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The Boltzmann equation is a powerful theoretical tool for modeling the collective dynamics of
quantum many-body systems subject to external perturbations. Analysis of the equation gives access
to linear response properties including collective modes and transport coefficients, but often proves
intractable due to computational costs associated with multidimensional integrals describing collision
processes. Here, we present a method to resolve this bottleneck, enabling the study of a broad class
of many-body systems that appear in fundamental science contexts and technological applications.
Specifically, we demonstrate that a Gaussian mixture model can accurately represent equilibrium
distribution functions, thereby allowing efficient evaluation of collision integrals. Inspired by cold
atom experiments, we apply this method to investigate the collective behavior of a quantum Bose-
Fermi mixture of cold atoms in a cigar-shaped trap, a system that is particularly challenging to
analyze. We focus on monopole and quadrupole collective modes above the Bose-Einstein transition
temperature, and find a rich phenomenology that spans interference effects between bosonic and
fermionic collective modes, dampening of these modes, and the emergence of hydrodynamics in
various parameter regimes. These effects are readily verifiable experimentally.

I. INTRODUCTION

The Boltzmann equation is ubiquitous in modern
physics as it can model the non-equilibrium dynamics
and near-equilibrium collective behavior of a wide range
of quantum many-body systems. Phenomena such as
hydrodynamics and turbulence in quantum liquids as
well as transport properties in metals and semiconduc-
tors fall under its purview. Valid for systems where the
length scales characterizing quasiparticle interactions are
shorter than typical distances quasiparticles travel be-
fore colliding [1], the Boltzmann equation simplifies the
typically challenging analysis of such interacting many-
particle systems by accurately capturing the many-body
dynamics with the evolution of single-particle distribu-
tion functions. When studying the near-equilibrium dy-
namics of a system, this approach gives efficient access to
its linear-response properties which characterize the pos-
sible quantum phases of matter. Solving the Boltzmann
equation, even after it is linearized around equilibrium,
however, can often be computationally challenging and
precludes analysis of a system. Approaches to the prob-
lem must contend with non-Gaussian equilibrium distri-
bution functions encoding quantum statistics as well as
quantum correlations in the self-energies such as those
arising from particle-exchange processes [1, 2]. Even with
modern computational resources, state-of-the-art tech-
niques grant limited insight into scientifically interesting
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phenomenona such as spin transport in magnetic mate-
rials and electron hydrodynamics in 2D van der Waals
(vdW) semiconductors. Existing solution methods also
struggle to accurately compute transport properties in
technologically relevant systems such as lithium-ion bat-
teries [3] and photovoltaic cells [4].

State-of-the-art approaches make different levels of ap-
proximations to simplify the numerical task. The test
particle method [5, 6] assumes that the dynamics of dis-
tribution functions of a many-body system composed of
around 1023 particles can be accurately estimated by
sampling the trajectories of a much smaller number of
104-106 particles. This is typically a safe approximation,
but simulation of the system can remain challenging as
collisions in the system correlate the trajectories and pre-
vent their parallel computation. The method easily ad-
mits details of experimental protocols, but the computa-
tional cost often limits analysis of linear response prop-
erties as only a few parameter choices can be evaluated.
Other methods also solve the Boltzmann equation nu-
merically after simplifying the collision integrals via var-
ious assumptions [7–9], but are limited in scope to where
those assumptions are valid. The method of moments
(MoM) [10, 11] takes an alternative approach to direct
numerical simulation of the dynamics by variationally ap-
proximating the response of the system in the frequency
domain. The MoM naturally captures collective behav-
ior and, at the cost of some analytical work, reduces the
problem to matrix inversion of a semi-analytical solution.
It can, however, require additional work to incorporate
certain experimental details such as complicated drive
protocols. The computational bottleneck of the method
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FIG. 1. Overview of the linearized Boltzmann equation and its applications. In this work, we develop a solution framework
based on Gaussian mixture models (GMM) which enables efficient and accurate analysis of the Boltzmann equation. We
demonstrate the method in the context of trapped Bose-Fermi mixtures of cold atoms – see Fig. 2.

comes from evaluating the matrix elements of the multi-
dimensional collision integrals. Estimating these matrix
elements via Monte Carlo sampling is often feasible for
many 2D systems, albeit with difficulty, but fails for 3D
systems.

In this work, we present two principal results. Our
first result is the development of an efficient approach
to analyze the linear response dynamics of many-body
systems without resorting to commonly used relaxation
time approximations. This method allows one to keep
track of the exact collision integrals in Boltzmann equa-
tions and treat both 2D and 3D systems. Our second
result leverages the above method to present an analy-
sis of collective modes in quantum Bose-Fermi mixtures
that are under active experimental investigation in ultra-
cold atom systems [12]. We discover a surprising richness
in dynamical regimes that this system manifests as the
interactions between particles are tuned.

The method we develop allows for efficient computa-
tion of collision integrals, which we combine with the
MoM framework, thus removing the bottleneck to solv-
ing Boltzmann equations. We term our approach GMM-
MoM as it centers around using a Gaussian mixture
model (GMM) representation of the equilibrium distri-
bution functions around which the Boltzmann equation
is linearized. We demonstrate that this representation
provides an accurate approximation of the distribution
functions and, critical to efficient solution of the Boltz-
mann equation, enables semi-analytical computation of
the multidimensional collision integrals. This latter step
is possible as the MoM basis functions are chosen to be
polynomials which, when combined with a Gaussian in-
tegral kernel, are analytically computable via Wick’s the-
orem [1]. The efficiency of our approach results from the
insight that both Bose-Einstein and Fermi-Dirac equi-
librium distribution functions can be well approximated
with a GMM consisting of only a few Gaussians (see
Sec. III for details). Our GMM-MoM approach en-
ables efficient analysis of the linear response dynamics

of a large range of systems that can be described using
Boltzmann equations, thus allowing their characteriza-
tion through quantities such as properties of collective
modes and transport coefficients. We release our fitting
codebase online [13] and include tables of Gaussian fits
to the equilibrium distribution functions in a broad range
of parameter regimes; these fits are generic and can be
directly applied to investigate a broad class of quantum
many-body systems.

A. Practical advantage and relevance of the GMM
framework

Typical approaches to solving the (linearized) Boltz-
mann equation either resort to approximations that make
the analysis tractable at the cost of oversimplification, or
employ brute-force numerical methods that are computa-
tionally costly and provide only limited information. By
rendering multidimensional collision integrals efficiently
computable, our GMM approach enables both fast and
accurate analysis of the Boltzmann equation, thereby al-
lowing investigation of broad classes of systems that have
hereto remained intractable – see Fig. 1.
A ubiquitous approach to simplifying Boltzmann equa-

tions is the relaxation time approximation (RTA), often
used to analyse transport properties of materials. This
approximation assumes that all quantities of interest in
the system relax to thermal equilibrium on the same time
scale. While the RTA can capture the behavior of rela-
tively simple systems such as bulk crystalline silicon [14],
it is often quantitatively inaccurate even in these con-
texts [15]. The approximation also fails to qualitatively
describe the physics of 2D semiconductors [16, 17], which
foster both fundamental [18–21] and technological inter-
est [22]. A variety of other important systems – including
high-Tc superconductors, resonantly interacting particles
in neutron matter, and ultracold atoms at unitarity –
are also beyond the scope of RTA as these systems are
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FIG. 2. Schematic of an atomic quantum Bose-Fermi mix-
ture trapped into a cigar-shaped optical potential. A time-
dependent (transverse) perturbation of the trap launches col-
lective modes of the system, which characterize the equilib-
rium state of matter.

expected to exhibit a clear separation of relaxation time
scales for quantities such as heat, charge, spin, and mo-
mentum. The GMM framework introduced in this work
obviates the need for the RTA while preserving com-
putational efficiency. As a concrete demonstration of
this capability, we benchmark the method on strongly-
interacting systems in Appendix C. There, we compute
the decay rate of a Bose polaron in the unitary limit
and the viscosity of a two-component strongly-interacting
Fermi fluid.

Two additional simplifications are commonly applied
to the Boltzmann equation: the assumption of isotropic
scattering and the assumption of position-independent
collisions. The former precludes, for instance, analy-
sis of magnetic systems, including simple ferromagnets,
as magnon collision processes explicitly depend on the
momenta of the scattering particles [23]. The latter is
strictly applicable only to spatially homogeneous sys-
tems, which precludes systems such as trapped gases,
including dipolar atoms, that manifest unique transport
regimes of fundamental interest [24]. The GMM frame-
work is naturally suited to solve problems beyond these
simplifications, as evidenced by our detailed analysis of
trapped Bose-Fermi mixtures.

In contexts where the typical approximations fail, one
must resort to solving the full linearized Boltzmann equa-
tion. One such context is material design. Ab initio
methods like density functional theory are combined with
Boltzmann analysis to design transport properties rel-
evant to a wide range of technologies including ther-
moelectric materials [15], lithium-ion batteries [3], and
photovoltaic cells [4]. Accurate computation of trans-
port coefficients often requires going beyond the RTA for
most 2D materials [16] as well as 3D materials like di-
amond where three-phonon or higher processes are rele-
vant [25]. Anisotropic and position-dependent scattering
must also be accounted for in devices with nontrivial ge-
ometries [25–27].

Remarkable progress has been made in brute force nu-
merical methods in such systems; recent approaches have,

for example, enabled solving the fully coupled electron-
phonon transport kinetic equations relevant to thermo-
electric and thermopower applications [28, 29]. These
state-of-the-art methods, however, are extremely time-
consuming, as typical calculations take several months
of CPU time [29]. We expect that the GMM framework
introduced in this work can significantly ameliorate the
cost of such computations.

B. Analysis of Bose-Fermi mixtures

Bose-Fermi mixtures are a salient class of systems,
ubiquitous in both cold-atom and solid-state platforms,
which exhibit rich collective dynamics and are chal-
lenging to analyze. Examples include electron-phonon
and electron-magnon mixtures in both conventional and
high-Tc superconductors, He3-He4 mixtures in dilution
refrigerators, and quark-gluon plasmas in high-energy
physics [30–41]. Bose-Fermi mixtures may also naturally
appear in transition-metal-dichalcogenides (TMDs), two-
dimensional semiconductors which exhibit novel physics
promising for quantum optics applications; TMDs man-
ifest optical excitons and charged fermions, and interac-
tions between them can be tuned via physical processes
similar to Feshbach resonances [42–45].
As a concrete context, we focus on the case of Bose-

Fermi mixtures of cold atomic gases trapped in a cigar-
shaped optical potential [46–52], illustrated in Fig. 2.
We choose this system to demonstrate our GMM-MoM
method for three reasons. Firstly, quantum gases of
bosonic and fermionic atoms have emerged as a lead-
ing quantum simulation platform to study several quan-
tum many-body systems, as cold-atom setups provide a
highly controllable setting to investigate different proto-
typical models [53]. Until recently, they have primar-
ily been used to study purely bosonic or fermionic sys-
tems due to the experimental difficulty of simultaneously
trapping both types of atoms. The collective behavior
of such bosonic and fermionic gases has been explored
in several experiments, including precise measurements
of collective modes [54–56], observation of first and sec-
ond sound modes [57, 58], measurements of viscosities in
the unitary regime [59, 60] and transport properties in
strongly-interacting gases [61–67]. Systems in the pola-
ronic regime, where one gas is much more dilute than
the other, have been predicted to exhibit novel collective
behavior [68] and non-equilibrium dynamics [69, 70]. Ex-
periments have investigated the emergence of quasiparti-
cles in such systems [71] and, more recently, have started
to explore the collective behavior of mixtures of bosonic
and fermionic cold atoms [12] beyond the polaronic
regime, thus opening the door to studying Bose-Fermi
mixtures in a controlled setting leveraging the entire cold-
atom toolbox [72–74]. Secondly, on the theoretical side,
Bose-Fermi mixtures beyond the zero-temperature impu-
rity regime host potentially rich physics which has been
unexplored in prior work due to the difficulty of numer-
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ical analysis and lack of experiment-guided motivation.
Thirdly, the system is described by one of the most chal-
lenging types of Boltzmann equations to solve due to
its spatial inhomogeneity, resulting from the asymmet-
ric cigar-shaped optical trap, and the particle-conserving
nature of collisions in the system. Making experimen-
tally verifiable predictions in this context thus provides
confidence in the GMM-MoM analysis method.

We analyze the collective behavior of the trapped
Bose-Fermi cold-atom mixture across a variety of rel-
ative densities and interaction strengths. Motivated
by modern cold-atom experiments, we study monopole
and quadrupole collective modes, focusing on a quan-
tum mixture above the Bose-Einstein transition temper-
ature T > Tc; the gases are cold enough for particle
statistics to matter and therefore form a quantum Bose-
Fermi mixture. We find that this system exhibits a rich
phenomenology which we summarize below for various
regimes of relative densities of the atomic species.

(I) Single-component interacting Bose fluid (no
fermions). The system exhibits a collisionless-to-
hydrodynamic crossover as the boson-boson interaction
strength is tuned. Both the monopole and quadrupole
mode lifetimes manifest a non-monotonic behavior, be-
ing the shortest in the crossover region. We also find
frequency mixing between transverse and longitudinal
monopole modes for sufficiently strong interactions; these
modes are distinct from each other due to the asymmetry
of the cigar-shaped trap.

(II) Impurity regime (dilute fermions). When the
fermions are dilute, they act as impurities; the bosons
remain largely unaffected and behave as the single-
component Bose fluid described above. The fermions
and bosons have different monopole mode frequencies,
and we can therefore understand the system in terms of
coupled harmonic oscillators corresponding to the respec-
tive collective modes. When the boson-boson interaction
is such that the boson fluid is not in its crossover regime
and therefore manifests long-lived modes, we find typical
Fano interference lineshapes encoding coherent mixing
between the bosonic and fermionic oscillators (see Fig. 6
and discussion in Sec. IVC for details). Upon increasing
the boson-fermion coupling, initially sharp fermionic res-
onances become completely featureless in frequency, indi-
cating that the fermions no longer have independent dy-
namics and instead follow the bosonic atoms. In addition
to the above phenomenona, we find that the fermionic
spectral functions exhibit Stokes and anti-Stokes side-
bands due to the mixing between longitudinal and trans-
verse monopole modes.

(III) Mixture regime (comparable densities of bosons
and fermions). The Bose-Fermi mixture exhibits a
collisionless-to-hydrodynamic crossover as the boson-
fermion interaction strength is tuned. The emergent
hydrodynamic behavior of the whole many-body system
manifests as mode locking between bosons and fermions.
Intriguingly, we find coherent mixing between bosonic
and fermionic collective modes even when the bosons are

hydrodynamic and fermions are collisionless.
Some of the phenomenology summarized above, such

as the collisionless-to-hydrodynamic crossover of single-
component Bose fluids, has been discussed in previous
papers [6, 75]. Other effects we uncover, however, such
as the Fano lineshapes and the emergence of sidebands,
are indicative of previously unexplored physics exhibited
by Bose-Fermi mixtures. Additionally, many-body mode
mixing and locking in the mixture regime has not been
confirmed theoretically due to the collision integral com-
putational bottleneck. The above results are therefore
both a concrete window into the rich physics of Bose-
Fermi cold-atom mixtures, as well as evidence of the
power of the GMM-MoM method to analyze previously
inaccessible many-body systems.

