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Abstract. In this paper, we study the a-contraction property of small extremal shocks
for 1-d systems of hyperbolic conservation laws endowed with a single convex entropy,
when subjected to large perturbations. We show that the weight coefficient a can be
chosen with amplitude proportional to the size of the shock. The main result of this
paper is a key building block in the companion paper [G. Chen, S. G. Krupa and A. F.
Vasseur, Uniqueness and weak-BV stability for 2 × 2 conservation laws, Arch. Ration.

Mech. Anal. 246(1) (2022) 299–332] in which uniqueness and BV-weak stability results
for 2 × 2 systems of hyperbolic conservation laws are proved.
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1. Introduction

We consider 1-d hyperbolic systems of conservation laws with n unknowns:

ut + (f(u))x = 0 t > 0, x ∈ R, (1.1)

where (t, x) ∈ R
+ × R are space and time and u = (u1, . . . , un) ∈ G0 ⊆ R

n are the

unknowns. We assume the global state space G0 is convex and possibly unbounded,

and denote G its interior. We assume further that there is a bounded subset of states

V0 with interior V . The flux function, f = (f1, . . . , fn), is assumed to be continuous

on G0 and C4 on G. We assume that there exists a strictly convex entropy functional

§Corresponding author.
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η ∈ C(G0) ∩ C3(G) and an associated entropy flux functional q ∈ C(G0) ∩ C3(G)

such that

q′ = η′f ′ on G . (1.2)

We consider only entropic solutions to (1.1). That is, we consider solutions verifying

(η(u))t + (q(u))x ≤ 0 t > 0, x ∈ R (1.3)

in the sense of distributions. Throughout this paper, we use a single entropy η.

Therefore, we do not assume that (1.3) holds for all entropy–entropy flux pairs.

We describe the precise set of hypotheses on the system in Assumption 1. The

assumptions on f and V0 are fairly general.

Before describing the result in detail, we note that all Assumptions 1 are verified

by both the system of isentropic Euler equations for γ > 1 and the full Euler system

(see, for instance, [21] or [7]). Therefore, the main result of this paper applies in

both cases. We recall that the isentropic Euler equation is given by

ρt + (ρv)x = 0 t > 0, x ∈ R,

(ρv)t + (ρv2 + ργ)x = 0 t > 0, x ∈ R

(1.4)

and is endowed with the physical entropy η(u) = ρv2/2 + ργ/(γ − 1), where u =

(ρ, ρv). In this case, G = (0,∞) × R and G0 = G ∪
{

(0, 0)
}

, where (0, 0) is the

vacuum state. Both the flux and the physical entropy are smooth functions, except

at vacuum, justifying the distinction between G and G0. We recall that (1.4) admits

a natural decomposition of the state space into bounded invariant regions:

V0(A) = {u = (ρ, ρv) ∈ R
+ × R |

−A < w1(u) = v − c1ρ
γ−1

2 ≤ w2(u) = v + c1ρ
γ−1

2 < A},

V(A) = V0(A)\{(0, 0)}.

(1.5)

We note that each invariant region is bounded and convex, and the characteristic

fields λ1(ρ, ρv) = v − c2ρ
γ−1

2 and λ2(ρ, ρv) = v + c2ρ
γ−1

2 are uniformly bounded on

each invariant region.

In the case of the full Euler equation, we have
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + P ) = 0,

∂t(ρE) + ∂x(ρuE + uP ) = 0,

(1.6)

where E = 1
2u2 + e. The equation of state for a polytropic gas is given by

P = (γ − 1)ρe, (1.7)

where γ > 1. We consider the entropy–entropy flux pair

η(ρ, ρu, ρE) = (γ − 1)ρ lnρ − ρ ln e, G(ρ, ρu, ρE) = (γ − 1)ρu lnρ − ρu ln e,

(1.8)
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where, in conservative variables, we have e = ρE
ρ − (ρu)2

2ρ2 . The natural set of states is

given by G = (0,∞)×R×R, with G0 = G ∪{(0, 0)}. However, unlike the isentropic

system, the full Euler system does not admit the existence of bounded invariant

regions. Nevertheless, we can define reasonable bounded, convex state domains V0,

for instance, by

V0(A) = {u = (ρ, ρv, ρE) ∈ G0 | ρ + |v| + |E| ≤ A}.

In this work, we further restrict our attention to solutions verifying the so-called

strong trace property.

Definition 1.1 (Strong trace property). Let u ∈ L∞(R+ × R). We say that u

verifies the strong trace property if for any Lipschitzian curve t → h(t), there exists

two bounded functions u−, u+ ∈ L∞(R+) such that for any T > 0

lim
n→∞

∫ T

0

sup
y∈(0,1/n)

|u(t, h(t) + y) − u+(t)|dt

= lim
n→∞

∫ T

0

sup
y∈(−1/n,0)

|u(t, h(t) + y) − u−(t)|dt = 0. (1.9)

For convenience, we will use the notations u+(t) = u(t, h(t)+) and u−(t) =

u(t, h(t)−). We can now precisely define the space of weak solutions considered in

this paper:

Sweak = {u ∈ L∞(R+ × R;V0) weak solution to (1.1) and (1.2),

verifying Definition 1.1}. (1.10)

Note that this space has no smallness condition, but there is a precise boundedness

assumption since u must take values in the set V0 which has more structure. For

the prototypical systems of isentropic Euler and full Euler, this ensures that not

only the conservative variables but also the physical variables are bounded. Since

the strong trace property is weaker than BV, any BV entropic solution to (1.1) and

(1.2) belongs to Sweak.

Glimm showed in [12] the existence of global in time, small BV, entropic solutions

to (1.1) and (1.2). Bressan and Goatin [4] established uniqueness of these solutions

under the Tame Oscillation Condition, improving an earlier theorem of Bressan

and LeFloch [5]. Separately, uniqueness was also shown when the Tame Oscillation

Condition is replaced by the assumption that the trace of solutions along space-like

curves has bounded variation, see [6]. Although our main theorem, Theorem 1.2, is

stated for n×n systems, the companion paper [7] provides an important application

of it in the case of 2 × 2 systems. Together, this paper and [7] improve the known

uniqueness result for small BV solutions by removing the a priori assumptions

mentioned above. More precisely, BV solutions are stable in a larger class of weak

solutions, the class Sweak defined above, providing a BV/weak stability result.
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The main result of this paper is a precise estimate on the weight function a

needed to obtain a weighted L2-contraction property for small extremal shocks

(known as the a-contraction property). The estimate on the weight is used crucially

in [7]. Dafermos and DiPerna [9, 11] showed the weak/strong stability and unique-

ness in the case of Lipschitz solutions by studying the evolution of the quantity:

η(v|w) = η(v) − η(w) −∇η(w) · (v − w),

where w is a strong solution and v is only a weak solution. The quantity η(v|w),

defined for (v, w) ∈ G0 ×G, is called the relative entropy of v with respect to w and

is equivalent to |v − w|2. The role of the a-contraction property is to extend the

study of the relative entropy to the case where the strong solution w is replaced

by a discontinuous traveling wave, a shock, and the weak solution v belongs to

Sweak. As we will illustrate in the following, the study of the relative entropy in this

setting is the building block upon which the general theory of weak/BV stability

and uniqueness of [7] is built. In the presence of shocks, it is necessary to introduce

shifts and weights (the a coefficients, see [22]). In particular, fixing an entropic shock

S(t, x) with left state uL and right state uR, we compare any u ∈ Sweak with S,

using the pseudo-distance Et(u, S; a1, a2; h):

Et(u, S; a1, a2; h) = a1

∫ h(t)

−∞

η(u(t, x) |uL)dx + a2

∫ ∞

h(t)

η(u(t, x) |uR)dx, (1.11)

where t 
→ h(t) is a Lipshitz shift function, a1, a2 > 0 are weights, and η is the

strictly convex entropy for which u(t, x) satisfies (1.3). Note that to compare a

solution u to the shock S, one needs to specify weights a1 and a2 and a shift h.

In [14], the authors show that for appropriate choices of a1, a2, and h, the functional

Et is decreasing. The weight coefficients, a1 and a2, are chosen depending only on

f , η, and the shock (uL, uR, σ). However, the shift function h(t) depends not only

on f , η, and (uL, uR, σ) but, additionally, also on the particular weak solution u

under consideration. Since the relative entropy is equivalent to |v − w|2,

Et(u, S; a; h) ≈

∫

R

a(t, x)|u(t, x) − S(t, x + h(t))|2dx, where

a(t, x) =

{

a1 if x < h(t),

a2 if x > h(t)
(1.12)

in an appropriate sense. The variation in the weight a(t, x), determined by a1 and

a2, measures how far the functional Et is from the standard L2 distance. The main

result of this paper is a refinement of [14]: for any extremal shock (uL, uR, σ),

there are weights a1, a2 with a2/a1 − 1 ∼ |uL − uR| such that the pseudo-distance

Et(u, S; a; h) in (1.11) satisfies the contractive estimate

Et(u, S; a; h) ≤ E0(u, S; a; h) (1.13)

for any u ∈ Sweak for some shift t 
→ h(t) depending on u. The key improvement is

the quantitative control on the variation in the weight a(t, x), which depends on u
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only through h. The inequality (1.13) is known as the a-contraction property, with

weight function a and shift h. The control on the weight a enables the estimate (1.13)

to be related back to and used in the standard small BV framework. More precisely,

the following is the main theorem of this paper.

Theorem 1.2. Consider a system (1.1) and subset of states V0 ⊂ G0 verifying all

Assumptions 1. Fix d ∈ V. Then there exist constants α1, αn, λ̂, C1, and ε > 0,

each depending on only the state d and the system with α1 < αn, such that the

following is true.

Consider any 1-shock or n-shock (uL, uR) with |uL − d| + |uR − d| ≤ ε and let

s0 be the strength of the shock s0 = |uL − uR|. For any a1 > 0, a2 > 0 verifying

1 +
C1s0

2
≤

a1

a2
≤ 1 + 2C1s0 if (uL, uR) is a 1-shock (1.14)

1 − 2C1s0 ≤
a1

a2
≤ 1 −

C1s0

2
if (uL, uR) is an n-shock (1.15)

and for any u ∈ Sweak, any t̄ ∈ [0,∞), and any x0 ∈ R, there exists a Lipschitz

shift function h : [t̄,∞) → R, with h(t̄) = x0, such that the following dissipation

functional verifies

a2[q(u(h(t)+, t); uR) − ḣ(t) η(u(h(t)+, t)|uR)]

− a1[q(u(h(t)−, t); uL) − ḣ(t) η(u(h(t)−, t)|uL)] ≤ 0 (1.16)

for almost all t ∈ [t̄,∞). Moreover, if (uL, uR) is a 1-shock, then for almost all

t ∈ [t̄,∞),

−
λ̂

2
≤ ḣ(t) ≤ α1 < inf

v∈B2ε(d)
λ2(v). (1.17)

Similarly, if (uL, uR) is an n-shock, then for almost all t ∈ [t̄,∞),

sup
v∈B2ε(d)

λn−1(v) < αn ≤ ḣ(t) ≤
λ̂

2
. (1.18)

This theorem implies the following a-contraction property of small extremal

shocks.

Corollary 1.3. Under the same assumptions and notations as Theorem 1.2, there

exists a constant C > 0, depending on d and the system, such that for any 1-shock or

n-shock (uL, uR) small enough depending on d and the system, there are amplitudes

a1, a2 > 0 with |a1

a2
−1| ≤ C|uL−uR|, verifying the following: For any weak solution

u ∈ Sweak, there exists a Lipschitz shift t 
→ h(t) such that the corresponding pseudo-

distance defined as

a1

∫ h(t)

−∞

η(u(t, x) |uL)dx + a2

∫ ∞

h(t)

η(u(t, x) |uR)dx

is a non-increasing function of time.
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As stated above, this provides an L2 stability result up to the shift h, since we

have the following straightforward lemma due to the convexity of η and Taylor’s

theorem.

Lemma 1.4 (From [21, 23]). For any fixed compact set V ⊂ V , there exists

c∗, c∗∗ > 0 such that for all (u, v) ∈ V0 × V,

c∗|u − v|2 ≤ η(u|v) ≤ c∗∗|u − v|2. (1.19)

The constants c∗, c∗∗ depend on bounds on the second derivative of η in V and on

the continuity of η on V0.

The relative entropy η(u|v) and the corresponding relative entropy method were

first introduced by Dafermos [9] to show the weak/strong stability of Lipschitz

solutions to (1.1) and (1.2). The strength of this method stems from the fact that

if u is a weak solution of (1.1) and (1.2), then u verifies a full family of entropy

inequalities. Corresponding to the relative entropy η(a | b), we define q(a; b), the

relative entropy flux, via

q(a; b) = q(a) − q(b) −∇η(b) · (f(a) − f(b)). (1.20)

Then, for any b ∈ V constant, each η(· | b) is an entropy for (1.1) and each u ∈ Sweak

satisfies

(η(u|b))t + (q(u; b))x ≤ 0 (1.21)

in the sense of distributions. Similar to the Kruzkov theory for scalar conservation

laws [19], (1.21) provides a full family of entropies measuring the distance of the

solution to any fixed values b in V . The main difference is that the distance is

equivalent to the square of the L2 norm rather than the L1 norm. As in the Kruzkov

theory, (1.21) directly implies the stability of constant solutions (by integrating

(1.21) in x). Modulating (1.21) with a smooth function (t, x) 
→ b(t, x) provides the

well-known weak–strong uniqueness result.

However, when considering discontinuous functions b with shock fronts, the sit-

uation diverges significantly from that of Kruzkov’s because the L2 norm is not as

well suited as the L1 norm for the study of stability of shocks. Nevertheless, the

method was used by DiPerna [11] to show the uniqueness of single shocks (see also

Chen, Frid, and Li [8] for the Riemann problem of the Euler equation).

In [23], it was proposed that the relative entropy method could be used to obtain

the stability of discontinuous solutions. The guiding principle of this program is that

the L2 distance captures the stability of shock profiles quite well, although only up to

a shift, which is more sensitive to L2 perturbations [21]. Leger, in [20], showed that

in the scalar case, shock profiles satisfy the a-contraction property with a1 = a2; the

contraction property holds in L2 up to the shift t 
→ h(t). However, it was shown in

[22] that the L2 contraction property is usually false for systems, necessitating the

introduction of the weights a1 and a2. In [14], it is shown that for a large class of

systems, introducing the weights a1 and a2 does indeed recover the L2 contraction
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property, in the form of the a-contraction estimate (1.13). However, [14] does not

show any precise control over the weights a1 and a2. This is the main improvement

of Theorem 1.2 over the existing theory, which is crucial for relating the results in

the a-contraction theory, i.e. Corollary 1.3, back to the general small BV stability

theory.

In particular, the next step in the program of BV stability is showing small BV

solutions are stable (and unique) in the larger Sweak. A BV/weak stability result of

this type is shown for 2× 2 systems in the companion paper [7] using Theorem 1.2,

and hence most of the a-contraction theory, as a black box. As written above, since

any BV solution belongs to Sweak, the result of [7] (together with Theorem 1.2)

shows that in the case of 2 unknowns, both the Tame Oscillation Condition and the

condition of bounded variation along space-like curves are unnecessary assumptions

in the uniqueness theory for small BV solutions.

Let us sketch the method used in [7]. Consider a sequence un ∈ Sweak such

that the initial values u0
n ∈ L∞ converge in L2 to a small BV function u0

BV. To

make the leap from a single shock to the general small BV solution uBV with initial

value u0
BV, in [7], one replaces uBV with a piecewise constant function vn generated

from an approximation of the initial value u0
BV. The approximation vn is obtained

using the front tracking algorithm [1, 3] but with artificial shifts on the fronts. We

apply Theorem 1.2 to the finitely many discontinuities present in vn to obtain the

contraction inequality (1.13) when one modifies the definition of the pseudo-distance

from (1.11) to read

En
t (u) =

∫

R

an(t, x)η(un(t, x) | vn(t, x))dx, (1.22)

where an is now piecewise constant and vn is defined from the shift functions t 
→

hn,j(t), each associated with a singularity j. Due to the presence of the shifts hn,j ,

the function vn cannot be directly compared to uBV: In fact, vn is no longer even

a solution to (1.1). Instead, it is shown that vn remains small in BV and uniformly

verifies the bounded variation along space-like curves condition, introduced in [6].

By controlling the weight function an uniformly by above and by below, the a-

contraction estimate associated (1.22) implies that since both u0
n (initial value of

the solution un ∈ Sweak) and v0
n converge in L2 to u0

BV, for every t > 0, un(t)

also converges in L2 to v(t), the limit of the associated vn(t). The function v is a

solution to (1.1) (since each un solves (1.1)), is small BV, and satisfies the bounded

variation along space-like curves condition (since each vn does). By the uniqueness

theorem of [6] for small BV solutions, we conclude u = v = uBV. We remark that

a version of this method was employed first to show the uniqueness of solutions to

the scalar conservation laws verifying only one entropy condition [17].

To rigorously justify this argument, two important properties have to be verified

at the level of the a-contraction. The first concerns control by above and below of the

“composite weight function”, an(t, x). Since weights a1 and a2 are generated for each

singularity in vn, to control the weight function when the number of singularities
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grows and n tends to infinity, it is crucial to show that the variation of the weight

can be chosen proportionally to the size of the shock uL, uR. This is the main

difficulty tackled in this paper in (1.14) and (1.15).

The second important property concerns the functions vn: We must verify vn

stay small in BV and uniformly verify the bounded variation along space-like curves

condition. This is ensured by the front tracking method, provided that all the arti-

ficial shifts generated by the a-contraction method maintain the separation of wave

families. The method generates one artificial shift h(t) for each singularity in vn,

depending heavily on the structure of vn itself. Therefore, one must prevent the

situation in which an artificial shift allows a 1-shock to collide from the left with a

2-shock. Such a situation would cause the whole process to collapse. Following [16],

this problem is solved by (1.17) and (1.18).

In a parallel program, a similar method is developed with the goal of proving

the Bianchini–Bressan conjecture, namely the convergence from Navier–Stokes to

Euler for small BV initial datum [3]. The aim is to obtain a BV-weak stability result,

where the space Sweak is replaced by the set of weak inviscid limits of solutions to

Navier–Stokes equation. The case of a single shock (analogous to Theorem 1.2 when

working with Sweak) was proved in [13]. Although this program is similar in spirit

to that of this paper, the proofs in [13] differ greatly from those in this paper.

2. Proof Outline

The main idea behind the proof of the a-contraction property, as stated in Corol-

lary 1.3, is integrating (1.21) for b = uL on x < h(t) and for b = uR on x > h(t).

The strong trace property of u guarantees that for almost every t > 0,

dE(t)

dt
≤ h′(t)(a1η(u−(t) |uL) − a2η(u+(t) |uR))

− a1q(u−(t); uL) + a2q(u+(t); uR). (2.1)

Without loss of generality, we consider the case where uL, uR is a 1-shock. We define

a subset of the state space V as

Π :=

{

v ∈ V

∣

∣

∣

∣

a1

a2
η(v|uL) − η(v |uR) < 0

}

. (2.2)

If the weak solution u does not have any discontinuity at h(t) and u(t, h(t)) = v ∈

∂Π, we have at this point a1η(v|uL)− a2η(v|uR) = 0, and so the coefficient in front

of h′(t) in (2.1) vanishes. In this case, the value of the right-hand side of (2.1) is

not changed if we replace h′(t) by λ1(v), the first eigenvalue of f ′(v). In order for

a-contraction (2.1) to remain valid in all cases, we need that for every v ∈ ∂Π,

Dcont(v) := [q(v; uR) − λ1(v)η(v |uR)] −
a1

a2
[q(v; uL) − λ1(v)η(v |uL)] ≤ 0. (2.3)

Note that this inequality, together with the set Π, depends only on the system (1.1),

not on any actual solutions. If a1 = a2, ∂Π is the hyperplane of all states v
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equidistant from uL and uR. For n ≥ 2, this is a large set, and for many sys-

tems, (2.3) is not verified for all v ∈ ∂Π (see [22]). However, under reasonable

assumptions, it can be shown that (2.3) is valid for a2/a1 small enough, that is, for

states v close enough to uL. Note that Π can be rewritten as Π = {v ∈ V | η(v|uL) <

(a2/a1)η(v |uR)}. Therefore, for small values of a2/a1, Π is actually a small neigh-

borhood of uL, and (2.3) holds on ∂Π (see [24, 14]).

