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Abstract—Knowledge graph embedding (KGE) plays an im-
portant role in graph mining and learning applications by
converting discrete graph structures to continuous vector repre-
sentations. While previous systems have focused on scaling KGE
onto multiple GPUs, the score function computation on each
GPU can be a performance bottleneck. Existing KGE systems
implement the score functions with separate tensor operations,
leading to large memory consumption and poor memory access
efficiency. To overcome the issues, we propose a code generator
that automatically translates Python-like definitions of KGE score
functions into efficient CUDA code. Our code generator exploits
the unique feature of KGE score functions and performs an ag-
gressive fusion of tensor operations. Additionally, our generated
code performs a runtime inspection to reduce redundant memory
access for edges with identical indices. Experiments show that our
generated code uses much less memory than previous systems and
achieves an average speedup of 14.9x over TorchScript and 7.8x
over TVM.

Index Terms—knowledge graph embedding, code generation,
GPU

I. INTRODUCTION

Knowledge graphs are used in many domains, such as social
networks [1], knowledge bases [2], and bioinformatics [3],
to represent entities and their relationships. Knowledge graph
embedding (KGE) is a technique that converts discrete graph
structures to continuous vector representations [4f]. The learned
vector representations are often used for clustering or link
prediction tasks [5]. They can also serve as input to graph
neural networks for downstream applications [6].

A KGE model assigns a vector (also known as an em-
bedding) to each node and edge in the graph based on a
score function. The score function measures the plausibility
of edges. The objective is to maximize the plausibility of
existing edges and minimize the plausibility of non-existing
edges. Different KGE models use different score functions.
For example, TransE [7] computes the score of an edge from
head node h to tail node ¢ with relation r as ||Eemb[h] —
Eemblt] + Remblr]||2, where Eemb represents the embed-
dings of all nodes and Remb represents the embeddings of
all relations. TransR [8]] improves on TransE by multiplying
the entity embeddings with a projection matrix before adding
them to the relation embedding. Its score function can be
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Fig. 1: Irregular memory access in KGE score function for a
batch of sampled edges. Different edges may share the same
head, tail, or relation, leading to redundant memory access.
X’ and 'O’ represent sampled edges of relation types 0 and
1, respectively.

written as ||(Eemb|[h] — Eemb[t]) x Pm[r]+ Remb[r]||2 where
Pm represents the projection matrices. The score function is
computed for a batch of sampled edges in each iteration of
KGE training.

Several systems have been developed to facilitate KGE
training, such as DGL-KE [9] and PyTorch-BigGraph [10].
These systems support large-scale KGE training on multi-
ple GPUs and provide implementations of commonly used
KGE models. However, the score functions implemented as
sequences of batched matrix operations can be a performance
bottleneck in these systems during KGE training. Our profiling
of DGL-KE shows that computing the score functions can
take up 50% to 80% of the total execution time. There are
two inefficiencies with the naive implementation. First, they
load data for each edge separately, leading to redundant data
access and storage. As shown in Fig. |1} a batch of sampled
edges may share the same heads, tails, or relations. Storing and
accessing duplicate indices slows down the computation and
prevents the training algorithm from using large batch sizes
due to high memory consumption. Second, the computation
requires multiple invocations of GPU kernels, which results in
additional data movement across the GPU memory hierarchy



for intermediate results.

To accelerate computation, one can write hand-optimized
GPU kernels for different score functions. However, the variety
of numerous existing functions and the constant emergence
of new ones make manual implementation a daunting (if not
impossible) task. Another approach is to use ML compilers
such as TVM [11] and XLA [12] to automatically generate
and optimize code for KGE functions. However, existing ML
compilers are designed for DNNs and have limited support
for sampled batch computations. First, they cannot optimize
indirect memory access; their generated code has the redun-
dant data access shown in Fig. [Ib] Moreover, DNN compilers
treat the batched vector multiplications in KGE functions as
batched general matrix-matrix multiplications, and they miss
many fusion opportunities for vector operations (explained in
more detail in Sec. [ITI).

In this paper, we propose cuKE, a domain-specific compiler
that automatically generates and optimizes CUDA code for
KGE score functions. Our system overcomes the limitations
of existing ML compilers by leveraging two unique properties
of KGE functions: 1) Many edges in a knowledge graph
have the same relation types, and the redundant access to
the same relation embeddings (or projection matrices) can be
avoided by a runtime inspector; 2) The intermediate results
of a KGE score function are always a batch of embedding
vectors, and the operators can be efficiently fused by caching
the intermediate data in GPU shared memory.

Our system allows the users to define a KGE score function
as a sequence of Python-like tensor operations. It creates a
computation graph based on the user’s definition, analyzes
the graph, and generates one single fused kernel for the
function. To minimize the overhead of the runtime inspector,
we developed an efficient GPU kernel that builds a mapping
from the memory access indices of individual edges to the
unique indices in each batch. During execution, our code
accesses data from GPU global memory only for the unique
indices. It caches the loaded data in GPU shared memory,
which is reused by all edges in a batch.

We extensively evaluated our system by integrating it into
DGL-KE to train different KGE models on real datasets.
Compared to TorchScript [13] and TVM [11], our code
allows training on larger batch sizes due to reduced memory
consumption. In cases where TorchScript and TVM do not run
out of memory, our code is up to 27.5x (14.9x on average)
faster than TorchScript and up to 24.9x (7.8x on average)
faster than TVM. We also compared our system with hand-
optimized CUDA code that is manually fused based on our
fusion strategy. Thanks to the runtime optimization, the code
generated by cuKE is up to 3.6x (1.7x on average) faster than
the hand-optimized code. The improved performance of score
function computation leads to overall 1.3x to 2.3x speedups
for KGE training over PyTorch.