II. THEORETICAL FRAMEWORK

This section is organized as follows: In Sec. II A, we
first introduce the coupled Boltzmann kinetic equations
to describe the dynamics of a trapped Bose-Fermi mix-
ture for T > Tc. The equilibrium distribution func-
tions are then discussed in Sec. II B. Finally, Sec. II C
is devoted to the method of moments for computing the
linear response properties of the mixture, including the
spectrum of collective modes. Our framework closely fol-
lows and substantially extends that in Ref. [24] on two-
dimensional fermionic dipolar gases. We end this sec-
tion by writing down expressions (34)-(38) for the 15-
dimensional collision integrals which represent the main
challenge behind the method of moments in three spatial
dimensions. These integrals, in general, are not feasi-
ble for the existing numerical tools such as direct Monte
Carlo sampling that was proven efficient in two dimen-
sions [24]. One of our main technical results is that we
overcome this challenge and make the method of mo-
ments numerically tractable – this will be the subject of
the following sections.

A. Kinetic equations for T > Tc

We describe a trapped Bose-Fermi mixture using the
following microscopic model (throughout the text, we set
ℏ = kB = 1):

Ĥ = ĤB + ĤF + Ĥint. (1)

Here, the first term represents the bosonic Hamiltonian:

ĤB =

∫
d3r ψ†

B(r)
[
− ∂2r

2mB
+ Utrap,B(r)

]
ψB(r)

+
gB
2

∫
d3r ψ†

B(r)ψ
†
B(r)ψB(r)ψB(r). (2)

The second term is the fermionic one:

ĤF =

∫
d3r ψ†

F(r)
[
− ∂2r

2mF
+ Utrap,F(r)

]
ψF(r). (3)
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The two systems interact with each other through the
third term, Ĥint, given by:

Ĥint = gBF

∫
d3r ψ†

B(r)ψB(r)ψ
†
F(r)ψF(r). (4)

Here ψB/F(r) and ψ
†
B/F(r) encode the bosonic/fermionic

annihilation and creation operators, respectively; they
satisfy the canonical commutation (anti-commutation)
relations. We assume that, as in cold-atom experiments,
the contact coupling strengths gB and gBF can be tuned
over a broad range using the physics of magnetic Fesh-
bach resonances. For future reference, gB = 4πaB/mB

and gBF = 2πaBF(mB + mF)/(mBmF), where aB and
aBF are the Bose-Bose and Bose-Fermi scattering lengths,
respectively. In what follows, we consider the trapping
potentials to have a cigar-like shape:

Utrap,B(r) =
1

2
mBω

2
ρ(x

2 + y2) +
1

2
mBω

2
zz

2. (5)

To relate to the MIT experiment [12], we will consider the
fermionic trapping potential to be Utrap,F = λUtrap,B(r),
where λ ≃ 1 is an experimental parameter that encodes
the fact that the laser coupling to fermions is a bit dif-
ferent from that to bosons. At this stage, we do not need
to specify concrete forms of trapping potentials and can
let the formalism be generic.

We briefly remark that a possible microscopic deriva-
tion of Boltzmann equations uses the Keldysh tech-
nique of non-equilibrium Green’s functions [76]. This de-
scription is closely related to an appropriate conserving
Kadanaff-Baym framework [77]. Both these approaches
are usually too complicated to work with, either ana-
lytically or numerically, and require approximations. In
systems such as quantum Bose-Fermi mixtures consid-
ered here, a natural simplification occurs because there
is a separation of time and length scales between fast
microscopic degrees of freedom and macroscopic ones set
by the trapping potential. This separation enables one
to make a systematic gradient expansion, which dramat-
ically simplifies the kinetic equations. Further progress is

possible if one is allowed to employ the quasiparticle ap-
proximation, where the complex dynamics of two-time
Green’s functions is reduced to that of single-particle
distribution functions, thus, obtaining the Boltzmann
equation [78, 79]. The quantum statistics of the con-
stituent particles manifests in both incoherent scatter-
ings captured via collision integrals and in self-energies
that might encode inherently quantum processes such as
particle exchange. For more details on the derivation of
Boltzmann equations, we refer the reader to Refs. [76–
79]. The primary goal of this paper is to develop a tool to
solve Boltzmann equations rather than to provide a mi-
croscopic derivation of the equations of motion. To this
end, below we consider a Bose-Fermi mixture above the
BEC transition temperature T > Tc, where the kinetic
equations are well-known.
Specifically, they read:

(
∂t +

p

mB
· ∂r − ∂rUeff,B · ∂p

)
nB = IBB + IBF, (6)(

∂t +
p

mF
· ∂r − ∂rUeff,F · ∂p

)
nF = IFB, (7)

where nB(p, r, t) and nF(p, r, t) are the bosonic and
fermionic distribution functions, respectively. For the
left-hand sides, we employ the Hartree-Fock approxima-
tion [80]:

Ueff,B = Utrap,B + 2gBnB(r, t) + gBFnF(r, t), (8)

Ueff,F = Utrap,F + gBFnB(r, t), (9)

where nB/F(r, t) =

∫
d3p

(2π)3
nB/F(p, r, t) represents the

bosonic/fermionic real-space density. We note that the
Hartree-Fock self-energies do not depend on p, which in
turn implies that the effective masses are not affected by
the contact interactions. For the right-hand sides, we
use the Born-Markov approximation and write the Bose-
Bose, Bose-Fermi, and Fermi-Bose collision integrals as:

IBB(p, r, t) = 2g2B

∫
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
× (2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εB(p
′)− εB(p1)− εB(p

′
1))

× [(1 + nB(p))(1 + nB(p
′))nB(p1)nB(p

′
1)− nB(p)nB(p

′)(1 + nB(p1))(1 + nB(p
′
1))], (10)

IBF(p, r, t) = g2BF

∫
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
× (2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εF(p
′)− εB(p1)− εF(p

′
1))

× [(1 + nB(p))(1− nF(p
′))nB(p1)nF(p

′
1)− nB(p)nF(p

′)(1 + nB(p1))(1− nF(p
′
1))], (11)

IFB(p, r, t) = g2BF

∫
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
× (2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εF(p) + εB(p
′)− εF(p1)− εB(p

′
1))

× [(1− nF(p))(1 + nB(p
′))nF(p1)nB(p

′
1)− nF(p)nB(p

′)(1− nF(p1))(1 + nB(p
′
1))], (12)

where εB/F(p) = p2/(2mB/F). Below we turn to analyse the linear-response properties of the Bose-Fermi mixture
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within this Boltzmann kinetic theory. Prior to that, we
first compute the self-consistent equilibrium distribution
functions needed for our subsequent analysis.

B. The equilibrium state

The equilibrium distribution functions are related to
the effective potentials Ueff,B/F(r) through (β = 1/T ):

nB/F,eq(p, r) =

[
1

zB/F(r)
exp

( βp2

2mB/F

)
∓ 1

]−1

, (13)

where zB/F(r) ≡ exp(β(µB/F − Ueff,B/F(r))) is the
bosonic (fermionic) local fugacity and µB/F is the cor-
responding chemical potential. Since the effective po-
tentials Ueff,B/F(r) depend on nB/F,eq, Eq. (13) should
be solved self-consistently. This latter task is relatively
simple because the momentum integrals are evaluated
analytically:

∫
d3p

(2π)3
nB,eq =

(
mB

2πβ

) 3
2

ξ 3
2
(zB(r)), (14)∫

d3p

(2π)3
nF,eq = −

(
mF

2πβ

) 3
2

ξ 3
2
(−zF(r)), (15)

where ξ 3
2
(x) is the polylogarithm function. The chemical

potentials can be fixed via:

∫
dΓnB/F,eq =

∫
d3r

∫
d3p

(2π)3
nB/F,eq = NB/F, (16)

with NB/F being the total number of Bose/Fermi parti-
cles.

For convenience, throughout the rest of the paper we
use the following dimensionless variables. As for the units
of momentum and length, we choose pρ =

√
mBωρ and

aρ = 1/pρ, respectively; we fix the unit of energy to be
ωρ; the unit of mass is then naturally set by mB. In the
dimensionless units, the trapping potentials read:

Ūtrap,B(ρ̄, z̄) =
1

2
ρ̄2 +

κ

2
z̄2, (17)

Ūtrap,F(ρ̄, z̄) =
λ

2
ρ̄2 +

λκ

2
z̄2, (18)

where κ = ω2
z/ω

2
ρ is the anisotropy parameter, and bars

on top of the symbols indicate that the correspond-
ing variable has been appropriately rescaled. For in-
stance, the dimensionless interactions strengths read:
ḡB = gB/(a

3
ρωρ) and ḡBF = gBF/(a

3
ρωρ). We finally note

that because the two trapping potentials depend only on
the combination ρ̄2+κz̄2, the equilibrium self-consistency

equations can be written as

zB(r̃) = exp
(
β̄µ̄B − r̃2

2
− β̄

(2πβ̄)3/2

[
2ḡBξ 3

2
(zB)

− ḡBF

(mF

mB

) 3
2

ξ 3
2
(−zF)

])
, (19)

zF(r̃) = exp
(
β̄µ̄F − λr̃2

2
− ḡBFβ̄

(2πβ̄)3/2
ξ 3

2
(zB)

)
, (20)

where r̃2 = β̄(ρ̄2+κz̄2). We remark that these equations,
which are solved numerically in practice, imply that the
two fugacities depend only on the one-dimensional vari-
able r̃ rather than on two independent variables ρ̄ and
z̄. This observation is not crucial (and in principle, the
trapping potential for fermions could be very different
from the bosonic one) but facilitates our numerical cal-
culations below.

C. Linear response within the method of moments

Our primary goal now is to investigate linear response
functions, related to collective modes, which represent
small amplitude fluctuations on top of the equilibrium
state. To this end, we write:

nB(r,p, t) = nB,eq(r,p) + ∆B(r,p)ΦB(r,p, t), (21)

nF(r,p, t) = nF,eq(r,p) + ∆F(r,p)ΦF(r,p, t), (22)

where ∆B/F(r,p) = nB/F,eq(r,p)[1 ± nB/F,eq(r,p)]. In
what follows, we assume that ΦB(r,p, t) and ΦF(r,p, t)
are small and, as such, linearize the equations of motion.
In the remainder of the text, we consider only dimension-
less variables that have been properly rescaled and omit
writing bars on top of the corresponding symbols.
The method of moments is based on the idea of ex-

panding small fluctuations ΦB/F(r,p, t) using a suitable

basis set of functions {ϕα(r,p)}Nα=1:

ΦB/F(r,p, t) ≈
N∑

α=1

ΦB/F,α(t)ϕα(r,p). (23)

Here N is the total number of basis functions that we
take into account, and, as such, this parameter controls
the accuracy of our approximations. Motivated by the
experiments, below we investigate linear response to per-
turbations of the bosonic and/or fermionic trapping po-
tentials, which we also write as:

δUB/F(r,p, ω) =
N∑

α=1

δUB/F,α(ω)ϕα(r,p), (24)

where the frequency amplitudes δUB/F,α(ω) are set by
the actual experimental driving protocol. Plugging these
expansions into the kinetic equations and subsequently
projecting the linearized equations onto the basis func-
tions {ϕα(r,p)}, we arrive at:

[−iωM̂ + Ĥ− Ŝ− Î]Φ = −βĤδU, (25)
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where we defined Φ = (ΦB,1, . . . ,ΦB,N,ΦF,1, . . . ,ΦF,N)
T

and δU = (δUB,1, . . . , δUB,N, δUF,1, . . . , δUF,N)
T to be

2N -dimensional vectors. The matrices M̂ and Ĥ are di-
agonal in the Bose-Fermi space:

M̂ =

[
MB 0
0 MF

]
, Ĥ =

[
HB 0
0 HF

]
, (26)

with the matrix elements given by:

(MB/F)αβ =

∫
dΓ∆B/Fϕα(r,p)ϕβ(r,p)

≡ ⟨⟨ϕαϕβ⟩⟩B/F, (27)

(HB/F)αβ = ⟨⟨ϕα{ϕβ ,HB/F}⟩⟩B/F, (28)

where HB = p2/2 + Ueff,B, HF = p2mB/2mF + Ueff,F,
and {f, g} = ∂rf · ∂pg − ∂pf · ∂rg is the Poisson
bracket. Throughout the derivations, we used the iden-
tity {nB/F,eq, f} = −β∆B/F{HB/F, f}. The matrix Ŝ
encodes the changes in self-energies arising from the

changes in the bosonic and fermionic distribution func-
tions:

Ŝ =

[
SB SBF

SFB 0

]
, (29)

where

(SB)αβ = ⟨⟨βΣB[∆Bϕβ ]{ϕα,HB}⟩⟩B, (30)

(SBF)αβ = ⟨⟨βΣBF[∆Fϕβ ]{ϕα,HB}⟩⟩B, (31)

(SFB)αβ = ⟨⟨βΣBF[∆Bϕβ ]{ϕα,HF}⟩⟩F. (32)

Here we defined ΣB[f ](r, t) = 2gB

∫
d3p

(2π)3
f(r,p, t) and

ΣBF[f ](r, t) = gBF

∫
d3p

(2π)3
f(r,p, t). Finally, the colli-

sion integral matrix Î is given by:

Î =

[
IB + JBB JBF

JFB JFF

]
, (33)

where the corresponding matrix elements read:

(IB)αβ =− g2B
2

∫
d3r

d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
(2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εB(p
′)− εB(p1)− εB(p

′
1))

× (1 + nB,eq(p))(1 + nB,eq(p
′))nB,eq(p1)nB,eq(p

′
1)× S[ϕα]S[ϕβ ], (34)

(JBB)αβ =− g2BF

2

∫
d3r

d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
(2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εF(p
′)− εB(p1)− εF(p

′
1))

× (1 + nB,eq(p))(1− nF,eq(p
′))nB,eq(p1)nF,eq(p

′
1)× (ϕα(p)− ϕα(p1))(ϕβ(p)− ϕβ(p1)), (35)

(JBF)αβ =− g2BF

2

∫
d3r

d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
(2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εF(p
′)− εB(p1)− εF(p

′
1))

× (1 + nB,eq(p))(1− nF,eq(p
′))nB,eq(p1)nF,eq(p

′
1)× (ϕα(p)− ϕα(p1))(ϕβ(p

′)− ϕβ(p
′
1)), (36)

(JFB)αβ =(JBF)βα, (37)

(JFF)αβ =− g2BF

2

∫
d3r

d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
(2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εF(p
′)− εB(p1)− εF(p

′
1))

× (1 + nB,eq(p))(1− nF,eq(p
′))nB,eq(p1)nF,eq(p

′
1)× (ϕα(p

′)− ϕα(p
′
1))(ϕβ(p

′)− ϕβ(p
′
1)), (38)

where S[f ] = f + f ′ − f1 − f ′1, εB(p) = p2/2, and
εF(p) = p2mB/(2mF). The matrix IB describes changes
in the bosonic distribution function due to boson-boson
scatterings, JBF describes changes in the distribution
function of bosons due boson-fermion scatterings, etc.

