) = fOTi K (x, 7y, (t))dt, the eigenfunctions, evaluated at a point € R™, can be computed
as

vi(z) = Vi K (@, yu, (t)) dt. (26)
! \/v GT’U7 ; 7

In the following section, the eigenvalues and the eigenfunctions are used to generate a data-driven model.

C. The CLDMD Algorithm

= L M MxM . . . . .

Let W = (vl, i/ ,/U;Gruj)i_’jzl € CM>*M be the matrix of coefficients of the normalized eigenfunctions, arranged so that each
column corresponds to an eigenfunction. Assuming that h;q ; is in the span of the above eigenfunctions for each j =1,--- ,n,
a representation of the identity function as a linear combination of a fixed number of eigenfunctions is given as hiq(z) =
Zi]\il &pi(), where {&}M, C C™ are the so-called control-Liouville modes. Similar to [3, Section 4.2], by examining the

inner products (hiq,j,7;) 7. the matrix £ := [517 3 M] can be shown to be a solution of the linear system of equations

¢ (WTGTW) — RW, 27)

where R = ((hid_’j, i) H)nZ]Zl and W denotes the complex conjugate of W. Indeed, letting &; ; denote the j—th element

s

of the vector &;, the row of coefficients §j = [51 PR 3V j] € CY™*M jn the projection of hiq ; onto the span of the

eigenfunctions {;}}, is a solution of

i T
&G, = |:<hid,j7§01>ﬁu ey <hid,juSDM>g]7 (28)
where G, = (<spi7g0j>l~{)?{;:1 € CMxM._ Using the fact that (p;,¢))5 = (@0/rajr), = u?j-GTu}i, where
w; = (1/\/sG,5;) #;, denotes the j—th column of W, the Gram matrix G, can be expressed as G, = WG, WW.
Furthermore, using the fact that (hiq,;, pi) 5 = <hid7j,’l:[};r7a>[jl = [(hid)j, T e (hid,j,rM>H} w;, where w; denotes
the complex conjugate of w;, the right hand side of (28) can be expressed as [<hid,j7901>ga oy (hiag, M) g
<hid,j,7’1>g, . <h1dj,7»M> W Concatenating (28) for j = 1,...,n into a column vector, the matrix £ is seen

to be a solution of (27).
Using the fact that any solution of éW ' G, = R is also a solution of (27), selecting the solution of éW ' G, = R that
minimizes the 2-norm of §; for i = 1,--- , M, and using the relationship (hiq,j,7:) 5 = <hid7j, L, >ﬁ1 = fOTi Yuz,j(t)dt, where

Vus,;(t) denotes the j—th component of 7,, (t), a set of control Liouville modes can be obtained as

§= f Yuy (¢ T foTM Yun (t)dt] (WTGT)+ ) (29)

The response t — 7, (t) of the system, starting from the initial condition ~,,(0) = 7o, under the feedback control law 4, can
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then be predicted as

M
Yult) =Y i (v0)e. (30)
j=1
Furthermore, a pointwise approximation of the closed-loop model can also be obtained as
M ~
#a Fuu(r) =Y \g&e;(@). (31)
Jj=1

The CLDMD method is summarized in Algorithm 2.

Algorithm 2 The CLDMD algorithm

Input: Trajectories {7y, },, a feedback law p, a numerical integration procedure, Reproducing kernel K of H, Reproducing
kernel K of H, and if needed, regularization parameters € and €.

Output: {&;, A, ;111
M
I Gy (<F7u1\1;7 ,uj>H)i7j:1 (sce (32))
2 Gy (<ri,rj>g)m.:1 (see (33))

M
3 L (M Do) ).

k=
i

s D ((rAp, Do) ) (see (34)

/i k=1
[MpPgAg )y < GFHIGEIT (See Remark 3)
{Aj,9;}}L, « eigendecomposition of [MyPsAf 7
= . M
W+ (vwv,j/,/ﬁ;crﬁj)mzl
Compute {&;, @, }JAil using (29) and (26) (See Remark 3)
return {gj, /\j, Pj }JAil

) (see (35))

o ® 2w

VIII. COMPUTATION OF INNER PRODUCTS
The elements of the Gram matrix G, corresponding to 3, can be computed using Proposition 2 as

T; T;

<F”“i’““rwj ’“J’>H - // [1 UI(T)} K (7u; (£),7u: (1)) ' drdt (32)

0 0 (210

The elements of the Gram matrix GG,. can be computed using the double integral (cf. [3])

T
ot |
0

Using Proposition 3, the elements of the interaction matrix I can be evaluated as