II. BACKGROUND

This section gives backgrounds on GPU architecture, knowl-
edge graph embedding models, and current implementation of

TABLE I: KGE terminology and notation: N is the number of
nodes, M is the number of relations, Dim is the embedding
length, and B is the batch size.

Notation |

Eemb € RVXDim
Remb € RM*Dim

Pv € R]MXDzm
Pm € RI\/IXDimX Dwm

Description

embeddings of all entities

embeddings of all relations
projection vectors of all relations
projection matrices of all relations

h € [0..N)B head indices of sampled edges
t€[0.N)E tail indices of sampled edges
e O..M)B relation indices of sampled edges

KGE score functions.

A. GPU Architecture

GPUs have been a major component of high-performance
computing. They are specialized processors that feature mas-
sive parallelism. There are two types of parallelism on a
GPU: single instruction multiple threads (SIMT) and multiple
instruction multiple data (MIMD). GPU threads are organized
into warps. Each warp has 32 threads that execute in SIMT
fashion. Warps are further organized into threadblocks (also
called cooperative thread arrays) and are launched together
onto the streaming multiprocessors (SMs). Different warps can
execute different instructions on different data. A typical GPU
has tens of streaming multiprocessors, each of which has a
number of registers and a programmable cache called shared
memory. All threads in a threadblock can access the shared
memory, which is much faster than the GPU’s global memory
but also much smaller. The typical size of shared memory on
an SM is tens of KB. The NVIDIA RTX3090 GPU used in
our experiment can have up to 100KB shared memory. When a
threadblock uses more shared memory than what is available
on an SM, it cannot be launched. A modern GPU can run
more than 1K threads simultaneously on an SM, but the shared
memory puts a limit on the number of active threads.

B. Knowledge Graph Embedding

A knowledge graph is a directed, labeled, multi-edge graph
where the nodes represent entities and edges represent rela-
tions in certain domain. Knowledge graph embedding (KGE)
is a set of techniques that convert knowledge graphs into
continuous, low-dimensional vector representations. KGE has
gained significant attention in recent years due to their ability
to capture semantic relationships between entities and improve
the accuracy of knowledge graph completion and other related
tasks. Several popular KGE models have been proposed,
including TransE [7], TransR [§]], TransH [14], TransF [15],
and RESCAL [16]]. These models differ in their underlying
assumptions and have different score functions for measure
the plausibility of edges. Table [[I] lists the score functions of
popular KGE models, based on the notation in Table [l For
example, TransE assumes the entity embeddings and relation
embeddings are in the same vector space and computes the
score function as the distance between Eemb[h] + Remb][r]



TABLE II: Score functions of different KGE models: || - ||,
represents p-norm.

Model | Score Function
TransE [7]] [[Eemb[h] — Eemb[t] + Remb[r]]{ /o
TransH [14] [[Eemb[h] — Eemb[t] + Remb[r]—
Pu[r] - (Eemb[h] — Eemb[t)T - Pu[r]||2
TransR [8] [[(Eemblh] — Eemblt]) - Pm[r] + Remb[r]||2
TransF [15]] 2 % Eemblh| - Eemb[t]+
(Eemb[t] — Eemblh]) - Remb|r]
RESCAL [16] Eemblh] - Pm|r] - Eemblt]

and Fembl[t]. TransR assume entities and relations have dif-
ferent embedding spaces. It projects the entity embedding into
relation embedding space by multiplying it with a projection
matrix Pm/r].

KGEs are trained based on the open world assumption,
which states that a knowledge graph contains only true facts,
and non-observed facts can be either false or missing [|17].
In each training iteration, a small set of positive facts (i.e.,
existing edges) is sampled from the graph, and for each
positive fact, one or more negative facts (i.e., non-existing
edges) are sampled. The objective is to maximize the scores
of positive edges and minimize the score of negative edges.
A common method to sample negative edges is to replace
(corrupt) either the head or tail entity of a positive edge with
a set of random entities [[18]. All the negative edges corrupted
from the same positive edge have the same relation type.

C. Current Implementation of KGE Score Functions

The existing KGE systems [9]], [10] implement the score
functions based on batched matrix operations. List. [T] shows
the implementation of TransR score function in DGL-KE [9].
Given a batch of edges with heads h, tails ¢, and relations
r, it first reads the entity embeddings and the projection
matrix of each edge from FEemb, Remb and Pm (line 1
to 4). Then, it calls a batched matrix multiplication kernel
(brmm) provided by libraries such as cuBLAS [[19] to project
the entity embeddings into relation embedding space (line 5).
Finally, the projected embeddings are added with the relation
embeddings, and a norm function is called to compute the
scores (line 6). We can see that the naive implementation needs
to materialize the entity embeddings and the projection matrix
for each edge in the batch, which can take a lot of memory
space. For example, when the batch size B = 4096 and the
embedding length Dim = 1024, the projection matrices take
B % Dim * Dim * sizeof(float) = 16GB. This prevents the
current KGE systems from using larger batch sizes, which may
lead to slow convergence of the training algorithm [20].

III. LIMITATIONS WITH EXISTING ML COMPILERS FOR
KGE FUNCTIONS

Many compiler tools have been developed to automatically
generate and optimize code for tensor computations on dif-
ferent platforms [L1]-[13]], [21], [22]. Their basic idea is
to represent the computation as a graph and perform code
generation and optimization based on the graph. For example,
Fig. [2] shows the computation graph for the TransR function

#h=1[...1, t =1[...], £ = [...]
# read entity and relation embeddings
1 head_embs = Eemb[h]
2 tail_embs = Eemb|[t]
3 rel_embs = Remb[r]
# read projection matrices
4 proj_mats = Pm[r]
# batched matrix multiplication
5 tmp = bmm(head_embs - tail_embs, proj_mats)
scores = norm(tmp + rel_embs)

Listing 1: TransR implemented as batched matrix operations
in DGL-KE.

