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Dynamic Mode Decomposition with Control

Liouville Operators

Joel A. Rosenfeld and Rushikesh Kamalapurkar

Abstract

This paper builds the theoretical foundations for dynamic mode decomposition (DMD) of control-affine dynamical systems

by leveraging the theory of vector-valued reproducing kernel Hilbert spaces (RKHSs). Specifically, control Liouville operators and

control occupation kernels are introduced to separate the drift dynamics from the input dynamics. A given feedback controller is

represented through a multiplication operator and a composition of the control Liouville operator and the multiplication operator

is used to express the nonlinear closed-loop system as a linear total derivative operator on RKHSs. A spectral decomposition of a

finite-rank representation of the total derivative operator yields a DMD of the closed-loop system. The DMD generates a model

that can be used to predict the trajectories of the closed-loop system. For a large class of systems, the total derivative operator is

shown to be compact provided the domain and the range RKHSs are selected appropriately. The sequence of models, resulting

from increasing-rank finite-rank representations of the compact total derivative operator, are shown to converge to the true system

dynamics, provided sufficiently rich data are available. Numerical experiments are included to demonstrate the efficacy of the

developed technique.

Index Terms

dynamic mode decomposition, NL system identification, Computational methods, Reduced order modeling, Nonlinear systems

I. INTRODUCTION

S
PECTRAL methods for identification of nonlinear systems utilize representations of unknown, finite-dimensional

nonlinear dynamics, in discrete or continuous time, as linear operators over infinite dimensional spaces (cf. [1]). In

the discrete-time case, this linear operator is a composition operator called the Koopman operator [2]. In the continuous time

case, it is a total derivative operator called the Liouville operator [3] (or the Koopman generator, in special cases where it

can be obtained as the limit of a sequence of Koopman operators with decreasing sample times [4, Section 7.5]). In dynamic

mode decomposition (DMD), trajectories of a dynamical system are used to construct a finite-rank representation of the

aforementioned linear operator [5]. The finite-rank representation is then diagonalized and the resultant eigenfunction and

This research was supported in part by the Air Force Office of Scientific Research under award numbers FA9550-20-1-0127 and FA9550-21-1-0134, and
the National Science Foundation (NSF) under award numbers 2027976 and 2027999. Any opinions, findings, or conclusions in this paper are those of the
author(s) and do not necessarily reflect the views of the sponsoring agencies.

Joel A. Rosenfeld is with the Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620 USA (e-mail: rosenfeldj@usf.edu).

Rushikesh Kamalapurkar is with the School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 USA (e-mail:
rushikesh.kamalapurkar@okstate.edu)

http://arxiv.org/abs/2101.02620v4


2

eigenvalues are used to provide a representation of the identity function. This representation provides the dynamic modes of

the system as vector-valued coefficients attached to the eigenfunctions. Thereafter, a state trajectory can be predicted as a sum

of exponential functions multiplied by the dynamic modes (cf. [3], [5], [6]).

The primary application area of Koopman spectral analysis of dynamical systems has been fluid dynamics, where DMD is

compared with proper orthogonal decomposition (POD) for nonlinear fluid equations (cf. [7]). DMD has also been employed in

the study of stability properties of dynamical systems [8], [9], neuroscience [10], financial trading [11], feedback stabilization

[12], optimal control [13], modeling of dynamical systems [14]–[16], and model-predictive control [17]. For a generalized

treatment of DMD as a Markov model, see [18].

Extensions of the idea of Koopman operator-based DMD to systems with control can be loosely categorized in three

categories: spectral analysis of the drift (zero-input) dynamics [19], input-parameterized Koopman operators [20], and

reformulation as an autonomous state-control dynamical system [21]. These methods rely on discretization of continuous-

time systems, either for computation (when Koopman operators are used), or for analysis (when Koopman generators are

used), and as such, are only applicable to systems that admit a globally well-defined discretization (i.e., systems that cannot

escape to infinity in finite time starting from any initial condition). When dealing with Koopman generators, the data required

for a spectral decomposition typically include the time derivative of the state, which is not generally available. Recently,

inspired by the notion of occupation measures [22] defined on Banach spaces of continuous functions, the authors in [23]

defined analogous objects on reproducing kernel Hilbert spaces (RKHSs). The so-called occupation kernels, when combined

with operators such as the Liouville operator, provide a method for spectral analysis of continuous-time systems directly,

without the need for discretization.

The paradigm shift afforded by occupation kernels arises through the consideration of the state trajectory as the fundamental

unit of data [23]. This paper, along with the preliminary results reported in [24], build on the foundations developed in [23] to

address DMD of control-affine dynamical systems. To address systems with control, the occupation kernels are augmented by

the control signals, resulting in the so-called control occupation kernels, and the Liouville operator is extended to include the

input dynamics, to yield the so-called control Liouville operator [24]. The extension in [24] utilizes the theory of vector-valued

RKHSs (vvRKHSs), introduced in [25] and [26], and extensively studied in a machine learning context in [27], [28], and

[29]. Multiplication operators that map between scalar-valued and vector-valued RKHSs are also utilized to define a total

derivative operator that represents the dynamics of the closed-loop system controlled using a feedback controller. Using the

control occupation kernels, the control Liouville operators, and the multiplication operators, a technique for discretization-free

DMD of control-affine, continuous-time, nonlinear systems is developed. The developed control-Liouville DMD (CLDMD) and

singular control-Liouville DMD (SCLDMD) methods yield a predictor that can predict the closed-loop behavior of a system

under any given locally Lipschitz continuous feedback controller by measuring its response to different open-loop control

signals.

The definitions of control occupation kernels and control Liouville operators used in this paper were first reported in the

conference paper [24]. In that paper, a finite-rank representation of the closed-loop total derivative operator is indirectly derived

through its adjoint. In this paper, a finite-rank representation of the closed-loop total differential operator is obtained directly,
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resulting in a simpler DMD algorithm. Furthermore, this paper includes a novel singular value decomposition (SVD)-based

finite-rank representation of a new total derivative operator which converges in norm to the true operator with increasing rank

under a compactness assumption and given sufficiently rich data. Examples of general classes of nonlinear systems where the

new total derivative operators are compact are also provided to justify the compactness assumptions.

The paper is structured as follows. Section II formulates the prediction problem. Section III summarizes the overall approach.

Section IV introduces the concept of vvRKHSs. Section V introduces the control occupation kernels, the control Liouville

operators, and the multiplication operators needed to develop a representation of a closed-loop nonlinear system in terms of

linear operators on a set of Hilbert spaces. Section VI introduces an SVD-based approach to DMD. Section VII introduces an

eigendecomposition-based approach to DMD. Section VIII introduces the computational tools required to generate the finite-

rank representations. Section IX presents numerical experiments to validate the developed technique. Section X discusses the

results of the numerical experiments, and Section XI concludes the paper.

II. PROBLEM STATEMENT

Given Carathéodory solutions {γui
: [0, Ti] → Rn}Mi=1 of a nonlinear control-affine system of the form

ẋ = f(x) + g(x)ui(t), x(0) = γui
(0) (1)

under Lebesgue measurable, bounded control inputs {ui : [0, Ti] → Rm}Mi=1, the objective of this paper is to provide an

operator theoretic approach for the analysis of the closed loop system

ẋ = f(x) + g(x)µ(x) =: Fµ(x), (2)

where x ∈ Rn is the state, µ : Rn → Rm is a locally Lipschitz continuous feedback controller, f : Rn → Rn and

g : Rn → Rn×m are locally Lipschitz continuous functions corresponding to the drift dynamics and the control effectiveness

matrix, respectively, and ẋ denotes the time derivative of x. The observed control trajectories and control inputs will allow

for the construction of a finite-rank representation of the so-called control Liouville operator, which is a generalization of the

Liouville operator introduced in [3].

Similar to the robot manipulator examples in [30] most Euler-Lagrange systems with invertible inertia matrices can be

expressed in the control-affine form. The Euler-Lagrange equations are used to describe a large class of physical systems

(cf. [31]), and as such, various methods for control and identification of nonlinear systems in the Euler-Lagrange form have

been studied in detail over the years (see, e.g., [32]–[34]). Since most physical systems of practical importance such as robot

manipulators [35] and ground, air, and maritime vehicles and vessels [30] have inertia matrices that are invertible over large

operating regions, control-affine models encompass a large class of physical systems.

III. OPERATORS AND DYNAMIC MODE DECOMPOSITION

In this section, the general idea behind the developed operator-theoretic DMD approach is introduced. The approach relies

on representation of a closed loop dynamical system as an operator that maps between suitable function spaces. For the
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motivational discussion in this section, assume that given functions f , g, and µ, and RKHSs H̃d and H̃r defined on a compact

set X ⊂ Rn, there exist a set, D
(

AFµ

)

⊂ H̃d and a total derivative operator AFµ
: D

(

AFµ

)

→ H̃r such that

(R1) for all h ∈ D
(

AFµ

)

, AFµ
h := ∂h

∂x
Fµ ∈ H̃r, where ∂h

∂x
is a row vector, and

(R2) hid,j ∈ D
(

AFµ

)

for all j = 1, · · · , n, where hid =

[

hid,1, · · · , hid,n

]⊤
is the identity function, with components

defined as hid,j(x) = xj for all x ∈ X .

Note that the total derivative operator AFµ
above is the Liouville operator (or the Koopman generator) with symbol Fµ = f+gµ

as defined in [3]. As such, a DMD of the closed loop system could be obtained using the methods presented in [3] provided

data generated by the closed loop system ẋ = Fµ(x) is available. The objective in this paper is to develop a model of the

system using a feedback-agnostic data set. That is, given any feedback controller µ : Rn → Rm and a data set recorded by

exciting the open-loop system ẋ = f(x) + g(x)u using control signals u = ui : [0, Ti] → Rn, i = 1, . . . ,M , we aim to build

a predictive model of the closed loop system ẋ = Fµ(x).

A. The Eigendecomposition Approach

If H̃d = H̃r, φ is an eigenfunction of AFµ
with eigenvalue λ, and γµ is a controlled trajectory arising from (2), then it

follows that

d(φ(γµ(t)))

dt
=
∂φ

∂x
(γµ(t))

(

f(γµ(t))+g(γµ(t))µ(γµ(t))
)

=
[

AFµ
φ
]

(γµ(t))=λφ(γµ(t)).

Hence, φ(γµ(t)) = eλtφ(γµ(0)).

If the the span of the eigenfunctions {φi}
∞
i=1 of AFµ

is dense in H̃d, then the identity function can be decomposed using

the eigenfunctions as hid(x) = limM→∞
∑M

i=1 ξi,Mφi(x), where ξi,M ∈ C
n are the dynamic modes of the closed loop system.

Moreover, it follows that

γµ(t) = hid(γµ(t)) = lim
M→∞

M
∑

i=1

ξi,Mφi(γµ(0))e
λit, (3)

where λi denotes the eigenvalue corresponding to the eigenfunction φi, and the coefficients ξi,M depend on M because the

eigenfunctions are not generally orthogonal.

If the eigenfunctions, the eigenvalues, and the modes could be computed from data, then a finite truncation of (3) could be

used as a predictive model. However, since the operator AFµ
cannot generally be expected to be bounded, even the existence

of eigenfunctions cannot be guaranteed.

