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Abstract: Reservoirs balance multiple conflicting objectives, including flood control and water supply. In California, shifts in seasonal
hydrologic patterns under climate change will amplify the difficulties in balancing flood control with water supply. Current flood control
policies are based on fixed seasonal rule curves determined by the observed timing and magnitude of floods in the record. These rule curves
generally require the release of wet season inflows, reducing the available stored water for use during the dry season. Here we investigate the
potential for forecast-informed reservoir operations (FIRO) to increase water supply availability while minimizing additional flood risk at 14
reservoirs in the Sacramento, San Joaquin, and Tulare river basins. We use a differential evolution algorithm to train risk-based reservoir
operation policies with an ensemble of historical forecasts over the period 2013–2023. Results show an average 8.1% increase in storage
normalized by capacity, though this varies across reservoirs. The forecast-informed policies also reduce the occurrence of high-magnitude
releases throughout the system. The accumulation of benefits is sensitive to the timing and magnitude of flood events, and most of the
cumulative benefit is obtained during a few years. Under cross-validation, we find that large floods are needed in the training data to avoid
overfitting the policy. We further examine the relationship between reservoir properties and FIRO benefits, finding that the ratio of peak
inflow magnitude to maximum safe release correlates with increased storage under the FIRO policy, while the ratio of mean inflow to capacity
correlates to the reduction of high-magnitude releases. This study highlights how adaptive reservoir management policies can yield water
supply benefits without an increase in flood risk, given adequate historical data for policy training. These policies may be a valuable
adaptation to climate change but require careful validation and out-of-sample testing. DOI: 10.1061/JWRMD5.WRENG-6471. © 2024
American Society of Civil Engineers.

Introduction

Reservoirs face the challenging task of satisfying multiple objec-
tives at once: flood protection, water supply, environmental flows,
and hydropower generation, among others. Several of these objec-
tives often directly conflict. For example, reservoir operators can
choose to leave more space in a reservoir empty to buffer against
flood events, but at the expense of water supply storage. In many
reservoirs across California and other regions of the Western US,
current water supply and flood control policies are based on fixed
seasonal rule curves, which are determined by the observed timing

and magnitude of historical streamflows (US Army Corps of
Engineers 2017). Climate change will amplify the difficulties in
balancing flood protection with water supply. Warmer temperatures
will bring more extreme precipitation events (Das et al. 2011), re-
quiring larger reservoir flood pools to mitigate increased flood
flows. Additionally, earlier and decreased snowmelt from regional
mountain ranges (Pathak et al. 2018) will diminish natural storage
capacity, further increasing water supply stress.

One way to improve the trade-off between flood protection and
water supply storage objectives without expensive investments in
new infrastructure is to adjust current operating policies through the
use of short-to-medium range (1–14 day) forecasts. While some
reservoir operators are already using forecasts to guide their deci-
sions (Hejazi et al. 2008), this use is based on operator expertise
and is not formalized in the operating rules of major, federally op-
erated reservoirs (US Army Corps of Engineers 2017). Short-to-
medium range hydrologic forecasts allow release decisions to be
made dynamically based on current and forecasted data instead
of average historical patterns (Nayak et al. 2018), and can provide
operational benefits beyond water supply and flood control objec-
tives. A growing body of literature highlights the benefits of for-
malized forecast-informed reservoir operations (FIRO), although
these benefits often depend on the objectives, attributes, and con-
straints of the system (Doering et al. 2021; Semmendinger and
Steinschneider 2024; Turner et al. 2017; Yang et al. 2020).

The application of FIRO has gained traction in California and
the Western US in recent years, supported by the high predictability
of large precipitation events in the region (Jasperse et al. 2020;
Woodside et al. 2022). Much of California’s precipitation comes
from atmospheric rivers (ARs) (AMS 2022; Dettinger et al. 2011),
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which are narrow bands of intense moisture transport originating
from the Pacific Ocean that result in heavy precipitation upon land-
fall. While the exact landfall location of ARs can be difficult to
forecast even at short lead times (1–3 days) (Lavers et al. 2018),
their occurrence and magnitude are more predictable than convec-
tive storms that dominate extreme precipitation in other regions of
the United States (Feng et al. 2016). The dynamic nature of ARs
creates challenges for seasonal forecasts (Warner et al. 2015), but
short-to-medium range forecasts (1–14 days) may be accurate
enough to provide decision makers with valuable information to
conserve water and decrease flood risk. Further, machine learning
and postprocessing techniques continue to improve the accuracy of
AR and subsequent streamflow forecasts (Badrinath et al. 2023;
Chapman et al. 2019), which is important considering ARs are pre-
dicted to increase in intensity and frequency in the Western US
(Corringham et al. 2022).

In California, there is an ongoing effort to conduct FIRO viabil-
ity assessments and implementation for several reservoirs with
water supply, flood control, and ecological objectives (Jasperse
et al. 2020). The first viability assessment was conducted for Lake
Mendocino on the Russian River, where a FIRO policy was able to
increase median storage by 33% for the period 1985–2010 without
an increase in flood risk (Delaney et al. 2020). The authors used
ensemble streamflow forecasts to represent uncertainty and devel-
oped a probabilistic decision support system called the ensemble
forecast operations (EFO) policy to implement release decisions
that achieved a targeted level of flood risk reduction. EFO was also
applied to a case study of Prado Dam in Southern California, where
the strategy increased managed aquifer recharge by 6.1%–13.3%
annually, depending on the accepted level of flood risk (Woodside
et al. 2022).

