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Abstract. In this paper, we study the a-contraction property of small extremal shocks
for 1-d systems of hyperbolic conservation laws endowed with a single convex entropy,
when subjected to large perturbations. We show that the weight coefficient a can be
chosen with amplitude proportional to the size of the shock. The main result of this
paper is a key building block in the companion paper [G. Chen, S. G. Krupa and A. F.
Vasseur, Uniqueness and weak-BV stability for 2 X 2 conservation laws, Arch. Ration.
Mech. Anal. 246(1) (2022) 299-332] in which uniqueness and BV-weak stability results
for 2 x 2 systems of hyperbolic conservation laws are proved.
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1. Introduction
We consider 1-d hyperbolic systems of conservation laws with n unknowns:
ug+ (f(u)y =0 t>0, z€R, (1.1)

where (¢,z) € RT x R are space and time and u = (u1,...,u,) € Go C R" are the
unknowns. We assume the global state space Gy is convex and possibly unbounded,
and denote G its interior. We assume further that there is a bounded subset of states
Vp with interior V. The flux function, f = (f1,..., fn), is assumed to be continuous
on Go and C* on G. We assume that there exists a strictly convex entropy functional
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n € C(Go) N C3(G) and an associated entropy flux functional ¢ € C(Go) N C3(G)
such that

¢ =nf ong. (1.2)
We consider only entropic solutions to (1.1). That is, we consider solutions verifying
mu)e + (¢u))s <0 t>0, z€R (1.3)

in the sense of distributions. Throughout this paper, we use a single entropy 7.
Therefore, we do not assume that (1.3) holds for all entropy—entropy flux pairs.
We describe the precise set of hypotheses on the system in Assumption 1. The
assumptions on f and V) are fairly general.

Before describing the result in detail, we note that all Assumptions 1 are verified
by both the system of isentropic Euler equations for v > 1 and the full Euler system
(see, for instance, [21] or [7]). Therefore, the main result of this paper applies in
both cases. We recall that the isentropic Euler equation is given by

pr+ (pv)e =0 t>0, z€R,

(1.4)
(p)e + (pv*> +p")e =0 t>0, z€R

and is endowed with the physical entropy n(u) = pv?/2 + p7 /(v — 1), where u =
(p,pv). In this case, G = (0,00) x R and Gy = GU{(0,0)}, where (0,0) is the
vacuum state. Both the flux and the physical entropy are smooth functions, except
at vacuum, justifying the distinction between G and Gy. We recall that (1.4) admits
a natural decomposition of the state space into bounded invariant regions:

Vo(4) = {u = (p, pv) € R* x|
—A<wi(u)=v—cip T §w2(u):v+clpw2;1 < A}, (1.5)
V(A) = Vo(A)\{(0,0)}.

We note that each invariant region is bounded and convex, and the characteristic
fields A1 (p, pv) = v — chWTfl and A2 (p, pv) = v+ CQp’YTfl are uniformly bounded on
each invariant region.

In the case of the full Euler equation, we have

9ip + 0z (pu) =0,
i (pu) + 0. (pu® + P) = 0, (1.6)
O(pE) + O0p(puE 4+ uP) = 0,
where F = %u2 + e. The equation of state for a polytropic gas is given by
P = (y—1)pe, (L.7)
where v > 1. We consider the entropy—entropy flux pair

n(p, pu, pE) = (y = 1)plnp — plne, G(p,pu,pE) = (y — 1)pulnp — pulne,
(1.8)
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. . . E 2 .
where, in conservative variables, we have e = 2=~ — %. The natural set of states is

given by G = (0,00) Xx R x R, with Gp = G U{(S, 0)}. However, unlike the isentropic
system, the full Euler system does not admit the existence of bounded invariant
regions. Nevertheless, we can define reasonable bounded, convex state domains Vy,
for instance, by

Vo(A) ={u = (p,pv, pE) € Go | p+ |v] + |E] < A}

In this work, we further restrict our attention to solutions verifying the so-called
strong trace property.

Definition 1.1 (Strong trace property). Let u € L (Rt x R). We say that u
verifies the strong trace property if for any Lipschitzian curve t — h(t), there exists
two bounded functions u_,uy € L°(RT) such that for any T > 0

T
lim sup |u(t, h(t) +y) — uy(t)|dt
n—e Jo  ye(0,1/n)
T
= lim sup  |u(t, h(t) +y) —u_(t)|dt = 0. (1.9)

nmeeJo o ye(=1/n,0)

For convenience, we will use the notations wuy(t) = u(t,h(t)+) and u_(t) =
u(t, h(t)—). We can now precisely define the space of weak solutions considered in
this paper:

Sweak = {u € L (RT x R; V) weak solution to (1.1) and (1.2),
verifying Definition 1.1}. (1.10)

Note that this space has no smallness condition, but there is a precise boundedness
assumption since u must take values in the set Vy which has more structure. For
the prototypical systems of isentropic Euler and full Euler, this ensures that not
only the conservative variables but also the physical variables are bounded. Since
the strong trace property is weaker than BV, any BV entropic solution to (1.1) and
(1.2) belongs to Sweak-

Glimm showed in [12] the existence of global in time, small BV, entropic solutions
to (1.1) and (1.2). Bressan and Goatin [4] established uniqueness of these solutions
under the Tame Oscillation Condition, improving an earlier theorem of Bressan
and LeFloch [5]. Separately, uniqueness was also shown when the Tame Oscillation
Condition is replaced by the assumption that the trace of solutions along space-like
curves has bounded variation, see [6]. Although our main theorem, Theorem 1.2, is
stated for n x n systems, the companion paper [7] provides an important application
of it in the case of 2 x 2 systems. Together, this paper and [7] improve the known
uniqueness result for small BV solutions by removing the a priori assumptions
mentioned above. More precisely, BV solutions are stable in a larger class of weak
solutions, the class Syeak defined above, providing a BV /weak stability result.
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The main result of this paper is a precise estimate on the weight function a
needed to obtain a weighted L2-contraction property for small extremal shocks
(known as the a-contraction property). The estimate on the weight is used crucially
in [7]. Dafermos and DiPerna [9, 11] showed the weak/strong stability and unique-
ness in the case of Lipschitz solutions by studying the evolution of the quantity:

n(vlw) =n(v) —n(w) = Vn(w) - (v —w),

where w is a strong solution and v is only a weak solution. The quantity n(v|w),
defined for (v, w) € Gy x G, is called the relative entropy of v with respect to w and
is equivalent to |[v — w|?. The role of the a-contraction property is to extend the
study of the relative entropy to the case where the strong solution w is replaced
by a discontinuous traveling wave, a shock, and the weak solution v belongs to
Sweak- As we will illustrate in the following, the study of the relative entropy in this
setting is the building block upon which the general theory of weak/BV stability
and uniqueness of [7] is built. In the presence of shocks, it is necessary to introduce
shifts and weights (the a coefficients, see [22]). In particular, fixing an entropic shock
S(t,x) with left state uy and right state ugr, we compare any u € Syeax With S,
using the pseudo-distance Ey(u, S; a1, aq;h):

h(t)

oo

n(u(t, z) |uL)dx+a2/ n(u(t,z) |ug)de, (1.11)

Et(ua S;a17a2; h) = al/
h(t)

— 00
where t +— h(t) is a Lipshitz shift function, a1,as > 0 are weights, and 7 is the
strictly convex entropy for which w(¢,x) satisfies (1.3). Note that to compare a
solution u to the shock S, one needs to specify weights a; and as and a shift h.
In [14], the authors show that for appropriate choices of a1, as, and h, the functional
E; is decreasing. The weight coefficients, a; and as, are chosen depending only on
f, m, and the shock (ur,ur, o). However, the shift function h(t) depends not only
on f, n, and (ur,ur,o) but, additionally, also on the particular weak solution u
under consideration. Since the relative entropy is equivalent to |v — w|?,

Ei(u, S;a;h) = / a(t,z)|u(t,z) — S(t,x + h(t))|*dr, where
R

aft.z) = {al if @ < h(t), (1.12)

az if x> h(t)

in an appropriate sense. The variation in the weight a(t, z), determined by a; and
as, measures how far the functional Fy is from the standard L? distance. The main
result of this paper is a refinement of [14]: for any extremal shock (up,ug, o),
there are weights a1, as with as/a; — 1 ~ |ur, — ug| such that the pseudo-distance
Ei(u,S;a;h) in (1.11) satisfies the contractive estimate

Ey(u, S;a;h) < Eo(u, S;a;h) (1.13)

for any u € Syeak for some shift ¢ — h(t) depending on u. The key improvement is
the quantitative control on the variation in the weight a(¢, ), which depends on u
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only through h. The inequality (1.13) is known as the a-contraction property, with
weight function a and shift h. The control on the weight a enables the estimate (1.13)
to be related back to and used in the standard small BV framework. More precisely,
the following is the main theorem of this paper.

Theorem 1.2. Consider a system (1.1) and subset of states Vo C Go verifying all
Assumptions 1. Fiz d € V. Then there exist constants oy, ay, 5\, Ci, and € > 0,
each depending on only the state d and the system with oy < «y, such that the
following s true.

Consider any 1-shock or n-shock (ur,ur) with |up —d| + |ug — d| < € and let
so be the strength of the shock sg = |ur, — ug|. For any a1 > 0,as > 0 verifying

Ciso a1

1+ 5 < <142C1s¢ if (up,ur) is a 1-shock (1.14)
az
a1 0150 . .

1-20C1sg < —<1— if (ur,ur) is an n-shock (1.15)
a2

and for any v € Syeak, any t € [0,00), and any xo € R, there exists a Lipschitz
shift function h: [t,00) — R, with h(t) = xo, such that the following dissipation
functional verifies

azlq(u(h(t)+,t);ur) = h(t) n(u(ht)+,6)|ur)]
—arfq(u(h(t)= t);ur) = h(t) nu(h(t)= t)|ur)] <0 (1.16)
for almost all t € [t,00). Moreover, if (ur,ur) is a 1-shock, then for almost all
telt,o0),

< h(t) < inf . 1.1
<h(t) <o < ot A2(v) (1.17)

ro| >

Similarly, if (up,ur) is an n-shock, then for almost all t € [t,00),

sup Ap—1(v) < ay, < h(t) <
veBge(d)

(1.18)

o | >

This theorem implies the following a-contraction property of small extremal
shocks.

Corollary 1.3. Under the same assumptions and notations as Theorem 1.2, there
ezists a constant C' > 0, depending on d and the system, such that for any 1-shock or
n-shock (ur,ur) small enough depending on d and the system, there are amplitudes
a1, as > 0 with |Z—; —1| < Clug, —ug|, verifying the following: For any weak solution
U € Sweak, there exists a Lipschitz shift t — h(t) such that the corresponding pseudo-
distance defined as

h(t) 00
ay / n(u(t,z) | ur)de + ag / n(u(t,z) | ur)de

—00 h(t)

is a non-increasing function of time.



546 W. M. Golding, S. G. Krupa € A. F. Vasseur

As stated above, this provides an L? stability result up to the shift h, since we
have the following straightforward lemma due to the convexity of n and Taylor’s
theorem.

Lemma 1.4 (From [21, 23]). For any fized compact set V. C V, there exists
c*, ¢ > 0 such that for all (u,v) € Vo x V,

clu—v* < n(ufv) < lu —vf?. (1.19)

The constants c*,c** depend on bounds on the second derivative of n in V and on
the continuity of n on V.

The relative entropy n(u|v) and the corresponding relative entropy method were
first introduced by Dafermos [9] to show the weak/strong stability of Lipschitz
solutions to (1.1) and (1.2). The strength of this method stems from the fact that
if u is a weak solution of (1.1) and (1.2), then u verifies a full family of entropy
inequalities. Corresponding to the relative entropy n(a|b), we define ¢(a;b), the
relative entropy flux, via

q(a; b) = q(a) — q(b) = Vn(b) - (f(a) — £(b)). (1.20)

Then, for any b € V constant, each 7)(- | b) is an entropy for (1.1) and each u € Syeak
satisfies

((ul)): + (q(u; b))x <0 (1.21)

in the sense of distributions. Similar to the Kruzkov theory for scalar conservation
laws [19], (1.21) provides a full family of entropies measuring the distance of the
solution to any fixed values b in V. The main difference is that the distance is
equivalent to the square of the L? norm rather than the L' norm. As in the Kruzkov
theory, (1.21) directly implies the stability of constant solutions (by integrating
(1.21) in x). Modulating (1.21) with a smooth function (¢, ) — b(¢, z) provides the
well-known weak—strong uniqueness result.

However, when considering discontinuous functions b with shock fronts, the sit-
uation diverges significantly from that of Kruzkov’s because the L? norm is not as
well suited as the L' norm for the study of stability of shocks. Nevertheless, the
method was used by DiPerna [11] to show the uniqueness of single shocks (see also
Chen, Frid, and Li [8] for the Riemann problem of the Euler equation).

In [23], it was proposed that the relative entropy method could be used to obtain
the stability of discontinuous solutions. The guiding principle of this program is that
the L2 distance captures the stability of shock profiles quite well, although only up to
a shift, which is more sensitive to L? perturbations [21]. Leger, in [20], showed that
in the scalar case, shock profiles satisfy the a-contraction property with a; = as; the
contraction property holds in L? up to the shift ¢ — h(t). However, it was shown in
[22] that the L? contraction property is usually false for systems, necessitating the
introduction of the weights a1 and as. In [14], it is shown that for a large class of
systems, introducing the weights a; and as does indeed recover the L? contraction
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property, in the form of the a-contraction estimate (1.13). However, [14] does not
show any precise control over the weights a; and ag. This is the main improvement
of Theorem 1.2 over the existing theory, which is crucial for relating the results in
the a-contraction theory, i.e. Corollary 1.3, back to the general small BV stability
theory.

In particular, the next step in the program of BV stability is showing small BV
solutions are stable (and unique) in the larger Syeak. A BV /weak stability result of
this type is shown for 2 x 2 systems in the companion paper [7] using Theorem 1.2,
and hence most of the a-contraction theory, as a black box. As written above, since
any BV solution belongs to Syeak, the result of [7] (together with Theorem 1.2)
shows that in the case of 2 unknowns, both the Tame Oscillation Condition and the
condition of bounded variation along space-like curves are unnecessary assumptions
in the uniqueness theory for small BV solutions.

Let us sketch the method used in [7]. Consider a sequence wu, € Syeax such
that the initial values u? € L converge in L? to a small BV function u%,,. To
make the leap from a single shock to the general small BV solution ugy with initial
value uly, in [7], one replaces ugy with a piecewise constant function v,, generated
from an approximation of the initial value u%y,. The approximation v,, is obtained
using the front tracking algorithm [1, 3] but with artificial shifts on the fronts. We
apply Theorem 1.2 to the finitely many discontinuities present in v,, to obtain the
contraction inequality (1.13) when one modifies the definition of the pseudo-distance
from (1.11) to read

B (u) = /R an(t, )1t (1, 2) | 0n (£, 7)) d, (1.22)

where a,, is now piecewise constant and v,, is defined from the shift functions ¢t —
hn,j(t), each associated with a singularity j. Due to the presence of the shifts h, ;,
the function v, cannot be directly compared to ugy: In fact, v, is no longer even
a solution to (1.1). Instead, it is shown that v,, remains small in BV and uniformly
verifies the bounded variation along space-like curves condition, introduced in [6].
By controlling the weight function a, uniformly by above and by below, the a-
contraction estimate associated (1.22) implies that since both u® (initial value of
the solution u, € Syeax) and v?l converge in L? to uOBV, for every t > 0, u,(t)
also converges in L? to v(t), the limit of the associated v, (t). The function v is a
solution to (1.1) (since each u, solves (1.1)), is small BV, and satisfies the bounded
variation along space-like curves condition (since each v,, does). By the uniqueness
theorem of [6] for small BV solutions, we conclude u = v = upy. We remark that
a version of this method was employed first to show the uniqueness of solutions to
the scalar conservation laws verifying only one entropy condition [17].

To rigorously justify this argument, two important properties have to be verified
at the level of the a-contraction. The first concerns control by above and below of the
“composite weight function”, a, (¢, z). Since weights a; and as are generated for each
singularity in v,, to control the weight function when the number of singularities
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grows and n tends to infinity, it is crucial to show that the variation of the weight
can be chosen proportionally to the size of the shock wuy,ug. This is the main
difficulty tackled in this paper in (1.14) and (1.15).

The second important property concerns the functions v,: We must verify v,
stay small in BV and uniformly verify the bounded variation along space-like curves
condition. This is ensured by the front tracking method, provided that all the arti-
ficial shifts generated by the a-contraction method maintain the separation of wave
families. The method generates one artificial shift h(t) for each singularity in vy,
depending heavily on the structure of v, itself. Therefore, one must prevent the
situation in which an artificial shift allows a 1-shock to collide from the left with a
2-shock. Such a situation would cause the whole process to collapse. Following [16],
this problem is solved by (1.17) and (1.18).

In a parallel program, a similar method is developed with the goal of proving
the Bianchini—Bressan conjecture, namely the convergence from Navier—Stokes to
Euler for small BV initial datum [3]. The aim is to obtain a BV-weak stability result,
where the space Syeax is replaced by the set of weak inviscid limits of solutions to
Navier—Stokes equation. The case of a single shock (analogous to Theorem 1.2 when
working with Syeax) was proved in [13]. Although this program is similar in spirit
to that of this paper, the proofs in [13] differ greatly from those in this paper.