The idea in DMD is to construct a finite rank (say rank M ) approximation (say ÂFµ,M ) of AFµ
. Then, the eigenfunctions

{φ̂i,M}Mi=1, the eigenvalues {λ̂i,M}Mi=1, and the modes {ξ̂i,M}Mi=1 of ÂFµ,M are computed and used as proxies in a finite

truncation of (3) to generate a predictive model.

If the operators ÂFµ,M can be shown to converge to AFµ
in the norm topology, then given any ǫ > 0, there exists M

such that for all i = 1, . . . ,M , the pairs (φ̂i,M , λ̂i,M ) are approximate eigenpairs for the true operator AFµ
. That is, for all

i = 1, . . . ,M and for all x ∈ X ,

∣

∣

∣

[

AFµ
φ̂i,M

]

(x) − λ̂i,M φ̂i,M (x)
∣

∣

∣
< ǫ. The approximate eigenpairs can then be used to obtain
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a model that, given rich enough data and a large enough M , can accurately predict the system trajectories in X over a finite

horizon.

While requirements (R1) and (R2) above, compactness of the Liouville operator, and density of the eigenfunctions in H̃d are

difficult to guarantee in general, empirical evidence suggests that the eigenfunctions φ̂i,M are expressive enough to approximate

hid,i in a variety of applications [3]. Since φ̂i,M are computed as linear combinations of reproducing kernels or occupation

kernels, the empirical evidence could be explained by the postulate that the approximate eigenfunctions inherit universality

properties of the reproducing kernels and the occupation kernels [23]. A theoretical examination of the expressiveness of the

approximate eigenfunctions for a specific operators, Hilbert spaces, and data set is out of the scope of this article.

Convergence of the finite-rank representation to the true operator in the norm topology is also typically impossible to guarantee

in the eigendecomposition-based DMD framework [3], [21]. As such, similar to most DMD techniques, the eigendecomposition

approach, while well-motivated by the theory presented in this paper, is a heuristic technique. On the other hand, as shown

in [36], obtaining norm convergence of finite rank representations to the true Liouville operator is possible in an SVD-based

framework.

B. The Singular Value Decomposition Approach

In the SVD-based framework, two different RKHSs H̃d and H̃r are selected as the domain and the co-domain of AFµ
,

respectively. If the domain and the range RKHSs are selected carefully, then for a large class of nonlinear systems, the operator

AFµ
can be shown to be compact. Compactness trivially ensures satisfaction of Requirement (R1) above. Requirement (R2)

can be met by proper selection of H̃d (see Section VI). Compactness also allows for the construction of the needed sequence

ÂFµ,M that converges to AFµ
in the norm topology. The left and right singular functions of ÂFµ,M can then be used to

generate a sequence of system models that converges to the true system model.

In particular, the closed-loop model ẋ = f(x) + g(x)µ(x) can be expressed in terms of the total derivative operator as

ẋ =
∂hid

∂x
(x)

[

f(x) g(x)

]







1

µ(x)






= [AFµ

hid](x), (4)

where the notation AFµ
hid is used to denote the operator AFµ

acting on every row of the vector-valued function hid. If

AFµ
: H̃d → H̃r is a compact operator, then there exist singular values {σi}

∞
i=1 ⊂ R, left singular functions {φi}

∞
i=1 ⊂ H̃d,

and right singular functions {ψi}
∞
i=1 ⊂ H̃r such that

ẋ =

∞
∑

i=1

σi 〈hid, φi〉H̃d
ψi(x), (5)

where the notation 〈hid, φi〉H̃d
is used to denote the n−vector

[

〈hid,1, φi〉H̃d
, . . . , 〈hid,n, φi〉H̃d

]⊤
. The idea in singular

DMD is to use the SVD of ÂFµ,M as a proxy in a finite truncation of (5) to construct a predictive model.
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C. Related Work

Operator-based DMD methods for systems with control can be loosely categorized in three categories: spectral analysis

of the drift (zero-input) dynamics [19], input-parameterized Koopman operators [20], and reformulation as an autonomous

state-control dynamical system [21].

If data can be collected for the system with zero inputs, or if the system is affine in control, then techniques such as dynamic

mode decomposition with control (DMDc) [14], sparse nonlinear system identification with control (SINDYc) [37], extended

dynamic mode decomposition with control (EDMDc) [21], bilinearization [38], etc., can be utilized to estimate eigenvalues

and eigenfunctions of the Koopman operator, or the Koopman generator, of the drift (zero-input) dynamics. In the case of

control-affine systems, the eigenvalues and eigenfunctions can also be utilized to solve a wide variety of problems including,

but not limited to, reachability [38], optimal control [39], model-based predictive control, [40], and observer synthesis [19].

A different approach to operator theoretic analysis of systems with control is via input-parameterized Koopman operators

[20]. The central idea in this family of methods is that if the input is constant, then the dynamical system is autonomous, and as

such, admits a Koopman operator. Given a set of possible input levels, an input-parameterized family of Koopman operators (or

generators) can thus be constructed [39]. This observation is particularly useful when utilized for spectral analysis of control-

affine systems, where Koopman generators are themselves affine in control. The state of the system can thus be predicted using

a linear combination of a finite number of input-parameterized Koopman generators [41]. In addition to motivating DMDc and

EDMDc, input-parameterized Koopman generators can also be used for various control and estimation tasks [42].

Systems with control can also be analyzed by studying operators that operate on a more general set of observables. Instead

of observables that are functions of the state in the typical Koopman framework, the observables here are functions of the

state and the control [20], [21]. The methods in this category include Koopman with inputs and control (KIC) [20] and linear

and bilinear predictors [21]. The KIC approach is cogent if the control signal itself is produced by a dynamical system, and

leads to useful heuristics when it is not. In [21], the shift operator is used as the dynamics of the control signal to develop

a Koopman operator that operates on observables defined on an infinite-dimensional state space that includes the space of

all possible control sequences. Spectral analysis of this operator with carefully selected observables yields linear and bilinear

predictors for the underlying nonlinear system. Applications of this approach include model-based predictive control [21],

robust model-based predictive control [43], and system identification [44].

In this paper, the operator AFµ
is constructed as a composition of two operators, a differential operator that maps from

H̃d into a vvRKHS and a multiplication operator that maps from the vvRKHS either back into H̃d (the eigendecomposition

approach) or into H̃r (the SVD approach) (see Fig. 1).

IV. VECTOR-VALUED REPRODUCING KERNEL HILBERT SPACES

In this section, properties of vvRKHSs relevant to topic under consideration are reviewed. The review relies heavily on the

discussion given in [29].

Definition 1: Let Y be a Hilbert space, and let H be a Hilbert space of functions from a set X to Y . The Hilbert space H

is a vvRKHS if for every v ∈ Y and x ∈ X , the functional f 7→ 〈f(x), v〉Y is bounded.
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A vvRKHS is a direct generalization of a “scalar-valued” RKHS, since for a fixed v ∈ Y , the collection of functions {g(x) =

〈f(x), v〉Y : f ∈ H} forms an RKHS of scalar-valued functions.

By the Riesz representation theorem, for each x ∈ X and v ∈ Y , there exists a unique function Kx,v ∈ H such that

〈f,Kx,v〉H = 〈f(x), v〉Y for all f ∈ H . The fact that the mapping v 7→ Kx,v is linear over Y yields a linear operator Kx :

Y → H , defined as Kx := v 7→ Kx,v, called the kernel centered at x, associated with H . The operator K : X×X → L(Y,Y),

defined as K(x, y) := K∗
xKy, where K∗

x : H → Y is the adjoint of Kx and L(Y,Y) is the space of linear operators from Y to Y ,

is called the reproducing kernel of H . For any f ∈ H , x ∈ X , and v ∈ Y , we have 〈K∗
xf, v〉Y = 〈f,Kxv〉H = 〈f(x), v〉Y , and

as a result, the reproducing property K∗
xf = f(x). With f = Kyv, we see that for all v ∈ Y , [Kyv](x) = K∗

xKyv = K(x, y)v.

In the particular case that Y = R
n, K(x, y) is a real-valued n× n matrix for fixed x, y ∈ X . As a result one can construct

several examples of vector-valued kernels. Indeed, given a scalar-valued RKHS H̃ over X , with the corresponding reproducing

kernel K̃ : X ×X → R, and a positive definite matrix, A ∈ Rn×n, the operator (x, y) 7→ AK̃(x, y) that maps from X ×X

to L (Rn,Rn) is a reproducing kernel of a vvRKHS.

Similar to scalar-valued kernels, it can be shown that the span of vector-valued kernels is dense in H .

Proposition 1: The span of the set E := {Kx,v : v ∈ Y and x ∈ X}, is dense in H .

Proof. Suppose that h ∈ E⊥, then given a fixed x ∈ X , 〈h,Kx,v〉H = 〈h(x), v〉Y = 0 for all v ∈ Y . Hence, h(x) = 0 ∈ Y .

Since x was arbitrarily selected, h ≡ 0 ∈ H . Thus, E⊥ = {0} and span(E) = (E⊥)⊥ = H .

As a consequence of Proposition 1, given ǫ > 0 and h ∈ H , there is a finite linear combination of vector-valued kernels that

approximate h with an error smaller than ǫ in the Hilbert space norm.

In the following development, unless otherwise specified, it is assumed that X ⊂ Rn is compact, the Hilbert space Y is

selected to be C1×(m+1) with the usual definitions of vector norms and inner products, H̃d and H̃r are RKHSs of continuously

differentiable functions from X to C, and H is a vvRKHS of continuous functions from X to C1×(m+1). The reproducing

kernel of H is denoted by K : X ×X → L(R1×(m+1),R1×(m+1)) and the reproducing kernels of H̃d and H̃r are denoted by

K̃d : X ×X → R and K̃r : X ×X → R, respectively. When the domain and the range RKHSs are identical, the subscripts

d and r are omitted. The Hilbert space Y is selected to be a space of row vectors to accommodate the row vector convention

for partial derivatives. As such, the linear operation of Kx on v ∈ Y is expressed as Kx,v = vKx.

V. CLOSED LOOP NONLINEAR SYSTEMS AS OPERATORS OVER RKHSS

To solve the problem as stated in Section II in a vvRKHS framework, the closed-loop nonlinear system is expressed in

terms of operators over two RKHSs and a vvRKHS. A majority of the definitions and propositions in this section were first

introduced in [24]. The definitions are included here for completeness and the proofs of most of the propositions are more

detailed than the corresponding proofs in [24].

A. Control Liouville Operators and Multiplication Operators

Representation of a controlled system in terms of operators can be realized using the so-called control Liouville Operator.
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Definition 2: Let f : Rn → Rn and g : Rn → Rn×m be locally Lipschitz continuous functions and the set

D(Af,g) := {h ∈ H̃d : x 7→
∂h

∂x
(x)

[

f(x) g(x)

]

∈ H}

be the domain of the operator, Af,g : D(Af,g) → H , given as

[Af,gh] (x) :=
∂h

∂x
(x)

[

f(x) g(x)

]

.

The operator Af,g is called the control Liouville operator corresponding to f and g over H .

