ON THE RADIUS OF SELF-REPELLENT
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ABSTRACT. We study the radius of gyration Rp of a self-repellent fractional Brownian
motion {BtH}0<t<T taking values in R?. Our sharpest result is for d = 1, where we find
that with high probability,

2
Ry =T", withv =2 (1+ H).

For d > 1, we provide upper and lower bounds for the exponent v, but these bounds do not
match.

1. INTRODUCTION

Self-avoiding random walks are among the most extensively studied models in statistical
physics. A variant, the self-repellent walk (also known as the weakly self-avoiding walk),
provides a weaker version of the self-avoiding walk. This variation adjusts the probability
distribution of a simple random walk by imposing penalties on paths with self-intersections.
In contrast, a self-avoiding walk is a random walk that strictly prohibits any self-intersections.
The Domb-Joyce model [1] constitutes a discrete-time version of the self-repellent walk,
while the Edwards model [2] provides a continuous alternative, known as the self-repellent
Brownian motion. For an in-depth treatment of self-avoiding walks, readers are directed to
the monograph [3], lecture notes [4], and the survey [5] that highlights recent advancements
in the field.

This paper primarily focuses on the Edwards model associated with self-repellent fractional
Brownian motions (fBm’s). This particular model provides an apt framework to analyze the
properties of polymer molecules in good solvents, as discussed in detail in [6]. Extensive
investigation of the self-repellent fBm has been undertaken in [7, 8, 9], contingent on the
presence of a square-integrable (self-intersection) local time for the fBm. However, it is known
that the fBm with the Hurst parameter H might not possess a square-integrable local time
if dH > 1—for instance, if d = 2 and H = 1/2; see [10, 11]. As observed in [12], the local
time characteristic in the self-repellent Brownian motion is not essential. Instead, one can
work with the occupation measure. In particular, we consider the occupation measure of
balls of radius 1. Thus, we penalize paths that come close to their past positions, rather
than passing through exactly the same points. Substituting local time with the occupation
measure should theoretically maintain the outcome, which is validated specifically within
dimension 1. This insight facilitates the characterization of self-repellent fBm’s across all
dimensions d > 1 and for the entire range of the Hurst parameter H € (0, 1).

Let {BtH } >0 Pe a fractional Brownian motion with Hurst index H € (0,1), taking values
in R%. That is, BY = (Bf”l,...,Bf’d) where (B)*

_, are independent one-dimensional
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fractional Brownian motions with Hurst index H. Thus, each B is a centered Gaussian
process on [0, 00) with covariance

E [Bf’iBf’i] e (R e T L

N —

We define the occupation time as follows:

Lo(y) = |{t € [0.7): B € Bi(y)}| = /1,31 (B dt, (1.1)

where |S| denotes the Lebesgue measure of the set S, and B, (y) is the open ball in R
centered at y, of radius r > 0. Define

Er = exp (—ﬁ 9 LT(Z)2d2> (1.2)

and for an event A, let

1
Zr

Then, under probability measure Qr, {BtH 0<t<T } is a self-repellent fBm.

Qr(A) = —E" [14&7], Zp = EPT [E7]. (1.3)

In this paper, we will investigate the radius of gyration Ry (see [13]) of the self-repellent
fractional Brownian motion Bf.

1 [T —H|?
Ry = l—/ ‘Bf—BT‘ dt}
T Jo

It is worth noting that another customary radius is the mean square end-to-end distance,
which is often seen in mathematical papers:

(]EQT [’B¥|2]>1/27 where ’B¥| — \/(BYI:[,I)Q—F---—F (B:Ip{’d>2‘

Physicists often base their reasoning on universality, namely the belief that changing
the details of a model will not affect its large-scale behavior. We believe that the exact
definition of the radius is unlikely to change our final result. It is expected that, maybe up
to a logarithmic correction,

1/2 1 T
with By = — / BXdt. (1.4)
T Jo

RTXTV

for some exponent v depending on the dimension d and the Hurst parameter H. It has been
conjectured in [8] and [9] that
2(1+ H)
= ——" 1.5
YT Tad (1:5)
In the case of one dimension, the radius exhibits ballistic behavior, v = 1, for the self-
repellent random walk, as shown in [14, 15]. For fBm, the corresponding result is as follows:
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Theorem 1.1 (d = 1). Let B¥ be a one-dimensional fBm with Hurst parameter H € (0,1),
and let Qr and Ry be defined as in (1.3) and (1.4), respectively. Then, for any 8 > 0, there
exist nonrandom constants Tg > e, and C,, C*, Cy12 > 0 such that the following inequality
holds whenever T' > Tp:

Qr (C.8"°T
where the constants Cy, C* are given in (1.8) and Cy 15 in (1.12).

