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In this paper, long-time and high-order moment asymptotics for super-Brownian motions (sBm’s) are studied. By

using a moment formula for sBm’s (e.g. (Hu et al, 2023, Theorem 3.1)), precise upper and lower bounds for all

positive integer moments at any time 𝑡 > 0 of sBm’s for certain initial conditions are achieved. Then, the moment

asymptotics as time goes to infinity or as the moment order goes to infinity follow immediately. Additionally, as

an application of the two-sided moment bounds, the tail probability estimates of sBm’s are obtained.
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1. Introduction

Super-Brownian motions (sBm’s), also called the Dawson-Watanabe superprocesses, are a class of

measure-valued Markov processes (cf. (Dawson, 1993, Etheridge, 2000, Perkins, 2002, etc)) which

play a key role in branching processes. Because of their close connection to positive solutions to a class

of nonlinear elliptic partial differential equations (cf. Dynkin (2002, 2004)), sBm’s have attracted much

attention in the past few decades. In the one spatial dimensional situation, it is well-known that, with an

initial condition 𝑢0 being a deterministic finite measure on R, an sBm has a density with respect to the

Lebesgue measure almost surely as long as 𝑡 > 0. This density is the unique weak (in the probabilistic

sense) solution to the stochastic partial differential equation (SPDE),

𝜕

𝜕𝑡
𝑢𝑡 (𝑥) =

1

2
Δ𝑢𝑡 (𝑥) +

√
𝑢𝑡 (𝑥) ¤𝑊 (𝑡, 𝑥), (1)

where ¤𝑊 denotes the space-time white noise on R+ ×R, i.e.,

E
( ¤𝑊 (𝑡, 𝑥)

)
= 0 and E

( ¤𝑊 (𝑡, 𝑥) ¤𝑊 (𝑠, 𝑦)
)
= 𝛿(𝑡 − 𝑠)𝛿(𝑥 − 𝑦) .

In the present paper, we explore the moment asymptotics of the one-dimensional sBm as time 𝑡 ↑∞
or moment order 𝑛 ↑ ∞, under certain initial conditions. The moment asymptotics and related inter-

mittency properties for the solution of SPDEs have been intensively studied under the global Lipschitz

assumption on diffusion coefficients (cf. (Bertini and Cancrini, 1995, Carmona and Molchanov, 1994,

Chen, 2015, Chen and Dalang, 2015, Chen et al, 2024+, Das and Tsai, 2021, Foondun and Khosh-

nevisan., 2009, Hu and Wang, 2024, etc)). However, in equation (1), the diffusion coefficient for sBm’s

is not Lipschitz at 0. Thus these results are not applicable to sBm’s. Indeed, from (Hu et al, 2023,

Proposition 4.7), one can easily deduce that the 𝑛-th moment of an sBm is of at most polynomial
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growth in 𝑡. In comparison with, e.g. the parabolic Anderson model (the square root term
√
𝑢𝑡 (𝑥) in (1)

is replaced by 𝑢𝑡 (𝑥)) to which the 𝑛-th moment of the solution is of the exponential growth (cf. (Chen,

2015, Theorem 1.1)), the growth of the sBm is much slower, which implies that the intermittency prop-

erty does not hold for sBm’s. A few months following the announcement of our paper, a preprint Chen

and Xia (2023) delved into the investigation of the asymptomatic behavior within a substantial cate-

gory of sublinear SPDE’s including sBm’s. However, as a compromise for its robustness, the approach

presented in this preprint yields an upper bound that lacks sharpness when compared to our findings;

see the remark “Generality versus sharpness” on (Chen and Xia, 2023, Section 2).

On the other hand, one may regard an sBm satisfying (1) as a special case of the following equation

with 𝛽 = 1
2

,

𝜕

𝜕𝑡
𝑢𝑡 (𝑥) =

1

2
Δ𝑢𝑡 (𝑥) + 𝑢𝑡 (𝑥)𝛽 ¤𝑊 (𝑡, 𝑥), 𝛽 ∈ [0,1] . (2)

It is well-known that if 𝛽 = 1, equation (2) is the parabolic Anderson model, whose solution is the

exponential of the solution to the Kardar-Parisi-Zhang equation (see Kardar et al (1986)) through the

Hopf-Cole’s transformation (cf. Bertini and Giacomin (1997), Hairer (2013)). A sequence of results re-

lated to the moment asymptotics, such as intermittency, high peaks (Anderson’s localization), (macro-

scopic) multifractality, etc., have been fully studied (cf. (Chen, 2015, Conus et al, 2013, Conus and

Khoshnevisan, 2012, etc)). Instead, if 𝛽 = 0, equation (2) degenerates to a stochastic heat equation with

additive noise. Even if the intermittency property fails in this case, the solution to (2) with 𝛽 = 0 is still

microscopically multifractal with high peaks (cf. Khoshnevisan et al (2017, 2018)). It is natural to con-

jecture that sBm’s are also microscopically multifractal with high peaks and it is also natural to guess

that the corresponding parameters shall be bounded between those for the parabolic Anderson model

and those for additive noise case. However, this seems to be a difficult task and we will not address it

here in this work.

In the following, we present the hypothesis on initial condition 𝑢0 which is assumed by default in the

rest of the paper.

Hypothesis 1. 𝑢0 is a 𝜎-finite measure on R fulfilling the following conditions.

(i) There exists a constant 𝑝 ≥ 0 such that
∫

R

𝑢0 (𝑑𝑥)
1 + |𝑥 |𝑝 <∞.

(ii) There exist constants 𝛾 ≥ 0, 𝐾2 ≥ 𝐾1 > 0, such that for each 𝑥 ∈ R,

𝐾1 ≤ 𝑡𝛾
∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧) ≤ 𝐾2,

for all 𝑡 ≥ 𝐶𝑥 with a constant 𝐶𝑥 ≥ 0 depending on 𝑥.

Before presenting our main results, let us make some remarks on the hypothesis. The Condition (i)

assumes that the initial condition is of polynomial growth, which is very mild. In fact, both conditions

are not too restrictive. First, in the typical context of superprocess (cf. Perkins (2002)), an sBm can

be constructed as the scaling limit of a sequence of branching Brownian motions, where the limit is

a random variable taking values in D(R+;M𝐹 (R)), which is the Skorokhod space of functions on

R+ taking values on M𝐹 (R)—the set of all finite measures on R. This requires that the flat initial
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condition is also a finite measure. Nevertheless, the initial condition 𝑢0 ≡ 1 satisfying both conditions

in Hypothesis 1 with 𝑝 = 2, 𝛾 = 0, 𝐾1 = 𝐾2 = 0 and 𝐶𝑥 ≡ 0 for all 𝑥 ∈ R, is not a finite measure. In such

case, (Konno and Shiga, 1988, Theorem 1.4) ensures the existence, uniqueness, and non-negativity of

sBm’s starting at an infinite measure fulfilling Hypothesis 1 (i). We also refer readers to (Li and Pu,

2023, Section 2) for a heuristic discussion on this problem.

On the other hand, the delta initial condition is also covered by Hypothesis 1 (cf. Chen and Dalang

(2015) for SPDEs with rough initial conditions). In fact, Suppose 𝑢0 = 𝛿𝑧 with some 𝑧 ∈ R, where 𝛿

denotes the Dirac delta measure. Then for every 𝑥 ∈ R,

∫

R

𝑢0 (𝑑𝑥)
1 + 𝑥𝑝 =

1

1 + |𝑧 |𝑝 <∞,

with any 𝑝 ≥ 0; and letting 𝛾 = 1/2, 𝐾1 =
1

2
√
𝜋

and 𝐾2 =
1√
2𝜋

, whenever 𝑡 ≥ 𝐶𝑥 :=
(𝑥−𝑧)2

log 2
,

𝑡
1
2

∫

R

𝑝(𝑡, 𝑥 − 𝑦)𝛿𝑧 (𝑑𝑦) =
1

√
2𝜋

exp
(
− (𝑥 − 𝑧)2

2𝑡

)
∈ [𝐾1, 𝐾2] .