Control Liouville operators are a direct generalization of the more traditional Liouville operators, where the drift dynamics

and control effectiveness components of the dynamics are separated on the operator theoretic level. Vector-valued RKHSs arise

naturally in this context, where the partial derivative of h ∈ D(Af,g) with respect to x is a row vector of dimension n, and

through a dot product with f and multiplication by the matrix g, the result of the operation of Af,g on h is a row vector with

dimension m+ 1.

The control Liouville operator does not depend on the control input, and as such, is not sufficient by itself for prediction of

system behavior. An additional operator is thus required to complete the construction of the operator AFµ
alluded to in Section

III. The controller is incorporated in the developed framework via a multiplication operator. The inclusion of this multiplication

operator, in addition to the newly defined control Liouville operator, sets the theoretical foundations of DMD of controlled

systems apart from the uncontrolled case studied in [3] and [36].

Definition 3: For a continuous function ν : X → Y , the multiplication operator with symbol ν, denoted by Mν : D(Mν) →

H̃r, is defined as

[Mνh] (·) := 〈h(·), ν(·)〉Y ,

where D(Mν) := {h ∈ H : x 7→ 〈h(x), ν(x)〉Y ∈ H̃r}.

Given the continuous function µ : Rn → R
1×m+1 derived from a feedback controller µ : Rn → R

m as µ(x) :=

[

1 µ(x)⊤
]

,

the corresponding multiplication operator Mµ : D(Mµ) → H̃r is given as Mµh = x 7→ h(x)

[

1 µ(x)⊤
]⊤

and D(Mµ) =

{h ∈ H : x 7→ h(x)

[

1 µ(x)⊤
]⊤

∈ H̃r}. The operator MµAf,g maps from D(Af,g) ⊂ H̃d to H̃r, and plays the role of the

operator AFµ
described in Section III. In the above construction, it is assumed that the image of Af,g falls within the domain

of Mµ. This assumption is not easy to verify in general, but it is trivially met in the example presented in Section VI, where the

RKHSs are Bargmann-Fock spaces restricted to the set of real numbers. The control Liouville operator will be assumed to be

compact in Section VI and densely defined in Section VII. Further comments on the density and the compactness assumptions,

including examples of systems and RKHSs for which these assumptions are met, are provided in the respective sections.

B. Control Occupation Kernels

To facilitate the computation of a finite-rank representation of AFµ
= MµAf,g , and subsequently, the approximate

eigenfunctions required for DMD, trajectories of controlled dynamical systems are embedded within vvRKHSs using the
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H

H̃d

H̃r

XR Y

Af,g

Af,gh =
∂h
∂x

[

f g
]

Mµ

MµAf,gh =
∂h
∂x

[

f g
]

[

1

µ

]

Fig. 1. A schematic diagram of the construction presented in Section V. The RKHSs are represented by filled circles. The squares at the endpoints of the
dashed arrows passing through the circles indicate the domains and co-domains of the functions contained in the RKHSs. The thick arrows between the
RKHSs indicate operators.

so-called control occupation kernels. Control occupation kernels arise from a generalization of the idea of occupation kernels

introduced in [23] as follows.

Definition 4 ([23]): Given a continuous function γ : [0, T ] → X , an RKHS of continuous functions H̃ , and the bounded

functional T : H̃ → C defined as T h =
∫ T

0 h(γ(τ))dτ for all h ∈ H̃ the unique function Γγ ∈ H̃ that satisfies T h = 〈h,Γγ〉H̃

for all h ∈ H̃ is called the occupation kernel corresponding to γ in H̃ .

Note that the existence of a unique occupation kernel follows from the Riesz representation theorem. An extension of the

definition above to systems with control results in the following notion of a control occupation kernel.

Definition 5 ([24]): Given a bounded measurable function u : [0, T ] → Rm, a continuous function γ : [0, T ] → X , and the

bounded functional T : H → C, defined as

T h :=

∫ T

0

h(γ(t))







1

u(t)






dt, ∀h ∈ H,

the unique function Γγ,u ∈ H that satisfies T h = 〈h,Γγ,u〉H for all h ∈ H is called the control occupation kernel corresponding

to u and γ in H .

Control occupation kernels can be expressed in terms of the reproducing kernels of H to facilitate computation.

Proposition 2 ([24]): The control occupation kernel Γγ,u ∈ H , corresponding to u and γ, can be expressed as

Γγ,u(x) =

∫ T

0

[[

1 u(t)⊤
]

Kγ(t)

]

(x) dt, (6)

and the norm of Γγ,u is given as

‖Γγ,u‖
2
H =

∫ T

0

∫ T

0

[

1 u(t)⊤
]

K(γ(τ), γ(t))







1

u(τ)






dtdτ.

Proof. For x ∈ X and v ∈ C1×(m+1),

〈Γγ,u(x), v〉C1×(m+1) = 〈Γγ,u, vKx〉H =

∫ T

0

[vKx] (γ(t))







1

u(t)






dt =

∫ T

0

〈

[vKx] (γ(t)),

[

1 u(t)⊤
]〉

C1×(m+1)

dt
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=

∫ T

0

〈

vKx,

[

1 u(t)⊤
]

Kγ(t)

〉

H

dt =

∫ T

0

〈[[

1 u(t)⊤
]

Kγ(t)

]

(x), v

〉

C1×(m+1)

dt

=

〈

∫ T

0

[[

1 u(t)⊤
]

Kγ(t)

]

(x)dt, v

〉

C1×(m+1)

. (7)

As (7) holds for all v ∈ C1×(m+1), (6) follows. The expression for the norm of Γγ,u follows from ‖Γγ,u‖
2
H = 〈Γγ,u,Γγ,u〉H

and the defining properties of Γγ,u.

C. Control Liouville Operators and Control Occupation Kernels

There is a direct connection between the adjoints of densely defined control Liouville operators and control occupation

kernels that correspond to admissible (see Definition 7) control signals, u, and their corresponding controlled trajectories,

γu, that satisfy (2). To illustrate the connection, the construction of adjoints of densely defined operators is revisited in the

following.

Definition 6: The domain of the adjoint of A : D(A) → H , with D(A) ⊆ H̃d, is defined as

D (A∗) := {h ∈ H | φ 7→ 〈Aφ, h〉H is bounded on D (A)} .

If D(A) is dense in H̃d, then the functionals φ 7→ 〈Aφ, h〉H may be extended uniquely to functionals that are bounded over

all of H̃d. As a result, for each h ∈ D (A∗), the Riesz representation theorem guarantees the existence of a unique function

A∗h ∈ H̃d such that 〈A∗h, φ〉H̃ = 〈Aφ, h〉H for all φ ∈ D(A). The operator h 7→ A∗h is defined as the adjoint of A.

The following proposition formalizes the relationship between control occupation kernels and control Liouville operators for

trajectories of the system under admissible control signals.

Definition 7: A bounded, measurable control signal u : [0, T ] → Rm is called admissible for the initial value problem (1)

over the time interval [0, T ] and the domain X , if the corresponding Carathéodory solution γu : [0, T ] → Rn is contained

within X .

Proposition 3 ([24]): If f and g correspond to a densely defined control Liouville operator, Af,g : D(Af,g) → H , with

D(Af,g) ⊂ H̃d and u is an admissible control signal for the initial value problem (1) over the time interval [0, T ], with a

corresponding controlled trajectory γu, then Γγu,u ∈ D(A∗
f,g) and

A∗
f,gΓγu,u = K̃d(·, γu(T ))− K̃d(·, γu(0)). (8)

Proof. To demonstrate that Γγu,u is in D(A∗
f,g) it must be shown that the mapping h 7→ 〈Af,gh,Γγu,u〉H is a bounded

functional. Note that

〈Af,gh,Γγu,u〉H =

∫ T

0

∂

∂x
ℜ(h(γu(t)))

[

f(γu(t)) g(γu(t))

]







1

u(t)






dt

+

∫ T

0

∂

∂x
ℑ(h(γu(t)))

[

f(γu(t)) g(γu(t))

]







1

u(t)






dt =

∫ T

0

d

dt
h(γu(t))dt = h(γu(T ))− h(γu(0))

=
〈

h, K̃d(·, γu(T ))− K̃d(·, γu(0))
〉

H̃d

, (9)
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where ℜ(·) and ℑ(·) denote the real and imaginary parts of a complex vector, respectively. The functional h 7→ 〈Af,gh,Γγu,u〉H

is thus bounded with norm not exceeding ‖K̃d(·, γu(T ))−K̃d(·, γu(0))‖H̃d
. By the definition of the adjoint, (9) implies (8).

D. Properties of Multiplication Operators

In this section, multiplication operators that map from vvRKHSs to scalar-valued RKHSs are studied. Many of the

propositions in this section have been established for scalar-valued RKHSs (cf. [45]–[47]), and are proved using similar

methods.

The following proposition investigates the interaction between adjoints of multiplication operators and reproducing kernels

of scalar-valued RKHSs.

Proposition 4 ([24]): If ν : X → Y corresponds to a densely defined multiplication operator Mν : D (Mν) → H̃r with

D (Mν) ⊂ H , then for each x ∈ X , K̃r(·, x) is in the domain of M∗
ν and

M∗
ν K̃r(·, x) = Kx,ν(x). (10)

Proof. Let h ∈ D(Mν), then

〈Mνh, K̃r(·, x)〉H̃r
= 〈h(x), ν(x)〉Y = 〈h,Kx,ν(x)〉H .

Hence, the mapping h 7→ 〈Mνh, K̃r(·, x)〉H̃r
is a bounded functional with norm bounded by ‖Kx,ν(x)‖H , and as such, K̃r(·, x)

is in the domain of M∗
ν . Moreover, the equation

〈Mνh, K̃r(·, x)〉H̃r
= 〈h,Kx,ν(x)〉H ,

along with the definition of the adjoint, establishes (10).

Proposition 4, along with the density of the kernels K̃(·, x) in H̃ implies that the adjoint of the multiplication operator is also

densely defined.

Proposition 5 ([24]): Multiplication operators are closed operators.

Proof. Suppose that {hn}
∞
n=1 ⊂ D(Mν), hn → h ∈ H , and Mνhn → W ∈ H̃r. To show that Mν is a closed operator, it

must be shown that W (x) = 〈h(x), ν(x)〉Y for all x ∈ X , and thus h ∈ D(Mν) by definition and Mνh = W . Let v ∈ Y and

x ∈ X , then

W (x) = lim
n→∞

〈Mνhn, K̃r(·, x)〉H̃r
= lim

n→∞
〈hn,Kx,ν(x)〉H = 〈h,Kx,ν(x)〉H = 〈h(x), ν(x)〉Y ,

where the first equality follows since norm convergence in H̃r implies pointwise convergence and the third inequality follows

from continuity of the inner product on H .