Fig. 2: Computation graph of TransR.

defined in Lst. [T} The compiler has a template implementation
(usually in the form of intermediate representations) for each
of the tensor operators, and it generates the code for the entire
computation by taking a post-order traversal of the graph.
The main power of these compilers comes from the automatic
tuning of each operator to achieve the best parallelism or cache
performance and the fusion between operators to avoid the
materialization of intermediate data.

Oversimplified Batch Operator Disables Fusion: Since the
ML compilers were designed for traditional DNNs, they have
limited support for batched, irregular tensor computations.
The first problem is that they treat all different types of
batched matrix/vector multiplications as general matrix-matrix
multiplication. For example, the multiplication of Pv[r] and
(Eemb[h] — Eemb[t]) in TransH is implemented as batched
matrix-matrix multiplication even though the actual compu-
tation is batched vector inner-product. The oversimplification
disables many operator fusion opportunities for KGE func-
tions. For the TransH function, TVM generates two separate
GPU kernels for Pv[r]-(Eemblh]— Eemb[t])T - Pv[r]: one for
Pu[r]- (Eemb[h] — Eemb[t])T, and one for the multiplication
of its result with Pv[r]. However, since we know that the result
of the first multiplication is a batch of scalars, the two kernels
can be easily fused together by caching the intermediate
result in the GPU shared memory. Note that while recent ML
compiler tools [22]—[24]] can perform such fusion for a single
edge, they do not support the fusion for batched computation.
For instance, the RESCAL function in Table [[] has a matrix-
vector multiplication (Eemb[h]- Pm]r]) followed by a vector-
vector multiplication. The first multiplication is a ‘many-
to-many’ operator [22], and the second is an elementwise




multiplication followed by a reduction. For a single edge,
the two operators can be fused together according to the
fusion rules of these compilers [22f], [24f]. However, for a
batch of edges, since both operators are represented as batched
matrix-matrix multiplications and become ‘many-to-many’,
they cannot be fused by these compilers.

Redundant Global Memory Access: Another limitation of ex-
isting ML compilers is that they focus on compile-time
optimization and do not support runtime optimization for
irregular computation. For KGE functions on a batch of edges,
traditional ML compilers (e.g., TVM and XLA) need to load
and store a copy of the data for each individual edge, even
though many edges may use the same data as illustrated
in Fig. [1] This leads to redundant data access and storage.
While a recent compiler tool, FreeTensor [21], introduces
loop constructs into tensor programs to express indirect tensor
indexing and avoids the explicit storage of indexing results,
it still needs to load data from GPU global memory for
every loop iteration (i.e., for every edge for KGE functions),
resulting in redundant global memory access.

IV. OVERVIEW OF CUKE

To overcome the limitations of existing solutions, we pro-
pose cuKE, a domain-specific compiler for generating efficient
CUDA code for KGE functions.

We first extend the batch operators in existing tensor
compilers to support batched vector operations. Specifically,
we add batched scalar-vector multiplication (bsv), batched
vector-vector multiplication (bvv), batched matrix-vector mul-
tiplication (bmv), and batched vector outer-product (bov), to
complement the batched matrix-matrix multiplication (bmm) in
the current implementations of KGE functions. We also add an
operator for gathering a batch of vectors (gather_vec) and
an operator for gathering a batch of matrices (gather_mat),
and distinguish them from the general indexing operation.
This extension of batch operators (as listed in Table
enables automatic fusion of all operations in a KGE function.
Details of our code generation and operator fusion methods
are described in Sec[V]

An important optimization of our system is that we avoid
loading redundant data from GPU global memory for the
gather_vec and gather_mat operations. This is achieved
by obtaining the unique data accessing indices in a batch
of edges and caching the data that are accessed multiple
times in shared memory. The main challenge is how to obtain
the unique indices efficiently so that the overhead does not
outweigh the benefit of reduced global memory traffic. We
developed an efficient parallel algorithm that inspects the data
loading indices for a batch of sampled edges at runtime and
returns the unique indices. Details of the runtime optimization
are described in Sec. [Vl

For a KGE function, our system generates the CUDA code
and wraps it (together with the runtime inspection code) into
a PyTorch C++ extension [25]. The extension can be used
to replace the original score function implementation in any
PyTorch-based KGE system to accelerate the computation.
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shared, float vec|[C][D];

2 for (33=0; 33<bim; 33+=D) (

/* gather_vec.BODY (emb, v, jj, vec) =*/

3 for (j=threadIdx.y*blockDim.x+threadIdx.x;
j<Dxv.uniqg_idx[blockIdx.x].size;
j+=blockDim.x*blockDim.y) {

4 vec[i1/D] [i%D] = emb[v.uniqg_idx[blockIdx.x] [1/D]][1

$D+331; }}

(b) CUDA code

Listing 2: Loading a batch of embedding vectors from global
memory to shared memory (gather_vec).

V. CODE GENERATION FOR BATCHED VECTOR
OPERATIONS

This section describes how our system generates code for
the batched vector operators listed in Table [[IT|and how it fuses
them together.

A. Code for Individual Operators

Since the computation of the score function for different
edges is independent, a simple way to map the computation
onto a GPU is to divide the edges into chunks and assign
each chunk to a threadblock. To reduce the materialization of
intermediate results, we can cache the data in shared memory.
However, shared memory may not be sufficient to hold the
entire intermediate data in most cases. For instance, for a
chunk of 32 edges with an embedding length of 1024, a Bvec
takes 32 % 1024 * sizeof(float) = 128KB, which exceeds the
shared memory size of most GPUs. To fit the data in shared
memory, we divide the embedding vector into blocks of D
elements, where D is set to a small number (usually 32 or
64), and store one block in shared memory at a time.