Our first proposition is a significant improvement of this argument for small

shocks. We show that (2.3) holds true in all Π with a1/a2 ≈ 1 + C1s0, for a big

enough fixed constant C1, and any small enough strength s0 of the shock uL, uR. To

extract this scaling, we introduce new parameters: For a fixed shock (uL, uR, σLR)

with strength s0 = |uL − uR|, let C > 0 be such that a1/a2 = 1 + Cs0. Before

stating the proposition, let us first fix some more notation. For any C > 0, s0 > 0,

and any shock (uL, uR, σLR) of strength s0, we define

η̃(u) := (1 + Cs0)η(u |uL) − η(u |uR) and

q̃(u) := (1 + Cs0)q(u; uL) − q(u; uR).
(2.4)

Note that our entropy dissipation functional, Dcont, and set of states, Π, have par-

ticularly simple forms, namely,

Dcont(u) = −q̃(u) + λ1(u)η̃(u) and Π = {u ∈ V | η̃(u) < 0}, (2.5)

where we frequently expand the notation Π to the long hand ΠC,s0
to emphasize that

the set of states over which we will optimize Dcont also depends on the parameters

C and s0. With these definitions in hand, we state our first important proposition.

Proposition 2.1. Consider a fixed system and a state set V verifying Assump-

tions 1, and d ∈ V. Then, there is an ε = ε(d) > 0 such that for any C1 > 0 large

enough (depending only on the system, d, and ε), there exists s̃0(C1) > 0 small

enough and a constant K > 0, such that for any C > 0 with C1/2 ≤ C ≤ 2C1, any

1-shock uL, uR with |uL − d| + |uR − d| ≤ ε, and |uL − uR| = s0 with 0 < s0 < s̃0

and any u ∈ ΠC,s0
, we have

Dcont(u) ≤ −Ks3
0. (2.6)

This proposition proves (2.3) in all of Π and provides a sharp bound on the

dissipation. These two properties will be needed to show the second proposition. In

our study of (2.1), we have considered only the case where the solution u has no

discontinuity at x = h(t). However, we frequently have situations where x = h(t)

corresponds locally to a Rankine–Hugoniot discontinuity curve of u. At such a time

t, (u(t, h(t)−), u(t, h(t)+), ḣ(t)) corresponds to a shock (u−, u+, σ±) of the system.

The second proposition ensures that (2.3) remains valid in this situation. For any

such shock (u−, u+, σ±) of the system with u−, u+ ∈ V , we define

DRH(u−, u+, σ±) = [q(u+; uR) − σ±η(u+ |uR)]

− (1 + Cs0)[q(u−; uL) − σ±η(u− |uL)]. (2.7)
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We actually only need to control this quantity for 1-shocks (and n-shocks) such

that u− ∈ ΠC,s0
(see Sec. 4). In the other situations, the sign on the dissipation is

enforced by the choice of ḣ(t). We state our second main proposition.

Proposition 2.2. Consider a fixed system and a state set V verifying Assump-

tions 1, and d ∈ V. Then, there is an ε = ε(d) > 0 such that for any C1 > 0 large

enough (depending only on the system, d, and ε), there exists s̃0(C1) > 0 small

enough and a constant K > 0, such that for any C > 0 with C1/2 ≤ C ≤ 2C1, any

1-shock uL, uR with |uL − d| + |uR − d| ≤ ε, and |uL − uR| = s0 with 0 < s0 < s̃0

and any 1-shock (u−, u+, σ±) with u− ∈ ΠC,s0
and u+ ∈ V , we have

DRH(u−, u+, σ±) ≤ 0. (2.8)

If we consider a 1-shock with u+ converging to u−, the shock (u−, u+, σ±)

converges to (u, u, λ1(u)) with u = u−, and so DRH(u−, u+, σ±) converges to

DRH(u, u, λ(u)) = Dcont(u). This justifies the definition of Dcont. It shows also

that the continuous case is included in Proposition 2.2. However, the stronger esti-

mate contained in Proposition 2.1 is necessary to prove Proposition 2.2 in the shock

case.

Important note on notation: The purpose of d and ε is to confine the problem

to a localized region. Once d is fixed, we select ε > 0 that satisfies the following

conditions:

B2ε(d) ⊂ V and sup
u∈B2ε(d)

λ1(u) < inf
u∈B2ε(d)

λ2(u). (2.9)

For the remainder of this paper, we will fix d and ε subject to these constraints. To

simplify the statements of intermediate lemmas, we will often omit explicit mention

of d and ε and assume that all constants depend on these fixed values. We will also

omit reference to the thresholds C1 and s̃0, with the understanding that C1 may

increase from lemma to lemma, while s̃0 may decrease.

This gives rise to the following informal expression: “For sufficiently large C and

sufficiently small s0, there exists a universal constant K.”

This informal expression is exactly shorthand for the mathematically precise

but rather obtuse expression: For any d ∈ V and ε fixed satisfying (2.9), and for

any C1 sufficiently large (depending on d, ε, and the system), there exist s̃0(C1)

sufficiently small and K > 0 (depending on d, ε, C1, s̃0, and the system) such that

for all C1/2 < C < 2C1 and all 0 < s0 < s̃0.

The rest of this paper is organized as follows. The abstract assumptions on the

system together with the preliminaries are presented in Sec. 3. Then, Theorem 1.2

is proved in Sec. 4 assuming Propositions 2.1 and 2.2. Proposition 2.1 is proved in

Sec. 5. Finally, Proposition 2.2 is proved in Sec. 6.

Besides the notation already introduced, we also follow some standard notation

conventions in the rest of this paper, which will be particularly relevant in Secs. 5
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and 6:

• Throughout, C denotes the specific parameter used in the definition of ΠC,s0
in

(2.4). Constants denoted K (often with descriptive subscripts or superscripts) will

denote universal constants in the sense that they depend only on the system (1.1),

the state d, ε, and the often omitted thresholds C1 and s̃0. In particular, constants

called universal are NOT allowed to depended on C or s0.

• We will make heavy use of the notation a � b, which we take to mean there exists

a universal constant K, such that a ≤ Kb. We also write a ∼ b to denote a � b

and b � a.

• We also use the notation a = b + O(g) to mean |a − b| � g, where a, b might be

tensor-valued. This notation is frequently used in conjunction with a � b.

• For A a k1-tensor and B a k2-tensor, we define A⊗B as the k1 + k2 tensor,

ai1···ik1
bj1···jk2

. When working with tensor expressions, we also adopt the Einstein

summation convention that we sum over any repeated indices.

• We use both g′ and ∇g to denote derivatives of functions. We attempt to use g′

for g a vector or matrix-valued function and ∇g for g a scalar-valued function.

• Finally, | · | is used indiscriminately to denote finite dimensional norms on vectors,

matrices, and higher rank tensors.

3. Assumptions and Preliminaries

We first list the abstract assumptions needed on the system (1.1) and associated

state space V0 ⊂ G0. Note that the system is defined entirely by the flux function f .

Assumption 1. We assume that the global set of states G0 is convex and that

the flux function has the following qualitative regularity on G0: f = (f1, . . . , fn) ∈

[C(G0)]
n ∩ [C4(G)]n, where G is the interior of G0. We assume further that the

restricted set of states V0 is bounded, convex with non-empty interior V . In addition,

we assume the following:

(a) For any u ∈ G, f ′(u) is a diagonalizable matrix with eigenvalues verifying

λ1(u) < λ2(u) and λn−1(u) < λn(u). For i = 1, n, we denote ri(u) a unit

eigenvector associated with the eigenvalue λi(u).

(b) For any u ∈ G, and i = 1, n, we assume λ′
i(u) · ri(u) �= 0.

(c) There exists a strictly convex function η ∈ C(G0) ∩ C3(G) and a function q ∈

C(G0) ∩ C3(G) such that

q′ = η′f ′ on G .

(d) For uL ∈ G, we denote s → S1
uL

(s) the 1-shock curve through uL defined for

s > 0. We choose the parametrization such that s = |uL − S1
uL

(s)|. Therefore,

(uL, S1
uL

(s), σ1
uL

(s)) is the 1-shock with the left-hand state uL and strength s.

Similarly, we define s → Sn
uR

to be the n-shock curve such that (Sn
uR

, uR, σn
uR

(s))

is the n-shock with the right-hand state uR and strength s. We assume that

these curves are defined globally in G for every uL ∈ G and uR ∈ G.
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(e) There exists L > 0 such that |λi(u)| ≤ L for any u ∈ V and i = 1, n.

(f) (For 1-shocks) If (uL, uR) is an entropic Rankine–Hugoniot discontinuity with

shock speed σ, then σ > λ1(uR).

(g) (For 1-shocks) If (uL, uR) (with uL ∈ Bε(d)) is an entropic Rankine–Hugoniot

discontinuity with shock speed σ verifying

σ ≤ λ1(uL),

then uR is in the image of S1
uL

. That is, there exists suR
∈ [0, suL

) such that

S1
uL

(suR
) = uR (and hence σ = σ1

uL
(suR

)).

(h) (For n-shocks) If (uL, uR) is an entropic Rankine–Hugoniot discontinuity with

shock speed σ, then σ < λn(uL).

(i) (For n-shocks) If (uL, uR) (with uR ∈ Bε(d)) is an entropic Rankine–Hugoniot

discontinuity with shock speed σ verifying

σ ≥ λn(uR),

then uL is in the image of Sn
uR

. That is, there exists suL
∈ [0, suR

) such that

Sn
uR

(suL
) = uL (and hence σ = σn

uR
(suL

)).

(j) For uL ∈ G, and for all s > 0, d
dsη(uL|S

1
uL

(s)) > 0 (the shock “strengthens”

with s). Similarly, for uR ∈ G, and for all s > 0, d
dsη(uR |Sn

uR
(s)) > 0. Moreover,

for each uL, uR ∈ G and s > 0, d
dsσ1

uL
(s) < 0 and d

dsσn
uR

(s) > 0.

As written in the introduction, these assumptions are classical and fairly gen-

eral. Assumption 1(a) is the hyperbolicity assumption. Note that we assume strict

hyperbolicity only in the restricted set V and only for the smallest and largest eigen-

values. Assumption 1(b) is the genuinely nonlinear condition on the i-characteristic

families but only for i = 1 and i = n. Assumption 1(c) is the existence of a strictly

convex entropy. Assumption 1(d) is always valid locally. We assume it globally in G;

consequently, the system does not admit 1-shocks or n-shocks (uL, uR, σLR) with

uL or uR in G0 \G. Assumption 1(e) is the boundedness of the extremal eigenvalues

close to the boundary of V , where they may fail to be defined. Assumptions 1(e)

to 1(i) are related to the Liu condition but are actually weaker. Finally, Assump-

tion 1(j) says that the strength of the shock increases with s when measured by the

relative entropy. It is a natural condition verified by the Euler systems (see [21]).

Note that it has been shown in Barker, Blake, Freistühler, and Zumbrun [2] that

stability may fail if Assumption 1(j) is replaced by the property d
dsη(S1

uL
(s)) > 0.

Assumptions 1(a) to 1(j) are now classical for the a-contraction theory (see [21]).

A comment is in order on the distinction between V and G, especially since the

companion paper, [7], specializes to 2 × 2 systems and makes no such distinction.

Indeed, for many 2 × 2 systems, bounded invariant regions provide very natural

choices for V0 with a great deal of structure. Because shock curves never leave and

re-enter invariant regions, one can simply pick G0 = V0 a bounded invariant region

above. However, we are in the more general n × n setting, where the existence of

bounded invariant regions frequently fails, even for physical systems such as the full
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Euler system (1.6). Because the shock curves for the full Euler system are defined

globally in G, our results apply with only mild constraints on admissible choices

of V0.

Note that Assumptions 1(a) to 1(j) should be considered global assumptions

on the system. However, locally more is true. First, the additional regularity of f

in V , combined with the hyperbolicity of Assumption 1(a), implies we may always

find eigenvalues and eigenvectors for f ′, locally satisfying stronger estimates than

Assumption 1(e).

Lemma 3.1 (From [10, p. 236]). For each 1 ≤ i ≤ n, there exist C3 functions

λi, li, and ri satisfying the normalization conditions |li| = |ri| = 1, li · rj = 0 for

i �= j, and li · ri > 0 and the eigenvector and eigenvalue relations :

li(u)f ′(u) = λi(u)li(u) and f ′(u)ri(u) = λi(u)ri(u). (3.1)

If ∇λ1(u) · r1(u) �= 0 for each u, we may also choose r1, . . . , rn so that ∇λ1(u) ·

r1(u) < 0. Furthermore, if η is an entropy for f, ∇2η(u)ri(u) ‖ li(u).

Remark 3.2. From the integrability condition on the entropy η,

∇2η(u)f ′(u) = (f ′(u))T∇2η(u),

we get ∇2η(u)ri(u) ‖ li(u) (see [10, p. 243]).

Second, the regularity of f combined with Assumptions 1(a) and 1(b) implies

precise asymptotics and local estimates on the shock curves S1
u and Sn

u . We will

need the full strength of these local improvements in Secs. 5 and 6 when we work

close to a single small shock.

Lemma 3.3 (From [10, pp. 263–265, Theorems 8.2.1, 8.3.1, and 8.4.2]).

For any fixed state v ∈ V , there is an open neighborhood U of v such that for

each i = 1, n, there exist functions su : U → R, σi
u(s) : (U × [0, su)) → R and

Si
u(s) : (U × [0, su)) → V0 satisfying the Rankine–Hugoniot condition, for any u ∈ U

and any 0 ≤ s < su,

f(Si
u(s)) − f(u) = σi

u(s)(Si
u(s) − u) (3.2)

and the Lax admissibility criterion, for u ∈ U and 0 < s < su,

λi(S
i
u(s)) < σi

u(s) < λi(u). (3.3)

Furthermore, u 
→ su is Lipschitz, (u, s) 
→ σi
u(s) is C3, and (u, s) 
→ Si

u(s) is C3.

Finally, σi
u(s) satisfies the asymptotic expansion,

σi
u(s) =

1

2
(λi(u) + λi(S

i
u(s))) + O(s2), (3.4)

and similarly Si
u(s) satisfies the asymptotic expansion

Si
u(s) = u + ri(u)s +

s2

2
∇ri(u)ri(u) + O(s3). (3.5)
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The following lemma is now classical and gives the entropy lost due to dissipation

at a shock (u,Si
u(s), σi

u(s)). The version stated here is taken from [21].

Lemma 3.4 ([21, Lemma 3]). Suppose η and q are an entropy–entropy flux pair

and u, v ∈ V , then for 1 ≤ i ≤ n,

q(Si
u(s); v) − σi

u(s)η(Si
u(s) | v)

= q(u; v) − σi
u(s)η(u | v) +

∫ s

0

σ̇(t)η(u | Si
u(t))dt. (3.6)

Note that Lemma 3.4 holds for any i-family, i = 1, 2, . . . , n, and not only

extremal families (1-shocks and n-shocks) — it follows from the Rankine–Hugoniot

condition.

Structural lemmas: For the remainder of this section, we adopt the conven-

tion (used again in Secs. 5 and 6) that (uL, uR, σLR) is any entropic 1-shock with

uL, uR ∈ Bε(d) and uR = S1
uL

(s0). We now study the geometry and basic properties

of the set Π = ΠC,s0
defined in (2.5) using uL and uR, in particular that Π inherits

convexity from the larger state space V0. We also prove several basic estimates on

the functions η̃ and q̃ (defined in (2.4)), which will be used frequently in the study

of Dcont and DRH in Secs. 5 and 6, respectively. We begin with the main lemma for

the functions η̃ and q̃ and the related basic structure of Π.

Lemma 3.5. For any C > 0 and s0 > 0, η̃ and q̃ are an entropy–entropy flux pair

for the system (1.1) satisfying

∇η̃(u) = Cs0(∇η(u) −∇η(uL)) + (∇η(uR) −∇η(uL)) and

∇2η̃(u) = Cs0∇
2η(u).

(3.7)

For any C sufficiently large and s0 sufficiently small, ΠC,s0
is strictly convex,

has non-empty interior, is compactly contained in B2ε(d), and has diameter

diam(ΠC,s0
) ∼ C−1.

Finally, for any C sufficiently big and s0 sufficiently small, and any u ∈ ΠC,s0
,

|∇η̃(u)| � s0 and ∇2η̃(u)v · v ∼ Cs0 (3.8)

for any |v| = 1.

Proof. We show ∇q̃ = ∇η̃f ′ so that (η̃, q̃) is an entropy–entropy flux pair for (1.1).

Indeed, differentiating (2.4) and using ∇q = ∇ηf ′,

∇q̃(u) = Cs0∇q(u) − (1 + Cs0)∇η(uL)f ′(u) + ∇η(uR)f ′(u), (3.9)

= [Cs0∇η(u) − (1 + Cs0)∇η(uL) + ∇η(uR)]f ′(u), (3.10)

∇η̃(u) = Cs0∇η(u) − (1 + Cs0)∇η(uL) + ∇η(uR). (3.11)
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Now, differentiating (3.11) again yields ∇2η̃(u) = Cs0∇
2η(u). This proves η̃ is a

strictly convex entropy for (1.1) and Eq. (3.7) holds.

Next, we note since ΠC,s0
= {u ∈ V | η̃(u) ≤ 0}, ΠC,s0

is convex because η̃ and

V are convex. To obtain the diameter estimate diam(ΠC,s0
) � C−1, we note that if

u ∈ ΠC,s0
∩ B2ε(d),

Cs0η(u |uL) ≤ η(u |uR) − η(u|uL) ≤

∫ uR

uL

∂vη(u | v)dv

≤ sup
v∈B2ε(d)

|∇2η(v)||uR − uL|(|u − uL| + |u − uR|), (3.12)

where ∂vη(u | v) = −∇2η(u)(u− v). By Lemma 1.4 and |uR −uL| ∼ s0 for s0 small,

(3.12) implies

Cs0|u − uL|
2 � s0(|u − uL| + s0). (3.13)

So, if |u − uL| ≥ s0, (3.13) implies |u − uL| � C−1. Therefore, taking C suffi-

ciently large and then s0 sufficiently small, depending only on C, say s0 � C−1,

we obtain diam(ΠC,s0
∩ Bε(d)) � C−1, where the constant depends only on η,

d, and ε. Because uL ∈ ΠC,s0
, for C sufficiently large and s0 sufficiently small,

ΠC,s0
∩ B2ε(d) ⊂ Bε/2(uL). Since ΠC,s0

inherits convexity from η̃, we conclude

ΠC,s0
is contained in Bε/2(uL) which is compactly contained in B2ε(d). The esti-

mates (3.8) then follow from (3.7). Since η̃ is strictly convex on B2ε(d), ΠC,s0
is

strictly convex. Also, since η̃ is continuous and η̃(uL) < 0, ΠC,s0
contains an open

neighborhood of uL.

It remains only to show the lower bound: diam(ΠC,s0
) � C−1 for C sufficiently

large and s0 sufficiently small. This will be done by showing that a sufficiently large

portion of the line L(t) = uL + tr1(uL) is contained within ΠC,s0
. Since ΠC,s0

is

strictly convex and uL ∈ ΠC,s0
, L(t) intersects ∂ ΠC,s0

exactly twice: once for t+ > 0

and once for t− < 0. Taylor expanding around uL,

0 = η̃(L(t−)) = η̃(uL) + t−∇̃η(uL) · r1(uL) + O(Cs0|t
−|2). (3.14)

Therefore, evaluating (3.7) at u = uL,

0 = −η(uL|uR) + t−(∇η(uR) −∇η(uL)) · r1(uL) + O(Cs0|t
−|2). (3.15)

Since uR = uL + s0r1(uL) + O(s2
0), we have

η(uL|uR) − t−s0η
2(uL)r1(uL) · r1(uL) = O(Cs0|t

−|2 + s2
0t

−). (3.16)

Because t− is negative and η is strictly convex, both terms on the left-hand side are

positive so that rearranging terms in (3.15) yields the bound

|t−| � s0|t
−| + C|t−|2. (3.17)
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Thus, for s0 sufficiently small, |t−| � C−1. So,

diam(ΠC,s0
) ≥ |L(0) − L(t−)| = |t−| � C−1

completes the proof.