2

T;
K (Vay (8)5 Yuus () ) d7dt. (33)
0

T;

(o AT = O KA =K, ) = [ (B 00900 (10) = K@ 0)) e 34
0

Using Proposition 6, the elements of the interaction matrix I can be evaluated as

T; T;

1
<M£F7“i ’ F'Y“k 1Yk >H - <F7“1: YHOYuy F'Yuk YUk >H _//|:1 /LT(FYU«; (T))):| K(’Y“j (t)’ Vui (T)) (t) drdt. (35)
00 U
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Assuming that each trajectory is sampled at N points in time, the computation of G and I is O(nN2M?(m + 1)?), the
computation of G, is O(nN?M?), and the computation of Iis O(nN M?). Computation of the finite-rank representation and
its decomposition are O(M?). Evaluation of the occupation kernel is O(nV).

Remark 3: In addition to the Moore-Penrose pseudoinverse, the SCLDMD and CLDMD algorithms can also be implemented
using regularization. Regularization involves replacing the Gram matrices Gg and G, by Gg+ €l and G, + €Ly, respectively,
whenever they need to be inverted, where I, denotes the M x M identity matrix, and € > 0 and € > 0 are user-selected

regularization coefficients.

IX. NUMERICAL EXPERIMENTS

Two numerical experiments are performed to evaluate the developed SCLDMD and CLDMD methods, one using a simulated

controlled Duffing oscillator and another using a simulated two-link robot manipulator.

A. Controlled Duffing oscillator

This experiment concerns the controlled Duffing oscillator
i?l = T2, x.g =T — x? + (2 + sin(a:l)) u,

where x = |:I1 Iz} : € R? is the state and u € R is the control. A total of 225 open-loop trajectories of the controlled
Duffing oscillator are generated using the MATLAB® ode45 solver, starting from initial conditions on a 15 x 15 regular grid
on a 6 x 6 square centered at the origin of the state space, R2. The control signal used for trajectory generation is of the
form u(t) = leil b; sin(w;t + ¢;), where the magnitudes b;, the frequencies w;, and the phase differences ; are generated
randomly from a uniform distribution on the interval [—1, 1]. All trajectories are recorded over a duration of 1s, and are sampled
at a frequency of 20 Hz.

The trajectories are then utilized to predict the behavior of the oscillator under the state feedback controller p(z) =
[_2 _2} x. CLDMD is implemented using the exponential dot product reproducing kernel K 5 = €xp (%) with parameter
p = 5, and a diagonal kernel given by K = diag [f(ﬁ f(ﬁ} . SCLDMD is implemented using K, = K5, K = diag {f(ﬁ f(el ,
and K4 = K7. Simpson’s 1/3 rule is used to compute the integrals involved in algorithms 1 and 2.

1) Vector Field Reconstruction: Fig. 3 shows a side by side comparison of the pointwise 2-norm of the relative error between
the approximated vector field F u,M (generated using (23) for SCLDMD and (31) for CLDMD), and the true vector field, F),.
The results in Fig. 3 indicate that both the CLDMD and the SCLDMD methods are able to obtain accurate estimates of the
closed-loop vector field on a domain contained within the grid of initial conditions of the data.

2) Indirect Closed-loop Response Prediction: The closed loop response can be predicted using either SCLDMD or CLDMD
by numerically solving the initial value problems in (23) and (31), respectively, starting from tI_ll_e desired initial condition. Fig.
4 shows the prediction error resulting from this indirect approach, starting from x¢ = [2 _2] . The results in Fig. 4 indicate
that both the CLDMD and the SCLDMD methods, when coupled with indirect prediction, accurately predict the desired

closed-loop trajectory.
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SCLDMD CLDMD

1074

Relative Error
Iy
Relative Error

Fig. 3. Relative error 1Fiu(@)=Fu(@)l2 in the estimation of the vector field F}, of the controlled Duffing oscillator as a function of x, obtained
maxye(_2 2] x[—2,2] 1Fu(@)]2
using SCLDMD (left) and CLDM Erighg‘
10-1 SCLDMD 10-1 CLDMD
T T T T
4 | -
2
0
—_2 L
—4
76 |
| | |
0 2 4 6
Time [s] Time [s]

Fig. 4. Error between predicted and true trajectories of the controlled duffing oscillator for the experiment in Section IX-A. The figure on the left is obtained
using SCLDMD indirect prediction by solving (23) and the figure on the right is obtained using CLDMD indirect prediction by solving (31), both using the

MATLAB® 0de45 solver.