Despite the increased interest in FIRO research and implemen-
tation within the last decade, key questions remain. In particular,
the variability of storage and flood control benefits across reser-
voirs is poorly understood, as are the attributes of infrastructure,

hydrology, and forecasts that correlate with those benefits. Under-
standing how these attributes affect the viability of revised opera-
tions has implications for future site selection. To address this
research gap, we contribute a novel optimization framework that
generalizes the risk-based EFO strategy developed in prior studies
of individual reservoirs in the Western US (Delaney et al. 2020;
Jasperse et al. 2020; Woodside et al. 2022). We formulate the op-
timization problem by parameterizing the EFO risk curve and a
seasonal flood pool level, enabling a computationally efficient
framework to test the water supply and flood control benefits of
FIRO operations across a set of reservoirs that differ in infrastruc-
ture, hydrology, and forecast skill. Using these optimized policies,
we quantify the attributes of infrastructure and hydrology across
sites that most strongly relate to storage and flood control benefits
and the degree of risk aversion. The proposed approach and result-
ing insights of this work can be used to inform the selection of sites
where FIRO is likely a cost-effective adaptation strategy, and de-
velop baseline operating policies that can be further refined in more
detailed viability assessments.

Methods

Case Study

The Sacramento, San Joaquin, and Tulare river basins comprise 58%
of California’s average annual streamflow and cover 153,000 km2

(59,000 mi2) (California Department of Water Resources 2023).
As shown in Fig. 1, Shasta, Oroville, New Bullards Bar, and Fol-
som reservoirs are located on the Sacramento River and its tribu-
taries. Pardee, New Hogan, New Melones, Don Pedro, New
Exchequer, and Millerton reservoirs are located within the San Joa-
quin watershed. Finally, Pine Flat, Terminus, Success, and Isabella
reservoirs are within the Tulare watershed. The hydrology of this
region follows a Mediterranean climate, with wet winters and
springs followed by dry summers and falls (Peel et al. 2007).

Fig. 1. Location of each reservoir in the experiment. Capacities listed in thousand acre-feet (TAF).
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California historically has experienced weather whiplash, shifting
between drought and flood conditions with little advanced warning,
a phenomenon that has increased in frequency under climate
change (Swain et al. 2018). Reservoirs play a crucial role in buf-
fering this variability (Pan et al. 2019). The majority of reservoir
inflow comes during the winter and spring from storm events and
when snowmelt runs off from the Sierra Nevada (Pathak et al.
2018). The reservoirs support California’s Central Valley agricul-
tural industry, where crops valued at $17 billion are grown annually,
representing 8% of the nation’s agricultural revenue (USGS 2023).
The reservoirs also provide municipal water supply to California’s
39 million residents (US Census Bureau 2023), as well as environ-
mental flows to the Sacramento–San Joaquin Delta (Zimmerman
et al. 2018). In addition to meeting these water demands, the res-
ervoir system must also mitigate flood events. Current reservoir
operations maintain a flood pool during the wet season to buffer
flood waters, which in some years may prevent storage of excess
water from floods and snowmelt. This can result in a large oppor-
tunity cost from lost water supply for agricultural, urban, and envi-
ronmental uses during the dry summer months.

Simulation Model and Data

A baseline, daily simulation model of the Central Valley reservoir
system was developed in prior work on climate vulnerability as-
sessments for this region (Cohen et al. 2020; Steinschneider et al.
2023). The model uses parsimonious water supply and flood con-
trol rules to approximate observed release policies, and the param-
eters are calibrated over the period 2009–2023. Each reservoir
follows the mass balance relationship outlined in Eq. (1):

St ¼ St−1 þQt − Rt ð1Þ
where St and St−1 = storage at the current and previous time step;
Qt = observed inflow; and Rt = system release. The value of Rt is
initially based on the median historical release at that specific day
of the water year. If the current storage is less than the median his-
torical storage, an exponential hedging function is applied to de-
crease the release, reserving some additional water. The model
also considers the top of conservation storage (TOCS) limit, which
changes seasonally through the water year. If Eq. (1) predicts that
the storage will exceed the allowable storage defined by the TOCS,
then Rt is increased until the storage limit constraint is satisfied.
The release values are also limited by a maximum safe release
value, which accounts for the infrastructure limits at the dam and
downstream. Finally, the release values are constrained by ramping
rates, limiting the change in release between each 24-h time step.
The model has an average accuracy of R2 ¼ 0.865 across reservoirs
between the modeled storage values and the observed values during
2009–2023 (Steinschneider et al. 2023). The model does not con-
sider external factors that may have influenced observed release
decisions, such as changes in environmental regulations or tempo-
rary changes in operations during infrastructure repairs. It also does
not consider informal use of forecasts by local expert reservoir
operators.