Lemma 3.5 is fundamental to the forthcoming analysis for several reasons. First,

the estimates will be used frequently in the following. Second, Lemma 3.5 is the

first indication that s0 and C play fundamentally different roles in the analysis:

C−1 controls global geometric properties of the set Π = ΠC,s0
, i.e. the diameter,

while s0 controls local behavior more associated with the system (1.1). This implies

that there are essentially two important length scales within Π, namely the “large

scale” C−1 and the “small scale” s0. In particular, even taking the size of allowable

shocks to 0, we do NOT find that ΠC,s0
shrinks to the point uL. These themes are

repeated in the following three lemmas linking the geometry of Π to quantitative

estimates on η̃. First, we lower bound the magnitude of ∇η̃ on ∂ Π which yields

that ∇η̃ is a non-vanishing outward normal vector on Π. Second, we show that −η̃

is comparable to the distance to ∂ Π globally inside Π. Third, we show that C is

essentially the curvature of Π.

Lemma 3.6. For C sufficiently large, s0 sufficiently small, and any u ∈ ∂ ΠC,s0
,

|∇η̃(u)| � s0. (3.18)

In particular, the vector field ν(u) := ∇η̃(u)
|∇η̃(u)| is the outward unit normal vector field

for ΠC,s0
.

Proof. Let u ∈ ∂ ΠC,s0
and take v ∈ ∂ ΠC,s0

such that |u−v| ∼ C−1 (this is possible

with a constant independent of u by Lemma 3.5). Then, since η̃(v) = η̃(u) = 0,

applying Lemma 1.4 to the entropy η̃,

C′|v − u|2 ≤ η̃(v |u) = −∇η̃(u) · (v − u) ≤ |∇η̃(u)||v − u|, (3.19)

where C′ is the constant from Lemma 1.4. Note that since the entropy η̃ depends

on s0 and C, so too does C′. However, a cursory look at the proof of [21,

Appendix A, Lemma 1.4] yields that the asymptotics for the constant C′ as

C′(C, s0) ∼ infu∈ΠC,s0
,|w|=1 ∇

2η̃(u)w · w ∼ Cs0 by Lemma 3.5. Equation (3.19)

combined with C′ ∼ Cs0 and |u − v| ∼ C−1 yields the desired bound, (3.18).

Lemma 3.7. For C sufficiently large, s0 sufficiently small, and u ∈ ΠC,s0
, we have

− η̃(u) � s0d(u, ∂ ΠC,s0
). (3.20)

Proof. Since ∂ ΠC,s0
is compact, for u ∈ ΠC,s0

, there is a minimizer u ∈ ∂ ΠC,s0

satisfying

min
v∈∂ ΠC,s0

|u − v| = |u − u|. (3.21)
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Note, since u ∈ ∂ ΠC,s0
, η̃(u) = 0. Therefore, by the fundamental theorem of calcu-

lus, Lemma 3.5, and (3.21),

−η̃(u) = |η̃(u)| =

∣

∣

∣

∣

η̃(u) +

∫ u

u

∇η̃(w)dw

∣

∣

∣

∣

� s0|u − u| = s0d(u, ∂ ΠC,s0
). (3.22)

Finally, the last of our structural lemmas should be read as a statement about

the curvature of Π = ΠC,s0
. Although we need only a bound on the curvature in

the sense that the Lipschitz constant of the unit normal is essentially C, one can

show this in several stronger senses than we do. For instance, it is straightforward

to show that each principal curvature (with respect to the outward unit normal)

satisfies κi ∼ −C. One can show that Π has positive curvature with a lower bound

in the geometric sense that all sectional curvatures are bounded below by C2. Lower

bounds on the curvature, in this sense, are the central hypotheses in several major

local-to-global type results in the comparison geometry, which reinforces our intu-

ition that C contains global information about the geometry of Π.

Lemma 3.8. For ν the outward unit normal on ∂ ΠC,s0
, for any u, w ∈ ∂ ΠC,s0

,

|ν(u) − ν(w)| ∼ C|u − w| (3.23)

for C sufficiently large and s0 sufficiently small.

Proof. By Lemma 3.6, ν(u) = ∇η̃(u)
|∇η̃(u)| and ν ∈ C2(∂ ΠC,s0

; Sn). Therefore, we

compute

∇ν(u) =
∇2η̃(u)

|∇η̃(u)|
−

∇η̃(u)⊗(∇2η̃(u)∇η̃(u))

|∇η̃(u)|3
. (3.24)

By Lemmas 3.5 and 3.6, |∇η̃(u)| ∼ s0 on ∂ ΠC,s0
and |∇2η̃(u)| � Cs0. Therefore,

(3.24) implies |∇ν| � C and hence |ν(u) − ν(w)| � C|u − w| for all C sufficiently

large and s0 sufficiently small.

The lower bound is more delicate. Let us fix u ∈ ∂ ΠC,s0
. For 0 < α < π

2 , define

the cone centered at u with direction −ν(u) and angle α via

Pα(u) :=

{

w ∈ V

∣

∣

∣

∣

cos(α) ≤ −ν(u) ·
(w − u)

|w − u|

}

. (3.25)

For w ∈ ∂ ΠC,s0
and w /∈ Pα(u), define e = (w − u) − [(w − u) · ν(u)]ν(u) so that e

is the projection of w−u onto the tangent space of ∂ ΠC,s0
at u. Using ν(u) · e = 0,

Lemma 3.6, and the fundamental theorem of calculus, we estimate

|ν(u) − ν(w)||e| ≥ |e · (ν(u) − ν(w))| �
1

s0
|∇η̃(u) −∇η̃(w)|

=

∫ u

w

e · ∇2η̃(v)dv
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� C

∫ 1

0

e · ∇2η(w + t(u − w))(u − w)dt

� C∇2η(w)(u − w) · e.

(3.26)

It remains to lower bound the quantity A := ∇2η(w)(u − w) · e. We decompose A

into two parts via

A = (∇2η(w)(u − w) · (u − w)) − ([(u − w) · ν(u)]∇2η(w)(u − w) · ν(u)).

(3.27)

First, since η is convex, ∇2η(w)(u − w) · (u − w) � |u − w|2. Second, since

w /∈ Pα(u),

|[(u − w) · ν(u)]∇2η(w)(u − w) · ν(u)| � |u − w|2 cos(α). (3.28)

Therefore, we may pick α0 with π
2 −α0 sufficiently small, independent of C and s0,

such that if w /∈ Pα0
(u), then A � |u − w|2 ≥ |u − w||e|. From (3.26), it follows

that

|ν(u) − ν(w)| � C|u − w| for u ∈ ∂ ΠC,s0
and w /∈ Pα0

(u). (3.29)

It remains to prove the estimate for w ∈ Pα0
(u). Fix w ∈ Pα0

(u). Then, we note by

the strict convexity of ΠC,s0
, the line L(t) = u + t(w − u) crosses ∂ ΠC,s0

exactly

twice, at t = 0 and t = 1. Since −ν(u)·(w−u) > cos(α0)|w−u|, L is inward-pointing

at time t = 0 and so must be outward pointing at time t = 1. Using w ∈ Pα0
(u),

we obtain

[ν(w) − ν(u)] ·
(w − u)

|w − u|
> cos(α0). (3.30)

As α0 was chosen independent of C and s0, |ν(u) − ν(w)| � 1 for all u ∈ ∂ ΠC,s0

and w ∈ Pα0
(w). Therefore, by Lemma 3.5, we conclude

|ν(u) − ν(w)| � 1 � C|u − w| for u ∈ ∂ ΠC,s0
and w ∈ Pα0

(u). (3.31)

Combining (3.29) and (3.31) yields the desired lower bound.

4. Proof of Theorem 1.2

In this section, we prove that Proposition 2.2 implies Theorem 1.2. We construct

the shift function t → h(t) by solving an ODE in the Filippov sense, in the spirit

of [20, 21]. To enforce the separation of waves (1.17) and (1.18), the proof uses

the framework developed first in [15]. We specialize to the present situation and

simplify the argument.

Note that we only need to show Theorem 1.2 for a 1-shock. Theorem 1.2 follows

for an n-shock by considering the conservation law ut − f(u)x = 0 because an n-

shock for the system ut + f(u)x = 0 is a 1-shock for the system ut − f(u)x = 0. In



Sharp a-contraction estimates for small extremal shocks 559

particular, (1.17) for 1-shocks provides (1.18) for n-shocks, and (1.14) for 1-shocks

provides (1.15) for n-shocks.

The proof of Theorem 1.2 for 1-shocks is split into five steps.

Step 1: Fixing the constants C1 and s̃0. For any d ∈ V , pick εd > 0 so that

they satisfy (2.9), which is possible by Assumption 1(a). We now pick α1 so that

sup
v∈B(d,2εd)

λ1(v) < α1 < inf
v∈B(d,2εd)

λ2(v). (4.1)

Due to Lemma 3.5, if C is big enough and s0 is small enough, then ΠC,s0
⊂

B(d, 2εd) ⊂ V for any 1-shock (uL, uR, σLR) such that uL, uR ∈ Bε(d) with

s0 = |uL−uR|. From now on, we consider a fixed constant C1 > 0 verifying this prop-

erty, Lemma 3.6, and Proposition 2.2. We then fix s̃0 > 0 verifying Proposition 2.2

for these fixed d and C1. Finally, we pick the ε (appearing in Theorem 1.2) as

ε = min(s̃0, εd). (4.2)

For any uL, uR such that |uL − d| + |d − uR| ≤ ε, we denote s0 = |uL − uR|.

Then for any a1, a2 > 0 verifying (1.14), we denote C > 0 such that

a1

a2
= 1 + Cs0. (4.3)

From (1.14), C verifies C1/2 < C < 2C1 and so verifies Proposition 2.2. For the

rest of the proof, the constant C is proportional to the fixed constant C1. However,

we need to consider all possible strengths, s0, of the shock (uL, uR) for 0 < s0 ≤ s̃0.

Step 2: Control of q̃ from η̃. We remind the reader that the functionals η̃ and q̃,

defined in (2.4), depend on C (which is now proportional to C1 fixed) and on the 1-

shock uL, uR, especially through its strength s0 = |uL −uR|. For any u ∈ V0\ΠC,s0
,

we denote d(u, ∂ΠC,s0
) = inf{|u − v| : v ∈ ΠC,s0

}. This step is dedicated to the

proof of the following lemma.

Lemma 4.1. There exist constants δ > 0 and C∗ > 0, such that for any uL, uR ∈ V

such that |uL − d| + |uR − d| ≤ s̃0,

η̃(u) ≥ δs0d(u, ∂ΠC,s0
) for any u ∈ V0\ΠC,s0

, (4.4)
∣

∣q̃(u)
∣

∣ ≤ C∗
∣

∣η̃(u)
∣

∣ , whenever u ∈ V0\ΠC,s0
verifies q̃(u) ≤ 0. (4.5)

Proof. From Lemma 3.6, there exists δ > 0 (independent of uL, uR, s0, C, since s̃0

and C1 are now fixed), such that for any v ∈ ∂ΠC,s0
,

∇η̃(v) · ν(v) ≥ δs0.

For any u ∈ V0, denote ū the orthogonal projection of u on ΠC,s0
. Since ΠC,s0

is

smooth and strictly convex, whenever u /∈ ΠC,s0
,

u − ū = |u − ū|ν(ū), |u − ū| = d(u, ∂ΠC,s0
).
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Consider φ(t) = η̃(ū + t(u − ū)) for t ∈ [0, 1]. We have

φ′(0) = (u − ū) · ∇η̃(ū) ≥ δs0d(u, ∂ΠC,s0
).

Moreover, φ is convex, so for all 0 ≤ t ≤ 1,

φ(t) ≥ φ(0) + tφ′(0) = η̃(ū) + tδs0d(u, ∂ΠC,s0
).

Since η̃(ū) = 0 (ū ∈ ∂ΠC,s0
) for t = 1, we obtain

η̃(u) = φ(1) ≥ δs0d(u, ∂ΠC,s0
).

This proves (4.4).

Since q is not C1 up to the boundary of V , to show (4.5), we need to consider

the two cases: u far from the boundary of V and u close to the boundary of V .

First, to handle u close to the boundary of V , we recall q and f are continuous

functions on the compact set V0. From the definitions (1.20) and (2.4), there exists

a constant C̃ > 0 such that for any u ∈ V0, |q̃(u)| ≤ C̃s0. Since ΠC,s0
⊂ Bd(εd/2),

together with (4.4), this provides (4.5) for any u ∈ V0\Bd(3εd/4) for C∗ = 4C̃/(δεd).

Second, to handle u far from the boundary of V , we note Bd(3εd/4) is at least

εd/4 far away from R
n \V0, so f ′ and ∇η are uniformly bounded on this ball.

Consider any u ∈ Bd(3εd/4)\ΠC,s0
such that q̃(u) ≤ 0. Let ū be the orthogonal

projection of u on ∂ΠC,s0
. From Proposition 2.1, together with (2.5), we have q̃(ū) >

0. Therefore, for a possibly different constant C̃, still independent of s0,

|q̃(u)| = −q̃(u) ≤ q̃(ū) − q̃(u)

= −

∫ 1

0

∇q̃((1 − t)ū + tu) · (u − ū)dt

= −

∫ 1

0

(∇η̃((1 − t)ū + tu)f ′((1 − t)ū + tu)) · (u − ū)dt

≤ C̃s0|u − ū| = C̃s0d(u, ∂ΠC,s0
). (4.6)

Together with (4.4), this provides (4.5), in this case, with C∗ = C̃/δ. Taking C∗ =

max(C̃/δ, 4C̃/(δεd)) gives the result.

Step 3: Construction of the shift. We now fix a shock uL, uR and fix the weight

a1, a2 > 0. From Step 1, this corresponds to fixing s0 and C. From (4.3),

A = {u ∈ V0 | a1η(u |uL) > a2η(u |uR)} = V0\ΠC,s0
,

which is a relatively open set of V0. Therefore, the indicator function of this set

is lower semi-continuous function on V0, and −�A is upper semi-continuous on

V0. With the hypotheses of the theorem, these constants verify the hypotheses

of Proposition 2.2. Note that the smallest eigenvalue λ1(u) of f ′(u) may not be

defined on V0\V (since f is not differentiable on those points). These values of u
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correspond to the vacuum in the case of the Euler equation. By definition, we extend

this function on V0 by

λ1(u) := L for u ∈ V0\V ,

where L is defined by Assumption 1(e). Note that this function λ1 is still upper semi-

continuous in u on the whole domain V0. We define now the velocity functional,

V (u) := λ1(u) − (C∗ + 2L)�{u∈V0 | a1η(u |uL)>a2η(u |uR)}(u) for u ∈ V0, (4.7)

where C∗ > 0 is defined in Lemma 4.1. This function is still upper semi-continuous in

u on the whole domain V0. We want to solve the following ODE with discontinuous

right-hand side,
⎧

⎨

⎩

ḣ(t) = V (u(h(t), t)),

h(t̄) = x0.
(4.8)

The existence of an h satisfying (4.8) in the sense of Filippov is the content of the

following lemma, originally proved in [21, Proposition 1].

Lemma 4.2 (Existence of Filippov flows). Let V : V0 → R be bounded and

upper semi-continuous on V0 and continuous on U an open, full measure subset

of V0. Let u ∈ Sweak, x0 ∈ R, and t̄ ∈ [0,∞). Then, we can solve (4.8) in the

Filippov sense. That is, there exists a Lipschitz function h : [t̄,∞) → R such that

Vmin(t) ≤ ḣ(t) ≤ Vmax(t), (4.9)

h(t̄) = x0, (4.10)

Lip[h] ≤‖V ‖L∞ (4.11)

for almost every t, where u± := u(h(t)±, t),

Vmax(t) = max(V (u+(t)), V (u−(t))) (4.12)

and

Vmin(t) =

{

min(V (u+(t)), V (u−(t))) if u+(t), u−(t) ∈ U,

−‖V ‖L∞ otherwise.
(4.13)

Furthermore, for almost every t,

f(u+) − f(u−) = ḣ(u+ − u−), (4.14)

q(u+) − q(u−) ≤ ḣ(η(u+) − η(u−)), (4.15)

i.e. for almost every t, either (u−, u+, ḣ) is an entropic shock (for the entropy η) or

u+ = u−.

Applying Lemma 4.2 to our choice of V from (4.7) with x0 = 0 and t̄ = 0, we

obtain our Lipshitz shift function h. Note that for any function h which is Lipschitz

continuous, the results (4.14) and (4.15) are well known when the solution u is BV.
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However, (4.14) and (4.15) are still valid under the strong trace property on u (see

[21, Lemma 6] or [21, Appendix]).

We can readily apply this lemma to our situation: Fix any x0 ∈ R and t̄ ∈ R
+.

Then, applying Lemma 4.2 to our choice of V from (4.7), we construct our Lipshitz

shift function h : [t̄,∞) → R. To conclude the proof of Theorem 1.2, it remains only

to check (1.16) and (1.17) hold for this shift function.

Step 4: Proof of (1.16). Let us denote u± := u(h(t)±, t). We will prove (1.16) for

each fixed time t by considering the four following cases (which allow for u+ = u−):

Case 1. a1η(u− |uL) > a2η(u− |uR) and a1η(u+ |uL) > a2η(u+ |uR),

Case 2. a1η(u− |uL) > a2η(u− |uR) and a1η(u+ |uL) ≤ a2η(u+ |uR),

Case 3. a1η(u− |uL) ≤ a2η(u− |uR) and a1η(u+ |uL) > a2η(u+ |uR),

Case 4. a1η(u− |uL) ≤ a2η(u− |uR) and a1η(u+ |uL) ≤ a2η(u+ |uR).

Since we need only prove (1.16) for almost every t, by Lemma 4.2, we may

neglect a null set of times and analyze only times for which the following dichotomy

holds:

u+(t) = u−(t) or (u−(t), u+(t), ḣ(t)) is an entropic shock. (4.16)

Further, Lemma 4.2 implies

ḣ(t) ≤ max(λ1(u+) − (C∗ + 2L)�V0\Π
(u+), λ1(u−) − (C∗ + 2L)�V0\Π

(u−))

(4.17)

and for u+, u− /∈ ∂ Π and u+, u− /∈ V0\V ,

ḣ(t) ≥ min(λ1(u+) − (C∗ + 2L)�V0\Π
(u+), λ1(u−) − (C∗ + 2L)�V0\Π

(u−)).

(4.18)

Case 1. This case corresponds to u+, u− /∈ Π. In this case, due to (4.17), we have

ḣ(t) ≤ −(C∗ + 2L) + max(λ1(u+), λ1(u−)).

Thus, by the choice of constants,

ḣ(t) < −L ≤ inf
u∈V0

λ1(u), ḣ(t) ≤ −C∗. (4.19)

The first inequality insures that (u+(t), u−(t), ḣ(t)) cannot be an entropic shock,

since ḣ(t) < λ1(u−(t)) contradicts Assumption 1(f). Thus, we must have u+ = u−.

Define v := u+ = u−. Since v /∈ Π, η̃(v) ≥ 0. Therefore, using (4.3) and the second

inequality of (4.19), we find

a2[q(v; uR) − ḣ(t) η(v|uR)] − a1[q(v; uL) − ḣ(t) η(v|uL)]

= a2(−q̃(v) + ḣ(t)η̃(v)) ≤ a2(−q̃(v) − C∗η̃(v)). (4.20)
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Since a2 > 0, on one hand, if q̃(v) ≥ 0, the right-hand side is non-positive. On the

other hand, if q̃(v) ≤ 0, the choice of C∗ in (4.5) enforces the non-positivity. This

proves (1.16) in Case 1.

Case 2. This case corresponds to u− /∈ Π and u+ ∈ Π and consequently, u− �= u+

so that (u−(t), u+(t), ḣ(t)) is an entropic shock. As in Case 1, due to (4.17) we have

ḣ(t) ≤ max(λ1(u+), λ1(u−) − (C∗ + 2L)) < max(λ1(u+),−L) ≤ λ1(u+). (4.21)

However, this contradicts Assumption 1(f). Thus, we conclude that this case cannot

occur.