The following proposition demonstrates how multiplication operators Mµ, with symbols µ given as µ(x) =
[

1 µ(x)⊤
]

, ∀x ∈ Rn, connect occupation kernels Γγ with feedback control occupation kernels Γγ,µ◦γ .
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Proposition 6: If µ : X → Rm is a continuous function, µ : X → Y is defined as µ(x) :=

[

1 µ(x)⊤
]

, ∀x ∈ X , the

corresponding multiplication operator Mµ : D (Mµ) → H̃r, with D (Mµ) ⊂ H , is densely defined, Γγ ∈ H̃r is the occupation

kernel corresponding to a continuous function γ : [0, T ] → X in H̃r, and ‖Γγ,µ◦γ‖H is finite, then Γγ is in the domain of

M∗
µ and

M∗
µΓγ = Γγ,µ◦γ . (11)

Proof. Let h ∈ D (Mµ). Using definitions 4 and 5, it can be concluded that

〈Mµh,Γγ〉H̃ =

∫ T

0

〈h(γ(t)), µ(γ(t))〉Y dt =

∫ T

0

(ℜ (h (γ (t))) + ℑ (h (γ (t))))







1

µ(γ(t))






dt = 〈h,Γγ,µ◦γ〉H , (12)

Since the norm of the functional h 7→ 〈Mµh,Γγ〉H̃r
is bounded, by ‖Γγ,µ◦γ‖H , which in turn, is finite by assumption, it can

be concluded that Γγ ∈ D(M∗
µ). As a result, (12) implies (11) and the proof of the proposition is complete.

Remark 1: If the reproducing kernel K for the vvRKHS is derived from the reproducing kernel K̃ of an RKHS via

multiplication by a positive definite matrix, then finiteness of ‖Γγ,µ◦γ‖H follows from Proposition 2 and continuity of µ, γ,

and K̃.

E. Compact and Densely Defined Operators for DMD

As noted in Section III, DMD relies on computation of eigenfunctions of a finite-rank representation of an operator that

represents the dynamical system. The eigenfunctions of the finite-rank representations can be shown to converge to the

eigenfunctions of the true operator if the finite-rank representations themselves converge to the true operator in the norm

topology and the true operator is compact [21]. Koopman operators, Koopman generators, and Liouville operators are typically

not compact if their domains and co-domains are viewed as subsets of the same RKHS [21], [36], [48] (see Remark 2).

As noted in [36], Liouville operators corresponding to a large class of dynamical systems are compact provided the domain

and the range RKHSs are selected appropriately. However, since the domain and the range RKHSs need to be different,

the resulting operators do not admit eigenfunctions. In Section VI, it is shown that when the domain and the range RKHSs

are different, an SVD-based approach can be used to estimate the system dynamics. The SVD-based approach relies on

compactness of the total derivative operator and generates sequences of singular values and singular functions that converge to

the true singular values and singular functions. As shown in Section VI, compact total derivative operators result from bounded

multiplication operators and compact control Liouville operators, both of which exist for a large class of dynamical systems

and feedback laws.

In Section VII, an eigendecomposition-based DMD approach is developed that lacks convergence guarantees but generates

useful heuristic approximations of the eigenfunctions under the weaker assumption that the total derivative operator is densely

defined. As shown in Section VII, a densely defined total derivative operator results from a densely defined multiplication

operator whose range is a subset of the domain of a densely defined control Liouville operator. As discussed in Section VII,
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such multiplication operators and control Liouville operators also exist for a large class of dynamical systems and feedback

laws.

In the following, for an operator A and finite collections of functions d and r, in the domain and the range of the operator,

respectively, the notation A|d is used to denote the operator A restricted to the set span d, and the notation [A]rd is used to

denote a matrix representation of the finite-rank operator PrA|d, where Pr denotes the projection operator onto span r.

VI. A SINGULAR VALUE DECOMPOSITION APPROACH TO DMD

With careful selection of the domain and range RKHSs, the total derivative operator MµAf,g can be made to be compact.

While the provided framework includes a large class of dynamical systems, a complete characterization of RKHSs and symbols

that yield compact differential operators and bounded multiplication operators is out of the scope of this paper.

A. Existence of Bounded Multiplication Operators and Compact Differential Operators

The discussion in this section closely follows [36], where a similar result is obtained for systems without control. Consider

the exponential dot product kernel with parameter ρ̃, defined as K̃ρ̃(x, y) = exp
(

x⊤y
ρ̃

)

. In the single variable case, the native

space1 for this kernel is the restriction of the Bargmann-Fock space to real numbers, denoted by F 2
ρ̃ (R). This space consists

of the set of functions of the form h(x) =
∑∞

k=0 akx
k, where the coefficients satisfy

∑∞
k=0 |ak|

2
ρ̃kk! < ∞, and the norm is

given by ‖h‖
2
ρ̃ =

∑∞
k=0 |ak|

2
ρ̃kk!. Note that the set of polynomials in x is a subset of F 2

ρ̃ (R). Extension of this definition to

the multivariable case yields the space F 2
ρ̃ (Rn) where the collection of monomials, xα ρ̃|α|

√
α!

, with multi-indices α ∈ Nn forms

an orthonormal basis2. In this setting, provided ρ̃2 < ρ̃1, differential operators from F 2
ρ̃1
(Rn) to F 2

ρ̃2
(Rn) can be shown to be

compact.

Proposition 7: If ρ̃2 < ρ̃1, then the differential operators ∂
∂xi

: F 2
ρ̃1
(Rn) → F 2

ρ̃2
(Rn), are compact for i = 1, . . . , n.

Proof. To facilitate the clarity of exposition, the proof is written for functions of a single variable. Extension to functions of

several variables using multi-indices is conceptually straightforward. Let h ∈ F 2
ρ̃1
(R) be given by h(x) =

∑∞
k=0 akx

k , with

∂h
∂x

=
∑∞

k=0 bkx
k , where bk = (k + 1)ak+1. The norm of the derivative in F 2

ρ̃2
(R) is given by

∥

∥

∥

∥

∂h

∂x

∥

∥

∥

∥

2

ρ̃2

=

∞
∑

k=0

|bk|
2
ρ̃k2k! =

∞
∑

k=0

|ak+1|
2 k + 1

ρ̃1

(

ρ̃2
ρ̃1

)k

ρ̃
(k+1)
1 (k + 1)! =

∞
∑

k=0

|ak|
2 k

ρ̃1

(

ρ̃2
ρ̃1

)(k−1)

ρ̃k1k!

If ρ̃2 < ρ̃1 then there exists a constant C < ∞ such that k
ρ̃1

(

ρ̃2

ρ̃1

)(k−1)

≤ C for all k ∈ N. As a result,
∥

∥

∂h
∂x

∥

∥

2

ρ̃2
≤ C ‖h‖

2
ρ̃1

,

which establishes boundedness of the differential operator ∂
∂x

: F 2
ρ̃1
(R) → F 2

ρ̃2
(R).

To prove compactness, we construct a sequence of finite-rank operators that converge, in norm, to ∂
∂x

. Let αM :=

{1, x, . . . , xM} be the first M monomials in x, and let PαM
be the projection onto the span of these monomials. Consider the

sequence {PαM

∂
∂x

} of finite-rank operators. Let h ∈ F 2
ρ̃1
(R) be given by h(x) =

∑∞
k=0 akx

k. Then,

1The native space of a symmetric positive semidefinite kernel K is the unique RKHS of which K is the reproducing kernel. Such an RKHS is guaranteed
to exist by the Moore–Aronszajn theorem [49].

2For α ∈ Nn, α! =
∏n

i=1 αi!, |α| =
∑n

i=1 αi, and xα =
∏n

i=1 x
αi
i .
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∥

∥

∥

∥

PαM

∂h

∂x
−

∂h

∂x

∥

∥

∥

∥

2

ρ̃2

=

∞
∑

k=M+1

(k + 1)2 |ak+1|
2
ρ̃
(k+1)
2 (k + 1)! =

∞
∑

k=M+1

(k + 1)2
(

ρ̃2
ρ̃1

)(k+1) ∞
∑

k=M+1

|ak+1|
2
ρ̃
(k+1)
1 (k + 1)!

≤

∞
∑

k=M+1

(k + 1)2
(

ρ̃2
ρ̃1

)(k+1)

‖h‖
2
ρ̃1

.

If ρ̃2 < ρ̃1 then limM→∞
∑∞

k=M+1(k+1)2
(

ρ̃2

ρ̃1

)(k+1)

=0, and as a result, limM→∞
∥

∥PαM

∂h
∂x

− ∂h
∂x

∥

∥

2

ρ̃2
= 0. Therefore, the

operator norm
∥

∥

∥

∥

PαM

∂

∂x
−

∂

∂x

∥

∥

∥

∥

F 2
ρ̃2

(R)

F 2
ρ̃1

(R)

:= sup
h∈F 2

ρ̃1
(R)

‖PαM

∂h
∂x

− ∂h
∂x

‖ρ̃2

‖h‖ρ̃1

converges to zero as M → ∞, which establishes compactness of ∂
∂x

: F 2
ρ̃1
(R) → F 2

ρ̃2
(R).

Remark 2: Note that if ρ̃2 < ρ̃1 then F 2
ρ̃1
(Rn) ⊂ F 2

ρ̃2
(Rn) [36, Proposition 5.1]. In this case, one can view the differential

operators as maps from F 2
ρ̃2
(Rn) to itself. However, when viewed as such, the differential operators may not be compact.

As shown in [36], multiplication operators can be shown to be bounded provided their symbols are polynomial.

Proposition 8: If ρ̃2 < ρ̃1, then for any polynomial function p : Rn → R, the multiplication operator Mp : F 2
ρ̃1
(Rn) →

F 2
ρ̃2
(Rn), defined as [Mph] (x) = p(x)h(x), is bounded.

Proof. See [36, Lemma 3.2].

Proposition 8 trivially extends to vvRKHSs defined using diagonal reproducing kernels.

Proposition 9: Let F 2
ρ (R

n) denote the native (row) vvRKHS of a diagonal reproducing kernel defined as K(x, y) :=

diag

([

K̃ρ1(x, y), . . . , K̃ρm+1(x, y)

])

. If ρi < ρ̃ for i = 1, . . . ,m + 1, then given any set of polynomials pi,

i = 1, . . . ,m + 1, the multiplication operator Mp1,...,pm+1 : F 2
ρ̃ (R

n) → F 2
ρ (R

n), defined as
[

Mp1,...,pm+1h
]

(x) =

h(x)

[

p1(x), . . . , pm+1(x)

]

, is bounded. On the other hand, if ρ̃ < ρi for i = 1, . . . ,m+ 1, then for any component-wise

polynomial function µ =

[

µ1, . . . , µm

]⊤
: Rn → Rm, the multiplication operator Mµ : F 2

ρ (R
n) → F 2

ρ̃ (R
n), defined as

[Mµh] (x) = h(x)

[

1, µ1(x), . . . , µm(x)

]⊤
, is bounded.

Proof. Follows from arguments similar to Lemma 3.2 from [36].

Since Koopman operators are generally unbounded for any nonlinear system [48], the above propositions make a strong

case for spectral analysis of continuous-time systems in the Liouville operator (or Koopman generator) framework as opposed

to discretization and subsequent application of the Koopman operator framework.

B. Finite-rank Representation of the Closed Loop Total Derivative Operator

Since the dynamic modes may only be extracted from the composition of Mµ with Af,g , an explicit finite-rank representation

of Af,g and Mµ is needed to determine the dynamic modes of the resultant system. In the following, finite collections of

linearly independent vectors, dM , ̟M , βM , and rM are selected to establish the needed finite-rank representation. Since the

adjoint of Af,g maps control occupation kernels to kernel differences (Proposition 3), the span of the collection of kernel

differences

dM = {Kd(·, γui
(Ti))−Kd(·, γui

(0))}
M
i=1 ⊂ H̃d (13)
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is selected to be the domain of Af,g . The corresponding Gram matrix is denoted by GdM =
(

〈di, dj〉H̃d

)M

i,j=1
. The output of

Af,g is projected onto the span of the control occupation kernels

βM =
{

Γγui
,ui

}M

i=1
⊂ H (14)

before application of Mµ. The corresponding Gram matrix is denoted by GβM =
(

〈βi, βj〉H
)M

i,j=1
.