The model inputs required for the baseline simulation
model are:
• TOCS values: The top of conservation storage values for each

reservoir are drawn from the California Food EnergyWater Sys-
tem (CALFEWS) model (Zeff et al. 2021). The values represent
a percentage of the reservoir capacity that is allowed to be used
for water storage. The TOCS value is imposed during the flood
season but not used during the dry season when there is little risk
of flooding. For reservoirs where the TOCS depends on condi-
tional factors, such as precipitation or snowmelt, we use an

average seasonal value assuming that forecast-based operations
would serve the same purpose.

• Ramping rates: Ramping rates [cubic feet per second (cfs) per
day] define how large of a change in reservoir release can be
made between daily time steps. For this experiment, we as-
sumed maximum ramping rate values for each reservoir based
on the highest observed difference in daily release over the study
period. The rate is applied to both increasing and decreasing
outflow. This method may not reflect the reality of the physical
infrastructure as it currently stands, or the existing ramping rate
policies, but it does provide a consistent way to evaluate the
policies over the study period. Without the ramping rate con-
straints, the policy may schedule releases that change more rap-
idly than is realistic. Ramping rate restrictions are partly based
on physical infrastructure limitations, but are also important for
downstream environmental systems (Jager and Smith 2008).

• Max release: Maximum release values (Rmax, in cfs) represent
the allowable safe release from the reservoir, which is deter-
mined by downstream levee capacity. An operating policy is
heavily penalized for exceeding this limit, even though most
of the reservoirs have historically exceeded this value when
unavoidable due to spill. Values for each reservoir are drawn
from Tustison (2020). In cases where the maximum observed
release exceeded this value, we use the observed value instead.

• Capacity: The reservoir capacity, K, represents the total amount
of water the reservoir can store, notwithstanding any top of con-
servation storage limitations.

• Inflows: The historical reservoir inflows were sourced from the
California Data Exchange Center, which is managed by the
California Department ofWater Resources. The data are collected
using streamflow gauges and aggregated into a daily mean flow
rate. The daily data are available from 1994 to 2023, but the
model runs are limited by the length of the forecast record
(2013–2023, described in “FIRO-Based Operations”).

• Seasonal release pattern: The daily water supply release for
each reservoir was estimated by finding the median release
volume per day of the water year over the period 1994–2023
and scaling it based on annual hydrology following the method
in Steinschneider et al. (2023). This method leverages the his-
torical seasonal release pattern as a proxy for the actual system
demand, which is difficult to estimate for individual reservoirs
and contains a combination of urban, agricultural, and environ-
mental demands throughout the state.

FIRO-Based Operations

A FIRO release policy is added to the baseline model by creating a
piecewise linear risk tolerance curve for each reservoir. We con-
struct the risk curve as piecewise linear to emulate the optimized
EFO curves developed by Delaney et al. (2020). A linear curve also
reduces the potential for overfitting. Risk in this context is defined
as the fraction of forecast ensemble members (described sub-
sequently) where the forecasted storage will exceed the TOCS if
no releases are made. The risk tolerance curve for each reservoir
is defined by two parameters: lead days with no allowable risk
(i.e., zero ensemble members can exceed the TOCS), and the slope
of the risk curve once some risk is tolerated (% risk allowed per day
lead time). Fig. 2 provides a visual representation of the FIRO pol-
icy structure. At each time step, the risk is calculated for each of the
next 14 forecasted days. If the risk exceeds the risk tolerance curve
at the given lead time, the model will release the minimum amount
of water needed to lower the risk below that allowed by the curve.
The piecewise linear risk curve is a generalization of the formu-
lation in Delaney et al. (2020), who represented the risk curve using
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14 decision variables, one for each lead time. The FIRO release
(RFIRO) is calculated in parallel with Eq. (1) and then compared
to Rt, the release required to stay below the TOCS for the current
time step. The target release is chosen as the maximum of the two

Rt ¼
�
Rt; RFIRO < Rt

RFIRO; RFIRO > Rt

ð2Þ

In addition to the two risk curve parameters, a third parameter is
included in the policy, the TOCS multiplier (x3 in Fig. 2). This al-
lows the model to set the TOCS to a higher value if the additional
risk can be offset by the forecast-based operating policy, and if the
hydrology of the study period allows it. The FIRO policy is con-
strained by the same characteristics of the individual reservoirs: a
safe release volume, a ramping rate, and total capacity. If the FIRO
policy can stay within those bounds, the TOCS can increase, giving

the reservoir the potential to store more water during the winter.
All three parameters of the FIRO policy are optimized using the
differential evolution algorithm described in “Computations
Experiment.”

The policy uses 1–14 day hydrologic forecasts generated by the
California Nevada River Forecast Center (CNRFC 2023b), with
data available from November 1, 2013 to present (May 24, 2023).
The forecasts include daily inflow values for between 40 and 58
ensemble members depending on the reservoir and year, which
we restrict to a randomly sampled set of 40 for consistency.
Fig. 3(a) shows an example forecast at Oroville Reservoir on
February 1, 2017. The forecasts over the next 14 days predict an
increase in flow, but underestimate the peak of the observed flow.
In this case, the risk tolerance curve would need to be combined
with a flood pool to safely manage the event. However, the fore-
casts become more accurate as the event approaches. We use the

Fig. 2. FIRO policy structure. Parameters 1 and 2 control the risk tolerance curve for each reservoir, while Parameter 3 adjusts the TOCS multiplier.