3) Direct Closed-loop Response Prediction: The CLDMD method can also be used to predict the behavior of the closed-loop

system starting from a given initial condition, and under the given feedback controller. Direct reconstruction is implemented
T

using (30). Fig. 5 shows the true and the predicted trajectories starting from the initial condition z¢ = [2 _2] . The predicted

trajectory is denoted by . The results in Fig. 5 indicate that the CLDMD method, when coupled with direct prediction, fails

to obtain accurate prediction of the closed-loop trajectories.

B. Two-link Robot Manipulator

This experiment concerns a planar two-link robot manipulator described by Euler-Lagrange dynamics

M(q)j+ Vin(g: )+ F(q) =,
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Time [s] Time [s]

Fig. 5. Predicted and true trajectories (left) and the corresponding prediction errors (right) of the controlled duffing oscillator for the experiment in Section
IX-A. This result is obtained using CLDMD direct prediction (30) with kernel parameter p = 1e8.

where ¢ = (q1 ¢2)" € R? and ¢ = (41 o) " are the angular positions (rad) and angular velocities (rads™!) of the two links,
respectively, 7 = (11 TQ)T is the torque (N m) produced by the motors that drive the joints, M (q) is the inertia matrix, and

Vin(q, q) is the centripetal-Coriolis matrix, defined as

M () == p1+2psc2(q)  p2+pscz(q) Cand Vi (gd) = p3s2 (¢) G2 —p3s2(q) (1 + ¢2) |

P2 + p3ca (q) D2 p352 (q) ¢1 0

where p; = 3.473kgm?, po = 0.196kgm?, p3 = 0.242kgm?, c3(q) = cos(qz), s2(q) = sin(ge), and F(§) =
T
[fdlq'l + fatanh(qy)  faode + fe2 tanh(q'g)} is the model for friction, where fy1 = 5.3kgm?s™!, f4o = 1.1kgm?s™ !,

fs1 = 845kgm?s7!, and fo = 2.35kgm?s~!. The model can be expressed in the form & = f(x) + g(x)u with
T

T
z = [qT cf} cu =7, flz) = [QT (M=) (=Vin(q. g + F(q)))T]’ and g(z) = {02><2 (M~Y(q))"| - where
O2x2 denotes a 2 X 2 matrix of zeros.

A total of 200 open-loop trajectories of the manipulator are generated using the MATLAB® ode45 solver, starting from
initial conditions selected to fill a hypercube of side 1, centered at the origin of the state space, R*, using a Halton sequence.
The control signal used for trajectory generation is of the form u = {ul uz} with u;(t) = leil b sin(w; ;t + @;.;), for
j = 1,2, where the magnitudes b; ;, the frequencies w; ;, and the phase differences ¢; ; are generated randomly from a uniform
distribution on the interval [—1,1]. All trajectories are recorded over a duration of 1s, and are sampled at a frequency of 10

Hz.

The trajectories are then utilized to predict the behavior of the oscillator under the state feedback controller p(z) =
-5 =5 T

x, starting from xy = [1 -1 1 _1] . CLDMD is implemented using the exponential dot product
—-15 15
reproducing kernel with parameter 10 and a diagonal kernel given by K = diag { Ky Ko K 10} . SCLDMD is implemented

using f(r = I~(5, K = diag {f(lo f(lo f(lo] , and K’d = K’15. Gram matrices are regularized as described in Remark 3 using

regularization coefficients € = € = 1le — 3. Simpson’s 1/3 rule is used to compute the integrals involved in algorithms 1 and
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Fig. 6. Predicted and true trajectories (left) and the corresponding prediction errors (right) of the 2-link robot manipulator for the experiment in Section IX-B.
This result is obtained using CLDMD direct prediction (30) with kernel parameter p = 1e5 and regularization parameter € = € = le — 7.

102 SCLDMD 10-2 CLDMD
T T T
a1 (t) — &1 (t)
x2(t) — d2(t)
2 I+ x3(t) — &3(t)
24(t) — 24(t)
1
0
1
—9 |
| | | | |
0 2 4 6 8 10
Time [s] Time [s]

Fig. 7. Error between the predicted and the true trajectories of the 2-link manipulator for the experiment in Section IX-B. The figure on the left is obtained
using SCLDMD indirect prediction by solving (23) and the figure on the right is obtained using CLDMD indirect prediction by solving (31), both using the
MATLAB® ode45 solver.

2. Since the vector field is now a function of 4 variables in each dimension, direct visualization of the true and approximate
vector fields is not possible. However, the reconstruction accuracy may be indirectly gauged through indirect prediction of
trajectories of the system.

