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Abstract 
 

In this paper, we report the measurements of specific heat of an amorphous Ti9.5Si90.5 alloy located very close 
to the critical point of the metal-insulator transition. In the presence of a magnetic field, the specific heat is 
dominated by the Schottky anomaly caused by magnetic moments associated with the dangling bonds in the 
matrix of amorphous Si. Subtraction of this contribution exposes the behavior of the electronic specific heat 
coefficient 𝛾.  The coefficient is temperature-independent above 2 K and is, in order of magnitude, close to the 
value expected in the absence of electron-electron interactions. In the temperature range 0.4-1.5 K, the 
coefficient 𝛾  shows an anomalous downturn, which can be approximated by the dependence γ(𝑇) =
  γ0 ln( 𝑇/𝑇0), with 𝑇0 ≈ 0.2 K .  In a companion paper, we found that the Hall coefficient in Ti-Si alloys is affected 
by the electron-electron interaction up to much higher temperature of 150 K and also varies critically across 
the metal-insulator transition. We compare our results with theoretical predictions for three models, which 
can potentially explain the anomalous behavior of the specific heat: generalized non-linear 𝜎 model, Coulomb 
glass, and many-body localization.  

 
 

Introduction. 
 Systems with strong disorder and interactions present one of the grand challenges in condensed 
matter physics [1].  The study of these systems has a long history marked by many still unresolved problems. 
In particular, unlike the case of several clean systems [2,3,4], the connection between the long-range behavior 
that determines a system response near a metal-insulator transition (MIT) and the corresponding microscopic 
physics has not been established. For example, it is not clear why the correlation length exponent, 𝜈 , and 
dynamical exponent, 𝑧, are different in crystalline silicon doped with phosphorous (Si:P, 𝜈 = 1, 𝑧 = 3) [5] and 
with boron (Si:B, 𝜈 = 1.6 , 𝑧 = 2) [6]. Nor is it known why the experimental exponents for Si:B coincide with 
values predicted for a non-interacting disordered 3d system, in clear conflict with the tunneling experiments, 
which indicate the emergence of the Coulomb gap at the critical point of MIT [7]. For the insulating state, there 
is a long-standing question of what the nature of the current carriers is. Experimentally, the large body of the 
data on conductivity can be explained by Efros-Shklovskii variable-range hopping (VRH), based on the picture 
that current is carried by single-particle hops in the presence of the Coulomb gap. Mott and Pollak [8], however, 
argued that in the presence of interactions, a jump of an individual electron has to lead to the displacement of 
neighboring elections, so the true carriers are many-electron entities called dressed polarons. Extending this 
reasoning to thermodynamic quantities, one can see that the relaxation of the whole system requires a 
complicated re-arrangement of a gigantic number of elections, resulting in a dynamically frozen state known 
as a Coulomb glass. Contrary to these expectations, several measurements of specific heat in doped 
semiconductors and amorphous alloys revealed a simple smooth variation of the electron coefficient γ across 
MIT [9,10,11,12].  
 A modern approach to the problem of interacting particles in a strongly disordered potential takes a 
broader perspective by also considering systems in their excited states and completely isolated from their 
environment. There is strong evidence in these systems for the existence of a new, dynamical state of matter 
caused by many-body localization (MBL) [13,14], which does not thermalize and retains the memory of its 
initial state. It was first theoretically discovered in zero-dimensional systems [15] and one-dimensional 
systems with local interactions [16,17]. Recent theoretical works [18,19] and experiments on cold atoms 
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[20,21] suggest that MBL might exist in 2d and 3d systems, even in the case of a long-range 1/𝑟 interaction 
[22]. The MBL state is also of great interest for standard condensed matter systems. Recently, it has apparently 
been observed in highly disordered InO films [23]. On the theoretical side, significant effort has been made to 
analyze MBL in systems weakly connected to the environment [24,25,26,27]. One conclusion is that, although 
these systems eventually equilibrate, this process is logarithmically slow and implies exponentially large 
relaxation time and a possibility to see the MBL state in experiments.  
 In the present work, we report an observation of the critical behavior of the electronic specific heat 
coefficient 𝛾  in amorphous Ti9.5Si90.5  alloy located right at the critical concentration of the metal-insulator 
transition. We have observed a sharp logarithmic decrease of γ below about 1.5 K that extrapolates to zero at 
0.2 K. We argue that this behavior might reflect the emergence of the Coulomb glass or MBL state in the system.  
 