Fig. 3. (a) Example forecast ensemble for Oroville Reservoir inflows on February 1, 2017; and (b) NSE for the ensemble mean forecast across the
study period for all sites.
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Nash-Sutcliffe efficiency (NSE) as a metric to evaluate the accu-
racy of the CNRFC forecasts

NSE ¼ 1 −
P

T
t¼1 ðQt

o −Qt
mÞ2P

T
t¼1 ðQt

o − Q̄oÞ2
ð3Þ

where Q̄o = mean of the observed inflows;Qt
m = CNRFC modeled

inflow; and Qt
o = observed inflow at time t. The NSE is a measure

of goodness of fit for hydrological models, with an NSE value of 1
indicating a perfect model (McCuen et al. 2006). The NSE of the
ensemble mean forecasts across lead times is shown in Fig. 3(b).

Computational Experiment

We tested four different operating policies to analyze the factors
influencing their performance across reservoirs. Each policy builds
off the baseline model.
• Baseline: The baseline model is simulated using all inputs ex-

cept for the forecasts. It creates storage and release decisions
based on seasonal rule curves derived from the median storage
and release variables and calibrated to historical releases.

• Baseline-TOCS: This version of the model is the same as the
baseline, except that parameter x3, the TOCS multiplier, is al-
lowed to increase if the storage and release decisions stay within
the constraints (safe release, ramping rate, and reservoir capacity).
This policy isolates the benefit of using the forecasts from the
additional benefit of the TOCS multiplier. The multiplier value
is found by iteration for each reservoir, where x3 is incrementally
increased until the constraints cannot be met.

• Forecast: The FIRO model uses the piecewise linear risk toler-
ance curve to determine releases in advance of flood events.
This is the operating policy that could be realistically imple-
mented using forecast data and is the primary focus of this
experiment.

• Perfect: This policy replaces the forecast ensemble with perfect
forecast (observed) data over the next 14 days. This shows how
the FIRO policy could perform under perfect forecast condi-
tions. A large difference between this policy and the Forecast
policy would indicate that an increase in forecast skill could fur-
ther improve FIRO-related benefits.
We used an optimization approach to find the best-performing

policy parameters for the Forecast and Perfect cases. The objective
function seeks to maximize the normalized mean storage across
reservoirs (0–1), with a penalty of 1.0 subtracted for each occur-
rence of a release over the maximum safe release value

maxJ ¼
X
i

�
Si
Ki

−X
t

IðRt > RmaxÞ
�

ð4Þ

where Ki = capacity; Si = average storage over the full time series
for the ith reservoir; and I = indicator function. The value Si is
normalized by Ki to avoid the larger reservoirs dominating the ob-
jective function. The optimization is performed with the differential
evolution algorithm (Storn and Price 1997) in Python’s SciPy
package (Virtanen et al. 2020) for approximately 30,000 function
evaluations and 10 random seeds. Although not as efficient as
gradient-based optimization, the differential evolution algorithm
can evaluate a large solution space of noisy and discontinuous so-
lutions. In general, evolutionary algorithms have been shown to be
an effective method for reservoir policy search problems (Gupta
et al. 2020; Reed et al. 2013; Zatarain Salazar et al. 2016). After
finding the optimal parameters using the algorithm, we use those
parameters to run additional simulations and analyze the results.

We first compare the mean storage and frequency of maximum
releases for each reservoir under each of the four policies to

determine how the policies rank in terms of their primary perfor-
mance goals. The frequency of maximum releases gives insight into
which of the four policies may be operationally viable because an
increased frequency of maximum releases is highly undesirable for
flood risk mitigation, even if such releases stay below damaging
downstream release thresholds (Rmax). We then diagnose the FIRO
policies in more detail, including their optimal parameter values
and the site-specific factors (e.g., reservoir capacity, forecast accu-
racy, maximum safe release) that correlate with storage and flood
control benefits across reservoirs. Additionally, we quantify the
variability of policy parameters across random seeds, which pro-
vides insight about the policy sensitivity to the training period,
and has important implications for operational implementation.
Finally, we conclude with a leave-one-out cross-validation experi-
ment, showing how the performance of the optimized policies may
change in water years held out of the training data set.

Results

In the results that follow, Figs. 4–9 are based on policies trained to
the entire available record, while Table 1 and Fig. 10 show results
from the cross-validation experiment.