In other words, Hypothesis 1 is satisfied by 𝑢0 = 𝛿𝑧 .

It is interesting to notice that in this case 𝐶𝑥 ≈ 𝐾𝑥2. This is true when the initial condition has a

(deterministic) density and 𝑢0 (𝑥) ≈ |𝑥 |𝛼 for any 𝛼 > −1. In fact, in this case

∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑧)𝑑𝑧 ≈ E
[
|𝐵𝑡 + 𝑥 |𝛼

]
= 𝑡𝛼/2

E

[���𝑋 + 𝑥
√
𝑡

���
𝛼
]

for a standard normal 𝑋 . Because E [|𝑋 + 𝑧 |𝛼] is a continuous function of 𝑥 = 𝑧 which is never 0, we

see that the condition (ii) is satisfied for 𝑢0 (𝑥) ≈ |𝑥 |𝛼 with 𝛾 = 𝛼/2 and with 𝐶𝑥 = 𝐾𝑥
2.

Now we state our first result of this paper. Specifically, the matching two-sided bound (5) below is

applicable to the flat initial condition 𝑢0 ≡ 1.

Theorem 1.1. Let 𝑢 = {𝑢𝑡 (𝑥) : (𝑡, 𝑥) ∈ R+×R} be the solution to (1). Then, there are positive constants
𝐾∗ and 𝐾∗ independent of 𝑛, 𝑡 and 𝑥, with 𝐾∗ ≤ 𝐾∗, such that

E
(
𝑢𝑡 (𝑥)𝑛

)
≤ (𝐾∗)𝑛𝑛!𝑡

𝑛−1
2

−𝛾 , (3)

for all (𝑡, 𝑥) ∈ [𝐶𝑥 ∨ 1,∞) ×R and

E
(
𝑢𝑡 (𝑥)𝑛

)
≥ 𝐾𝑛∗ 𝑛!𝑡

𝑛−1
2

−𝛾 (4)

for all (𝑡, 𝑥) ∈ [𝑛𝐶𝑥 ,∞) ×R, where 𝐶𝑥 > 0 is the same as in Hypothesis 1 (ii). Moreover, if 𝐶𝑥 = 0, then
we can write

𝐾𝑛∗
(
1 + 𝑛!𝑡

𝑛−1
2

)
≤ E

(
𝑢𝑡 (𝑥)𝑛

)
≤ (𝐾∗)𝑛

(
1 + 𝑛!𝑡

𝑛−1
2

)
, (5)

for all (𝑡, 𝑥) ∈ [1,∞) ×R; and if further assume 𝛾 = 0, then (5) holds for all (𝑡, 𝑥) ∈ R+ ×R.

The basic tool in the proof of Theorem 1.1 is the moment formula for sBm’s derived in Hu et al

(2023). Moment formulas for superprocesses have been investigated in diverse setups, exemplified by

prior works such as (Dawson and Kurtz, 1982, Hu et al, 2019, Konno and Shiga, 1988, Wang, 1998, etc.)
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using a duality argument to Markov processes (see e.g., (Mueller, 2009, Section 3)). Informally, for a

measure-valued Markov process 𝑋 = {𝑋𝑡 ∈ M𝐹 (R𝑑)} satisfying certain properties, given any 𝑚 ∈ N

and any test function 𝜙 in the Schwartz space of functions on R
𝑚𝑑 , there exists a pair of processes

(𝑛, 𝑓 ), where 𝑛 = {𝑛𝑡 ∈ N : 𝑡 ∈ R+} and 𝑓 = { 𝑓𝑡 ∈ 𝐶 (R𝑛𝑡𝑑) : 𝑡 ∈ R+} with 𝑛0 =𝑚 and 𝑓0 = 𝜙, such that

〈𝑋⊗𝑚
𝑡 , 𝜙〉 = 〈𝑋⊗𝑛𝑡

0
, 𝑓𝑡 〉, for all 𝑡 ≥ 0.

Regarding the one-dimensional sBm, one may select 𝜙 = 𝑝(𝜖, 𝑥 − ·)⊗𝑛 with 𝜖 > 0, where

𝑝(𝑡, 𝑥) :=
1

√
2𝜋𝑡

𝑒−
𝑥2

2𝑡

denotes the heat kernel, and take 𝜖 ↓ 0 to get the moment formula for E(𝑢𝑡 (𝑥)𝑛). However, a significant

challenge arises when attempting to apply this formula. The dual process (𝑛, 𝑓 ) is notably intricate,

entailing a sequence of stopping times with jumps, which seems hard to use for deriving sharp esti-

mates, especially for high dimensions. Up to this point, we have not successfully identified a suitable

approach to apply this duality formula to get a precise two-sided bound. Therefore, we opt to employ

an alternative formula, as outlined in Theorem A.1.

According to the moment formula (27) in the appendix, the 𝑛-th moment of an sBm can be repre-

sented as the summation of a finite sequence of integrals. Thus it suffices to obtain some sharp bounds

for each summand. Fix positive integers 𝑛 > 𝑛′ and (𝛼, 𝛽, 𝜏) ∈ J𝑛,𝑛′ as in (27). One may see that the

corresponding summand is a space-time integral of heat kernels. Each variable, e.g. 𝑧𝑖 , appears at most

three times in the integrand, where expressions like 𝑝(𝑡 − 𝑠𝑖 , 𝑥 − 𝑧𝑖)2 are counted twice. To apply the

semi-group property of heat kernels to calculate the integral, we need to show that the product of three

heat kernels in terms of 𝑧𝑖 is bounded by that of two heat kernels. In fact, for any (𝛼, 𝛽, 𝜏) ∈ J𝑛,𝑛′ with

𝑛 ≥ 3 and 𝑛′ > 0, there will be expression 𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1)2 appearing in the integrand (see (Hu et al,

2023, Section 4) for details). Thus, by using the equality

𝑝(𝑡, 𝑥)2
= (4𝜋𝑡)− 1

2 𝑝(𝑡/2, 𝑥)

and the semi-group property of heat kernels, one can exactly calculate the integral in 𝑧1, which involves

a factor of the form 𝑝( 1
2
(𝑡 − 𝑠1) + 𝑠1, 𝑥 − 𝑧), if 𝛽0 = 0; or 𝑝( 1

2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠 𝑗 ), 𝑥 − 𝑧 𝑗 ) with some 𝑗 ∈

{2, . . . , 𝑛′}, if 𝛽0 = 1. In the former case, we find that 𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2)2 appears in the integrand. Thus,

one can further proceed with the integration in 𝑧2. On the other hand, assuming 𝛽0 = 1, it can be proved

that either 𝑝(𝑡− 𝑠2, 𝑥− 𝑧2)2, the same as the case previously discussed, or 𝑝(𝑡− 𝑠2, 𝑥− 𝑧2)𝑝(𝑠1− 𝑠2, 𝑧1−
𝑧2) appears in the original integrand. Especially, the existence of 𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2)𝑝(𝑠1 − 𝑠2, 𝑧1 − 𝑧2)
implies that 𝑗 = 2 and thus after the integration in 𝑧1, there is the factor