Experiment.  
 The Ti9.5Si90.5 sample was fabricated in a DC sputtering apparatus custom-designed for the production 
of bulk samples. It was one of a series of samples used previously for specific heat [12], transport [12,28] and 
magnetic [29] measurements.  The sputtering targets for this series were made in-house by arc-melting of high-
grade Ti (99.99 %) and Si (99.999 %). The uniformity of the targets was checked by measuring the near-surface 
composition of the targets by energy dispersive x-ray analysis (EDXA) before and after sputtering.  The sample 
holder was made out of two parts. The first part was a round (diameter 1 inch) copper gasket that was screwed 
vacuum-tight on a stainless-steel hollow rod that could be grounded or DC biased with high voltage. The second 
part was a thin copper plate with a matching diameter and thickness 0.3-0.5 mm; it was soldered to the 
platform with indium. A fresh copper plate was used in every deposition; it was cleaned by back-sputtering and 
served as a substrate. The sample holder was water-cooled during deposition. The sputtering was done in tour 
de force fashion. A short, 5 cm, distance between the target and sample provided high deposition rate of 2-4 
nm/sec. The process was typically run for more than 24 hours. As a result, we could deposit material with 
thickness 100-200 m. After the deposition, the sample gasket was removed from the machine and heated up 
to let the indium melt so the copper plate could be detached from the gasket. Then, the plate was gently bent in 
different directions; this allowed brittle Ti-Si samples to be peeled off the copper plate. Typically, the obtained 
samples were in a powder or needle-like form. For  Ti9.5Si90.5  alloy, however, we were fortunate to get a 
collection of large pieces (lateral size of about 5 mm) suitable for specific heat measurements down to 0.3 K. 
We used EDXA to check the composition of the top and bottom surface of the samples; we found that there is 
no copper contamination and estimated that the uniformity of the sample is within 1 at. % of Ti.  
 Transport properties of the sample were measured with a Quantum Design PPMS in the temperature 
range 1.8-300 K and magnetic field up to 9 T. Specific heat measurements were done using the relaxation 
method in Oxford Instruments MLHC9H, calibrated as prescribed by the vendor in the temperature range 0.4-
10 K and magnetic fields up to 6 T.  Several pieces of Ti-Si sample were mounted with Apiezon grease on a 
suspended sapphire chip equipped with a heater and temperature sensor. Standard procedures to measure 
and subtract the bare chip heat capacity were used.  Unfortunately, we do not have the resistance data in the 
temperature range 0.4-1.8 K. They were not taken at the time when the specific heat was measured and when, 
after seven years, we came back to this project, we found that samples had changed and become significantly 
more resistive.   
   
Results and discussion. 
 The conductivity of the  Ti9.5Si90.5 amorphous alloy is shown in Fig. 1(a) as a function of the square 
root of temperature. As the linear fit presented in the figure shows, in the temperature range 1.8-10 K, the 
conductivity can be nicely fitted with a simple expression 𝜎(𝑇) = 𝜎(0) + 𝛼𝑇1/2, with 𝜎(0) = 1.5 Ω−1cm−1 and 
𝛼 = 8.5 Ω−1cm−1K−1/2 . The temperature-dependent term has the form of the quantum correction due to 
electron-electron interaction (EEI) for a 3-dimensional system.  The same behavior was observed on the 
metallic side of the MIT in the measurements on doped semiconductors [5,6] and amorphous alloys [30] 
extended to much lower temperatures. While we cannot exclude a possibility that at lower temperatures the 
conductivity of the Ti9.5Si90.5 alloy switches to the insulating behavior, it is clear that the sample is located 
almost at the critical point of MIT.   
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Fig. 1. (a) Conductivity of the 𝑇𝑖9.5𝑆𝑖90.5 amorphous alloy as function of the square root of temperature. (b) 
Magnetoconductivity, 𝛥𝜎(𝑇, 𝐵) = 𝜎(𝑇, 𝐵) − 𝜎(𝑇, 0), as a function of magnetic field at several indicated 
temperatures. (c) Scaled magnetoconductivity versus scaled magnetic field.   
  