2. Proof Outline

The main idea behind the proof of the a-contraction property, as stated in Corol-
lary 1.3, is integrating (1.21) for b = uy, on « < h(t) and for b = ug on = > h(t).
The strong trace property of u guarantees that for almost every ¢ > 0,

dE(t)

Cdt < W (t)(ain(u—(t) |ur) — agn(ui(t) [ur))

—arq(u—(t);ur) + azq(u(t); ur). (2.1)

Without loss of generality, we consider the case where uy,, up is a 1-shock. We define
a subset of the state space V as

Il = {v 2% ‘ Z—;n(vm) — (v |ug) < o}. (2.2)

If the weak solution u does not have any discontinuity at h(t) and u(t, h(t)) = v €
OII, we have at this point a1n(v|ur) — azn(vlug) = 0, and so the coefficient in front
of A/(t) in (2.1) vanishes. In this case, the value of the right-hand side of (2.1) is
not changed if we replace h'(t) by A1 (v), the first eigenvalue of f’(v). In order for
a-contraction (2.1) to remain valid in all cases, we need that for every v € 911,
a

Deont(v) = [q(v;ur) — M (v)n(v|ur)] — é[CJ(v;UL) —A(@)n(v]uL)] <0. (2.3)
Note that this inequality, together with the set II, depends only on the system (1.1),
not on any actual solutions. If a; = ag, OIl is the hyperplane of all states v
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equidistant from wu; and ug. For n > 2, this is a large set, and for many sys-
tems, (2.3) is not verified for all v € OIl (see [22]). However, under reasonable
assumptions, it can be shown that (2.3) is valid for as/a; small enough, that is, for
states v close enough to uy,. Note that II can be rewritten as Il = {v € V | n(v|ur) <
(az/a1)n(v|ugr)}. Therefore, for small values of as/aq, II is actually a small neigh-
borhood of uy, and (2.3) holds on J1I (see [24, 14]).

Our first proposition is a significant improvement of this argument for small
shocks. We show that (2.3) holds true in all II with a1/as ~ 1+ Cysp, for a big
enough fixed constant C7, and any small enough strength s of the shock uy,,ur. To
extract this scaling, we introduce new parameters: For a fixed shock (ur,ur,orR)
with strength sg = |ur — ug|, let C' > 0 be such that a;/as = 1+ Csy. Before
stating the proposition, let us first fix some more notation. For any C' > 0, s9 > 0,
and any shock (ur,ug,opr) of strength sg, we define

N(u) := (14 Cso)n(u|ur) —n(u|ug) and

q(u) := (14 Cso)q(usur) — q(u; ug).

Note that our entropy dissipation functional, D¢ont, and set of states, II, have par-
ticularly simple forms, namely,

Deont(u) = —q(u) + M (w)f(uw) and I ={ueV|i(u) <0}, (2.5)

(2.4)

where we frequently expand the notation II to the long hand Il¢ ¢, to emphasize that
the set of states over which we will optimize D.on also depends on the parameters
C and sg. With these definitions in hand, we state our first important proposition.

Proposition 2.1. Consider a fized system and a state set V wverifying Assump-
tions 1, and d € V. Then, there is an ¢ = £(d) > 0 such that for any C; > 0 large
enough (depending only on the system, d, and €), there exists 50(Cy) > 0 small
enough and a constant K > 0, such that for any C > 0 with C1/2 < C < 2C4, any
1-shock ur,ur with |ur, — d| + |ur — d| < e, and |ur, — ur| = so with 0 < s¢9 < §o
and any u € Ilc 4, we have

Deont(u) < —Ksp. (2.6)

This proposition proves (2.3) in all of II and provides a sharp bound on the
dissipation. These two properties will be needed to show the second proposition. In
our study of (2.1), we have considered only the case where the solution u has no
discontinuity at @ = h(t). However, we frequently have situations where x = h(t)
corresponds locally to a Rankine-Hugoniot discontinuity curve of u. At such a time
t, (u(t, h(t)=), u(t, h(t)+), h(t)) corresponds to a shock (u_,u,,o+) of the system.
The second proposition ensures that (2.3) remains valid in this situation. For any
such shock (u—_,uy,04) of the system with u_,uy € V, we define

Dru(u—,uy,04) = [q(uy;ur) — oxn(us |ug)]

— (1 + Cso)lg(u—;ur) — oxn(u—|ur)]. (2.7)



550 W. M. Golding, S. G. Krupa € A. F. Vasseur

We actually only need to control this quantity for 1-shocks (and n-shocks) such
that u_ € g s, (see Sec. 4). In the other situations, the sign on the dissipation is
enforced by the choice of h(t). We state our second main proposition.

Proposition 2.2. Consider a fixed system and a state set V werifying Assump-
tions 1, and d € V. Then, there is an ¢ = £(d) > 0 such that for any Cy > 0 large
enough (depending only on the system, d, and €), there exists $o(C1) > 0 small
enough and a constant K > 0, such that for any C > 0 with C1/2 < C < 2CY, any
1-shock ur,up with lur, — d| + |ug — d| < &, and |up, — ugr| = sp with 0 < sp < 3¢
and any 1-shock (u_,us,o4) with u— € He 5, and uy € V, we have

DRH(U*7U+7U:|:) <0 (28)

If we consider a 1-shock with uy converging to u_, the shock (u_,u4,04)
converges to (u,u, A\1(u)) with v = w_, and so Dru(u_,us,0+) converges to
Dry(u,u, AM(u)) = Deont(u). This justifies the definition of Deont. It shows also
that the continuous case is included in Proposition 2.2. However, the stronger esti-
mate contained in Proposition 2.1 is necessary to prove Proposition 2.2 in the shock
case.

Important note on notation: The purpose of d and ¢ is to confine the problem
to a localized region. Once d is fixed, we select € > 0 that satisfies the following
conditions:

By.(d) CV and sup  A(uw) < inf  Ag(w). (2.9)
u€Ba.(d) u€ Bae (d)
For the remainder of this paper, we will fix d and e subject to these constraints. To
simplify the statements of intermediate lemmas, we will often omit explicit mention
of d and ¢ and assume that all constants depend on these fixed values. We will also
omit reference to the thresholds Cy and 5y, with the understanding that C; may
increase from lemma to lemma, while §; may decrease.

This gives rise to the following informal expression: “For sufficiently large C' and
sufficiently small sg, there exists a universal constant K.”

This informal expression is exactly shorthand for the mathematically precise
but rather obtuse expression: For any d € V and ¢ fixed satisfying (2.9), and for
any C; sufficiently large (depending on d, ¢, and the system), there exist $0(C1)
sufficiently small and K > 0 (depending on d, €, C1, 59, and the system) such that
for all C1/2 < C < 2Cy and all 0 < s¢ < 3.

The rest of this paper is organized as follows. The abstract assumptions on the
system together with the preliminaries are presented in Sec. 3. Then, Theorem 1.2
is proved in Sec. 4 assuming Propositions 2.1 and 2.2. Proposition 2.1 is proved in
Sec. 5. Finally, Proposition 2.2 is proved in Sec. 6.

Besides the notation already introduced, we also follow some standard notation
conventions in the rest of this paper, which will be particularly relevant in Secs. 5
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and 6:

e Throughout, C' denotes the specific parameter used in the definition of Il¢ 5, in
(2.4). Constants denoted K (often with descriptive subscripts or superscripts) will
denote universal constants in the sense that they depend only on the system (1.1),
the state d, £, and the often omitted thresholds Cy and 5. In particular, constants
called universal are NOT allowed to depended on C or sg.

e We will make heavy use of the notation a < b, which we take to mean there exists
a universal constant K, such that a < Kb. We also write a ~ b to denote a < b
and b < a.

e We also use the notation a = b+ O(g) to mean |a — b| < g, where a, b might be
tensor-valued. This notation is frequently used in conjunction with a < b.

e For A a ki-tensor and B a ko-tensor, we define A® B as the ki + ko tensor,
Wiy iy, jy iy, - When working with tensor expressions, we also adopt the Einstein
summation convention that we sum over any repeated indices.

e We use both ¢’ and Vg to denote derivatives of functions. We attempt to use ¢’
for g a vector or matrix-valued function and Vg for g a scalar-valued function.

e Finally, |- is used indiscriminately to denote finite dimensional norms on vectors,
matrices, and higher rank tensors.

3. Assumptions and Preliminaries

We first list the abstract assumptions needed on the system (1.1) and associated
state space Vy C Gy. Note that the system is defined entirely by the flux function f.

Assumption 1. We assume that the global set of states Gy is convex and that
the flux function has the following qualitative regularity on Go: f = (f1,..., fn) €
[C(Go)]™ N [CA(G)]™, where G is the interior of Gy. We assume further that the
restricted set of states V) is bounded, convex with non-empty interior V. In addition,
we assume the following;:

(a) For any u € G, f'(u) is a diagonalizable matrix with eigenvalues verifying
A(u) < Aa(u) and Ap—q1(u) < Ap(u). For i = 1,n, we denote r;(u) a unit
eigenvector associated with the eigenvalue \;(u).

(b) For any u € G, and ¢ = 1,n, we assume \;(u) - r;(u) # 0.

(c) There exists a strictly convex function n € C(Gy) N C3(G) and a function ¢q €
C(Go) N C3(G) such that

¢ =nf ong.

(d) For ug, € G, we denote s — S} (s) the 1-shock curve through uy, defined for
s > 0. We choose the parametrization such that s = |ur — Sy, (s)|. Therefore,
(ur, Sy, (s),04, (s)) is the 1-shock with the left-hand state uz and strength s.
Similarly, we define s — 577, to be the n-shock curve such that (S}, ur, oy, (s))
is the n-shock with the right-hand state ur and strength s. We assume that
these curves are defined globally in G for every uy € G and ug € G.
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(e) There exists L > 0 such that [A\;(u)| < L for any v € V and i = 1, n.

(f) (For 1-shocks) If (ur,ur) is an entropic Rankine-Hugoniot discontinuity with
shock speed o, then o > A1 (ug).

(g) (For 1-shocks) If (ur,ur) (with uy, € B.(d)) is an entropic Rankine-Hugoniot
discontinuity with shock speed o verifying

o < Ai(ur),

then upg is in the image of S} . That is, there exists su, € [0,s,,) such that
St (sup) = ur (and hence o =0, (sup))-

(h) (For n-shocks) If (uy,upr) is an entropic Rankine—Hugoniot discontinuity with
shock speed o, then o < A, (ur).

(i) (For n-shocks) If (ur,upr) (with ug € B:(d)) is an entropic Rankine-Hugoniot
discontinuity with shock speed o verifying

o> /\n(uR>a

then up is in the image of S} . That is, there exists s,, € [0,su,) such that
Sy (su,) = ur (and hence 0 = oy, (54,))-
(j) For uy € G, and for all s > 0, Ly(uy|S} (s)) > 0 (the shock “strengthens”
with s). Similarly, for ur € G, and for all s > 0, L£n(ug | S7_(s)) > 0. Moreover,
for each ur,ur € G and s > 0, Lol (5) < 0and Lom (s) > 0.

7 ods T urL ds “UR

As written in the introduction, these assumptions are classical and fairly gen-
eral. Assumption 1(a) is the hyperbolicity assumption. Note that we assume strict
hyperbolicity only in the restricted set V and only for the smallest and largest eigen-
values. Assumption 1(b) is the genuinely nonlinear condition on the i-characteristic
families but only for i = 1 and ¢ = n. Assumption 1(c) is the existence of a strictly
convex entropy. Assumption 1(d) is always valid locally. We assume it globally in G;
consequently, the system does not admit 1-shocks or n-shocks (up,ur,orr) with
uy, or up in Go \ G. Assumption 1(e) is the boundedness of the extremal eigenvalues
close to the boundary of V, where they may fail to be defined. Assumptions 1(e)
to 1(i) are related to the Liu condition but are actually weaker. Finally, Assump-
tion 1(j) says that the strength of the shock increases with s when measured by the
relative entropy. It is a natural condition verified by the Euler systems (see [21]).
Note that it has been shown in Barker, Blake, Freistiihler, and Zumbrun [2] that
stability may fail if Assumption 1(j) is replaced by the property d%n(S}LL (s)) > 0.
Assumptions 1(a) to 1(j) are now classical for the a-contraction theory (see [21]).

A comment is in order on the distinction between V and G, especially since the
companion paper, [7], specializes to 2 x 2 systems and makes no such distinction.
Indeed, for many 2 x 2 systems, bounded invariant regions provide very natural
choices for Vy with a great deal of structure. Because shock curves never leave and
re-enter invariant regions, one can simply pick Gy = Vy a bounded invariant region
above. However, we are in the more general n x n setting, where the existence of
bounded invariant regions frequently fails, even for physical systems such as the full



Sharp a-contraction estimates for small extremal shocks 553

Euler system (1.6). Because the shock curves for the full Euler system are defined
globally in G, our results apply with only mild constraints on admissible choices
of Vo.

Note that Assumptions 1(a) to 1(j) should be considered global assumptions
on the system. However, locally more is true. First, the additional regularity of f
in V, combined with the hyperbolicity of Assumption 1(a), implies we may always
find eigenvalues and eigenvectors for f’, locally satisfying stronger estimates than
Assumption 1(e).

Lemma 3.1 (From [10, p. 236]). For each 1 < i < n, there exist C* functions

i, 1, and r; satisfying the normalization conditions |I'| = |r;| =1, 1" -r; = 0 for
i# 4, and I -7; >0 and the eigenvector and eigenvalue relations:
Pu)f'(u) = M)l (u)  and £ (u)ri(u) = N (u)r;(u). (3.1)

If VAi(u) - ri(u) # 0 for each u, we may also choose ri,...,r, so that Vi (u) -
r1(u) < 0. Furthermore, if n is an entropy for f, V2n(u)r;(u) || I*(u).

Remark 3.2. From the integrability condition on the entropy 7,
VEn(w) f'(u) = (f'(w)" Vi(w),
we get V2n(u)ri(u) || I(u) (see [10, p. 243]).

Second, the regularity of f combined with Assumptions 1(a) and 1(b) implies
precise asymptotics and local estimates on the shock curves S! and S”. We will
need the full strength of these local improvements in Secs. 5 and 6 when we work
close to a single small shock.

Lemma 3.3 (From [10, pp. 263—265, Theorems 8.2.1, 8.3.1, and 8.4.2]).
For any fixed state v € V, there is an open neighborhood U of v such that for
each i = 1,n, there exist functions s, : U — R, oi(s) : (U x [0,8,)) — R and
Si(s): (Ux[0,s4)) — Vo satisfying the Rankine—Hugoniot condition, for any u € U
and any 0 < s < Sy,

F(Su(s)) = f(u) = 03, (s)(Si(s) — u) (3-2)
and the Lax admissibility criterion, for u € U and 0 < s < sy,
\i(SE(s)) < ol (s) < Ni(u). (3.3)

Furthermore, u — s, is Lipschitz, (u,s) — o (s) is C3, and (u,s) — S!(s) is C3.
Finally, o' (s) satisfies the asymptotic expansion,

u(s) = %(/\i(U) +Xi(SL(5))) + O(s%), (3-4)

ag

and similarly Si(s) satisfies the asymptotic expansion

<2
Si(s) =u+ri(u)s + ?Vri(u)ri(u) +0O(s%). (3.5)
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The following lemma is now classical and gives the entropy lost due to dissipation
at a shock (u,S!(s), 0t (s)). The version stated here is taken from [21].

Lemma 3.4 ([21, Lemma 3]). Suppose n and q are an entropy—entropy flux pair
and u,v € V, then for 1 <i <n,

4(Si(s):0) — o ()(Si(s) |v)
— g(uv) — o (s)r(u | v) + / ()] Si())dt. (3.6)

Note that Lemma 3.4 holds for any i-family, ¢ = 1,2,...,n, and not only
extremal families (1-shocks and n-shocks) — it follows from the Rankine-Hugoniot
condition.

Structural lemmas: For the remainder of this section, we adopt the conven-
tion (used again in Secs. 5 and 6) that (up,ur,oLr) is any entropic 1-shock with
ur,ur € Be(d) and ug = S, (so). We now study the geometry and basic properties
of the set II =Il¢ 4, defined in (2.5) using uy, and ug, in particular that IT inherits
convexity from the larger state space Vy. We also prove several basic estimates on
the functions 77 and ¢ (defined in (2.4)), which will be used frequently in the study
of D¢ont and Dry in Secs. 5 and 6, respectively. We begin with the main lemma for
the functions 77 and ¢ and the related basic structure of II.

Lemma 3.5. For any C >0 and so > 0, 77 and ¢ are an entropy—entropy flux pair

for the system (1.1) satisfying
Vij(u) = Cso(Vn(u) = Vn(ur)) + (Vn(ur) — Vn(ur))  and 57
V3ij(u) = CsoV2n(u). '

For any C sufficiently large and so sufficiently small, 1o g, is strictly convez,
has mon-empty interior, is compactly contained in Ba.(d), and has diameter
diam(Ilg s,) ~ C 1.

Finally, for any C sufficiently big and sy sufficiently small, and any v € ¢ 4,,

IVi(u)| < so and  V2H(u)v-v ~ Csg (3.8)
for any |v| = 1.
Proof. We show V§ = V7 f’ so that (7, ¢) is an entropy—entropy flux pair for (1.1).
Indeed, differentiating (2.4) and using Vg = V[,
Vi(u) = CsoVa(u) - (1 + Cso)Vi(ur) f'(u) + Vaur) f'(w),  (3.9)
= [CsoVn(u) — (1+ Cs0)Vn(ur) + Vn(ug)]f'(u), (3.10)
Vi(u) = CsoVn(u) — (14 Cso)Vn(ur) + Vn(ug). (3.11)
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Now, differentiating (3.11) again yields V27j(u) = CsqV?n(u). This proves j is a
strictly convex entropy for (1.1) and Eq. (3.7) holds.

