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Noncrossing partitions of an annulus
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Abstract. The noncrossing partition poset associated to a Coxeter group W and Coxeter
element c is the interval [1, c]T in the absolute order on W. We construct a new model
of noncrossing partitions for W of classical affine type, using planar diagrams. The
model in type ˜︁A consists of noncrossing partitions of an annulus. In type ˜︁C, the model
consists of symmetric noncrossing partitions of an annulus or noncrossing partitions
of a disk with two orbifold points. Following the lead of McCammond and Sulway, we
complete [1, c]T to a lattice by factoring the translations in [1, c]T, but the combinatorics
of the planar diagrams leads us to make different choices about how to factor.

Résumé. Le poset de partitions noncroisées associé à un groupe de Coxeter W et un el-
ement c de Coxeter est l’intervalle [1, c]T dans l’order absolut sur W. Nous construisons
un nouveau modèle de partitions noncroisées dans le type affine, en utilisant des dia-
grammes planaires. Le modèle de type ˜︁A se compose des partitions noncroisées d’un
anneau. Le modèle de type ˜︁C se compose des partitions symmetriques noncroisées
d’un anneau ou des partitions noncroisées d’un disque avec deux points d’orbifold.
En suivant l’exemple de McCammond et Sulway, nous complétons [1, c]T à un treil-
lis en factorisant les translations dans [1, c]T, mais le combinatoire des diagrammes
planaires nous conduit à faire dex choix différents sur la manière de factoriser.

Keywords: absolute order, affine Coxeter group, annulus, noncrossing partition

1 Introduction

Noncrossing partitions associated to a Coxeter group are algebraic/combinatorial objects
that figure prominently in the analysis of the associated Artin group. In the classical
finite types A, B, and D, noncrossing partitions are best understood in terms of certain
planar diagrams. The full version [10] of this paper and its sequel [11] extend planar
diagrams for noncrossing partitions to the classical affine types. Furthermore, in [20],
which can be thought of as a “prequel” to these papers, the combinatorics of these
planar diagrams is generalized to the setting of marked surfaces (in the sense of cluster
algebras). Planar diagrams for noncrossing partitions of types A and ˜︁A are generalized
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Figure 1: Some noncrossing partitions of an annulus

by noncrossing partitions of marked surfaces (without “punctures”), while in the other
classical finite and affine types, the generalization is in terms of symmetric noncrossing
partitions of a marked surface with (or without) double points.

Noncrossing partitions of a cycle were introduced by Kreweras [14]. Biane [3] con-
nected noncrossing partitions of a cycle to finite Coxeter groups of type A (the symmetric
groups) and showed that the lattice of noncrossing partitions is isomorphic to [1, c]T, the
interval between the identity and a Coxeter element c in the absolute order. The anal-
ogous interval in a finite Coxeter group of type B is modeled by centrally symmetric
noncrossing partitions [1, 21], and there is an analogous planar model [1] for type D.
These planar models can be understood uniformly in terms of the Coxeter plane, which
was defined and studied in [12, 22]. Specifically, realizing group elements as permuta-
tions of an orbit, one projects to the Coxeter plane and interprets the cycle structure of
the permutations as blocks in a partition [19].

The interval [1, c]T in a finite Coxeter group W serves as a Garside structure for
the corresponding spherical Artin group Art(W), leading to a “dual presentation” of
Art(W) [2, 7] and proving desirable properties of Art(W). The fact that [1, c]T is a lattice
is crucial to the dual presentation.

Outside of finite type, the interval [1, c]T need not be a lattice. The case of affine
type is treated in a series of papers that begins by extending crucial results on rigid
motions [6] to affine type [5] and continues with an analysis of the failure of the lattice
property in Coxeter groups of affine type [16]. The series culminates in [17], in which
McCammond and Sulway extend the affine Coxeter group W to a larger group, thereby
extending the interval [1, c]T to a lattice. The larger lattice serves as a Garside struc-
ture for a supergroup of the Euclidean Artin group Art(W), which inherits desirable
(previously conjectured) properties from the supergroup.