Based on the above discussion, we implement the
gather_vec operator as shown in Lst. [2] Suppose a thread-
block processes a chunk of C' edges. We allocate a buffer
of size C' * D in shared memory. The kernel function has
an outer loop that iterates over the output vector block by
block (line 3). In each iteration, a warp of threads (with
different threadldz.x) loads D elements from an embedding
vector (emb) to the shared memory buffer (vec) in a coalesced
way (line 5 and 6). Different warps (which have different
threadldz.y) read data for different edges. As multiple edges
may share the same index to emb, only the data of unique
indices (uniq_idx) are loaded. The loaded data are stored in
the shared memory buffer, and a mapping (named buf_idz)
from the actual indices to the positions of cached data in vec



TABLE III: Batched operators in cuKE. BInt, BFloat, BVec, and BMat represent a batch of integers, floating points,
vectors, and matrices. The bov operator is only used in the backward pass and cannot be followed by other operators.

cuKE Operator Prototype [ Overloading [ Description
EZEEEEQZEE EEXEE: Eiit; :i g;;f N Gather a batch of vectors or matrices based on the given indices.
scal_mul_vec (BFloat, BVec) —-> BVec bsv Multiply a batch of scalars with a batch of vectors.
vec_mul_vec (BVec, BVec) -> BFloat bvv Compute the inner-product of two batches of vectors.
vec_mul_mat (BVec, BMat) -> BVec bmv Multiply a batch of matrices with a batch of vectors.
vec_outer_vec (BVec, BVec) —-> BMat bov Compute the outer-product of two batches of vectors.

_ shared__ float vec3([C][D];

i = threadIdx.y;

3 for (33=0; jj<Dim; 33+=D) {

/* elementwise.BODY (vecl, vec2, vec3) =*/

/* vecl and vec2 are loaded or computed by jJ */

for (j=threadIdx.x; j<D; j+=blockDim.x) {

5 vec3[i] [j] = vecl[buf_idx[blockIdx.x][1]][]] +
vec2[i]1[31; }

/% vec3 is consumed x/ }

N =

o~

—_

_ _shared__ float res|[C][D];
2 i = threadIdx.y;
3 for (§3=0; 33<Dim; ji+=D) {
/+ scal_mul_vec.BODY (t, vec, res) */
/+* t is computed by jj*/
/+ vec is loaded or computed by Jj*/
4 for (j=threadIdx.x; j<D; j+=blockDim.x) {
5 res[i][3] = t * vecl[il[3]; }
/* res is consumed */ }

Listing 3: Element-wise addition for two batches of vectors.

1 float t = 0;
2 i = threadIdx.y;
3 for (33=0; 3j<Dim; ji+=D) {
/% vec_mul_vec.BODY (vecl, vec2, t) =/
4 /* vecl and vec2 are loaded or computed by jj */
5 for (j=threadIdx.x; j<D; Jj+=blockDim.x) {
6 t += vecl[buf_idx[blockIdx.x][1i]][]j] % vec2[i][
jl; 1}
7 t = warp_reduce (t);

Listing 4: Computing the inner-product of two batches of
vectors (vec_mul_vec) .

is constructed. We will explain how wuniq_idz and buf_idx
can be efficiently obtained at runtime in Sec.

The implementation of gather_mat is similar to
gather_vec. We allocate a buffer of size C1 * D *x D in
shared memory and load a D % D submatrix from global
memory into the buffer at a time for each edge. To avoid
shared memory overflow, we set C'1 to 2 in our implementation
and store the two most frequently accessed matrices in shared
memory for each threadblock. If a matrix is not cached in
shared memory, its bu f_idx is set to C plus its actual index,
so that the program knows to load data from global memory.

Lst. [3] shows the code of element-wise operation on two
batches of vectors. It processes the vectors block by block (line
3). The thread mapping is the same as the gather operations:
different threads in a warp process different elements of a
vector, and different warps process different vectors (line 4
and 5). The code assumes that the input vectors are available
in shared memory buffers (vecl and vec2) at the beginning of
each iteration of the outer loop, and the output is consumed at
the end of the iteration. If an input vector (vecl in this case) is
from a gather_vec operator, we need to access the data for
an edge ¢ using its index in the buffer (buf_idz[:]). If an input
vector (vec2 in this case) is the result of another element-wise
operator, the data is directly accessed using index <.

For the vec_mul_vec operator, the inputs are two batches

Listing 5: Multiplying a batch of scalars with a batch of vectors
(scal_mul_vec).

of vectors, and the kernel computes the inner product for
each pair of input vectors. As shown in Lst. ] it reads in D
elements from the input vectors in each iteration, multiplies
the corresponding elements, and accumulates the partial result
in a register t. Here, the reading of the input vectors is the
same as in the element-wise operations: if an input vector
is from a gather_vec operator, the data should be loaded
with buf_idz[i]; if an input vector is from an element-wise
operator, the data should be loaded with ¢ directly. At the end
of the outer loop, the values of ¢ in different threads of a warp
are added, and the final result is broadcast back to ¢. This step
can done efficiently using CUDA warp-level primitives [26].

The implementation of scal_mul_vec is similar to
element-wise multiplication, except that one of the inputs is
scalar and is read directly from the register ¢ produced by
its preceding vec_mul_vec operator. The code is shown in
Lst.