Next, we note since II¢ s, = {u € V|7(u) < 0}, IIg s, is convex because 7 and
V are convex. To obtain the diameter estimate diam(Ilc s,) < C ™1, we note that if
u € ey, N Bac(d),

Cson(u|ur) <n(ulur) —n(ufur) < / (| v)dv

< sup [VI(u)llug —ur|(ju —url +u—url),  (3.12)

vEBac (d)
where 9,n(u |v) = —=V?n(u)(u—v). By Lemma 1.4 and |ug — ur| ~ so for so small,
(3.12) implies
Csolu —urp|* < so(|u —ur| + so). (3.13)

So, if |u —up| > s, (3.13) implies |u — uy| < C~!. Therefore, taking C suffi-
ciently large and then sq sufficiently small, depending only on C, say sg < C~1,
we obtain diam(Ilgs, N Be(d)) < C~!, where the constant depends only on 7,
d, and e. Because u;, € ll¢,,, for C sufficiently large and sq sufficiently small,
He,sy N Bao(d) € Beja(ur). Since Ilg s, inherits convexity from 7, we conclude
e s, is contained in B, o(ur) which is compactly contained in Ba.(d). The esti-
mates (3.8) then follow from (3.7). Since 7 is strictly convex on Ba.(d), ¢ s, is
strictly convex. Also, since 7 is continuous and 7(uz) < 0, II¢ s, contains an open
neighborhood of u,.

It remains only to show the lower bound: diam(Ilc ) = C~! for C sufficiently
large and sq sufficiently small. This will be done by showing that a sufficiently large
portion of the line L(t) = ur + tri(ur) is contained within Il s,. Since Il g, is
strictly convex and uy, € Il¢ 4, L(t) intersects O I, s, exactly twice: once for t+ > 0
and once for t~ < 0. Taylor expanding around wur,

0=7(L(t7)) = i(ur) +t~Vnlur) - ri(ur) + O(Csolt ™ [). (3.14)
Therefore, evaluating (3.7) at u = ur,
0= —n(uglur) +t~ (Vn(ur) — Vn(ur)) - ri(ur) + O(Csolt—*).  (3.15)
Since ur = ur, + sor1(ug) + O(s3), we have
n(uplur) — t~son?(ur)ri(ur) - ri(ur) = O(Csolt™ | + sit ™). (3.16)

Because ¢t~ is negative and 7 is strictly convex, both terms on the left-hand side are
positive so that rearranging terms in (3.15) yields the bound

[t~ < solt™| +Clt |2 (3.17)
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Thus, for sg sufficiently small, [t=| > C~!. So,
diam(Ig.s,) > [L(0) — L(t7)| =[] 2 O

completes the proof. O

Lemma 3.5 is fundamental to the forthcoming analysis for several reasons. First,
the estimates will be used frequently in the following. Second, Lemma 3.5 is the
first indication that sp and C play fundamentally different roles in the analysis:
C~! controls global geometric properties of the set II = Ilc g, i.e. the diameter,
while sg controls local behavior more associated with the system (1.1). This implies
that there are essentially two important length scales within II, namely the “large
scale” C~! and the “small scale” sg. In particular, even taking the size of allowable
shocks to 0, we do NOT find that Il¢ s, shrinks to the point uy. These themes are
repeated in the following three lemmas linking the geometry of IT to quantitative
estimates on 7). First, we lower bound the magnitude of V7 on OII which yields
that V7 is a non-vanishing outward normal vector on II. Second, we show that —7
is comparable to the distance to O1II globally inside II. Third, we show that C is
essentially the curvature of II.

Lemma 3.6. For C sufficiently large, so sufficiently small, and any u € 01lc 4,
IVi@)| Z so- (3.18)

V(@)
[V ()

In particular, the vector field v(w) := is the outward unit normal vector field

for Ilc s, .-

Proof. Letu € 01ll¢c, s, and take v € 91l s, such that [u—v| ~ C~1 (this is possible
with a constant independent of @ by Lemma 3.5). Then, since 7(v) = 7(u) = 0,
applying Lemma 1.4 to the entropy 7,

C'lv —al* < q(v|w) = = Vi(@) - (v - @) < [Vi@)|lv - al, (3.19)

where C’ is the constant from Lemma 1.4. Note that since the entropy 7 depends
on sp and C, so too does C’. However, a cursory look at the proof of [21,
Appendix A, Lemma 1.4] yields that the asymptotics for the constant C’ as
C'(C,s0) ~ infuene, jwl=1 V2ij(u)w - w ~ Cso by Lemma 3.5. Equation (3.19)
combined with C” ~ Csg and [a — v| ~ C~! yields the desired bound, (3.18). O

Lemma 3.7. For C sufficiently large, sy sufficiently small, and v € Il¢c 4, we have

- ﬁ(u) 5 80d<ua BHC,SO)- (320)
Proof. Since dll¢ ,, is compact, for u € Il¢ 4, there is a minimizer @ € 0ll¢ s,
satisfying

min |u—v| = |u—1al. (3.21)
ved Tl s,
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Note, since @ € 01l¢ s,, () = 0. Therefore, by the fundamental theorem of calcu-
lus, Lemma 3.5, and (3.21),

—n(u) = |n(u)] = ’ﬁ(ﬂ) + /uu Vﬁ(w)dw’ < solu — 1| = sod(u, D 1lc 4). (3.22&

Finally, the last of our structural lemmas should be read as a statement about
the curvature of II = Il¢ 5,. Although we need only a bound on the curvature in
the sense that the Lipschitz constant of the unit normal is essentially C, one can
show this in several stronger senses than we do. For instance, it is straightforward
to show that each principal curvature (with respect to the outward unit normal)
satisfies k; ~ —C'. One can show that II has positive curvature with a lower bound
in the geometric sense that all sectional curvatures are bounded below by C2. Lower
bounds on the curvature, in this sense, are the central hypotheses in several major
local-to-global type results in the comparison geometry, which reinforces our intu-
ition that C contains global information about the geometry of II.

Lemma 3.8. For v the outward unit normal on 01lc 4., for any u,w € 0llc 5,
[v(u) — v(w)| ~ Clu — w| (3.23)

for C sufficiently large and so sufficiently small.

Proof. By Lemma 3.6, v(u) = \§ZEZ§| and v € C?*(01lc,s,;S™). Therefore, we
compute

_ V%i(w)  Vij(w) @(V2i(u) Vii(w))
IVip(w)] Vi (u)[? '

By Lemmas 3.5 and 3.6, |Vij(u)| ~ sg on ¢, and |V27j(u)| < Csg. Therefore,
(3.24) implies |Vv| < C and hence |v(u) — v(w)| S Clu — w| for all C sufficiently
large and sq sufficiently small.

The lower bound is more delicate. Let us fix u € d1ll¢ s, For 0 < a < 7, define
the cone centered at u with direction —r(u) and angle « via

Vv (u) (3.24)

Pa(u) = {U)EV

cos(a) < —v(u) - L= } . (3.25)

w4l

For w € 01l¢ 5, and w ¢ P, (u), define e = (w — u) — [(w — w) - v(u)]v(u) so that e
is the projection of w — u onto the tangent space of d1l¢ 4, at u. Using v(u)-e = 0,
Lemma 3.6, and the fundamental theorem of calculus, we estimate

v(u) —v(w)lle] = fe- (v(u) —v(w))| 2 ilvﬁ(U) — Vij(w)]

= /“ e - V%i(v)dv

w
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1
RC/O e V2n(w + t(u — w))(u — w)dt

> CV*n(w)(u —w) - e.
(3.26)

It remains to lower bound the quantity A := V2n(w)(u — w) - e. We decompose A
into two parts via

A= (VEn(w)(u —w) - (u—w)) = ([(u—w)  v(w)]Vn(w)(u —w) - v(u)).
(3.27)

First, since 7 is convex, V?*n(w)(u — w) - (v — w) 2 |u — w|?. Second, since
w ¢ Pa(u)v

[(w = w) - v(W)]V2n(w)(u — w) - v(u)] < Ju—wl*cos(a). (3.28)

Therefore, we may pick ag with § — aqg sufficiently small, independent of C' and sy,
such that if w ¢ P,,(u), then A > |u — w|?> > |u — wl||e|. From (3.26), it follows
that

lv(u) —v(w)| 2 Clu—w| forue dllg,, and w ¢ Py, (u). (3.29)

It remains to prove the estimate for w € Py, (u). Fix w € P, (u). Then, we note by
the strict convexity of Il s,, the line L(t) = u + t(w — u) crosses 01l¢ 5, exactly
twice, at t = 0 and ¢ = 1. Since —v(u)- (w—u) > cos(ag)|w—wul, L is inward-pointing
at time ¢t = 0 and so must be outward pointing at time ¢t = 1. Using w € Py, (u),
we obtain

. (|Z : Z|) > cos(p). (3.30)

[v(w) = v(u)]

As ap was chosen independent of C' and sg, |v(u) — v(w)| 2 1 for all u € 01l g,
and w € P,,(w). Therefore, by Lemma 3.5, we conclude

lv(u) —v(w)| 212 Clu—w| forue dllg,, and w € Py, (u). (3.31)
Combining (3.29) and (3.31) yields the desired lower bound. m|

4. Proof of Theorem 1.2

In this section, we prove that Proposition 2.2 implies Theorem 1.2. We construct
the shift function ¢ — h(t) by solving an ODE in the Filippov sense, in the spirit
of [20, 21]. To enforce the separation of waves (1.17) and (1.18), the proof uses
the framework developed first in [15]. We specialize to the present situation and
simplify the argument.

Note that we only need to show Theorem 1.2 for a 1-shock. Theorem 1.2 follows
for an n-shock by considering the conservation law u; — f(u), = 0 because an n-
shock for the system u; + f(u), = 0 is a 1-shock for the system u; — f(u), = 0. In
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particular, (1.17) for 1-shocks provides (1.18) for n-shocks, and (1.14) for 1-shocks
provides (1.15) for n-shocks.
The proof of Theorem 1.2 for 1-shocks is split into five steps.

Step 1: Fixing the constants C; and 3j. For any d € V, pick ¢4 > 0 so that
they satisfy (2.9), which is possible by Assumption 1(a). We now pick «; so that
sup A(v) < g < inf  Ag(v). 4.1
vEB(d,2e4q) 1(v) ! vEDB(d,2eq) 2(v) (4-1)
Due to Lemma 3.5, if C' is big enough and sy is small enough, then Il¢,, C
B(d,2e4) C V for any l-shock (ur,ug,orr) such that up, ugp € Be(d) with
so = |ur,—ug|. From now on, we consider a fixed constant C; > 0 verifying this prop-
erty, Lemma 3.6, and Proposition 2.2. We then fix sy > 0 verifying Proposition 2.2
for these fixed d and Cy. Finally, we pick the ¢ (appearing in Theorem 1.2) as

e = min(8p, q). (4.2)

For any ur,upr such that |ur, —d| + |d — ur| < e, we denote sy = |ur, — ug|.
Then for any ai,as > 0 verifying (1.14), we denote C' > 0 such that

M 14 Cso. (4.3)
a2

From (1.14), C verifies C1/2 < C < 2C; and so verifies Proposition 2.2. For the

rest of the proof, the constant C' is proportional to the fixed constant C;. However,

we need to consider all possible strengths, sg, of the shock (ur,ug) for 0 < so < 3.

Step 2: Control of ¢ from 7. We remind the reader that the functionals 77 and ¢,
defined in (2.4), depend on C' (which is now proportional to C fixed) and on the 1-
shock ur, ur, especially through its strength so = |uy, —ug|. For any u € Vo\ll¢c s,
we denote d(u,dllcs,) = inf{|u —v| : v € g, }. This step is dedicated to the
proof of the following lemma.

Lemma 4.1. There exist constants 6 > 0 and C* > 0, such that for any ur,ur € V
such that |ug, — d| 4+ |ug — d| < 5o,

n(u) > dsod(u, Ol s,) for any u € Vo\llc s, (4.4)
|G(u)| < C*

n(w)|, whenever u € Vo\ll¢ s, verifies G(u) < 0. (4.5)

Proof. From Lemma 3.6, there exists ¢ > 0 (independent of uy,, ug, s, C, since 5y
and C; are now fixed), such that for any v € 0ll¢ 5,
Vij(v) - v(v) = dso.

For any u € Vp, denote @ the orthogonal projection of w on Il 4,. Since Il¢ 4, is
smooth and strictly convex, whenever u ¢ ¢ s,

u—a=lu—alp(a), |u—al = dwolc,,)
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Consider ¢(t) = n(a + t(u — u)) for t € [0, 1]. We have
¢'(0) = (u—u) - Vij(w) = dsod(u, Ollc,s,)-
Moreover, ¢ is convex, so for all 0 < ¢ < 1,
¢(t) = $(0) +t¢'(0) = 7j(a) + tdsod(u, Ol ).
Since n(a) =0 (@ € dllg s, ) for t = 1, we obtain
(u) = ¢(1) > dsod(u, g s,)-

This proves (4.4).

Since ¢ is not C* up to the boundary of V, to show (4.5), we need to consider
the two cases: u far from the boundary of ¥V and u close to the boundary of V.

First, to handle u close to the boundary of )V, we recall ¢ and f are continuous
functions on the compact set V. From the definitions (1.20) and (2.4), there exists
a constant C' > 0 such that for any u € Vo, |G(u)| < C'so. Since ¢, C Ba(ea/2),
together with (4.4), this provides (4.5) for any u € Vo\Ba(3e4/4) for C* = 4C/(Je4).

Second, to handle u far from the boundary of V, we note By(3e4/4) is at least
eq/4 far away from R"™\Vp, so f' and V7 are uniformly bounded on this ball.
Consider any u € By(3g4/4)\Ilc,s, such that ¢(u) < 0. Let @ be the orthogonal
projection of u on d1l¢ . From Proposition 2.1, together with (2.5), we have ¢(u) >
0. Therefore, for a possibly different constant C, still independent of s,

|q(w)| = —q(u) < () — q(u)

- /01 Va((1 — ) + tu) - (u — @)dt

- /0 (VA((1 —t)a + tu) f/(1 — t)u + tu)) - (u — u)dt
< Csolu — | = Csod(u, I q,). (4.6)

Together with (4.4), this provides (4.5), in this case, with C* = C'/§. Taking C* =
max(C/§,4C/(de4)) gives the result. O

Step 3: Construction of the shift. We now fix a shock uy,,ur and fix the weight
a1, as > 0. From Step 1, this corresponds to fixing s and C. From (4.3),

A={ueVy|lan(ulur) > an(u|ur)} = Vo\llc,s,,

which is a relatively open set of V. Therefore, the indicator function of this set
is lower semi-continuous function on Vy, and —14 is upper semi-continuous on
Vy. With the hypotheses of the theorem, these constants verify the hypotheses
of Proposition 2.2. Note that the smallest eigenvalue Aj(u) of f/(u) may not be
defined on Vy\V (since f is not differentiable on those points). These values of u
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correspond to the vacuum in the case of the Euler equation. By definition, we extend
this function on Vy by

A(u) =L forueVo\V,

where L is defined by Assumption 1(e). Note that this function A is still upper semi-
continuous in v on the whole domain V. We define now the velocity functional,

V(u) =M\ (u) - (C* + 2L)]]-{u€Vo|a1n(u \ uL)>a277(u|uR)}(u) for u € Vo, (47)

where C', > 01is defined in Lemma 4.1. This function is still upper semi-continuous in
u on the whole domain V. We want to solve the following ODE with discontinuous
right-hand side,

h(t) =V (u(h(t), 1)),
h(f) = Xo-

The existence of an h satisfying (4.8) in the sense of Filippov is the content of the
following lemma, originally proved in [21, Proposition 1].

(4.8)

Lemma 4.2 (Existence of Filippov flows). Let V:Vy; — R be bounded and
upper semi-continuous on Vy and continuous on U an open, full measure subset
of Vo. Let 4 € Syeak, To € R, and t € [0,00). Then, we can solve (4.8) in the
Filippov sense. That is, there exists a Lipschitz function h: [t,00) — R such that

Vinin () < h(t) < Vinax (1), (4.9)
h(a = X, (410)
Lip[h] <[Vl L (4.11)
for almost every t, where uy = u(h(t)£,t),
Vinax (t) = max(V(ut(¢)), V(u" (1)) (4.12)
and
() = {min(V(u"’(t)), V(u=(t)) if ut(t),u"(t) €U, (4.13)
=Vl Lo otherwise.
Furthermore, for almost every t,
flug) = flus) = h(uy —u_), (4.14)
g(uy) = q(u-) < h(n(us) —n(u-)), (4.15)

i.e. for almost every t, either (u_,uy, h) is an entropic shock (for the entropy n) or
Uy = U—.

Applying Lemma 4.2 to our choice of V from (4.7) with g = 0 and ¢ = 0, we
obtain our Lipshitz shift function h. Note that for any function h which is Lipschitz
continuous, the results (4.14) and (4.15) are well known when the solution v is BV.
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However, (4.14) and (4.15) are still valid under the strong trace property on u (see
[21, Lemma 6] or [21, Appendix]).

We can readily apply this lemma to our situation: Fix any 2o € R and £ € R*.
Then, applying Lemma 4.2 to our choice of V' from (4.7), we construct our Lipshitz
shift function A : [t,00) — R. To conclude the proof of Theorem 1.2, it remains only
to check (1.16) and (1.17) hold for this shift function.

Step 4: Proof of (1.16). Let us denote uy = u(h(t)+,t). We will prove (1.16) for
each fixed time ¢ by considering the four following cases (which allow for uy = u_):

Case 1. a1n(u— |ur) > aen(u— |ur) and a1n(uy |ur) > aen(us |ug),

Case 2. ain(u_ |ug) > agn(u—|ur) and a1n(uy |ur) < asn(uy |ur),

(u— (
Case 3. ain(u— |ur) < asn(u—|ur) and an(uy |ur) > asn(uy |ug),
Case 4. ayn(u— |ur) < asn(u—|ur) and a1n(uy |ur) < asn(uy |ug).