What we have achieved so far is that the initial infinite-
dimensional (linear) problem is now reduced to a finite-
dimensional one. To complete the discussion of dynam-
ics, we also need to review an algorithm for evaluating
time-dependent expectation values of operators, which
can be measured in experiments. As a concrete example,
we consider an arbitrary bosonic observable:

⟨OB⟩(t) ≡
∫
dΓnB(r,p, t)OB(r,p) = OT

BMBΦB(t),

where we assumed that ⟨OB⟩eq = 0, used Eq. (21), and
expanded OB(r,p) =

∑
α OB,αϕα(r,p). More generally,

we write:

⟨O⟩(ω) = OT M̂Φ(ω + i0+). (39)

To evaluate Φ(ω+ i0+), we diagonalize M̂−1(Ĥ− Ŝ− Î) =

iV̂Ω̂V̂−1, with Ω̂ being diagonal⇒

Φ(ω) = −iβV̂(ω − Ω̂)−1V̂−1M̂−1ĤδU(ω). (40)

From this, we finally get:

O(ω) =
∑
a

ra(ω)

ω − Ωa + i0+
, (41)
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where

ra(ω) = −iβ(V̂T M̂O)a(V̂
−1M̂−1ĤδU(ω))a. (42)

Equation (41) is among the most useful results, as it de-
fines the linear response within the method-of-moments.
Physically, the “residue” ra(ω) encodes the relative im-
portance of the corresponding pole Ωa. We remark that
the eigenvalues of Ω̂ are not necessarily real (but for sta-
bility of the equilibrium state, their imaginary parts must
be negative), which implies that the matrix V̂ is generally
not unitary.

The main challenge that we encounter in this section
is the evaluation of the 15-dimensional collision integral
matrix elements in Eqs. (34)-(38). We remark that the
energy and momentum conservation laws render these in-
tegrals to be 11-dimensional. Further simplifications can
occur if one uses symmetries of the optical trap. Never-
theless, the resulting expressions are still too complicated
for accurate numerical evaluations. So far, this issue has
been a major computational challenge, which is the pri-
mary reason why the method of moments has not been
applied in its full capacity to three-dimensional problems.
We note that in two spatial dimensions, such matrix el-
ements encode only 5-dimensional integrals, which could
be accurately evaluated using Monte Carlo sampling [24].

In this work, we provide an efficient method for com-
puting these collision integrals. Our approach is based
on the observation that the integrals are hard to evalu-
ate because of the complexity of the equilibrium Bose-
Einstein and Fermi-Dirac distribution functions. To fur-
ther appreciate this point, we note that in a classical
system, where the distribution functions have Gaussian
(Boltzmann-Maxwell) forms, one could compute the col-
lision integrals analytically, by means of Wick’s theo-
rem [75]. With this in mind, in the following section,
we offer an approximation to the equilibrium distribu-
tion functions that, on the one hand, can be made ar-
bitrarily accurate and, on the other hand, also acquire
a Gaussian-like structure, in turn enabling us to semi-
analytically evaluate the collision matrix with essentially
arbitrary precision.

III. GAUSSIAN MIXTURE MODEL

In this section, we argue that locally, i.e., for a given
real-space point r, the equilibrium distribution functions
(both bosonic and fermionic) can be accurately approxi-
mated using the following ansatz:

nGMM(r,p) =

M0∑
n=1

an(r) exp
(
− p2

2γ2n(r)

)
. (43)

Here M0 is the total number of Gaussians that we take
into consideration, implying that we have 2×M0 fitting
parameters an(r) and γn(r) that, in general, are allowed
to depend on the real-space coordinate r. In the ma-
chine learning literature [81], the ansatz in Eq. (43) is

referred to as Gaussian mixture model (GMM), though
in contrast to the most generic GMM, here we set all
the means to zero. In the following subsections, we first
consider a few situations of increasing complexity, where
we explicitly construct such GMM fittings and discuss
their limitations. Then, in subsection IIID, we briefly
summarize and further discuss the presented approach.

A. Dilute fermions, zF ≤ 1

We begin by considering the Fermi-Dirac distribution
function, which in the appropriately chosen units, can be
written as:

nF(z, p) =
[1
z
exp

(p2
2

)
+ 1

]−1

. (44)

The local fugacity z = z(r) is a monotonic function of
the density, and, for reasons that will become apparent
shortly, we first focus on the case z ≤ 1, correspond-
ing to dilute fermions. It is then suggestive to change
variables as z = exp(−q2/2) and consider the following
one-variable function:

f1(x) =
[
exp

(x2
2

)
+ 1

]−1

. (45)

In other words, f1(x) is nothing but the Fermi-Dirac dis-
tribution for z = 1. If this function f1(x) can be accu-
rately approximated with a GMM

f1(x) ≈
∑
n

αn exp
(
− x2

2γ2n

)
, (46)

we immediately get a GMM approximation for nF(z, p)
for any z ≤ 1:

nF(z, p) = f1(p
2 + q2)

≈
∑
n

αn exp
(
− q2

2γ2n

)
exp

(
− p2

2γ2n

)
=

∑
n

αnz
1/γ2

n exp
(
− p2

2γ2n

)
. (47)

Importantly, the quality of this fit for nF(z, p) is entirely
determined by the quality of the approximate form (46)
for f1(x). Moreover, by comparing Eqs. (43) and (47),
we observe that the amplitudes an(r) in Eq. (43) do ex-
plicitly depend on the local fugacity z (and, as such, on
the real-space coordinate r), whereas the variances γn,
which are the same for both Eq. (43) and Eq. (47), are
universal, i.e., independent of z.
In our numerics, we optimize the coefficients αn and γn

using standard fitting routines that eventually minimize
the absolute error

LF = max
x

|f1(x)− f1,GMM[αn, γn](x)|. (48)
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FIG. 3. Performance of the Gaussian mixture model (GMM). (a) The fermionic function f1(x) (solid line), Eq. (45), that
encodes the Fermi-Dirac distribution function for any zF ≤ 1, and its GMM fit (dashed line) are not distinguishable by eye
from each other. The inset shows the dependence of the absolute error of the fit LF, Eq. (48), on the total number of Gaussians
M0 that are involved in the fitting: for M0 = 10, we obtain LF ≲ 10−10. (b) Similar analysis as in (a) but now we consider the
bosonic function f2(x) (solid line), Eq. (51), in a range x ∈ [xmin,∞), where xmin (vertical dashed lines) is set by the maximal
fugacity we consider: xmin ≈ 0.46 for zB = 0.9 and xmin ≈ 0.14 for zB = 0.99. The GMM fits provide excellent approximations
to f2(x) in their respective domains of applicability (dashed line for zB = 0.9 and solid dashed line for zB = 0.99): The
inset shows that the bosonic error LB, Eq. (52), can be as small as 10−8 with only about 10 (17) Gaussians for zB = 0.9
(zB = 0.99). (c) The fermionic function f3(x) (solid line), Eq. (55), that captures the Fermi-Dirac distribution function for
any 1 ≤ zF ≤ zmax, can be well fitted with the complex version of the GMM, Eq. (56). Here, the domain x ∈ [xmin,∞) is
determined by the maximal fermionic fugacity we consider: xmin = − ln(zmax). As shown in the inset, the absolute error of the
fit LF decreases with increasing the total number M0 of complex conjugate Gaussian pairs; for M0 ≲ 25, we obtain LF ≃ 10−8

at zmax = 105.

Specifically, we use the Levenberg-Marquardt optimiza-
tion algorithm, which we supply with gradients, that is
implemented in Matlab via the lsqcurvefit function. The
result of such fitting is shown in Fig. 3(a): Remarkably,
we find that LF can be made as small as ∼ 10−10 with
only ∼ 10 Gaussians and can be further reduced by in-
creasing the total number of Gaussians M0 [see the inset
of Fig. 3(a)]. While f1(x) is expected to be well approx-
imated with a GMM [82], what is a bit surprising is how
few Gaussians turn out to be needed for such a high qual-
ity of fitting.

To further appreciate this point, we note that for z < 1,
one can formally Taylor expand the fermionic distribu-
tion function:

nF(z, p) =
∞∑

n=1

(−1)n+1zn exp
(
− 1

2
np2

)
. (49)

The fact that this expansion exists in the first place con-
firms the expectation that the GMM in Eq. (43) can, in
principle, be made arbitrarily accurate. We note, how-
ever, that the results in Fig. 3(a) clearly demonstrate
that the GMM significantly outperforms the truncated
Taylor series, especially for z approaching unity, where
more and more Gaussians in the Taylor series are needed
to keep the same quality of the approximation. For in-
stance, one needs to consider about 150 Taylor series co-
efficients for z = 0.9 to get the same precision as one has
from only 10 GMM Gaussians. Importantly, the cost of
computing the collision matrices scales as ∼ M4

0 , which
implies that the GMM dramatically facilitates otherwise

too demanding calculations. We also remark that both
the GMM in Eq. (47) and the Taylor series in Eq. (49)
share the property that their variances γn do not depend
on z.

We briefly comment that in our numerics, perhaps the
most non-trivial step turns out to be the initial choice
of the fitting parameters for the optimization algorithm.
Whenever available, one can start from the coefficients
of the truncated Taylor series, which we find then lead
to excellent GMM fits. In more complicated situations,
where Taylor series is no longer an option, one can try
to sequentially sample over random Gaussians with sub-
sequent optimization. This approach gives fits of high
precision, but it can be further improved by simple post-
processing that then gives a more efficient fit with fewer
Gaussians, as we discuss below.

B. Bosons

We switch to the analysis of the Bose-Einstein distri-
bution function:

nB(z, p) =
[1
z
exp

(p2
2

)
− 1

]−1

. (50)

For bosons, the local fugacity has to be smaller than unity
z ≤ 1 so that essentially all the discussion from the pre-
ceding subsection applies here as well. One notable differ-
ence, however, is that the bosonic one-variable function
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f2(x), now defined as

f2(x) ≡ nB(x)
∣∣∣
z=1

=
[
exp

(x2
2

)
− 1

]−1

, (51)

diverges for x → 0. In particular, this implies that the
function f2(x) cannot be fitted with a GMM (43) in the
entire range x ∈ [0,∞). In practice, this is not an is-
sue because one can always choose a maximal bosonic
fugacity zmax that cuts off the range to x ∈ [xmin,∞),

with xmin =
√

−2 ln (zmax). Physically, by choosing such
a cutoff, one limits the analysis to temperatures T out-
side a small window near Tc since the bosonic fugacity
can approach unity only in the immediate vicinity of the
BEC transition. For instance, based on mean-field the-
ory, the choice of zmax = 0.9 would correspond to tem-
peratures |T−Tc|/Tc ≳ 5%; and zmax = 0.99 implies that
|T − Tc|/Tc ≳ 1%. One can also increase the cutoff zmax

closer to unity if one wants to investigate the detailed
behavior near Tc. This will come at the cost that the fit-
ting near Tc becomes more challenging and requires more
Gaussians [see Fig. 3(b)].

Figure 3(b) shows the GMM fits to the bosonic distri-
bution nB(z, p): for z = 0.9 and z = 0.99, we can reduce
the bosonic error

LB = max
x≥xmin

|f2(x)− fGMM(x)| (52)

to 10−8 with as few as 10 and 17 Gaussians, respectively.
If needed, this precision can be further improved by in-
creasing M0 – see the inset of Fig. 3(b). Once the GMM
fit at zmax is established

nB(zmax, p) ≈
∑
n

an,zmax
exp

(
− p2

2γ2n

)
, (53)

we immediately get the same quality GMM approxima-
tion for any z ≤ zmax:

nB(z, p) ≈
∑
n

an,zmax(z/zmax)
1/γ2

n exp
(
− p2

2γ2n

)
. (54)

Notably, as Fig. 3(b) illustrates, the fitting at a given
zmax can be extrapolated (using Eqs. (53) and (54)) to
even get a reasonably good approximation for z > zmax.

C. Dense fermions, zF > 1

We turn to discuss the fermionic distribution function
nF(z, p) in the regime z > 1, corresponding to dense
fermions. Following the preceding analyses, now it is sug-
gestive to change variables as z = exp(q2/2) and consider
the function

f3(x) = [exp(x) + 1]−1 (55)

so that nF(z, p) = f3((p
2−q2)/2). Since, in principle, one

can have arbitrary large fermionic fugacities, it implies

that generically x ∈ (−∞,∞). In practice, however, the
range of the variable x is set by the maximal fermionic
fugacity zmax that we consider, i.e., x ∈ [xmin,∞) with
xmin = − ln(zmax). Physically, zmax is essentially set by
the fermionic density and local temperature.
To be consistent with the preceding subsections and to

allow for negative values of x, a GMM fit to the function
f3(x) translates as a sum of exponentials (rather then a
sum of Gaussians), which we write as:

f3(x) ≈
∑
n

αn exp
(
− x

γ2n

)
. (56)

In contrast to what we have developed so far, here we now
allow for the coefficients αn and γn to be complex (and we
only require Re γ2n > 0), as we find that to fit the function
f3(x) with purely real parameters, assumed in Eq. (43),
turns out to be numerically demanding, especially for
very large fugacities z ≫ 1. This extended class of func-
tions incorporates exponentially decaying trigonometric
functions, which can fit the initial plateau of f3(x) sub-
stantially more accurately and with fewer resources than
real exponentials. Importantly, the collision integrals in
Eqs. (34)-(38) can still be expressed analytically within
this new representation. In what follows, we will refer to
the model in Eq. (56) as complex GMM (cGMM). We
finally remark that to get an approximation for nF(z, p)
for any 1 ≤ z ≤ zmax, one can use Eq. (47) and Eqs. (53)-
(54), with the only difference that the corresponding co-
efficients are now complex.
Since the function f3(x) is real, we consider M0 com-

plex conjugate pairs so that we now have 4 ×M0 fitting
parameters. Figure 3(c) summarizes the results of cGMM
fits: we find that the absolute fermionic error LF, defined
similarly as above, of the fit at zmax = 105 can be reduced
to ∼ 10−8 with only about M0 = 21 Gaussian pairs. As
we show in the inset of Fig. 3(c), this error LF decreases
with increasing M0. However, there are regions where
LF plateaus at some values, meaning that the addition
of new Gaussian pairs does not improve the quality of the
fit, which could possibly be improved by using better ini-
tialization of the fitting parameters – we leave this issue
to future work. Furthermore, this expectation is sup-
ported by the fact that a simple post-processing, where
we remove as many redundant Gaussians as possible with
subsequent re-optimization, gives a notably better result.
specifically, we obtain the target precision LF ≤ 10−7 at
zmax = 105 with only M0 = 17 complex conjugate Gaus-
sian pairs.