Fig. 6 shows the true and the predicted trajectories using the direct reconstruction method, implemented using (30). The
results in Fig. 6 indicate that the CLDMD method, when coupled with indirect prediction, is able to predict the desired closed-
loop trajectory much better in this experiment than the Duffing oscillator experiment in Fig. 5. Fig. 7 shows the predicted
trajectories and the prediction error resulting from the indirect approach. The results in Fig. 7 indicate that both the CLDMD

and the SCLDMD methods, when coupled with indirect prediction, accurately predict the desired closed-loop trajectory.
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X. DISCUSSION

As is evident from Fig. 3, the methods developed in algorithms 1 and 2 can effectively utilize data collected under open-loop
control signals to construct the closed-loop vector field under a given feedback policy.

Figures 5 and 4 indicate that the prediction error for the highly nonlinear controlled Duffing oscillator is significantly higher
in direct prediction as compared to indirect prediction. We postulate that this is due to the linear nature of the model in (30).
Since (30) is a solution of a system of linear ordinary differential equations, the resulting reconstruction diverges quickly from
the trajectories of the nonlinear model. On the other hand, we postulate that due to the presence of the eigenfunctions in (31),
the model used in the indirect approach includes nonlinear effects and as a result, generates a better prediction. When the
nonlinearities in the original system are mild, like the trigonometric nonlinearities in the two link robot model, the predictions
from the direct and the indirect method are close, as seen in figures 6 and 7.

The theory and the computations that support the developed algorithms require data-richness. In the convergence proofs,
data-richness manifests as the density of the kernel differences, the occupation kernels, and the control occupation kernels in
their respective RKHSs. In the computations, data-richness is required for the Gram matrices G, and G of the occupation
kernels and the control occupation kernels, respectively to be invertible. It is shown in [50] that for Gaussian radial basis
function reproducing kernels, the rank of the occupation kernel Gram matrix GG, can be characterized using the so-called
trajectory separation distance. Roughly, the trajectory separation distance is the largest radius ¢ such that when all trajectories
are inflated to tubes of radius ¢, the resulting tubes are disjoint. Since multiple, shorter trajectories, starting from initial
conditions that are well-separated, would generally result in better separation distances, such a dataset would be preferred.
However, if the trajectories are too short, then the matrix D of trajectory endpoint differences can reduce to a zero matrix,
resulting in poor performance. Obtaining similar results for other reproducing kernels and for characterization of the rank of
the control occupation kernel Gram matrix Gpg is a topic for future research.

The condition number of G, and Gz depends not only on the trajectories but also on the selected reproducing kernels.
For example, the condition number of Gram matrices corresponding to Gaussian radial basis functions, given as K (z,y) =
exp(—%Hx — y||3) for p > 0 is larger for larger 5. However, large p values correspond to faster convergence of interpolation
problems within the native space of the kernel (cf. [51]). Data-richness conditions similar to the persistence of excitation (PE)
condition in adaptive control that relate the trajectories and the kernels can potentially be formulated to ensure a well-conditioned
G, and G, however, such formulation is a topic for future research.

Numerical experiments indicate that while direct trajectory reconstruction can be poor for systems with severe nonlinearities,
the developed techniques generate accurate estimates of the closed-loop vector field from data. Unlike traditional system
identification techniques, the algorithms developed in this paper do not require careful selection of basis functions. While the

implementation can be done using any universal kernels, careful tuning of the kernel parameter is often necessary.

XI. CONCLUSION

In this paper, a novel operator-theoretic framework is developed for the study of controlled nonlinear systems. The

framework utilizes RKHSs, where feedback-controlled nonlinear systems are expressed using a composition of infinite
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dimensional multiplication operator and an infinite dimensional control Liouville operator. A provably convergent finite-rank

representation of the composition, that utilizes trajectories of a system, observed under open-loop control inputs w, is developed.

Eigendecomposition and SVD of the finite-rank representation is utilized to predict the behavior of the system response to a

query feedback controller, . The same dataset can be used to predict the system behavior in response to a multitude of query

feedback controllers.

To the best of our knowledge, this paper, along with the conference paper [24], are the first to study spectral decomposition

of continuous-time feedback-controlled nonlinear systems in a provably convergent manner. While this paper focuses solely on

system identification, the uniform convergence guarantees established by Corollary 1, makes the developed modeling technique

an attractive candidate for use in a variety of applications, including, but not limited to, data-driven control synthesis and

data-driven analysis and validation of feedback controllers.
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