Case 3. This case corresponds to u− ∈ Π and u+ /∈ Π so that once again

(u−(t), u+(t), ḣ(t)) is an entropic shock. Consequently, (4.17) implies

ḣ(t) ≤ max(λ1(u+) − (C∗ + 2L), λ1(u−)) ≤ λ1(u−) (4.22)

and combined with Assumption 1(g), this means (u−, u+, ḣ(t)) = (u−, u+, σ±) is an

entropic 1-shock with u− ∈ Π. From Assumption 1(d), the system 1.1 does not admit

shocks to vacuum, i.e. u+ ∈ V . Therefore, from Definition 2.7 and Proposition 2.2,

we obtain

a2[q(u+; uR) − ḣ(t) η(u+|uR)] − a1[q(u−; uL) − ḣ(t) η(u−|uL)]

= a2DRH(u−, u+, σ±) ≤ 0. (4.23)

We conclude (1.16) holds in this case.

Case 4. This case corresponds to u−, u+ ∈ Π. In this case, (4.17) implies

ḣ(t) ≤ max(λ1(u+), λ1(u−)). (4.24)

Now, suppose first that u+ = u− = v. Then, either v ∈ ∂ Π, in which case η̃(v) = 0,

or (4.18) implies ḣ(t) = λ1(v). In either case, we find by Proposition 2.1,

a2[q(v; uR) − ḣ(t) η(v|uR)] − a1[q(v; uL) − ḣ(t) η(v|uL)]

= a2(q̃(v) − ḣ(t)η̃(v))

= a2Dcont(v) ≤ 0. (4.25)

Second, suppose u− �= u+ so that once more we deduce from Assumption 1(g)

that (u+, u−, ḣ(t)) is a 1-shock. We then use Proposition 2.2 as in Case 3 to con-

clude (1.16) holds. This concludes the casework.

Step 5: Proof of (1.17).

To obtain (1.17), we note that in all four cases from Step 3, either ḣ(t) ≤ −L or

ḣ(t) ≤ supv∈ΠC,s0
λ1(v). Therefore, combined with (4.11), for almost all t > 0,

− C∗ − 3L ≤ −‖V ‖L∞ ≤ ḣ(t) ≤ sup
v∈ΠC,s0

λ1(v). (4.26)
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From Step 1, ΠC,s0
⊂ B(d, 2εd). Therefore, (1.17) is a consequence of (4.1) and (4.2)

with λ̂ = 2(C∗ + 3L).

5. Proof of Proposition 2.1

5.1. Proof sketch

In this section, we prove Proposition 2.1. For this section, we consider (uL, uR, σLR),

a single entropic 1-shock of the system (1.1) with uR = S1
uL

(s0). We moreover

assume that uL, uR ∈ Bε(d) where d and ε are fixed satisfying (2.9). We will also

assume C is sufficiently large and s0 is sufficiently small so that ΠC,s0
is compactly

contained in B2ε(d), which is possible by Lemma 3.5. We recall that the continuous

entropy dissipation function Dcont is given by

Dcont(u) = [q(u; uR) − λ1(u)η(u |uR)] − (1 + Cs0)[q(u; uL) − λ1(u)η(u |uL)]

= −q̃(u) + λ1(u)η̃(u), (5.1)

where we recall q̃ and η̃ are given by

η̃(u) = (1 + Cs0)η(u|uL) − η(u |uR) and

q̃(u) = (1 + Cs0)q(u; uL) − q(u; uR).
(5.2)

Finally, we recall ΠC,s0
= {u | η̃(u) < 0}. Now, to prove Proposition 2.1, it suffices

to show Dcont(u) � −s3
0 for C sufficiently large, s0 sufficiently small, and any

u ∈ ΠC,s0
.

The proof is motivated by the scalar case in which the uniform negativity in

Proposition 2.1 is computed explicitly in the case of Burgers’ equation (see [22,

pp. 9–10] and also the proof of [18, Lemma 3.3]). As the 1-characteristic field is

genuinely nonlinear (Assumption 1(b)), we expect the same dissipation rate for

u ∈ S1
uL

. Therefore, the underlying principle of the proof is to localize the problem

to u ∈ S1
uL

. We show that if the estimate holds near S1
uL

, where we can compute

the dissipation rate nearly explicitly, then the estimate holds on all of ΠC,s0
. More

precisely, we proceed in three steps:

• Step 1. We characterize maxima of Dcont in ΠC,s0
and show that for large enough

C there is a unique maximum, u∗, for Dcont on ΠC,s0
.

• Step 2. We compute Dcont(u) for states u along the shock curve S1
uL

and show

Dcont(u) satisfies the entropy dissipation estimate claimed in Proposition 2.1.

• Step 3. We show that the maximum u∗ is sufficiently close to the shock curve

to conclude that u∗ also satisfies the desired estimate.

Before beginning Step 1, we note that because we have already restricted the range

of C and s0 so that ΠC,s0
is compactly contained within Bε(d), the system is

more regular on ΠC,s0
than on V0. By the regularity assumptions on the system,

‖f‖C4(ΠC,s0
) ≤ K, where K is a constant depending only on f , ε, and d. Similarly,

the C3 norm of each of ri, li, λi, η, and q on ΠC,s0
is bounded by a universal constant.
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This allows us to use classical techniques of differential and integral calculus to

analyze Dcont on ΠC,s0
.

5.2. Step 1: Characterization and uniqueness of maxima

In this step, we study maxima of Dcont in the set ΠC,s0
and show that taking C

sufficiently large yields a unique maximum.

Proposition 5.1. For any C sufficiently large and s0 sufficiently small, there is a

unique maximum u∗ of Dcont on ΠC,s0
. Moreover, u∗ is the unique point in ∂ ΠC,s0

satisfying the condition

ν(u∗) ‖ l1(u∗) and r1(u
∗) is outward pointing, (5.3)

where ν(u) is the outward unit normal to ∂ ΠC,s0
.

We begin by showing that a maxima cannot occur in the interior of ΠC,s0
.

Lemma 5.2. Say u is a critical point of Dcont. Then, u ∈ ∂ ΠC,s0
.

Proof. We compute the directional derivative of Dcont along the integral curve

emanating from u in the r1 direction. Defining u(t) as the solution to the ODE,

u̇(t) = r1(u(t)),

u(0) = u.
(5.4)

Then, using ∇q̃ = ∇η̃f ′ and r1(u(t)) is a right eigenvector of f ′(u(t)) associated

with the eigenvalue λ1(u(t)), we compute

d

dt
Dcont(u(t)) = [−∇q̃(u(t)) + λ1(u(t))∇η̃(u(t)) + η̃(u(t))∇λ1(u(t))] · r1(u(t))

= η̃(u(t))[∇λ1(u(t)) · r1(u(t))]. (5.5)

Finally, evaluating at t = 0 and recalling that u is a critical point, we obtain

η̃(u)[∇λ1(u) · r1(u)] = 0. (5.6)

Since the first characteristic field is genuinely nonlinear by Assumption 1(b), we

must have η̃(u) = 0.

Lemma 5.3. Say u∗ is a maxima of Dcont(u) on ΠC,s0
. Then,

∇η̃(u∗) ‖ l1(u∗) and r1(u
∗) points outwards. (5.7)

Proof. By Lemma 5.2, η̃(u∗) = 0 and u∗ ∈ ∂ ΠC,s0
. Therefore, by Lagrange’s

theorem and that ∇η̃ is a non-vanishing (by Lemma 3.6) normal vector field on

ΠC,s0
, we must have

∇Dcont(u
∗) ‖ ∇η̃(u∗). (5.8)
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Thus, we compute

∇Dcont(u
∗) = −∇q̃(u∗) + λ1(u

∗)∇η̃(u∗) + η̃(u∗)∇λ1(u
∗)

= λ1(u
∗)∇η̃(u∗) −∇η̃(u∗)f ′(u∗). (5.9)

Therefore, ∇η̃(u∗) must be a left eigenvector of f ′(u∗) and ∇η̃(u∗) is parallel to

li(u∗) for some 1 ≤ i ≤ n. Suppose for the sake of contradiction that ∇η̃(u∗) is

parallel to lj(u∗) for some j �= 1.

Case 1. Suppose lj(u∗) is inward-pointing, i.e.

∇η̃(u∗) · lj(u∗) < 0.

Then, we define u(t) to be the integral curve in the lj direction emanating from

u∗. Thus, because lj(u∗) is inward pointing, u(t) ∈ ΠC,s0
for some small amount of

time. Since u(0) = u∗ is a maximum of Dcont on ΠC,s0
, we have

Dcont(u(t)) ≤ Dcont(u
∗) and

d

dt

∣

∣

∣

∣

t=0

Dcont(u(t)) ≤ 0. (5.10)

Now, using (5.9), we compute

d

dt

∣

∣

∣

∣

t=0

Dcont(u(t)) = [∇η̃(u(t))[λ1(u(t))I − f ′(u(t))] + η̃(u(t))∇λ1(u(t))] · lj(u(t)).

(5.11)

Evaluating at t = 0 and using η̃(u∗) = 0 and ∇η̃(u∗) is parallel to lj(u∗), we

obtain

d

dt

∣

∣

∣

∣

t=0

Dcont(u(t)) = [λ1(u
∗) − λj(u

∗)][∇η̃(u∗) · lj(u∗)]. (5.12)

However, since λ1(u
∗) < λj(u

∗) by Assumption 1(a) and lj(u∗) is inward-pointing,

we obtain

d

dt
Dcont(u(t)) > 0 (5.13)

and we obtain a contradiction.

Case 2. Suppose lj(u∗) is outward-pointing, i.e.

∇η̃(u∗) · lj(u∗) > 0.

Then, reasoning as in Case 1, with lj replaced by −lj, we take u(t) the integral

curve in the −lj direction. Since −lj(u∗) is inward-pointing and u∗ is a maximum

of Dcont on ΠC,s0
,

d

dt

∣

∣

∣

∣

t=0

Dcont(u(t)) ≤ 0. (5.14)
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As before, by explicit computation, we obtain

d

dt

∣

∣

∣

∣

t=0

Dcont(u(t)) = −[λ1(u
∗) − λj(u

∗)][∇η̃(u∗) · lj(u∗)] > 0, (5.15)

again a contradiction.

Case 3. Suppose lj(u∗) · ∇η̃(u∗) = 0. Then, li(u∗) · ∇η̃(u∗) = 0 for each 1 ≤ i ≤ n

and ∇η̃(u∗) = 0, contradicting Lemma 3.6.

In all cases, we obtain a contradiction. Therefore, we conclude that ∇η̃(u∗) is par-

allel to l1(u∗). Finally, for the sake of contradiction, suppose that r1(u
∗) is inward

pointing. As in the proof of Lemma 5.2, taking u(t) the integral curve in the direc-

tion of r1 emanating from u∗,

d

dt
Dcont(u(t)) = η̃(u(t))[∇λ1(u(t)) · r1(u(t))] (5.16)

and d
dtDcont(u(0)) = 0. Now, if r1(u

∗) is inward-pointing, since u∗ is a maximum

for Dcont, we must have

d2

dt2

∣

∣

∣

∣

t=0

Dcont(u(t)) ≤ 0. (5.17)

However, by explicit computation and using η̃(u∗) = 0 once again,

d2

dt2

∣

∣

∣

∣

t=0

Dcont(u(t)) = [∇η̃(u∗) · r1(u
∗)][∇λ1(u

∗) · r1(u
∗)]. (5.18)

Since we have chosen r1 to satisfy ∇λ1(u) · r1(u) < 0 (see Lemma 3.1), it follows

that if r1(u
∗) is inward-pointing,

d2

dt2

∣

∣

∣

∣

t=0

Dcont(u(t)) > 0,

a contradiction.

Lemma 5.4. Suppose u∗ ∈ ∂ ΠC,s0
satisfies

∇η̃(u∗) ‖ l1(u∗) and r1(u
∗) points outwards. (5.19)

Then, for any C sufficiently large and s0 sufficiently small, u∗ is a maxima for

Dcont(u) on ΠC,s0
. Furthermore, for any v ∈ R

n with v =
∑n

i=1 viri(u
∗)

∇2Dcont(u
∗)v · v � −s0v

2
1 − Cs0

⎡

⎣

n
∑

i=2

v2
i

⎤

⎦. (5.20)

Proof. Since η̃ is an entropy for (1.1), we find that

∇Dcont(u) = −∇η̃(u)[f ′(u) − λ1(u)I] + η̃(u)∇λ1(u). (5.21)
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Since η̃(u∗) = 0 and ∇η̃(u∗) is a left eigenvector for f ′(u∗) with eigenvalue λ1(u
∗),

it follows that u∗ is a critical point of Dcont.

Next, we note that for u(t) the integral curve emanating from u∗ in the r1(u)

direction, ∇Dcont(u
∗) = 0 implies

d2

dt2

∣

∣

∣

∣

t=0

Dcont(u(t)) =
d

dt

∣

∣

∣

∣

t=0

∇Dcont(u(t)) · r1(u(t))

= ∇2Dcont(u
∗)r1(u

∗) · r1(u
∗). (5.22)

Therefore, we compute the left-hand side of (5.22). Since d
dtDcont(u(t)) =

η̃(u(t))∇λ1(u(t)) · r1(u(t)), taking a second derivative and using ∇η̃(u∗) ‖ l1(u∗)

and η̃(u∗) = 0 yield

d2

dt2

∣

∣

∣

∣

t=0

Dcont(u(t)) = (∇η̃(u∗) · r1(u
∗))(∇λ1(u

∗) · r1(u
∗)) ∼ −s0 (5.23)

because r1(u
∗) is outward-pointing, ∇λ1(u) · r1(u) ∼ −1 by Assumption 1(b), and

|∇η̃(u)| ∼ s0 for u ∈ ∂ ΠC,s0
by Lemma 3.6. Together, (5.22) and (5.23) imply

∇2Dcont(u
∗)r1(u

∗) · r1(u
∗) � −s0.

On the other hand, differentiating (5.21) once more yields the formula

∇2Dcont(u) = −∇2η̃(u)[f ′(u) − λ1(u)I] −∇η̃(u)[f ′′(u) − I ⊗∇λ1(u)]

+ η̃(u)∇2λ1(u) + ∇λ1(u)⊗∇η̃(u). (5.24)

Therefore, evaluating (5.24) at u∗ using η̃(u∗) = 0 and |∇η̃(u∗)| � s0 by Lemma 3.5,

∇2Dcont(u
∗) = −Cs0∇

2η(u∗)[f ′(u∗) − λ1(u
∗)I] + O(s0). (5.25)

Thus, right-multiplying by ri(u
∗) for i �= 1 and left-multiplying by rj(u

∗), (5.25)

implies

∇2Dcont(u
∗)ri(u

∗) · rj(u
∗)

= −Cs0(λi(u
∗) − λ1(u

∗))∇2η(u∗)ri(u
∗) · rj(u

∗) + O(s0). (5.26)

By Assumption 1(a), λi(u
∗) − λ1(u

∗) � 1. Also, since ∇2η(u)ri(u) ‖ li(u), by

Lemma 3.1, ∇2η(u∗)ri(u
∗) ·rj(u

∗) ∼ δij , where δij denotes the Kronecker delta. So,

for i �= 1, (5.26) yields

∇2Dcont(u
∗)ri(u

∗) · rj(u
∗) � −Cs0δij + O(s0). (5.27)

Therefore, for C sufficiently large and s0 sufficiently small and any 1 ≤ i ≤ n,

∇2Dcont(u
∗)ri(u

∗) · ri(u
∗) < 0. We conclude (5.20) holds for any v when only one

vi is non-zero. We now prove (5.20) in general, which implies u∗ is a maximum.

Expanding the left-hand side of (5.20) by linearity and using (5.27), there exist
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universal constants K1, K2, and K3 such that

∇2Dcont(u
∗)v · v ≤ −K1s0v

2
1 − K2Cs0

⎡

⎣

n
∑

i=2

v2
i

⎤

⎦+ K3s0

∑

i�=j

|vivj |. (5.28)

Note, for C sufficiently large, by Cauchy–Schwarz,

K3s0

∑

i,j �=1,i�=j

|vivj | ≤
K2

4
Cs0

⎡

⎣

n
∑

i=2

v2
i

⎤

⎦. (5.29)

Also, again using Cauchy–Schwarz, for any ε > 0,

K3s0

∑

j �=1

|v1vj | ≤ K3s0εv
2
1 +

K3

4ε
s0

⎡

⎣

n
∑

j=2

v2
j

⎤

⎦. (5.30)

Taking ε sufficiently small so that K3ε < K1

2 , (5.28), (5.29), and (5.30) together

imply (5.20) for sufficiently large C and sufficiently small s0.

Lemma 5.5. For any C sufficiently large and s0 sufficiently small, there exists a

unique point u∗ contained in ∂ ΠC,s0
satisfying the nonlinear system of constraints,

∇η̃(u∗) ‖ l1(u∗) and r1(u
∗) · ∇η̃(u∗) > 0. (5.31)

Proof. Say u1 and u2 both satisfy (5.31) and define the outward unit normal

ν(u) = ∇η̃(u)
|∇η̃(u)| . Then, because r1(u) · l1(u) > 0 by our choice of normalization in

Lemma 3.1, u1 and u2 satisfy

ν(u1) = l1(u1) and ν(u2) = l1(u2). (5.32)

Therefore, by Lemma 3.8,

|u1 − u2| � |l1(u1) − l1(u2)| = |ν(u1) − ν(u2)| � C|u1 − u2|. (5.33)

Thus, there is a universal constant K such that for any C sufficiently large,

C|u1 − u2| ≤ K|u1 − u2|. (5.34)

For C larger than K, this can hold only if u1 = u2.

Proof of Proposition 5.1. Combining Lemmas 5.2, 5.3, and 5.4, we see that

u∗ ∈ ΠC,s0
is a maxima of Dcont if and only if u∗ ∈ ∂ ΠC,s0

with l1(u∗) ‖ ∇η̃(u∗)

and r1(u
∗) is outward-pointing. Therefore, Lemma 5.5 guarantees that there is a

unique maximum in ΠC,s0
for sufficiently large C and sufficiently small s0.

5.3. Step 2: Dissipation rate along the shock curve S
1
uL

The main proposition of this step is the calculation of Dcont along the shock curve

connecting uL and uR. The uniformly negative cubic entropy dissipation is sharp
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as it agrees with the known scalar dissipation rate (i.e. Burgers). The dissipation

rate for Burgers follows immediately from [22, pp. 9–10] and also the proof of

[18, Lemma 3.3].

Proposition 5.6. Let u0 denote the intersection point of the shock curve S1
uL

and

∂ ΠC,s0
. Then, for all C sufficiently large and s0 sufficiently small,

Dcont(u0) � −s3
0. (5.35)

To compute Dcont(u0), we introduce some auxiliary points and functions. First,

we define ur to be the first intersection of ΠC,s0
with the integral curve starting

from uR along the −r1 direction. Second, we define ul to be the first intersection

of ΠC,s0
with the integral curve starting from uL in the r1 direction. Finally, we

define DR(u) and DL(u) via

DR(u) = q(u; uR) − λ1(u)η(u |uR) and

DL(u) = −q(u; uL) + λ1(u)η(u |uL).
(5.36)

Thus, each of DR and DL are roughly half of the entropy dissipation, in the sense

that, by the definition of Dcont in (5.9),

Dcont(u) = DR(u) + (1 + Cs0)DL(u). (5.37)

We now prove four lemmas: The first says that ul, ur, and u0 are close to uL

so that we actually localize our picture by looking at these points. The second says

that ul and ur are close to u0 in a stronger quantitative sense. The third says that

DL(ul) and DR(ur) are negative of order s3
0. The fourth says that the derivative of

the entropy dissipations at ul and ur is small in a quantitative sense.

Lemma 5.7. For all C sufficiently large and s0 sufficiently small,

|ul − uL| + |u0 − uL| + |ur − uL| ∼ s0. (5.38)

Proof. We first prove |uL−ul| � s0. Indeed, say u(t) is the integral curve emanating

from uL in the r1 direction and ul = u(tl). Then,

ul − uL =

∫ tl

0

r1(u(t))dt

= tlr1(uL) +

∫ tl

0

r1(u(t)) − r1(uL)dt

= tlr1(uL) + O(t2l ), (5.39)

where we have used that |u(t) − uL| ≤ t by the fundamental theorem of calculus.