D. Summary of the section

We have numerically shown that one can achieve a
highly accurate numerical representation of the equilib-
rium distribution functions using a mixture of Gaussians.
Crucially, this representation makes the evaluation of col-
lision integrals in Eqs. (34)-(38) numerically tractable, as
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we further discuss below. The quality of such fits is con-
trolled solely by the total number of Gaussians (complex
Gaussian pairs) M0 used in the fitting model. In our nu-
merics, we first get self-consistent equilibrium distribu-
tion functions and then, for each real-space point r, we
obtain a GMM approximation following the procedures
outlined in the preceding three subsections; the resulting
absolute errors are ensured to be smaller than 10−7 in
all regimes that we investigate in the remainder of the
paper.

We have also shown that not only the GMM dramat-
ically outperforms the truncated Taylor series approxi-
mation, its complex analogue, cGMM, gives excellent fits
in the regimes where the Taylor series expansion is not
even available. Since only a few Gaussians are needed to
get outstanding-quality fits, it renders calculations of the
collision integrals numerically efficient and accurate.

The developed here approach is the central technical
result of this paper, as it allows one to study a broad class
of quantum many-body systems describable within some
Boltzmann equation. In the following section, motivated
by the most recent cold-atom experiments, we apply this
framework to investigate monopole and quadrupole col-
lective modes of a trapped Bose-Fermi mixture.

We note in passing that a cautious reader might ar-
gue that our framework applies specifically to systems
with contact s-wave interactions. Indeed, when interac-
tions are explicitly non-local, the resulting Hartree-Fock
self-energies, which enter into the equilibrium distribu-
tion functions through the self-consistency Eq. (13), can
become momentum-dependent. In general, this makes
the equilibrium forms in Eqs. (44) and (50) no longer
applicable. While the full equilibrium distribution func-
tions are generically more complicated, we expect that
they still can be accurately approximated by the GMM
or cGMM, upon a straightforward extension of our opti-
mization routines.

IV. COLLECTIVE MODES OF A TRAPPED
BOSE-FERMI MIXTURE

The formalism developed in the preceding two sections
enables us to efficiently evaluate all of the method-of-
moment matrices in Eq. (25) for three-dimensional sys-
tems. With the GMM and cGMM representations of the
equilibrium distribution functions, the multidimensional
collision integrals no longer constitute computational ob-
stacles. In practice, however, actual calculations turn out
to be quite cumbersome, and, for this reason, detailed
derivations, as well as our hybrid numerical-analytical
scheme for the collision integrals, are relegated to Ap-
pendices A and B. In Appendix C, we present a series
of benchmarks and applications of the collision integral
calculations, for various physical systems of interest.

Equipped with the method of moments, we turn to in-
vestigate the collective modes of a quantum Bose-Fermi
mixture trapped in a cigar-shaped optical potential. In

Sec. IVA, we first briefly discuss the choice of basis func-
tions and model parameters. Our main findings are then
split into three parts: In Sec. IVB, we study a single-
component interacting bosonic fluid, with the primary
result being the crossover from the collisionless regime
to collision-dominated hydrodynamics. The physics of
the quantum mixture, when both fluids are present and
interact with each other, is rich so that we consider two
limiting situations: the case of dilute fermions NF ≪ NB,
further refereed to as the impurity regime, is studied in
Sec. IVC, and the case with NF ≃ NB, the mixture
regime, is discussed in Sec. IVD. There we explore coher-
ent mixing between the bosonic and fermionic monopole
modes, their dampening due to incoherent scatterings,
and the emergent hydrodynamics characterized by syn-
chronization of the bosonic and fermionic responses.

A. Basis functions and model parameters

So far we have not made any assumptions about the
trapping potentials or the basis functions ϕα(r,p). Be-
low we consider cigar-shaped traps with cylindrical sym-
metry. In this case, the external trap modulations and
the generated by this perturbation responses will have
the same z-axis symmetry. This allows us to classify the
collective modes and efficiently choose the correspond-
ing basis functions ϕα(r,p) – see Ref. [24] for a related
discussion in two-dimensional pancake-like geometry. In
what follows, we investigate two types of collective exci-
tations corresponding to the radial breathing monopole
mode [Fig. 4a] and to the quadrupole mode [Fig. 5a].

The monopole mode represents an excitation with zero
z-axis angular momentum, allowing one to restrict the
analysis to the following basis functions:

ϕα(r,p) = ρ2mαp2nα
ρ (ρ · pρ)

kα × z2pαp2qαz (zpz)
rα . (57)

Here mα + nα + kα + pα + qα + rα ≤ M , rα = {0, 1},
and M sets the truncation order. At first order, we have
7 functions {1, ρ2, p2ρ,ρ · pρ, z

2, p2z, zpz}, and this simpli-
fied choice of basis functions was shown to perfectly cap-
ture the monopole mode of a classical gas [75]. Specifi-
cally, since this gas follows the Boltzmann-Maxwell dis-
tribution, one can evaluate all of the method-of-moments
matrices analytically, and the result of such an analysis
agrees well with more precise molecular-dynamics sim-
ulations [75]. Besides, the results of Ref. [75] helped us
test our collision integral computations – see Appendix C.
The situation we consider here, of a quantum system with
more complicated distribution functions, is much more
challenging and likely not feasible analytically because of
the complexity of the collision integral matrix elements.
We provide expressions for all of the monopole matrices,
for arbitrary M ≥ 1, in Appendix A. Below we investi-
gate the monopole spectral function, which for bosons is
defined as:

AB
ρ2(ω) = − 1

NB
Im{χB

ρ2(ω)}, (58)
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where χB
ρ2(t) ≡ (⟨ρ2⟩t − ⟨ρ2⟩t=0) is the response of the

transverse bosonic cloud size to a trap modulation of the
form: δUB(t) ∝ ρ2δ(t). Analogous spectral function can
be introduced for fermions as well, but we return to this
below.

The quadrupole mode is generated by a perturbation of
the type δUB/F ∼ (x2 − y2), and the corresponding basis
functions are given by ξi=1,2,3(r,p)× ϕα(r,p), where

ξ1 = x2 − y2, ξ2 = xpx − ypy, ξ3 = p2x − p2y. (59)

We note that 2(ρ ·pρ)×ξ2 = p2ρξ1+ρ
2ξ3, implying that a

function proportional to (ρ · pρ)× ξ2 should be removed
from this basis set since it can be represented as a linear
superposition of the rest of the basis functions [24]. For
instance, this means that for M = 1 we have only 20
functions. In Appendix B, we analytically evaluate all of
the corresponding matrices entering the linearized kinetic
equations, and the resulting expressions are then used
in our numerical simulations. The quadrupole spectral
function for bosons is defined as:

AB
x2−y2(ω) = − 1

NB
Im{χB

x2−y2(ω)}, (60)

where χB
x2−y2(t) ≡ (⟨x2⟩t−⟨y2⟩t) encodes the quadrupole

response of the bosonic cloud to a trap modulation of the
form: δUB(t) ∝ (x2 − y2)δ(t).
Let us now briefly comment on the validity of the

Boltzmann equation to describe the Bose-Fermi mixture.
We need to check two conditions: 1) characteristic range
of the inter-particle interactions is smaller than the typ-
ical travel distance between collisions; 2) it is sufficient
to use scattering length to describe the low-energy part
of the scattering amplitude, f(k) = −a, and neglect the
full momentum dependence of f(k). The lower bound
on the travel distance is given by the distance between
the atoms. Hence the former condition is guaranteed pro-
vided that the distance between bosons (which we always
take to be denser than fermions) is larger than both scat-
tering lengths. To discuss the second condition we recall
that in three spatial dimensions the s-wave scattering
amplitude can be written as [83, 84]:

f(k) = − 1

a−1 + ik − 1
2r0k

2
, (61)

where k is the relative wave vector of the scattering par-
ticles, a is the scattering length, and r0 is the effective
range of interactions. The use of the Born-Markov ap-
proximation for the collision integrals is fully justified if
one can neglect the momentum dependence of f(k), i.e.,
one requires ka ≲ 1. If one uses k = n1/3 as the typi-
cal momentum set by the interparticle separation at low
temperatures, then we find that both conditions for the
validity of the Boltzmann approach are satisfied provided
that aB ≲ 2× 104a0, with a0 being the Bohr radius. For
this estimate, we used the bosonic density at the center
of the trap, NB = 106, and parameters of the MIT exper-
iment [12] on a 40K−23Na mixture: ωz = 2π × 12.2Hz,

ωρ = 2π × 97Hz, and λ ≈ 2.4. If instead one considers

the thermal momentum k ≃
√
mT , then aB ≲ 4× 105a0

for T ≃ 500 nK (for comparison, the mean-field transi-
tion temperature is Tc ≈ 220 nK). The thermal momen-
tum constraint becomes more essential at higher temper-
atures, away from the quantum regime. In our numer-
ical analyses below, we, therefore, restrict ourselves to
|aB|, |aBF| ≤ 104a0. In Appendix C, we discuss that our
approach can be directly applied to systems with ultra-
strong interactions, where one is required to keep the full
k-dependence of the scattering amplitude.

B. One-component interacting fluid

We begin by investigating a single-component bosonic
fluid, i.e., for now, we assume that there are no fermions.
Figure 4 summarizes our results for the monopole mode
in this case. We find that when the coupling gB (or equiv-
alently aB) is weak, the fluid behaves as a non-interacting
Bose gas, and, as such, the monopole spectral function
Aρ2(ω) exhibits a sharp peak in frequency at ω = 2ωρ.
This regime is further referred to as collisionless [Fig. 4c].
Upon increasing aB (using, for instance, a magnetic Fes-
hbach resonance), we first observe that the resonance in
Aρ2(ω) becomes dramatically broader [Fig. 4d] – the in-
tuition behind this behavior is that the fluid can no longer
be considered as non-interacting, since various sound-like
excitations of the system mix and, as such, can broaden
the signal. Remarkably, however, upon further increase
of aB ≳ 5×103a0, this peak reforms at a notably different
frequency, and it becomes sharper with aB [Fig. 4e]. We
interpret this result as the system entering the hydrody-
namic regime. Interactions are so strong in this regime
that the collective response of the fluid to a slow macro-
scopic perturbation is described via dynamics where the
system is locally always in equilibrium. Let us also re-
mark that the width of the monopole mode in the hydro-
dynamic regime [Fig. 4f] is related to the viscosity of the
fluid. In other words, by measuring collective modes in
optical traps, one can extract information about trans-
port coefficients [59, 62, 85–95], and the method we have
developed here enables one to accurately evaluate them
and compare to such experiments. As a concrete demon-
stration of this capability of our approach, we analyse
in Appendix C the shear viscosity of a two-component
strongly-interacting Fermi fluid.

Noteworthy, we find that when the interactions are
strong [Fig. 4d,e], the spectral function Aρ2(ω) exhibits
an additional weak resonance at ω ≃ 2ωz. This resonance
comes from the longitudinal monopole mode, which is far
detuned from the transverse one for strongly anisotropic
cigar-shaped traps with κ≪ 1. The two modes mix with
each other for aB ̸= 0, explaining the appearance of the
longitudinal resonance even when the trap perturbation
is transverse.

Figure 5 summarizes our results for the quadrupole
mode in an interacting bosonic fluid. Here we also find
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FIG. 4. Collisionless-to-hydrodynamics crossover in a single-
component bosonic fluid, the case of monopole mode schemat-
ically shown in (a). (b) The bosonic spectral response Aρ2 as a
function of frequency ω and for different interaction strengths,
as encoded in aB. When the Bose-Bose interactions are weak,
one gets a sharp response at ω ≃ 2ωρ; as aB is increased, the
system starts to exhibit a many-body hydrodynamic response,
as evidenced by the fact that first, the spectral function com-
pletely broadens but then reforms again into a sharp peak at
a frequency notably different from 2ωρ [see also a few cuts
shown in (c,d,e)]. This is further illustrated in (f) as the be-
havior of the position Ωmon and width Γmon of the peak in
(b), obtained from a single Lorentzian fit. In the hydrody-
namic regime, transverse and longitudinal monopole modes
mix, resulting in the emergence of an additional weak peak
at the longitudinal frequency ω ≃ 2ωz (e). Parameters used:
ωz = 2π × 12.2 Hz, ωρ = 2π × 97 Hz, T = 500 nK, NB = 106,
and M = 2.

a similar collisionless-to-hydrodynamics crossover in the
parameter range consistent with the above discussion.
In the collisionless regime, the quadrupole spectral func-
tion Ax2−y2(ω), similarly to Aρ2(ω), also exhibits a res-
onance at ω ≃ 2ωρ. Interestingly, as the hydrody-
namic regime is approached, the quadrupole resonance
red-shifts to a frequency notably different from the cor-
responding monopole peak. Typically, in cold-atom ex-
periments, trapping potentials may be anisotropic, which
gives rise to a weak mixing between the monopole and
quadrupole modes – this feature might facilitate experi-
ments, as these modes can be seen in a single measure-
ment. Indeed, upon tuning the temperature or interac-
tion strength, one could observe how the two modes, that
are almost degenerate in the collisionless regime, split
from each other in the hydrodynamic one. Another in-
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FIG. 5. The same analysis as in Fig. 4 but for the quadrupole
mode. (b) The quadrupole spectral function Ax2−y2(ω), sim-
ilarly to Aρ2(ω), exhibits a crossover from the collisionless

regime, aB ≲ 103a0, to a hydrodynamic one, aB ≳ 5 × 103a0.
Just as it was for the monopole case, for weak interactions, the
function Ax2−y2(ω) peaks in frequency at ω ≃ 2ωρ. As the in-
teractions are increased, this peak first significantly broadens
[this broadening is much stronger compared to the one seen
in the crossover regime for the monopole mode in Fig. 4] and
then reforms at around ω ≃

√
2ωρ – this frequency is notably

different from the corresponding monopole resonance in the
hydrodynamic regime.

teresting aspect of the quadrupole mode is that it is much
broader than the monopole one [see Fig 5f]. This has to
do with the fact that the phase space, associated with the
scattering processes that contribute to the quadrupole
linewidth, is significantly larger than the corresponding
phase space associated with the monopole mode.
To sum up, we conclude that the overall behavior of

the monopole and quadrupole modes is qualitatively sim-
ilar to each other, except the lifetime of the quadrupole
mode can be significantly shorter. For this reason, when
considering the Bose-Fermi mixture below, we focus on
the monopole mode.