HH̃d

spandM

spanβMH̃r

span rM

Af,g

PβM

Mµ

PrM

PdM

PrMMµPβMAf,g|dM

MµAf,g

Fig. 2. A schematic diagram of the finite-rank representation of the total derivative operator.

Since the adjoint of Mµ maps occupation kernels to control occupation kernels of the form Γγui
,µ◦γui

(Proposition 6), the

derivation also requires the collection

̟M =
{

Γγui
,µ◦γui

}M

i=1
⊂ H (15)

of feedback control occupation kernels in H corresponding to the trajectories γui
and control signals µ◦γui

. Finally, the result

of Mµ is projected onto the span of the occupation kernels

rM =
{

Γγui

}M

i=1
⊂ H̃r. (16)

The corresponding Gram matrix is denoted by GrM =
(

〈ri, rj〉H̃r

)M

i,j=1
.

A rank-M representation of the operator MµAf,g is then given by PrMMµPβMAf,gPdM : H̃d → span rM , where PrM ,

PdM , and PβM denote projection operators onto span rM , spandM , and spanβM , respectively. The construction is illustrated

in Fig. 2.

Under the compactness assumptions and given rich enough data so that the spans of {di}
∞
i=1, {ri}

∞
i=1, and {βi}

∞
i=1 are

dense in H̃d, H̃r, and H , respectively, the sequence of finite-rank operators {PrMMµPβMAf,gPdM }∞M=1 can be shown to

converge, in norm topology, to MµAf,g . To facilitate the proof of convergence, we recall the following result from [3].

Lemma 1: Let H and G be RKHSs defined on X ⊂ Rn and let AN : H → G be a finite-rank operator with rank N . If the

spans of {di}
∞
i=1 and {ri}

∞
i=1 are dense in H and G, respectively, then for all ǫ > 0, there exists M(N) ∈ N such that for all

i ≥ M(N) and h ∈ H , ‖ANh−ANPdih‖G ≤ ǫ ‖h‖H and ‖ANh− PriANh‖G ≤ ǫ ‖h‖H .

Proof. See the proof of [3, Theorem 2].
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The convergence result for Liouville operators on Bargmann-Fock spaces restricted to the set of real numbers follows from

the following more general result.

Proposition 10: If B : H → H̃r is a bounded linear operator, A : H̃d → H is a compact operator, and the spans of {di}
∞
i=1,

{ri}
∞
i=1, and {βi}

∞
i=1 are dense in H̃d, H̃r, and H , respectively, then limM→∞

∥

∥BA− PrMBPβMAPdM

∥

∥

H̃r

H̃d
= 0, where

‖·‖H̃r

H̃d
denotes the operator norm of operators from H̃d to H̃r.

Proof. Let {AN}∞N=1 be a sequence of rank-N operators converging, in norm, to A. For an arbitrary h ∈ H̃d,

∥

∥BAh− PrMBPβMAPdMh
∥

∥

H̃r
≤ ‖BAh−BANh‖H̃r

+
∥

∥BANh− PrMBPβMTPdMh
∥

∥

H̃r

≤ ‖BAh−BANh‖H̃r
+ ‖BANh−BANPdMh‖H̃r

+
∥

∥BANPdMh−BPβMANPdMh
∥

∥

H̃r

+
∥

∥BPβMANPdMh− PrMBPβMANPdMh
∥

∥

H̃r
+
∥

∥PrMBPβMANPdMh− PrMBPβMAPdMh
∥

∥

H̃r
.

Assuming that the operator norm of B is B,

∥

∥BAh− PrMBPβMAPdMh
∥

∥

H̃r
≤ B ‖Ah−ANh‖H +B ‖ANh−ANPdMh‖H +B

∥

∥ANPdMh− PβMANPdMh
∥

∥

H

+
∥

∥BPβMANPdMh− PrMBPβMANPdMh
∥

∥

H̃r
+B ‖ANPdMh−APdMh‖H .

Using the fact that AN and BPβMANPdM are finite-rank operators, Lemma 1, can be used to conclude that for all ǫ > 0,

there exists M(N) ∈ N such that for all i ≥ M(N)

∥

∥BAh− PriBPβiAPdih
∥

∥

H̃r
≤ B ‖Ah−ANh‖H + 3Bǫ ‖h‖H̃d

+B ‖ANPdih−APdih‖H .

Since AN converges to A in norm, given ǫ > 0, there exists N ∈ N such that for all j ≥ N , and g ∈ H̃d ‖Ag −Ajg‖H ≤

ǫ ‖g‖H̃d
. Thus, for all j ≥ N and i ≥ M(j),

∥

∥BAh− PriBPβiAPdih
∥

∥

H̃r
≤ 5Bǫ ‖h‖H̃d

.

The convergence result for control Liouville operators on Bargmann-Fock spaces restricted to the set of real numbers can then

be stated as follows.

Theoerm 1: Let ρd ∈ R, ̺d ∈ R, ρr ∈ R, and ρ =

[

ρ1 . . . ρm+1

]⊤
∈ Rm+1 be parameters such that ρr < ρi, ρi < ̺d,

and ̺d < ρd for i = 1, . . . ,m+ 1. Let H̃d = F 2
ρ̃d
(Rn), G̃d = F 2

˜̺d
(Rn), H̃r = F 2

ρ̃r
(Rn), and H = F 2

ρ (R
n). If f , g, and µ are

component-wise polynomial, and if the spans of the collections {di}
∞
i=1, {ri}

∞
i=1, and {βi}

∞
i=1 are dense in H̃d, H̃r, and H ,

respectively, then limM→∞
∥

∥MµAf,g − PrMMµPβMAf,gPdM

∥

∥

H̃r

H̃d
= 0.

Proof. Propositions 7, 8, and 9 imply that Mµ is bounded and Af,g is compact. Since multiplication operators are linear by

definition, the theorem follows from Proposition 10.

C. Matrix Representation of the Finite-rank Operator

To formulate a matrix representation of the finite-rank operator PrMMµPβMAf,gPdM , the operator is restricted to spandM

to yield the operator PrMMµPβMAf,g|dM : span dM → span rM . For brevity of exposition, the superscript M is suppressed

hereafter and d, β, ̟, and r are interpreted as M−dimensional vectors.
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Proposition 11: If h = δ⊤d ∈ span d is a function with coefficients d ∈ RM and if g = PrMµPβAf,gh, then g = a⊤r,

where a = G+
r IG

+
βGdδ, I :=

(

〈̟i, βj〉H
)M

i,j=1
, and (·)+ denotes the Moore-Penrose pseudoinverse.

Proof. Propositions 3 and 6 imply that that for all j = 1, · · · ,M , A∗
f,gβj = dj , and M∗

µrj = ̟j , respectively. Note that since

g is a projection of MµPβAf,gh onto span r, g = a⊤r for any a that solves

Gra =













〈MµPβAf,gh, r1〉H̃r

...

〈MµPβAf,gh, rM 〉
H̃r













=













〈

Af,gh, PβM
∗
µr1

〉

H

...

〈

Af,g, PβM
∗
µrM

〉

H













. (17)

Furthermore, for all j = 1, · · · ,M , PβM
∗
µr1 = b⊤j β, for any bj that solves

Gβbj =













〈

M∗
µrj , β1

〉

H

...

〈

M∗
µrj , βM

〉

H













=













〈̟j, β1〉H
...

〈̟j , βM 〉
H













. (18)

As a result, b :=

[

b1, . . . , bM

]

is a solution of

Gβb =
(

〈̟j, βi〉H
)M

i,j=1
= I⊤. (19)

Substituting (18) into (17),

Gra =













〈

Af,gh, b
⊤
1 β

〉

H

...

〈

Af,gh, b
⊤
Mβ

〉

H













=















〈

h, b⊤1 A
∗
f,gβ

〉

H̃d

...
〈

h, b⊤MA∗
f,gβ

〉

H̃d















,

where A∗
f,gβ is interpreted as A∗

f,gβ =

[

A∗
f,gβ1, . . . , A∗

f,gβM

]⊤
. Using A∗

f,gβj = dj and h = δ⊤d,

Gra =













〈

δ⊤d, b⊤1 d
〉

H̃d

...

〈

δ⊤d, b⊤Md
〉

H̃d













=













b⊤1 Gdd

...

b⊤MGdd













Selecting solutions of (17) and (19) that minimize the 2-norm of a and bj , respectively,

a = G+
r b

⊤Gdδ = G+
r IG

+
βGdδ = G+

r IG
+
β Gdδ. (20)

That is, a matrix representation [MµPβAf,g]
r
d of the operator PrMµPβAf,g|d is given by G+

r IG
+
βGd.

Note that matrix representations are generally not unique. Different representations may be obtained by selecting different

solutions of (17) and (19). In the case where the Gram matrices Gr and Gβ are nonsingular, equations (17) and (19) have

unique solutions, resulting in the unique matrix representation G−1
r IG−1

β Gd.
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In the following section, the matrix representation [MµPβAf,g]
r
d is used to construct a data-driven representation of the

singular values and the left and right singular functions of PrMµPβAf,g|d.

D. Singular Functions of the Finite-rank Operator

Recall that the tuples {(σi, φi, ψi)}
M
i=1, with σi ∈ Rn, φi ∈ H̃d, and ψi ∈ H̃r, are singular values, left singular vectors, and

right singular vectors of PrMµPβAf,g|d, respectively, if ∀h ∈ spand, PrMµPβAf,gh =
∑M

i=1 σiψi 〈h, φi〉H̃d
. The following

proposition states that the SVD of PrMµPβAf,g|d can be computed using matrices in the matrix representation [MµPβAf,g]
r
d

developed in the previous section.

Proposition 12: If (W,Σ, V ) is the SVD of G+
r IG

+
β with W =

[

w1, . . . , wM

]

, V =

[

v1, . . . , vM

]

, and Σ =

diag

([

σ1, . . . , σM

])

, then for all i = 1, . . . ,M , σi are singular values of PrMµPβAf,g|d with left singular functions

φi := v⊤i d and right singular functions ψi := w⊤
i r.

Proof. Let φi = v⊤i d and ψi = w⊤
i r and h = δ⊤d. Then,

PrMµPβAf,gh =

M
∑

i=1

σiψi 〈h, φi〉H̃d
⇐⇒ PrMµPβAf,gδ

⊤d =

M
∑

i=1

σiw
⊤
i r

〈

δ⊤d, v⊤i d
〉

H̃d

Using the finite-rank representation, the collection {(σi, φi, ψi)}
M
i=1, is an SVD of PrMµPβAf,g|d, if for all δ ∈ RM ,

(

G+
r IG

+
β Gdδ

)⊤
r =

(

M
∑

i=1

σi

〈

δ⊤d, v⊤i d
〉

H̃d
w⊤

i

)

r. (21)

Simple matrix manipulations yield the chain of implications

(21) ⇐= ∀δ ∈ R
M , G+

r IG
+
β Gdδ =

M
∑

i=1

σi

〈

δ⊤d, v⊤i d
〉

H̃d
wi ⇐⇒ ∀δ ∈ R

M , G+
r IG

+
β Gdδ =

M
∑

i=1

σi

(

wiv
⊤
i Gd

)

δ

⇐= G+
r IG

+
βGd =

M
∑

i=1

σi

(

wiv
⊤
i

)

Gd ⇐= G+
r IG

+
β =

M
∑

i=1

σiwiv
⊤
i = WΣV ⊤,

which proves the proposition.