Storage and Flood Control

Fig. 4(a) shows the optimized policy results in terms of normalized
mean storage. The Forecast policy increases mean storage by 8.1%
of capacity over the baseline policy, averaged across all reservoirs.
For an additional measure of aggregate results, we find that the
Forecast policy increases the median storage at the end of the flood
management season (defined as May 1) by 10.9%, averaged across
all reservoirs. The positive objective function values listed in the
legend of Fig. 4(a) indicate that all policies keep releases below
Rmax, avoiding large flood penalties. The largest gains relative
to capacity occur in the San Joaquin and Tulare reservoirs because
these have lower safe release rates and thus benefit more from fore-
casts of large floods (investigated in detail in “Factor Analysis”). In
absolute terms, the total additional systemwide storage created by
the Forecast policy relative to the Baseline is 1.35 billion cubic me-
ters (1.1 million acre-feet), averaged across the simulation period.
Further, a comparison of the Forecast and Perfect policies suggests
that the current forecast accuracy is sufficient to achieve nearly the
same benefit as perfect information during this period. The fore-
casts are highly accurate at 3–5 day lead times [Fig. 3(b)], and
nearly all of the reservoirs can safely release their flood pool vol-
umes in this time. We note in Fig. 4(a) that the Perfect policy has
the highest objective value, but does not have the highest storage
for some reservoirs due to the aggregate formulation of the objec-
tive function. Finally, while Fig. 4(a) shows that the Forecast policy
increases average storage, it also suggests that most of this storage
benefit arises from raising the TOCS value during a simulation
period (2013–2023) with relatively few large flood events, rather
than from the use of forecasts. This is shown by the comparison
of the Baseline-TOCS policy and the Forecast policies in Fig. 4(a).

However, the Baseline-TOCS policy cannot achieve this perfor-
mance without increasing the frequency of maximum safe releases
[Fig. 4(b)], which introduces undesirable flood risk. Fig. 4(b) also
shows that the Forecast policy reduces the frequency of the maxi-
mum release for most reservoirs. The Baseline-TOCS is forced to
make more frequent, higher-volume releases to avoid spills, while
the Forecast policy spreads the releases out over several days,
reducing the magnitude of releases and decreasing the risk to down-
stream infrastructure. This indicates the flood control benefits of
FIRO in addition to the potential surplus storage, and these two
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improvements arise from the ensemble risk curve combined with a
higher TOCS.

The time series of reservoir storage and releases highlights the
differences in how each policy makes release decisions. Fig. 5(a)
shows the storage level at Oroville Reservoir across the entire study
period, with the Baseline-TOCS, Forecast, and Perfect policies all
keeping consistently higher storage levels than the Baseline policy,
especially during wet and average hydrologic years. Fig. 5(b) de-
picts the releases under each policy during the largest flood event in

the study period, which is associated with the 2017 Oroville spill-
way failure (Koskinas et al. 2019) (note the model does not sim-
ulate the spillway failure). Fig. 5(b) shows that the Perfect policy
anticipates the large inflows well in advance, and determines a
steady release rate through the entire flood period. The Forecast
policy starts to ramp up releases prior to the flood peak as the fore-
casts become more accurate and more ensemble members exceed
the risk tolerance curve. When the flood peak occurs, the Baseline
and Baseline-TOCS policies are forced to react and release a large

Fig. 4. (a) Mean normalized storage per policy, represented as a percentage of total capacity. The optimized objective function values for one random
seed are displayed in the legend. (b) Number of maximum release occurrences (days) by policy. Under certain policies, some of the reservoirs are
never forced to make a release at the maximum safe value.

Fig. 5. (a) Storage plot for the entire study period at Oroville Reservoir. The Baseline-TOCS, Forecast, and Perfect policies overlap at many time
steps. (b) Release plot for Oroville Reservoir during a 2017 flood event. The Baseline-TOCS policy closely follows the Baseline policy for most of the
event.
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amount of water in a short period to avoid spill. The Forecast and
Perfect policies have two advantages in this situation: they reduce
the maximum release, and they also reduce the ramping rate. Both
features highlight the ability of the forecast-informed policies to
maintain a higher storage level without increasing flood risk.

Policy Parameters

The optimized policy parameters are shown in Fig. 6. The Forecast
policy contains all three parameters, while the others include only
the TOCS multiplier. In the case of the Perfect policy, this is be-
cause the ensemble is collapsed to a single member, and the risk
curve parameters x1 and x2 do not apply (i.e., the Perfect policy
never allows the forecasted storage to exceed the TOCS). The
Forecast and Perfect policies can raise the TOCS value from the
Baseline without an increase in flood risk. A higher TOCS multi-
plier does not guarantee higher mean storage, as evidenced by
Fig. 4(a). In some instances, the Forecast TOCS multiplier is
greater than the Perfect TOCS multiplier, yet the Perfect policy still
yields higher mean storage [Shasta (SHA), New Melones (NML),
Exchequer (EXC), Lake Success (SCC)]. These optimized policies
should be interpreted in the context of the hydrology during this
relatively dry period. For example, the return period of the largest
inflow at Oroville Reservoir during this period (February 2017)
was only 33 years (Koskinas et al. 2019), and the other reservoirs
experienced similar hydrologic conditions due to heavy precipita-
tion in the months of January and February 2017 (CNRFC
2023a).