𝑝
(1

2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠2), 𝑥 − 𝑧2

)
𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2),

in the remaining integrand. Thanks to the fact that 1
2
(𝑡 − 𝑠2) ≤ 1

2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠2) ≤ 𝑡 − 𝑠2, we can

formulate the next inequality

𝑝
(1

2
(𝑡 − 𝑠2), 𝑥 − 𝑧2

)
𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2) ≲ 𝑝

(1

2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠2), 𝑥 − 𝑧2

)
𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2)

≲ 𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2)2.
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Throughout the paper, 𝐴 ≲ 𝐵 (and 𝐴 ≳ 𝐵, 𝐴 ∼ 𝐵) means that there are universal constants 𝐶1,𝐶2 ∈
(0,∞) such that 𝐴 ≤ 𝐶1𝐵 (and 𝐴 ≥ 𝐶2𝐵, 𝐶1𝐵 ≤ 𝐴 ≤ 𝐶2𝐵). Notice that

𝑝
(1

2
(𝑡 − 𝑠2), 𝑥 − 𝑧2

)
𝑝(𝑡 − 𝑠2, 𝑥 − 𝑧2) = (3𝜋(𝑡 − 𝑠2))−

1
2 𝑝

(2

3
(𝑡 − 𝑠2), 𝑥 − 𝑧2

)
.

The semi-group property of the heat kernel can be applied again when computing two-sided bounds of

the integral in 𝑧2. Hence, one could expect a desired two-sided bound for E(𝑢𝑡 (𝑥)𝑛) via typical iteration

arguments. The detailed proof is given in Section 2.

As a consequence of Theorem 1.1, we can write the following two propositions of the large time and

the high moment asymptotics for sBm’s. The proofs are trivial, and thus skipped for simplification.

Proposition 1.2. Let 𝑢 = {𝑢𝑡 (𝑥) : (𝑡, 𝑥) ∈ R+×R} be the solution to (1). Then, for every positive integer
𝑛 and 𝑥 ∈ R,

lim
𝑡↑∞

logE
(
𝑢𝑡 (𝑥)𝑛

)

log 𝑡
=

1

2
(𝑛 − 1) − 𝛾.

Proposition 1.3. Let 𝑢 = {𝑢𝑡 (𝑥) : (𝑡, 𝑥) ∈ R+ × R} be the solution to (1). Then, for every (𝑡, 𝑥) ∈
[𝐶𝑥 ,∞) ×R,

lim sup
𝑛↑∞

logE
(
𝑢𝑡 (𝑥)𝑛

)

𝑛 log𝑛
≤ 1. (6)

Moreover, if 𝐶𝑥 = 0, then for all (𝑡, 𝑥) ∈ [1,∞) ×R,

lim
𝑛↑∞

logE
(
𝑢𝑡 (𝑥)𝑛

)

𝑛 log𝑛
= 1; (7)

and if it is further assumed that 𝛾 = 0, then (7) holds for all (𝑡, 𝑥) ∈ R+ ×R.

Without the assumption that 𝐶𝑥 = 0, we only get an upper bound for the high moment asymptotics

(see (6)). This is because as in Theorem 1.1, inequality (4) holds only for 𝑡 > 𝑛𝐶𝑥 . As 𝑛 ↑∞, 𝑛𝐶𝑥 ↑∞
as well. Thus it seems not possible to have a lower bound for the high moment asymptotics for fixed 𝑡

by using Theorem 1.1.

Another application of Theorem 1.1 is to get the following tail estimate of sBm’s.

Proposition 1.4. Let 𝑢 = {𝑢𝑡 (𝑥) : (𝑡, 𝑥) ∈ R+ ×R} be the solution to (1). Fix 𝑥 ∈ R. Then for all 𝑡 ≥ 𝐶𝑥 ,

lim sup
𝑧↑∞

logP(𝑢𝑡 (𝑥) > 𝑧)
𝑧

≤ −𝐶𝑡− 1
2 . (8)

Moreover, suppose 𝐶𝑥 = 0. Then, for all (𝑡, 𝑥) ∈ [1,∞) ×R,

−𝐶1𝑡
− 1

2 ≤ lim inf
𝑧↑∞

logP(𝑢𝑡 (𝑥) > 𝑧)
𝑧

≤ lim sup
𝑧↑∞

logP(𝑢𝑡 (𝑥) > 𝑧)
𝑧

≤ −𝐶2𝑡
− 1

2 ; (9)

and if is further assumed that 𝛾 = 0, then (9) holds for all (𝑡, 𝑥) ∈ R+ × R. Here, 𝐶1, 𝐶2 and 𝐶 are
positive constants independent of 𝑥.
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Proposition 1.5. Let 𝑢 = {𝑢𝑡 (𝑥) : (𝑡, 𝑥) ∈ R+ ×R} be the solution to (1). Fix 𝑥 ∈ R. Then,

−𝐶1 ≤ lim inf
𝑡↑∞

𝑡
1
2
−𝜎 logP

(
𝑢𝑡 (𝑥) > 𝑡𝜎

)
≤ lim sup

𝑡↑∞
𝑡

1
2
−𝜎 logP

(
𝑢𝑡 (𝑥) > 𝑡𝜎

)
≤ −𝐶2, (10)

for any 𝜎 ∈ ( 1
2
, 3

2
), where 𝐶1 and 𝐶2 are positive constants independent of 𝑥. Moreover, if 𝐶𝑥 = 0, then

(10) holds for any 𝜎 > 1
2

.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To this end, several lemmas related to the upper and

lower bounds are proved in Sections 2.1 and 2.2 respectively. Then, we complete the proof of Theorem

1.1 in Section 2.3.

2.1. The upper bound

For fixed (𝛼, 𝛽, 𝜏) ∈ J𝑛,𝑛′ (see in Section A), let

X𝑡 ,𝑥 :=

𝑛∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼𝑖

∫

R𝑛′
𝑑z𝑛′

𝑛′∏

𝑖=1

( ∫

R

𝑝(𝑠𝑖 , 𝑧𝑖 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽𝑖

×
|𝛼 |∏

𝑖=1

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )
2𝑛′∏

𝑖= |𝛼 |+1

𝑝(𝑠 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑧𝜏 (𝑖) ), (11)

for all (𝑡, 𝑥) ∈ R+ × R. In this subsection, we will prove the next lemma for a sharp upper bound for

X𝑡 ,𝑥 .

Lemma 2.1. Let X𝑡 ,𝑥 be given as in (11) with some (𝛼, 𝛽, 𝜏) ∈ J𝑛,𝑛′ with positive integer 𝑛 and non-
negative integer 𝑛′ < 𝑛. Then,

X𝑡 ,𝑥 ≤ (2𝜋)− 𝑛′
2 𝐾𝑛−𝑛

′
2 𝑡−𝛾 (𝑛−𝑛

′ )
𝑛′∏

𝑖=1

(𝑡 − 𝑠𝑖)−
1
2 , (12)

for all (𝑡, 𝑥) ∈ [𝐶𝑥 ,∞) ×R, where 𝐾2 > 0 and 𝐶𝑥 ≥ 0 are the same as in Hypothesis 1 (ii).

Proof. Let 𝑛 be any positive integer, and let 𝑛′ = 0. Then, (𝛼, 𝛽, 𝜏) = (0𝑛, 𝜕, 𝜕), and thus

X𝑡 ,𝑥 =
( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)𝑛
.