In the following section, the singular values and the left and right singular vectors are used, along with a finite truncation of

(5) to generate a data-driven model.

E. The SCLDMD Algorithm

Motivated by (4), assuming that hid,j ∈ H̃d for j = 1, · · · , n, the system dynamics are approximated using the rank-M

representation as ẋ ≈ F̂µ,M (x) := [PrMµPβAf,gPdhid](x), where PrMµPβAf,gPdhid denotes row-wise operation of the

operator PrMµPβAf,gPd on the function hid. Since PrMµPβAf,gPd converges to MµAf,g in norm as M → ∞, and since

the space F 2
ρ̃d
(Rn) contains hid,j for j = 1, · · · , n, the following result is immediate.

Corollary 1: Under the hypothesis of Theorem 1, limM→∞

(

supx∈X

∥

∥

∥
F̂µ,M (x)− Fµ(x)

∥

∥

∥

2

)

= 0.

Proof. Since the space F 2
ρ̃d
(Rn) contains hid,j for j = 1, · · · , n, the functions F̂µ,M,j := PrjMµPβjAf,gPdjhid,j and Fµ,j :=

MµAf,ghid,j that denote the j−th row of F̂µ,M and Fµ, respectively, exist as members of H̃r. Since x 7→ K̃r(x, x) =
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exp
(

x⊤x
ρ̃r

)

is continuous and X is compact, there exists a real number K such that supx∈X K̃r(x, x) = K. Theorem 1

can then be used to conclude that for all ǫ > 0 and j = 1, . . . , n, there exists M(j) ∈ N such that for all i ≥ M(j),
∥

∥

∥
F̂µ,i,j − Fµ,j

∥

∥

∥

2

H̃r

≤ ǫ2

nK
2 . Using the reproducing property, for i ≥ M := maxj M(j),

∥

∥

∥
F̂µ,i(x) − Fµ(x)

∥

∥

∥

2

2
=

n
∑

j=1

〈(

F̂µ,i,j − Fµ,j

)

, K̃r(·, x)
〉2

H̃r

≤

n
∑

j=1

∥

∥

∥
F̂µ,i,j − Fµ,j

∥

∥

∥

2

H̃r

∥

∥

∥
K̃r(·, x)

∥

∥

∥

2

H̃r

≤

n
∑

j=1

ǫ2

nK
2

〈

K̃r(·, x), K̃r(·, x)
〉2

H̃r

=
ǫ2

K
2 K̃r(x, x)

2.

As a result, for all ǫ ≥ 0 there exists M such that for all i ≥ M ,

sup
x∈X

∥

∥

∥
F̂µ,i(x) − Fµ(x)

∥

∥

∥

2
≤

√

ǫ2

K
2 sup

x∈X

K̃r(x, x)2 = ǫ,

which completes the proof.

Using the definition of singular values and singular functions,

ẋ ≈

M
∑

i=1

σiξiw
⊤
i r(x) = ξΣW⊤r(x), (22)

where ξi := 〈Pdhid, φi〉H̃d
and ξ :=

[

ξ1, . . . , ξM

]

.

The modes ξ can be computed using φi = v⊤i d as

ξ =













〈

Pdhid,1, v
⊤
1 d

〉

H̃d
, . . . ,

〈

Pdhid,1, v
⊤
Md

〉

H̃d

...
. . .

...

〈

Pdhid,n, v
⊤
1 d

〉

H̃d
, . . . ,

〈

Pdhid,n, v
⊤
Md

〉

H̃d













=













〈

δ⊤1 d, d1
〉

H̃d
, . . . ,

〈

δ⊤1 d, dM
〉

H̃d

...
. . .

...

〈

δ⊤n d, d1
〉

H̃d
, . . . ,

〈

δ⊤n d, dM
〉

H̃d













V = δ⊤GdV,

where δ :=

[

δ1, . . . , δn

]

. Using the reproducing property of the reproducing kernel of H̃d, the coefficients δi in the

projection of hid,i onto d satisfy

Gdδi=













〈(hid)i,d1〉H̃d

...

〈(hid)i,dM 〉
H̃d













=













(γu1(T1))i−(γu1(0))i
...

(γuM
(TM ))i−(γuM

(0))i













.

Letting D :=
((

γuj
(Tj)

)

i
−
(

γuj
(0)

)

i

)n,M

i,j=1
it can be concluded that δ⊤Gd = D. Finally, the modes ξ are given by ξ = DV

and the estimated closed-loop model is given by

ẋ ≈ F̂µ,M (x) = DVΣW⊤r(x) = DG+
β I

⊤G+
r r(x) (23)

The SCLDMD technique is summarized in Algorithm 1. The characterization Γγuj
=

∫ Tj

0 K̃
(

·, γuj
(t)

)

dt of occupation

kernels, introduced in [23], is used on line 8.
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Algorithm 1 The SCLDMD algorithm

Input: Trajectories {γui
}Mi=1, a feedback law µ, a numerical integration procedure, reproducing kernels K̃d, K̃r, and K of

H̃d, H̃r, and H , respectively, and regularization parameters ǫr and ǫ̃.
Output: {ξj, σj , ϕj , φj}

M
j=1

1: Gβ ←
(〈

Γγui
,ui

,Γγuj
,uj

〉

H

)M

i,j=1
(see (32))

2: Gr ←

(

〈

Γγui
,Γγuj

〉

H̃r

)M

i,j=1

(see (33))

3: I ←
(〈

Γγui
,µ◦γui

,Γγuj
,uj

〉

H

)M

i,j=1
(see (35))

4: D ←
((

γuj
(Tj)

)

i
−
(

γuj
(0)

)

i

)n,M

i,j=1

5: (W,Σ, V ) ← SVD of G+
r IG

+
β (See Remark 3)

6: ξ ← DV
7: φj ←

∑M
i=1 ← (V )i,j (Kd(·, γui

(Ti))−Kd(·, γui
(0)))

8: ψj ←
∑M

i=1

∫ Ti

0
(W )i,jK̃ (·, γui

(t)) dt
9: return {ξj , σj , ϕj , φj}

M
j=1

VII. EIGENDECOMPOSITION APPROACH TO DMD

In this section, an alternative finite-rank representation of the operator MµAf,g is presented, where its domain and range

are assumed to be subsets of the same RKHS H̃ of complex-valued continuously differentiable functions, with a real-valued

reproducing kernel K̃ . In particular, the finite-rank representation of MµAf,g is selected to be PrMµPβAf,g|r, where the

domain and the range are both span r. A consequence of this choice is that the finite-rank representation admits eigenfunctions

which could potentially generate an approximate invariant subspace of the closed-loop system.

While eigenfunctions of the finite-rank representation exist, they generally cannot be shown to converge to eigenfunctions

of the original operator, since the operators Mµ and Af,g can no longer be assumed to be bounded and compact, respectively.

Instead, they are assumed to be densely defined. Since the operators are not defined everywhere, we need the additional

assumptions that 1) the image of Af,g is contained within the domain of Mµ, 2) the span of r is a subset of the domain

of Af,g, and 3) the functions hid,j can be well-approximated by linear combinations of the eigenfunctions of the finite-rank

representation for j = 1, . . . , n. Due to the lack of convergence guarantees and since the assumptions on span r and hid,j are

difficult to verify, the resulting algorithm, while useful, is heuristic in nature. Since unbounded operators over Hilbert spaces

of real-valued functions can have empty spectra, in this section, the RKHS H̃ is assumed to be composed of complex-valued

functions of real variables of the form h : X → C.

The operators Mµ and Af,g are densely defined in a large class of problems. For example, if the domain and range spaces

in Section VI-A are selected to have identical kernel parameters, then the resulting operators are densely defined [23], and the

image of Af,g is also contained within the domain of Mµ. The assumption that span r ⊂ D(Af,g) can be removed in favor of

the assumption that the matrix that encodes the finite rank representation of MµAf,g is approximately equal to the transpose

of the matrix that encodes the finite rank representation of the adjoint A∗
f,gM

∗
µ (see [24]).

A. Matrix Representation of the Finite-rank Operator

In this section, a matrix representation of the finite-rank representation is developed.
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Proposition 13: If h = δ⊤r ∈ span r is a function with coefficients δ ∈ CM , Af,g and Mµ are densely defined, span r ⊂

D(Af,g), spanβ ⊂ D(Mµ), and g = PrMµPβAf,gh, then g = a⊤r with a = G+
r IG

+
β Ĩ

⊤δ.

Proof. The coefficients a =

[

a1 · · · aM

]⊤
∈ CM in the projection of MµPβAf,gh ∈ H̃ onto span r are given by the

solution of the linear system

Gra =













〈MµPβAf,gh, r1〉H̃
...

〈MµPβAf,gh, rM 〉
H̃













. (24)

A matrix representation of PrMµPβAf,g|r relates the coefficients δ =

[

δ1 · · · δM

]⊤
∈ CM of a function h = δ⊤r ∈ span r,

with the coefficients a above. Using the properties of the multiplication operator and the control Liouville operator established

in the previous sections, the inner products 〈MµPβAf,gh, rj〉H̃ on the right hand side can be evaluated as

〈MµPβAf,gh, rj〉H̃ =

M
∑

i=1

δi
〈

Af,gri, PβM
∗
µrj

〉

H
=

M
∑

i=1

δi

〈

Af,gri,

M
∑

k=1

bk,jΓγuk
,uk

〉

H

.

where {bk,j}
M

k=1 ⊂ C are the coefficients in the projection of M∗
µrj ∈ H onto spanβ, which can be computed by solving

Gβ













b1,j
...

bM,j













=













〈

M∗
µrj ,Γγu1 ,u1

〉

H

...
〈

M∗
µrj ,ΓγuM

,uM

〉

H













. (25)

Note that since the control occupation kernels βi = Γγui
,ui

the occupation kernels ri = Γγui
, and the symbol µ are all

real-valued functions, the coefficients bi,j are real numbers. The inner product can thus be further simplified as

〈MµPβAf,gh, rj〉H̃ =

M
∑

i=1

δi

M
∑

k=1

bk,j

〈

ri, A
∗
f,gΓγuk

,uk

〉

H̃
= δ⊤Ĩbj ,

where bj :=

[

b1,j · · · bM,j

]⊤
, and Ĩ :=

(〈

ri, A
∗
f,gΓγuk

,uk

〉

H̃

)M

i,k=1
is the interaction matrix corresponding to H̃. Stacking

the inner products on the left hand side in a column and selecting solutions of (24) and (25) that minimize the 2-norm of

a and bj , respectively, it can be concluded that a = G+
r IG

+
β Ĩ

⊤δ, where I :=
(〈

M∗
µrj ,Γγuk

,uk

〉

H

)M

j,k=1
is the interaction

matrix corresponding to H . A matrix representation [MµPβAf,g]
r
r ∈ RM of the finite-rank representation PrMµPβAf,g|r of

the operator MµAf,g is thus given by [MµPβAf,g]
r
r = G+

r IG
+
β Ĩ

⊤.