Since we need only prove (1.16) for almost every ¢, by Lemma 4.2, we may
neglect a null set of times and analyze only times for which the following dichotomy
holds:

uy(t) =u_(t) or (u_(t),uy(t),h(t)) is an entropic shock. (4.16)
Further, Lemma 4.2 implies
h(t) < max(A(uy) — (C* + 20)1y\w(ug), Ax(u—) — (C* +2L) 1y, \7(u-))
(4.17)
and for uy,u_ ¢ O and uy,u_ & Vo\V,
(D) = min(h () — (O 4+ 2L) Ly g1l ), A () = (7 4 2L) Ly ().
(4.18)
Case 1. This case corresponds to u,u_ ¢ II. In this case, due to (4.17), we have
h(t) < —(C* 4 2L) 4+ max(A (uy ), A (u_)).
Thus, by the choice of constants,

h(t) < —L < inf A (u), h(t) < —C*. (4.19)
ue Vo

The first inequality insures that (u. (t),u_(t), h(t)) cannot be an entropic shock,
since A(t) < Ai(u_(t)) contradicts Assumption 1(f). Thus, we must have uy = u_.
Define v := uy = u_. Since v ¢ II, 7j(v) > 0. Therefore, using (4.3) and the second
inequality of (4.19), we find

azlg(v;ur) — h(t) n(lugr)] — ailg(v;ur) —h(t) nlvlur)]
= az(—q(v) + h(t)ii(v)) < az(—G(v) — C*ij(v)). (4.20)
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Since as > 0, on one hand, if §(v) > 0, the right-hand side is non-positive. On the
other hand, if g(v) < 0, the choice of C* in (4.5) enforces the non-positivity. This
proves (1.16) in Case 1.

Case 2. This case corresponds to u_ ¢ II and u, € II and consequently, u_ # u.
so that (u_(t),uy(t), h(t)) is an entropic shock. As in Case 1, due to (4.17) we have

h(t) < max(A (up), A (u_) — (C* 4+ 2L)) < max(A\; (uy), —L) < Ap(ug).  (4.21)
However, this contradicts Assumption 1(f). Thus, we conclude that this case cannot
occur.

Case 3. This case corresponds to u_ € II and u, ¢ II so that once again
(u_(t),us(t),h(t)) is an entropic shock. Consequently, (4.17) implies

h(t) < max(A(ug) — (C* + 2L), A (u_)) < Ay (u_) (4.22)

and combined with Assumption 1(g), this means (u_,u4, h(t)) = (u—,uy,o+) is an
entropic 1-shock with u_ € II. From Assumption 1(d), the system 1.1 does not admit
shocks to vacuum, i.e. us € V. Therefore, from Definition 2.7 and Proposition 2.2,
we obtain
azlq(ussup) = () n(utlur)] = alg(u—sur) = h(t) nlu-|ur)]
= agDru(u_,uq,o4) <0. (4.23)
We conclude (1.16) holds in this case.

Case 4. This case corresponds to u_,u € IL. In this case, (4.17) implies

h(t) < max(Ai(uy), A1 (u_)). (4.24)

Now, suppose ﬁrs‘F that uy = u_— = v. Then, either v € 911, in which case 7(v) = 0,
or (4.18) implies h(t) = A1 (v). In either case, we find by Proposition 2.1,
azlg(v;ur) = h(t) n(vlur)] = ailg(vsur) = h(t) nlofur)]
= az(q(v) — h(t)7j(v))
= a2Deont (v) < 0.

(4.25)

Second, suppose u_ # uy so that once more we deduce from Assumption 1(g)
that (uy,u_,h(t)) is a 1-shock. We then use Proposition 2.2 as in Case 3 to con-
clude (1.16) holds. This concludes the casework.

Step 5: Proof of (1.17).
To obtain (1.17), we note that in all four cases from Step 3, either i(t) < —L or

h(t) < SUDyeric,, A1(v). Therefore, combined with (4.11), for almost all ¢ > 0,

—C* —3L < —||V]ze <h(t) < sup A (v). (4.26)

veElle, s,
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From Step 1, ¢ 5, C B(d,2¢4). Therefore, (1.17) is a consequence of (4.1) and (4.2)
with A = 2(C* + 3L).

5. Proof of Proposition 2.1
5.1. Proof sketch

In this section, we prove Proposition 2.1. For this section, we consider (ur,ur,oLR),
a single entropic 1-shock of the system (1.1) with ug = S}, (so). We moreover
assume that ur,up € B:(d) where d and ¢ are fixed satisfying (2.9). We will also
assume C' is sufficiently large and sq is sufficiently small so that Il¢ 4, is compactly
contained in Ba,(d), which is possible by Lemma 3.5. We recall that the continuous
entropy dissipation function Doyt is given by

Deont(u) = [q(u; ur) — Ar(w)n(u|ur)] — (1 + Cso)lg(u; ur) — A (u)n(u|ur)]

= —q(u) + M (u)i(u), (5.1)
where we recall ¢ and 7 are given by
M(u) = (1+ Cso)n(ulur) —n(ulur) and 52)
q(u) = (14 Cso)q(u;ur) — q(u; ur).
Finally, we recall Il¢ 5, = {u | 77(u) < 0}. Now, to prove Proposition 2.1, it suffices
to show Deont(u) < —s3 for C sufficiently large, so sufficiently small, and any
u e HC,S()'

The proof is motivated by the scalar case in which the uniform negativity in
Proposition 2.1 is computed explicitly in the case of Burgers’ equation (see [22,
pp. 9-10] and also the proof of [18, Lemma 3.3]). As the 1-characteristic field is
genuinely nonlinear (Assumption 1(b)), we expect the same dissipation rate for
ue Sk .- Therefore, the underlying principle of the proof is to localize the problem
to u € S, . We show that if the estimate holds near S, ,
the dissipation rate nearly explicitly, then the estimate holds on all of Il 5,. More
precisely, we proceed in three steps:

where we can compute

e Step 1. We characterize maxima of Dgons in ¢ s, and show that for large enough
C there is a unique maximum, u*, for Deont on Il g, .

e Step 2. We compute Dcont(u) for states u along the shock curve S&L and show
Deont(u) satisfies the entropy dissipation estimate claimed in Proposition 2.1.

e Step 3. We show that the maximum u* is sufficiently close to the shock curve
to conclude that u* also satisfies the desired estimate.

Before beginning Step 1, we note that because we have already restricted the range
of C and s¢ so that IIg s, is compactly contained within B.(d), the system is
more regular on Ilc 5, than on Vy. By the regularity assumptions on the system,
HfHC‘*(Hc,SO) < K, where K is a constant depending only on f, £, and d. Similarly,
the C® norm of each of ;, I, \;, n, and g on ¢ g, is bounded by a universal constant.
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This allows us to use classical techniques of differential and integral calculus to
analyze Deony on Ilg -

5.2. Step 1: Characterization and uniqueness of maxima

In this step, we study maxima of Dcont in the set Il¢ 5, and show that taking C
sufficiently large yields a unique maximum.

Proposition 5.1. For any C sufficiently large and so sufficiently small, there is a
unique mazimum u* of Deony on g s,. Moreover, u* is the unique point in 0Ilc s,
satisfying the condition

v(u®) | 1"(w*) and ri(u*) is outward pointing, (5.3)
where v(u) is the outward unit normal to 01lc s, .

We begin by showing that a maxima cannot occur in the interior of Il¢ g, .

Lemma 5.2. Say u is a critical point of Deont. Then, v € 0llc s, .

Proof. We compute the directional derivative of D.ont along the integral curve
emanating from v in the r; direction. Defining u(t) as the solution to the ODE,

w(t) = ri(u(t)),
u(0) = u.

(5.4)

Then, using V§ = Vi’ and ri(u(t)) is a right eigenvector of f’(u(t)) associated
with the eigenvalue A (u(t)), we compute

%Dcont(U(t)) = [=Va(u(t)) + M (u(@) Vi (u(t)) + 7(u@) VAL (u(@))] - ri(u(t))
= (w(t)[VAr(u(t)) - r1(u(t))]. (5.5)
Finally, evaluating at ¢ = 0 and recalling that u is a critical point, we obtain
7(u)[VA1(w) - r1(u)] = 0. (5.6)

Since the first characteristic field is genuinely nonlinear by Assumption 1(b), we
must have 7(u) = 0. |
Lemma 5.3. Say u* is a mazima of Deont(u) on e s,. Then,

Vi(u®) || 1M(u*) and 71 (u*) points outwards. (5.7)
Proof. By Lemma 5.2, 7(u*) = 0 and u* € 0Il¢,,. Therefore, by Lagrange’s

theorem and that V7 is a non-vanishing (by Lemma 3.6) normal vector field on
II¢ 5., we must have

VDcont (u™) || V(u™). (5.8)
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Thus, we compute
VDcont (u*) = _VQ(U*) + M\ (u*)Vﬁ(’U/*) + ﬁ(u*)V)‘l (u*)
= M (u)Vij(u®) = Vip(u®) f(u"). (5.9)

Therefore, V7(u*) must be a left eigenvector of f/(u*) and Vn(u*) is parallel to
I*(u*) for some 1 < i < n. Suppose for the sake of contradiction that Vj(u*) is
parallel to I7(u*) for some j # 1.

Case 1. Suppose I/ (u*) is inward-pointing, i.e.
Vij(u®) - 1 (u*) < 0.

Then, we define u(t) to be the integral curve in the 17 direction emanating from
u*. Thus, because I (u*) is inward pointing, u(t) € Il¢ 5, for some small amount of
time. Since u(0) = u* is a maximum of D¢on, on ¢ s, , we have

Deont (u(t)) < Deons(u*)  and %_ODcom(u(t))gO. (5.10)

Now, using (5.9), we compute

d

7| Deon(u(®)) = [Vii(u(®)) P (wE)T = f'((®)] + () VA (u(t))] - ¥ (u(?).

t=0
(5.11)

Evaluating at t = 0 and using 7j(u*) = 0 and V#j(u*) is parallel to I7(u*), we
obtain

d

L1 Deaulu(®) = D) = ([ Va0) -1 (). (5.12)
=0
However, since A1 (u*) < A;(u*) by Assumption 1(a) and I/ (u*) is inward-pointing,
we obtain
d
%Dcont(u@)) >0 <513)

and we obtain a contradiction.
Case 2. Suppose I/ (u*) is outward-pointing, i.e.
Vi(u*) - 1 (u*) > 0.

Then, reasoning as in Case 1, with I/ replaced by —I/, we take u(t) the integral
curve in the —[7 direction. Since —I’(u*) is inward-pointing and u* is a maximum
of Deont on Il sy,

Deont(u(t)) < 0. (5.14)
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As before, by explicit computation, we obtain

d

7| Deont(u(t) = = (@) = A5 ()][Vi(w") - ¥ (u")] > 0, (5.15)

t=0

again a contradiction.

Case 3. Suppose l7(u*) - Vij(u*) = 0. Then, I*(u*) - Vij(u*) = 0 for each 1 <i <n
and V7(u*) = 0, contradicting Lemma 3.6.

In all cases, we obtain a contradiction. Therefore, we conclude that V#j(u*) is par-
allel to [ (u*). Finally, for the sake of contradiction, suppose that r1(u*) is inward
pointing. As in the proof of Lemma 5.2, taking u(t) the integral curve in the direc-
tion of r; emanating from u*,

d .
4 Deona(u(t)) = Au()[VA: (u(0)) - 71 (u(1))] (5.16)
and £ Deong(u(0)) = 0. Now, if 71 (u*) is inward-pointing, since u* is a maximum
for Deong, we must have

d2

pTel Deont(u(t)) < 0. (5.17)

t=0

However, by explicit computation and using 77(u*) = 0 once again,

d2

72| Deom(u(t)) = [Vi(u?) - ri(@)][VAs (@) - ra (7). (5.18)

t=0

Since we have chosen r; to satisfy VA;(u) - 1 (u) < 0 (see Lemma 3.1), it follows
that if 1 (u*) is inward-pointing,

d2

w Dcont (U/(t)) > 0,

t=0

a contradiction. O

Lemma 5.4. Suppose u* € 01l o, satisfies
Vi(u*) | 1*(u*)  and ri(u*) points outwards. (5.19)

Then, for any C sufficiently large and sy sufficiently small, u* is a mazima for
Deont(w) on e s, . Furthermore, for any v € R™ with v =Y v;r;i(u*)

V2Deont (u*)v - v < —s0vF — COsy Zv? . (5.20)

1=2

Proof. Since 7 is an entropy for (1.1), we find that
VDeont (1) = —=Vij(u)[f'(w) — A (u)I] + 7(u) VAL (u). (5.21)
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Since (u*) = 0 and Vi(u*) is a left eigenvector for f/'(u*) with eigenvalue Ay (u*),
it follows that u* is a critical point of Dcont.

Next, we note that for u(t) the integral curve emanating from u* in the rq(u)
direction, VD¢ont(u*) = 0 implies

d? d
w t:ODCOHt(u(t)) = E t:OVDcont<u<t)) *Tr1 (u(t))
= v2Dcon‘c(u*)?"1 (U*) ‘T (U*) (522)

Therefore, we compute the left-hand side of (5.22). Since %Dcom(u(t)) =
(u(t))V A1 (u(t)) - r1(u(t)), taking a second derivative and using V#j(u*) || I*(u*)
and 7(u*) = 0 yield

d2

72| Deont(u(t)) = (Vi(u") - ri(@))(VAL(u®) - ri(u?)) ~ —so (5.23)

t=0

because r1(u*) is outward-pointing, VAq () - 71 (u) ~ —1 by Assumption 1(b), and
[V7(u)| ~ so for u € 9llg,s, by Lemma 3.6. Together, (5.22) and (5.23) imply
V2 Deont (u*)r1 (u*) - 71 (u*) < —so-
On the other hand, differentiating (5.21) once more yields the formula
V2Deont (u) = =V2i(w)[f'(w) = A (w)I] = Vij(u)[f"(u) = 1 ® Vi (u)]

+7(u) V2N (1) + V1 (1) @ Vi(u).

~—

(5.24)
Therefore, evaluating (5.24) at v* using 77(u*) = 0 and |V7j(u*)| < so by Lemma 3.5,
V2Deont (u*) = —CsoV2n(u*)[f' (u*) — A\ (u*)I] + O(s0). (5.25)

Thus, right-multiplying by r;(u*) for ¢ # 1 and left-multiplying by r;(u*), (5.25)
implies
V2 Deong (u*)ri (u*) - 5 (u*)
= —Cso(Ni(u*) = M\ (u*)) V23 (u*)ri (u*) - ri(u*) + O(so).  (5.26)
By Assumption 1(a), \;(u*) — Ap(u*) = 1. Also, since V2n(u)r;(u) || 1*(u), by

Lemma 3.1, V2n(u*)r;(u*) -rj(u*) ~ &;j, where &;; denotes the Kronecker delta. So,
for i # 1, (5.26) yields

V2 Deont (u*)ri(u*) - rj(u*) < —Csodij + O(s0)- (5.27)

Therefore, for C' sufficiently large and sy sufficiently small and any 1 < ¢ < n,
V2 Deont (u*)ri(u*) - r;(u*) < 0. We conclude (5.20) holds for any v when only one
v; is non-zero. We now prove (5.20) in general, which implies v* is a maximum.
Expanding the left-hand side of (5.20) by linearity and using (5.27), there exist
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universal constants K7, Ko, and K3 such that

V2Deont (u)v - v < —K150v7 — KoC'sg va + KgS()Z lvivi].  (5.28)
i=2 i£j
Note, for C sufficiently large, by Cauchy—Schwarz,

n

KBSO Z |U1v]| < _CSO ZU . (529)

i, 1] i=2

Also, again using Cauchy—Schwarz, for any € > 0,

K -
K3sg ; [v1v] < K3soev? + Eso 221)]2 . (5.30)
j j=

Taking e sufficiently small so that Kze < £t (5.28), (5.29), and (5.30) together

imply (5.20) for sufficiently large C' and sufficiently small s. O

Lemma 5.5. For any C sufficiently large and so sufficiently small, there exists a
unique point u* contained in 0llc s, satisfying the nonlinear system of constraints,

Vi(u*) | M(u*)  and  ri(u*) - Vij(u®) > 0. (5.31)
Proof. Say u; and us both satisfy (5.31) and define the outward unit normal
viu) = ‘gzgz;‘ Then, because 71 (u) - [*(u) > 0 by our choice of normalization in

Lemma 3.1, u; and us satisfy
v(up) =1Muy) and  v(ug) = 1 (ug). (5.32)
Therefore, by Lemma 3.8,
lur = us| Z 1M (ur) = 1 (ua)| = [v(ur) = v(us)| Z Clur — usl. (5.33)
Thus, there is a universal constant K such that for any C' sufficiently large,
Cluy — ug| < Kluy — ua|. (5.34)

For C larger than K, this can hold only if u; = us. O

Proof of Proposition 5.1. Combining Lemmas 5.2, 5.3, and 5.4, we see that
u* € He,s, is a maxima of Deone if and only if u* € 91lc s, with I*(u*) || Vij(u*)
and r1(u*) is outward-pointing. Therefore, Lemma 5.5 guarantees that there is a
unique maximum in Il¢ s, for sufficiently large C' and sufficiently small s. O

5.3. Step 2: Dissipation rate along the shock curve SiL

The main proposition of this step is the calculation of Dy along the shock curve
connecting uy, and up. The uniformly negative cubic entropy dissipation is sharp
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as it agrees with the known scalar dissipation rate (i.e. Burgers). The dissipation
rate for Burgers follows immediately from [22, pp. 9-10] and also the proof of
[18, Lemma 3.3].