For the vec_mul_mat operator, since only a small block
of the input matrix can be stored in shared memory, we
read D elements from the input vector and multiply them
with the D % D elements of the input matrix at a time.
As shown in Lst. @a, the threads in a warp (with different
threadldz.z) fetch multiple columns of the input matrix and
multiply them with one element in the input vector. Different
warps (with different threadldz.y) conduct the multiplication
for different vectors. The CUDA code is shown in Lst. [6b. It
computes the output vectors block by block. When computing
the first block (i.e., jj == 0), it assumes the input vector
is available in wvec from the preceding operator. Since the
entire input vectors are repeatedly accessed for computing
each block of the output vectors, we store the input vectors
in global memory to avoid redundant computation (unless
the preceding operator is a gather_vec). When accessing
the input matrix, we need to check the value of buf_idx
(line 5-9). If buf_idz[blockldz.x][i]] < C, which means
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(a) Thread mapping

1 _ shared__ float vec[C][D],mat[C1l] [D][D], res[C][D];
2 1 = threadIdx.y;
3 for (33=0; 3j<Dim; Jj+=D) {
/* vec_mul_mat.BODY (vec, mat, res) */
4 for (kk=0; kk<Dim; kk+=D) {
/* mat is loaded by jjx/
/* vec 1s computed and stored when jj==0 and is
loaded otherwise */
5 t = buf_idx[blockIdx.x][i];
6 pmat = t < C ? mat : Pm;
7 idx =t <C?2t :t -C;
8 ofs_k =t < C 2 0 : kk;
9 ofs_j =t <C?20 : jj;
10 for (j=threadIdx.x; j<D; Jj+=blockDim.x) {
11 for (k=0; k<D; k++) {
12 res[i][j] += vec[i] [k] x pmat[idx] [k+tofs_k][j+
ofs_3jl; 1}}}
/x res is consumed */ }

(b) CUDA code

Listing 6: Multiplying a batch of vectors with a batch of
matrices (vec_mul_mat).

the matrix is stored in the shared memory buffer, we fetch
the data from mat. If buf_idz[i] > C, which means the
matrix is not cached, we load the data from the projec-
tion matrices (Pm) in global memory with the actual index
buf_idx[blockIdx.x][i]—C. In our actual implementation, we
also cache res and wvec in registers to exploit the data reuse
in loop k£ and loop j.

The implementation of vec_outer_vec is similar to
vec_mul_vec, with the difference that the results are ac-
cumulated in an output matrix.

B. Operator Fusion

As the astute readers may have noticed, the code in Lst.
to [6] shares the same outermost loop. This means that each
operator consumes the input vectors in the same order that
its preceding operators generate the outputs. Thanks to this
property, our batched vector operators can be easily fused
by combining their loop bodies. This allows us to generate
a single CUDA kernel for any KGE function. For example,
the subexpression Eemb[h] — Eemb[t] in TransE and TransR
is an element-wise ‘-’ operator that takes the output of two
gather_vec operators as input. As shown in Lst. [/ we
put the loop bodies of the three operators in the same loop.
The first gather_vec operator reads D elements of vectors
from Femb into vecl. The second gather_vec operator
reads D elements of vectors from Femb into vec2. Both vecl
and vec2 are in shared memory. The elementwise operator
reads corresponding vectors from vecl and vec2 based on the
buf_idx of vl and v2. It stores the output in vec3 in shared
memory, which can be consumed by subsequent operators.

elementwise

(a) Computation graph

_ shared__ float vecl[C][D], vec2[C][D], vec3[C][D];

i = threadIdx.y;

for (jj=0; Jjj<Dim; Jjj+=D){
gather_vec.BODY (embl, v1, jj, vecl);
gather_vec.BODY (emb2, v2, jj, vec2);

for (j=threadIdx.x; j<D; j+=blockDim.x) {
vec3[1i][j] = vecl[vl.buf_idx[blockIdx.x][1]1]1[]]
- vec2[v2.buf_idx[blockIdx.x][i]][3];}}

N U AW —

(b) CUDA code

Listing 7: Fusing two gather operators with an elementwise
operator. Different colors represent different operators in the
computation graph.

vec_mul_mat

(a) Computation graph

_ _shared__ float vec|[C][D],mat[C1l] [D][D],res[C][D];
i = threadIdx.y;
for (j3=0; jj<Dim; jj+=D) {
for (kk=0; kk<Dim; kk+=D) {
gather_vec.BODY (emb, v, kk, vec);
gather_mat.BODY (Pm, r, jJj, kk, mat);
for (j=threadIdx.x; j<D; Jj+=blockDim.x) {
for (k=0; k<D; k++) {
res[i][Jj] += vec[v.buf_idx[blockIdx.x][1i]][k]
* mat [r.buf_idx[blockIdx.x] [1]][k][J];}}}}

Nelie BN e R R o S

(b) CUDA code

Listing 8: Fusing two gather operators with batched vector-
matrix multiplication.

Next, we consider the fusion of vec_mul_mat with its
preceding operators. The input vectors of vec_mul_mat can
be generated by a gather_vec operator or an element-
wise operator, whereas the input matrix must come from
a gather_mat. The fused code is shown in Lst. By
embedding the code of gather_vec (or elementwise)
and gather_mat into the loop body of vec_mul_mat (line
5 and 6), we obtain a block of D vector elements in vec and
a block of D % D matrix elements in mat. The inner loops
(j and k) multiply them together and accumulate the results
to the output vectors res. Here, we omit the case where the
input matrix is not cached in shared memory for simplicity of
illustration, but the code is similar to lines 5-9 in Lst. [6] As
the output vectors are computed block by block, the loop body
of the code snippet can be further embedded into subsequent



operators. The fusion of vec_outer_vec with its preceding
operators can be conducted in the same way.