C. Impurity regime NF ≪ NB

Our analysis of the Bose-Fermi mixture starts from
the limit of dilute fermions NF ≪ NB. In this case,
the bosonic response is barely affected by the presence of
fermions, allowing us to focus on the fermionic spectral
function.
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FIG. 6. Monopole modes in the impurity regime NF = 10−2NB ≪ NB. Effectively, the Bose-Fermi mixture represents a
system of coupled harmonic oscillators, where the trap modulation launches both the bosonic and fermionic monopole modes,
coupled to each other for aBF ̸= 0. We consider two types of driving protocols in (a) and (b). The experimental situation would
correspond to the scenario I in (a), where the trap modulation perturbs both the bosonic and fermionic traps, in turn directly
launching the two modes simultaneously. In the scenario II of (b), the trap modulation couples directly only to the fermionic
monopole mode, which then can excite the bosonic one. The bosons remain largely unaffected by the dilute fermions, and,
for this reason, we focus here on the fermionic spectral responses. The coherent mixing between the two types of monopole
modes competes with the broadening of the fermionic resonance, as the dilute fermions can easily scatter off the bosons – this
is illustrated in panels (l) and (k) [corresponding to the scenario II], where the sharp in frequency fermionic peak for aBF = 0
(l) becomes much broader for aBF = −500a0 (k), yet the coupling to the bosonic resonance remains barely notable in (k).
Upon further increasing the interaction strength |aBF|, panels (l)-to-(h), the fermionic resonance has largely disappeared, while
the bosonic contribution from the back-action of the bosonic cloud becomes notable. In addition to the bosonic resonance,
we observe weak sidebands that originate from the longitudinal monopole modes and their mixing with the transverse ones
(see text). In the scenario I (a), the optical modulation directly launches the bosonic monopole mode, leading to an interplay
between the aforementioned fermionic broadening and coherent driving from the bosonic cloud. This is illustrated in panels
(g)-to-(c), as the fermionic resonance becomes weaker and broader until it is completely gone, while the mixing with the bosonic
monopole mode quickly becomes strong and completely dominates the fermionic response for large |aBF|. We note characteristic
Fano interference profiles that come from the coherent mixing between the two types of monopole modes. For concreteness,
here we showed the results for aB = 0, meaning that bosons are collisionless, but we emphasize that similar conclusions hold
for other regimes.

For aBF = 0, i.e., when the two fluids are not coupled
to each other and the fermionic gas is non-interacting,
fermions behave similar to bosons in the collisionless
regime studied in the preceding subsection, except now
the fermionic response picks up a resonance at ΩF

mon =
2ωF

ρ [Fig. 6(g),(l)]. This fermionic monopole frequency
is generically different from the bosonic one because of
the difference in masses mF/mB ≈ 40/23 and also be-
cause we choose λ ≈ 2.4, encoding the fact that in the
MIT experiment [12], the trapping potentials for bosons
and fermions are different. As such, the Bose-Fermi mix-
ture effectively represents a three-level system shown in
Fig. 6(a),(b). In this sense, trap perturbations act as if

they excite the two monopole modes, which are coupled
to each other for aBF ̸= 0.

We consider two trap modulations shown in
Fig. 6(a),(b). The scenario I in Fig. 6(a) corre-
sponds to an experiment where the trap perturbation
simultaneously affects the bosonic and fermionic traps
clouds and, as such, directly launches the two monopole
modes. The respective fermionic response AF

ρ2(ω) ex-
hibits two key features. First, as the interaction strength
|aBF| is increased, the fermionic resonance at 2ωF

quickly becomes broad and weak, until it is no longer
observable at large |aBF|. At the same time, AF

ρ2(ω)
acquires an additional contribution from the bosonic
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resonance, which eventually dominates the fermionic
response. Second, for intermediate interactions, which
are strong enough so that the bosonic spectral weight
is appreciable but not too strong so that the fermionic
peak is still sharp, we find coherent mixing between the
bosonic and fermionic monopole modes. The spectral
lines, even for large |aBF|, acquire characteristic Fano
interference profiles typical of a system of coherently
coupled harmonic oscillators [96]. A prerequisite for
observing such profiles is that one of the excited states
should be relatively long-lived. This suggests that the
bosonic fluid should be either collisionless or hydrody-
namic – this aspect will become clearer when we discuss
the mixture regime below.

The fermionic behavior at large |aBF| is understood as
the interplay between coherent driving from the bosons
and incoherent broadening of the fermionic resonance.
Indeed, as |aBF| is increased, the dilute fermions can eas-
ily scatter off the relatively dense bosons, explaining the
eventual disappearance of the fermionic resonance. Si-
multaneously, the bosonic monopole mode, which has
been directly excited by the trap perturbation, acts as
a coherent drive to the fermions and, as such, dominates
the fermionic response.

This physical picture is further supported by the sce-
nario II in Fig. 6(b), where the trap modulation directly
launches only the fermionic monopole mode, which then
can excite the bosonic one. The corresponding spec-
tral function ÃF

ρ2(ω) shows that by increasing |aBF| from
zero to 500a0 [Fig. 6(l),(k)], the fermionic resonance be-
comes dramatically broader, whereas the mixing with the
bosonic resonance is barely observable. This is because
the collision integral, which determines the linewidth
of the fermionic resonance, scales as a2BF, whereas the
(mean-field) coherent coupling to bosons is only linear.
Remarkably, upon further increasing |aBF|, the fermionic
response becomes so broad in frequency that it has neg-
ligible spectral overlap with the initial sharp fermionic
resonance. One could even be tempted to argue that
as evidenced by this density-density-like response func-
tion, the fermion is essentially gone. Such a statement,
however, is not entirely correct because the fermion still
remains a well-defined quasiparticle, describable within
the Landau Fermi-liquid theory that we employ here.

In principle, the fermionic response can become sharp
again for larger values of |aBF|, i.e., upon entering the
hydrodynamic regime. For dilute fermions, the values
required for this are so large that we do not even consider
this possibility. Such a situation can occur for reasonable
parameters if the fermionic density is appreciable, as we
discuss in the following subsection.

Besides this dramatic broadening of the fermionic reso-
nance at large |aBF|, the spectral function ÃF

ρ2(ω) also ac-
quires a notable contribution from the bosonic resonance.
To understand the physical picture, we note that the op-
tical modulation launches the fermionic monopole mode,
that is essentially featureless in frequency. Subsequently,
this broadband fermionic mode drives the bosonic one,

and the back-action from this long-lived excitation in
turn gives rise to the relatively sharp bosonic feature in
ÃF

ρ2(ω). Notably, we find that ÃF
ρ2(ω) also displays weak

Stokes and anti-Stokes sidebands near the bosonic reso-
nance. The higher energy sideband has frequency close
to ΩB

mon+2ωF
z , which is due to a process where one quan-

tum of the transverse bosonic mode and one quantum of
the longitudinal fermionic mode are both being excited.
The lower sideband has frequency close to ΩB

mon−2ωF
z and

corresponds to a process where one quantum of the trans-
verse bosonic mode is being excited and one quantum
of the longitudinal fermionic mode is being depopulated.
Both types of processes are possible for the thermal equi-
librium state, the longitudinal and transverse monopole
modes can mix for aBF ̸= 0, as it was in Fig. 4, and,
as such, the system seems to exhibit two additional well-
defined collective modes, which manifest in the fermionic
response through the same back-action mechanism as for
the bosonic monopole mode. These sidebands, together
with the Fano interference profiles discussed above, indi-
cate that the Bose-Fermi mixture is expected to give rise
to prominent and tunable nonlinearities – this exciting
research direction is left for future work.

D. Mixture regime NF ≃ NB

We finally turn to investigate the mixture regime where
the fermionic density is comparable to the bosonic one
(NF ≃ NB).
Figure 7 summarizes our results for the case with the

bosons being nominally collisionless aB = 50a0. We
find that a small interaction strength |aBF| ≲ 103a0
gives rise to both incoherent broadenings of otherwise
sharp bosonic and fermionic resonances and coherent
mixing between them. For larger interaction strengths,
103a0 ≲ |aBF| ≲ 2× 103a0, the incoherent part starts to
dominate, and the spectral functions appear as rather
featureless distinct Lorentzians. At even stronger in-
teractions and in contrast to the impurity regime dis-
cussed above, the system becomes hydrodynamic. Both
Lorentzians become narrower and they merge into a sin-
gle, rather than two distinct, resonance – an effect we
refer to as mode locking. This synchronization effect
represents a hallmark of the hydrodynamic regime of the
Bose-Fermi mixture as a whole.

Similar results hold for the case where bosons are nom-
inally hydrodynamic aB = 5 × 103a0, as summarized in
Fig. 8. Remarkably, when the interaction |aBF| ≲ 600a0
is not too strong, we now observe that the coherent mix-
ing is between the collisionless fermionic monopole mode
and truly many-body hydrodynamic bosonic mode. We
also find that the incoherent scatterings play a role and
become dominant in the crossover region, where the two
response function appear as two broad Lorentzians. Even
the bosonic hydrodynamic mode becomes broader with
increasing |aBF| in this region. Finally, as |aBF| is fur-
ther increased, the Bose-Fermi mixture enters the hydro-
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FIG. 7. Monopole modes in the mixture regime NF = NB,
with bosons being nominally collisionless aB = 50a0. When
the Bose-Fermi coupling is not too strong, |aBF| ≲ 103a0, we
find that the bosonic and fermionic monopole modes exhibit
both coherent mixing with each other and incoherent broad-
ening of the respective resonances. For stronger interactions,
103a0 ≲ |aBF| ≲ 2× 103a0, each of the spectral functions dis-
plays a single Lorentzian behavior, meaning that the coherent
mixing between the two monopole modes is no longer observ-
able – this regime can be associated with the crossover region.
Notably, as |aBF| is further increased, the system turns into
the hydrodynamic regime, where not only the two Lorentzians
become sharper, as it was in Fig. 4, they also merge to have
the same frequency – an effect referred to as mode locking.

dynamic regime as a whole, characterized by the afore-
mentioned mode locking and sharpening of the response
functions.

V. CONCLUSION AND OUTLOOK

Our work elucidates the collective near-equilibrium dy-
namics of quantum Bose-Fermi mixtures in trapped cold
atom systems. We analyze linear responses of the system
to changes in the confining potential and find that they
differ dramatically depending on the parameter regimes.
We observe several non-trivial phenomena, including cou-
pling and interference between bosonic and fermionic col-
lective modes, strong damping of these modes, and the
emergence of hydrodynamics in the strongly interacting
regime. For intermediate and strong interactions, we
observe appreciable mode mixing, manifesting, for in-
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FIG. 8. The same analysis for the mixture regime NF = NB

as in Fig. 7 but now bosons are nominally hydrodynamic
aB = 5000a0. Quite remarkably, for |aBF| ≲ 600a0, we find
that the collisionless fermions display coherent mixing with
the hydrodynamic bosonic mode. A bit unusual is that this
latter mode also exhibits initial broadening as the interaction
strength |aBF| is increased. The rest of the results qualita-
tively follow those in Fig. 7, including eventual mode locking
characteristic of the hydrodynamic regime of the mixture as
a whole.

stance, as the appearance of a longitudinal monopole
resonance even when the optical perturbation is trans-
verse. In the dilute fermion limit, the bare fermionic
resonances quickly become featureless in frequency upon
increasing the boson-fermion coupling strengths, which
is reminiscent of the physics of Bose polarons. When
bosonic and fermionic densities are comparable and in-
teractions are strong enough to make the mixture hydro-
dynamic, we find mode locking between the bosonic and
fermionic responses. Remarkably, we also observe coher-
ent mode mixing even when bosons are hydrodynamic
and fermions are collisionless. The coherent mode mix-
ing effects we uncover between longitudinal and trans-
verse monopole modes, manifesting as Fano interference
profiles and the emergence of the Stokes and anti-Stokes
sidebands, indicate that Bose-Fermi mixtures should ex-
hibit strong and tunable nonlinearities. While nonlin-
ear effects are beyond the linearized Boltzmann frame-
work analyzed here, they are a promising direction for
future inquiry. Such non-linearities can potentially be
used to explore analogues of non-linear optical phenom-
ena using collective excitations rather than Λ-like atomic
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gases [96, 97]. Potential applications include generating
single and two mode squeezing [98], entangling differ-
ent collective modes [99], and achieving reflections with
phase conjugation [100].

Analysis of the dynamics of the cold atomic Bose-
Fermi mixture was made possible by the GMM-MoM
developed here. This method allows one to efficiently
compute the linear-response properties, including the
collective modes and transport coefficients, of a large
range of quantum many-body systems that are describ-
able within the framework of the Boltzmann equation.
While this work focuses on a spatially-inhomogeneous 3D
system, our approach will also accelerate investigations
of salient 2D systems. Examples of phenomena in such
systems that require further elucidation include electron
hydrodynamics in vdW semiconductors, spin transport in
bernal graphene, and the collisionless-to-hydrodynamic
crossover in pancake-like dipolar gases [24, 101–104]. The
tables of GMM fits to equilibrium distribution functions
we provide are generic and can be directly applied to a
broad class of interesting many-body systems [13].

While the trapped cold-atom mixture we analyzed in
this work has particle-conserving scattering processes,
particle non-conserving collisions are also ubiquitous in
solid-state and cold-atom platforms. Such processes are
natural for systems containing phonons, magnons, and
photons. Particle non-conserving collision integrals, how-
ever, are usually much simpler compared to the particle-
conserving ones considered in this work and therefore are
expected to be straightforwardly tractable using the same
GMM-MoM approach. An additional step would be re-
quired to treat systems that have explicitly non-local (but
spherically symmetric) interactions such as those gener-
ated by screened Coulomb or dipolar forces. Systems
with pure Coulomb interactions may need to be modeled
with Boltzmann-Vlasov equations; we expect that our
approach facilitates analysis of such models as well. The
GMM representaion of the distribution functions may not
reduce the collision integrals to fully analytical expres-
sions in these cases, unlike the contact s-wave interaction
in the cold atom mixture considered here. This repre-
sentation would still, however, dramatically simplify the
collision integral, reducing it to a low-dimensional one
that can easily be computed numerically using limited
computational resources.