Proposition 5.6. Let ug denote the intersection point of the shock curve SiL and
0llcs,. Then, for all C sufficiently large and sy sufficiently small,

Deont (1) S =55 (5.35)

To compute Deont (1), we introduce some auxiliary points and functions. First,
we define u, to be the first intersection of Il 5, with the integral curve starting
from up along the —r; direction. Second, we define u; to be the first intersection
of Il s, with the integral curve starting from wy, in the r; direction. Finally, we
define Dg(u) and Dy, (u) via

Dp(u) = q(u;ur) — M (u)n(u|ug) and (5.36)
Dp(u) = —q(usur) + A (w)n(ulur).
Thus, each of D and Dy, are roughly half of the entropy dissipation, in the sense
that, by the definition of Deont in (5.9),

Deont(u) = Dr(u) + (1 + Cso)Dpr(u). (5.37)

We now prove four lemmas: The first says that w;, u,, and uy are close to up,
so that we actually localize our picture by looking at these points. The second says
that u; and w, are close to ug in a stronger quantitative sense. The third says that
Dy (u;) and Dg(u,) are negative of order s3. The fourth says that the derivative of
the entropy dissipations at u; and u, is small in a quantitative sense.

Lemma 5.7. For all C sufficiently large and so sufficiently small,

|ug —up| + Juo — ur| + |ur — ur| ~ so. (5.38)

Proof. We first prove |uy, —u;| < sg. Indeed, say u(t) is the integral curve emanating
from uy, in the ry direction and u; = u(t;). Then,

up—ug = /0 l ri(u(t))dt

= tlrl(uL) +/O l rl(u(t)) — Tl(uL)dt

=tir1(ur) + O(t7), (5.39)

where we have used that |u(t) — ur| < t by the fundamental theorem of calculus.
Since the defining property of u; and t; is 7(w;) = 0, using Taylor’s theorem, we
obtain

0= iun) + Vi(un) - (w — ur) + 5 9%()(w —ur) - (w—ug)  (5.40)
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for some u with |u — ur| < |u; — ur|. However, because 7 is strictly convex, we
obtain the inequality

—i(ur) = Vi(ur) - (w — ur). (5.41)
Using Lemma 1.4, the relative entropy is quadratic and we compute
—ii(ur) = n(ur | ur) < lup —upl* ~ 3. (5.42)
Moreover, expanding the gradient at uz, we obtain
Vij(ur) = Vn(ur) — Vn(ur) = soV2n(ur)ri(ur) + O(s)- (5.43)

Therefore, combining the expansions (5.39), (5.42), and (5.43) with the inequality
(5.41) yields

30t1V2n(uL)r1 (ur) - ri(ur) + O(tlsg + sot%) < 3(2). (5.44)

Dividing by s and taking C sufficiently large (to guarantee ¢; is sufficiently small)
< sp. Second, we note that a

~

and sg sufficiently small, we obtain |u; — ur| < ¢
completely analogous argument proves that |u, — ur| < so. Since |ugr —ur] < so,
we also obtain |u, —ur| < sp. Finally, since ug is along the 1-shock curve connect-
ing uy, and ug, vy = SiL (to) for some 0 < ¢y < sg, where the shock curve SiL
is parametrized by arc length. It immediately follows that |ug — ur| ~ t9 < so.
It remains to prove the reverse inequalities. However, all of the reverse inequal-
ities follow from applying Lemma 3.7 at ur, —7(ur) S sod(ur,d1lcs,), where
d(ur,01Ilc s, ) denotes the distance from uy, to d1Il¢ s,. Using (5.42), we obtain the
lower bound, s < d(up,0Ilcs,). Since each of ug, w;, and u, are contained in

~

01l¢c s,, we have the desired lower bound and (5.38) follows. m|

Lemma 5.8. For all C sufficiently large and so sufficiently small,
[y — wg| + [ug — wg| + Jur — uo| < Cs3. (5.45)
Proof. First, we prove (5.45) for |ug — w|. As in Lemma 5.7, we expand uy =

S., (to) and u; = u(t;), where u(t) is the integral curve emanating from uy, in the
r1 direction. By the asymptotic expansion of SiL (t) in Lemma 3.3, we have

ug = ur, + tori(urg) + O(t%) and  u; = up, +tyr1(ug) + O(t3), (5.46)

where to ~ |ug — ur| and ¢, ~ |u; — ur|. The condition u;,up € 9llc s, yields
f(ug) = 0 = 7(u;). Therefore, expanding about ur, by Taylor’s theorem and the
computations of derivatives in Lemma 3.5, we obtain for wug

[(uo0) — [(ur) + |uo — ur|Vij(ur) - r1(ur)]] S Csoluo —url®.  (5.47)
Now, since |ug — ur| = to + O(t3), we obtain

I[7(ur) + toVii(ur) - r1(ur)]] < Csot?. (5.48)
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Using the same computation for u; and subtracting from (5.48), we obtain
|(to — t)[r1 (ur) - Vir(ur)]| S Csoltg + 7). (5.49)
Using the computation of Vij(ur) in (5.43) and the localization result of Lemma 5.7,
lto —ti| SO+ t7) S Csp. (5.50)

Thus, we conclude that

luo — w| S [(to — t)r1(ur)| + Ot + t7) S Csp. (5.51)
Second, expanding ug and wu, in terms of up gives a completely analogous proof
that |u, —ug| < Cs3. m|
Lemma 5.9. For C sufficiently large, and sy sufficiently small, we have estimates,
Dr(u,) < —sp and Dp(w) < —sp. (5.52)
Proof. Let u(t) be the integral curve emanating from wy, in the direction of r;.

Then, we note VA (u) -7 (u) < —1 by Assumption 1(b) and the choice of eigenvec-
tors in Lemma 3.1. Therefore, we estimate Dy, along u(t) using Lemma 1.4,

%DL(u(t)) = —[Vn(u(t)) = Vn(up)][f (u(t)) — A (w)I] - ri(u(t))
+n(ut) [ur) VA (u(t)) - ri(u(t))
= n(u(t) |ur) VA (u(t)) - 1 (u(t))
S —lu(t) —ur S % (5.53)
Now, by the fundamental theorem of calculus and Dy (ur) = 0, we estimate Dy, at

= u(tl),

Do) = [ L pu(utmyar £~ < st (5.54)

since t; is comparable to |u; —uy,|, which is lower bounded by Lemma 5.7. The same
argument applied to Dg and u, completes the proof. O

Lemma 5.10. For all C' sufficiently large and sy sufficiently small, we have
IVDg(u,)| S s2 and |VDp(w)| < s2. (5.55)
Moreover,

IV2Dgp(u)| <1 and |V2Dp(u)| < 1. (5.56)

Proof. We begin by computing VD, as
VDL (u) = =(Vn(u) = Vi(up))[f () = A ()] + VA (u)n(u ). (5.57)
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Now, we note that the second term is sufficiently small as n(u|ur) < |u — ur|?* by
Lemma 1.4. However, for the first term, |Vn(u) — Vn(ur)| ~ |u — ug|. Thus, we
need to expand this term more carefully and use cancellation from f/(u) — Ay (u)
applied to the r; terms. In particular, using that V2n(ur)r (uz) || 1*(ur),

VD (uo)| S (Juo — ur|Vn(ur)ri(ur) + OJuo — ur|*)[f (uo) — A1 (uo)1]
— VA (uo)n(uo | ur)
S fuo = url® + [uo — ur|V2n(ur)r(ur) [ (uo) — A (uo)l]
< up — uL|2 < 3% (5.58)

Once again, a completely analogous computation proves (5.55) for Dg. It remains
only to verify the second derivative estimates (5.56) at an arbitrary state u € Il g, .
For Dy, we compute

V2Dp(u) = =V2n(u)[f'(u) = A (u)I]
= (Vn(u) = Vn(up))[f"(u) = T @ VA (u)]
+ V2 (w)n(u | ur) + VA1 (u) @[V(u) — Vn(ug)], (5.59)

where we are vague about the meaning of some tensor multiplications, as we do not
need precise structure for our estimate. Indeed, since |u —ur| < C1 for u € e 5,
and n(ulur) < |u — ur| by Lemma 1.4, each term is bounded by either C~! or 1
up to a constant depending only on the system. So, for C sufficiently large, (5.56)
follows for Dy, and an analogous argument yields (5.56) for Dpg. m|

Proof of Proposition 5.6. Pick C sufficiently large and s sufficiently small so
that

Dg(u,) < 758 and D (u;) < 73‘8’

~

and moreover

|y — ug| + Jug — ug| < ng and |VDpg(u,)| < sg and |VDp(uw)| < sg.

~

Thus, at ug, we have
Dy (uo) = Dr(ur) + VDr(w)(w — uo) + OV D || oo (r1c.. ) lur — o)
< —sp+ Csy+ C?sy < —sp (5.60)

for C sufficiently large and s sufficiently small and similarly for Dg(ug). We con-
clude, using Deont = Dr, + (1 + Cso)Drg,

Deont(u0) = Dr(ug) + (14 Cs0)Dr(ug) S —s5 — Csg < —s5. (5.61)
O
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5.4. Step 3: Comparison of maxrima to shock curve

Proposition 5.11. Let C' be sufficiently big and so sufficiently small so that
Deont(u) has a unique mazimum, u*, in Ilc s, and ug as in Proposition 5.6. Then,
for all C sufficiently large and sy sufficiently small, |lug — u*| < & and for any
v € R™ with [v| =1,

| V2 Deont (u*)v - v| < Cs. (5.62)

Proof. We have shown a lower bound on |V2Dcom| in Lemma 5.4. Here we prove
the corresponding upper bound (5.62). Indeed, recalling the formula for V2 Doyt in
(5.24) and evaluating at u*,

V2 Deont (u*) = =V2(u")[f'(u”) = A ()] = Vij(u™)[f" (u") = 1@ VA (u”)]
+ VA (u) @ Vi(u™). (5.63)
Therefore, taking norms and using |V (u)| < so and [V27j(u)| < Cso by Lemma 3.5
give (5.62) as desired.
It remains to prove |ug — u*| < C~1sg. We recall that v(u) denotes the outward

unit normal on ¢ s,. Since we a priori only know that u* € 9Il¢ 5, with v(u*) =
I*(u*), we use v at ug and u* as a proxy to compare ug and u*, which is justified

by Lemma 3.8. In particular, we first compute v = % at ug. As computed in
Lemma 3.5,

Vii(uo) = Cso(Vn(uo) = Vn(ur)) + (Vn(ur) — Vn(ur)). (5.64)
We expand carefully about uj using ug = ur + |ug — ug|ri(ur) + O(s?) and

V2n(ur)ri(ur) = Kl*(ug) for some K ~ 1 to obtain
Vi(ug) = Cso(c*ug — up|l*(ug) + O(s2)) + ¢*sol* (ur) + O(s2)
= K (s + Csolup — ur|)l*(ur) + O(s2 + Csd). (5.65)

Thus, for by := K(so + Csolu — url|), we have by ~ so and Vij(ug) = b1l*(ur) +
O(s?). Therefore, we bound v(ug) — I*(ug) using the preceding computations, |ug —
ur| < so by Lemma 5.7, and |V7(ug)| 2 so by Lemma 3.6:

v (uo) — 1" (uo)|

Vii(uo) — [Vi(uo)|I* (uo)
Vi (uo)|

[Vii(uo) — bal (ur)] + b [I* (ur) — I (uo)] + [by — [Vj(uo)[]1" (uo)
[Vii(uo)|

)] ~ %0 (5.66)
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Next, we note that since u* is a maximum, by Proposition 5.1, v(u*) || I*(u*) and
r1(u*) is outward-pointing. Since r1(u*) - v(u*) > 0, v(u*) || I*(u*), and I*(u*) -
r1(u*) > 0, it follows I*(u*) = v(u*). Also, by Lemma 3.8,

[v(u®) — vug)| ~ Clu* — ug (5.67)
for C sufficiently large. Finally, we conclude by combining (5.66) and (5.67):
ju* = uo| £ C7Hu(u") — v(uo)|
S O () = U (u”)] + |1 (") = 1 (uo)| + [1' (uo) — v(uo)])
S Clso (5.68)

for sufficiently large C' and sufficiently small sg. O

5.5. Proof of Proposition 2.1

Lemma 5.12. For any u € llc ,,, C sufficiently large, and so sufficiently small,

| V3 Deont (1)| < Csg. (5.69)

Proof. Using VG = ViV f and the product rule, we differentiate D.ont repeatedly
to obtain

V3Deons = —CsoV[V2n(f — MI)] = VAV[f" + VN @ I] — V2i[f" + VI @ 1]
+ VA ® Vi) 4+ 2V2A ® Vij + V3, (5.70)

where because we will not need to exploit any precise tensor structure, we have been
rather vague on the meaning of the various products. Since |V37j(u)| + |V27(u)| <
Csp and |V7(u)] < so, by Lemma 3.5, each term containing a derivative of 7
satisfies (5.69). Finally, the only term not containing a derivative of 7 is bounded
via Lemmas 3.7 and 3.5 as

17(w) V3 (u)] < sod(u, 0Tlcsy) S C L. (5.7

Proof of Proposition 2.1. First, pick C sufficiently large and s¢ sufficiently small
50 that Dcont(u) has a unique maximum u* in II¢ s, and Propositions 5.1, 5.6,
and 5.11 hold. Then, we note that for u € Il¢ g,

50

¢’ (5.72)
IVZDeont (u*)| < Csog and |V Deont (u)| < Cso,

Deont(uo) < —sg and |up —u*| <

where all implicit constants depend only on the system. Therefore, since u* is a
local maximum of Deont for v € Il 4, the first order term in the expansion about
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u* disappears and by Taylor’s theorem and (5.72),
* 1 * * *
Deont(u*) = Deont(uo) — §v2Dcont<u )(u* = ug) - (u* — up)

+ O(|V3Dcont||u0 - U*|3)

s 50
< -0+ ot (5.73)

where all of the implicit constants depend only on the system. Taking C sufficiently
large to dominate the implicit constants in (5.73), we obtain the existence of K,
depending only on the system, such that for C sufficiently large and s( sufficiently
small, for any v € Il¢ 4,

Dcont(“) < Dcont<u*) < _ng (574)
O

6. Proof of Proposition 2.2
6.1. Proof sketch

In this section, we prove Proposition 2.2. We find that the full entropy dissipa-
tion function, Dry, defined in (2.7), is unwieldy and hides important structural
information by comparing the fixed shock (ur,upr,orr) to an unbounded family
of entropic shocks (u, S}(s), 0, (s)). We instead use Assumption 1(j) to introduce a
single shock, (u,u™,04), referred to in the following as the maximal shock, which
we will use to control the others. More precisely, for each state u € Il¢ 5,, we define
u™T as the unique state such that (u,u™%, o) is an entropic 1-shock and

Dax(u) := m>aa( DRH(U,Si(S),O'}L(S)) = Dru(u,ut, o). (6.1)

This definition should look suspicious for a number of reasons, not the least of which,
we are taking a maximum over an unbounded set. Moreover, we are attempting to
compare (ur,ur,o+) to a global family of shocks which need not stay near Il g,
nor even in V. Nevertheless, this will be justified in the following (see Lemma 6.1).
Proposition 2.2 essentially follows by decomposing Il¢ s, into several sets and show-
ing that Dy ax is negative on each set. To better structure the proof, we divide the
proof into two parts based on the characteristic length scale of sets in each part:

Part 1. Localization from the global length scale, C~1, on Ilc,s, to a set Rc g,
containing uy, of length scale s.
Part 2. Analysis (inside Rc¢ s,) at the critical length scale sq.

Within Part 1, we further decompose our proof into two steps. For approximate
or pictorial definitions of Q¢ s, and R¢ s,, see Fig. 1. For rigorous definitions, see
variously (6.12) and (6.41).

e Step 1.1. First, we show that Dyax(u) < 0 for states u outside the set Q¢ s,
with maximal shock (u,ut, 04 ) and ut outside Il 5,. We use that in this regime,
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QC,SD
e N

Fig. 1. This is an idealized portrait of the two-dimensional situation, where we imagine r1 is the
horizontal direction, ro is the vertical direction, and 1 and 72 are almost orthogonal. For Part
1, we divide Ilg s, into three regimes: states inside R¢ s, which are very close to uy and are
handled in Part 2; states inside Q¢,s, but outside Rc s, which are close to ur,, but sufficiently
far in the interior of Il s ; and states in the remainder of Ilg -

u is sufficiently far from u*, the unique maximum of the continuous entropy
dissipation, Deont, to gain an improved estimate of Dcont(u). The assumption
that u™ ¢ Ilc 4, should be interpreted as u is close (to order sg) to the boundary
of ¢ s, (see Lemma 6.10 for a precise statement).

e Step 1.2. Second, we show that Dpax(u) < 0 for states u inside Q¢ s, but
outside R¢ s, and remove the assumption that ut must lie outside II¢,s,. This
step should be interpreted as showing Dpax(u) < 0 for u farther than order s
from the boundary of Il¢ g, .