While shared memory is fast on a GPU, we can further
improve performance and reduce shared memory usage by
keeping intermediate data in registers in some cases. When
two elementwise operators are fused, we need not store
the output of the first operator in shared memory; it can
be directly consumed by the subsequent elementwise
operator in registers. For example, the element-wise ‘-’ op-
erator in Lst. [7] can be combined with an element-wise ‘+’
operator to obtain the code for the TransE score function:
Eemblh] — Femb[t] + Remb|r]. Since the two operators
have the same inner and outer loops, we can keep the result
of vecl[h.buf_idx[i]][j] — vec2[t.buf_idx[i]][j] in registers
when adding it to the corresponding element in Remblr].
Another scenario is when an elementwise operator is
combined with a vec_mul_mat operator. Each thread holds
one element of the input vectors produced by elementwise.
Since the vector-matrix multiplication for an edge is computed
within a warp, the vector elements can be shuffled to other
threads in the warp using CUDA warp-level primitives [26].

The remaining case for fusion is between vec_mul_vec
and scal_mul_vec where the result of the first operator
(a batch of scalars) is given to the second operator as input.
The fusion can be easily achieved by inserting the code of
Lst. 4] (with a changed loop iterate name) into the outer loop
of Lst.

VI. RUNTIME INSPECTION TO AVOID REDUNDANT DATA
ACCESS

As shown in Fig. different edges in a sampled batch
may share the same head, tail, or relation during KGE train-
ing. To avoid redundant data access, our gather_vec and
gather_mat operators only load the embedding vectors or
projection matrices for edges with unique indices (uniq_idx
in Lst. into shared memory. When subsequent operators
use this data, they access it from shared memory based on the
locations in the buffer (buf_idz in Lst. [3). We now explain
how the uniq_idx and buf_idx can be efficiently constructed
at runtime.

A. Building Unique and Buffer Index

Fig. [/] illustrates the index-building procedure for the tail
indices of the six edges from Fig. [Tal The indices are
(1,3,1,3,4,2). We first load the indices into shared memory
and sort them. The mapping between the unsorted and sorted
indices is returned in an array ord where ord[i] = j means
unsorted|i] is stored in sorted[j]. Then, each thread i > 0
checks if sorted]i] is the same as sorted[i — 1]. If not, the
thread writes 1 to is_unig[i], indicating that sorted[i] is a
unique index. In this example, thread-2,3,5 find that their
corresponding values are larger than the previous ones, so they
write 1 to is_uniq[2], is_uniq[3], and is_uniq[5]. After all the
threads finish writing into is_uniq, a prefix sum is computed
on ¢s_uniq, which gives us the positions of unique indices in
the buffer (buf_idx).

Since it is only beneficial to cache the repeatedly accessed
data in shared memory, we need to select the edges based on
their access counts. To obtain the access counts of different
indices, each thread ¢ > 0 checks again if sorted|i] is the same
as sorted[i—1]; if not, thread-i writes i to pcount[bu f_idx[i]].
The values in pcount are the prefix sum of the access counts
of different indices. The access count of each index can then
be obtained by pcount[i + 1] — pcountli] for all but the last
unique index. The access count of the last unique index is
C — peountlbuf_idz[last]].

Next, we select the most frequent indices based on
the count. This is achieved by writing sorted[i] to
cachelbuf_idz[i]] for all ¢ > 0 that have sorted[i] #*
sorted[i — 1] and ¢ = 0, and sorting cache based on count.
The positions of cacheli] in the sorted_cache are stored in
cache_ord|i]. For projection matrices, unig_idz is simply the
first C'1 elements from sorted_cache. For embedding vectors,
uniq_idx contains the first few elements from sorted_cache
with counts larger than a threshold.

Last, according to the uniq_tdx, we update the buf_idx.
Each thread checks if sorted]i] is in uniq_idx (by checking if
uniq_idz[cache_ord[buf_idz[i]]] is valid or not). If it is, the
thread writes cache_ord[buf_idz|[i]] to buf_idx[i]. If a thread
finds sorted[i] is not in uniq_idz, it writes C' + sorted|[i] to
buf_idx[i]. The values in buf_idx are finally shuffled based
on ord to recover the order of the original unsorted edges.

The overhead of this runtime inspection is small compared
to the KGE function as each step has O(C) or O(C'log(C))
complexity and can be done in parallel within the shared
memory.

B. Improving Data Reuse with On-the-Fly Edge Reordering

In real knowledge graphs, the number of edges is typically
much larger than the number of relation types, meaning that
there are many duplicate relations in each batch. If we reorder
the edges and group together edges of the same relation in each
batch, there will be fewer unique indices in each chunk of C
edges. This leads to better data reuse with relation embeddings
and projection matrices in each threadblock. This reordering
can be accomplished by sorting the edges based on their
relation indices. However, since the reordering needs to be
performed in each training iteration, sorting the entire batch
could be expensive in comparison to its benefits. To reduce the
overhead of reordering, we can divide the edges into smaller
groups and only sort the edges within each group. The group
size is set to pC' where p is a configurable parameter. When
p = 1, only the duplicate indices within each threadblock are
considered, resulting in the same data reuse as unsorted edges.
As p increases, the sorting becomes more expensive but also
brings more edges of the same relation together, thus achieving
better data reuse.

Fig. [§] shows the number of unique relation indices pro-
cessed by all threadblocks with and without edge reordering.
We test with a batch size of 8192, C' = 16, and different
values of p, on different input graphs (listed in Table [[V]). The
batches are randomly sampled from the input graphs and the
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numbers reported are the average of 1000 runs. We can see
that the number of unique indices is significantly reduced (3.4x
to 7x) by sorting or partially sorting the edges. The results
validate the effectiveness of our edge-reordering technique.
As p increases, the number of unique indices decreases, but
the sorting overhead increases. In our experiments, we set
p = 128 as it achieves good data reuses while maintaining
a small sorting overhead.