2(+

<RT<C 51/3T (+H)> 2 1—2€Xp< 01126 /3T2(2 H)>7

In other words, the radius of the one-dimensional self-repellent fBm is completely solved:
2
Ry <T" with V:§(1+H)

with high probability for large T'. This theorem proves the conjectured claim (1.5) for d = 1,
if we use the radius of gyration. In particular, when H = /2, Ry < T, which coincides with
the classical result for the Brownian motion/random walk in [14, 15].

The analogous question in dimensions d = 2, 3,4 is completely open even in the special
case of self-repellent random walk /Brownian motion. In dimensions d > 5, the lace expansion
was successfully used to show that v = 1/2 for self-repellent random walk; see [16, 17]. The
lace expansion is not expected to work in the fBm case, since it requires the Markov property.
We have the following result for all dimensions:

Theorem 1.2 (d > 1). Let BY be a d-dimensional fBm with Hurst parameter H € (0,1),
and let Qr and Ry be defined as in (1.3) and (1.4), respectively. Then, for any 3 > 0, there
exists some nonrandom constant Tz > e such that the following inequality holds whenever
T Z Tﬁ N

Qr (C’* Ry <Rp<C” ET) >1—2exp (=Ci10va,u(B)Fau(T)). (1.6)
In (1.6), vau(B) and Fyu(T) are defined in Table 1 with
6a’b = 6a1{0<,8§1} —+ 6b1{5>1}. (17)
The constants C, and C* are defined as follows:
C11o >1/d (201.12>1/2
C, = and C* = , 1.8
(201.12 Cru (1.8)

with C1 10, C1.11, and C4 15 being the positive constants appearing in (1.10), (1.11), and (1.12),
respectively. The bounds Ry and Ry in (1.6) are equal to

B B BTz 1/d
ET _ET<d7 H7 ﬁ) T (/Yd,H(ﬁ)Fd,H(T)) )

Ry = Rr(d, H. ) = (vau(8)T*" Fau(T)"*:

see Table 2 for their explicit expressions for various cases.

(1.9)

In the one-dimensional case, dH = H < 1, and thus
Rp =Ry =BT 5

see the column d = 1 in Table 3b below for some concrete Values. Therefore, Theorem 1.1 is
a direct corollary of Theorem 1.2.

2(1+H)
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dH <1 dH =1 dH >1
d=1 d>1 H=1/2andd=2 H<1/2|H>1/2 H<1/2
an(B) = | BB prEm gz g e 8
Fyn(T) = |05 75 i T Tlog(T) | T*5" T

TABLE 1. Definitions of v4 x4 (5) and Fypu(T), with the case d = 1 being
specially highlighted in the gray background. Recall that the notation 3'/%2/3
is given in (1.7).

dH < 1 dH > 1
d=1 d>1 H>1/2 H<1/2
Ry 61/3T2(1+H) (53 (d+2)H T32 (31?)2)1 ’ (51/3T2(1+H)/3)1/d T1/d
Ry 3 o H T%(g,d:(?fé;;ﬂ BU/BT204+H)/3 B2 (1+2H)/2
(A) dH # 1
dH =1
H=1/2andd=2 H=1/dandd >3
Ry | pHvyueTIR (T/log(T))"*
Ry BYAL3 T BY2TO+2H)/2 [16a(T)
(B) dH =1

TABLE 2. Explicit expressions of Ry and Ry, as defined in (1.9), for various
values of (d, H), with the case d = 1 being specially highlighted in the gray
background. Recall that the notation 3%° is given in (1.7).

The proof of Theorem 1.2 builds on techniques from Mueller and Neuman [12]. Given
r > 0, define the following events and probabilities:

A =Ry <}, q§ =E" [1A<<T>5T} :
T'T = {RT > ’f’} qﬁ?) = EPT |:1A(>725Ti| .