Factor Analysis

We analyzed whether certain reservoir characteristics are correlated
with the surplus storage achieved by the Forecast policy. Fig. 7
compares the storage benefit to four attributes of each reservoir.
In all panels, the y-axis shows the difference between the mean
storage of the Forecast and Baseline policies, with a larger value
indicating that the Forecast policy stores more water. The x-axes

of each panel in Fig. 7 show a different reservoir attribute: the ratio
of the mean inflow to capacity [Fig. 7(a)], the ratio of maximum
inflow to reservoir safe release [Fig. 7(b)], the ratio of reservoir safe
release to capacity [Fig. 7(c)], and the NSE of forecasts at a 4-day
lead time, which is approximately the time needed to release the
Baseline flood pool volume for most of the reservoirs [Fig. 7(d)].
The data in Fig. 7(a) show no correlation, while Fig. 7(b) shows a
positive relationship between storage benefit and the ratio of the
peak inflow to the maximum safe release. This results from the fact
that the Forecast policy can manage large inflows with much lower
maximum releases than Baseline policies [Figs. 5(b) and 6],
thereby reducing the flood buffer requirement and increasing avail-
able storage. This relationship has a correlation coefficient of r ¼
0.55 and is significant at the 95% level. Fig. 7(c) suggests that res-
ervoirs with a lower ratio of safe release to capacity may achieve
larger storage benefits under FIRO because these reservoirs cannot
release water as quickly relative to their capacity. However, the out-
liers make this conclusion difficult to state with confidence (r ¼
−0.33 and insignificant). Finally, Fig. 7(d) shows a small and insig-
nificant positive relationship (r ¼ 0.25) between the storage benefit
and forecast skill, represented here by the NSE at a 4-day lead time.
Other lead times showed a similar noisy and weak relationship.
This result suggests that while there may be some room for addi-
tional improvements in short-term forecast accuracy to support ad-
ditional storage, improved forecast skill at this lead time does not
immediately translate to higher achievable storage.

We also analyze whether the same reservoir characteristics
shown in Fig. 7 are related to flood management benefits. Fig. 8
compares these four characteristics to the reduction in the fre-
quency of maximum safe releases from the Baseline to the Forecast
policy. A larger y-axis value indicates that the Forecast policy pro-
vides a larger reduction in flood risk relative to the Baseline. The
x-axes of each panel in Fig. 8 are the same as in Fig. 7. Reservoirs
that do not reach the safe release threshold at least 10 times in
either the Baseline or Forecast policy are omitted from this analysis
[SHA, Oroville (ORO), New Bullards Bar (BUL), Folsom (FOL),

Fig. 6. Risk curve and parameter values for each reservoir as trained under the best-performing random seed: (a) risk curve constructed with the
optimal parameters; (b) x1 (days with no allowable risk); (c) x2 (slope of risk curve); and (d) TOCS multiplier. (b and c) Only show the Forecast policy
parameters because the other policies do not use the risk tolerance curve to determine release values.
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New Hogan (NHG)] because their small sample sizes bias the re-
sults. The data in Fig. 8(a) show a statistically significant negative
relationship (r ¼ −0.79) between the ratio of mean inflow to
capacity and a reduction in flood risk. This suggests that reservoirs
with larger storage relative to inflow are better able to buffer large
flood events with the use of forecasts. Fig. 8(b) shows no correla-
tion, while Fig. 8(c) depicts an insignificant negative relationship
(r ¼ −0.42) driven largely by one outlier site (SCC). Finally,
Fig. 8(d) shows a weak and insignificant positive relationship
(r ¼ 0.20), which is consistent with the result for storage benefit
[Fig. 7(d)]. Considering the omitted reservoirs and relatively weak
correlations, it is difficult to conclude definitively that better
forecasts would significantly improve policy performance. We per-
formed a regression analysis using all the factors as predictors
and the y-axes of Figs. 7 and 8 as the response (surplus storage,
% reduction of max release frequency) and found similar results to
the individual correlations; these results are included in Tables S1
and S2. Overall, the results of Figs. 7 and 8 highlight how the
benefits of forecast information depend on complex dynamics of
hydrology and release decisions at each reservoir over the study
period, more so than can be predicted from these static factors alone.

Diagnostics

In Figs. 6(b and c), the risk curve parameters x1 and x2 do not have
a discernible relationship with the storage results, likely because
different combinations can achieve similar reductions in risk. To
further analyze this point, Fig. 9 shows the mean normalized

storage and the accompanying parameter values for the 10 random
seed trials of the Forecast policy optimization. The objective func-
tion values in the legend highlight that the differential evolution
algorithm converges reliably to within 1% of the best objective
value, indicating that the overall results are still similar between
seeds. The policy from Seed 4 (star) was chosen for the results in
Figs. 4–8 because it had the highest objective function value. A few
of the reservoirs have a larger difference in storage across trials,
including Pardee (PAR), Millerton (MIL), and Terminus (TRM)
[Fig. 9(a)]. By contrast, SHA, ORO, and NML have little to no
change in storage across trials. We find that while the trials con-
verge to roughly the same objective function value, they do so with
different policy parameters. This shows the different approaches to
risk management that a policy could adopt to achieve the same
goal: either a high TOCS with more risk-averse releases, or vice
versa. Between these two outcomes we would expect a lower TOCS
to be preferred by the operating agencies because it is a more
modest change from the existing policy.