VII. EXPERIMENT EVALUATIONS

This section presents an evaluation of our system and com-
pares it with existing tools for implementing KGE functions.

A. Experiment Setup

Datasets: We run our experiments on four knowledge graphs:
FB15k, FB15k-237, BioKG and WN18, as listed in Table
The four graphs are commonly used for evaluating KGE
systems [9], [10], [20]. FB15k and FB15k-237 are derived
from the Freebased Knowledge Graph [27], WN18 is derived

TABLE IV: Knowledge graph datasets.

Model | #nodes | #edges | # relations
FB15k [27] 14951 592213 1345
FB15k-237 [27] 14541 310116 237
BioKG [29] 93773 5088434 51
WNI18 [28] 40943 151442 18

from WordNet [28]], and BioKG is derived from BioDBLinker
[29]I.

Baselines: We compare the CUDA code generated by our
system with three baselines:

1) PyTorch-based implementations in DGL-KE [9]. The score
functions are implemented with basic tensor operations
supported by cuBLAS [19]. We also compile the functions
with TorchScript [13]]. The compiled code does not always
outperform the original Python implementation. We report
the performance of the better one between the compiled
and uncompiled code.

2) TVM [11] is an open-source machine learning compiler for
different platforms. In the latest version, TVM provides a
DSL called Relay to represent the computation in neural
networks [30]. We use Relay to implement the KGE
functions and test the performance of its generated CUDA
code.

3) We also write hand-optimized CUDA code for the KGE
functions in forward computation. The code is manually
fused in the same way as described in Sec. However,
it loads data for every edge in a batch. We compare this
hand-optimized version with the code generated by cuKE
to demonstrate the benefits of our runtime optimization
technique.

Platform and Settings: Our experiments are conducted on an
Nvidia RTX3090 GPU, which has 82 SMs running at 1.4 GHz,
and 24 GB global memory with a bandwidth of 936 GB/s. We
use NVCC 11.7 for CUDA code compilation. The execution
time was measured as the average of 3000 training iterations.
We set C' = 16, D = 64, C'1 = 2 in our code for different

operators in Lst. el

B. Performance of Score Function Computation

Fig. [9a shows the throughput of TransE positive score com-
putation with different batch sizes and embedding dimension
lengths on FB15k graph. The global memory traffic sizes are
labeled above the bars. PyTorch/TorchScript has the lowest
throughput due to the largest memory traffic. This is because
TorchScript has the lowest fusion ability. Our profiling with
Nvidia Nsight [31] shows that TorchScript cannot even fuse
index operators with an element-wise operator. All the other
three versions can fuse index operations with element-wise,
avoiding the explicit storage of indexing results in GPU global
memory. The code generated by our system is slightly faster
than TVM and the hand-optimized code because it only loads
data for unique indices.

The advantage of our system’s fusion ability is more
evident in the performance results of the TransH function.
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Fig. 9: Throughput of positive score computation. ICE
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Figure [Ob] shows that TorchScript and TVM have low through-
put because of high global memory traffic. According to the
CUDA code generated by TVM, TVM does not fuse index
operators with an element-wise operator when the indexing
results are used by multiple terms in the function. TVM
does fuse the inner-product operator with element-wise (i.e.,
Pu[r] - (Eemb[h] — Eembl[t])T), but it misses further fusion
for the multiplication of the intermediate results with Puv[r]
again. Our hand-optimized code has similar global memory
traffic as cuKE; however, cuKE achieves better performance
due to the runtime optimization that avoids redundant memory
access. We achieve an average speedup of 5.9x compared to
TorchScript, 3.1x compared to TVM, and 1.2x compared to
hand-optimized code.

While operator fusion generally leads to increased register
and shared memory usage, it does not affect GPU utilization
in our experiments. In all our test cases, each thread uses at
most 160 bytes of registers and 36 bytes of shared memory.
Since the default setting of each SM has 256KB register and
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48KB shared memory on our test platform, all threads on an
SM can be launched at the same time. Our profiling results
with Nvidia Nsight show that the warp occupancy of our fused
kernels ranges from 75% to 93%.

The benefit of our runtime optimization might seem
marginal for TransE and TransH when compared with the
hand-optimized code. This is because the two functions only
use embedding vectors. When the score function involves
loading projection matrices, our runtime optimization can save
much more global memory traffic. This can be seen from
the performance results of TransR and RESCAL in Fig.
and [9d] TorchScript and TVM have low throughput and large
memory traffic due to their limited fusion ability. Since they
need to explicitly store the copy of the projection matrices
for the given indices, TorchScript runs out of memory during
execution and TVM reports internal compilation errors (due
to an overflow of threadblock numbers) when the batch size
and dimension length are large. Although the global memory
traffic is significantly reduced by the manual fusion in the
hand-optimized code, it still needs to access the projection
matrices multiple times for duplicate indices. Our runtime
optimization further reduces the global memory traffic by
1.4x to 7.9x. For TransR, our code achieves an average
speedup of 20.6x compared to TorchScript, 14.2x compared
to TVM, and 2.1x compared to the hand-optimized code. For
RESCAL, we achieve an average speedup of 27.5x compared
to TorchScript, 24.9x compared to TVM, and 2.2x compared
to hand-optimized code.