The following two lemmas, whose proofs are deferred to Sections 2.1 and 2.2, respectively,
will be used in the proof of Theorem 1.2.
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Lemma 1.3. For any T > 0, the following two inequalities hold:

<) < BT’
¢ <exp| —Ci ) forallr>1, (1.10)
) < r’
¢y < exp _Cl.llﬁ , forallr > 0. (1.11)
where
' (1 +d/2
Ciio = Cl.lo(d) = W and Ch11 = Cl.ll(da H) > 0.

Lemma 1.4. There exist constants Cy 1o = C112(d, H) > 0 and Tz > e, such that for all
T>1Ts,d>1, and H € (0,1), we have

log Zr > —Cha2 vau (B) Fau(T), (1.12)
where v 1 (B) and Fyp(T) are defined in Table 1.

The paper is organized as follows. The proofs of Theorem 1.2 and lemmas 1.3 and 1.4
are given in Section 2. We then extend our discussions on our results in Section 3. Finally,
in the appendix, we include some known results for fBm’s and the corresponding Girsanov
theorem.

2. PROOF OF THE MAIN RESULT

We will defer the proofs of the lemmas to the next section, opting to initially establish
Theorem 1.2 through their application. Here, let us briefly outline our strategy, which has
been successfully employed in Brownian cases in [12, Theorem 1.1].

Let a < b be real numbers, and let ¢ > 0. Recall that Q is defined by (1.3). Let X be a

random variable. Then, to prove
Qr(a< X <b)>1-2exp(—c), (2.1)

it suffices to show that
E' [1(x<a)ér]

Qr(X <a)= < exp(—c),
Zr
and
EFr [1 £
Qr(X > b) = Loenbr] exp(—c).
Zr
Additionally, the above two inequalities are ensured by the next three inequalities:
Zr > exp(—c), (2.2)
E'" [1{x<a&r] < exp(—2c), (2.3)
and
E'" [1xsnér] < exp(—2c). (2.4)

Following this idea, we are ready to present the proof of Theorem 1.2.
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Proof of Theorem 1.2. By the definition of Fj;y in Table 1, it is clear that the function
T?/F; g(T) is monotone increasing on [e, 00) with limp_,o, T?/Fy g (T) = oo for any d > 1
and H € (0,1). Hence, when T is large enough, we can ensure that

( C' 10BT? > e
- > 1.
2C 19Yaum () Fau(T)

Plugging the above 7, to (1.10) shows that

T2
E°T Lrr<r.] = q7(»<zr < exp (—Cl.loﬂrd ) = €Xp ( - QCLlﬂd,H(@)Fd,H(T))-

*

Next, by choosing the following 7* in (1.11)

- (201.127d,H(5)T2HFd,H(T) ) 1/2
Ol.ll ’

we have

(r)?

E°T [Lrp>r] = qy(~*>)T < exp (_CLM ﬁ) = exp ( - 201.12’Yd,H(5)Fd,H(T))-

Concerning (1.12) in Lemma 1.4. We have justified all inequalities (2.2)—(2.4), and there-
fore (2.1), with X = Ry defined as in (1.4), a = 7, b = r,, and ¢ = Cy 1974.u(8) Fau(T).
This proves (1.6) with R; and Ry defined as in (1.9). This completes the proof of Theo-
rem 1.2. O

2.1. Upper bounds on qﬁ?,qﬁ?—Proof of Lemma 1.3. (1) Fix an arbitrary r > 1.

Suppose Ry > r. Then there must be a time ¢; € [0,7] such that ‘Bg —F? > r. This

in turn implies that there exists t, € [0,7] such that |Bf — Bf/| > r. Then the triangle
inequality shows that either | Bff| > r/2 or | Bff| > r/2. So we conclude that sup, 71 |Bi| >
r/2. Hence, concerning &r < 1, and using [18, Theorem 4.1.1], we have

7,2
i3 [1ye] < (47) < 901 202) <o (o 7).

telo, T

for some constant C ;; > 0. This proves (1.11).