Thus, inequality (12) is trivially true under Hypotheses 1. Particularly, it holds for 𝑛 = 1 and all 𝑛′ ∈
{0, . . . , 𝑛 − 1} = {0}. Additionally, if 𝑛 = 2 and 𝑛′ = 1, we have

X𝑡 ,𝑥 =
∫

R

𝑑z1

( ∫

R

𝑝(𝑠1, 𝑧1 − 𝑧)𝑢0 (𝑑𝑧)
)
𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1) =

∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧).

For the same reason, we can easily verify this lemma in such a situation (𝑛 = 2 and 𝑛′ = 1). This allows

us to prove this lemma by mathematical induction in 𝑛.
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Let 𝑛 > 2 and let 𝑛′ ∈ {1, . . . , 𝑛 − 1}. By definition of 𝜏, for any {𝑖1 < 𝑖2} ⊂ {1, . . . , 2𝑛′} such that

𝜏(𝑖1) = 𝜏(𝑖2) = 1, we know that 𝑖2 ≤ |𝛼 |. Therefore, 𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1)2 appears in the integrand of X𝑡 ,𝑥 .

Case 1. Suppose 𝛽1 = 0. Recall that 𝛽𝑛′ = 0. It follows that |𝛽 | ≤ 𝑛′ − 2. On the other hand, we know

that |𝛼 | + |𝛽 | = 2𝑛′ and |𝛼 | ≤ 𝑛. Thus, 𝑛′ ≤ 𝑛 − 2, and we can write,

X𝑡 ,𝑥 =X0
𝑡 ,𝑥X1

𝑡 ,𝑥 ,

where

X0
𝑡 ,𝑥 :=

∫

R2
𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1)2𝑝(𝑠1, 𝑧1 − 𝑧)𝑢0 (𝑑𝑧)𝑑𝑧1,

and

X1
𝑡 ,𝑥 :=

𝑛∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼𝑖

∫

R𝑛′−1
𝑑𝑧2 · · · 𝑑𝑧𝑛′

𝑛′∏

𝑖=2

( ∫

R

𝑝(𝑠𝑖 , 𝑧𝑖 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽𝑖

×
∏

1≤𝑖≤ |𝛼 |
𝑖∉{𝑖1 ,𝑖2 }

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )
2𝑛′∏

𝑖= |𝛼 |+1

𝑝(𝑠 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑧𝜏 (𝑖) ).

Note that

𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1)2
= (4𝜋(𝑡 − 𝑠1))−

1
2 𝑝

(1

2
(𝑡 − 𝑠1), 𝑥 − 𝑧1

)
.

It follows that

X0
𝑡 ,𝑥 =(4𝜋(𝑡 − 𝑠1))−

1
2

∫

R2
𝑝
(1

2
(𝑡 − 𝑠1), 𝑥 − 𝑧1

)
𝑝(𝑠1, 𝑧1 − 𝑧)𝑢0 (𝑑𝑧)𝑑𝑧1

=(4𝜋(𝑡 − 𝑠1))−
1
2

∫

R

𝑝
(1

2
(𝑡 − 𝑠1) + 𝑠1, 𝑥 − 𝑧

)
𝑢0 (𝑑𝑧).

Additionally, using the fact that 1
2
(𝑡 − 𝑠1) + 𝑠1 ≤ 𝑡 − 𝑠1 + 𝑠1 = 𝑡, we can show that

𝑝
(1

2
(𝑡 − 𝑠1) + 𝑠1, 𝑥 − 𝑧

)
≤
√

2𝑝(𝑡, 𝑥 − 𝑧).

Therefore, for all (𝑡, 𝑥) ∈ [𝐶𝑥 ,∞) ×R,

X0
𝑡 ,𝑥 ≤

𝐾2√
2𝜋
𝑡−𝛾 (𝑡 − 𝑠1)−

1
2 . (13)

Let 𝛼′ := (𝛼1, . . . , 𝛼𝑖1−1, 𝛼𝑖1+1, . . . 𝛼𝑖2−1, 𝛼𝑖2+1, . . . , 𝛼𝑛), and let 𝛽′ := (𝛽2, . . . , 𝛽𝑛′ ). Then, it can be

verified that [𝛼′, 𝛽′] ∈ I𝑛−2,𝑛′−1 (cf. Section A). Let 𝜏′ : {1, . . . , 2(𝑛′ − 1)} → {1, . . . , 𝑛′ − 1} be given

by

𝜏′ (𝑖) :=




𝜏(𝑖) − 1, 1 ≤ 𝑖 ≤ 𝑖1 − 1,

𝜏(𝑖 + 1) − 1, 𝑖1 ≤ 𝑖 ≤ 𝑖2 − 2,

𝜏(𝑖 + 2) − 1, 𝑖2 − 1 ≤ 𝑖 ≤ 2(𝑛′ − 1).
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Then, we can also show that 𝜏′ ∈ K𝛼′ ,𝛽′

𝑛−2,𝑛′−1
. Moreover, X1

𝑡 ,𝑥 can be represented as follows,

X1
𝑡 ,𝑥 =

𝑛−2∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼′

𝑖

∫

R𝑛′−1
𝑑𝑧2 · · · 𝑑𝑧𝑛′

𝑛′−1∏

𝑖=1

( ∫

R

𝑝(𝑠𝑖+1, 𝑧𝑖+1 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽′

𝑖

×
|𝛼′ |∏

𝑖=1

𝑝(𝑡 − 𝑠𝜏′ (𝑖)+1, 𝑥 − 𝑧𝜏′ (𝑖)+1)
2(𝑛′−1)∏

𝑖= |𝛼′ |+1

𝑝(𝑠 𝜄𝛽′ (𝑖−|𝛼′ | )+1 − 𝑠𝜏′ (𝑖)+1, 𝑧 𝜄𝛽′ (𝑖−|𝛼′ | )+1 − 𝑧𝜏′ (𝑖)+1).

By using the induction hypothesis, we have

X1
𝑡 ,𝑥 ≤ (2𝜋)− 𝑛′−1

2 𝐾𝑛−𝑛
′−1

2 𝑡−𝛾 (𝑛−𝑛
′−1)

𝑛′∏

𝑖=2

(𝑡 − 𝑠𝑖)−
1
2 , (14)

for all (𝑡, 𝑥) ∈ [𝐶𝑥 ,∞) ×R.

Hence, inequality (12) is a consequence of inequalities (13) and (14), and the proof of this lemma is

complete under the assumption that 𝛽1 = 0.

Case 2. Suppose that 𝛽1 = 1, then there exists 𝑗 ≥ 2 such that 𝜏(|𝛼 | + 1) = 𝑗 . Thus we find the

following expression in the integrand of X𝑡 ,𝑥 ,

𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1)𝑝(𝑡 − 𝑠1, 𝑥 − 𝑧1)𝑝(𝑠1 − 𝑠 𝑗 , 𝑧1 − 𝑧 𝑗 ).