There are two generalizations of the GMM-MoM ap-
proach that may increase its efficiency. For systems that
are spatially inhomogeneous, such as optically-trapped
cold atomic gases similar to those considered in this work,
one may extend the GMM to an ansatz that encodes the
full dependence of the equilibrium distribution functions
on both real-space and momentum coordinates. This will
further facilitate calculations of the collision integrals.
Additionally, one may try mixture models composed of
functions other than Gaussians that still allow simplifi-
cation of the collision integral via Wick’s theorem. Pos-
sible options include poly-Gaussian functions, composed
of a sum of polynomials multiplied by a Gaussian, and

error functions. Both of these ansatzes still enable semi-
analytical computation of the collision integrals and may
prove advantageous, for example, in the analysis of dense
fermionic systems.
Aside from these simple generalizations, there are

three non-trivial promising extensions of our GMM-
MoM framework. Firstly, one can try to use a GMM
with time-dependent Gaussians to investigate the far-
from-equilibrium dynamics of quantum many-body sys-
tems. This approach would apply to systems which
can be modeled using a Boltzmann equation with time-
dependent distribution functions. If such a time-
dependent GMM-MoM proves accurate, it would en-
able significant progress in several open topics in mod-
ern physics. Examples include the behavior of non-
equilibrium many-body steady-states, with applications
to spintronics devices and field-effect transistors essen-
tial for classical computer hardware, fundamental ques-
tions about turbulence and hydrodynamics, and the phe-
nomenology of light-induced phases of matter such as
light-induced superconductivity and magnetism. Sec-
ondly, the Fano interference profiles and Stokes and
anti-Stokes sidebands we find in the Bose-Fermi mixture
studied here motivates the extension of the GMM-MoM
framework to include nonlinear effects. Such an extension
would facilitate analysis of the non-linear electrodynam-
ics of correlated materials, allowing, for example, study
of the temperature dependence of photocurrents in pho-
tovoltaic semiconductors or analysis of second or third
harmonic generation in systems such as striped cuprate
semiconductors which exhibit intertwined order parame-
ters [105–110]. Finally, we can try to extend the GMM-
MoM framework to strongly-correlated systems beyond
Landau Fermi liquids which are describable using a Boltz-
mann equation. Such an extension would necessitate a
Gaussian mixture ansatz on the level of Green’s func-
tions rather than on the single-particle distribution func-
tions at the heart of the Boltzmann model. Generalizing
the GMM-MoM in this way would enable the analysis of
non-Fermi liquids, which are believed to be the key to
understanding strongly-correlated phases of matter.
Our work opens the door to rigorous theoretical in-

vestigation of many fundamental and technologically-
important quantum many-body systems describable by
Boltzmann equations which have previously evaded anal-
ysis. Furthermore, extensions of the method may provide
an additional tool to analyze quantum many-body sys-
tems that are out-of-equilibrium, manifest non-linear be-
havior, or are strongly-correlated.
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Appendix A: Evaluation of the matrix elements associated with the monopole mode

When working with the monopole basis functions, for future convenience, we redefine them as:

ϕα(r,p) = βNακpα+rα/2 × ρ2mαp2nα
ρ (ρ · pρ)

kα × z2pαp2qαz (zpz)
rα , Nα ≡ mα + nα + kα + pα + qα + rα. (A1)

The GMM fits in the dimensionless variables read:

nB,eq(r,p) =
1

1

zB(r)
exp

(βp2
2

)
− 1

≈
∑
s

aB,s exp
(
− βp2

2γ2B,s

)
, (A2)

nF,eq(r,p) =
1

1

zF(r)
exp

(βp2mB

2mF

)
+ 1

≈
∑
s

aF,s exp
(
− βp2

2γ2F,s

)
. (A3)

We note that the coefficients aB,s and γB,s (aF,s and γF,s) depend on the real-space coordinate r only through the
local fugacity zB(r) (zF(r)). A simplification that makes our numerical calculations faster and that we will use below
is that the fugacities, in turn, depend only on the one-dimensional combination r̃2 = β(ρ2+κz2). This useful but not
crucial feature comes from the fact that the trapping potentials for bosons and fermions are similar and harmonic.
If the potentials are anharmonic or have different from each other forms, one can easily extend the formalism below
to account for such a situation. Besides, while the GMM fits are necessary for the collision matrices only, they also
facilitate numerical evaluations of the rest of the matrices entering the linearized kinetic equations. This Appendix
provides the expressions for all of the matrix elements associated with the monopole mode.

1. Matrix elements of M̂

By rescaling ρ
√
β → ρ, z

√
βκ→ z, and p

√
β → p, the matrix elements of M̂ in Eq. (27) can be written as:

(MB/F)αβ =
1

β3
√
κ

∫
d3r

d3p

(2π)3
ρ2mα+2mβp

2nα+2nβ
ρ (ρ · pρ)

kα+kβ × z2pα+2pβp
2qα+2qβ
z (zpz)

rα+rβ n(1± n). (A4)

In these new variables, the equilibrium distribution functions n = nB/F,eq depend on r and p only, which allows us to
perform the angular integration first, leading to:

Mαβ =
1

2πβ3
√
κ
h(kα + kβ)g

(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ

2

)
g
(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ

2

)
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+2

∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+2 × n(1± n), (A5)

where we defined:

h(n) ≡
∫ 2π

0

[cos(ψ)]n
dψ

2π
=

E(n)n!

2n[(n/2)!]2
, (A6)

g(m,n) ≡
∫ 1

−1

x2m(1− x2)ndx =
Γ(m+ 1/2)Γ(n+ 1)

Γ(m+ n+ 3/2)
, provided m,n ∈ 0, 1, 2, . . . (A7)

E(n) = 1 if n is even and zero otherwise. We compute the momentum integral analytically using the GMM fits and

f(n, γ) ≡
∞∫
0

dp pn exp
(
− p2

2γ2

)
= 2(n−1)/2γn+1Γ

(n+ 1

2

)
. The remaining one-dimensional integration over r is then

done numerically.
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2. Matrix elements of Ĥ

We first note that the relevant Poisson brackets in Eq. (28) can be written as:

{ϕβ ,HB} = ϕβ

[
2mβ

ρ · pρ

ρ2
+ kβ

p2ρ
ρ · pρ

+ (2pβ + rβ)
pz
z

− γB

(
2nβ

ρ · pρ

p2ρ
+ kβ

ρ2

ρ · pρ
+ κ(2qβ + rβ)

z

pz

)]
, (A8)

{ϕβ ,HF} = ϕβ

[(
2mβ

ρ · pρ

ρ2
+ kβ

p2ρ
ρ · pρ

+ (2pβ + rβ)
pz
z

)mB

mF
− γF

(
2nβ

ρ · pρ

p2ρ
+ kβ

ρ2

ρ · pρ
+ κ(2qβ + rβ)

z

pz

)]
, (A9)

where we defined γB ≡ 1+
β

r̃
∂r̃ΣHF,B(r̃) and γF ≡ λ+

β

r̃
∂r̃ΣHF,F(r̃) so that ∂ρHB/F = γB/Fρ and ∂zHB/F = γB/Fκz.

Plugging this into Eq. (28) and following the preceding subsection, for the fermionic sector, we arrive at:

(HF)αβ =
1

2πβ3
√
κ

{
(A10)

mB

mF

[
(2mβh(kα + kβ + 1) + kβh(kα + kβ − 1))g

(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ − 1

2

)
× g

(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ + 1

2

)
+

√
κ(2pβ + rβ)h(kα + kβ)

× g
(
pα + pβ +

rα + rβ − 1

2
,mα +mβ +

kα + kβ
2

)
g
(
qα + qβ +

rα + rβ + 1

2
, nα + nβ +

kα + kβ
2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+1

∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+3 nF,eq(1− nF,eq)

−
[
(2nβh(kα + kβ + 1) + kβh(kα + kβ − 1))g

(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + 1

2

)
× g

(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ − 1

2

)
+

√
κ(2qβ + rβ)h(kα + kβ)

× g
(
pα + pβ +

rα + rβ + 1

2
,mα +mβ +

kα + kβ
2

)
g
(
qα + qβ +

rα + rβ − 1

2
, nα + nβ +

kα + kβ
2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+3γF(r)

∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+1 nF,eq(1− nF,eq)
}
.

The expression for the bosonic sector is obtained from this one by substituting nF,eq(1 − nF,eq) → nB,eq(1 + nB,eq),

putting the mass ratio to one
mB

mF
→ 1, and by replacing γF → γB. As in the preceding subsection, we evaluate all

the momentum integrals analytically and all the real-space integrals numerically.

3. Matrix elements of Ŝ

The self-energies entering the matrix Σ̂, cf. Eq. (29), take the following form:

ΣB[∆Bϕβ ](ρ, z) = 2gB

∫
d3p

(2π)3
nB,eq(1 + nB,eq)ϕβ → 2gB

β3/2
ρ2mβ+kβz2pβ+rβvB,β(r), (A11)

where we rescaled the variables in the usual way, i.e., ρ
√
β → ρ, z

√
βκ→ z, and p

√
β → p, and introduced:

vB/F,β(r) ≡
1

(2π)2
h(kβ)g

(
qβ +

rβ
2
, nβ +

kβ
2

) ∞∫
0

dp p2nβ+kβ+2qβ+rβ+2n(r, p)(1± n(r, p)). (A12)
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Plugging this into Eq. (30), we obtain:

(SB)αβ =
2gB

2πβ7/2
√
κ

{
(A13)[

(2mαh(kα + 1) + kαh(kα − 1))g
(
qα +

rα
2
, nα +

kα + 1

2

)
g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ − 1

2

)
+
√
κ(2pα + rα)h(kα)g

(
qα +

rα + 1

2
, nα +

kα
2

)
g
(
pα + pβ +

rα + rβ − 1

2
,mα +mβ +

kα + kβ
2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+1vB,β

∞∫
0

dp p2nα+kα+2qα+rα+3 nB,eq(1 + nB,eq)

−
[
(2nαh(kα + 1) + kαh(kα − 1))g

(
qα +

rα
2
, nα +

kα − 1

2

)
g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + 1

2

)
+
√
κ(2qα + rα)h(kα)g

(
qα +

rα − 1

2
, nα +

kα
2

)
g
(
pα + pβ +

rα + rβ + 1

2
,mα +mβ +

kα + kβ
2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+3vB,βγB

∞∫
0

dp p2nα+kα+2qα+rα+1 nB,eq(1 + nB,eq)
}
.

Similar expressions hold for (SBF)αβ and (SFB)αβ .

4. Matrix elements Iαβ

In this subsection, we show how to evaluate the collision matrix Iαβ in Eq. (34) associated with incoherent boson-
boson scatterings. The main idea of the construction below is that the GMM fits allow one to represent the complicated
matrix elements as sums of Gaussian integrals that can be evaluated analytically over the 12-dimensional momentum
space (the integration over the remaining 3-dimensional real space is then done numerically). Some difficulties still
exist, such as taking into account the momentum and energy conservation laws – we discuss this below.

As a first step, we change variables to the center-of-mass frame: p = 1
2P + q, p′ = 1

2P − q, p1 = 1
2P

′ + q′, and

p′
1 = 1

2P
′ − q′. The momentum conservation leads to P ′ = P , while the energy conservation enforces q′ = q:∫

d3r
d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
(2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εB(p
′)− εB(p1)− εB(p

′
1))

→
∫
d3r

d3P

(2π)3
d3q

(2π)3
d3q′

(2π)3
(2π)δ(q2 − q′2).

It will be convenient to write S[ϕα] = βNακpα+rα/2ρ2mα+kαz2pα+rαSα[P , q, q
′], where Sα[P , q, q

′] is a known poly-
nomial of its arguments. Here, it is implicit that we consider all the in-plane momenta relative to ρ – this is allowed
to do since, for the monopole mode, the integrals do not depend on the angle ϕ between ρ and the x-axis. Rescaling
the variables in the usual manner, i.e., ρ

√
β → ρ, z

√
βκ→ z, and p

√
β → p, we arrive at:

(IB)αβ =− g2B
2β5

√
κ

∫
d3r ρ2mα+2mβ+kα+kβz2pα+2pβ+rα+rβ

∫
d3P

(2π)3
d3q

(2π)3
d3q′

(2π)3
(2π)δ(q2 − q′2)

× (1 + nB,eq(r,p))(1 + nB,eq(r,p
′))nB,eq(r,p1)nB,eq(r,p

′
1)× Poly[P , q, q′]. (A14)

We note that the real-space angular integration can be readily done:∫
d3r ρ2mα+2mβ+kα+kβz2pα+2pβ+rα+rβ → 2πg

(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ

2

)
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+2.

Here Poly[P , q, q′] = Sα[P , q, q
′]×Sβ [P , q, q

′] is a polynomial of its arguments. It is worth pointing out that polyno-
mials are particularly suitable for our construction of the GMM fits because, as we mentioned, after all manipulations,
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we will end up having a Gaussian integral. As such, when the integrand contains a polynomial, one can simply apply
Wick’s theorem to get analytical results.

To proceed, we expand the product over the distribution functions in Eq. (A14) as (1 + n)(1 + n′)n1n
′
1 = n1n

′
1 +

n1n
′
1n + n1n

′
1n

′ + n1n
′
1nn

′ so that the matrix IB is a sum of four terms. Substituting the GMM fits, we get for the
first (classical) term [111] the following:

n1n
′
1 =

∑
s1s2

as1as2 exp
{
− p21

2γ2s1
− p′21

2γ2s2

}
=

∑
s1s2

as1as2 exp
{
−

( 1

2γ2s1
+

1

2γ2s2

)(P 2

4
+ q2

)
−

( 1

2γ2s1
− 1

2γ2s2

)
P · q′

}
.

Similar expressions hold for the other three (quantum) terms. We note that the prefactor in front of the exponent
depends only on the real-space coordinate r, while the exponent itself contains the full information about the momen-
tum variables. Since the real-space integration will be evaluated numerically, from now on, we focus on the exponent
and analytically evaluate the momentum integrals. To capture each of the four terms contributing to IB, we write the
exponent as:

exp
{
− P 2

2γ2P
− 1

2γ2q
(q2 + q′2) +

1

γP
(Aq +Bq′) · P

}
. (A15)

The coefficients γP , γq, A, and B can be simply written in terms of the parameters γsi entering the GMM fits.
Explicitly, for the first classical term we have:

1

γ2P
=

1

4γ2s1
+

1

4γ2s2
,

1

γ2q
=

1

2γ2s1
+

1

2γ2s2
, A = 0, B = γP

( 1

2γ2s2
− 1

2γ2s1

)
.

Similar expressions can be easily obtained for the remaining three terms (in general, we have nonzero values for A
and B).