(2) Fix an arbitrary r > 0. Recall that Lp(z) and & are defined in (1.1) and (1.2),
respectively. We claim that
2

Ry <r implies —logér = /Rd LT($)2dI 2 201‘10'(7" +1)d

(2.5)

As a consequence, for all » > 1,

qﬁ? =E" [1A<<T)8T] < sup Ep(w) = exp (—B inf / LT(z,w)zdz>
T, Rd

weAls) weA[S)

T> T?
< exp <—201.10(Tﬁ+—1)d) < exp (—Cuoﬁr—d) :
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This confirms (1.10). Thus, it remains to prove (2.5). Assume that Ry < r. Notice that
T a2 T
7~2Tz/ ‘BtH—BT’ dtz/ 4?1
0 0

247“2‘{156 0,77 : ‘BtH—E;{‘ >2T}

dt

—H
{IBff =Br|>2r}

I

where | - | denotes Lebesgue measure. Therefore,
— T
Ht € (0,77 : ‘BtH—Bg’ > 27"}‘ <7
and
— 3T
Ht e 0,7) : ‘B{I—Bﬂ <2} > =
It follows that
3T
_y Lr(y)dy = —~. (2.6)
B(2r+l)(BT)
Denote by Ky := 7%2/T'(1 4+ d/2) the volume of the unit ball in R?. Then

9 —H
g i K= ()
25+de Borii <§¥)

Now, by the Cauchy-Schwarz inequality and (2.6),

Kd(2r+1)d/ Ly (y)*dy 2/ - dy/ ., Lr(y)ydy
R4 Bar4+1(Br) B2r+1(B71)

2
9772
2 (/ . LT(y)dy) T
Bor1(Br)

It follows that

97?2 9 T° T2
L 2dy > > X =2C10——-
/Rd T N I el T N A S}
This proves claim (2.5). The proof of Lemma 1.3 is complete. O

2.2. Lower bounds on Z;—Proof of Lemma 1.4. Now we study the term Zp defined
as in (1.3). Let u be a unit vector in R?, and let P}, Qr be given as in (A.2). That is, the
new measure P, adds a drift proportional to A, and Qr is the Radon-Nikodym change of
measure term, see Theorem A.2. The drift enforces the behavior we think the self-repellent
process should have. Then, we can write

Zr = B [Er] = EF [€r - (Qr(AM)) '] .
Applying Jensen’s inequality to log Zr, we find
log Zr > E*% [log (& - (Qr(AM)) )] = — (I + L),
where

I ==E"" {5 /R d LT(y)2dy} and I, == E"? [log (Qr(AM))].

As a consequence, we need to establish upper bounds for both I; and I5. In the proof below,
the generic constant C' > 0 may vary from line to line.
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Upper bound for I;. Due to the Girsanov formula for fBm’s as stated in Theorem A.2,
under P2, {Bf: 0 <t < T} has the same distribution as {BX + Mu: 0 <t < T} under Pr.
Fixing T > e. Let g(t,-) be the probability density of B for all 0 <t < T. Since B has
stationary increments, if 0 < s < ¢ then the probability density of Bf — BH is g(t — s,-).
Note that for z,y,2 € RY, if |z — 2| < 1 and |y — 2| < 1, then |z — y| < 2. So we have

T T
I < 05/ dt/ ds E*" [1p,()(B{" — B + (t — s)Au)]
0 0

T t
SC’ﬁ/ dt/ ds/ dzg(t — s,z — (t — s)\u)
0 0 B (0)
T
< C’BT/ dr/ dz g(r,z — riu).
0 B2(0)

Hence, choosing u = (1,0, ...,0), we have that

T 2 (21 — r)\)2 d 2
I < C’BT/ dr / dzy 7 H exp (—TZ—H) X H/ dz rH exp (—
0 -2 o2

Notice that for all » > 4/\, z; € [-2,2], we have |z;| < r\/2 and thus

(21 —1A)? L o sa-m
exp <_7“2—H < exp _Z_l)\ p2=H) )

2 2 2 2
21— TA z21—TA

/ dz; exp (—%) < 1{0<r<4//\}/ dz exp <_( 1T2H ) )

_9 -2

1
+4 x 1{724/)\} exp ( )\2T2(1_H)) .