In this extended abstract, we describe planar models, in affine types ˜︁A and ˜︁C, for the
intervals [1, c]T and the larger lattices constructed by McCammond and Sulway, omit-
ting all proofs. In type ˜︁A, the resulting model consists of noncrossing partitions of an
annulus, defined in Section 3 and exemplified in Figure 1. In type ˜︁C, the model consists
of symmetric noncrossing partitions of an annulus, defined in Section 4. Some exam-
ples are shown in the top row of Figure 2. To see the symmetry, think of the pictures as
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Figure 2: Some symmetric noncrossing partitions of an annulus and corresponding
noncrossing partitions of the two-orbifold disk

perspective drawings of a circular cylinder; the symmetry is a rotation of the cylinder
along a vertical axis. (The intersections of this axis with the cylinder are indicated in the
pictures by small dotted circles). Symmetric noncrossing partitions of an annulus can
equivalently be represented as noncrossing partitions of a two-orbifold disk, as shown
in the bottom row of Figure 2. The fixed points of the symmetry in the annulus become
order-2 orbifold points in the disk, marked with an × in the pictures. The dotted circle
cuts the annulus into two pieces (a fundamental domain of the symmetry and its one
translate). The image of the circle under the quotient map is shown as a dotted line.

The key idea behind McCammond and Sulway’s extension of [1, c]T to a lattice is
the notion of “factoring” translations in an affine Coxeter group W. Certain elements of
W act (in the affine representation) as translations, and the translations in [1, c]T were
implicated (in [16]) in the failure of the lattice property. To overcome the failure, each
translation in [1, c]T is factored into two or more translations not already contained in W.
The larger group containing W is generated by W and these new factored translations.

One of the motivating questions for the current project was how factored translations
would fit into planar models. Would projecting the Coxeter plane lead to a useful model
of [1, c]T only, or of the larger interval (incorporating factored translations) only, or of
both? In type ˜︁A, the best possible thing happened: The planar diagrams model the
larger interval, and the elements of the smaller interval are distinguished by a simple
criterion. The elements of [1, c]T are the noncrossing partitions of the annulus with no
dangling annular blocks. A dangling annular block is a block that is an annulus and has
numbered points on only one component of its boundary. Thus the leftmost and middle
picture in Figure 1 represent elements of [1, c]T, while the rightmost picture represents
an element in the larger interval, not in [1, c]T.
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We pause to mention two aspects of the project that are omitted from this extended
abstract: First, we omit the construction of the Coxeter plane and the projection of an
orbit to the Coxeter plane, which lead naturally to a model on the annulus. Second,
we omit a detailed discussion connecting our constructions to the work of McCammond
and Sulway. (We only mention here that the planar model on the annulus suggests a
scheme for factoring translations that is different from that in [17].)

Remark 1.1. Most of the results of [10, 11] reported here have appeared in Laura Bresten-
sky’s thesis [9]. Some parts of [10, 11] (and thus of this extended abstract) are revisions
of material from [9].

Remark 1.2. Some other constructions are superficially or more deeply similar to the
constructions in this paper. Details are in [10], but here we mention [13, 18, 15].

2 Background

Given a Coxeter system (W, S), a Coxeter element is an element c ∈ W that can be
written as a product, in some chosen order, of the elements of S, each repeated exactly
once in the product. The set of reflections of W is T =

{︁
wsw−1 : w ∈ W, s ∈ S

}︁
. The

absolute length or reflection length ℓT(w) of an element w ∈ W is the number of letters
in a shortest expression for w as a product of elements of T. The absolute order ≤T is
the partial order on W defined by u ≤T w if and only if ℓT(w) = ℓT(u) + ℓT(u−1w).

When W is finite, the interval [1, c]T is a lattice [8], often called the W-noncrossing
partition lattice, but when W is infinite, [1, c]T can fail to be a lattice. Planar models of
the W-noncrossing partition lattice are well known in types A, B, and D [1, 3, 14, 21]. In
[10] and [11], we construct planar diagrams for [1, c]T in the classical affine types.

The Coxeter group W of type ˜︁An−1 can be realized as the group ˜︁Sn of affine permu-
tations. (See, e.g. [4, Section 8.3].) These are permutations π of Z such that π(i + n) =
π(i) + n for all i ∈ Z and ∑n

i=1 π(i) = (n+1
2 ). We also consider the larger group

SZ(mod n) (sometimes called the extended affine symmetric group) of periodic per-
mutations: permutations π of Z such that π(i + n) = π(i) + n for all i ∈ Z.