Since the defining property of ul and tl is η̃(ul) = 0, using Taylor’s theorem, we

obtain

0 = η̃(uL) + ∇η̃(uL) · (ul − uL) +
1

2
∇2η̃(u)(u − uL) · (u − uL) (5.40)
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for some u with |u − uL| < |ul − uL|. However, because η̃ is strictly convex, we

obtain the inequality

−η̃(uL) ≥ ∇η̃(uL) · (ul − uL). (5.41)

Using Lemma 1.4, the relative entropy is quadratic and we compute

−η̃(uL) = η(uL |uR) � |uL − uR|
2 ∼ s2

0. (5.42)

Moreover, expanding the gradient at uL we obtain

∇η̃(uL) = ∇η(uR) −∇η(uL) = s0∇
2η(uL)r1(uL) + O(s2

0). (5.43)

Therefore, combining the expansions (5.39), (5.42), and (5.43) with the inequality

(5.41) yields

s0tl∇
2η(uL)r1(uL) · r1(uL) + O(tls

2
0 + s0t

2
l ) � s2

0. (5.44)

Dividing by s0 and taking C sufficiently large (to guarantee tl is sufficiently small)

and s0 sufficiently small, we obtain |ul − uL| � tl � s0. Second, we note that a

completely analogous argument proves that |ur − uR| � s0. Since |uR − uL| � s0,

we also obtain |ur − uL| � s0. Finally, since u0 is along the 1-shock curve connect-

ing uL and uR, u0 = S1
uL

(t0) for some 0 < t0 < s0, where the shock curve S1
uL

is parametrized by arc length. It immediately follows that |u0 − uL| ∼ t0 < s0.

It remains to prove the reverse inequalities. However, all of the reverse inequal-

ities follow from applying Lemma 3.7 at uL, −η̃(uL) � s0d(uL, ∂ ΠC,s0
), where

d(uL, ∂ ΠC,s0
) denotes the distance from uL to ∂ ΠC,s0

. Using (5.42), we obtain the

lower bound, s0 � d(uL, ∂ ΠC,s0
). Since each of u0, ul, and ur are contained in

∂ ΠC,s0
, we have the desired lower bound and (5.38) follows.

Lemma 5.8. For all C sufficiently large and s0 sufficiently small,

|ur − ul| + |u0 − ul| + |ur − u0| � Cs2
0. (5.45)

Proof. First, we prove (5.45) for |u0 − ul|. As in Lemma 5.7, we expand u0 =

S1
uL

(t0) and ul = u(tl), where u(t) is the integral curve emanating from uL in the

r1 direction. By the asymptotic expansion of S1
uL

(t) in Lemma 3.3, we have

u0 = uL + t0r1(uL) + O(t20) and ul = uL + tlr1(uL) + O(t2l ), (5.46)

where t0 ∼ |u0 − uL| and tl ∼ |ul − uL|. The condition ul, u0 ∈ ∂ ΠC,s0
yields

η̃(u0) = 0 = η̃(ul). Therefore, expanding about uL, by Taylor’s theorem and the

computations of derivatives in Lemma 3.5, we obtain for u0

|η̃(u0) − [η̃(uL) + |u0 − uL|∇η̃(uL) · r1(uL)]| � Cs0|u0 − uL|
2. (5.47)

Now, since |u0 − uL| = t0 + O(t20), we obtain

|[η̃(uL) + t0∇η̃(uL) · r1(uL)]| � Cs0t
2
0. (5.48)



572 W. M. Golding, S. G. Krupa & A. F. Vasseur

Using the same computation for ul and subtracting from (5.48), we obtain

|(t0 − tl)[r1(uL) · ∇η̃(uL)]| � Cs0(t
2
0 + t2l ). (5.49)

Using the computation of ∇η̃(uL) in (5.43) and the localization result of Lemma 5.7,

|t0 − tl| � C(t20 + t2l ) � Cs2
0. (5.50)

Thus, we conclude that

|u0 − ul| � |(t0 − tl)r1(uL)| + O(t20 + t2l ) � Cs2
0. (5.51)

Second, expanding u0 and ur in terms of uR gives a completely analogous proof

that |ur − u0| � Cs2
0.

Lemma 5.9. For C sufficiently large, and s0 sufficiently small, we have estimates,

DR(ur) � −s3
0 and DL(ul) � −s3

0. (5.52)

Proof. Let u(t) be the integral curve emanating from uL in the direction of r1.

Then, we note ∇λ1(u) · r1(u) � −1 by Assumption 1(b) and the choice of eigenvec-

tors in Lemma 3.1. Therefore, we estimate DL along u(t) using Lemma 1.4,

d

dt
DL(u(t)) = −[∇η(u(t)) −∇η(uL)][f ′(u(t)) − λ1(u(t))I] · r1(u(t))

+ η(u(t) |uL)∇λ1(u(t)) · r1(u(t))

= η(u(t) |uL)∇λ1(u(t)) · r1(u(t))

� −|u(t) − uL|
2 � −t2. (5.53)

Now, by the fundamental theorem of calculus and DL(uL) = 0, we estimate DL at

ul = u(tl),

DL(ul) =

∫ tl

0

d

dτ
DL(u(τ))dτ � −(tl)

3 � −s3
0, (5.54)

since tl is comparable to |ul−uL|, which is lower bounded by Lemma 5.7. The same

argument applied to DR and ur completes the proof.

Lemma 5.10. For all C sufficiently large and s0 sufficiently small, we have

|∇DR(ur)| � s2
0 and |∇DL(ul)| � s2

0. (5.55)

Moreover,

|∇2DR(u)| � 1 and |∇2DL(u)| � 1. (5.56)

Proof. We begin by computing ∇DL as

∇DL(u) = −(∇η(u) −∇η(uL))[f ′(u) − λ1(u)I] + ∇λ1(u)η(u |uL). (5.57)



Sharp a-contraction estimates for small extremal shocks 573

Now, we note that the second term is sufficiently small as η(u |uL) � |u − uL|
2 by

Lemma 1.4. However, for the first term, |∇η(u) − ∇η(uL)| ∼ |u − uL|. Thus, we

need to expand this term more carefully and use cancellation from f ′(u) − λ1(u)

applied to the r1 terms. In particular, using that ∇2η(uL)r1(uL) ‖ l1(uL),

|∇DL(u0)| � (|u0 − uL|∇
2η(uL)r1(uL) + O(|u0 − uL|

2))[f ′(u0) − λ1(u0)I]

−∇λ1(u0)η(u0 |uL)

� |u0 − uL|
2 + |u0 − uL|∇

2η(uL)r1(uL)[f ′(u0) − λ1(u0)I]

� |u0 − uL|
2 � s2

0. (5.58)

Once again, a completely analogous computation proves (5.55) for DR. It remains

only to verify the second derivative estimates (5.56) at an arbitrary state u ∈ ΠC,s0
.

For DL, we compute

∇2DL(u) = −∇2η(u)[f ′(u) − λ1(u)I]

− (∇η(u) −∇η(uL))[f ′′(u) − I ⊗∇λ1(u)]

+∇2λ1(u)η(u |uL) + ∇λ1(u)⊗[∇η(u) −∇η(uL)], (5.59)

where we are vague about the meaning of some tensor multiplications, as we do not

need precise structure for our estimate. Indeed, since |u− uL| � C−1 for u ∈ ΠC,s0

and η(u|uL) � |u − uL| by Lemma 1.4, each term is bounded by either C−1 or 1

up to a constant depending only on the system. So, for C sufficiently large, (5.56)

follows for DL and an analogous argument yields (5.56) for DR.

Proof of Proposition 5.6. Pick C sufficiently large and s0 sufficiently small so

that

DR(ur) � −s3
0 and DL(ul) � −s3

0

and moreover

|ur − u0| + |ul − u0| � Cs2
0 and |∇DR(ur)| � s2

0 and |∇DL(ul)| � s2
0.

Thus, at u0, we have

DL(u0) = DL(ul) + ∇DL(ul)(ul − u0) + O(‖∇2DL‖L∞(ΠC,s0
)|ul − u0|

2)

� −s3
0 + Cs4

0 + C2s4
0 � −s3

0 (5.60)

for C sufficiently large and s0 sufficiently small and similarly for DR(u0). We con-

clude, using Dcont = DL + (1 + Cs0)DR,

Dcont(u0) = DR(u0) + (1 + Cs0)DL(u0) � −s3
0 − Cs4

0 ≤ −s3
0. (5.61)
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5.4. Step 3: Comparison of maxima to shock curve

Proposition 5.11. Let C be sufficiently big and s0 sufficiently small so that

Dcont(u) has a unique maximum, u∗, in ΠC,s0
and u0 as in Proposition 5.6. Then,

for all C sufficiently large and s0 sufficiently small, |u0 − u∗| � s0

C and for any

v ∈ R
n with |v| = 1,

|∇2Dcont(u
∗)v · v| � Cs0. (5.62)

Proof. We have shown a lower bound on |∇2Dcont| in Lemma 5.4. Here we prove

the corresponding upper bound (5.62). Indeed, recalling the formula for ∇2Dcont in

(5.24) and evaluating at u∗,

∇2Dcont(u
∗) = −∇2η̃(u∗)[f ′(u∗) − λ1(u

∗)I] −∇η̃(u∗)[f ′′(u∗) − I ⊗∇λ1(u
∗)]

+∇λ1(u
∗)⊗∇η̃(u∗). (5.63)

Therefore, taking norms and using |∇η̃(u)| � s0 and |∇2η̃(u)| � Cs0 by Lemma 3.5

give (5.62) as desired.

It remains to prove |u0 − u∗| � C−1s0. We recall that ν(u) denotes the outward

unit normal on ∂ ΠC,s0
. Since we a priori only know that u∗ ∈ ∂ ΠC,s0

with ν(u∗) =

l1(u∗), we use ν at u0 and u∗ as a proxy to compare u0 and u∗, which is justified

by Lemma 3.8. In particular, we first compute ν = ∇η̃
|∇η̃| at u0. As computed in

Lemma 3.5,

∇η̃(u0) = Cs0(∇η(u0) −∇η(uL)) + (∇η(uR) −∇η(uL)). (5.64)

We expand carefully about uL using u0 = uL + |u0 − uL|r1(uL) + O(s2
0) and

∇2η(uL)r1(uL) = Kl1(uL) for some K ∼ 1 to obtain

∇η̃(u0) = Cs0(c
∗|u0 − uL|l

1(uL) + O(s2
0)) + c∗s0l

1(uL) + O(s2
0)

= K(s0 + Cs0|u0 − uL|)l
1(uL) + O(s2

0 + Cs3
0). (5.65)

Thus, for b1 := K(s0 + Cs0|u − uL|), we have b1 ∼ s0 and ∇η̃(u0) = b1l
1(uL) +

O(s2
0). Therefore, we bound ν(u0)− l1(u0) using the preceding computations, |u0−

uL| � s0 by Lemma 5.7, and |∇η̃(u0)| � s0 by Lemma 3.6:

|ν(u0) − l1(u0)|

=

∣

∣

∣

∣

∣

∇η̃(u0) − |∇η̃(u0)|l
1(u0)

|∇η̃(u0)|

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

[∇η̃(u0) − b1l
1(uL)] + b1[l

1(uL) − l1(u0)] + [b1 − |∇η̃(u0)|]l
1(u0)

|∇η̃(u0)|

∣

∣

∣

∣

∣

�
s2
0

|∇η̃(u0)|
� s0. (5.66)
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Next, we note that since u∗ is a maximum, by Proposition 5.1, ν(u∗) ‖ l1(u∗) and

r1(u
∗) is outward-pointing. Since r1(u

∗) · ν(u∗) > 0, ν(u∗) ‖ l1(u∗), and l1(u∗) ·

r1(u
∗) > 0, it follows l1(u∗) = ν(u∗). Also, by Lemma 3.8,

|ν(u∗) − ν(u0)| ∼ C|u∗ − u0| (5.67)

for C sufficiently large. Finally, we conclude by combining (5.66) and (5.67):

|u∗ − u0| � C−1|ν(u∗) − ν(u0)|

� C−1(|ν(u∗) − l1(u∗)| + |l1(u∗) − l1(u0)| + |l1(u0) − ν(u0)|)

� C−1s0 (5.68)

for sufficiently large C and sufficiently small s0.

5.5. Proof of Proposition 2.1

Lemma 5.12. For any u ∈ ΠC,s0
, C sufficiently large, and s0 sufficiently small,

|∇3Dcont(u)| � Cs0. (5.69)

Proof. Using ∇q̃ = ∇η̃∇f and the product rule, we differentiate Dcont repeatedly

to obtain

∇3Dcont = −Cs0∇[∇2η(f ′ − λ1I)] −∇η̃∇[f ′′ + ∇λ1 ⊗ I] −∇2η̃[f ′′ + ∇λ1 ⊗ I]

+∇λ1 ⊗∇2η̃ + 2∇2λ1 ⊗∇η̃ + η̃∇3λ1, (5.70)

where because we will not need to exploit any precise tensor structure, we have been

rather vague on the meaning of the various products. Since |∇3η̃(u)| + |∇2η̃(u)| �

Cs0 and |∇η̃(u)| � s0, by Lemma 3.5, each term containing a derivative of η̃

satisfies (5.69). Finally, the only term not containing a derivative of η̃ is bounded

via Lemmas 3.7 and 3.5 as

|η̃(u)∇3λ1(u)| � s0d(u, ∂ ΠC,s0
) � C−1s0. (5.71)

Proof of Proposition 2.1. First, pick C sufficiently large and s0 sufficiently small

so that Dcont(u) has a unique maximum u∗ in ΠC,s0
and Propositions 5.1, 5.6,

and 5.11 hold. Then, we note that for u ∈ ΠC,s0
,

Dcont(u0) � −s3
0 and |u0 − u∗| �

s0

C
,

|∇2Dcont(u
∗)| � Cs0 and |∇3Dcont(u)| � Cs0,

(5.72)

where all implicit constants depend only on the system. Therefore, since u∗ is a

local maximum of Dcont for u ∈ ΠC,s0
, the first order term in the expansion about
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u∗ disappears and by Taylor’s theorem and (5.72),

Dcont(u
∗) = Dcont(u0) −

1

2
∇2Dcont(u

∗)(u∗ − u0) · (u
∗ − u0)

+ O(|∇3Dcont||u0 − u∗|3)

� −s3
0 +

s3
0

C
+

s4
0

C2
, (5.73)

where all of the implicit constants depend only on the system. Taking C sufficiently

large to dominate the implicit constants in (5.73), we obtain the existence of K,

depending only on the system, such that for C sufficiently large and s0 sufficiently

small, for any u ∈ ΠC,s0
,

Dcont(u) ≤ Dcont(u
∗) ≤ −Ks3

0. (5.74)

6. Proof of Proposition 2.2

6.1. Proof sketch

In this section, we prove Proposition 2.2. We find that the full entropy dissipa-

tion function, DRH, defined in (2.7), is unwieldy and hides important structural

information by comparing the fixed shock (uL, uR, σLR) to an unbounded family

of entropic shocks (u,S1
u(s), σu(s)). We instead use Assumption 1(j) to introduce a

single shock, (u, u+, σ±), referred to in the following as the maximal shock, which

we will use to control the others. More precisely, for each state u ∈ ΠC,s0
, we define

u+ as the unique state such that (u, u+, σ±) is an entropic 1-shock and

Dmax(u) := max
s≥0

DRH(u,S1
u(s), σ1

u(s)) = DRH(u, u+, σ±). (6.1)

This definition should look suspicious for a number of reasons, not the least of which,

we are taking a maximum over an unbounded set. Moreover, we are attempting to

compare (uL, uR, σ±) to a global family of shocks which need not stay near ΠC,s0

nor even in V . Nevertheless, this will be justified in the following (see Lemma 6.1).

Proposition 2.2 essentially follows by decomposing ΠC,s0
into several sets and show-

ing that Dmax is negative on each set. To better structure the proof, we divide the

proof into two parts based on the characteristic length scale of sets in each part:

Part 1. Localization from the global length scale, C−1, on ΠC,s0
to a set RC,s0

containing uL of length scale s0.

Part 2. Analysis (inside RC,s0
) at the critical length scale s0.

Within Part 1, we further decompose our proof into two steps. For approximate

or pictorial definitions of QC,s0
and RC,s0

, see Fig. 1. For rigorous definitions, see

variously (6.12) and (6.41).

• Step 1.1. First, we show that Dmax(u) ≤ 0 for states u outside the set QC,s0

with maximal shock (u, u+, σ±) and u+ outside ΠC,s0
. We use that in this regime,
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Fig. 1. This is an idealized portrait of the two-dimensional situation, where we imagine r1 is the
horizontal direction, r2 is the vertical direction, and r1 and r2 are almost orthogonal. For Part
1, we divide ΠC,s0

into three regimes: states inside RC,s0
, which are very close to uL and are

handled in Part 2; states inside QC,s0
but outside RC,s0

, which are close to uL, but sufficiently
far in the interior of ΠC,s0

; and states in the remainder of ΠC,s0
.

u is sufficiently far from u∗, the unique maximum of the continuous entropy

dissipation, Dcont, to gain an improved estimate of Dcont(u). The assumption

that u+ /∈ ΠC,s0
should be interpreted as u is close (to order s0) to the boundary

of ΠC,s0
(see Lemma 6.10 for a precise statement).

• Step 1.2. Second, we show that Dmax(u) ≤ 0 for states u inside QC,s0
but

outside RC,s0
and remove the assumption that u+ must lie outside ΠC,s0

. This

step should be interpreted as showing Dmax(u) ≤ 0 for u farther than order s0

from the boundary of ΠC,s0
.

Similarly, within Part 2, we decompose our proof into four steps. For approximate

or pictorial definitions of the referenced sets, see Fig. 2. For rigorous definitions, see

variously (6.61), (6.58), and (6.112).

• Step 2.1. First, we show that Dmax(u) ≤ 0 for states u in the set Rbd
C,s0

. In this

regime, the proof follows from a comparison to u∗, the global maximum of Dcont

on ΠC,s0
.

Fig. 2. Again, this is an idealization of the two-dimensional picture, in which the horizontal direc-
tion is r1 and the vertical direction is r2. In Part 2, we subdivide the region RC,s0

into four regions,
Rbd

C,s0
, R0

C,s0
, R+

C,s0
, and R−

C,s0
, each of width ∼ s0. Each region is then treated individually.



578 W. M. Golding, S. G. Krupa & A. F. Vasseur

• Step 2.2. Second, we show Dmax(u) ≤ 0 for states u in the set R0
C,s0

. We prove

that in this regime, uL is a local maximum for Dmax with Dmax(uL) = 0.

• Step 2.3. Third, we show that Dmax(u) ≤ 0 for states u in the sets R+
C,s0

and

R−
C,s0

, by ruling out critical points of Dmax. In essence, we take C sufficiently

large to make the set RC,s0
narrow enough that the problem becomes sufficiently

one-dimensional and analogous to the scalar case. More precisely, we show that

any critical point of Dmax in the interior of RC,s0
must satisfy uR −u+ ≈ u−uL.

However, we show, via an ODE argument, that for states u ∈ R+
C,s0

, uR − u+

and u − uL point in essentially opposite directions. The proof in R−
C,s0

replaces

the ordering argument in R+
C,s0

with a magnitude based one. In particular, using

an ODE argument, we show |u − uL| � |uR − u+| for u ∈ R−
C,s0

, which again

precludes the existence of critical points.

Before beginning Part 1, we justify the definitions of Dmax and the maximal

shock (u, u+(u), σ±(u)) stated above in (6.1) and also that for appropriate C and s0,

the set of possible maximal shocks, M = {u+ |u ∈ ΠC,s0
}, is compactly contained

in B2ε(d). To this end, in the following lemma, we show that the function

s 
→ F(s, u) := DRH(u,S1
u(s), σ1

u(s)) (6.2)

has a unique maximum s∗(u) with s∗(u) � C−1/2s
1/2
0 . The existence justifies the

maximum over the unbounded set in (6.1) while the uniqueness justifies the defini-

tion of u+. The estimate justifies that M is compactly contained in B2ε(d) where

f, η, q, λi, ri, and li are more regular. The additional regularity allows us to apply

the classical techniques of calculus as in the proof of Proposition 2.1.