2
2
r2H

)]

Therefore,

4
If A € (0,1], it follows that

2 2
zZ1— T\
1{0§r<4//\}/ dz; exp (——< 1r2H ) ) <4 X Ljo<r<a/ny
2

<C.1 0<r e L 2 _H
ere =C {o<r<4/x} €XP (__4/\ 7’2(1 )) )
wher

1
C, = sup sup 4exp <—)\2r2(1H)> =4dexp (22(1’2}”) )
AE(0,1] r€(0,4/) 4
On the other hand, if A > 1, then we can write
2 2 o] 2
zZ1— 1T\ z1— T
1{0§r<4/,\}/ dz; exp (—%) §1{0§r<4/,\}/ dz; exp (—(ITT)>
-2 —00
=C1lig<rcanr’.

Combining the above four cases shows that

2 21 —1TA)? 1
/ dz; exp (—%) <C (exp <—Z)\2r2(1_H)) + 1{05T<4/A<4}7“H) .
-2
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Notice that

2 2
/ dz r~H exp (—;—H) < min (4077, /m) <C (77 AT).

—2
Therefore, we can write

T
_ 1
I §C’BT/ drr= " (1 AT_H)d ' (exp (—Z)\2T2(1_H)> + 1{0§r<4//\<4}7”H>
0

<CPT (L + Lo+ 1i3),

1
1
L= / drr— exp (——)\2r2(1H)) ,
0 4
T 1
I o = / dr r—H exp (—Z)\QTQ(I_H)) ,
1

4/x
[173 = 1{)\>1}/ dr < C (1 AN )\71) .
0

where

Performing a change of variable 1\?r2(=) = 5 we can write

)\2
4 1
I, =C\ ! / s 2e°ds
0
)\2

SC (1{0<,\<1})\_1/ ’ ds S_% + 1{/\>1})\_1/ ds s_ée_s> S C (1 A )\_1) s
0 0

and

A2

1y2p2(1-H)
_1-dH 4 1—dH_ _q s
[1’2 =(C)\N 1T-H ds s20-H) "¢~ %,

4
Therefore, we need only estimate I; 5. Assume 7' > 1, otherwise [; 5 = 0.

Case I: If dH < 1, then 21(1__012) > (0 and hence,

1—dH

o0
_1-dH doam g B
Lo <COXNT=H ds s20-0) "¢7% = O\ 1-H .
0

Case II: Tf dH = 1, then we have that I, < C (logT A A™?), which is due to
%A2T272H

i)\2T2(17H)
Liy= C/ dsste™® < C’/\_Q/ dse™* < CA\? and
a2 22

4

i)\2T2(17H) )\j )\2
I, < 0/2 dss' <C <log (ZTQ_QH) — log (Z)) =(C'logT.
A

4

Case III: 1f dH > 1, then we have

I o < Cmin (/ dr r=#H /\_2/ ds e_s> =C (1 A )\_2) :
1 0
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As a consequence, with T' > e, we can write

1-dH

CBTN =1 | dH < 1,
L <IT(AN) = CBT (log(T) AAX2+1AXTY), dH =1, (2.7)
CBT (LAXTY), dH > 1.

Upper bound for I,. As for I, we need the Girsanov formula for martingales. Recall
Theorem A.1 that for any unit vector u € R% M = M" defined as in (A.1) is a square-

integrable martingale. The classical Girsanov formula for martingales implies that M =

{]\Z = M; + (M)t} is a martingale under the probability measure P} given by (A.2). As a
consequence,

I, = E** [log (Qr(AM))] =E** {AMt - %A2<M>t] =1 {M\Z + %V(M)t}

1 A 1 — *
:§A2EPT [(M),] = §C’H>\2t2(1 0 — (). (2.8)

Matching bounds for I; and I,. Recall that log(Z;) > —(I; + I5), and I; and I
are bounded by I7(A) in (2.7) and I5(\) in (2.8), respectively. Notably, I is a decreasing
function of A € (0,00), whereas I is an increasing function in the same range. Therefore,
in order to optimize the lower bound for log(Zr) based on (2.7) and (2.8), we need to find
a suitable A such that I7(\) and I5(\) coincide up to a constant. In the following, we omit
the tedious computations required to identify the appropriate A, and choose’