In the following section, the matrix representation [MµPβAf,g]
r
r is used to construct a data-driven representation of the

eigenvalues and the eigenfunctions of PrMµPβAf,g|r.

B. Eigenfunctions of the finite-rank representation

Given an eigenvalue λ̃j ∈ C and the corresponding eigenvector ṽj :=

[

ṽ1,j · · · ṽM,j

]⊤
∈ CM of [MµPβAf,g]

r
r and

the vector r :=

[

r1 · · · rM

]⊤
of occupation kernels in H̃ , it is straightforward to show that ϕj =

(

1/
√

ṽ
†
j
Gr ṽj

)

ṽ⊤j r
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is an eigenfunction of PrMµPβAf,g|r, where (·)† denotes the conjugate transpose. Indeed, by the definition of the matrix

[MµPβAf,g]
r
r, it can be seen that PrMµPβAf,g|rϕj =

(

1/
√

ṽ
†
j
Gr ṽj

)

([MµPβAf,g]
r
r ṽj)

⊤
r = λ̃j

(

1/
√

ṽ
†
j
Gr ṽj

)

ṽ⊤j r.

Using the fact that ri(x) = Γγui
(x) =

∫ Ti

0
K̃(x, γui

(t))dt, the eigenfunctions, evaluated at a point x ∈ Rn, can be computed

as

ϕj(x) =
1

√

ṽ†jGr ṽj

M
∑

i=1

ṽi,j

∫ Ti

0

K̃ (x, γui
(t)) dt. (26)

In the following section, the eigenvalues and the eigenfunctions are used to generate a data-driven model.

C. The CLDMD Algorithm

Let W̃ =
(

ṽi,j/
√

ṽ
†
j
Gr ṽj

)M

i,j=1
∈ CM×M be the matrix of coefficients of the normalized eigenfunctions, arranged so that each

column corresponds to an eigenfunction. Assuming that hid,j is in the span of the above eigenfunctions for each j = 1, · · · , n,

a representation of the identity function as a linear combination of a fixed number of eigenfunctions is given as hid(x) ≈

∑M
i=1 ξiϕi(x), where {ξi}

M
i=1 ⊂ Cn are the so-called control-Liouville modes. Similar to [3, Section 4.2], by examining the

inner products 〈hid,j, ri〉H̃ , the matrix ξ :=

[

ξ1, · · · , ξM

]

can be shown to be a solution of the linear system of equations

ξ
(

W̃⊤GrW̃
)

= RW̃, (27)

where R :=
(

〈hid,j , ri〉H̃
)n,M

j,i=1
and W̃ denotes the complex conjugate of W̃ . Indeed, letting ξi,j denote the j−th element

of the vector ξi, the row of coefficients ξj :=

[

ξ1,j , . . . , ξM,j

]

∈ C1×M in the projection of hid,j onto the span of the

eigenfunctions {ϕi}
M
i=1 is a solution of

ξjG⊤
ϕ =

[

〈hid,j , ϕ1〉H̃ , . . . , 〈hid,j , ϕM 〉
H̃

]

, (28)

where Gϕ =
(

〈ϕi, ϕj〉H̃
)M

i,j=1
∈ CM×M . Using the fact that 〈ϕi, ϕj〉H̃ =

〈

w̃⊤
i r, w̃

⊤
j r

〉

H̃
= w̃†

jGrw̃i, where

w̃j :=
(

1/
√

ṽ
†
j
Gr ṽj

)

ṽj , denotes the j−th column of W̃ , the Gram matrix Gϕ can be expressed as Gϕ = W̃ †GrW̃ .

Furthermore, using the fact that 〈hid,j , ϕi〉H̃ =
〈

hid,j , w̃
⊤
i r

〉

H̃
=

[

〈hid,j , r1〉H̃ , . . . , 〈hid,j, rM 〉
H̃

]

w̃i, where w̃i denotes

the complex conjugate of w̃i, the right hand side of (28) can be expressed as

[

〈hid,j , ϕ1〉H̃ , . . . , 〈hid,j, ϕM 〉
H̃

]

=
[

〈hid,j , r1〉H̃ , . . . , 〈hid,j , rM 〉
H̃

]

W̃ . Concatenating (28) for j = 1, . . . , n into a column vector, the matrix ξ is seen

to be a solution of (27).

Using the fact that any solution of ξW̃⊤Gr = R is also a solution of (27), selecting the solution of ξW̃⊤Gr = R that

minimizes the 2-norm of ξi for i = 1, · · · ,M , and using the relationship 〈hid,j , ri〉H̃ =
〈

hid,j ,Γγui

〉

H̃
=

∫ Ti

0
γui,j(t)dt, where

γui,j(t) denotes the j−th component of γui
(t), a set of control Liouville modes can be obtained as

ξ =

[

∫ T1

0
γu1(t)dt · · ·

∫ TM

0
γuM

(t)dt

]

(

W̃⊤Gr

)+

. (29)

The response t 7→ γµ(t) of the system, starting from the initial condition γµ(0) = γ0, under the feedback control law µ, can
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then be predicted as

γµ(t) ≈

M
∑

j=1

ξjϕj(γ0)e
λ̃jt. (30)

Furthermore, a pointwise approximation of the closed-loop model can also be obtained as

ẋ ≈ F̂µ,M (x) :=

M
∑

j=1

λ̃jξjϕj(x). (31)

The CLDMD method is summarized in Algorithm 2.

Algorithm 2 The CLDMD algorithm

Input: Trajectories {γui
}Mi=1, a feedback law µ, a numerical integration procedure, Reproducing kernel K̃ of H̃ , Reproducing

kernel K of H , and if needed, regularization parameters ǫ and ǫ̃.
Output: {ξj, λj , ϕj}

M
j=1

1: Gβ ←
(〈

Γγui
,ui

,Γγuj
,uj

〉

H

)M

i,j=1
(see (32))

2: Gr ←
(

〈ri, rj〉H̃
)M

i,j=1
(see (33))

3: I ←
(〈

M∗
µrj ,Γγuk

,uk

〉

H

)M

j,k=1
(see (35))

4: Ĩ ←
(〈

ri, A
∗
f,gΓγuk

,uk

〉

H̃

)M

i,k=1
(see (34))

5: [MµPβAf,g]
r
r ← G+

r IG
+
β Ĩ

⊤ (See Remark 3)

6: {λj , ṽj}
M
j=1 ← eigendecomposition of [MµPβAf,g]

r
r

7: W̃ ←
(

ṽi,j/
√

ṽ
†
j
Gr ṽj

)M

i,j=1

8: Compute {ξj, ϕj}
M
j=1 using (29) and (26) (See Remark 3)

9: return {ξj , λj , ϕj}
M
j=1

VIII. COMPUTATION OF INNER PRODUCTS

The elements of the Gram matrix Gβ , corresponding to β, can be computed using Proposition 2 as

〈

Γγui
,ui

,Γγuj
,uj

〉

H
=

Tj
∫

0

Ti
∫

0

[

1 u⊤
i (τ)

]

K
(

γuj
(t), γui

(τ)
)







1

uj(t)






dτdt (32)

The elements of the Gram matrix Gr can be computed using the double integral (cf. [3])

〈

Γγui
,Γγuj

〉

H̃
=

Tj
∫

0

Ti
∫

0

K̃
(

γuj(t), γui(τ)

)

dτdt. (33)

Using Proposition 3, the elements of the interaction matrix Ĩ can be evaluated as

〈

Γγui
, A∗

f,gΓγuk
,uk

〉

H̃
=
〈

Γγui
,K̃(·, γuk

(Tk))−K̃(·, γuk
(0))

〉

H̃
=

Ti
∫

0

(

K̃(γui
(t), γuk

(Tk))− K̃(γui
(t), γuk

(0))
)

dt. (34)

Using Proposition 6, the elements of the interaction matrix I can be evaluated as

〈

M∗
µΓγui

,Γγuk
,uk

〉

H
=

〈

Γγui
,µ◦γui

,Γγuk
,uk

〉

H
=

Tj
∫

0

Ti
∫

0

[

1 µ⊤(γui
(τ)))

]

K
(

γuj
(t), γui

(τ)
)







1

uj(t)






dτdt. (35)
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Assuming that each trajectory is sampled at N points in time, the computation of Gβ and I is O(nN2M2(m + 1)2), the

computation of Gr is O(nN2M2), and the computation of Ĩ is O(nNM2). Computation of the finite-rank representation and

its decomposition are O(M3). Evaluation of the occupation kernel is O(nN).

Remark 3: In addition to the Moore-Penrose pseudoinverse, the SCLDMD and CLDMD algorithms can also be implemented

using regularization. Regularization involves replacing the Gram matrices Gβ and Gr by Gβ+ǫIM and Gr+ ǫ̃IM , respectively,

whenever they need to be inverted, where IM denotes the M × M identity matrix, and ǫ > 0 and ǫ̃ > 0 are user-selected

regularization coefficients.

IX. NUMERICAL EXPERIMENTS

Two numerical experiments are performed to evaluate the developed SCLDMD and CLDMD methods, one using a simulated

controlled Duffing oscillator and another using a simulated two-link robot manipulator.

A. Controlled Duffing oscillator

This experiment concerns the controlled Duffing oscillator

ẋ1 = x2, ẋ2 = x1 − x3
1 + (2 + sin(x1))u,

where x =

[

x1 x2

]⊤
∈ R2 is the state and u ∈ R is the control. A total of 225 open-loop trajectories of the controlled

Duffing oscillator are generated using the MATLAB®
ode45 solver, starting from initial conditions on a 15× 15 regular grid

on a 6 × 6 square centered at the origin of the state space, R2. The control signal used for trajectory generation is of the

form u(t) =
∑15

i=1 bi sin(ωit+ ϕi), where the magnitudes bi, the frequencies ωi, and the phase differences ϕi are generated

randomly from a uniform distribution on the interval [−1, 1]. All trajectories are recorded over a duration of 1s, and are sampled

at a frequency of 20 Hz.

The trajectories are then utilized to predict the behavior of the oscillator under the state feedback controller µ(x) =
[

−2 −2

]

x. CLDMD is implemented using the exponential dot product reproducing kernel K̃ρ̃ = exp
(

x⊤y
ρ̃

)

with parameter

ρ̃ = 5, and a diagonal kernel given by K = diag

[

K̃ρ̃ K̃ρ̃

]

. SCLDMD is implemented using K̃r = K̃5, K = diag

[

K̃6 K̃6

]

,

and K̃d = K̃7. Simpson’s 1/3 rule is used to compute the integrals involved in algorithms 1 and 2.

1) Vector Field Reconstruction: Fig. 3 shows a side by side comparison of the pointwise 2-norm of the relative error between

the approximated vector field F̂µ,M (generated using (23) for SCLDMD and (31) for CLDMD), and the true vector field, Fµ.