Lemma 6.1. The function s 
→ F(s, u) has a unique maximum, say s∗, for s ∈

[0,∞). Furthermore, s∗ is uniquely defined by the equation

η(u | S1
u(s∗)) = −η̃(u). (6.3)

Moreover, for u+ = S1
u(s∗), |u − u+| � C−1/2s

1/2
0 so that for C sufficiently large

and s0 sufficiently small, {u+ |u ∈ ΠC,s0
} is compactly contained in B2ε(d).

Proof. We expand F(s, u) = DRH(u,S1
u(s), σ1

u(s)) as

F(s, u) =

[

q(u; uR) − σ1
u(s)η(u |uR) +

∫ s

0

σ̇1
u(t)η(u | S1

u(t))dt

]

− (1 + Cs0)[q(u; uL) − σ1
u(s)η(u |uL)], (6.4)

where we have used Lemma 3.4 with v = uR = S1
uL

(s0). Taking a derivative in s,

we obtain

dF

ds
= −σ̇1

u(s)η(u |uR) + σ̇1
u(s)η(u | S1

u(s)) + (1 + Cs0)σ̇
1
u(s)η(u |uL). (6.5)
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Since σ̇1(s) < 0 for all s > 0 by Assumption 1(j), we obtain F(s) is decreasing in s

if and only if

(1 + Cs0)η(u |uL) − η(u |uR) + η(u | S1
u(s)) = η̃(u) + η(u | S1

u(s)) ≥ 0. (6.6)

Define g(s) as

g(s) = η̃(u) + η(u | S1
u(s)). (6.7)

Certainly, g(0) = η̃(u) ≤ 0. Moreover, using Assumption 1(j) again, for any s > 0,

g′(s) =
d

ds
η(u | S1

u(s)) > 0. (6.8)

Therefore, we conclude there is at most one point s∗ such that g(s∗) = 0.

Let us now show there is at least one. Indeed, we see η̃(uL) = η(uL |uR) so that

g(s0) = 0 at u = uL and s∗(uL) = s0. We will perturb this result to show existence

for u �= uL. Now, because u 
→ S1
u(s) is a continuous function, there is a universal

δ such that for C sufficiently big and s0 sufficiently small, S1
u(s) ⊂ B2ε(d) for each

0 < s < δ and each u ∈ ΠC,s0
. Then, Taylor expanding about uL yields

η(u | S1
u(s)) = η(uL | S1

uL
(δ)) + O(|u − uL|) and η̃(u) = η̃(uL) + O(s0|u − uL|).

(6.9)

Therefore, using the fundamental theorem of calculus,

η(u | S1
u(δ)) + η̃(u) = η(uL | S1

uL
(δ)) + η̃(uL) + O(C−1 + C−1s0)

= η(uL | S1
uL

(s0)) + η̃(uL) +

∫ δ

s0

d

dt
η(uL | S1

uL
(t)) dt + O(C−1)

=

∫ δ

s0

d

dt
η(uL | S1

uL
(t))dt + O(C−1)

≥
δ

2
inf

v∈Bε(d)
inf

δ/2<t<δ

[

d

dt
η(v | S1

v (t))

]

+ O(C−1). (6.10)

Since the first term is positive, we have for C sufficiently large (and s0 sufficiently

small), η(u | S1
u(δ)) + η̃(u) > 0 for each u ∈ ΠC,s0

. This concludes the proof of

existence of s∗(u) and that s∗(u) < δ.

By the above discussion, we note that s∗ is the unique global maximum for s 
→

F(s, u) and is completely characterized by g(s∗) = 0. Finally, we let u+ = S1
u(s∗)

and use g(s∗) = 0, Lemmas 1.4, 3.7, and 3.5 to estimate |u − u+| via

|u − u+|2 � η(u|u+) = −η̃(u) � s0d(u, ∂ ΠC,s0
) � C−1s0. (6.11)

Since ΠC,s0
is compactly contained in B2ε(d) for appropriate C and s0, so too is

the set of possible states u+.
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6.2. Step 1.1 : Shocks outside QC,s0

In this step, we show the existence of the set QC,s0
of “width” in the ri for i �= 1

directions of order C−1/3s0 and “height” in the r1 direction of order C1/6s0 such

that outside of QC,s0
but inside of ΠC,s0

, the continuous entropy dissipation Dcont(u)

satisfies an improved uniform estimate. In particular, this allows us to handle the

maximal entropy dissipation, Dmax(u) outside QC,s0
.

More precisely, take C sufficiently large and s0 sufficiently small such that Dcont

has a unique maximum u∗ on ΠC,s0
. Define the family of closed cylinders based at

u∗, QC,s0
, via

QC,s0
:=

⎧

⎪

⎨

⎪

⎩

p = u∗ −

n
∑

i=1

biri(u
∗)

∣

∣

∣

∣

∣

p ∈ ΠC,s0
,

|b1| ≤ C1/6s0, and

⎛

⎝

n
∑

i=2

|bi|
2

⎞

⎠

1/2

≤ C−1/3s0

⎫

⎪

⎬

⎪

⎭

. (6.12)

The main proposition of this step is the following:

Proposition 6.2. For any C sufficiently large and s0 sufficiently small, suppose u

satisfies

u ∈ ΠC,s0
\QC,s0

and u+ = S1
u(s∗(u)) /∈ ΠC,s0

.

Then, the maximal entropy dissipation satisfies

Dmax(u) � −s3
0. (6.13)

The main ingredient in the proof of Proposition 6.2 is the following improvement

of Proposition 2.1 outside QC,s0
.

Proposition 6.3. For any C sufficiently large, s0 sufficiently small (depending on

C), and for any u such that

u ∈ ΠC,s0
\QC,s0

,

the continuous entropy dissipation satisfies

Dcont(u) � −C1/3s3
0. (6.14)

Before beginning the proof of Proposition 6.3, we introduce two auxiliary sets

related to QC,s0
. We say the top of QC,s0

is the set

TC,s0
:=

⎧

⎨

⎩

p = u∗ −
n
∑

i=1

biri(u
∗)

∣

∣

∣

∣

∣

p ∈ QC,s0
, |b1| = C1/6s0

⎫

⎬

⎭

. (6.15)



Sharp a-contraction estimates for small extremal shocks 581

Similarly, the bottom of QC,s0
is the set

BC,s0
:= ∂ ΠC,s0

∩ QC,s0
. (6.16)

Proof of Proposition 6.3. We note that by Lemma 5.2, Dcont does not have any

critical points in the interior of ΠC,s0
. Therefore, it suffices to prove the improved

estimate on the boundary of the region ΠC,s0
\QC,s0

, that is, on

∂ ΠC,s0
\BC,s0

∪ ∂ QC,s0
\BC,s0

. (6.17)

We first estimate Dcont on ∂ QC,s0
\BC,s0

using the precise estimates on Dcont near

u∗ proved in Proposition 2.1.

Lemma 6.4. For any C sufficiently large, and any s0 sufficiently small, the con-

tinuous entropy dissipation, Dcont, satisfies the improved estimate

Dcont(u) � −C1/3s3
0 (6.18)

for any state u in the set ∂ QC,s0
\BC,s0

.

Proof. By Proposition 2.1 and Lemmas 5.4 and 5.12, we have for sufficiently large

C and sufficiently small s0, and for any v =
∑

viri(u
∗),

Dcont(u
∗) � −s3

0 and ∇Dcont(u
∗) = 0 and ‖∇3Dcont‖L∞(ΠC,s0

) � Cs0

and ∇2Dcont(u
∗)v · v � −s0|v1|

2 − Cs0

n
∑

i=2

|vi|
2.

(6.19)

Then, using the definition of the cylinder QC,s0
, we split ∂ QC,s0

\BC,s0
into the top,

TC,s0
, and the sides, ∂ QC,s0

\(TC,s0
∪ BC,s0

). First, for ∂ QC,s0
\(TC,s0

∪ BC,s0
), we

have an expansion of u as

u = u∗ + b1r1(u
∗) +

n
∑

i=2

bir1(u
∗), where

⎛

⎝

n
∑

i=2

|bi|
2

⎞

⎠

1/2

= C−1/3s0. (6.20)

Next, we expand Dcont(u) about u∗ and use Taylor’s theorem, (6.19), and (6.20) to

conclude for any u ∈ ∂ QC,s0
\(TC,s0

∪ BC,s0
),

Dcont(u) � −s3
0 − (Cs0)(C

−1/3s0)
2 + (Cs0)(C

1/6s0)
3 � −C1/3s3

0. (6.21)

Now, for u ∈ TC,s0
, we have an expansion of u as

u = u∗ + b1r1(u
∗) +

n
∑

i=2

bir1(u
∗), where |b1| = C1/6s0. (6.22)
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Again, we expand Dcont(u) about u∗ and use Taylor’s theorem, (6.19), and (6.22)

to conclude for any u ∈ TC,s0
,

Dcont(u) � −s3
0 − (s0)(s0C

1/6)2 + (Cs0)(C
1/6s0)

3 � −C1/3s3
0, (6.23)

provided s0 is taken sufficiently small so that s0 � C−7/6.

We now begin to prove the improved estimate on ∂ ΠC,s0
\BC,s0

by showing

that there is a unique local maximum ũ for Dcont on ∂ ΠC,s0
\BC,s0

. We will need

an auxiliary lemma from Riemannian geometry on the surjectivity of the Gauss

map. In our case, the following lemma has an elementary proof.

Lemma 6.5. Let M be a bounded, open, connected subset of R
n with C1 boundary

∂ M . Then, for any fixed unit vector v ∈ R
n, there is a point p ∈ ∂ M such that

ν(p) = v for ν the outward unit normal.

Proof. Fix v ∈ R
n a unit vector and define the map f : M → R via f(u) = u · v.

Then, certainly f is continuous and obtains a maximum on M , say p∗. However,

since ∇f(p∗) = v �= 0, it follows that p∗ ∈ ∂ M . Now, by the Lagrange multiplier

method, it follows that ∇f(p∗) ‖ ν(p∗). Hence, by normalization considerations,

v = ±ν(p∗). Since p∗ is a maximum, differentiating f along a curve γ approaching

v from the interior of M , we see that v must be outward pointing at p∗. Therefore,

v = ν(p∗).

Lemma 6.6. For any C sufficiently large, and any s0 sufficiently small, there is a

unique point ũ on ∂ ΠC,s0
such that

l1(ũ) ‖ ∇η̃(ũ) and r1(ũ) is inward pointing. (6.24)

Moreover, ũ is the unique local maximum for Dcont on ∂ ΠC,s0
\BC,s0

.

Proof. We note that these conditions are equivalent to saying that there is a unique

point ũ ∈ ∂ ΠC,s0
satisfying the nonlinear system of equations

ν(ũ) = −l1(ũ). (6.25)

Applying Lemma 6.5 to ΠC,s0
and using that Lemma 3.8 implies p 
→ ν(p) is

injective for sufficiently large C, for any p ∈ ∂ ΠC,s0
, there is a unique point f(p) ∈

∂ ΠC,s0
such that

ν(f(p)) = −l1(p). (6.26)

Thus, we seek a fixed point of the map p 
→ f(p). However, for C sufficiently large,

again using Lemma 3.8, for all p1, p2 ∈ ∂ ΠC,s0
,

|f(p1) − f(p2)| � C−1|ν(f(p1)) − ν(f(p2))|

= C−1|l1(p1) − l1(p2)|

� C−1|p1 − p2|. (6.27)
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So, for C sufficiently large to dominate the implicit constants, p 
→ f(p) is a contrac-

tion on ∂ ΠC,s0
and the contraction mapping principle yields a unique fixed point

to the map p 
→ f(p).

By the proof of Proposition 5.1, a point p is a local maximum for Dcont on

∂ ΠC,s0
if and only if l1(p) ‖ ∇η̃(p). Equivalently, ν(p) = ±l1(p) so that by the

above argument there are exactly two such points for sufficiently large C, namely

ũ, which satisfies ν(ũ) = −l1(ũ), and u∗, which satisfies ν(u∗) = l1(u∗). It remains

only to show ũ /∈ BC,s0
. Indeed, we see that

|u∗ − ũ| � C−1|ν(u∗) − ν(ũ)| = C−1|l1(u∗) + l1(ũ)|

= 2C−1 + O(C−1|u∗ − ũ|) = 2C−1 + O(C−2). (6.28)

Therefore, for C sufficiently large, we find |u∗− ũ| � C−1 so that certainly only one

of u∗ or ũ lies in BC,s0
. As u∗ ∈ BC,s0

, by definition, it follows that ũ is the unique

local maximum for Dcont on ∂ ΠC,s0
\BC,s0

.

To finish the proof of Proposition 6.3 on ∂ ΠC,s0
\BC,s0

, it suffices to show the

improved estimate of Dcont holds at ũ.

Lemma 6.7. The point ũ satisfies the estimate

Dcont(ũ) � −
s0

C2
(6.29)

for all C sufficiently big and s0 sufficiently small.

Proof. Let u(t) be the integral curve in the r1 direction emanating from ũ and let

t̃ > 0 the maximal time such that u(t) ∈ ΠC,s0
for all 0 ≤ t ≤ t̃. Then, for any

0 ≤ t ≤ t̃, using the explicit computation of ∇Dcont(u(t))·r1(u(t)) (see Lemma 5.2),

Proposition 2.1, and Assumption 1(b),

Dcont(ũ) = Dcont(u(t)) −

∫ t

0

∇Dcont(u(s)) · r1(u(s))ds

� −s3
0 −

∫ t

0

η̃(u(s))[∇λ1(u(s)) · r1(u(s))]ds

� −s3
0 +

∫ t

0

η̃(u(s))ds, (6.30)

where all implicit constants are independent of t. Next, since |∇η̃(ũ)| ∼ s0 by

Lemma 3.6 and ν(ũ) = −l1(ũ) by Lemma 6.6, by the choice of normalization of

eigenvectors in Lemma 3.1,

∇η̃(ũ) · r1(ũ) ∼ −s0. (6.31)

Moreover, expanding ∇η̃(u) · r1(u) about ũ by Taylor’s theorem, there is a point v

with |v − ũ| ≤ |u − ũ| such that

∇η̃(u) · r1(u) = ∇η̃(ũ) · r1(ũ) + [∇2η̃(v)r1(v) + ∇r1(v)∇η̃(v)] · (v − ũ). (6.32)
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Therefore, we estimate

∇η̃(u) · r1(u) � −s0 + Cs0|u − ũ|. (6.33)

So, picking u so that |u − ũ| ≤ K1C
−1, there is a universal constant K2 > 0 such

that

∇η̃(u) · r1(u) ≤ (K1K2 − K2)s0 ≤ −
K2

2
s0 (6.34)

for sufficiently small K1, where K1 is chosen small independent of C and s0.

Since |u(t) − ũ| ∼ t, there is a universal constant K3 such that for t ≤ K3C
−1,

|u(t) − ũ| ≤ K1C
−1 and for such t,

η̃(u(t)) =

∫ t

0

∇η̃(u(s)) · r1(u(s))ds � −s0t. (6.35)

Finally, combining (6.30) and (6.35), with t = K3C
−1, we see that

Dcont(ũ) � −s3
0 +

∫ t

0

η̃(u(s))ds � −s3
0 − C−2s0 � −C−2s0 (6.36)

for sufficiently large C and sufficiently small s0.

Proof of Proposition 6.2. Let QC,s0
be defined as in (6.12). Recall the notation,

F(s, u) = DRH(u,S1
u(s), σ1

u(s)), used in the proof of Lemma 6.1. By the fundamental

theorem of calculus (in s), F satisfies the relation

F(s, u) = Dcont(u) +

∫ s

0

σ̇1
u(t)[η̃(u) + η(u | S1

u(t))]dt. (6.37)

By Lemma 6.1, it suffices to estimate, F(s∗, u), where s∗(u) is the unique maxi-

mum of s 
→ F(s, u) and u+ = S1
u(s∗). Using the improved estimate of Dcont in

Proposition 6.3 and σ̇ ∼ −1 by Lemmas 3.3, 3.7, and 1.4, we obtain

F(s∗, u) � −C1/3s3
0 −

∫ s∗

0

[η̃(u) + η(u | S1
u(t))]dt

� −C1/3s3
0 −

∫ s∗

0

|u − S1
u(t)|2 − s0d(u, ∂ ΠC,s0

)dt

� −C1/3s3
0 − (s∗)3 + s0s

∗d(u, ∂ ΠC,s0
). (6.38)

Next, since u+ /∈ ΠC,s0
by assumption, d(u, ∂ ΠC,s0

) � |u− u+| � s∗. Also, as s∗ is

completely characterized by the equation −η̃(u) = η(u |u+), we have

(s∗)2 � |u − u+|2 � η(u |u+) = −η̃(u) � s0d(u, ∂ ΠC,s0
) � s0s

∗, (6.39)

which yields d(u, ∂ ΠC,s0
) � s∗ � s0. Combined with (6.38), we obtain

Dmax(u) = F(s∗, u) � −s3
0, (6.40)

provided C is sufficiently large and s0 is sufficiently small.
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6.3. Step 1.2 : Shocks inside QC,s0
but outside RC,s0

In this step, we show Dmax(u) ≤ 0 except on possibly a region localized about

uL to order s0. In particular, we improve Proposition 6.2 in two ways: First, we

remove the assumption that u+ /∈ ΠC,s0
. Second, we show that there is a uni-

versal constant Kh such that for u ∈ QC,s0
with |u∗ − u| > Khs0, Dmax(u) ≤ 0.

Although these improvements look rather disconnected, we will show u+ ∈ ΠC,s0
for

d(u, ∂ ΠC,s0
) � s0, which implies this step can be rephrased as showing Dmax(u) ≤ 0

for d(u, ∂ ΠC,s0
) � s0. In other words, in this step, we handle states far in the interior

of ΠC,s0
. More precisely, we define the family of cylinders, RC,s0

(Kh), as

RC,s0
(Kh) :=

⎧

⎪

⎨

⎪

⎩

u = u∗ −

n
∑

i=1

biri(u
∗)

∣

∣

∣

∣

∣

u ∈ ΠC,s0
, |b1| ≤ Khs0,

⎛

⎝

n
∑

i=2

|bi|
2

⎞

⎠

1/2

≤ C−1/3s0

⎫

⎪

⎬

⎪

⎭

. (6.41)

Stated in this notation, the main proposition of this step is the following:

Proposition 6.8. There is a Kh > 0 depending only on the system such that for

any C sufficiently large and s0 sufficiently small and any u ∈ ΠC,s0
\RC,s0

(Kh),

Dmax(u) � −s3
0. (6.42)

We first prove the following lemma, which bounds the entropy dissipation along

the maximal shock (u, u+, σ±) for u, u+ ∈ ΠC,s0
by Dcont(u

+).

Lemma 6.9. Suppose that the maximal shock (u, u+, σ±) satisfies u, u+ ∈ ΠC,s0
.

Then,

DRH(u, u+, σ±) ≤ Dcont(u
+). (6.43)

Moreover, for C sufficiently large and s0 sufficiently small,

DRH(u, u+, σ±) ≤ Dcont(u
+) � −s3

0. (6.44)

Proof. First, by the entropy inequality (1.3),

q(u+; uL) − σ±η(u+ |uL) ≤ q(u; uL) − σ±η(u |uL). (6.45)

Second, we bound the entropy dissipation as

DRH(u, u+, σ±) ≤ [q(u+; uR) − σ±η(u+ |uR)]

− (1 + Cs0)[q(u
+; uL) − σ±η(u+ |uL)]. (6.46)

Next, adding and subtracting λ1(u+)η(u+ |uR) and (1 + Cs0)λ1(u+)η(u+ |uL),

DRH(u, u+, σ±) ≤ Dcont(u
+) + (σ± − λ1(u

+))[−η(u+ |uR) + (1 + Cs0)η(u+ |uL)]

≤ Dcont(u
+), (6.47)
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where in the last inequality we have used u+ ∈ ΠC,s0
and that (u, u+, σ±) is Lax

admissible.