( 1-H (A—2H)(1—H)
/83—(d+2)HT_ 3—(d+2)H , dH < 1,
51/31{521} + ﬁ1/41{0<5§1}, dH =1, H = 1/2,
A= BYRTH2, flog T, dH =1,H < 1/2,
pL2rH=1/2, dH > 1,H < 1/2,
| BT dH > 1,H >1/2.
Then, (1.12) follows immediately. The proof of Lemma 1.4 is complete. 0

3. DiscussioN

In this section, we present some concrete examples and make some remarks on our results.
When d = 1, our results are sharp. When d > 2, Theorem 1.2 provides some nontrivial lower
and upper bounds, as illustrated in Table 3 and Figure 1. One may compare our results with
the Brownian motion case given in [19], as detailed in the next example:

Example 3.1 (Brownian motion case). In the Brownian motion case, as seen in Table 3
(a), if H =1/2, we have

TY4< Ry <T, forlarge T.

Here, we leverage the fact that for any 8 > 0, the expression 71T72 log(T)"* behaves like T72 log(T)73
for large T, where 71, 72,73 are arbitrary numbers, with the constraint that ve and 3 cannot both be zero.
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This partially confirms the guess in [4, Equation (1.30)] in dimension 2, but is still far away
from the ultimate conjecture that Ry < T°/%; see Equation (1.28) (ibid.). To the best of our
understanding, the only known related finding is presented in [20], where it is shown that
for d-dimensional self-avoiding random walk with the radius Rp > T%3?. It is noteworthy
that a direct comparison between our outcome and that of [20] is not feasible, as the latter
focused on self-avoiding random walk, not the self-repellent Brownian motion examined in
this paper. Additionally, the distance in [20] pertains end-to-end distance, which contrasts

with that employed in our context.

d=1|d=2 d=3 d=14 d>5
Lower bound 1 1/ /3 1/ /g
Conjectured (shaded)/confirmed | 1 3/s | 0.58759700(40) | /2 with log'/® | 1/

Upper bound 1

(A) The Brownian motion case, i.e., H = 1/2. The lower and upper bounds correspond to the
exponent of T'in Ry and Ry, as defined in (1.9). The conjectured and confirmed values are taken
from [5, Table 1].

H|d=1 d=2 d=3 d=14 d=5 d=6
Yi| S | e e | 134 | G-, 34) | e %l | e,
Ys| S | (sl | (=30 | Bl | Bl | e,
Yl 1| Bl | B | BaY | MY | DAY
2o | f | (o] | [190r,100] | [3fs, 0f] | (o, 0] | [for, 1
ol e | el | s | s ) | o) | e,

(B) The ranges (when d > 2) and the exact values (when d = 1) for various
values of H and d. A gray background indicates cases with dH < 1. Red
highlights the scenario where dH = 1 with darker one for the case d = 2 and
lighter one for the cases d > 3. Cyan represents cases where dH > 1 with darker
one for the cases H < 1/2 and lighter one for the cases H > 1/2.

TABLE 3. Exponents of T"in Rr, as define in (1.4), for large T

Remark 3.2. The Hurst parameter H does not need to be the same for each coordinate. The
same strategy presented in this paper can be readily applied to other cases. Let Hy,..., Hy
denote the Hurst parameter of B! ... BH4 respectively. Then, the results in Theo-
rem 1.2 still hold, with parameters depending on H; + --- + H,, max{H;,..., Hy}, and
min{ Hy, ..., Hy}. For the sake of conciseness, we refrain from delving into the specifics in
this paper.
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v

4fs |

FIGURE 1. Plots of the exponent v for d = 1 (the blue dash-dotted line), 2
(two red dashed lines, one for the upper bound, the other for the lower bound)
and 3 (two green solid lines). The conjectured and confirmed values of p when
H = 1/2 are labeled by the cross mark (“x”) for the cases d = 1 in blue
(confirmed), d = 2 in red, and d = 3 in green. The two green circles for d = 3
at H = 1/3 refer to the case that exponent is subject to logarithm corrections.