With the form in Eq. (A15), the three-dimensional Gaussian integral over P can be readily evaluated:∫
d3P

(2π)3
exp

{
− P 2

2γ2P
− q2

γ2q
+

1

γP
(Aq +Bq′) · P

}
Poly[P , q, q′] = exp

{
− q2

γ2q
+

1

2
(Aq +Bq′)2

}
Poly[q, q′]

= exp
{
− C1q

2 + C2q · q′
}
Poly[q, q′]. (A16)

In obtaining this result, we used the energy conservation constraint q2 = q′2. In the first equality, the new polynomial
Poly[q, q′] no longer depends on P but it does depend on r through the coefficients γP , A, and B (we will not explicitly
indicate the dependence on r). In practice, to get this polynomial, we write a simple Mathematica subroutine that

computes the Gaussian integral over P . Here we defined C1 =
1

γ2q
− 1

2
A2 − 1

2
B2 and C2 = AB.

We are left with a Gaussian integral over q and q′. However, what makes this integral hard is the energy constraint
δ(q2 − q′2) and the appearance of the terms ∼ q · q′ in the exponent Eq. (A16). We now note that the expression in
the exponent can be written as a square of a vector (assuming q = q′)

C1q
2 − C2q · q′ q=q′

===== (Ãq + B̃q′)2. (A17)

Indeed, simple algebra gives:

Ã =

√
1

2

(
C1 +

√
C2

1 − C2
2

)
, B̃ = −sign(C2)

√
1

2

(
C1 −

√
C2

1 − C2
2

)
. (A18)

This allows one to change variables to k = Ãq + B̃q′ and k′ = Ãq′ + B̃q; under such a linear transformation, we get
(Ã ̸= B̃):

δ(q2 − q′2) = (Ã2 − B̃2)δ(k2 − k′2),

∫
d3q

(2π)3
d3q′

(2π)3
→ 1

(Ã2 − B̃2)3

∫
d3k

(2π)3
d3k′

(2π)3
.

We, therefore, obtain:∫
d3q

(2π)3
d3q′

(2π)3
(2π)δ(q2 − q′2) exp

{
− C1q

2 + C2q · q′
}
Poly[q, q′]

=
1

(Ã2 − B̃2)2

∫
d3k

(2π)3
d3k′

(2π)3
(2π)δ(k2 − k′2)e−k2

Poly[k,k′]. (A19)
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Here, the new polynomial Poly[k,k′] is obtained from Poly[q, q′] by simply substituting q = (Ãk − B̃k′)/(Ã2 − B̃2)

and q′ = (Ãk′ − B̃k)/(Ã2 − B̃2), i.e., through the inverse linear transformation. The integral in Eq. (A19) is already
feasible for further analytical/numerical evaluations. Indeed, in the spherical coordinates, it becomes:

Qαβ(r) =
π

(2π)6(Ã2 − B̃2)2

∞∫
0

dk k3e−k2

2π∫
0

dφ

2π∫
0

dφ′
1∫

−1

d(cos θ)

1∫
−1

d(cos θ′)Sαβ [k, ϕ, ϕ
′, θ, θ′], (A20)

where Sαβ [k, ϕ, ϕ
′, θ, θ′] is obtained from Poly[k,k′] by substituting the spherical coordinates and k = k′. Importantly,

each function Sαβ is some known polynomial of cos θ, sin θ, cos θ′, sin θ′, cosϕ, sinϕ, cosϕ′, and sinϕ′ – as such, the
angular integration can be done analytically. In our numerics, we write a simple Mathematica code that symbolically
evaluates this four-dimensional angular integration. The remaining Gaussian integral over k is then also evaluated
analytically (we write a separate Mathematica subroutine for this step as well).

This completes our protocol for evaluating the momentum integrals. At this stage, we are left with the integral over
r, which is reduced to a one-dimensional integral over r and then evaluated numerically. Explicitly, the first classical
contribution to (IB)αβ reads:

(IB)αβ,1 = − g2Bπ

β5
√
κ

∑
s1,s2

g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ

2

)
(A21)

×
∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+2as1(r)as2(r)Qαβ,1(r),

and similar expressions hold for the remaining three contributions.

5. Matrix elements of Ĵ

We turn to discuss the matrix Ĵ associated with collisions between bosons and fermions, Eqs. (35)-(38). Now, the
corresponding matrix elements are evaluated in exactly the same manner as in the preceding subsection. The only
new feature we need to address in this subsection is that the bosonic and fermionic masses might differ. In this case,
the transformation to the center-of-mass frame now reads:

p =
mB

mB +mF
P + q, p′ =

mF

mB +mF
P − q, p1 =

mB

mB +mF
P ′ + q′, p′

1 =
mF

mB +mF
P ′ − q′. (A22)

As above, the momentum conservation enforces P = P ′, while the energy conservation gives q = q′:

∫
d3r

d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
(2π)3δ(p+ p′ − p1 − p′

1)× (2π)δ(εB(p) + εF(p
′)− εB(p1)− εF(p

′
1))

→ 2mBmF

mB +mF

∫
d3r

d3P

(2π)3
d3q

(2π)3
d3q′

(2π)3
(2π)δ(q2 − q′2).

The rest of the computation follows the preceding subsection step-by-step.

Appendix B: Evaluation of the matrix elements associated with the quadrupole mode

When working with the quadrupole basis functions, we also use the definitions in Eqs. (A1)-(A3). We rescale the
functions ξi(r,p) by an overall factor of β and rewrite them as: ξi(r,p) = βρµipνi

ρ cos(2ϕ+νiϕp), where ϕ is the angle
between ρ and the x-axis and ϕp is the angle between ρ and pρ; (µ1, ν1) = (2, 0), (µ2, ν2) = (1, 1), and (µ3, ν3) = (0, 2).
Below we provide all the matrix elements associated with the quadrupole mode.
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1. Matrix elements of M̂

Similar algebra as in the preceding Appendix gives:

Mij
αβ =

1

4πβ3
√
κ
h̃(|νi − νj |, kα + kβ)g

(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µi + µj

2

)
× g

(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ + νi + νj

2

) ∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µi+µj+2

×
∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+νj+2 n(1± n), (B1)

where we defined:

h̃(n, k) ≡
∫ 2π

0

cos(nψ)[cosψ]k
dψ

2π
=
k!

2k
θ(k − |n|)E(k + n)

[(k−n
2 )!][(k+n

2 )!]
. (B2)

In the derivations here, we used the same rescaling as above, namely: ρ
√
β → ρ, z

√
βκ→ z, and p

√
β → p.

2. Matrix elements of Ĥ

We note that {ξjϕβ ,HB/F} = ξj{ϕβ ,HB/F}+ϕβ{ξj ,HB/F}. The first term was evaluated above, in Eqs. (A8)-(A9),

while the second term can be written as {ξj ,HB/F} =
∑

kX
B/F
jk ξk, where

XB
jk =

 0 2 0
−γB 0 1
0 −2γB 0

 , XF
jk =

 0 2mB/mF 0
−γF 0 mB/mF

0 −2γF 0

 . (B3)

Following the above form for the Poisson brackets, we write (HF)
ij
αβ = (HF)

ij
αβ,1 + (HF)

ij
αβ,2, and a straightforward

algebra in the spirit of preceding calculations gives:

(HF)
ij
αβ,1 =

∫
d3r

d3p

(2π)3
ξiξjϕα{ϕβ ,HF} × neq,F(1− neq,F) =

1

4πβ3
√
κ

{
(B4)

mB

mF

[
(2mβ h̃(|νi − νj |, kα + kβ + 1) + kβ h̃(|νi − νj |, kα + kβ − 1))

× g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µi + µj − 1

2

)
g
(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ + νi + νj + 1

2

)
+
√
κ(2pβ + rβ)h̃(|νi − νj |, kα + kβ)

× g
(
pα + pβ +

rα + rβ − 1

2
,mα +mβ +

kα + kβ + µi + µj

2

)
g
(
qα + qβ +

rα + rβ + 1

2
, nα + nβ +

kα + kβ + νi + νj
2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µi+µj+1

∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+νj+3 nF,eq(1− nF,eq)

−
[
(2nβ h̃(|νi − νj |, kα + kβ + 1) + kβ h̃(|νi − νj |, kα + kβ − 1))

× g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µi + µj + 1

2

)
g
(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ + νi + νj − 1

2

)
+
√
κ(2qβ + rβ)h̃(|νi − νj |, kα + kβ)

× g
(
pα + pβ +

rα + rβ + 1

2
,mα +mβ +

kα + kβ + µi + µj

2

)
g
(
qα + qβ +

rα + rβ − 1

2
, nα + nβ +

kα + kβ + νi + νj
2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µi+µj+3γF(r)

∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+νj+1 nF,eq(1− nF,eq)
}
.
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We also get:

(HF)
ij
αβ,2 =

∫
d3r

d3p

(2π)3
ξiϕαϕβ{ξj ,HF} × neq,F(1− neq,F) =

1

4πβ3
√
κ

∑
k

h̃(|νi − νk|, kα + kβ) (B5)

× g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µi + µk

2

)
g
(
qα + qβ +

rα + rβ
2

, nα + nβ +
kα + kβ + νi + νk

2

)
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µi+µk+2XF
jk(r)

×
∞∫
0

dp p2nα+2nβ+kα+kβ+2qα+2qβ+rα+rβ+νi+νk+2 nF,eq(1− nF,eq).

Similar expressions can be obtained for the bosonic sector (or use the same expressions but substitute: nF,eq(1 −
nF,eq) → nB,eq(1 + nB,eq),

mB

mF
→ 1, γF → γB, and X

F
jk → XB

jk).

3. Matrix elements of Ŝ

We note that the self-energies entering the matrix Ŝ in Eq. (29) now depend not only on ρ but also on the angle ϕ
between ρ and the x-axis:

ΣB[∆Bξjϕβ ](ρ, z, ϕ) = 2gB

∫
d3p

(2π)3
nB,eq(1 + nB,eq)ξjϕβ → 2gB

β3/2
cos (2ϕ)ρ2mβ+kβ+µjz2pβ+rβvB,βj(r), (B6)

where we rescaled the variables as ρ
√
β → ρ, z

√
βκ→ z, and p

√
β → p and introduced:

vB/F,βj(r) ≡
1

(2π)2
h̃(νj , kβ)g

(
qβ +

rβ
2
, nβ +

kβ + νj
2

) ∞∫
0

dp p2nβ+kβ+2qβ+rβ+νj+2 n(r, p)(1± n(r, p)). (B7)

Following the Poisson bracket expansion (see the preceding subsection), we write (SB)
ij
αβ = (SB)

ij
αβ,1+(SB)

ij
αβ,2, where:

(SB)
ij
αβ,1 =

2gB
4πβ7/2

√
κ

{[
(2mαh̃(νi, kα + 1) + kαh̃(νi, kα − 1)) (B8)

× g
(
qα +

rα
2
, nα +

kα + νi + 1

2

)
g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µi + µj − 1

2

)
+
√
κ(2pα + rα)h̃(νi, kα)g

(
qα +

rα + 1

2
, nα +

kα + νi
2

)
g
(
pα + pβ +

rα + rβ − 1

2
,mα +mβ +

kα + kβ + µi + µj

2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µi+µj+1vB,β

∞∫
0

dp p2nα+kα+2qα+rα+νi+3 nB,eq(1 + nB,eq)

−
[
(2nαh̃(νi, kα + 1) + kαh̃(νi, kα − 1))

× g
(
qα +

rα
2
, nα +

kα + νi − 1

2

)
g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µi + µj + 1

2

)
+
√
κ(2qα + rα)h̃(νi, kα)g

(
qα +

rα − 1

2
, nα +

kα + νi
2

)
g
(
pα + pβ +

rα + rβ + 1

2
,mα +mβ +

kα + kβ + µi + µj

2

)]
×

∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µi+µj+3vB,βγB

∞∫
0

dp p2nα+kα+2qα+rα+νi+1 nB,eq(1 + nB,eq)
}
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and

(SB)
ij
αβ,2 =

2gB
4πβ7/2

√
κ

∑
k

h̃(νk, kα)g
(
pα + pβ +

rα + rβ
2

,mα +mβ +
kα + kβ + µk + µj

2

)
g
(
qα +

rα
2
, nα +

kα + νk
2

)

×
∞∫
0

dr r2mα+2mβ+kα+kβ+2pα+2pβ+rα+rβ+µk+µj+2XB
ikvB,βj

∞∫
0

dp p2nα+kα+2qα+rα+νk+2 nB,eq(1 + nB,eq). (B9)

Similar expressions can be obtained for (SBF)αβ and (SFB)αβ .

4. Matrix elements of Î

We compute the matrix Î in the same manner as in the preceding Appendix. The only new element we en-
counter here is that the polynomial integrands entering collision matrices now depend on the angle ϕ between ρ
and the x-axis. To overcome this issue, we write (in the rescaled variables) expressions of the type: S[ϕαξi] →
Sα,i[P , q, q

′, ϕ]ρ2mα+kα+µiz2pα+rα , where we also switched to the center-of-mass frame introduced in Appendix A4.
These new functions Sα,i[P , q, q

′, ϕ] are polynomials of cosϕ and sinϕ allowing for efficient analytical/numerical
computations of

Sij
αβ [P , q, q

′] ≡
∫
dϕ

2π
Sα,i[P , q, q

′, ϕ]Sβ,j [P , q, q
′, ϕ]. (B10)

In our numerics, we write a Mathematica subroutine that evaluates the functions Sij
αβ [P , q, q

′], which are now poly-

nomials of P , q, and q′. Plugging these polynomials back into, for instance, the matrix IB, we arrive at (compare to
Eq. (A14)):

(IB)
ij
αβ =− g2B

2β5
√
κ

∫
d3r ρ2mα+2mβ+kα+kβ+µi+µjz2pα+2pβ+rα+rβ

∫
d3P

(2π)3
d3q

(2π)3
d3q′

(2π)3
(2π)δ(q2 − q′2)

× (1 + nB,eq(r,p))(1 + nB,eq(r,p
′))nB,eq(r,p1)nB,eq(r,p

′
1)× Sij

αβ [P , q, q
′]. (B11)

The rest of the computation, including the computation of the matrix Ĵ which accounts for collisions between bosons
and fermions, follows the procedure in Appendix A step-by-step.
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FIG. 9. Monopole mode of a classical gas, trapped into a harmonic potential with κ = 10−2. Solid lines in (a) and (b)
are the monopole mode frequency Ωmon and its dampening Γmon, respectively, computed using the approach developed here.
Dashed lines were extracted from Ref. [75]. Similarly to our results in the main text, cf. Fig. 4, the classical gas also exhibits
a collisionless-to-hydrodynamic crossover, as evidenced, for instance, by the non-monotonic behavior of Γmon.
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Appendix C: Benchmarking and applications of collision integral calculations

1. Monopole mode of a classical gas

A simple and straightforward way to benchmark the method developed in this work is to consider a classical gas
trapped in a harmonic potential. Such a gas at equilibrium follows the Boltzmann-Maxwell distribution function,
which is Gaussian. The Hartree-Fock self-energy of the gas can also be neglected. Correspondingly, in the GMM
ansatz in Eq. (43), we only need to keep track of a single harmonic (M0 = 1). In case of a dilute gas, we can further
approximate 1 + neq ≈ 1, which simplifies the calculations below.