We will describe permutations π ∈ SZ(mod n) by their cycle structure. A finite cycle
in π may not contain two entries that are equivalent modulo n, and for every finite cycle
(a1 a2 · · · ak) in π, the cycle (a1 + ℓn a2 + ℓn · · · ak + ℓn) is also present in π for every
ℓ ∈ Z. We write (a1 a2 · · · ak)n for the infinite product ∏ℓ∈Z(a1 + ℓn a2 + ℓn · · · ak + ℓn)
of cycles. An infinite cycle in π necessarily has two entries that are equivalent modulo
n, and, for any entry a1 in the cycle, the cycle is completely determined by the sequence
of entries from a1 to the next entry ak+1 that is equivalent to a1 modulo n. Thus we can
represent infinite cycles in π by writing (· · · a1 a2 · · · ak+1 · · · ).

A periodic permutation π is determined by the entries π(1), π(2), . . . , π(n), some-
times called the “window” of π. The affine permutations are the periodic permutations
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whose window sums to (n+1
2 ).

Write ℓi = (· · · i i + n · · · ) for i = 1, . . . , n and L = {ℓ1, . . . , ℓn} ∪
{︂
ℓ−1

1 , . . . , ℓ−1
n

}︂
.

One can show that SZ(mod n) is generated by T ∪ L. We define a partial order ≤T∪L
on SZ(mod n) in the same way as the absolute order ≤T on ˜︁Sn. We write [1, c]T∪L for
the interval between 1 and c in this order, where the subscript specifies not only the
generating set, but indirectly also the group where the interval lives.

The Coxeter diagram of type ˜︁An−1 is a cycle on the simple reflections {s1, . . . , sn},
with each si adjacent to si−1 and si+1 (taking indices modulo n). We record the choice
of a Coxeter element c as follows: The numbers 1, . . . , n are placed in clockwise order
over one full turn about the center of the annulus. The number i is placed on the outer
boundary if and only if si−1 precedes si in c or on the inner boundary if and only if si
precedes si−1 in c. We identify the numbers 1, . . . , n with their positions on the boundary
of the annulus, and call them outer points or inner points. This construction creates a
bijection from the set of Coxeter elements to the set of all partitions of {1, . . . , n} into a
nonempty set of outer points and a nonempty set of inner points.

Example 2.1. The pictures in Figure 1 shows the case where W = ˜︁S7 and the Coxeter
element is c = s6s5s2s1s3s4s7 = (· · · 3 4 7 10 · · · )(· · · 6 5 2 1 − 1 · · · ).

Lemma 2.2. Let c be a Coxeter element of ˜︁Sn, represented as partition of {1, . . . , n} into inner
points and outer points. If a1, . . . , ak are the outer points in increasing (therefore clockwise) order
and b1, . . . , bn−k are the inner points in decreasing (therefore counterclockwise) order, then c is

(· · · a1 a2 · · · ak a1 + n · · · )(· · · b1 b2 · · · bn−k b1 − n · · · ).

3 Noncrossing partitions of an annulus

Fix a Coxeter element c in ˜︁Sn, encoded by a choice of inner and outer points on an
annulus as described in Section 2. We refer to this annulus as A. The inner and outer
points are collectively called numbered points. The pair consisting of A and the set of
numbered points is an example of a marked surface in the sense of [20] (where the
numbered points were called marked points). The results quoted here for the annulus
were established in [9] and are quoted in [10] as special cases of results of [20].

A boundary segment of A is the portion of the boundary of A between two adjacent
numbered points. A boundary segment may have both endpoints at the same numbered
point if that is the only numbered point on one component of the boundary of A. Two
subsets of A are related by ambient isotopy if they are related by a homeomorphism
from A to itself, fixing the boundary ∂A pointwise and homotopic to the identity by a
homotopy that fixes ∂A pointwise at every step.