We continue with the following lemma, which proves that for −η̃(u) � s2
0,

u+ ∈ ΠC,s0
and Dmax(u) ≤ 0. Combined with Lemma 3.7, this provides a formal

justification that for d(u, ∂ ΠC,s0
) � s0, u+ ∈ ΠC,s0

and, therefore, for u sufficiently

far from the boundary of ΠC,s0
, Dmax(u) is uniformly negative.

Lemma 6.10. There is a universal constant K∗ such that for all C sufficiently big

and s0 sufficiently small, for u ∈ ΠC,s0
satisfying

−η̃(u) ≥ K∗s2
0,

we have u+ ∈ ΠC,s0
and, consequently, for such u,

Dmax(u) � −s3
0.

Proof. Suppose −η̃(u) ≥ K∗s2
0 and u+ = S1

u(s∗) is the maximal shock and assume

u+ /∈ ΠC,s0
. Then, for K1 the universal constant from Lemma 3.7,

K∗s2
0 ≤ −η̃(u) ≤ K1s0d(u, ∂ ΠC,s0

) ≤ K1s0|u − u+|. (6.48)

Thus, K∗s0 ≤ K1|u − u+|. Now, for K2 the universal constant from Lemma 1.4,

the characterization of s∗ in Lemma 6.4 implies

K2|u − u+|2 ≤ η(u |u+) = −η̃(u) ≤ K1s0|u − u+|. (6.49)

Thus, |u − u+| ≤ K1

K2
s0. We conclude that

K∗s0 ≤
K2

1

K2
s0. (6.50)

Therefore, choosing K∗ strictly larger than K2
1K−1

2 , we note that −η̃(u) ≥ K∗s2
0

implies u+ ∈ ΠC,s0
. Finally, applying Lemma 6.9, we have

Dmax(u) ≤ Dcont(u
+) � −s3

0. (6.51)

Proof of Proposition 6.8. We now take u ∈ QC,s0
so that u is of the form

u = u∗ −
n
∑

i=1

biri(u
∗), where

⎛

⎝

n
∑

i=2

|bi|
2

⎞

⎠

1/2

≤ C−1/3s0 and |b1| ≤ C1/6s0.

(6.52)

We will show that for u ∈ QC,s0
, there exists a universal constant K > 0 such that

for b1 > Ks0 and C sufficiently large, s0 sufficiently small, −η̃(u) ≥ K∗s2
0, where K∗

is the universal constant from Lemma 6.10, which combined with Lemma 6.9 and

Proposition 6.2 completes the proof of the existence of RC,s0
(Kh) with Kh = K.
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Therefore, we suppose u ∈ QC,s0
with b1 > Ks0 and, using the fundamental

theorem of calculus, rewrite −η̃(u) as

− η̃(u) = −η̃(u∗) +

∫ u

u∗

∇η̃(v)dv. (6.53)

Next, noting η̃(u∗) = 0 and |u − uL| � C1/6s0, we compute

∇η̃(u) = Cs0[∇η(u) −∇η(uL)] + [∇η(uR) −∇η(uL)]

= s0∇
2η(uL)r1(uL) + O(C7/6s2

0). (6.54)

Parametrizing v as v(t) = tu∗ + (1 − t)u, we have v̇(t) = u∗ − u =
∑n

i=1 biri(u
∗).

Combined with (6.53) and (6.54), we obtain

− η̃(u) =

∫ 1

0

[s0∇
2η(uL)r1(uL) + O(C7/6s2

0)] ·

⎡

⎣

n
∑

i=1

biri(u
∗)

⎤

⎦

=

∫ 1

0

b1s0∇
2η(uL)r1(uL) · r1(u

∗) + O(C4/3s3
0 + C−1/3s2

0)

= b1s0∇
2η(uL)r1(uL) · r1(uL) + O(C−1/3s2

0 + |b1|s
2
0). (6.55)

Since ∇2η(uL)r1(uL) · r1(uL) ≥ K1 > 0, a universal constant, and b1 ≥ Ks0,

(6.55) can be reformulated as the estimate

− η̃(u) ≥ KK1s
2
0 + O(C−1/3s2

0 + |b1|s
2
0). (6.56)

Now, as |b1| ≤ C1/6s0, we may take C sufficiently large and s0 sufficiently small to

make the error smaller than s2
0 and obtain

− η̃(u) ≥ (KK1 − 1)s2
0. (6.57)

Therefore, choosing K ≥ K∗+1
K1

yields −η̃(u) ≥ K∗s2
0 for all u ∈ QC,s0

with b1 >

Ks0. By the discussion at the beginning of the proof, taking Kh = K completes

the construction of RC,s0
(Kh).

6.4. Step 2.1 : Shocks close to ∂ ΠC,s0

In this step, we show that states u near to u∗ (of order s0) satisfy Dmax(u) ≤ 0.

Many estimates used in the following steps crucially rely on a lower bound on the

strength of the maximal shock (u, u+, σ±). However, for u ∈ ∂ ΠC,s0
, u+ = u and

the necessary estimates degenerate near ∂ ΠC,s0
. Therefore, we handle this regime

more in favor of Proposition 6.2. More precisely, we prove the following proposition.

Proposition 6.11. There is a universal constant Kbd > 0 such that for any C

sufficiently large and s0 sufficiently small (depending on C), defining

Rbd
C,s0

:= {u ∈ RC,s0
| |u − u∗| ≤ Kbds0} (6.58)

for any u ∈ Rbd
C,s0

, Dmax(u) � −s3
0.
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Proof. This proof is a minor variant of the proof of Proposition 6.2. We recall from

(6.37),

Dmax(u) = Dcont(u) +

∫ s∗(u)

0

σ̇1
u(t)[η̃(u) − η(u | S1

u(t))]dt. (6.59)

Following (6.38) and (6.39), in the proof of Proposition 6.2, we estimate

Dmax(u) � −s3
0 + s0s

∗d(u, ∂ ΠC,s0
) � −s3

0 + s2
0d(u, ∂ ΠC,s0

). (6.60)

Therefore, there are universal constants Kbd, K > 0 such that if d(u, ∂ ΠC,s0
) ≤

1
2Kbds0, then Dmax(u) ≤ −Ks3

0. Finally, we note that if d(u, ∂ ΠC,s0
) ≤ 1

2Kbds0

for u ∈ RC,s0
, then |u − u∗| ≤ Kbds0 for all sufficiently large C and sufficiently

small s0.

6.5. Step 2.2 : Shocks close to uL

In this step, we prove that states u near to uL (of order s0) satisfy Dmax(u) ≤ 0.

Since Dmax(uL) = 0, we lose the uniform negativity of the estimates until this

point. However, we show the existence of a region R0
C,s0

of size of order s0 in the r1

direction on which uL is a strict local maximum which satisfies Dmax(u) � −s3
0 on

the boundary of R0
C,s0

. Our proof of Proposition 2.2 then implies (uL, uR, σLR) is

the unique entropic 1-shock with left state in ΠC,s0
for which DRH vanishes. More

precisely, the main result of this step is the following proposition:

Proposition 6.12. There is a universal constant K0 such that for any C suffi-

ciently large and s0 sufficiently small (depending on C), defining

R0
C,s0

:= {u ∈ RC,s0
| |u − uL| ≤ K0s0} (6.61)

for any u ∈ R0
C,s0

, Dmax(u) ≤ 0.

We begin by studying Dmax and computing derivatives. We recall that

Dmax(u) = DRH(u, u+, σ±), where u+ and σ± are uniquely defined via the

conditions

f(u+) − f(u) = σ±(u+ − u),

−η̃(u) = η(u |u+),

σ± ≤ λ1(u).

(6.62)

Now, we have the following algebraic identities.

Lemma 6.13. Let u+ = S1
u(s∗) be such that Dmax(u) = D(u, u+, σ±). Then, the

following identities hold :

[f ′(u+) − σ±I]∇u+ = [f ′(u) − σ±I] + (u+ − u)⊗σ′
±, (6.63)
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[∇η(uR) −∇η(u+)] + (1 + Cs0)[∇η(u) −∇η(uL)]

= (u − u+)t[∇2η(u+)∇u+] (6.64)

and

∇Dmax(u) = [∇η(u+) −∇η(uR) − (1 + Cs0)[∇η(u) −∇η(uL)]](f ′(u) − σ±I).

(6.65)

Proof. First, we differentiate the two implicit equations for u+ in (6.62). Differen-

tiating in u and viewing u+ and σ± as functions of u, we obtain

f ′(u+)∇u+ − f ′(u) = (u+ − u)⊗σ′
± + σ±(∇u+ − I) (6.66)

and

∇η(u) −∇η(u+)∇u+ − (u − u+)t∇2η(u+)∇u+ −∇η(u+)(Id −∇u+)

= −Cs0[∇η(u) −∇η(uL)] + [∇η(uL) −∇η(uR)]. (6.67)

Rearranging terms yields the desired identities (6.63) and (6.64), respectively.

Second, we differentiate the relation Dmax(u) = DRH(u, u+, σ±) using the chain

rule

∇Dmax(u) = [∇η(u+) −∇η(uR)][f ′(u+) − σ±I]∇u+

− (1 + Cs0)[∇η(u) −∇η(uL)][f ′(u) − σ±I]

− σ′
±[η(u+ |uR) − (1 + Cs0)η(u |uL)]. (6.68)

Next, we apply (6.63) to simplify the first line of (6.68) as

∇Dmax(u) = [∇η(u+) −∇η(uR) − (1 + Cs0)(∇η(u) −∇η(uL))][f ′(u) − σ±I]

+ [∇η(u+) −∇η(uR)](u+ − u)⊗σ′
±

− σ′
±[η(u+ |uR) − (1 + Cs0)η(u |uL)] (6.69)

and use the definition of the tensor product to simplify the second line of (6.69) as

∇Dmax(u) = [∇η(u+) −∇η(uR) − (1 + Cs0)(∇η(u) −∇η(uL))][f ′(u) − σ±I]

+ σ′
±[(∇η(u+) −∇η(uR)) · (u+ − u) − η(u+ |uR)

+ (1 + Cs0)η(u |uL)]. (6.70)

Then, rearranging terms in the definition of relative entropy, we have the identity

η(u |u+) − η(u |uR)

= [η(u) − η(u+) −∇η(u+) · (u − u+)] − [η(u) − η(uR) −∇η(uR) · (u − uR)]

= −[η(u+) − η(uR) −∇η(uR) · (u+ − uR)] + [∇η(u+) −∇η(uR)] · (u+ − u)

= −η(u+ |uR) + [∇η(u+) −∇η(uR)] · (u+ − u). (6.71)
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Finally, combining (6.70) and (6.71) yields

σ′
±[(∇η(u+) −∇η(uR)) · (u+ − u) − η(u+ |uR) + (1 + Cs0)η(u |uL)]

= σ′
±[η(u |u+) − η(u |uR) + (1 + Cs0)η(u |uL)]

= σ′
±[η(u |u+) + η̃(u)] = 0, (6.72)

which completes the proof of (6.65).

Next, we prove several rough estimates on u+ and σ±, using only that states

u ∈ RC,s0
\Rbd

C,s0
are separated from ∂ ΠC,s0

.

Lemma 6.14. For all C sufficiently large and s0 sufficiently small, for any u ∈

RC,s0
\Rbd

C,s0
, we have

|u − u+| ∼ s0 and λ1(u) − σ± ∼ s0 and σ± − λ1(u
+) ∼ s0. (6.73)

Furthermore, we have the derivative estimates

|∇u+| + |σ′
±| � 1 and |∇2u+| + |σ′′

±|+ � s−1
0 . (6.74)

Proof. We begin with (6.73). We estimate |u−u+| using Lemmas 1.4, 6.4, and 3.6

via

|u − u+|2 ∼ η(u |u+) = −η̃(u) � s0d(u, ∂ ΠC,s0
) � s2

0, (6.75)

which proves |u − u+| � s0. For the reverse direction, we show −η̃(u) �

s0d(u, ∂ ΠC,s0
). Indeed, take u ∈ ∂ ΠC,s0

so that |u − u| = d(u, ∂ ΠC,s0
). Then,

by Taylor’s theorem and Lemma 3.5,

|η̃(u) −∇η̃(u) · (u − u)| � Cs3
0. (6.76)

Next, ∇η̃(u) = b1l
1(u∗) + O(s2

0) and u − u = c1r1(u
∗) + O(s2

0), where b1 ∼ s0 by

Lemma 3.6 and c1 ∼ s0 because u /∈ Rbd
C,s0

. Thus, −η̃(u) � s2
0, which completes

the proof of the first estimate of (6.73). Note since |u − u+| ∼ s∗, we have shown

s∗ ∼ s0 on RC,s0
\Rbd

C,s0
. Now, by Lemma 3.3,

σ± =
1

2
(λ1(u) + λ1(u

+)) + O(|u − u+|2). (6.77)

Using (u, u+, σ±) is Lax admissible, (6.77) implies (6.73).

To obtain the derivative estimates of u+ and σ± in (6.74), we estimate ∇s∗(u)

and ∇2s∗(u). In particular, since η(u | S1
u(s∗(u)) = −η̃(u),

d

ds

∣

∣

∣

∣

s=s∗

η(u | S1
u(s))∇s∗(u)

= −∇η̃(u) − [∇η(u) −∇η(u+) −∇2η(u+)∇uS
1
u(s∗)(u − u+)]

:= E . (6.78)
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Thus, using u 
→ S1
u(s) is C1 by Lemma 3.3, s∗ ∼ |u − u+| ∼ s0 on RC,s0

\Rbd
C,s0

,

and Lemma 3.5, we have |E| � s0. On the other hand, using the precise asymptotics

of s 
→ S1
u(s) in Lemma 3.3 and η is strictly convex, we compute

d

ds

∣

∣

∣

∣

s=s∗

η(u | S1
u(s)) = −∇2η(S1

u(s∗))
d

ds
S1

u(s∗) · (u − u+)

= s∗∇2η(u)r1(u) · r1(u) + O(|u − u+|2) � s0. (6.79)

Combining (6.78) and (6.79) yields the bound |∇s∗| � 1. Differentiating the rela-

tions

u+ = S1
u(s∗(u)) and σ± = σ1

u(s∗(u)) (6.80)

using the chain rule and again appealing to Lemma 3.3, we obtain the first part

of (6.74), namely, the bounds |∇u+| � 1 and |σ′
±| � 1. Next, differentiating (6.78)

yields

d2

ds2

∣

∣

∣

∣

s=s∗

η(u | S1
u(s))∇s∗(u)⊗∇s∗(u) +

d

ds

∣

∣

∣

∣

s=s∗

η(u | S1
u(s))∇2s∗(u) = ∇E .

(6.81)

Using u 
→ S1
u(s) is C2 by Lemma 3.3, s∗ ∼ s0 on RC,s0

\Rbd
C,s0

, Lemma 3.5, and

|∇u+| � 1, we compute

|∇E| = | − ∇2η̃(u) −∇2η(u) + ∇2η(u+)∇u+ −∇[∇2η(u+)[∇uS
1
u](s∗(u))(u − u+)]|

� 1. (6.82)

Again, using Lemma 3.3 so that s 
→ S1
u(s) is C2 and s∗ ∼ s0 on RC,s0

\Rbd
C,s0

, we

compute

d2

ds2

∣

∣

∣

∣

s=s∗

η(u | S1
u(s)) = ∇3η(u+)

d

ds
S1

u(s∗)
d

ds
S1

u(s∗) · (u+ − u)

+∇2η(u+)
d2

ds2
S1

u(s∗) · (u+ − u)

+∇2η(u+)
d

ds
S1

u(s∗) ·
d

ds
S1

u(s∗)

= ∇η2(u)r1(u) · r1(u) + O(|u − u+|) � 1. (6.83)

Combining (6.81), (6.82), and (6.83) with the estimates |∇s∗| � 1 and d
dsS

1
u(s∗) �

s0, we obtain

|∇2s∗(u)| �
|∇E| + | d2

ds2 η(u | S1
u(s∗))||∇s∗(u)|2

| d
dsS

1
u(s∗)|

� s−1
0 . (6.84)

Finally, the second derivative estimates in (6.74) follow by differentiating (6.77)

twice using the chain rule and appealing to the estimates on s∗ and Lemma 3.3.
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Before proving Proposition 6.12, we prove a last lemma which uses more precise

information about the maximal shock (u, u+, σ±) by combining the algebraic iden-

tities in Lemma 6.13 with the estimates in Lemma 6.14. The role of the following

lemma is to guarantee that the region R0
C,s0

, on which uL is a local maximum, is

sufficiently large.

Lemma 6.15. Suppose u ∈ RC,s0
\Rbd

C,s0
. Then, for all sufficiently large C and

sufficiently small s0, we have the third derivative bound |∇3Dmax(u)| � 1.

Proof. Differentiating (6.65) once yields the second derivative formula

∇2Dmax(u) = [∇2η(u+)∇u+ − (1 + Cs0)∇
2η(u)](f ′(u) − σ±I)

+ [∇η(u+) −∇η(uR) − (1 + Cs0)(∇η(u) −∇η(uL))]

× (f ′′(u) − I ⊗σ′
±). (6.85)

Differentiating (6.85) once more yields the formula

∇3Dmax(u)

= [∇3η(u+)∇u+∇u+ + ∇2η(u+)∇2u+ − (1 + Cs0)∇
3η(u)](f ′(u) − σ±I)

+ 2[∇2η(u+)∇u+ − (1 + Cs0)∇
2η(u)](f ′′(u) − I ⊗∇σ±)

+ [∇η(u+) −∇η(uR) − (1 + Cs0)(∇η(u) −∇η(uL))](f ′′′(u) − I ⊗∇2σ±)

:= [∇η(u+) −∇η(uR) − (1 + Cs0)(∇η(u) −∇η(uL))](I ⊗∇2σ±)

+ [∇2η(u+)∇2u+(f ′(u) − σ±I)] + M

:= E1 + E2 + M. (6.86)

We have been rather vague with the exact meaning of the various products of tensors

above. While we will not need any precise structure of the terms in M, we will need

to estimate E1 and E2 very carefully and will expand on their structure shortly.

Indeed, each term collected in M depends on only u+, ∇u+, σ±, and σ′
± and can

be bounded using only the estimates in Lemma 6.14. So, we have |M| � 1.

Next, let us bound E1. Because |u+ − u| � s0, |uR − uL| � s0, and |u −

uL| � s0,

|∇η(u+) −∇η(uR) − (1 + Cs0)(∇η(u) −∇η(uL))| � s0 + Cs2
0 � s0. (6.87)

Combining (6.87) with the estimate |σ′′
±| � s−1

0 from Lemma 6.14 yields |E1| � 1.

It remains only to bound E2, which is written more precisely in index notation

as

E2 = ∂i∂jη(u+)∂l∂ku+
j (∂kfm(u) − σ±δk,m). (6.88)
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Let us now define the trilinear forms ∇3Dmax(u)(w1, w2, w3) and E2(w
1, w2, w3) via

∇3Dmax(u)(w1, w2, w3) := ∂i∂j∂kDmax(u)w1
i w2

j w3
k,

E2(u)(w1, w2, w3) := w1
i w2

l ∂i∂jη(u+)∂l∂ku+
j (∂kfm(u) − σ±δk,m)w3

m.

(6.89)

We note that while it is clear that ∇3Dmax is symmetric in all indices, this is not

true for E2. Thus, using |∇2u+| � s−1
0 and λ1(u) − σ±(u) � s0 by Lemma 6.14,

|E2(·, ·, r1(u))| � 1. Therefore, exploiting the symmetry of ∇3Dmax and using the

decomposition (6.86),

|∇3Dmax(u)(r1(u), ·, ·)| = |∇3Dmax(·, r1(u), ·) = |∇3Dmax(u)(·, ·, r1(u))| � 1.