The performance results of negative score computation
follow a similar pattern as positive computation. Since the
negative edges corrupted from each positive edge share the
same head (or tail) and relation, our CUDA kernel can easily
benefit from this property and load the entity embedding and
projection matrix only once for a group of negative edges.
As the memory access is more regular, negative score com-
putation in general achieves higher throughputs than positive
computation. As shown in Fig. [T0} for the TransF function,
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Fig. 11: Execution time per iteration for different score func-
tions and input graphs (batch_size=4096 and dim=512).

our system achieves an average speedup of 6.4x, 12.2x, and
1.6x against TorchScript, TVM, and hand-optimized code, due
to the reduced global memory traffic. For TransR, the average
speedups against TorchScript, TVM, and hand-optimized code
are 1.9x, 1.6x, and 3.6x. For RESCAL, the average speedups
against the other three versions are 3.8x, 4.4x, and 1.2x,
respectively. We skip the figures for TransE and RESCAL due
to the space limit.

C. Overall Performance

To demonstrate the performance gains of our method for
end-to-end KGE training, we compare the overall training time
with PyTorch. Fig. [11{ shows the breakdown execution time in
each iteration for different score functions and input graphs
with batch size 4096 and dimension 512.

The training process includes both forward and backward
passes. We have explained the forward performance in the
previous subsection. Our system does not support automatic
differentiation, but we can easily generate code for backward
computation by explicitly writing the formulas for comput-
ing the gradients. For example, suppose dout is the gradi-
ent of loss w.r.t ((Eemblh] — Eemblt]) - Pm[r] + Remb[r])
in the TransR function. The gradient w.r.t Remb[r] is
simply dout. The gradient w.r.t Femb[h] and FEemblt]
are tbmv(dout, Pm[r]). The gradient w.r.t Pm[r] is
bov(dout, Eemb[h] — Eemblt]). Since bov is always used
for computing gradients w.r.t projection matrices and is not
followed by any other operators, our fusion strategy described
in Sec. [V-B] still applies. The backward computation also
benefits from the runtime optimization in the same way as
the forward computation. The results show that our system
improves the end-to-end performance of KGE training by 1.3x
to 2.3x over PyTorch.

D. Memory Consumption

We now compare the memory consumption of our code
with PyTorch implementation. TVM has a similar memory
consumption to PyTorch as they both store the embedding
vectors and projection matrices for all edges in a batch. The

TABLE V: Memory usage (in GB) of our code for computing
the TransR positive score function with different batch sizes
and dimension 512.

[ 4096 [ 8192 [ 16384

FB15k 0.77 0.99 1.37
FB15k-237 | 0.43 0.56 0.72
BioKG 0.16 0.23 0.33
WN18 0.15 0.27 0.45

only slight advantage is that TVM can fuse some computation
kernels to reduce the storage of intermediate data. Since
the entity embeddings and projection matrices of the entire
graph are usually distributed on multiple devices for large-
scale KGE training [9], both our and PyTorch implementations
need to load and store a copy of the data for the unique
entities and relations in a batch on the current device. In
general, this data is small since there are few relation types
in a batch. Table [V] shows the memory consumption of our
code for computing TransR score functions on four different
graphs with different batch sizes. In comparison, PyTorch
needs to store the projection matrix for each individual edge.
When the dimension length is set to 512, each embedding
vector takes 512 * sizeof(float) = 2KB, and each projection
matrix takes 512 x 512 x sizeof(float) = 1MB. The lower
bound of memory usage for a batch can be calculated as
(3x2K B+ 1M B) * batch_size, which are 4GB, 8GB, 16GB
for a batch size of 4096, 8192, or 16384. According to Table
our code requires less than 10% of the memory used by
PyTorch.

VIII. RELATED WORK

KGE systems. Several packages have been developed for
knowledge graph embedding and scaling the computation to
large knowledge graphs. OpenKE [32] is an early package
for KGE training and provides implementations for a large
list of KGE models. DGL-KE [9]] is an open-source library
for KGE that is implemented using the Deep Graph Library
(DGL). It features distributed storage of embeddings and
projection matrices and support for large-scale KGE training.
Pytorch-BigGraph (PBG) [[10] is developed with an emphasis
on scalability to large graphs with millions of nodes and
edges. However, it did not support GPU training. These
systems implement KGE score functions based on basic tensor
operations provided by PyTorch or other operator-based ML
libraries.

Operator-based ML libraries. There are multiple operator-
based machine learning libraries that can be used to build
graph embedding models. PyTorch [33] is a popular deep-
learning framework known for its ease of use, dynamic
computation graph, and good support for GPU acceleration.
MXNet [34] and TensorFlow [35]] also represent a program
with a computation graph, where each node represents a
tensor operation. JAX [36]] allows the use of Python’s dynamic
control flow while providing efficient vectorized operations
and automatic differentiation.



ML compilers. PyTorch and TensorFlow support code opti-
mization and generation based on their computation graphs.
PyTorch code can be compiled to TorchScript [[13]], which is a
high-performance and portable Python execution environment
that can be used for deploying PyTorch models. TensorFlow
code can be optimized by XLA [12], which is a domain-
specific compiler for linear algebra operations. TVM [11]] sup-
ports highly customized operators by introducing a compute-
and-schedule programming model, where users first specify
the mathematical definition of computation and then optimize
it with explicit or machine-learning-guided transformations.
FreeTensor [21] is a DSL designed for expressing irregular
tensor computations. It supports free-form tensor expressions,
which allow users to express computations in a natural and
intuitive way. Compared to existing ML compilers, our work
leverages the specific features of KGE score functions and
achieves more efficient operator fusion and irregular memory
access optimization.

IX. CONCLUSION

In this paper, we propose cuKE, a domain-specific compiler
for generating KGE score functions on GPU. The main idea
is to extend the tensor operations in traditional ML compilers
with batched tensor operators. Based on the batch represen-
tation, our system automatically fuses the operators to avoid
storage of intermediate data in GPU global memory. We also
avoid redundant data access by using a runtime inspector.
The experiments show that our system achieves significant
speedups against TorchScript and TVM.
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