An arc in A is a non-oriented curve in A, with endpoints at numbered points (possi-
bly coinciding), that does not intersect itself except possibly at its endpoints and, except
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for its endpoints, does intersect the boundary of A. We exclude the possibility that an
arc bounds a monogon in A and the possibility that an arc combines with a boundary
segment to bound a digon in A. An embedded block in A is one of the following:

• a trivial block, meaning a singleton consisting of a numbered point in A;

• an arc or boundary segment in A;

• a disk block, meaning a closed disk in A whose boundary is a union of arcs and/or
boundary segments of A;

• a dangling annular block, meaning a closed annulus in A with one component
of its boundary a union of arcs and/or boundary segments of A and the other
component of its boundary a circle in the interior of the A that can’t be contracted
in A to a point; or

• a nondangling annular block, meaning a closed annulus in A with each component
of its boundary a union of arcs and/or boundary segments of A.

The first two types of embedded blocks are degenerate disk blocks. The last two types
of embedded blocks are referred to less specifically as annular blocks.

A noncrossing partition of A is a collection P = {E1, . . . , Ek} of disjoint embedded
blocks (the blocks of P) such that every numbered point is contained in some Ei and at
most one Ei is an annular block. Given that the blocks are pairwise disjoint, restricting
to at most one annular block serves only to rule out the case of two dangling annular
blocks, one containing numbered points on its inner boundary and the other containing
numbered points on its outer boundary. Noncrossing partitions are considered up to
ambient isotopy. We refer to different, but isotopic, choices of the embedded blocks
E1, . . . , Ek as different embeddings of the same noncrossing partition.

Example 3.1. We can now give more context to Figure 1. These are noncrossing partitions
of the annulus from Example 2.1. Degenerate blocks are shown with some thickness, to
make them visible.

We define a partial order on noncrossing partitions of A, called (in light of Theo-
rem 3.3 below) the noncrossing partition lattice: Noncrossing partitions P and Q of A
have P ≤ Q if and only if there exist embeddings of P and Q such that every block of
P is contained in some block of Q. We write ˜︃NCA

c for the set of noncrossing partitions
of A with this partial order.

Example 3.2. Continuing Example 3.1, we see that the left noncrossing partition shown
in Figure 1 is less than the middle noncrossing partition, but that is the only order
relation among the three noncrossing partitions shown.
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Figure 3: Q1 ⋖Q2 ⋖Q3 ⋖Q4, with simple connectors

Theorem 3.3. The poset ˜︃NCA
c of noncrossing partitions of an annulus with marked points on

both boundaries, n marked points in all, is a graded lattice, with rank function given by n minus
the number of non-annular blocks.

Given P ∈ ˜︃NCA
c , a simple connector for P is an arc or boundary segment κ in the

annulus that starts in some block E of P , leaves E, and is disjoint from all other blocks
until it enters some block of E′ of P , which it does not leave again. (Possibly E = E′.)
The augmentation of P along κ, written P ∪ κ, is the smallest noncrossing partition
containing P and α. A more detailed definition is given in [10].

Proposition 3.4. If P ,Q ∈ ˜︃NCA
c , then P is covered by Q if and only if there exists a simple

connector κ for P such that Q = P ∪ κ.

Example 3.5. Figure 3 shows noncrossing partitions Q1, Q2, Q3, and Q4 with Q1 ⋖Q2 ⋖
Q3 ⋖Q4. A simple connector is shown for each cover relation.

Suppose P ∈ ˜︃NCA
c and λ is a non-self-intersecting curve contained in some block

E of P , with each endpoint at a non-numbered point on the boundary E. Then λ is a
cutting curve for P if it either (when E is annular or non-annular) cuts E into two pieces,
each having at least one numbered point, or (when E is annular), cuts E into one non-
annular piece. We allow the degenerate case where E is an arc or boundary segment
and λ is a non-numbered point in E. Write P − λ for the noncrossing partition obtained
from P by cutting E in this way. A more detailed definition is given in [10].

Proposition 3.6. If P ,Q ∈ ˜︃NCA
c , then P ⋖Q if and only if there exists a cutting curve for Q

such that P = Q− e.

Example 3.7. Figure 4 shows the same noncrossing partitions Q1 ⋖Q2 ⋖Q3 ⋖Q4 pic-
tured in Figure 3, this time with the relevant cutting curves shown.