Similarly, within Part 2, we decompose our proof into four steps. For approximate
or pictorial definitions of the referenced sets, see Fig. 2. For rigorous definitions, see
variously (6.61), (6.58), and (6.112).

e Step 2.1. First, we show that Dy,.x(u) < 0 for states u in the set ngfs[). In this
regime, the proof follows from a comparison to u*, the global maximum of Dcgpy

on HC,so .
R%So Raso R%,So RE:SO
~C %80 ur,
~ S0 ~ 8p ~ 8o ~ S0

Fig. 2. Again, this is an idealization of the two-dimensional picture, in which the horizontal direc-
tion is 71 and the vertical direction is 2. In Part 2, we subdivide the region R¢ s, into four regions,

ngfso, R%,SO, Raso, and RE,SO, each of width ~ sg. Each region is then treated individually.
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e Step 2.2. Second, we show Dpax(u) < 0 for states u in the set ROC_’SO. We prove
that in this regime, uy, is a local maximum for Dpyayx with Dyax(ur) = 0.

e Step 2.3. Third, we show that Dyax(u) < 0 for states u in the sets RasO and
R¢ 4+ by ruling out critical points of Dyax. In essence, we take C' sufficiently
large to make the set R¢ s, narrow enough that the problem becomes sufficiently
one-dimensional and analogous to the scalar case. More precisely, we show that
any critical point of Dyay in the interior of Re s, must satisfy ug —u™ ~ u—up,.
However, we show, via an ODE argument, that for states u € R&SO, ur —ut
and u — uy, point in essentially opposite directions. The proof in Rc 4, replaces
the ordering argument in RasO with a magnitude based one. In particular, using
an ODE argument, we show |u —ur| > |ug —u*| for u € R, which again
precludes the existence of critical points.

Before beginning Part 1, we justify the definitions of Dy.x and the maximal
shock (u,u™(u), 04 (u)) stated above in (6.1) and also that for appropriate C and s,
the set of possible maximal shocks, M = {u™ |u € II¢ 4, }, is compactly contained
in Bao(d). To this end, in the following lemma, we show that the function

s+ F(s,u) := Dru(u,Sk(s),0l(s)) (6.2)

has a unique maximum s*(u) with s*(u) < C_1/2sé/2. The existence justifies the
maximum over the unbounded set in (6.1) while the uniqueness justifies the defini-
tion of wt. The estimate justifies that M is compactly contained in Bac(d) where
f. m, q, \i, 75, and [* are more regular. The additional regularity allows us to apply
the classical techniques of calculus as in the proof of Proposition 2.1.

Lemma 6.1. The function s — F(s,u) has a unique maximum, say s*, for s €
[0,00). Furthermore, s* is uniquely defined by the equation

n(u]S,(s")) = —ij(u). (6.3)
Moreover, for ut = SL(s*), |u —ut| < C_1/2sé/2 so that for C' sufficiently large

and so sufficiently small, {u™ |u € o5, } is compactly contained in Ba(d).

Proof. We expand F(s,u) = Dru(u,Sk(s),0l(s)) as

u

Fls,u) = | qlusur) — ob(s)n(u | ug) + / 6L ()| SL())dt

— (1 + Cso)la(usur) — oy (s)n(u|u)], (6.4)
where we have used Lemma 3.4 with v = ugp = S, (s0). Taking a derivative in s,
we obtain
ar

= -0

I w(8)n(ulur) + &y (s)n(u] Su(s)) + (1 + Cso)dy, (s)n(ulur). (6.5)
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Since ¢*(s) < 0 for all s > 0 by Assumption 1(j), we obtain F(s) is decreasing in s
if and only if

(1 + Cso)n(ulur) —n(ulur) +n(u] Sy(s) = i(w) + n(u|Su(s)) > 0. (6.6)
Define g(s) as

9(s) = (u) +n(u] S;(s)). (6.7)
Certainly, g(0) = 7(u) < 0. Moreover, using Assumption 1(j) again, for any s > 0,

d

¢(s) = (| Sk(s) > 0. (6.8)

Therefore, we conclude there is at most one point s* such that g(s*) = 0.

Let us now show there is at least one. Indeed, we see 77(ur,) = n(ur |ug) so that
g(s0) =0 at u = ur and s*(ur) = so. We will perturb this result to show existence
for u # ur. Now, because u +— Sl(s) is a continuous function, there is a universal
§ such that for C sufficiently big and sq sufficiently small, S!(s) C Bac(d) for each
0 < s < ¢ and each u € Il¢ 5,. Then, Taylor expanding about wuy, yields

n(u] Su(s)) = nlur |8y, (8) + O(lu—url) and 7(u) = fur) + O(solu — ul).
(6.9)
Therefore, using the fundamental theorem of calculus,
n(u] 84(8)) +7(u) = nlur | Sy, (8)) +7i(ur) + O(C™" + C ™ so)

5
= (s |84, (o)) +7(0) + [ ot | 8L, 0) a0

é
n(ur | Sy, (t)dt +O(C™)

=

Il
T

s0

Y

2 ol i, [0SO +OO e
Since the first term is positive, we have for C' sufficiently large (and sg sufficiently
small), n(u|Sk(8)) + f(u) > 0 for each u € Ilgs,. This concludes the proof of
existence of s*(u) and that s*(u) < 4.

By the above discussion, we note that s* is the unique global maximum for s —
F(s,u) and is completely characterized by g(s*) = 0. Finally, we let ut = S}(s*)
and use g(s*) = 0, Lemmas 1.4, 3.7, and 3.5 to estimate |u — u™| via

lu—u™ [ S p(ulu™) = —i(u) S sod(u, d1lc,s,) S O 'so. (6.11)

Since Il¢ s, is compactly contained in Ba.(d) for appropriate C' and sg, so too is
the set of possible states u™. O
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6.2. Step 1.1: Shocks outside Qc,s,

In this step, we show the existence of the set Q¢ s, of “width” in the r; for ¢ # 1
directions of order C~/3sy and “height” in the 7 direction of order C'/®sy such
that outside of Q¢ s, but inside of I¢ s, , the continuous entropy dissipation Deont (w)
satisfies an improved uniform estimate. In particular, this allows us to handle the
maximal entropy dissipation, Dmax(u) outside Q¢ s, -

More precisely, take C' sufficiently large and sg sufficiently small such that D¢ont
has a unique maximum u* on Il¢ 4,. Define the family of closed cylinders based at

* .
u, QC,Sov via

n
QC,SO =4 pP= ' — Z biri(U*) pE HC,soa
=1

1/2

by < CY0s0, and | > |bif? <O Psgp. (6.12)

i=2
The main proposition of this step is the following:

Proposition 6.2. For any C' sufficiently large and sg sufficiently small, suppose u
satisfies

u € HC,SO\QC,SO and " = Svi(s*(u)) ¢ HC780'
Then, the mazimal entropy dissipation satisfies
Dinax (1) < —sp. (6.13)

The main ingredient in the proof of Proposition 6.2 is the following improvement
of Proposition 2.1 outside Q¢,s,-

Proposition 6.3. For any C sufficiently large, so sufficiently small (depending on
), and for any u such that

u € Hcyso\QC,Sov
the continuous entropy dissipation satisfies
Dcont(u) S, 701/35% (614)

Before beginning the proof of Proposition 6.3, we introduce two auxiliary sets
related to Q¢ s,. We say the top of Q¢ s, is the set

Tosy =4p=u"— Zbﬂ“i(U*) PE Qs |b1] =C 050 . (6.15)
i=1



Sharp a-contraction estimates for small extremal shocks 581

Similarly, the bottom of Q¢ s, is the set

Bo,s, = 0llc,sy N Qo,s- (6.16)

Proof of Proposition 6.3. We note that by Lemma 5.2, Dot does not have any
critical points in the interior of Il¢ 5,. Therefore, it suffices to prove the improved
estimate on the boundary of the region Il¢ 4, \Qc,s,, that is, on

6HC780\BC,80 U aQC,so\BC,so- (617)

We first estimate Deony o0 0 Qc,s, \Bc,s, using the precise estimates on Deon near
u* proved in Proposition 2.1. O

Lemma 6.4. For any C sufficiently large, and any so sufficiently small, the con-
tinuous entropy dissipation, Dcont, satisfies the improved estimate

Deont (1) S —CY/3s3 (6.18)
for any state u in the set O Qc,s, \Bc,sp-
Proof. By Proposition 2.1 and Lemmas 5.4 and 5.12, we have for sufficiently large
C' and sufficiently small sg, and for any v = Y v;r; (u*),
Deont(u*) < —s8 and  VDeont(u*) =0 and ||V Deont]| Lo (To..y) S Cs0
and  V?Deont(u*)v - v < —sglv1]? — Cso Z |vg]?.

- (6.19)

Then, using the definition of the cylinder Q¢ s,, we split d Q¢,s, \Bc,s, into the top,
Tc.s,, and the sides, 9 Qc,s, \(Tc,so U Bcs, ). First, for 0 Qc,s, \(Tc,so U Bc,sg ), We
have an expansion of u as

1/2

u=u"+byri(u*)+ Z bir1(u*), where Z |b;|? =C 135, (6.20)
i=2 i=2

Next, we expand Dcont (1) about w* and use Taylor’s theorem, (6.19), and (6.20) to
conclude for any u € 9 Qc¢,s,\(Lc,s, U Be,sy )s

Deont(u) < —sg — (Cso)(C_1/330)2 + (Cso)(Cl/Gso)?’ < —01/358. (6.21)

Now, for u € T, 5,, we have an expansion of u as

u=u"+byry(u”) + Zbirl(u*), where |by| = CV/%s. (6.22)
i=2
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Again, we expand Deont(u) about u* and use Taylor’s theorem, (6.19), and (6.22)
to conclude for any v € T¢ 4,

Deont (1) S =58 — (50)(s0CY %)% 4 (Cs)(CY/050)° < —CV/3s3, (6.23)

provided sg is taken sufficiently small so that so < C~7/6. |

We now begin to prove the improved estimate on 0Ilc s,\Bc,s, by showing
that there is a unique local maximum @ for Deony, on 01lc s, \Bc,s,- We will need
an auxiliary lemma from Riemannian geometry on the surjectivity of the Gauss
map. In our case, the following lemma has an elementary proof.

Lemma 6.5. Let M be a bounded, open, connected subset of R™ with C' boundary
OM. Then, for any fived unit vector v € R"™, there is a point p € O M such that
v(p) =wv for v the outward unit normal.

Proof. Fix v € R" a unit vector and define the map f: M — R via f(u) = u - v.
Then, certainly f is continuous and obtains a maximum on M, say p*. However,
since Vf(p*) = v # 0, it follows that p* € 9 M. Now, by the Lagrange multiplier
method, it follows that Vf(p*) || v(p*). Hence, by normalization considerations,
v = +v(p*). Since p* is a maximum, differentiating f along a curve v approaching
v from the interior of M, we see that v must be outward pointing at p*. Therefore,
v =v(p*). O

Lemma 6.6. For any C sufficiently large, and any so sufficiently small, there is a
unique point & on 0llc s, such that
1Y@) || Vi(a) and ri(a@) is inward pointing. (6.24)
Moreover, 4 is the unique local mazimum for Deony on 0Tlc s, \Bc,s, -
Proof. We note that these conditions are equivalent to saying that there is a unique
point @ € 01l¢ 5, satisfying the nonlinear system of equations
v(@) = —1*(a). (6.25)

Applying Lemma 6.5 to II¢ s, and using that Lemma 3.8 implies p +— v(p) is
injective for sufficiently large C, for any p € 91l s, there is a unique point f(p) €
0ll¢ s, such that

v(f(p) = ~1'(p)- (6.26)

Thus, we seek a fixed point of the map p — f(p). However, for C sufficiently large,
again using Lemma 3.8, for all p1,ps € 01lc s,

[f(p1) = f(p2)] S C7Hu(f(p1) — v(f(p2))]
= C 7' (p1) — 1 (p2)|
S O pr = pal. (6.27)
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So, for C' sufficiently large to dominate the implicit constants, p — f(p) is a contrac-
tion on JIl¢ 5, and the contraction mapping principle yields a unique fixed point
to the map p — f(p).

By the proof of Proposition 5.1, a point p is a local maximum for Dyt on
Ole s, if and only if I*(p) | VA(p). Equivalently, v(p) = £i'(p) so that by the
above argument there are exactly two such points for sufficiently large C', namely
@, which satisfies v(#) = —I*(@), and u*, which satisfies v(u*) = [*(u*). It remains
only to show 4 ¢ Bcs,. Indeed, we see that

" —a Z O p(u™) —v(@)| = C7HIH (u*) + (@)l
=207 4+ O(C7 u* —a|) =207 + O(C?). (6.28)
Therefore, for C sufficiently large, we find |u* — | = C~* so that certainly only one

of u* or 4 lies in B s,. As u* € B s,, by definition, it follows that @ is the unique
local maximum for Deone on 0Ile 50\ Be,s, - O

To finish the proof of Proposition 6.3 on 0Il¢ s,\Bc,s,, it suffices to show the
improved estimate of Dcon holds at .

Lemma 6.7. The point u satisfies the estimate
~ S
Dcont(u) S, 0

2
for all C' sufficiently big and sg sufficiently small.

(6.29)

Proof. Let u(t) be the integral curve in the r; direction emanating from @ and let
t > 0 the maximal time such that u(t) € ¢, for all 0 < ¢ < . Then, for any
0 <t < £, using the explicit computation of V Deont (u(t)) 71 (u(t)) (see Lemma 5.2),
Proposition 2.1, and Assumption 1(b),

Deons (1) = Deon (u(t)) — /0 V Deons (u(s)) - 71.(u(s))ds
< —sp */0 7(u(s))[VA1(u(s)) - r1(u(s))]ds

< fsg+/0 i(u(s))ds, (6.30)

where all implicit constants are independent of t. Next, since |V7i(@)| ~ so by
Lemma 3.6 and v(@) = —I*(#) by Lemma 6.6, by the choice of normalization of
eigenvectors in Lemma 3.1,

Vﬁ(ﬁ) . 7‘1(’11) ~ —S50. (631)

Moreover, expanding V7j(u) - 1 (u) about @ by Taylor’s theorem, there is a point v
with |v — @] < |u — @l such that

Vi(u) - ri(u) = Vij(a) - r1 (@) + [V2i(v)r (v) + Ve () V()] - (v —a@).  (6.32)
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Therefore, we estimate
Vi(u) - ri(u) S —so + Csolu — 1. (6.33)
So, picking u so that |u — 4| < K;C~!, there is a universal constant Ko > 0 such
that
_ Ks
Vn(u) -rl(u) S (K1K2 — K2)80 S —780 (634)

for sufficiently small K, where K;j is chosen small independent of C' and sg.
Since |u(t) — @] ~ t, there is a universal constant K3 such that for t < K3C~1,
lu(t) — | < K;C~! and for such ¢,

(u(t)) = /Ot Vii(u(s)) - r1(u(s))ds < —sot- (6.35)

Finally, combining (6.30) and (6.35), with t = K3C~!, we see that
Deont(a) $ =55 + /Ot i(u(s))ds < —s5— C™?s0 S —C™?s0 (6.36)
for sufficiently large C' and sufficiently small sg. O

Proof of Proposition 6.2. Let Q¢ s, be defined as in (6.12). Recall the notation,
F(s,u) = Dru(u,SL(s),cl(s)), used in the proof of Lemma 6.1. By the fundamental
theorem of calculus (in s), F satisfies the relation

F(s,u) = Deont(u) + /O & (8)[71 () + n(u| S, (t))]dt. (6.37)

By Lemma 6.1, it suffices to estimate, F(s*,u), where s*(u) is the unique maxi-
mum of s — F(s,u) and u™ = S.(s*). Using the improved estimate of Deont in
Proposition 6.3 and ¢ ~ —1 by Lemmas 3.3, 3.7, and 1.4, we obtain

5

Fls*u) < V33— / i) + (s SL()]de

S0 — [ = SO — sodw,0Tic,, )t
0

< —OV3s3 — (57)3 + so5*d(u, DT, ). (6.38)

Next, since u™ ¢ ¢ s, by assumption, d(u,d1lc ) S Ju—ut| < s*. Also, as s* is
completely characterized by the equation —7j(u) = n(u|u™), we have

(57 < lu—u P So(ulu®) = —i(u) < sod(u, 0Tlc,s,) < s08”,  (6.39)
which yields d(u, 0Il¢c s,) S s* S so. Combined with (6.38), we obtain
Diax(u) = F(s*,u) < —sg, (6.40)

provided C is sufficiently large and sq is sufficiently small. O
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6.3. Step 1.2: Shocks inside Qc,s, but outside Rc s,

In this step, we show Dpax(u) < 0 except on possibly a region localized about
ur, to order so. In particular, we improve Proposition 6.2 in two ways: First, we
remove the assumption that ut ¢ Ilc . Second, we show that there is a uni-
versal constant K, such that for u € Q¢ s, with |[u* — u| > Kp,80, Dmax(u) < 0.
Although these improvements look rather disconnected, we will show ut € Il¢ 4, for
d(u,01lc,s,) 2 so, which implies this step can be rephrased as showing Dyax(u) < 0
for d(u,01lc s,) 2 so. In other words, in this step, we handle states far in the interior
of II¢ 5,- More precisely, we define the family of cylinders, Rc s, (K3), as

Reso (Kn) = u=u"— Zbiri(u*) u € e sy, [b1] < Knso,
i=1

1/2
n

> bl <C Vg5, (6.41)
=2

Stated in this notation, the main proposition of this step is the following:

Proposition 6.8. There is a K;, > 0 depending only on the system such that for
any C sufficiently large and so sufficiently small and any u € o o \Rc,s, (Kp),

Dinax(u) < —sp. (6.42)

We first prove the following lemma, which bounds the entropy dissipation along
the maximal shock (u,u™,o4) for u,u™ € Ue sy by Deont(u™).