Integrating in 𝑧1 and by a similar argument as in Case 1, we have

X𝑡 ,𝑥 ≤
1

√
2𝜋

(𝑡 − 𝑠1)−
1
2 X2

𝑡 ,𝑥 ,

where

X2
𝑡 ,𝑥 :=

𝑛∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼𝑖

∫

R𝑛′−1
𝑑𝑧2 · · · 𝑑𝑧𝑛′

𝑛′∏

𝑖=2

( ∫

R

𝑝(𝑠𝑖 , 𝑧𝑖 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽𝑖

× 𝑝
(1

2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠 𝑗 ), 𝑥 − 𝑧 𝑗

) ∏

1≤𝑖≤ |𝛼 |
𝑖∉{𝑖1 ,𝑖2 }

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )

×
2𝑛′∏

𝑖= |𝛼 |+2

𝑝(𝑠 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑧𝜏 (𝑖) )

≤
√

2

𝑛∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼𝑖

∫

R𝑛′−1
𝑑𝑧2 · · · 𝑑𝑧𝑛′

𝑛′∏

𝑖=2

( ∫

R

𝑝(𝑠𝑖 , 𝑧𝑖 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽𝑖

× 𝑝(𝑡 − 𝑠 𝑗 , 𝑥 − 𝑧 𝑗 )
∏

1≤𝑖≤ |𝛼 |
𝑖∉{𝑖1 ,𝑖2 }

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )

×
2𝑛′∏

𝑖= |𝛼 |+2

𝑝(𝑠 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑧𝜏 (𝑖) ). (15)
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Let 𝛼′′ := (1, 𝛼1, . . . , 𝛼𝑖1−1, 𝛼𝑖1+1, . . . 𝛼𝑖2−1, 𝛼𝑖2+1, . . . , 𝛼𝑛), and let 𝛽′′ := (𝛽2, . . . , 𝛽𝑛′ ). Then,

[𝛼′′, 𝛽′′] ∈ I𝑛−1,𝑛′−1. Let 𝜏′′ : {1, . . . , 2(𝑛′ − 1)} → {1, . . . , 𝑛′ − 1} be given by

𝜏′′ (𝑖) :=





𝑗 − 1, 𝑖 = 1

𝜏(𝑖 − 1) − 1, 2 ≤ 𝑖 ≤ 𝑖1,
𝜏(𝑖) − 1, 𝑖1 < 𝑖 < 𝑖2,

𝜏(𝑖 + 1) − 1, 𝑖2 ≤ 𝑖 ≤ |𝛼′′ |,
𝜏(𝑖 + 2) − 1, |𝛼′′ | < 𝑖 ≤ 2(𝑛′ − 1).

Then, 𝜏′′ ∈ K𝛼′′ ,𝛽′′

𝑛−1,𝑛′−1
, and we can rewrite (15) as follows

X2
𝑡 ,𝑥 ≤

√
2

𝑛−1∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼′′

𝑖

∫

R𝑛′−1
𝑑𝑧2 · · · 𝑑𝑧𝑛′

𝑛′−1∏

𝑖=1

( ∫

R

𝑝(𝑠𝑖+1, 𝑧𝑖+1 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽′′

𝑖

×
|𝛼′′ |∏

𝑖=1

𝑝(𝑡 − 𝑠𝜏′′ (𝑖)+1, 𝑥 − 𝑧𝜏′ (𝑖)+1)

×
2(𝑛′−1)∏

𝑖= |𝛼′′ |+1

𝑝(𝑠 𝜄𝛽′′ (𝑖−|𝛼′′ | )+1 − 𝑠𝜏′′ (𝑖)+1, 𝑧 𝜄𝛽′′ (𝑖−|𝛼′′ | )+1 − 𝑧𝜏′′ (𝑖)+1).

By induction hypothesis again, we have

X2
𝑡 ,𝑥 ≤

√
2(2𝜋)− 𝑛′−1

2 𝐾𝑛−𝑛
′

2 𝑡−𝛾 (𝑛−𝑛
′−1)

𝑛′∏

𝑖=2

(𝑡 − 𝑠𝑖)−
1
2 ,

for all (𝑡, 𝑥) ∈ [𝐶𝑥 ,∞) ×R. The proof of this lemma is thus complete.

2.2. The lower bound

Recalling moment formula (27), it follows that for all 𝑛 ≥ 2,

E
(
𝑢𝑡 (𝑥)𝑛

)
≥
( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)𝑛

+
∑

(𝛼,𝛽,𝜏 ) ∈J𝑛,𝑛−1

𝑛∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼𝑖

×
∫

T
𝑡
𝑛−1

𝑑s𝑛−1

∫

R𝑛−1
𝑑z𝑛−1

𝑛−1∏

𝑖=1

( ∫

R

𝑝(𝑠𝑖 , 𝑧𝑖 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽𝑖

×
|𝛼 |∏

𝑖=1

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )
2(𝑛−1)∏

𝑖= |𝛼 |+1

𝑝(𝑠 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑧𝜏 (𝑖) ).

In fact, for every (𝛼, 𝛽, 𝜏) ∈ J𝑛,𝑛−1, we know that 𝛼 = 𝛼∗ := 1𝑛 and 𝛽 = 𝛽∗ := (1𝑛−2,0), where 1𝑛
denotes the 𝑛-dimensional vector with unit coordinates. Thus, we can write

E
(
𝑢𝑡 (𝑥)𝑛

)
≥
( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)𝑛
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+
∑

𝜏∈K𝛼∗ ,𝛽∗
𝑛,𝑛−1

∫

T
𝑡
𝑛−1

𝑑s𝑛−1

∫

R𝑛−1
𝑑z𝑛−1

( ∫

R

𝑝(𝑠𝑛−1, 𝑧𝑛−1 − 𝑧)𝑢0 (𝑑𝑧)
)

×
𝑛∏

𝑖=1

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )
2(𝑛−1)∏

𝑖=𝑛+1

𝑝(𝑠 𝜄𝛽 (𝑖−𝑛) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−𝑛) − 𝑧𝜏 (𝑖) ). (16)

Let (𝜃1, . . . , 𝜃𝑛) ∈ (0,1]𝑛. Fix 𝜏 ∈ K𝛼∗ ,𝛽∗
𝑛,𝑛−1

, and let

Y𝑡 ,𝑥 :=

∫

R𝑛−1
𝑑z𝑛−1

( ∫

R

𝑝(𝑠𝑛−1, 𝑧𝑛−1 − 𝑧)𝑢0 (𝑑𝑧)
) 𝑛∏

𝑖=1

𝑝(𝜃𝑖 (𝑡 − 𝑠𝜏 (𝑖) ), 𝑥 − 𝑧𝜏 (𝑖) )

×
2(𝑛−1)∏

𝑖=𝑛+1

𝑝(𝑠 𝜄𝛽 (𝑖−𝑛) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−𝑛) − 𝑧𝜏 (𝑖) ). (17)

The next lemma is the main result of this subsection.

Lemma 2.2. Let Y𝑡 ,𝑥 be defined as in (17). Then,

Y𝑡 ,𝑥 ≥ 𝐾1 (4𝜋)−
𝑛
2 𝑡−𝛾

𝑛−1∏

𝑖=1

(𝑡 − 𝑠𝑖)−
1
2 (18)

for all (𝑡, 𝑥) ∈ [(∑𝑛
𝑖=1 𝜃

−1
𝑖
)𝐶𝑥 ,∞) ×R, where 𝐾1 > 0 and 𝐶𝑥 ≥ 0 are the same as in Hypothesis 1 (ii).

Proof. We prove this lemma following similar ideas as in Lemma 2.1. Firstly, suppose 𝑛 = 2, we have

Y𝑡 ,𝑥 =
∫

R

𝑑z1

( ∫

R

𝑝(𝑠1, 𝑧1 − 𝑧)𝑢0 (𝑑𝑧)
)
𝑝(𝜃1 (𝑡 − 𝑠1), 𝑥 − 𝑧1)

=

∫

R

𝑝(𝜃1 (𝑡 − 𝑠1) + 𝑠1, 𝑥 − 𝑧)𝑢0 (𝑑𝑧).