We focus on the monopole mode and consider the truncation order to be M = 1, so that in total we have 7
basis functions for the method of moments. All of the matrices entering the kinetic equation (25) can be computed
analytically:

Mαβ

Ntot
=



1
2

β

2

β
0

1

κβ

1

β
0

2

β

8

β2

4

β2
0

2

κβ2

2

β2
0

2

β

4

β2

8

β2
0

2

κβ2

2

β2
0

0 0 0
2

β2
0 0 0

1

κβ

2

κβ2

2

κβ2
0

3

κ2β2

1

κβ2
0

1

β

2

β2

2

β2
0

1

κβ2

3

β2
0

0 0 0 0 0 0
1

κβ2



,
Hαβ

Ntot
=



0 0 0 0 0 0 0

0 0 0 − 4

β2
0 0 0

0 0 0
4

β2
0 0 0

0
4

β2
− 4

β2
0 0 0 0

0 0 0 0 0 0 − 2

κβ2

0 0 0 0 0 0
2

β2

0 0 0 0
2

κβ2
− 2

β2
0



, (C1)

where Ntot = eµβ/(β3
√
κ) is the total number of particles and µ is the chemical potential. Note that following the

main text notations, we set m = 1 in this subsection. The collision integral matrix Iαβ has only four nonzero matrix
elements, namely: I33 = I66 = NtotI and I36 = I63 = −NtotI, where

I ≈− g2B
2Ntot

∫
d3r

d3p

(2π)3
d3p′

(2π)3
d3p1

(2π)3
d3p′

1

(2π)3
× (2π)3δ(p+ p′ − p1 − p′

1)

× (2π)δ(εp + εp′ − εp1
− εp′

1
)× neq(r,p1)neq(r,p

′
1)× S[p2z]S[p

2
z]. (C2)

By switching to the center-of-mass frame following Appendix A 4, we get:

I ≈− g2B
2Ntot

∫
d3r

d3P

(2π)3
d3q

(2π)3
d3q′

(2π)3
× π

q
δ(q − q′)neq(r,p1)neq(r,p

′
1)× S[p2z]S[p

2
z]. (C3)

Integration over the real-space gives:∫
d3r neq(r,p1)neq(r,p

′
1) =

π
3
2 e2µβ

β
3
2κ

1
2

exp

{
−βq2 − 1

4
βP 2

}
. (C4)

We note that S[p2z] = 2(q2z − q′2z ), i.e., it does not depend on P , which can now be easily integrated out:∫
d3P

(2π)3
exp

{
−1

4
βP 2

}
=

(
1

πβ

) 3
2

. (C5)

The remaining integration is straightforward:

I ≈ − 4

15π3

g2Be
µβ

β4
= − 8

15β2
σn0vT = − 16

15β2
γcoll, (C6)

where vT =
√

8/(πβ) is the thermal velocity, n0 is the density at the center of the trap, and γcoll = σn0vT /2.
Our numerical subroutines reproduce the above analytical matrices and reproduce the known results from Ref. [75],

as shown in Fig. 9. Specifically, Ref. [75] demonstrated that the method of moments with M = 1 applied to a classical
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FIG. 10. The fermion (Bose polaron) decay rate as a function of temperature for unitary (Ta = 0) and non-unitary Bose-
Fermi interactions (Ta = 5Tc). Solid curves correspond to resuming the Taylor series expansion, Eq. (C14) derived in Ref. [95].
Dashed curves correspond to the GMM ansatz, Eq. (C12), where the maximal bosonic fugacity is chosen to be zmax = 0.99
(black dashed vertical line) so that we have M0 = 17 Gaussians in total, cf. Fig. 3(b). The domain of applicability of the GMM
approach is T ≳ 1.1Tc, where the two types of calculations essentially coincide. Notably, the GMM predictions for T ≲ 1.1Tc

(shaded region) are also in remarkable agreement with the more accurate Taylor series resummation.

thermal gas agrees remarkably well with more precise molecular dynamics simulations. From this result, one can also
conclude that M = 1 is expected to be an excellent approximation. If one wants to study a quantum gas where the
equilibrium distribution function is no longer Gaussian (as done in the main text), one may need to consider M ≥ 1.
In the main text, we fixed M = 2 and checked that further increasing M does not result in an appreciable difference
in the resulting spectral functions.

2. Bose polaron decay rate

In this subsection, we demonstrate that the GMM approach can be applied to experimentally relevant quantum
many-body systems with strong interactions; in these systems, one cannot disregard the momentum dependence of
the scattering amplitude. We follow Ref. [95] and consider the impurity limit where we have a single fermion (Bose
polaron) immersed into a homogeneous bosonic bath. The fermion decay rate Γ in this case can be estimated as [95]:

Γ =
λ3F
mr

∫
d3kB

(2π)3

∫
d3kF

(2π)3
e−βk2

F/(2mF)nB(kB)σ(k)k, (C7)

where vrel = k/mr = kF/mF − kB/mB, k is the relative momentum between the two scattering particles, and
mr = mFmB/(mF +mB) is the reduced mass. We neglect the Bose-Bose interactions, aB = 0, corresponding to an
ideal Bose gas. We will also consider temperature T to be both below and above Tc. Below Tc, the fermion decay rate
comes from scatterings off the thermal bosons. For T ≤ Tc, the bosonic chemical potential is zero µB = 0 (zB = 1).
Since the Bose-Fermi coupling can be strong, we take into account the k-dependence of the scattering cross section:

σ(k) =
4πa2BF

1 + k2a2BF

, (C8)

where aBF is the Bose-Fermi scattering length. At this stage, we employ the GMM expansion:

nB(p) ≈
M0∑
s=1

aB,s exp
(
− βp2

2mBγ2B,s

)
. (C9)
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In what follows, we will avoid writing the subscript B to ease the notations, as it is clear that the GMM ansatz in
this subsection refers solely to bosons. The scattering rate Γ is then written as:

Γ ≈ λ3F
mr

M0∑
s=1

as

∫
d3kB

(2π)3

∫
d3kF

(2π)3
4πa2BFk

1 + k2a2BF

exp
[
− βk2F

2mF
− βk2B

2mBγ2s

]
. (C10)

To evaluate this integral, we introduce the following change of variables from kF and kB to K and k:
kF =

α

1 + α
K +

1 + α

1 + αγ2s
k

kB =
1

1 + α
K − 1 + α

1 + αγ2s
γ2sk

(C11)

Here α = mF/mB. This linear transformation (i) has unity Jacobian, (ii) respects that k is the relative momentum,
and (iii) allows us to directly integrate out K. After simple algebra, we obtain:

Γ =
vrel
λ3B

M0∑
s=1

asγ
3
s

√
1 + αγ2s
1 + α

σ̃
( T
Ta

1 + αγ2s
1 + α

)
, (C12)

where vrel =
√
8T/(πmr), Ta = 1/(2mra

2
BF), and

σ̃(y) = 8πa2
∫ ∞

0

dxx3 [1 + yx2]−1 e−x2

. (C13)

If one were to use a Taylor series expansion instead, then one should substitute:

as → zs, γs →
1√
s
, M0 → ∞ ⇒ ΓTS =

vrel
λ3B

∞∑
s=1

zs

s3/2

√
1

s

s+ α

1 + α
σ̃
( T
Ta

1

s

s+ α

1 + α

)
. (C14)

The result in Eq. (C14) exactly reproduces Eq. (32) of Ref. [95].
The physics of the Bose polaron decay rate is quite fascinating, and the interested reader is referred to the thorough

discussion in Ref. [95]. Here, we focus on the validity of our GMM calculations. Figure 10 shows the comparison
between the GMM result in Eq. (C12) and the Taylor series expression (C14) for both unitary (Ta = 0) and non-
unitary interactions (Ta = 5Tc). For the GMM ansatz, we set the maximal bosonic fugacity to be z = 0.99 so that
we have M0 = 17 Gaussians in total, cf. Fig. 3(b). This choice of the maximal fugacity implies that the domain of
applicability of the GMM calculations is T ≳ 1.1Tc, where the two types of calculations coincide. Even for T ≲ 1.1Tc,
the two approaches agree remarkably well (see Fig. 10).
To get a sense of how the two calculations differ from each other for T ≲ 1.1Tc, we consider the unitary limit with

Ta = 0. In this case, both approaches predict linear in T behavior for T ≤ Tc (where the bosonic fugacity is z = 1),
meaning the maximal discrepancy between the two calculations can be estimated to be |Γ(Tc)− ΓTS(Tc)|/ΓTS(Tc) ≈
0.7%. This remarkable agreement, in the most challenging regime at T = Tc and with unitary interactions, stems
from the fact that the bosonic GMM expansion can be accurately extrapolated outside its domain of applicability, cf.
Fig. 3(b), as discussed in Sec. III of the main text.

3. Shear viscosity of a strongly-interacting two-component Fermi system

In this subsection, we demonstrate that the fermionic version of the GMM, cGMM, readily enables computation
of interesting transport coefficients such as the shear viscosity. To this end, we follow Ref. [86] and consider a
homogeneous two-component fermionic fluid in its normal state where, within the method of moments, the shear
viscosity is given by [86]:

η =
2

Tm2

[ ∫ d3p

(2π)3
p2x p

2
y np(1− np)

]2
1

4

∫
d3p

(2π)3

∫
d3p′

(2π)3

∫
dΩ

dσ(q)

dΩ

|p− p′|
m

npnp′(1− np1)(1− np′
1
)× (S[pxpy])

2

. (C15)
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FIG. 11. Performance of the cGMM expansion on a strongly-interacting Fermi fluid. (a) The chemical potential µ as a
function of T : the solid line encodes the exact dependence, while the dashed one corresponds to the cGMM. In our simulations,
we chose zmax = 105, which implies that the domain of applicability of the cGMM is T ≳ 0.1TF (vertical dashed line), where
the two calculation coincide. (b) The shear viscosity η of the fluid as a function of T at kF |a| = 4.5 (η is normalized by
ηcl(TF ) = 5

√
mTF /(32a2√π)). The solid curve is taken from Ref. [86], while the dashed one is obtained using the cGMM, and

the two results reasonably agree. The choice kF |a| = 4.5 implies that Ta ≈ 0.1TF and allows one to see the ∼ T 3/2 scaling
(dotted line) at high temperatures, TF , Ta ≪ T . The shaded regions in (a) and (b) are where the chosen cGMM is no longer
applicable.

In an above expression, np = [exp(β(εp−µ))+1]−1 is the Fermi-Dirac distribution function, S[f ] = f+f ′−f1−f ′1 ⇒
S[pxpy] = 2(qxqy − q′xq

′
y), and the differential cross section is given by (q = (p− p′)/2):

dσ(q)

dΩ
=

a2

1 + q2a2
, (C16)

where Ω is the solid angle of the relative momentum q′ = (p1 − p′
1) with respect to the direction of q.

In the limit where the fermionic distribution function is approximately Gaussian (EF ≪ T ), the shear viscosity can
be computed analytically:

η =
5

8

√
πmT

σ̄(T/Ta)
, where σ̄(y) =

4πa2

3

∫ ∞

0

dxx7 [1 + yx2]−1e−x2

(C17)

where Ta = 1/(ma2). In the limit T ≪ Ta, we have ηcl = 5
√
mT/(32a2

√
π) ∼

√
T . In the opposite limit, Ta ≪ T , we

get η = 15(mT )3/2/(32
√
π) ∼ T 3/2 (dotted line in Fig. 11(b)).

At lower temperatures, where the distribution function is no longer Gaussian, we can employ the cGMM expansion:

np ≈
∑
s

as exp
(
− βp2

2mγ2s

)
. (C18)

which is valid for any z = exp(βµ) ≤ zmax. We choose zmax = 105, cf. Fig. 3(c). This choice limits the lowest
temperature in our analysis to be Tmin ≈ 0.1EF (for this estimate, we used µ = EF ). If one is interested in even lower
temperatures, then one should increase zmax and redo the cGMM fitting following Sec. III. As a first step, we solve
for the temperature dependence of the chemical potential µ(T ), which can be obtained by fixing the total fermionic
density:

ntot = 2

∫
d3p

(2π)3
np = −2

(
mT

2πβ

) 3
2

ξ 3
2
(−z). (C19)

Here, the factor of 2 encodes that we have a two-component Fermi fluid. The momentum integration in Eq. (C19) can
also be carried out using Eq. (C18), allowing us to determine the chemical potential within the cGMM approximation.
We find that within the applicability of the cGMM expansion (T ≳ 0.1EF ), the two calculations for µ(T ) coincide
(see Fig. 11(a)).
The primary challenge we encounter when analyzing Eq. (C15) is the evaluation of the denominator which, in the

center-of-mass frame, is proportional to:

I =

∫
d3P

(2π)3

∫
d3q

(2π)3

∫
dΩ

4π

q q2x q
2
y a

2

1 + q2a2
npnp′(1− np1)(1− np′

1
). (C20)
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We normalize this integral using the corresponding classical expression, where one additionally neglects the
momentum-dependence of the scattering cross section:

Icl = e2βµ
∫

d3P

(2π)3

∫
d3q

(2π)3

∫
dΩ

4π
q q2x q

2
y a

2 exp
{
− β(p2 + p′2)

2m

}
. (C21)

As in Appendix A4, we write I as a sum of four terms I = I1 − I2 − I3 + I4 and plug in the cGMM expansion (C18).
Under the summations over the cGMM indices, we will get the following type of expressions, cf. Eq. (A15):∫

d3q

(2π)3

∫
dΩ

4π

q q2x q
2
y

1 + q2T/Ta

∫
d3P

(2π)3
exp

{
− P 2

2γ2P
− q2

γ2q
+

1

γP
(Aq +Bq′) · P

}
e2βµ

∫
d3q

(2π)3

∫
dΩ

4π
q q2x q

2
y

∫
d3P

(2π)3
exp

{
− P 2

4
− q2

} . (C22)

Note that we rescale all the momenta as βp2/m→ p2. Integration over P yields, cf. Eq. (A16):∫
d3P

(2π)3
exp

{
− P 2

2γ2P
− q2

γ2q
+

1

γP
(Aq +Bq′) · P

}
∫

d3P

(2π)3
exp

{
− P 2

4

} =
( γP√

2

)3

exp
{
− C1q

2 + C2q · q′
}
. (C23)

Integration over the solid angle Ω yields:( γP√
2

)3
∫
dΩ

4π
exp

{
− C1q

2 + C2q · q′
}
=

( γP√
2

)3

e−C1q
2 sinh(C2q

2)

C2q2
. (C24)

Plugging these results in, we rewrite Eq. (C22) as:

e−2βµ

3

( γP√
2

)3
∫ ∞

0

dq
q7

1 + q2T/Ta
e−C1q

2 sinh(C2q
2)

C2q2
. (C25)

This one-dimensional integral, together with the summation over the cGMM harmonics, is easy for numerical evalua-
tions on a single laptop. Figure 11 shows the computed temperature dependence of the shear viscosity η(T ): Our result
reproduces that of Ref. [86], demonstrating that the cGMM expansion allows for efficient and accurate computation
of transport coefficients of strongly-interacting quantum many-body systems.
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