 We have also carried out transport measurements of the alloy in magnetic fields. The results are 
presented in Fig. 1(b) in the form of magnetoconductivity defined as Δ𝜎(𝑇, 𝐵) = 𝜎(𝑇, 𝐵) − 𝜎(𝑇, 𝐵 = 0). The 
magnetic field produces a fairly large effect on conductivity, reducing it by about 30 % at 𝑇 = 1.8 K and 𝐵 =
9 T . Surprisingly, the observed behavior of Δ𝜎(𝑇, 𝐵)  matches fairly closely the prediction made by the 
perturbation theory of the EEI correction [31].  Functionally, it has the form Δ𝜎(𝑇, 𝐵) = 𝑎1𝑇1/2𝑔3(ℎ), where 
ℎ = 𝑎2𝐵/𝑇, 𝑎1 and 𝑎2 are some constants that depend on the parameters of the alloy, and the function 𝑔3(ℎ) 

has the limited behavior:  𝑔3(ℎ) = √ℎ − 1.3   at ℎ ≫ 1  and  𝑔3(ℎ) = 0.053ℎ2  at ℎ ≪ 1 . This is indeed the 
behavior we see at high and low fields. From the formula, it also follows that magnetoconductivity data collapse 
on a single curve when plotted as Δσ(𝐵, 𝑇)/𝑇1/2 versus 𝐵/𝑇. The scaled data shown in Fig. 1(c) come close to 
this variation. Overall, it appears that above 1.8 K, the alloy displays metallic behavior dominated by the EEI 
quantum correction.  
 The specific heat of the alloy measured at the indicated magnetic field is presented in Fig. 2, in the form 
𝐶/𝑇 versus 𝑇2. For a nonmagnetic metal, the low-temperature specific heat is expected to follow the equation 
𝐶 = 𝛾𝑇 + 𝛽𝑇3. This is the behavior we see for the alloy in zero magnetic field at the temperatures above about 
2 K (Fig. 2a).   The intercept gives the electronic coefficient 𝛾 and the slope defines the phonon contribution 𝛽. 
They closely agree with the previous measurements [12].  
 

 
 

Fig. 2. Specific heat of the 𝑇𝑖9.5𝑆𝑖90.5 amorphous alloy presented in the form 𝐶/𝑇 versus 𝑇2at indicated magnetic 
fields 0, 3 and 6 Tesla. In all panels the solid line indicates a fit to zero-field specific heat in the range 2.5-5 K.  
 

 At temperatures below 2 K, zero-field specific heat displays an additional upturn contribution (Fig. 2a), 
which evolves into the Schottky anomaly when magnetic field is applied (Fig. 2b,c).  The appearance and 
evolution of this excess contribution Δ𝐶  is very similar to the behavior observed in doped Si:(P,B) 
semiconductors [9]. In both systems, the excess specific heat originates from magnetic moments; however, 
there is an important difference between the two cases.  
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 In doped crystalline semiconductors, the magnetic moments are due to dopants themselves; for 
example, an isolated unionized phosphorus dopant carries spin ½. At small dopant concentration, spins 
interact with their neighboring spins via the exchange interaction. Because of the random locations of the 
dopants in the Si lattice, the exchange constants of this interaction have a very broad distribution. The Bhatt-
Lee model gives theoretical description of magnetic and thermodynamic response of such random spin systems 
and reproduces the functional behavior Δ𝐶~𝑇−α  observed experimentally in zero magnetic field. At high 
dopant concentrations close to the MIT, most of the electrons form a band and are non-magnetic; still, a small 
fraction of dopants well-isolated from the rest of the system continue to carry isolated magnetic moments.  
 The magnetic properties of Ti-Si (and V-Si) amorphous alloys were carefully studied in Ref. [29]. The 
combined magnetization and electron-spin resonance (ESR) measurements convincingly showed that the 
magnetic moments are associated not with isolated Ti and V atoms but with dangling bonds of amorphous 
silicon. The concentration of the spins was quantitatively determined and was found to grow with decreasing 
Ti content, concurrent with the growth of the portion of the system that has the local structure of amorphous 
silicon. The upturn in specific heat seen in zero magnetic field likely corresponds to the interaction between 
some of these spins. The ESR parameters of the spins are the same as in amorphous Si and not affected by Ti 
atoms, therefore, at least in the first approximation, we can treat them as an independent subsystem that stays 
away from conducting part of the system and does not affect the electronic properties of the alloys. This 
assertion is supported by the observation that in amorphous Si made by sputtering in argon atmosphere, as it 
is in our case, the dangling bonds appear on the walls of small cavities formed during the growth process [32].          
 The concentration of the magnetic moments in 𝑇i9.5Si90.5 was found to be 𝑛𝑠 ≈ 0.7 × 1019 cm−3. We 
also found that a field of 6 T overcomes any interaction between the spins, so at this field, the magnetic 
contribution should be described by the simple formula for the Schottky anomaly, Δ𝐶 = 𝑛𝑠𝑘(𝜀/𝑘𝑇)2exp(𝜀/
𝑘𝑇)/[exp(𝜀/𝑘𝑇) + 1]2 , with 𝜀 = 2𝜇𝐵𝐵. We computed this contribution for 𝐵 = 6 T and subtracted it from the 
total specific heat shown in Fig. 2c.   