Lemma 6.9. Suppose that the mazimal shock (u,u™, o) satisfies u,ut € g .
Then,

Dru (u, u+7 Ui) < Deont (u+) (643)
Moreover, for C sufficiently large and so sufficiently small,
Dru(u,u™,04) < Deont(ut) < —38. (6.44)

Proof. First, by the entropy inequality (1.3),

Trup) —oen(u’ [ur) < qlusur) — oxn(u|ur). (6.45)

q(u
Second, we bound the entropy dissipation as
Dru(u,u*,04) < [q(usur) — oxn(u™ |ug)]
— (14 Cso)[q(u™;ur) — oxn(u™ |ur)]. (6.46)
Next, adding and subtracting A\j (uy)n(us |ug) and (1 + Cso) A\ (uy)n(uy |ur),
Drst(t u*,0) < Deone () + (0 — M (uh)[=n(u™ |ur) + (1 + Cso)n(u* |ur)

S Dcont (’U,+), (647)



586 W. M. Golding, S. G. Krupa € A. F. Vasseur

where in the last inequality we have used u™ € Il¢ 5, and that (u,u™, o) is Lax
admissible. 0

We continue with the following lemma, which proves that for —7j(u) > sZ,

~

ut € Il s, and Dpax(u) < 0. Combined with Lemma 3.7, this provides a formal
justification that for d(u, d1lc s,) = so, u™ € Il 4, and, therefore, for u sufficiently
far from the boundary of Il¢ s, Dmax(u) is uniformly negative.

Lemma 6.10. There is a universal constant K* such that for all C' sufficiently big
and so sufficiently small, for u € llc 5, satisfying

77:}(“) > K*ng
we have ut € ¢ 4, and, consequently, for such u,

Dipax(u) < fsg.

Proof. Suppose —7j(u) > K*s3 and u™ = S1(s*) is the maximal shock and assume
ut ¢ Il s,. Then, for K; the universal constant from Lemma 3.7,

K*s% < —ij(u) < Kisod(u, 0T ,) < Kisolu —u™|. (6.48)
Thus, K*sg < Ki|u — u™|. Now, for K5 the universal constant from Lemma 1.4,
the characterization of s* in Lemma 6.4 implies
Kolu —u™|* <n(u|u™) = —f(u) < Kisolu — u™|. (6.49)
Thus, |[u —ut| < %so. We conclude that

K2
K*sg < —Lso. 6.50
S0 < 7250 (6.50)
Therefore, choosing K* strictly larger than K?K, !, we note that —7j(u) > K*s?
implies u™ € ¢ 4,. Finally, applying Lemma 6.9, we have
Dinax (1) < Deont(u™) < —s. (6.51)

O

Proof of Proposition 6.8. We now take u € Q¢,s, so that u is of the form
1/2

u=u"— Zbin(u*), where Z |b;|? < (C0~Y3s, and |by| < Cl/6s,.
i=1 =2

(6.52)

We will show that for u € Q¢s,, there exists a universal constant K > 0 such that
for by > Ko and C sufficiently large, sq sufficiently small, —7j(u) > K*s2, where K*
is the universal constant from Lemma 6.10, which combined with Lemma 6.9 and
Proposition 6.2 completes the proof of the existence of Re s, (Kp) with K = K.
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Therefore, we suppose u € Qc,s, With by > Ksp and, using the fundamental
theorem of calculus, rewrite —7j(u) as

—7j(u) = —7(u”) —|—/ Vi(v)dv. (6.53)
Next, noting 7j(u*) = 0 and |u — ug| < C1/%sg, we compute
Vij(u) = Cso[Vn(u) = Vn(ur)] + [Vi(ur) = Vi(ur)]
= 5oV2n(ur)ri (ur) + O(C7/6s2). (6.54)

Parametrizing v as v(t) = tu* + (1 — t)u, we have 0(t) = u* —u = Y, by (u*).
Combined with (6.53) and (6.54), we obtain

—i() = [ oVEnu)rs(ur) + O an

1
= / bisoV2n(ur)ri(ug) - m(u*) + O(CH3s3 + C1/352)
0

= b180V2’I7(’U,L)T‘1(uL) -rl(uL) + O(C 1/3 2 ot |bl|80) (655)

Since V2n(ur)ri(ug) - r1(ur) > Ki > 0, a universal constant, and b, > Kso,
(6.55) can be reformulated as the estimate

—ii(u) > KK1s2 +O(C™Y3s2 + |bys2). (6.56)

Now, as |by| < C'/%sy, we may take C sufficiently large and s sufficiently small to
make the error smaller than s and obtain

- ﬁ(u) > (K Ky —1)s5. (6.57)

K f(u) > K*s3 for all u € Qc.s, With by >

Ksg. By the discussion at the beginning of the proof, taking K; = K completes
the construction of R¢, s, (K},). m|

Therefore, choosing K >

6.4. Step 2.1: Shocks close to 0Ilc g,

In this step, we show that states u near to u* (of order sg) satisfy Dmax(u) < 0.
Many estimates used in the following steps crucially rely on a lower bound on the
strength of the maximal shock (u,u™, o). However, for u € d1l¢c s, u™ = u and
the necessary estimates degenerate near 0Ilc 5,. Therefore, we handle this regime
more in favor of Proposition 6.2. More precisely, we prove the following proposition.

Proposition 6.11. There is a universal constant Kyq > 0 such that for any C
sufficiently large and so sufficiently small (depending on C), defining

RC s = U € Rosy | |u — u”| < Kpgso} (6.58)

for any u € R% oo Dmax(u) < —s3.
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Proof. This proof is a minor variant of the proof of Proposition 6.2. We recall from
(6.37),

s

™ (u)
Dimax(t) = Deont(u) + / o ()] (u) = n(u| S, (1))]dt. (6.59)
0
Following (6.38) and (6.39), in the proof of Proposition 6.2, we estimate

Diax (1) < —sp 4 s0s™d(u, 0Tlcs,) < —sp + sad(u, 0o ,). (6.60)

~

Therefore, there are universal constants Kpq, K > 0 such that if d(u,0lc,) <
%Kbdso, then Dpax(u) < —Ks3. Finally, we note that if d(u,d1lc,,) < %Kbdso
for u € R sy, then |u — u*| < Kpgso for all sufficiently large C' and sufficiently
small sg. O

6.5. Step 2.2: Shocks close to uy,

In this step, we prove that states u near to uz (of order sg) satisfy Dpax(u) < 0.
Since Dpax(ur) = 0, we lose the uniform negativity of the estimates until this

point. However, we show the existence of a region RY s, Of size of order s¢ in the 7

direction on which wuy, is a strict local maximum which satisfies Dpax(u) < —s3 on

the boundary of ROC,SO. Our proof of Proposition 2.2 then implies (ur,ur,oLr) is
the unique entropic 1-shock with left state in Il¢ 4, for which Dry vanishes. More
precisely, the main result of this step is the following proposition:

Proposition 6.12. There is a universal constant Ko such that for any C' suffi-
ciently large and so sufficiently small (depending on C), defining

R&so = {u € Reo,s | |u - uL| < KOSO} (6.61)
for any u € ROQSO, Dipax(u) <0.

We begin by studying Dmax and computing derivatives. We recall that
Diax(w) = Dru(u,u™,04), where u™ and oy are uniquely defined via the
conditions

f™) = f(u) = ox(ut —u),
—ij(u) = n(u|u’), (6.62)
otr < A (u).

Now, we have the following algebraic identities.

Lemma 6.13. Let ut = S}(s*) be such that Dyax(u) = D(u,u™,04). Then, the
following identities hold:

[f'(ut) —ox|Vu™ = [f'(u) — oxI] + (u" —u) @0, (6.63)
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[V(ur) = Vn(u")] + (1 + Cs0)[Vi(u) — Vi(ug)]

= (u—uh) [V*n(u")VuT] (6.64)
and
VDmax(u) = [V(u™) = Vn(ur) — (1 + Cs0)[Vn(u) — V(ur)]J(f'(u) — o+ 1).
(6.65)

Proof. First, we differentiate the two implicit equations for 4™ in (6.62). Differen-
tiating in v and viewing ™ and o4 as functions of u, we obtain

fwhHvut — f(u) = (ut —u)®d +ox(Vut —1) (6.66)
and
Vn(u) — Vnu)Vut — (u — o) V23 (uh) Vet — Vn(u™)(Id — Vu™)
= —Cso[Vn(u) = Vn(ur)] + [Vn(ur) — Vn(ur)]. (6.67)

Rearranging terms yields the desired identities (6.63) and (6.64), respectively.
Second, we differentiate the relation Dpax(u) = Dru(u,u™, 04) using the chain
rule

VDumax(u) = [Vn(u™) = Vn(up)][f (u") — o4 1|Vu®
— (14 Cs0)[Vn(u) = V(ur)][f'(v) — o4 1]
— ol [n(u’ Jur) — (1 + Cso)n(u|ur)]. (6.68)
Next, we apply (6.63) to simplify the first line of (6.68) as
VDmax(u) = [Vn(u®) = Vn(ur) — (1 + Cso)(Vn(u) — Vn(ur))][f' (v) — o+1]
+[Vn(u®) = Vn(ugp)|(ut —u) @ ol
— ol [n(u” Jur) — (1 + Cso)n(u|ur)] (6.69)
and use the definition of the tensor product to simplify the second line of (6.69) as
VDmax(u) = [Vn(u®) = Vn(ur) = (1 + Cs0)(Vn(u) — Vn(up))][f' (v) — o+1]
+ ol [(Vn(u™) = Vin(ur)) - (u" —u) —n(u" |ug)
+(1+ Cso)n(u|ur)]. (6.70)
Then, rearranging terms in the definition of relative entropy, we have the identity
n(ulu®) —nulur)
= [n(u) = n(u™) = Vn(u®) - (u —u®)] = [n(u) = n(ur) — Vn(ur) - (u— ug)]
= —[n(u™) = n(ur) = Vn(ug) - (u* —ur)] + [Vo(u®) = Vn(ug)] - (u* —u)
= —n(u" |ugr) + [Vn(u™) = Vn(ug)] - (u* - w). (6.71)
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Finally, combining (6.70) and (6.71) yields
ol (V™) = Vn(ug)) - (u™ —u) = n(u’ [ug) + (1 + Cso)n(u]uL)]
= ol n(ulu’) —n(ulug) + 1+ Cso)n(u|uL)]
oln(u|u®) +i(u)] =0, (6.72)

which completes the proof of (6.65). O

Next, we prove several rough estimates on u™ and o+, using only that states
u € Ros,\RY,, are separated from 91l¢ .

Lemma 6.14. For all C' sufficiently large and sg sufficiently small, for any u €
RC?SO\R%%SO, we have

lu—ut|~sy and M(u)—or~syg and or—A(ut)~sg.  (6.73)
Furthermore, we have the derivative estimates

Vut| + 0| S1 and  |V2u©| + o+ < st (6.74)

Proof. We begin with (6.73). We estimate |u —u™"| using Lemmas 1.4, 6.4, and 3.6
via

lu—u"? ~ufu®) = i) < sod(u,01lc.s,) < 85, (6.75)

which proves |u — ut| < sg. For the reverse direction, we show —7j(u) =

sod(u, 01lc ). Indeed, take w € 0Ilc s, so that |u — @l = d(u,01l¢cs,). Then,
by Taylor’s theorem and Lemma 3.5,

[(w) = Vi(@) - (u—1a)| < Csp. (6.76)

Next, Vij(u) = byl'(u*) + O(s3) and u — u = c1r1(u*) + O(s2), where by ~ s¢ by
Lemma 3.6 and ¢; ~ sg because u ¢ R%‘%SO. Thus, —7j(u) 2 s3, which completes
the proof of the first estimate of (6.73). Note since |u — ut| ~ s*, we have shown
§* ~ 59 on R s, \R%‘%SO. Now, by Lemma 3.3,

or = %(Al(u)+)\1(u+)) +O(lu— ut]). (6.77)

Using (u,u™,04) is Lax admissible, (6.77) implies (6.73).
To obtain the derivative estimates of u* and o4 in (6.74), we estimate Vs*(u)
and VZs*(u). In particular, since n(u | SL(s*(u)) = —7j(u),
d

sl *n(UISi(S))VS*(U)

== Vij(u) — [Vn(u) = Vn(u®) = Vn(uh) V.S, (s") (u — u't))
=¢. (6.78)
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Thus, using u — Sj(s) is C' by Lemma 3.3, s* ~ [u — u™| ~ so on Re s, \RY,,
and Lemma 3.5, we have |E| < sp. On the other hand, using the precise asymptotics
of s +— Sl(s) in Lemma 3.3 and 7 is strictly convex, we compute

d

Sl Sie) = TSk 1S - (0 —u)

= s*V2n(u)ry (u) - r1(u) + O(ju —ut|?) > s0.  (6.79)

Combining (6.78) and (6.79) yields the bound |Vs*| < 1. Differentiating the rela-
tions

ut =S8 (s*(u)) and oi =ol(s*(u)) (6.80)

u

using the chain rule and again appealing to Lemma 3.3, we obtain the first part
of (6.74), namely, the bounds |Vu™| <1 and |0/, | < 1. Next, differentiating (6.78)
yields

d2

ds?| _..

S=s8

n(u|Sk(s))Vs*(u) @ Vs*(u) + % n(u|Sk(s))V?s*(u) = VE.

s=s*

(6.81)

Using u — S} (s) is C by Lemma 3.3, s* ~ so on R s, \RfY,,, Lemma 3.5, and
|[Vut| < 1, we compute

IVE| = | = VZi(u) = V?n(u) + VZn(u®) Vu' = V[V (u")[VuS,](s" () (u — uF)]|
S L (6.82)
Again, using Lemma 3.3 so that s — S}(s) is C? and s* ~ so on Re.s, \RY, , we

compute

d? 1 T | S D S +
pe *n(UISu(S))—VU(u ) 25 Su(s7) 2 Su(s) - (u™ — )

S=s8

d? N
+ V) TS — )

d d
2 FV QL ok) . 2 QL o*
F V() LS5 - LSk

= Vn2(u)ri(u) - ri(u) + O(jlu —u™]) < 1. (6.83)
Combining (6.81), (6.82), and (6.83) with the estimates |Vs*| < 1 and d%Si(s*) 2

~

S0, we obtain

ﬁ 1/ % * 2
IVE + | gzn(u| Su(s))[|Vs* (u)] < o1 (6.84)

V2™ (u)| < <
PGl ’

Finally, the second derivative estimates in (6.74) follow by differentiating (6.77)

twice using the chain rule and appealing to the estimates on s* and Lemma 3.3.
O



592  W. M. Golding, S. G. Krupa € A. F. Vasseur

Before proving Proposition 6.12, we prove a last lemma which uses more precise
information about the maximal shock (u,u™t, 1) by combining the algebraic iden-
tities in Lemma 6.13 with the estimates in Lemma 6.14. The role of the following
lemma is to guarantee that the region ROC_’SO, on which uy, is a local maximum, is
sufficiently large.

Lemma 6.15. Suppose u € RcysO\ngst. Then, for all sufficiently large C' and
sufficiently small so, we have the third derivative bound |V Dax(u)| < 1.

Proof. Differentiating (6.65) once yields the second derivative formula
V?Diax(u) = [Vn(u®)Vu™ — (1+ Cso) VEn(w)](f'(u) — 011)
+[Vn(u®) = Vn(ur) — (1 + Cso)(Vi(u) — Vi(ur))]
X (f"(u) — I ®0%). (6.85)
Differentiating (6.85) once more yields the formula
V? Dinax (1)
= [V*n(ut)VutVut + Vin(uh)V2u — (1 + Cso) VP (w)](f (u) — o 1)
+2[V23(uT)Vut — (14 Cso)V2n(uw)](f"(v) — I @ Voy)
+ [Vn(u™) = Vi(ur) — (14 Cso)(Vn(u) = Vi(up)|(f" (u) = T © Vioy)
= [Vip(u®) = Vi(ug) — (1 + Cso)(Vi(u) — Vi(ur))](I © VZox)
+ [V (uh) V2t (f'(u) — o) + M
=& +E + M. (6.86)

We have been rather vague with the exact meaning of the various products of tensors
above. While we will not need any precise structure of the terms in M, we will need
to estimate £ and & very carefully and will expand on their structure shortly.
Indeed, each term collected in M depends on only ut, Vu™, o1, and ¢/, and can
be bounded using only the estimates in Lemma 6.14. So, we have |[M| < 1.