The results in Fig. 3 indicate that both the CLDMD and the SCLDMD methods are able to obtain accurate estimates of the

closed-loop vector field on a domain contained within the grid of initial conditions of the data.

2) Indirect Closed-loop Response Prediction: The closed loop response can be predicted using either SCLDMD or CLDMD

by numerically solving the initial value problems in (23) and (31), respectively, starting from the desired initial condition. Fig.

4 shows the prediction error resulting from this indirect approach, starting from x0 =

[

2 −2

]⊤
. The results in Fig. 4 indicate

that both the CLDMD and the SCLDMD methods, when coupled with indirect prediction, accurately predict the desired

closed-loop trajectory.
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Fig. 3. Relative error
‖Fµ(x)−F̂µ(x)‖2

maxx∈[−2,2]×[−2,2] ‖Fµ(x)‖2
in the estimation of the vector field Fµ of the controlled Duffing oscillator as a function of x, obtained

using SCLDMD (left) and CLDMD (right).
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Fig. 4. Error between predicted and true trajectories of the controlled duffing oscillator for the experiment in Section IX-A. The figure on the left is obtained
using SCLDMD indirect prediction by solving (23) and the figure on the right is obtained using CLDMD indirect prediction by solving (31), both using the
MATLAB®

ode45 solver.

3) Direct Closed-loop Response Prediction: The CLDMD method can also be used to predict the behavior of the closed-loop

system starting from a given initial condition, and under the given feedback controller. Direct reconstruction is implemented

using (30). Fig. 5 shows the true and the predicted trajectories starting from the initial condition x0 =

[

2 −2

]⊤
. The predicted

trajectory is denoted by x̂. The results in Fig. 5 indicate that the CLDMD method, when coupled with direct prediction, fails

to obtain accurate prediction of the closed-loop trajectories.

B. Two-link Robot Manipulator

This experiment concerns a planar two-link robot manipulator described by Euler-Lagrange dynamics

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) = τ,
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Fig. 5. Predicted and true trajectories (left) and the corresponding prediction errors (right) of the controlled duffing oscillator for the experiment in Section
IX-A. This result is obtained using CLDMD direct prediction (30) with kernel parameter ρ̃ = 1e8.

where q = (q1 q2)
⊤ ∈ R

2 and q̇ = (q̇1 q̇2)
⊤ are the angular positions (rad) and angular velocities (rad s−1) of the two links,

respectively, τ = (τ1 τ2)
⊤

is the torque (Nm) produced by the motors that drive the joints, M(q) is the inertia matrix, and

Vm(q, q̇) is the centripetal-Coriolis matrix, defined as

M (q) :=







p1 + 2p3c2 (q) p2 + p3c2 (q)

p2 + p3c2 (q) p2






, and Vm (q, q̇) =







p3s2 (q) q̇2 −p3s2 (q) (q̇1 + q̇2)

p3s2 (q) q̇1 0






,

where p1 = 3.473 kgm2, p2 = 0.196 kgm2, p3 = 0.242 kgm2, c2 (q) = cos(q2), s2 (q) = sin(q2), and F (q̇) =
[

fd1q̇1 + fs1 tanh(q̇1) fd2q̇2 + fs2 tanh(q̇2)

]⊤
is the model for friction, where fd1 = 5.3 kgm2 s−1, fd2 = 1.1 kgm2 s−1,

fs1 = 8.45 kgm2 s−1, and fs2 = 2.35 kgm2 s−1. The model can be expressed in the form ẋ = f(x) + g(x)u with

x =

[

q⊤ q̇⊤
]⊤

, u = τ , f(x) =

[

q̇⊤
(

M−1(q)(−Vm(q, q̇)q̇ + F (q̇))
)⊤

]

, and g(x) =

[

02×2 (M−1(q))⊤
]⊤

, where

02×2 denotes a 2× 2 matrix of zeros.

A total of 200 open-loop trajectories of the manipulator are generated using the MATLAB®
ode45 solver, starting from

initial conditions selected to fill a hypercube of side 1, centered at the origin of the state space, R4, using a Halton sequence.

The control signal used for trajectory generation is of the form u =

[

u1 u2

]⊤
with uj(t) =

∑15
i=1 bj,i sin(ωj,it+ ϕj,i), for

j = 1, 2, where the magnitudes bj,i, the frequencies ωj,i, and the phase differences ϕj,i are generated randomly from a uniform

distribution on the interval [−1, 1]. All trajectories are recorded over a duration of 1s, and are sampled at a frequency of 10

Hz.

The trajectories are then utilized to predict the behavior of the oscillator under the state feedback controller µ(x) =






−5 −5

−15 −15






x, starting from x0 =

[

1 −1 1 −1

]⊤
. CLDMD is implemented using the exponential dot product

reproducing kernel with parameter 10 and a diagonal kernel given by K = diag

[

K̃10 K̃10 K̃10

]

. SCLDMD is implemented

using K̃r = K̃5, K = diag

[

K̃10 K̃10 K̃10

]

, and K̃d = K̃15. Gram matrices are regularized as described in Remark 3 using

regularization coefficients ǫ = ǫ̃ = 1e − 3. Simpson’s 1/3 rule is used to compute the integrals involved in algorithms 1 and
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Fig. 6. Predicted and true trajectories (left) and the corresponding prediction errors (right) of the 2-link robot manipulator for the experiment in Section IX-B.
This result is obtained using CLDMD direct prediction (30) with kernel parameter ρ̃ = 1e5 and regularization parameter ǫ̃ = ǫ = 1e− 7.
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Fig. 7. Error between the predicted and the true trajectories of the 2-link manipulator for the experiment in Section IX-B. The figure on the left is obtained
using SCLDMD indirect prediction by solving (23) and the figure on the right is obtained using CLDMD indirect prediction by solving (31), both using the
MATLAB®

ode45 solver.

2. Since the vector field is now a function of 4 variables in each dimension, direct visualization of the true and approximate

vector fields is not possible. However, the reconstruction accuracy may be indirectly gauged through indirect prediction of

trajectories of the system.

Fig. 6 shows the true and the predicted trajectories using the direct reconstruction method, implemented using (30). The

results in Fig. 6 indicate that the CLDMD method, when coupled with indirect prediction, is able to predict the desired closed-

loop trajectory much better in this experiment than the Duffing oscillator experiment in Fig. 5. Fig. 7 shows the predicted

trajectories and the prediction error resulting from the indirect approach. The results in Fig. 7 indicate that both the CLDMD

and the SCLDMD methods, when coupled with indirect prediction, accurately predict the desired closed-loop trajectory.
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X. DISCUSSION

As is evident from Fig. 3, the methods developed in algorithms 1 and 2 can effectively utilize data collected under open-loop

control signals to construct the closed-loop vector field under a given feedback policy.

Figures 5 and 4 indicate that the prediction error for the highly nonlinear controlled Duffing oscillator is significantly higher

in direct prediction as compared to indirect prediction. We postulate that this is due to the linear nature of the model in (30).

Since (30) is a solution of a system of linear ordinary differential equations, the resulting reconstruction diverges quickly from

the trajectories of the nonlinear model. On the other hand, we postulate that due to the presence of the eigenfunctions in (31),

the model used in the indirect approach includes nonlinear effects and as a result, generates a better prediction. When the

nonlinearities in the original system are mild, like the trigonometric nonlinearities in the two link robot model, the predictions

from the direct and the indirect method are close, as seen in figures 6 and 7.

The theory and the computations that support the developed algorithms require data-richness. In the convergence proofs,

data-richness manifests as the density of the kernel differences, the occupation kernels, and the control occupation kernels in

their respective RKHSs. In the computations, data-richness is required for the Gram matrices Gr and Gβ of the occupation

kernels and the control occupation kernels, respectively to be invertible. It is shown in [50] that for Gaussian radial basis

function reproducing kernels, the rank of the occupation kernel Gram matrix Gr can be characterized using the so-called

trajectory separation distance. Roughly, the trajectory separation distance is the largest radius q such that when all trajectories

are inflated to tubes of radius q, the resulting tubes are disjoint. Since multiple, shorter trajectories, starting from initial

conditions that are well-separated, would generally result in better separation distances, such a dataset would be preferred.

However, if the trajectories are too short, then the matrix D of trajectory endpoint differences can reduce to a zero matrix,

resulting in poor performance. Obtaining similar results for other reproducing kernels and for characterization of the rank of

the control occupation kernel Gram matrix Gβ is a topic for future research.

The condition number of Gr and Gβ depends not only on the trajectories but also on the selected reproducing kernels.

For example, the condition number of Gram matrices corresponding to Gaussian radial basis functions, given as K̃(x, y) =

exp(− 1
ρ̃
‖x− y‖22) for ρ̃ > 0 is larger for larger ρ̃. However, large ρ̃ values correspond to faster convergence of interpolation

problems within the native space of the kernel (cf. [51]). Data-richness conditions similar to the persistence of excitation (PE)

condition in adaptive control that relate the trajectories and the kernels can potentially be formulated to ensure a well-conditioned

Gr and Gβ , however, such formulation is a topic for future research.

Numerical experiments indicate that while direct trajectory reconstruction can be poor for systems with severe nonlinearities,

the developed techniques generate accurate estimates of the closed-loop vector field from data. Unlike traditional system

identification techniques, the algorithms developed in this paper do not require careful selection of basis functions. While the

implementation can be done using any universal kernels, careful tuning of the kernel parameter is often necessary.

XI. CONCLUSION

In this paper, a novel operator-theoretic framework is developed for the study of controlled nonlinear systems. The

framework utilizes RKHSs, where feedback-controlled nonlinear systems are expressed using a composition of infinite
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dimensional multiplication operator and an infinite dimensional control Liouville operator. A provably convergent finite-rank

representation of the composition, that utilizes trajectories of a system, observed under open-loop control inputs uj , is developed.

Eigendecomposition and SVD of the finite-rank representation is utilized to predict the behavior of the system response to a

query feedback controller, µ. The same dataset can be used to predict the system behavior in response to a multitude of query

feedback controllers.

To the best of our knowledge, this paper, along with the conference paper [24], are the first to study spectral decomposition

of continuous-time feedback-controlled nonlinear systems in a provably convergent manner. While this paper focuses solely on

system identification, the uniform convergence guarantees established by Corollary 1, makes the developed modeling technique

an attractive candidate for use in a variety of applications, including, but not limited to, data-driven control synthesis and

data-driven analysis and validation of feedback controllers.
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[17] H. Arbabi, M. Korda, and I. Mezić, “A data-driven Koopman model predictive control framework for nonlinear partial differential equations,” in Proc.

IEEE Conf. Decis. Control, 2018, pp. 6409–6414.

[18] B. Jayaraman, C. Lu, J. Whitman, and G. Chowdhary, “Sparse feature map-based Markov models for nonlinear fluid flows,” Comput. Fluids, vol. 191,

p. 104252, 2019.

[19] A. Surana, “Koopman operator based observer synthesis for control-affine nonlinear systems,” in Proc. IEEE Conf. Decis. Control. IEEE, 2016, pp.

6492–6499.



30

[20] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing Koopman theory to allow for inputs and control,” SIAM J. Appl. Dyn. Syst., vol. 17, no. 1,

pp. 909–930, 2018.
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