Finally, we performed a leave-one-out cross-validation (LOOCV)
experiment to evaluate the optimized policy performance in out-of-
sample conditions. We implemented this LOOCVon an annual basis
across all 10 years of data, leaving one year out in each iteration.
Table 1 gives the results of this experiment by reservoir.

In Table 1, we note that the mean storage averaged across the
entire study period is similar between the LOOCVand fully trained
results, with differences mostly within 1%–2% (see the last column
column). However, the LOOCV shows some instances of higher
flood risk compared to the fully trained results for FIRO policies

Fig. 7. Surplus storage of the Forecast policy relative to Baseline (y-axis) compared to system characteristics (x-axis): (a) the ratio of the reservoir
mean inflow to the reservoir capacity; (b) the ratio of the largest inflow the reservoir received to the reservoir safe release capacity; (c) the ratio of the
reservoir safe release to the reservoir capacity; and (d) the NSE at 4 days lead time.
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Fig. 8. Reduction in frequency of maximum safe releases of the Forecast policy relative to Baseline (y-axis) compared to system characteristics
(x-axis): (a) the ratio of the reservoir mean inflow to the reservoir capacity; (b) the ratio of the largest inflow the reservoir received to the reservoir safe
release capacity; (c) the ratio of the reservoir safe release to the reservoir capacity; and (d) the NSE at 4 days lead time.

Fig. 9. Random seed optimization results: (a) mean normalized storage for the Forecast policy at each reservoir for 10 random seeds. As in (a), but for
(b) x1 (days with no allowable risk) at each reservoir for 10 random seeds; (c) x2 (slope of risk curve) at each reservoir for 10 random seeds; and (d)
TOCS multiplier at each reservoir for ten random seeds. In all instances, the star denotes the trial that was chosen for the results shown in Figs. 4–8.
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at three sites (PAR, EXC, and PNF), in terms of the number of days
when the maximum allowable safe release is exceeded (second
column). Yet the LOOCVand fully trained results do not differ sub-
stantially in the total frequency of releases that equal the maximum
release. Overall, the results of Table 1 highlight challenges when

using an optimized model to manage out-of-sample events. To
maximize storage, the model finds the most aggressive combina-
tion of risk curve and TOCS multiplier possible on the training
data. When exposed to larger, out-of-sample floods, it is unsurpris-
ing that some reservoir policies fail to maintain releases below the
allowable maximum. It is notable, however, that this only occurs at
three of the reservoirs, and only 20 days in total, with little difference
in the frequency of releases that equal the allowable maximum. This
suggests some degree of inherent robustness in the FIRO policies
while also highlighting the need for careful design of optimization
experiments.

In all cases of policy failure, the maximum safe release exceed-
ances occur in a short time frame, during periods with multiple
floods in short succession. Once the reservoir is full or close to
capacity, the policy struggles to manage another incoming flood
unless an event of similar magnitude has been previously seen
in the training data. Fig. 10 shows an example of one such policy
failure at PAR in 2017, when the reservoir had to draw down fol-
lowing a major flood peak in mid-February in anticipation of the
second flood peak in late February, leading to releases that ex-
ceeded the allowable maximum threshold. Moreover, two of the
reservoirs that failed the LOOCV (PAR and EXC) have a high ratio
of largest inflow to safe release [Fig. 7(b)]. Accounting for this in-
formation in the development of FIRO policies may be important
for managing flood risk at sites with limited saved forecasts for
policy training. We test this concept by performing a second leave-
one-out cross-validation experiment in which the upper bound of
the TOCS multiplier was scaled based on the hydrologic record
from 1994 to 2013 (i.e., when forecasts are not available for all sites).
The scaling factor was created by dividing the largest 3-day inflow
sum in the training period by the largest 3-day inflow sum in the
historical period. With this approach to reduce the TOCS upper
bound, no reservoir exceeded the maximum safe release in cross-
validation, and we observe only a 4% reduction in mean storage
per reservoir.

Table 1. LOOCV results by reservoir

Reservoir

Days
exceeding
max release

Change in max
release frequency
training versus

validation

Change in mean
storage training
versus validation

(%)

SHA 0 2 −1.77
ORO 0 0 1.09
BUL 0 1 −1.30
FOL 0 0 0.27
PAR 7 (2017) −4 −0.14
NHG 0 0 0.57
NML 0 2 0.31
DNP 0 1 0.00
EXC 1 (2023) −13 0.39
MIL 0 −8 1.39
PNF 12 (2017) −5 5.66
TRM 0 −1 1.14
SCC 0 0 1.86
ISB 0 0 −0.09
Note: Results are aggregated across left-out years for each reservoir and show
the number of days (and out-of-sample years) when releases exceed the
maximum allowable safe release; the number of days when releases equal
the maximum allowable safe release, expressed as a difference between the
LOOCV (validation) and fully trained results; and the percent change in
mean storage between the LOOCV (validation) and fully trained results.
SHA = Shasta; ORO = Oroville; BUL = New Bullards Bar; FOL = Folsom;
PAR = Pardee; NHG = New Hogan; NML = New Melones; DNP = Don
Pedro; EXC = Exchequer; MIL = Millerton; PNF = Pine Flat; TRM =
Terminus; SCC = Lake Success; and ISB = Isabella.