Next, let us bound &;. Because |[u™ — u| < sg, |lugr — ur| < so, and |u —
ur| < so,

[Vn(u™) — Vn(ur) — (14 Cso)(Vn(u) — Vn(ur))| < so + Cs2 < so. (6.87)

Combining (6.87) with the estimate [¢/| < 55! from Lemma 6.14 yields |&| < 1.
It remains only to bound &, which is written more precisely in index notation
as

52 - 8¢8jn(u+)8lakuj(8kfm(u) — Ui(sk,m). (6.88)
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Let us now define the trilinear forms V3 Dyyax(u)(w!, w?, w3) and E(w!, w?, w?) via

V?’Dmax(u)(wl,wQ,wg) = 8¢8j3kDmax(u)wilw]2-w,%,
Ex(u)(wh, w? w?) := w%w?@iajn(u+)8ﬁku;‘(3kfm(u) — 04Ok m )W

(6.89)

We note that while it is clear that V3D is symmetric in all indices, this is not
true for €. Thus, using |V2uT| < sg' and A (u) — o4 (u) < sp by Lemma 6.14,
|E2(-, ;1 (u))| < 1. Therefore, exploiting the symmetry of V3Dpax and using the
decomposition (6.86),

|v3DmaX(u)(T1(U)v S = |V3Dmax(-,7"1(u), )= |V3DmaX(U)('»'»T1(U))| S L

~

(6.90)
Next, we bound &Ex(r.(u), -, ) for 2 < ¢ < n. First, differentiating (6.63) yields
(W) = o]Vl = [f"(u) — [@04] + [Vul @0l + (u" —u) @]
—[f"(uh)Vut —I®o/ |Vu™. (6.91)

Note, by Lemma 6.14 each term on the right-hand side of (6.91) is bounded uni-
formly in sg. Therefore, in index notation, we have

0, (u") — 018:5]00kuf = O(1). (6.92)

Left-multiplying (6.92) by [¢(ut) and using A.(ut) —ox = 1 for 1 < ¢ < n,
[1°(ut) —1¢(u)| < so and |V2ut| < 55!, we obtain

15(u)d0puf = 15(uh)d0pul +O(1) = O(1) (6.93)

for each 2 < ¢ < n. Using n(u)r.(u) || 1°(u), (6.93) yields the bound on the trilinear
form of

[E2(u) (re(u), -, )| = | (w)0:05m(u™ )OOk (Ok fm (1) — 00k.m)| S 1 (6.94)

for 1 < ¢ < n, which by the decomposition (6.86) yields the correspond-
ing bound |V3Dpyax(u)(ri(u),-,-)] < 1 for 1 < i < n. By the linearity of
V3 Dax (u) (wh, w?, w?) in w?, it follows that for w! =Y wir;(u),

|V3Dmax(u)(w1,w2,w3)| < Z |wz'1V3DmaX(U)(Ti(U)»w2»w3)|

i=1

n
S [w?llw?] Y lwi| S Jw![[w?][w?], (6.95)
i=1

which completes the proof. O
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Proof of Proposition 6.12. We show that uy is a local maximum for Dpax.
We first note that since —7j(ur,) = n(ur |ugr) and (ugr,ur,orr) is an entropic 1-
shock, u™(ur) = ug. In other words, Dyax(ur) = Dru(ur,ur,orr) = 0. Similarly,
evaluating the identity (6.63) at ur,

VDmax(ur) = [Vn(ur) — Vn(ur) — (1 + Cso)[Vn(ur) — Vn(up)]|(f'(ur) — orrl)
—0, (6.96)

yields that uy, is a critical point of Dpax. Next, we evaluate V2 Diyay, computed in
Eq. (6.86), at ur, to obtain

Vszax(uL) = [V277(uR)Vu+ —(1+ CSO)V2n(uL)}(f'(uL) —orrl). (6.97)

It remains to show that the matrix V2 Dyyax(ur) is (quantitatively) negative definite.
First, we show that Dy,.x is concave in the r1(uy) direction. Indeed, we compute

v2Dmax(uL)7ﬂ1 (UL)
= (M(ug) — orr)[V*n(ur)Vu — (1 + Cso)V3n(ur)]ri(ur). (6.98)
Now, A1 (ur) — oLr ~ sp by Lemma 6.14. Also, evaluating (6.64) at uy, yields
s (ur — up)' 'V (ug)VuT(ur) = 0. (6.99)

Therefore, substituting the Taylor expansion ur = ur,+sor1(uz)+O(s3) into (6.99)
and right-multiplying by r1(up),

V2n(ur)Vu' (up)ri(ur) - r1(ur) < so|Vu' (ur)] < so. (6.100)
Combining (6.98) and (6.100) yields
r1(ur) - V?Dmax(ur )i (ur) = —so(1 + Cso)ri(ur) - [Vn(ur)]r (ur) + O(s3)
< —sp, (6.101)

provided sy is sufficiently small. Second, we show that Dy,ax is concave in the r;(ur,)
directions for 1 < i < n. Indeed, we note that by left-multiplying the identity (6.63)

by I*(ur),
(Ni(ur) = orp)l'(ur)Vu® (ur)
= (Al(uL) — O'LR)li(UL) + [(UR — UL) . li(uL)]O';: (UL) + O(So). (6102)

Since |[Vut| <1 and || $ 1 by Lemma 6.14 and \;(u) — oy ~ 1 for i # 1 by
Assumption 1(a), we obtain

[ (ug)Vut (up) — ' (ug)| S so for 1 <i <. (6.103)
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Using 7;(ur)V?n(ur) || 1*(ur), for any 1 < i < n and 1 < j < n, we obtain the
bound

ri(ur) - V?Diax (ug)rj (ur,)
=ri(ur) - Nj(ur) = oLr)[V2n(ur)Vut — (1+ Cso)V3n(ur)]r;(ur)
S —Csori(ur) - VAn(ur)r(ur) +ri(ur) - [Vn(ur) Vu® — V2n(ur)]r;(ur)
< —Csodij + O(s0) (6.104)

for C sufficiently large and sg sufficiently small. To summarize, we have shown in
(6.98), (6.101), and (6.104) that for any 2 <i <nand 1 < j. k <n with j # k,

V2D (ur)ri(ur) - r1(ur) S —so, (6.105)
V2 Dimax(ur)ri(ur) - ri(ug) S —Cso, (6.106)
V2 Dyax(ur)r;(ur) - ri(ur) < so. (6.107)

The same application of Cauchy—Schwarz inequality as in the proof of Lemma 5.4
implies there exist universal constants Kj, Ko > 0 depending only on the system
such that for C sufficiently large and s sufficiently small and any v = Y | v;r;(ur),

V2D pmax(ur)v - v < —Kisqvi — KoC'sg va < —Kiso|v)?, (6.108)
i=2

which implies u; is a local maximum of Dy.x. To construct R%,s(,» we take
u € RC,SO\RZé'i,SO and suppose moreover that K3 > 0 is the constant from Lemma
6.15 so that |V3Dax(u)| < K3. We estimate Dpax(u) using Taylor’s theorem. In
particular, there exists a v between u and uy, such that

D) = 5 V* Do)~ ) (1~ )

1
+6V3Dmax(v)(vfuL,vfuL,vfuL). (6.109)
Now, using (6.108),
K K
Dmax(u) < —7180|u—uL|2+ ?3|u—uL|3, (6.110)

which directly implies there is a constant Ky > 0 depending only on the system
such that for all C' sufficiently large and sq sufficiently small, Dyyax(u) < 0 provided
|u—ur| < Kpso. m|

6.6. Step 2.3: Shocks in Ré,s() and R

In this step, we show that Dyax(u) < 0 for u strictly between Rlé"i,so and R%750 and
for u € Re, s, but far enough in the interior of Il¢ 5, such that u ¢ R%,so' This step



596 W. M. Golding, S. G. Krupa € A. F. Vasseur

is necessary because in Propositions 6.8, 6.11, and 6.12, we must choose specific
universal constants Ky, Kpq, and Ko to define the height in the r;(u*) direction of
the sets Re,s,, RC 59> and RC s, Tespectively. In particular, because we must choose
K, sufficiently large and Kpq and K sufficiently small, it remains to check that if
Rc sy # RC o U RC o the desired inequality, Dmax < 0, holds on the remainder
of R¢,s,. Since we know the inequality Dpax(u) < 0 holds on 9 R¢ s, BR%%SO, and
BROC_’SO, it suffices to show there are no critical points for Dyax in R s, except ur,
u*, or possibly states u very close to uy, or w*. This is precisely the content of the
following proposition:

Proposition 6.16. Let Rc s, and R%{SO be as in the preceding sections. Then, for
C sufficiently large and so sufficiently small, and for any u € Rc_rso\[Rlé‘vi_’SD UROC_’SD],
V Dy (1) # 0.

In the following, we expand states u about uy, as

n
w=ug+»_ bi(uri(ug). (6.111)

i=1
When we refer to b; in the following, we always intend b; to be interpreted as
the ith coefficient in this expansion. Now, since Rc,s, has width C~'/3
ri(u*) = r;(uy) directions for 1 < i < n and ROQSO is a ball of radius ~ sg about ur,
intersected with Rc s, R, splits Ro,s,\R¢, ,, into two connected components.

Sp in the

Furthermore, the function u — sgn(bi(u)) determines the component in which a
state u lies. Therefore, we define

RE . ={u € Res,\(RE,, URY,,) [ bi(u) > 0},
Re,, = {u € Re s, \(RE . URE,,) [ bi(u) < 0}.

Note, by the definition of b; in (6.111), the sets RC sor Bosor RC o0 and RC s
ordered as in Fig. 2. We begin with the following characterization of critical pomts
which is crucial to our analysis.

(6.112)

Lemma 6.17. A state u in the interior of llc s, is a critical point of Dmax if and
only if

[Vi(u®) = Vn(ug)] — (1 + Cs0)[V(u) — Vi(ur)] = 0. (6.113)

Proof. By Lemma 6.13, for any state u € Il¢ 4,

VDmax(u) = [Vi(u™) = Vn(ur)] = (1 + Cs0)[Vn(u) = Vi(ur)|(f'(u) — o+ 1).
(6.114)
Clearly, if (6.113) holds, then VDpyax(u) = 0. Conversely, if VDyax(u) = 0,
then since u is in the interior of Ilo s, ut # w and A\ (u) < o1 < A\i(u) as

(u,u™,04) is Lax admissible. Therefore, f'(u) — o4l is invertible and we must
have (6.113). m|
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The remainder of the step will be devoted to showing that for v € R¢ s, (6.113)
holds only if u is quite close to uy, or 91Il¢ 5,. The following lemma expresses that by
looking at R¢ s, for very large C', we have localized to a sufficiently narrow strip so
that u ™, ur, u, and uy, are effectively colinear. Therefore, tracking how far a state u
is from satisfying (6.113) can be quantitatively reduced to studying a scalar ODE.

Lemma 6.18. Letu € RC,SQ\Rlé’d’SO with by = by (u) and define u(t) = tu+(1—t)ur.
Define the functions F,G,e:[0,1] — R as

B(t) == (1+ Cso)[Vn(u(t)) — Vi(ur)] - sgn(bi)ri (ur),

G(t) := [Vn(u™ () — Vn(ug)] - sgu(bi)ri (ur), (6.115)
e(t) == W(t)bil_u(t”’

where ut(t) abbreviates u*(u(t)). Then, F and G satisfy the ODE

—e(H)G'(t) + G(t) = F(t) + 6(1),

(6.116)
G(0) =0,
where §(t) is an error term satisfying the uniform bound
C—1/3¢2
6(8)] < ——20 4 &2, (6.117)

b1
Proof. Evaluating (6.63) at u(t) and right-multiplying by sgn(by)ri(ur), we obtain
G(t) — F(t) = sgn(by)(ut(t) — u())'V*n(u™ () VuT (t)r1 (ur).  (6.118)
Next, we compute G'(t) as
G'(t) = sgn(by)[r1 (urp)] V20 (ut (1)) Vut () (u — ug), (6.119)
where we have used 4(t) = v — ur. So G solves the ODE

G(t) = F(t) = e(t)G'(t) + 01(t) + 02(1),
(6.120)

where 01 and Jo are error terms given as
81(t) = sgn(by)[u™ (1) — u(t) — [u* (t) = u(®)[r1 (up)) V0(u* (1) Vut () (ur),

B2(t) = sgn(bn)e(t) 11 (ws)]'V2n(u* () Ve (OB (u) — (u - up)].
(6.121)

It remains only to show that the error 6(t) := d1(¢) + d2(t) satisfies (6.117). We
estimate §; and J2 separately. First, since (u,u™,04) is an entropic l-shock, it
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satisfies the expansion
ut(t) = u(t) + [ut () — u(®)|ri(u(®)) + O(u™ —ul). (6.122)

Combined with the estimates |[Vu™| < 1 and |u™ — u| ~ sp by Lemma 6.14 and
u(t) € R0750\ng'i,so for each ¢, we obtain the uniform bound

[61(0)] < solu™(8) — w(®)| + [ (1) — u(t)* < s5. (6.123)

~

On the other hand, since u € RQSO\R%%SO, with 7 (ur) coefficient by = by (u),
lbiri(ug) = (u—up)| S C™ s (6.124)

Again using [Vu™| < 1 and Jut —u| $ so on Ros, \R,,, we obtain the uniform
bound

071/35(2).

82(0)] S € s0lelt)] £ —-

(6.125)
Together, (6.123) and (6.125) imply (6.117). O

Lemma 6.19. For any C sufficiently large and sg sufficiently small, for each u €
Ré‘,sw u s not a critical point of Dyax-

Proof. Fix u € RasO and define u(t), F(t), G(t), e(t), and 6(¢) as in (6.115) so
that G solves the ODE (6.116) and ¢ satisfies the bound (6.117). Solving (6.116) by
the integrating factor method, we have the explicit formula

—1 [P EGs)
E(t) Jo els)

G(t) = [F(s)4d(s)]ds, where E(t) = exp (/0 —e(s)_1d5>.

(6.126)
We note that since e(t) = W(tl))%u(t)\ ~1forue RESO and ¢t € [0,1], E(t) ~ 1 over
the same domain. Next, by (6.115) and Lemma 6.17, u is a critical point of Dy,ax
if and only if F(1) = G(1). However, F(t) > 0 for all 0 < ¢ < 1 and using that
e(t), E(t) > 0, the preceding formula for G yields F'(1) > 0 > G(1), provided the
error term involving ¢ is sufficiently small relative to F. In particular, we will show
0 is sufficiently small and F(1) is sufficiently large so that w is not a critical point
of Dpyax.
More formally, we estimate the error term involving § using Lemma 6.18, E(t) +
e(t) ~ 1, and by ~ s for u € RESO,

—1 (Y E(s)d(s)
/0 ds

E(t) o(s) 0| S S [6(s)] S C~1/%s0. (6.127)

0<s<1
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We also estimate the contribution of F' in the formula for G using E(t) ~ 1 and the
definition of F,

—1 [' E(s)F(s)
E<1>/o os)

> /0 1 F(s)ds

- / (Vn(u(s)) — Vi(ug)] - ma (u)ds
= / s (ug) - Vn(u(s))(u — ug) + O(ssd)ds

1
= / sbyry(ug) - VQH(UL)Tl (ur) + O(Cil/gsos)ds
0
~ 80 (6.128)

By (6.127) and (6.128), there exist universal constants K7 > 0 and K3 > 0 such

that
1 L E(s)0(s)
B0 / (s ©

Therefore, taking C' sufficiently large, depending only on K; and Ko, (6.126) and
(6.129) imply G(1) < 0 < F(1). In particular, F(1) # G(1), and u = u(1) cannot
be a critical point of Dy, .y for C sufficiently large and sq sufficiently small. O

t
< K,C '35, and Ett)/o E(:2£<S)dSZK230.

(6.129)

Lemma 6.20. For any C sufficiently large and sg sufficiently small, for each u €
R¢ o, s w is not a critical point of Dmax-.

Proof. Fixu € Rg  and define u(t), F'(t), G(t), e(t), and §(¢) as in (6.115) so that
G satisfies the ODE (6.116) and 0 satisfies the bound (6.117). Since by = by (u) < 0,
e(t) < 0, solving (6.116) yields the explicit formula for G,

G = —1 t —(S) F(s)+d(s s, where F =ex t e(s)|lds
(6.130)

We note that since e(t) = \u*(tl)yil—u(t)l ~ —1foru e R, andt € [0,1], E(t) ~ 1
over the same domain. As in the preceding section, we note by (6.115) and Lemma
6.18, u is a critical point of Dy if and only if F(1) = G(1). Moreover, we note
that by (6.117),

< O3, (6.131)

1 P E(s)d(s)
E<t>/o B
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Now, we estimate F' via
F'(t) = —(1 4 Cso)ri(ug) - V2n(u(t))(u — ur)

=ri(ur) - VZn(ur)ri(ur) + O(so). (6.132)

Therefore, taking sg sufficiently small, F' is strictly increasing. Next, we estimate
G(1) using (6.130), (6.131), and F increasing to obtain

L [MEE) s,
aa) < E(1)/0 s | (1) 0(C ), (6.133)

Then, by the fundamental theorem of calculus, as E'(s) = |§((§))|

)

L MEe) ] EO
E<1>/o e @ =1 EQ) (6.134)

Let o =1— %. Since E(s) > 0, E(0) =1, and E'(s) ~ 1,0 < o < Ky < 1, where

K, is a universal constant. Therefore, (6.133) implies the inequality
G(1) < K F(1) + O(C~Y3s). (6.135)

Finally, taking K1 < K < 1 and C sufficiently large and sg sufficiently small, we
obtain G(1) < KoF (1) < F(1). Therefore, G(1) # F(1) and u = u(1) cannot be a
critical point for Dy ax. O

6.7. Proof of Proposition 2.2

First, we fix C sufficiently large and sy sufficiently small such that each of Propo-
sitions 6.8, 6.11, 6.12, and 6.16 hold. Proposition 6.8 guarantees we obtain a
decomposition of Il¢ 5, into

HC,SO = RC,SO U [HC,SO\RC7SO]7

where Dpyax(u) < —s3 on e, \Rc.s,- Propositions 6.8, 6.11, 6.12, and 6.16
guarantee we obtain a decomposition of R¢ s, into

_ pbd + 0 -
Reoso = Re s, URG o U RG o URG

where Dpax(u) < —s3 on d Rosy U Rl(’ji,s[) U 8ROC7SO, Diax(u) < 0 on ROQSO, and

VDpax # 0 on Rg s U Rc,- As there are no critical points in Rg s URc ., it
follows that

max Dipax(u) = max Diax (1) < —s5. (6.136)

wERY | URG w€d RE | UVORG

Since uy, is a strict maximum of Dy, on ROQSO, we conclude Dypax(u) < 0 on I¢e 4,
with Dpax(u) = 0 if and only if u = uy. Finally, recalling the definition of Di,ax
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in (6.1), for any (u_,uy,04) an entropic 1-shock with u_ € ¢ 4,

Dru(u—,tuq,04) < Dipax(u_) <0. (6.137)

Moreover, equality holds only if u_ = uz, and uy = ug. O
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