Then, it is clear that this lemma holds for 𝑛 = 2. In the next step, choose 𝑖1 < 𝑖2 such that 𝜏(𝑖1) = 𝜏(𝑖2) =
1 and choose 𝑗 such that 𝜏(𝑛+1) = 𝑗 . Then, 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛 and 𝑗 ≥ 2, and we can write Y𝑡 ,𝑥 as follows,

Y𝑡 ,𝑥 =
∫

R𝑛−2
𝑑𝑧2 · · · 𝑑𝑧𝑛−1

( ∫

R

𝑝(𝑠𝑛−1, 𝑧𝑛−1 − 𝑧)𝑢0 (𝑑𝑧)
) ∏

1≤𝑖≤𝑛
𝑖∉{𝑖1 ,𝑖2 }

𝑝(𝜃𝑖 (𝑡 − 𝑠𝜏 (𝑖) ), 𝑥 − 𝑧𝜏 (𝑖) )

×
2(𝑛−1)∏

𝑖=𝑛+2

𝑝(𝑠 𝜄𝛽 (𝑖−𝑛) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−𝑛) − 𝑧𝜏 (𝑖) )

×
∫

R

𝑑𝑧1𝑝(𝜃𝑖1 (𝑡 − 𝑠1), 𝑧 − 𝑧1)𝑝(𝜃𝑖2 (𝑡 − 𝑠1), 𝑧 − 𝑧1)𝑝(𝑠1 − 𝑠 𝑗 , 𝑧1 − 𝑧 𝑗 ).

Taking account of the fact that

𝑝(𝑠, 𝑥)𝑝(𝑡, 𝑥) = (2𝜋(𝑠 + 𝑡))− 1
2 𝑝

( 𝑠𝑡

𝑠 + 𝑡 , 𝑥
)
,
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for all 𝑠, 𝑡 ∈ R+ and 𝑥 ∈ R, we can write

𝑝(𝜃𝑖1 (𝑡 − 𝑠1), 𝑧 − 𝑧1)𝑝(𝜃𝑖2 (𝑡 − 𝑠1), 𝑧 − 𝑧1) =
𝑝
(
𝜃𝑖1 𝜃𝑖2
𝜃𝑖1+𝜃𝑖2

(𝑡 − 𝑠1), 𝑧 − 𝑧1

)

(2𝜋(𝜃𝑖1 + 𝜃𝑖2 ) (𝑡 − 𝑠1))
1
2

≥(4𝜋(𝑡 − 𝑠1))−
1
2 𝑝

( 𝜃𝑖1𝜃𝑖2

𝜃𝑖1 + 𝜃𝑖2
(𝑡 − 𝑠1), 𝑧 − 𝑧1

)
.

It follows that

∫

R

𝑑𝑧1𝑝(𝜃𝑖1 (𝑡 − 𝑠1), 𝑧 − 𝑧1)𝑝(𝜃𝑖2 (𝑡 − 𝑠1), 𝑧 − 𝑧1)𝑝(𝑠1 − 𝑠 𝑗 , 𝑧1 − 𝑧 𝑗 )

≥(4𝜋(𝑡 − 𝑠1))−
1
2 𝑝

( 𝜃𝑖1𝜃𝑖2

𝜃𝑖1 + 𝜃𝑖2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠 𝑗 ), 𝑧 − 𝑧 𝑗

)
.

On the other hand, it is clear that

𝜃𝑖1𝜃𝑖2

𝜃𝑖1 + 𝜃𝑖2
(𝑡 − 𝑠 𝑗 ) ≤

𝜃𝑖1𝜃𝑖2

𝜃𝑖1 + 𝜃𝑖2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠 𝑗 ) ≤ 𝑡 − 𝑠 𝑗 .

Thus, letting

𝜃′ :=
[ 𝜃𝑖1𝜃𝑖2

𝜃𝑖1 + 𝜃𝑖2
(𝑡 − 𝑠1) + (𝑠1 − 𝑠 𝑗 )

]
/(𝑡 − 𝑠 𝑗 ),

we have 𝜃′ ∈ [ 𝜃𝑖1 𝜃𝑖2
𝜃𝑖1+𝜃𝑖2

,1] ⊂ (0,1]. Furthermore, we can write,

Y𝑡 ,𝑥 ≥(4𝜋)−
1
2 (𝑡 − 𝑠1)−

1
2

∫

R𝑛−2
𝑑𝑧2 · · · 𝑑𝑧𝑛−1

( ∫

R

𝑝(𝑠𝑛−1, 𝑧𝑛−1 − 𝑧)𝑢0 (𝑑𝑧)
)
𝑝(𝜃′ (𝑡 − 𝑠 𝑗 ), 𝑧 − 𝑧 𝑗 )

×
∏

1≤𝑖≤𝑛
𝑖∉{𝑖1 ,𝑖2 }

𝑝(𝜃𝑖 (𝑡 − 𝑠𝜏 (𝑖) ), 𝑥 − 𝑧𝜏 (𝑖) )
2(𝑛−1)∏

𝑖=𝑛+2

𝑝(𝑠 𝜄𝛽 (𝑖−𝑛) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−𝑛) − 𝑧𝜏 (𝑖) ).

Similarly to Case 2 of the proof of Lemma 2.1, we can find 𝜏′ ∈ K𝛼′
0
,𝛽′

0

𝑛−1,𝑛−2
, where 𝛼′

0
= 1𝑛−1 and

𝛽′
0
= (1𝑛−3,0) such that

Y𝑡 ,𝑥 ≥(4𝜋)−
1
2 (𝑡 − 𝑠1)−

1
2 Y0
𝑡 ,𝑥 ,

with

Y0
𝑡 ,𝑥 =

∫

R𝑛−2
𝑑𝑧2 · · · 𝑑𝑧𝑛−1

( ∫

R

𝑝(𝑠𝑛−1, 𝑧𝑛−1 − 𝑧)𝑢0 (𝑑𝑧)
) 𝑛−1∏

𝑖=1

𝑝(𝜃′′𝑖 (𝑡 − 𝑠𝜏′ (𝑖)+1), 𝑥 − 𝑧𝜏′ (𝑖)+1)

×
2(𝑛−2)∏

𝑖=𝑛

𝑝(𝑠 𝜄𝛽′ (𝑖−𝑛−1)+1 − 𝑠𝜏′ (𝑖)+1, 𝑧 𝜄𝛽′ (𝑖−𝑛−1)+1 − 𝑧𝜏′ (𝑖)+1),
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and

𝜃′′𝑖 =





𝜃′, 𝑖 = 1

𝜃𝑖−1, 2 ≤ 𝑖 ≤ 𝑖1 − 2,

𝜃𝑖 , 𝑖1 − 1 ≤ 𝑖 ≤ 𝑖2 − 1,

𝜃𝑖+1, 𝑖2 ≤ 𝑖 ≤ 𝑛.

Notice that the induction hypothesis implies that

Y0
𝑡 ,𝑥 ≥ 𝐾1 (4𝜋)

𝑛−1
2 𝑡−𝛾

𝑛−1∏

𝑖=2

(𝑡 − 𝑠𝑖)−
1
2 , (19)

for all (𝑡, 𝑥) ∈ [(∑𝑛−1
𝑖=1 (𝜃′′

𝑖
)−1)𝐶𝑥 ,∞) × R. Recalling the construction of {𝜃′′

𝑖
: 𝑖 = 1, . . . , 𝑛 − 1} and the

fact that 𝜃′ ∈ [ 𝜃𝑖1 𝜃𝑖2
𝜃𝑖1+𝜃𝑖2

,1], we have

𝑛−1∑

𝑖=1

(𝜃′′𝑖 )−1
=

∑

1≤𝑖≤𝑛
𝑖∉{𝑖1 ,𝑖2 }

𝜃−1
𝑖 + (𝜃′)−1 ≤

∑

1≤𝑖≤𝑛
𝑖∉{𝑖1 ,𝑖2 }

𝜃−1
𝑖 + (𝜃−1

𝑖1
+ 𝜃−1

𝑖2
) =

𝑛∑

𝑖=1

𝜃−1
𝑖 .