Remark 3.3. Lemma 1.4 provides a sharp bound for the Brownian case H = 1/2. With
B = B'? denoting the d-dimensional Brownian motion, we can write

T T
/ LT(y)2dy:/ dtl/ dt2/ dy 1B1(y)(Bt1)1B1(y)(Bt2>
R4 0 0 R4

T T
:/ dtl/ dts [B1(By,) N Bi(By,)|
0 0

7] k1 k41
zsz dtlfk dty [By(B,,) N By(By,)|.
k=0

Since |B1(B:,) N B1(By,)| is a non-negative function of B;, — By,, the summands in above
expression are i.i.d. random variables. As a result, with f(B;, — By,) == |B1(B:,) N B1(By,)|,

Zp =EF :eXP (—6 /Rd dy LT(y)zﬂ

7] k41 k+1
<E" |exp —52/ dtl/ dty f(By, — By,)
k=0 "F k

LT)

k1 k1
- HEP {eXP (—5/ dtl/ dtz f(Bi, — Bt2))} = /sl
k=0 k k
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1 1
Fj = log E" {exp (—5/0 dt1/0 dt, f(By, —BtQ))] <0.

In other words, Zr < exp(—CT') with some C' > 0 for all T' > 1, and combining Lemma 1.4,
we see that log Z;y < —T as T — oo. Therefore, the lack of sharpness in Theorem 1.2 is
likely attributed to the estimates in Lemma 1.3. We expect that this aspect can be resolved
in future research.

where

APPENDIX A. FRACTIONAL BROWNIAN MOTIONS AND (GIRSANOV THEOREM

In this section, we present some preliminaries about stochastic calculus for fBm’s. For a
more detailed account of this topic, we refer the interested readers to [21].

A d-dimensional stochastic process B = {(Bfl’l, e ,Bf]’d> te R+} is a called a frac-

tion Brownian motion (fBm) with the Hurst parameters H € (0,1) on a probability space
(Q, F,P), if

(i) B"i i=1,...,d, are independent;

(ii) for each 1 <i < d, {Bf tite R+} is a centered Gaussian family with covariance

o 1
B[ BBI| = 5 (8 4+ 5 — |t = 5M).

Without loss of generality, we can assume that the filtration {F;: t € Ry} is the canonical
filtration generated by BH.

Next, we define the integration of deterministic functions against fBm’s. If ¢ is a smooth
function on R, with compact support, i.e., ¢ € C°(R, ), then the integrals

)= [ owan i1
0
are centered Gaussian random variables with the following covariance structure:
0 i,
H,i H,j _
E [B"(¢)B™ ()] = H(2H — 1) // dt ds ¢(s)w ()]t — s[2H2, i =,
R

forall 1 <i,5 <d, and ¢,9 € CX(R,).
By typical approximation arguments, one can extend the integration to the Hilbert space
‘H of functions on R, , with inner product,

@th= [ [ drasolsuiole— s

In particular, for any ¢ € R, the function w(t, -), given by
w(t,s) = cy s (L — 5)2 15 5(s), forall s €R,
is an element of H (see [22, Proposition 2.1]), where, with B(-, ) denoting the Beta function,
¢ =[2HXxBQGh—H1l+H)".
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This observation allows us to define the following Gaussian process M = M" = {M,: t € R, }

with parameter u = (uy, ..., uy) being a unit vector in R? as follows:
d t
M, = Zu/ w(t,s)dB™ for all t € R,. (A1)
i=1 0

The following theorem is a straightforward extension of [22, Theorem 3.1] from d = 1 to
higher dimensional cases, thanks to the independence of the components of B:

Theorem A.1. Let B be a d-dimensional fBm with H € (0,1), let u be a unit vector in R?,
and let M = M™ be the Gaussian process given as in (A.1). Then M is a square-integrable
martingale with quadratic variation

['(32—H)

M, M), = Cyt*H) vt e R h = :
(M, M), = Cq » VEER,,  where Cy 4H(1 — H)T (‘2 + H)[(2 — 2H)

For any A > 0 and T" > 0, denote

1
QT(M) = exp (MT — §<M, M>T> ,

and let P} = P} be a probability measure on (€, Fr) that is equivalent to Py with the
Radon-Nikodym derivative

dP?,

— = AM). A2

B = Qo (4.2)

The next theorem, a Girsanov formula for fBm’s, is a straightforward extension of [22,

Theorem 4.1].

Theorem A.2. Under probability Py, the process {Bf: 0<t< T} 15 a d-dimensional fBm

with a drift \u € RY, i.e., the distribution of the process B up to time T under P} = IPE\F’“
is the same as BEAWT = {B{{ +AXMu:0<t< T} under Prp.
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