 

 
Fig. 3 (a) Specific heat in zero magnetic field and specific heat at the field of 6 Tesla after subtracting contribution 
of magnetic moments. The solid lines are the linear fits to the data at temperatures 2.2-5 K. (b) Same quantities at 
higher temperatures. Data at 6 Tesla are shifted up by 1 mJ/mole K2. 
 
 The resulting specific heat at 6 Tesla, which combines electronic and photonic terms, is shown in 
Fig.3a,b alongside the data for zero field. Both data sets vary linearly with the same slope in the temperature 
range 2-5 K and show the same deviation from 𝑇2  variation at higher temperatures.  This deviation 
corresponds to the non-Debye lattice specific heat frequently observed in semiconductors [33].  We see, as 
expected, that phonon contribution is not affected by magnetic field. It is an important observation since it 
validates our subtraction procedure. The effect of magnetic field on the specific heat above 2 K thus 
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corresponds to a simple increase of the electronic coefficient γ by about 20%.  Below 2 K, specific heat starts to 
display an anomalous behavior and drops with decreasing temperature. This feature is not an artefact of our 
subtraction procedure; it is clearly present already in the raw data shown in Fig. 2c.  
 To characterize the anomalous behavior, we have subtracted the phonon contribution from the 
specific heat. The obtained temperature variation of the electronic specific heat coefficient 𝛾 is shown in Fig.4 
a,b; it constitutes the central result of our study. From this observation, we can make a claim that 𝛾 displays 
critical behavior at the MIT of Ti-Si alloys.  We tried to fit 𝛾(𝑇) with several common dependences. Fig. 4a shows 
the fit to the power-law function and Fig.4b to logarithmic dependence 𝛾(𝑇) = 𝛾0 ln(𝑇/𝑇0). The latter provides 
the best phenomenological approximation to our data.  It is marked by two temperatures, 𝑇1 ≈ 1.5 K , below 
which 𝛾 starts to drop and 𝑇0 ≈ 0.2 K, at which it apparently reaches zero.  
 

 
Fig. 4.  The electronic specific heat coefficient 𝛾 at magnetic field 6 Tesla as a function of temperature on linear 
(a) and logarithmic (b) scale. The solid lines show fits with the dependences indicated in the figure.  
 
 The Ti9.5Si90.5 alloy displays a very unusual variation of electronic specific heat. As a starting point of 
the discussion of its possible origin, let us describe several relevant properties of the system. (1) It is very 
unlikely that the anomalous downturn is due to the superconducting gap. There is no evidence that Ti-Si 
amorphous alloys are superconducting. Titanium disilicide, which might hypothetically precipitate in the alloy, 
does not superconduct down to at least 50 mK [34].  (2) In our study of the Hall coefficient presented in a 
companion paper [35], we show that the EEI correction to this quantity is very large and observed up to the 
temperature 150 K  (in doped semiconductors corresponding temperature is about 1 K).  Within the 
perturbation theory, the EEI correction to Hall coefficient comes from the same processes that produce the 
anomaly in the tunneling single-particle density of states (spDOS). Therefore, we can consider  𝑇𝑠𝑝 ≈ 150 K to 