Write ˜︃NCA,◦
c for the subposet of ˜︃NCA

c consisting of noncrossing partitions of A with
no dangling annular blocks.
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Figure 4: Q1 ⋖Q2 ⋖Q3 ⋖Q4, with cutting curves

1

2

3
4

1

2

3
4

1

2

3
4

1

2

3
4

1

2

3
4

P Q P ∨Q

Figure 5: Joins in ˜︃NCA
c may need dangling annular blocks

Proposition 3.8. Suppose P ,Q ∈ ˜︃NCA,◦
c . Then Q covers P in ˜︃NCA,◦

c if and only if Q covers
P in ˜︃NCA

c .

Example 3.9. The poset ˜︃NCA,◦
c (noncrossing partitions of the annulus with no dangling

annular blocks) can fail to be a lattice. Take n = 4 and c = s4s3s1s2. The left two pictures
in Figure 5 show noncrossing partitions P ,Q ∈ ˜︃NCA,◦

c . The next two pictures show
minimal upper bounds for P and Q in ˜︃NCA,◦

c . The rightmost picture shows the join
of P and Q in ˜︃NCA

c , which is not in ˜︃NCA,◦
c because it has a dangling annular block.

The Kreweras complement is an anti-automorphism Krew : ˜︃NCA
c → ˜︃NCA

c . For each
numbered point i, choose a point i′ on the boundary of the annulus A between i and and
the next numbered point clockwise of i (for i outer) or counterclockwise of i (for i inner).
Given P ∈ ˜︃NCA

c , first construct a noncrossing partition P ′ on the annulus with num-
bered points 1′, . . . , n′ whose blocks are the maximal embedded blocks that are disjoint
from the nontrivial blocks of P , together with trivial blocks {i′} for every i′ contained
in a block of P . Then Krew(P) is obtained from P ′ by applying a homeomorphism of A
that rotates each i′ back to i while moving interior points of A as little as possible.

Example 3.10. Figure 6 shows the Kreweras complements of the noncrossing partitions
shown in Figure 1.

We now define the map perm : ˜︃NCA
c → SZ(mod n) that will serve as an isomor-

phism to [1, c]T∪L. Given P ∈ ˜︃NCA
c , we define perm(P) by reading the cycle notation

of a permutation from the embedding of the partition in the annulus. Each component
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Figure 6: Kreweras complements of the noncrossing partitions from Figure 1
.

of the boundary of each block is read as a cycle by following the boundary, keeping the
interior of the block on the right. (Each degenerate disk block is first thickened to a disk
with one or two numbered points on its boundary, and is thus read as a singleton cycle
or transposition.) The entries in the cycle are the numbered points encountered along
the boundary, but adding a multiple of n to each, with the multiple of n increases or
decreases according to how the block wraps around the annulus. Specifically, the multi-
ple of n changes when we cross the date line, a radial line segment separating n and 1.
When a numbered point is reached, we record its value (between 1 and n) plus wn,
where w is the number of times we have crossed the date line clockwise minus the num-
ber of times we have crossed counterclockwise, since starting to read the cycle. When
we return to the numbered point where we started, if we have added or subtracted a
nonzero multiple of n, then we continue around the boundary again, obtaining an infi-
nite cycle. Otherwise, if we have recorded the values a1, a2, . . . , ak around the boundary,
we obtain the infinite product (a1 a2 · · · ak)n of cycles. More specifically, a disk block
becomes such an infinite product of finite cycles, a dangling annular block becomes a
single infinite cycle (either increasing or decreasing), and a non-dangling annular block
becomes a pair of infinite cycles, one increasing and one decreasing.

Example 3.11. Labeling the noncrossing partitions shown in Figure 1 (Example 3.1) as
P1,P2,P3 from left to right, we apply perm to obtain the following permutations in ˜︁S7:

perm(P1) = (1 − 8 − 4)7 (2 − 3)7 (5)7 (6)7

perm(P2) = (· · · 1 − 5 − 6 · · · ) (· · · 3 4 7 10 · · · ) (5 6)7

perm(P3) = (1 − 1 − 2)7 (2)7 (3)7 (· · · 4 7 11 · · · )

Theorem 3.12. The map perm : ˜︃NCA
c → SZ(mod n) is an isomorphism from ˜︃NCA

c to the
interval [1, c]T∪L in SZ(mod n). It restricts to an isomorphism from ˜︃NCA,◦

c to the interval
[1, c]T in ˜︁Sn.