Fig. 10. Pardee (a) storage; and (b) release time series in 2017, with a FIRO policy fit to data excluding 2017.
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Discussion and Conclusions

This study developed an optimization framework to generalize the
risk-based EFO approach (Delaney et al. 2020; Woodside et al.
2022). We quantify the storage and flood control benefits of this
approach in a multireservoir system, using a differential evolution
algorithm to find optimal policy parameters for each of the 14 res-
ervoirs in the Sacramento, San Joaquin, and Tulare river basins.
The results show an 8.1% increase in water supply storage normal-
ized by capacity, averaged across reservoirs and over the period
2013–2023, as well as a 10.9% increase in median storage at the
end of the flood management season (May 1). This is lower than the
33% increase in median storage at the end of the flood management
season found in a prior study of Lake Mendocino (Delaney et al.
2020), which had a longer and wetter study period on average
(1985–2010). The Lake Mendocino experiment showed that flood
risk could be successfully managed using forecasts while raising
the TOCS limit. Our findings agree that much of the storage benefit
in this simulation period comes from raising the TOCS value, and
that the forecast information provides additional flood control
benefit in terms of maintaining lower overall release magnitudes.
We found that perfect forecasts further improve performance, par-
ticularly with respect to reducing the frequency of large releases.
However, the room for improvement may be limited at some loca-
tions because existing forecasts appear to be sufficiently accurate to
capture most of the potential benefit of the perfect forecast policy.

The results also show that many different combinations of pol-
icy parameters can be used to achieve similar levels of water supply
benefits and flood risk, providing some flexibility in interpretation
and implementation. Among these, policies with a lower TOCS
multiplier and/or longer periods of zero allowable risk (i.e., the
x1 parameter) may be preferable for risk-averse operators. How-
ever, this equifinality obscures the degree to which these policies
may transfer to new scenarios. The study also highlights reservoir
characteristics that correlate with the benefit of FIRO policies.
While many characteristics do not show significant correlation ben-
efits, the ratio of the largest inflow to the maximum safe release and
the ratio of mean inflow to capacity have significant relationships to
surplus storage and reductions in the frequency of maximum safe
releases, respectively. This finding suggests that certain site attributes
may be useful for screening and selection of candidate reservoirs for
implementation, even if such attributes alone cannot completely pre-
dict the benefits of revised operating policies. The results of the
LOOCV experiment underscore that a longer training period is
needed to ensure the selected FIRO policies do not increase flood
risk. However, these results also show that optimized FIRO policies
can still adapt to out-of-sample flood events in many cases (11 of the
14 reservoirs). Despite this promise, some restrictions on flood pool
size must ultimately be implemented to avoid these infrequent but
severe failures, especially at reservoirs with small safe release rates.

Several avenues for future work could advance the findings of
this study. First, the length of the experiment is short and does not
include a large variation in hydrology. The dry conditions during
our 2013–2023 study provide little opportunity for the forecasts to
provide value because most of the increased storage comes from the
opportunity to raise the TOCS, and most reservoirs faced few large
flood events. However, with a few exceptions (ORO, BUL, NHG),
the majority of sites in this study do not have longer hindcast data
sets required to expand the study period. A potential solution to this
issue is the use of synthetic forecasts (Brodeur et al. 2024; Brodeur
and Steinschneider 2021; Lamontagne and Stedinger 2018), which
can be generated anywhere observational data are available.
Synthetic forecast samples could be used in model optimization to
prevent overfitting and produce more robust policies (Brodeur et al.

2020; Nayak et al. 2018). They could then be used to assess opti-
mized policies against out-of-sample data containing a much richer
set of hydrologic extremes spanning the observed historical record.
This would allow for a more thorough analysis of FIRO-based bene-
fits and risks and would provide higher confidence in the conclusions
of this study, such as the aggregated economic benefits of FIRO. In
addition, we expect that a longer and more variable hydrology (and
associated synthetic forecasts) would likely show even greater ben-
efits for the FIRO strategies than we found in this study.

One important limitation of our study was the use of an empirical
approach to estimate reservoir maximum release rates and ramping
rates from the observed record of releases. These details are specific
to the spillway infrastructure and downstream conditions of each
reservoir, and these assumptions can influence the model results.
Another limitation is that the CNRFC forecasts are saved forecasts,
not hindcasts, and therefore they do not reflect the most current
methods and technologies. One practical aspect of water manage-
ment not addressed in our study is the consideration of environmen-
tal effects, although these are represented implicitly through the use
of historical releases to estimate demands, as well as constraining
releases by ramping rates. Exploring alternative risk curve shapes
could also prove fruitful, e.g., a quadratic or exponential risk curve
may provide better performance than the piecewise linear curve as-
sessed in this work. However, more complex risk curves have a
higher likelihood of being overfit to training data, which would
need to be evaluated in any future work. Moreover, future work
could investigate the applicability of FIRO to a multireservoir sys-
tem with shared downstream objectives, where joint release deci-
sions and network routing would need to be considered to provide a
more complete picture of systemwide benefit.
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