be the energy scale of the EEI as seen by the spDOS. (3) In Ti9.5Si90.5,  𝛾 measured above 2 K gives the density 
of states 𝑔(𝐸𝐹) ≈ 5 × 1021 eV−1cm−3 and, assuming for the sake of an estimate that effective mass is equal to 
the free electron mass, carrier concentration 𝑛 ≈ 2 × 1021 cm−3 . This is close to the concentration of Ti atoms, 
𝑛𝑇𝑖 = 4.7 × 1021 cm−3, so EEI does not seem to affect 𝛾. (4) Consistent with the Hall studies, the insulating Ti-
Si alloys [28] show Efros-Schlovskii VRH at high temperatures, which surprisingly switches to Mott VRH below 
about 30 K. A close inspection of the data for V-Si (Fig. 2a in Ref. 11) indicates similar behavior. (5) In insulating 
Ti-Si, the density of states extracted from magnetoresistance at T=4, 8 K within the model of non-interacting 
electrons was found to be two orders of magnitude smaller than the density of states extracted from specific 
heat [28].  
  Let us further notice that, in Mo-Ge [10], V-Si [11] and Ti-Si [12] amorphous alloys, the free-electron-
like specific heat of roughly the same magnitude appears at 1.5 K < 𝑇 ≪ 𝑇𝑠𝑝 and varies smoothly across the 

transition. This by itself is a puzzling observation, the origin of which is still not understood. Some attempts 
have been made to link it to the local atomic structure of the alloys. The structure of insulating V-Si alloys was 
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determined by the neutron diffraction and corresponds, as sketched in Fig. 5a, to V atoms randomly distributed 
in amorphous Si matrix. We expect a similar arrangement in Ti-Si.  The atomic structure of the insulating 
MoxGe100−x  alloys ( 𝑥 ≤ 11)  was determined by anomalous small-angle and differential x-ray scattering 
techniques [36,37]. It is sketched in Fig. 5b and can be seen as a collection of metallic amorphous particles with 
the composition of intermetallic compound MoGe2 and size 𝑎𝑝 ≈ 1.5 nm embedded in the matrix of amorphous 

Ge. The author of the study proposed that these metallic clusters are responsible for finite  𝛾 in the alloys. We 
disagree with this conclusion. Using the data in Ref. [10] we estimate the density of state in amorphous MoGe2 
as 𝑔𝑀𝐺2 ≈ 5 × 1022 eV−1cm−3 and the level spacing in the particles as Δ𝐸 ≈ 1/𝑔𝑀𝐺2𝑎𝑝

3 ≈ 60 K. A collection of 

isolated particles of this kind would produce not the free-electron-like specific heat but rather a response akin 
to the Schottky anomaly with a peak at 60 K.  To have finite 𝛾, the electron wave functions need to extend over 
many particles, and in this regard, their behavior is not conceptually different from wave functions in V-Si. 
 

 
 

Fig. 5. Schematic representation of local atomic structure of amorphous metal – Si,Ge alloys, at low metal 
concentration. (a) Metal atoms are randomly distributed in the amorphous Si,Ge matrix.  (b) Metal atoms form 
amorphous clusters with a local structure of an intermetallic crystalline compound 𝑀(𝐺𝑒, 𝑆𝑖)2 in the matrix of 
amorphous (Si,Ge).    
 