(6.90)

Next, we bound E2(rc(u), ·, ·) for 2 ≤ c ≤ n. First, differentiating (6.63) yields

[f ′(u+) − σ±I]∇2u+ = [f ′′(u) − I ⊗ σ′
±] + [∇u+ ⊗σ+

± + (u+ − u)⊗σ′′
±]

− [f ′′(u+)∇u+ − I ⊗σ′
±]∇u+. (6.91)

Note, by Lemma 6.14 each term on the right-hand side of (6.91) is bounded uni-

formly in s0. Therefore, in index notation, we have

[∂jf
i(u+) − σ±δij ]∂l∂ku+

j = O(1). (6.92)

Left-multiplying (6.92) by lc(u+) and using λc(u
+) − σ± � 1 for 1 < c ≤ n,

|lc(u+) − lc(u)| � s0 and |∇2u+| � s−1
0 , we obtain

lcj(u)∂l∂ku+
j = lcj(u

+)∂l∂ku+
j + O(1) = O(1) (6.93)

for each 2 ≤ c ≤ n. Using η(u)rc(u) ‖ lc(u), (6.93) yields the bound on the trilinear

form of

|E2(u)(rc(u), ·, ·)| = |rc
i (u)∂i∂jη(u+)∂l∂ku+

j (∂kfm(u) − σ±δk,m)| � 1 (6.94)

for 1 < c ≤ n, which by the decomposition (6.86) yields the correspond-

ing bound |∇3Dmax(u)(ri(u), ·, ·)| � 1 for 1 < i ≤ n. By the linearity of

∇3Dmax(u)(w1, w2, w3) in w1, it follows that for w1 =
∑

w1
i ri(u),

|∇3Dmax(u)(w1, w2, w3)| ≤

n
∑

i=1

|w1
i ∇

3Dmax(u)(ri(u), w2, w3)|

� |w2||w3|
n
∑

i=1

|w1
i | � |w1||w2||w3|, (6.95)

which completes the proof.
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Proof of Proposition 6.12. We show that uL is a local maximum for Dmax.

We first note that since −η̃(uL) = η(uL |uR) and (uR, uL, σLR) is an entropic 1-

shock, u+(uL) = uR. In other words, Dmax(uL) = DRH(uL, uR, σLR) = 0. Similarly,

evaluating the identity (6.63) at uL,

∇Dmax(uL) = [∇η(uR) −∇η(uR) − (1 + Cs0)[∇η(uL) −∇η(uL)]](f ′(uL) − σLRI)

= 0, (6.96)

yields that uL is a critical point of Dmax. Next, we evaluate ∇2Dmax, computed in

Eq. (6.86), at uL to obtain

∇2Dmax(uL) = [∇2η(uR)∇u+ − (1 + Cs0)∇
2η(uL)](f ′(uL) − σLRI). (6.97)

It remains to show that the matrix ∇2Dmax(uL) is (quantitatively) negative definite.

First, we show that Dmax is concave in the r1(uL) direction. Indeed, we compute

∇2Dmax(uL)r1(uL)

= (λ1(uL) − σLR)[∇2η(uR)∇u+ − (1 + Cs0)∇
2η(uL)]r1(uL). (6.98)

Now, λ1(uL) − σLR ∼ s0 by Lemma 6.14. Also, evaluating (6.64) at uL yields

s−1
0 (uR − uL)t∇2η(uR)∇u+(uL) = 0. (6.99)

Therefore, substituting the Taylor expansion uR = uL+s0r1(uL)+O(s2
0) into (6.99)

and right-multiplying by r1(uL),

∇2η(uR)∇u+(uL)r1(uL) · r1(uL) � s0|∇u+(uL)| � s0. (6.100)

Combining (6.98) and (6.100) yields

r1(uL) · ∇2Dmax(uL)r1(uL) = −s0(1 + Cs0)r1(uL) · [∇2η(uL)]r1(uL) + O(s2
0)

� −s0, (6.101)

provided s0 is sufficiently small. Second, we show that Dmax is concave in the ri(uL)

directions for 1 < i ≤ n. Indeed, we note that by left-multiplying the identity (6.63)

by li(uL),

(λi(uL) − σLR)li(uL)∇u+(uL)

= (λi(uL) − σLR)li(uL) + [(uR − uL) · li(uL)]σ′
±(uL) + O(s0). (6.102)

Since |∇u+| � 1 and |σ′
±| � 1 by Lemma 6.14 and λi(u) − σ± ∼ 1 for i �= 1 by

Assumption 1(a), we obtain

|li(uL)∇u+(uL) − li(uL)| � s0 for 1 < i ≤ n. (6.103)



Sharp a-contraction estimates for small extremal shocks 595

Using ri(uL)∇2η(uL) ‖ li(uL), for any 1 ≤ i ≤ n and 1 < j ≤ n, we obtain the

bound

ri(uL) · ∇2Dmax(uL)rj(uL)

= ri(uL) · (λj(uL) − σLR)[∇2η(uR)∇u+ − (1 + Cs0)∇
2η(uL)]rj(uL)

� −Cs0ri(uL) · ∇2η(uL)rj(uL) + ri(uL) · [∇2η(uR)∇u+ −∇2η(uL)]rj(uL)

� −Cs0δij + O(s0) (6.104)

for C sufficiently large and s0 sufficiently small. To summarize, we have shown in

(6.98), (6.101), and (6.104) that for any 2 ≤ i ≤ n and 1 ≤ j, k ≤ n with j �= k,

∇2Dmax(uL)r1(uL) · r1(uL) � −s0, (6.105)

∇2Dmax(uL)ri(uL) · ri(uL) � −Cs0, (6.106)

∇2Dmax(uL)rj(uL) · rk(uL) � s0. (6.107)

The same application of Cauchy–Schwarz inequality as in the proof of Lemma 5.4

implies there exist universal constants K1, K2 > 0 depending only on the system

such that for C sufficiently large and s0 sufficiently small and any v =
∑n

i=1 viri(uL),

∇2Dmax(uL)v · v ≤ −K1s0v
2
1 − K2Cs0

⎡

⎣

n
∑

i=2

v2
i

⎤

⎦ ≤ −K1s0|v|
2, (6.108)

which implies uL is a local maximum of Dmax. To construct R0
C,s0

, we take

u ∈ RC,s0
\Rbd

C,s0
and suppose moreover that K3 > 0 is the constant from Lemma

6.15 so that |∇3Dmax(u)| ≤ K3. We estimate Dmax(u) using Taylor’s theorem. In

particular, there exists a v between u and uL such that

Dmax(u) =
1

2
∇2Dmax(uL)(u − uL) · (u − uL)

+
1

6
∇3Dmax(v)(v − uL, v − uL, v − uL). (6.109)

Now, using (6.108),

Dmax(u) ≤ −
K1

2
s0|u − uL|

2 +
K3

6
|u − uL|

3, (6.110)

which directly implies there is a constant K0 > 0 depending only on the system

such that for all C sufficiently large and s0 sufficiently small, Dmax(u) ≤ 0 provided

|u − uL| ≤ K0s0.

6.6. Step 2.3 : Shocks in R
+

C,s0
and R

−

C,s0

In this step, we show that Dmax(u) ≤ 0 for u strictly between Rbd
C,s0

and R0
C,s0

and

for u ∈ RC,s0
but far enough in the interior of ΠC,s0

such that u /∈ R0
C,s0

. This step
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is necessary because in Propositions 6.8, 6.11, and 6.12, we must choose specific

universal constants Kh, Kbd, and K0 to define the height in the r1(u
∗) direction of

the sets RC,s0
, R0

C,s0
, and Rbd

C,s0
, respectively. In particular, because we must choose

Kh sufficiently large and Kbd and K0 sufficiently small, it remains to check that if

RC,s0
�= Rbd

C,s0
∪ R0

C,s0
, the desired inequality, Dmax ≤ 0, holds on the remainder

of RC,s0
. Since we know the inequality Dmax(u) ≤ 0 holds on ∂ RC,s0

, ∂ Rbd
C,s0

, and

∂ R0
C,s0

, it suffices to show there are no critical points for Dmax in RC,s0
except uL,

u∗, or possibly states u very close to uL or u∗. This is precisely the content of the

following proposition:

Proposition 6.16. Let RC,s0
and Rbd

C,s0
be as in the preceding sections. Then, for

C sufficiently large and s0 sufficiently small, and for any u ∈ RC,s0
\[Rbd

C,s0
∪R0

C,s0
],

∇Dmax(u) �= 0.

In the following, we expand states u about uL as

u = uL +

n
∑

i=1

bi(u)ri(uL). (6.111)

When we refer to bi in the following, we always intend bi to be interpreted as

the ith coefficient in this expansion. Now, since RC,s0
has width C−1/3s0 in the

ri(u
∗) ≈ ri(uL) directions for 1 < i ≤ n and R0

C,s0
is a ball of radius ∼ s0 about uL

intersected with RC,s0
, R0

C,s0
splits RC,s0

\R0
C,s0

into two connected components.

Furthermore, the function u 
→ sgn(b1(u)) determines the component in which a

state u lies. Therefore, we define

R+
C,s0

:= {u ∈ RC,s0
\(R0

C,s0
∪ Rbd

C,s0
) | b1(u) > 0},

R−
C,s0

:= {u ∈ RC,s0
\(R0

C,s0
∪ Rbd

C,s0
) | b1(u) < 0}.

(6.112)

Note, by the definition of bi in (6.111), the sets R+
C,s0

, R−
C,s0

, Rbd
C,s0

, and R0
C,s0

are

ordered as in Fig. 2. We begin with the following characterization of critical points

which is crucial to our analysis.

Lemma 6.17. A state u in the interior of ΠC,s0
is a critical point of Dmax if and

only if

[∇η(u+) −∇η(uR)] − (1 + Cs0)[∇η(u) −∇η(uL)] = 0. (6.113)

Proof. By Lemma 6.13, for any state u ∈ ΠC,s0
,

∇Dmax(u) = [∇η(u+) −∇η(uR)] − (1 + Cs0)[∇η(u) −∇η(uL)](f ′(u) − σ±I).

(6.114)

Clearly, if (6.113) holds, then ∇Dmax(u) = 0. Conversely, if ∇Dmax(u) = 0,

then since u is in the interior of ΠC,s0
, u+ �= u and λ1(u

+) < σ± < λ1(u) as

(u, u+, σ±) is Lax admissible. Therefore, f ′(u) − σ±I is invertible and we must

have (6.113).
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The remainder of the step will be devoted to showing that for u ∈ RC,s0
, (6.113)

holds only if u is quite close to uL or ∂ ΠC,s0
. The following lemma expresses that by

looking at RC,s0
for very large C, we have localized to a sufficiently narrow strip so

that u+, uR, u, and uL are effectively colinear. Therefore, tracking how far a state u

is from satisfying (6.113) can be quantitatively reduced to studying a scalar ODE.

Lemma 6.18. Let u ∈ RC,s0
\Rbd

C,s0
with b1 = b1(u) and define u(t) = tu+(1−t)uL.

Define the functions F, G, e : [0, 1] → R as

F (t) := (1 + Cs0)[∇η(u(t)) −∇η(uL)] · sgn(b1)r1(uL),

G(t) := [∇η(u+(t)) −∇η(uR)] · sgn(b1)r1(uL),

e(t) :=
|u+(t) − u(t)|

b1
,

(6.115)

where u+(t) abbreviates u+(u(t)). Then, F and G satisfy the ODE

−e(t)G′(t) + G(t) = F (t) + δ(t),

G(0) = 0,
(6.116)

where δ(t) is an error term satisfying the uniform bound

|δ(t)| �
C−1/3s2

0

b1
+ s2

0. (6.117)

Proof. Evaluating (6.63) at u(t) and right-multiplying by sgn(b1)r1(uL), we obtain

G(t) − F (t) = sgn(b1)(u
+(t) − u(t))t∇2η(u+(t))∇u+(t)r1(uL). (6.118)

Next, we compute G′(t) as

G′(t) = sgn(b1)[r1(uL)]t∇2η(u+(t))∇u+(t)(u − uL), (6.119)

where we have used u̇(t) = u − uL. So G solves the ODE

G(t) − F (t) = e(t)G′(t) + δ1(t) + δ2(t),

G(0) = 0,
(6.120)

where δ1 and δ2 are error terms given as

δ1(t) := sgn(b1)[u
+(t) − u(t) − |u+(t) − u(t)|r1(uL)]t∇2η(u+(t))∇u+(t)r1(uL),

δ2(t) := sgn(b1)e(t)[r1(uL)]t∇2η(u+(t))∇u+(t)[b1r1(uL) − (u − uL)].

(6.121)

It remains only to show that the error δ(t) := δ1(t) + δ2(t) satisfies (6.117). We

estimate δ1 and δ2 separately. First, since (u, u+, σ±) is an entropic 1-shock, it
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satisfies the expansion

u+(t) = u(t) + |u+(t) − u(t)|r1(u(t)) + O(|u+ − u|2). (6.122)

Combined with the estimates |∇u+| � 1 and |u+ − u| ∼ s0 by Lemma 6.14 and

u(t) ∈ RC,s0
\Rbd

C,s0
for each t, we obtain the uniform bound

|δ1(t)| � s0|u
+(t) − u(t)| + |u+(t) − u(t)|2 � s2

0. (6.123)

On the other hand, since u ∈ RC,s0
\Rbd

C,s0
, with r1(uL) coefficient b1 = b1(u),

|b1r1(uL) − (u − uL)| � C−1/3s0. (6.124)

Again using |∇u+| � 1 and |u+ − u| � s0 on RC,s0
\Rbd

C,s0
, we obtain the uniform

bound

|δ2(t)| � C−1/3s0|e(t)| �
C−1/3s2

0

b1
. (6.125)

Together, (6.123) and (6.125) imply (6.117).

Lemma 6.19. For any C sufficiently large and s0 sufficiently small, for each u ∈

R+
C,s0

, u is not a critical point of Dmax.

Proof. Fix u ∈ R+
C,s0

and define u(t), F (t), G(t), e(t), and δ(t) as in (6.115) so

that G solves the ODE (6.116) and δ satisfies the bound (6.117). Solving (6.116) by

the integrating factor method, we have the explicit formula

G(t) =
−1

E(t)

∫ t

0

E(s)

e(s)
[F (s) + δ(s)]ds, where E(t) = exp

(

∫ t

0

−e(s)−1ds

)

.

(6.126)

We note that since e(t) = |u+(t)−u(t)|
b1

∼ 1 for u ∈ R+
C,s0

and t ∈ [0, 1], E(t) ∼ 1 over

the same domain. Next, by (6.115) and Lemma 6.17, u is a critical point of Dmax

if and only if F (1) = G(1). However, F (t) ≥ 0 for all 0 ≤ t ≤ 1 and using that

e(t), E(t) ≥ 0, the preceding formula for G yields F (1) ≥ 0 ≥ G(1), provided the

error term involving δ is sufficiently small relative to F . In particular, we will show

δ is sufficiently small and F (1) is sufficiently large so that u is not a critical point

of Dmax.

More formally, we estimate the error term involving δ using Lemma 6.18, E(t)+

e(t) ∼ 1, and b1 ∼ s0 for u ∈ R+
C,s0

,

∣

∣

∣

∣

∣

−1

E(t)

∫ t

0

E(s)δ(s)

e(s)
ds

∣

∣

∣

∣

∣

� sup
0<s<1

|δ(s)| � C−1/3s0. (6.127)
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We also estimate the contribution of F in the formula for G using E(t) ∼ 1 and the

definition of F ,
∣

∣

∣

∣

∣

−1

E(1)

∫ 1

0

E(s)F (s)

e(s)
ds

∣

∣

∣

∣

∣

�

∫ 1

0

F (s)ds

=

∫ 1

0

[∇η(u(s)) −∇η(uL)] · r1(uL)ds

=

∫ 1

0

sr1(uL) · ∇2η(u(s))(u − uL) + O(ss2
0)ds

=

∫ 1

0

sb1r1(uL) · ∇2η(uL)r1(uL) + O(C−1/3s0s)ds

∼ s0. (6.128)

By (6.127) and (6.128), there exist universal constants K1 > 0 and K2 > 0 such

that
∣

∣

∣

∣

∣

1

E(t)

∫ t

0

E(s)δ(s)

e(s)
ds

∣

∣

∣

∣

∣

≤ K1C
−1/3s0 and

1

E(t)

∫ t

0

E(s)f(s)

e(s)
ds ≥ K2s0.

(6.129)

Therefore, taking C sufficiently large, depending only on K1 and K2, (6.126) and

(6.129) imply G(1) < 0 < F (1). In particular, F (1) �= G(1), and u = u(1) cannot

be a critical point of Dmax for C sufficiently large and s0 sufficiently small.

Lemma 6.20. For any C sufficiently large and s0 sufficiently small, for each u ∈

R−
C,s0

, u is not a critical point of Dmax.

Proof. Fix u ∈ R−
C,s0

and define u(t), F (t), G(t), e(t), and δ(t) as in (6.115) so that

G satisfies the ODE (6.116) and δ satisfies the bound (6.117). Since b1 = b1(u) < 0,

e(t) < 0, solving (6.116) yields the explicit formula for G,

G(t) =
1

E(t)

∫ t

0

E(s)

|e(s)|

[

F (s) + δ(s)
]

ds, where E(t) = exp

(

∫ t

0

|e(s)|−1ds

)

.

(6.130)

We note that since e(t) = |u+(t)−u(t)|
b1

∼ −1 for u ∈ R−
C,s0

and t ∈ [0, 1], E(t) ∼ 1

over the same domain. As in the preceding section, we note by (6.115) and Lemma

6.18, u is a critical point of Dmax if and only if F (1) = G(1). Moreover, we note

that by (6.117),
∣

∣

∣

∣

∣

1

E(t)

∫ t

0

E(s)δ(s)

|e(s)|
ds

∣

∣

∣

∣

∣

� C−1/3s0. (6.131)
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Now, we estimate F via

F ′(t) = −(1 + Cs0)r1(uL) · ∇2η(u(t))(u − uL)

= r1(uL) · ∇2η(uL)r1(uL) + O(s0). (6.132)

Therefore, taking s0 sufficiently small, F is strictly increasing. Next, we estimate

G(1) using (6.130), (6.131), and F increasing to obtain

G(1) ≤

[

1

E(1)

∫ 1

0

E(s)

|e(s)|
ds

]

F (1) + O(C−1/3s0). (6.133)

Then, by the fundamental theorem of calculus, as E′(s) = E(s)
|e(s)| ,

[

1

E(1)

∫ 1

0

E(s)

|e(s)|
ds

]

= 1 −
E(0)

E(1)
. (6.134)

Let α = 1− E(0)
E(1) . Since E(s) ≥ 0, E(0) = 1, and E′(s) ∼ 1, 0 < α < K1 < 1, where

K1 is a universal constant. Therefore, (6.133) implies the inequality

G(1) ≤ K1F (1) + O(C−1/3s0). (6.135)

Finally, taking K1 < K2 < 1 and C sufficiently large and s0 sufficiently small, we

obtain G(1) ≤ K2F (1) < F (1). Therefore, G(1) �= F (1) and u = u(1) cannot be a

critical point for Dmax.

6.7. Proof of Proposition 2.2

First, we fix C sufficiently large and s0 sufficiently small such that each of Propo-

sitions 6.8, 6.11, 6.12, and 6.16 hold. Proposition 6.8 guarantees we obtain a

decomposition of ΠC,s0
into

ΠC,s0
= RC,s0

∪ [ΠC,s0
\RC,s0

],

where Dmax(u) � −s3
0 on ΠC,s0

\RC,s0
. Propositions 6.8, 6.11, 6.12, and 6.16

guarantee we obtain a decomposition of RC,s0
into

RC,s0
= Rbd

C,s0
∪ R+

C,s0
∪ R0

C,s0
∪ R−

C,s0
,

where Dmax(u) � −s3
0 on ∂ RC,s0

∪ Rbd
C,s0

∪ ∂ R0
C,s0

, Dmax(u) ≤ 0 on R0
C,s0

, and

∇Dmax �= 0 on R+
C,s0

∪ R−
C,s0

. As there are no critical points in R+
C,s0

∪ R−
C,s0

, it

follows that

max
u∈R+

C,s0
∪R−

C,s0

Dmax(u) = max
u∈∂ R+

C,s0
∪∂ R−

C,s0

Dmax(u) � −s3
0. (6.136)

Since uL is a strict maximum of Dmax on R0
C,s0

, we conclude Dmax(u) ≤ 0 on ΠC,s0

with Dmax(u) = 0 if and only if u = uL. Finally, recalling the definition of Dmax
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in (6.1), for any (u−, u+, σ±) an entropic 1-shock with u− ∈ ΠC,s0
,

DRH(u−, u+, σ±) ≤ Dmax(u−) ≤ 0. (6.137)

Moreover, equality holds only if u− = uL and u+ = uR.
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