Thus inequality (19) holds for all (𝑡, 𝑥) ∈ [(∑𝑛
𝑖=1 𝜃

−1
𝑖
)𝐶𝑥 ,∞) × R ⊂ [(∑𝑛−1

𝑖=1 (𝜃′′
𝑖
)−1)𝐶𝑥 ,∞) × R, and

inequality (18) is straightforward. The proof of this lemma is complete.

2.3. Completion of the proof of Theorem 1.1

The proof of Theorem 1.1 follows from Lemmas 2.1 and 2.2 and the next lemma of the cardinality of

J𝑛,𝑛′ .

Lemma 2.3 ((Hu et al, 2023, Lemma 4.3)). Let J𝑛,𝑛′ be defined as in (26) with some positive integer
𝑛 and nonnegative integer 𝑛′ ≤ 𝑛 − 1. Then,

|J𝑛,𝑛′ | =
𝑛!(𝑛 − 1)!

2𝑛
′ (𝑛 − 𝑛′)!(𝑛 − 𝑛′ − 1)! ,

where by convention 0! = 1.

Proof of Theorem 1.1. The case 𝑛 = 1 is trivial. Thus we assume that 𝑛 ≥ 2. By Theorem A.1, Lemmas

2.1 and 2.2 with 𝜃1 = · · · = 𝜃𝑛 = 1, we can write

E
(
𝑢𝑡 (𝑥)𝑛

)
≤
𝑛−1∑

𝑛′=0

(2𝜋)− 𝑛′
2 𝐾𝑛−𝑛

′
2 𝑡−𝛾 (𝑛−𝑛

′ ) |J𝑛,𝑛′ | 𝑓𝑛′ (𝑡), (20)

for all (𝑡, 𝑥) ∈ [𝐶𝑥 ,∞) ×R; and

E
(
𝑢𝑡 (𝑥)𝑛

)
≥ 𝐾1 (4𝜋)−

𝑛
2 𝑡−𝛾 |J𝑛,𝑛−1 | 𝑓𝑛−1 (𝑡), (21)
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for all (𝑡, 𝑥) ∈ [𝑛𝐶𝑥 ,∞), where

𝑓𝑛′ (𝑡) :=

∫

T
𝑡
𝑛′
𝑑s𝑛′

𝑛′∏

𝑖=1

(𝑡 − 𝑠𝑖)−
1
2 =

2𝑛
′

Γ(𝑛′) 𝑡
1
2
𝑛′ .

Then, inequalities (3) and (4) follow from (20), (21), Lemma 2.3 and Stirling’s formula. We remark here

that the requirement 𝑡 ≥ 1 in (3) is used to avoid the possible blowup around 0 because of 𝑡−𝛾 (𝑛−𝑛
′ ) in

(20). Additionally, in case 𝐶𝑥 = 0, taking account of inequality (16), we can combine (20) and (21) as

follows

𝐾𝑛1 + 𝐾1 (4𝜋)−
𝑛
2 |J𝑛,𝑛−1 | 𝑓𝑛−1 (𝑡) ≤ E

(
𝑢𝑡 (𝑥)𝑛

)
≤
𝑛−1∑

𝑛′=0

(2𝜋)− 𝑛′
2 𝐾𝑛−𝑛

′
2 |J𝑛,𝑛′ | 𝑓𝑛′ (𝑡),

which is true for all (𝑡, 𝑥) ∈ R+ ×R. This yields inequality (5) for all (𝑡, 𝑥) ∈ [1,∞) ×R. If furthermore,

𝛾 = 0, then 𝑡𝛾 (𝑛−𝑛
′ ) in (20) disappears. As a consequence, (5) is valid for all (𝑡, 𝑥) ∈ R+ ×R. The proof

of this theorem is complete.

3. Proofs of Propositions 1.4 and 1.5

In this section, we will provide the proofs of Propositions 1.4 and 1.5.

Proof of Proposition 1.4. In the first step, we prove inequality (8). Applying inequality (3), with 𝛼 :=

(2𝐾∗√𝑡)−1, we can write for any 𝑥 ∈ R,

E
(
exp(𝛼𝑢𝑡 (𝑥))

)
=

∞∑

𝑛=0

1

𝑛!
𝛼𝑛E

(
𝑢𝑡 (𝑥)𝑛

)
≤ 2𝑡−

1
2
−𝛾 <∞.

Thus by using Markov’s inequality, we get

P(𝑢𝑡 (𝑥) > 𝑧) ≤ 2𝑒−𝛼𝑧𝑡−
1
2
−𝛾 , (22)

and thus

logP(𝑢𝑡 (𝑥) > 𝑧)
𝑧

≤ −𝛼 +
log 2 − ( 1

2
+ 𝛾) log(𝑡)
𝑧

→−𝛼 = −(2𝐾∗√𝑡)−1,

as 𝑧 ↑∞. This proves inequality (8).

In the next step, we will show the next inequality under the assumption that 𝐶𝑥 = 0,

−𝐶1𝑡
− 1

2 ≤ lim inf
𝑧↑∞

logP(|𝑢𝑡 (𝑥) | > 𝑧)
𝑧

. (23)

By using inequality (5) and the Paley-Zygmund inequality (cf. (Khoshnevisan, 2014, Lemma 7.3)), we

can write

P

(
𝑢𝑡 (𝑥) >

1

2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛

)
≥P

(
𝑢𝑡 (𝑥) ≥

1

2
E
(
𝑢𝑡 (𝑥)𝑛

) 1
𝑛

)
≥
(
1 − 1

2𝑛

)2
[
E
(
𝑢𝑡 (𝑥)𝑛

) ]2

E
(
𝑢𝑡 (𝑥)2𝑛

)
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≥
(
1 − 1

2𝑛

)2
𝐾2𝑛
∗ (1 + 𝑛!𝑡

1
2
(𝑛−1) )2

(𝐾∗)2𝑛 (1 + (2𝑛)!𝑡 1
2
(2𝑛−1) )

.

If 𝑡 ≥ 1, then (𝑛!)2𝑡𝑛−1 ≤ (2𝑛)!𝑡 1
2
(2𝑛−1) for all 𝑛 ≥ 1; otherwise if 𝑡 ∈ (0,1), (𝑛!)2𝑡𝑛−1 ≤ (2𝑛)!𝑡 1

2
(2𝑛−1)

still holds for 𝑛 large enough. As a result, we can write

P

(
𝑢𝑡 (𝑥) >

1

2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛

)
≥

9𝐾2𝑛
∗

(
1 + 2𝑛!𝑡

1
2
(𝑛−1) + (𝑛!)2𝑡𝑛−1

)

16(𝐾∗)2𝑛 (1 + (2𝑛)!𝑡 1
2
(2𝑛−1) )

≥ 9𝐾2𝑛
∗ (𝑛!𝑡

1
2
(𝑛−1) )2

16(𝐾∗)2𝑛 (2𝑛)!𝑡 1
2
(2𝑛−1)

,

for 𝑛 large enough. Taking account of Stirling’s formula, we find that

(𝑛!)2

(2𝑛)! ≥ 2𝜋𝑛(𝑛/𝑒)2𝑛𝑒
2

12𝑛+1

√
4𝜋𝑛(2𝑛/𝑒)2𝑛𝑒

1
24𝑛

=
√
𝜋𝑛2−2𝑛𝑒

36𝑛−1
24𝑛(12𝑛+1) ≥ 2−2𝑛,

for all 𝑛 ≥ 1. It follows that

P

(
𝑢𝑡 (𝑥) ≥

1

2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛

)
≥
( 𝐾∗
2𝐾∗

)2𝑛

𝑡−
1
2 . (24)

Let 𝑧 = 𝑧(𝑛) := 1
2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛 . Then,

logP(𝑢𝑡 (𝑥) > 𝑧)
𝑧

≥
logP

(
𝑢𝑡 (𝑥) ≥ 1

2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛

)

𝑧
≥

4𝑛 log
(
𝐾∗

2𝐾∗

)
− log 𝑡

𝐾∗ (𝑛!) 1
𝑛 𝑡

𝑛−1
2𝑛

.