 To summarize, the specific heat in Ti-Si, V-Si and Mo-Ge amorphous alloys cannot be explained by the 
clustering and emerges deep inside the temperature range where EEI affects the spDOS. In our view, it should 
be related to the many-electron excitations. Let us now compare our results with existing theories. 
 The behavior of specific heat in several universality classes was studied by Castellani and Di Castro 
within the generalized nonlinear σ model [38]. Two of their predictions look similar to our observations. In the 
case of strong magnetic fields (𝜇𝐵𝐵 ≫ 𝑘𝑇), the predicted 𝛾 is rescaled but does not acquire any temperature 
dependence. In the spin-orbit impurity case, 𝛾  approaches zero at the MIT as γ~𝑇1/2 .  However, the 
interpretation based on this theory also raises concerns and should explain why experimental and theoretical 
temperature exponents are different, why spin-orbit behavior is dominant at low temperatures, and why the 
rescaling predicted for 𝜇𝐵𝐵 ≫ 𝑘𝑇 actually persists to much higher temperatures. 
 The second model that captures some of our observations is the model of the Coulomb glass. Several 
theoretical studies [39,40,41,42] of this state predict finite 𝛾 caused by many-electron excitations coexisting 
with a large Coulomb gap in the spDOS. Moreover, temperature-dependent  𝛾 has been predicted to occur at 
lowest temperatures, similar to the anomalous behavior in Ti-Si below 2 K. However, we have not observed the 
decrease of  𝛾 at high temperatures universally predicted by these theories. Also, in our specific heat and low-
bias resistance measurements, we did not observe any relaxation or aging effects of the type reported for 
indium oxide [43] and considered to be inherent for the Coulomb glass [44].  
 The third possibility is that our observations reflect the response of the many-body localized state.  
The evidence is all indirect: the Ti9.5Si90.5  alloy behaves as if a larger and larger portion of electrons gets 
decoupled from the environment with decreasing temperature; the experimental dependence of γ, 𝛾(𝑇) =
𝛾0 ln(𝑇/𝑇0) (if it continues) gives zero γ at finite temperature 𝑇0 ≈ 200 𝑚K; and the dependence of γ curiously 
matches logarithmic dynamics of entropy found in some MBL studies [14,25].  Interestingly, when the author 
of Ref. [24] discussed possible experimental manifestation of MBL, they brought as an example bistable  𝐼 −
𝑉curves observed in an amorphous Y20Si80 alloy below 50 mK [45]. This system belongs to the same class of 
materials as Ti-Si alloys and similar to our Ti9.5Si90.5 sample,  Y20Si80 is located in the immediate vicinity of MIT.   
 
Outlook 
 We have found that the electronic specific heat in a Ti-Si amorphous alloy located very close to the 
critical point of the MIT displays an anomalous logarithmic downturn at low temperatures. The observed 
behavior of γ can possibly be related to the criticality at the MIT or to the formation of the Coulomb glass or 
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many-body localized state. While we believe that the anomalous behavior is likely caused by MBL, more 
evidence is needed to fully accept or dismiss any of three pictures discussed above.  
 The presence of the Coulomb glass and MBL states in condensed matter systems is not currently 
established. In our view, Metal-(Si,Ge) amorphous alloys present a versatile class of materials very suitable for 
exploration of both of these phenomena and perhaps for disentangling the differences between them. Let us 
mention a few advantages of these systems. The alloys can be easily fabricated by sputtering at room 
temperature.  The crystallization temperature is fairly high (600°C for Ti9.5Si90.5 alloy; see Ref. 11 for more 
details) and, from our experience, the properties of the samples do not change for 2-3 years.  In a longer time, 
the alloys are likely to experience the phase separation shown in Fig. 5 and consequent growth of the metallic 
clusters. Same clustering processes can be induced by heat treatment; indeed, in a few test experiments, we 
found that annealing of alloys below their crystallization temperature leads to a significant counterintuitive 
growth in resistance. The phase-separated structure can be fairly easily characterized by dispersive X-ray and 
neutron techniques.  Accidentally, this structure closely resembles the disorder pattern theoretically suggested 
to test thermalization effects in MBL (see Fig. 12 in Ref. 14).  The thin films of the amorphous alloys provide 
model 2d systems. They can also be patterned using negative resist e-beam lithography to create sub-10 nm 1d 
nanowires and a variety of other custom-designed structures [46]. This is a very important capability since 
most of the work on MBL addresses 1d systems.  Let us finally mention that the state-of-the-art heat capacity 
techniques, such as those used in the studies of 2d-gas in GaAs-based quantum wells [47], allow one to reach 
temperatures (~25 𝑚𝐾) below the apparent glass or MBL transitions.  Moreover, application of a sufficiently 
large magnetic field (18 T) would shift the Schottky anomaly to high temperatures and leave the electronic 
contribution unobscured below 𝑇 ≈ 5 K. To conclude, we hope that further, more focused exploration of the 
amorphous alloys will clarify the physics of the Coulomb glass and MBL.  
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