Theorem 3.13. If P ∈ ˜︃NCA
c , then perm(Krew(P)) = perm(P)−1c.
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4 Noncrossing partitions of a two-orbifold disk

Using a standard technique of “folding” a Coxeter group of type ˜︁A, we realize the
Coxeter group of type ˜︁Cn−1 as the group ˜︁Ss

2n of affine signed permutations (permutations
π : Z → Z with π(i + 2n) = π(i) + 2n and π(−i) = −π(i) for all i ∈ Z). A Coxeter
element c in ˜︁Ss

2n is encoded by a decomposition of {±1, . . . ,±(n − 1)} into outer and
inner points, with i outer if and only if −i is inner.

A corresponding “folding” of planar diagrams realizes the interval [1, c]T as the set of
noncrossing partitions that are symmetric with respect to a certain symmetry ϕ. Viewing
pictures of the annulus as perspective drawings of a cylinder, ϕ rotates this cylinder a
half-turn about a vertical axis. In the top-row pictures in Figure 2, the two intersections of
the axis with the cylinder are marked with small dotted circles. The dashed circle cuts the
annulus into two pieces, with the action of ϕ mapping each piece to the other. Thus the
quotient of the annulus modulo ϕ is obtained from the annulus by deleting everything
inside the dashed circle and identifying each point on the dashed circle with the other
point at the same height in the picture. The result is a disk C with two orbifold points,
called the two-orbifold disk, which appears in the bottom-row pictures in Figure 2.

An arc in C is a curve in C that does not intersect itself except possibly at its end-
points, does not intersect the boundary or orbifold points of C, except possibly at its
endpoints, and is of one of the following two types: An ordinary arc has both endpoints
on the boundary of C, while an orbifold arc has one endpoint on the boundary and the
other at an orbifold point. An arc may not bound a monogon in C unless that monogon
contains one or both orbifold points, and it may not combine with a boundary segment
to bound a digon unless that digon contains one or both orbifold points. An embedded
block in C is one of the following:

• a trivial block, meaning a singleton consisting of a numbered point in C;

• an arc (ordinary or orbifold) or boundary segment in C; or

• a disk block, meaning a closed disk in C whose boundary is a union of ordinary
arcs and/or boundary segments of C.

The first two types of blocks are degenerate disk blocks. An embedded block can contain
one or both orbifold points.

A noncrossing partition of C is a collection of pairwise disjoint embedded blocks
such that every numbered point is contained in one of the embedded blocks. Noncross-
ing partitions are considered up to ambient isotopy. Write ˜︃NCC

c for the set of noncross-
ing partitions of the two-orbifold disk C associated to the Coxeter element c, partially
ordered with P ≤ Q if and only if there exist embeddings of P and Q such that each
block in P is a subset of a block in Q.
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Example 4.1. The noncrossing partitions of the two-orbifold disk on bottom row of Fig-
ure 2 exemplify the case where W is of type ˜︁C6 and c = s6s4s3s0s1s2s5. The top row
shows the corresponding symmetric noncrossing partitions on an annulus.

Theorem 4.2. ˜︃NCC
c is a graded lattice, with rank function given by

(n − 1)− (# blocks of P) + (# orbifold points enclosed by blocks of P).

Folding allows us to define a map permC : ˜︃NCC
c → ˜︁Ss

2n such that the following
theorem holds.

Theorem 4.3. The map permC is an isomorphism from ˜︃NCC
c to [1, c]T.

The map permC reads clockwise around blocks of a noncrossing partition to define
cycles, using the toggle line (shown dotted in the bottom-row pictures of Figure 2) and
the date line (a segment down from the bottom orbifold point). We omit the details.

Example 4.4. Labeling the noncrossing partitions shown in Figure 2 as P1,P2,P3 from
left to right, we apply permC to obtain the following permutations in ˜︁C6:

permC(P1) = ((· · · 1 5 11 15 · · · )) ((2))14 ((4 6))14

permC(P2) = (1 − 1)14 (2 8 12 6)14 ((3 4))14 ((5))14

permC(P3) = ((1 − 2))14 ((5 8 4 3))14
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