Notice that 0 < 𝐾∗ ≤ 𝐾∗ < 2𝐾∗, and by Stirling’s formula, (𝑛!) 1
𝑛 ≥ (2𝜋𝑛) 1

2𝑛 𝑒
1

𝑛(12𝑛+1) × 𝑛
𝑒
≥ 𝑛
𝑒

. Thus we

can further deduce that

logP(𝑢𝑡 (𝑥) > 𝑧)
𝑧

≥ −
(

4𝑒 log
(

2𝐾∗
𝐾∗

)

𝐾∗
𝑡

1
2
− 1

2𝑛 + 𝑒 log 𝑡

𝐾∗𝑛𝑡
𝑛−1
2𝑛

)
,

for 𝑛 large enough. Let 𝑛 ↑∞ (and thus 𝑧 ↑∞), we get inequality (23) with 𝐶1 = 4𝑒 log(2𝐾∗/𝐾∗)/𝐾∗ >
0. This proves inequality (9) for all (𝑡, 𝑥) ∈ [1,∞) ×R. Note that the above arguments do not require 𝑡 ≥
1 once inequality (5) is satisfied. Therefore, assuming 𝛾 = 0, inequality (9) holds for all (𝑡, 𝑥) ∈ R+ ×R.

The proof of this theorem is complete.

In the proof of inequality (23), lower bounds for moments of sBm’s of all orders are used. This

prevents us from deploying the same method to get a lower bound as in (9) without assuming 𝐶𝑥 = 0.

However, if replacing 𝑧 in (9) by 𝑡𝜎 with some 𝜎 > 1
2
, we can deduce the next theorem (cf. Iscoe and

Lee (1993), Lee and Remillard (1995) for related results).

Proof of Proposition 1.5. Let 𝜎 > 0. Replacing 𝑧 by 𝑡𝜎 in (22), and using the fact that 2𝑒−𝛼𝑧𝑡−
1
2
−𝛾

is decreasing in 𝑡, we can deduce the upper bound in (10). Next, we will show the lower bound in (10).

Assume 𝜎 > 1
2
. For any 𝑡, let

𝑛 = 𝑛(𝑡) :=

⌊
8𝑒𝑡𝜎− 1

2

𝐾∗

⌋
. (25)
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Then, lim𝑡↑∞ 𝑛(𝑡) =∞ and

lim
𝑡↑∞

𝑡−
1

2𝑛 = lim
𝑡↑∞

𝑡−𝐾∗/(16𝑒𝑡
𝜎− 1

2 )
= 1.

Thus, for all 𝑡 large enough, 𝑛 ≥ 2 and 𝑡−
1

2𝑛 ≥ 1
2
. Using the fact that (𝑛!) 1

𝑛 ≥ 𝑛
𝑒

, we can write

1

2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛 ≥ 𝐾∗𝑛

4𝑒
𝑡

1
2 ≥ 𝐾∗

4𝑒

(
8𝑒𝑡𝜎− 1

2

𝐾∗
− 1

)
𝑡

1
2 ≥ 𝑡𝜎 .

In case 𝐶𝑥 = 0, it follows from inequality (24),

P(𝑢𝑡 (𝑥) > 𝑡𝜎) ≥ P

(
𝑢𝑡 (𝑥) >

1

2
𝐾∗ (𝑛!) 1

𝑛 𝑡
𝑛−1
2𝑛

)
≥
( 𝐾∗
2𝐾∗

)2𝑛

𝑡−
1
2 ,

and thus

𝑡
1
2
−𝜎 logP(𝑢𝑡 (𝑥) > 𝑡𝜎) ≥ −𝑡 1

2
−𝜎

(
2

⌊
8𝑒𝑡𝜎− 1

2

𝐾∗

⌋
log

(2𝐾∗

𝐾∗

)
+ 1

2
log(𝑡)

)
.

This proves the lower bound in (10) with 𝐶1 = 16𝑒𝐾−1
∗ log(2𝐾∗/𝐾∗) > 0 for all 𝜎 > 1

2
. On the other

hand, without assuming 𝐶𝑥 = 0, to apply inequality (24), one needs 𝑡 ≥ 𝑛𝐶𝑥 (see Theorem 1.1). This

requirement is fulfilled if 1
2
< 𝜎 < 3

2
, as (25) implies that 𝑡 and 𝑛, to which we aim to apply (24), satisfy

𝑡 ≥ 𝐾∗
8𝑒
𝑛

1
𝜎−1/2 ≥ 𝑛,

for 𝑡 and thus 𝑛 large enough. The proof of Proposition 1.5 is complete.

Appendix A: A moment formula for sBm’s

In this section, we provide a moment formula, cited from (Hu et al, 2023, Theorem 4.1), for sBm’s. Let

𝑛 be any positive integer, and let 𝑛′ < 𝑛 be any nonnegative integer. We denote by I𝑛,𝑛′ the collection

of multi-indexes [𝛼, 𝛽] = [(𝛼1, . . . , 𝛼𝑛), (𝛽1, . . . , 𝛽𝑛′ )] ∈ {0,1}𝑛+𝑛′ satisfying

(i) 𝛽𝑛′ = 0.

(ii) Let |𝛼 | =∑𝑛
𝑖=1 𝛼𝑖 and let |𝛽 | =∑𝑛′

𝑖=1 𝛽𝑖 . Then |𝛼 | + |𝛽 | = 2𝑛′.

In particular, if 𝑛′ = 0, then 𝛼 = 0𝑛 is the 0-vector in R
𝑛 and 𝛽 should be a “0-dimensional” vector.

In this case we write [𝛼, 𝛽] = [0𝑛, 𝜕]. Fix [𝛼, 𝛽] ∈ I𝑛,𝑛′ . We introduce a map 𝜄𝛼 : {1, . . . , |𝛼 |} →
{1, . . . , 𝑛} by

𝜄𝛼 (𝑖) = 𝑗𝑖 ,
where the index 𝑗𝑖 is such that 𝛼 𝑗𝑖 is the 𝑖-th nonzero coordinate of 𝛼 for all 𝑖 = 1, . . . , |𝛼 |. The map

𝜄𝛽 : {1, . . . , |𝛽 |} → {1, . . . , 𝑛′} is defined in a similar way.

Given [𝛼, 𝛽] ∈ I𝑛,𝑛′ , let K𝛼,𝛽

𝑛,𝑛′ be the collection of maps 𝜏 : {1, . . . , |𝛼 | + |𝛽 | = 2𝑛′} → {1, . . . , 𝑛′}
satisfying the following properties,

(i) For any 𝑘 ∈ {1, . . . , 𝑛′}, there exist 1 ≤ 𝑖1 < 𝑖2 ≤ 2𝑛′ such that 𝜏(𝑖1) = 𝜏(𝑖2) = 𝑘 .

(ii) For all 𝑖 ∈ {|𝛼 | + 1, . . . , 2𝑛′}, 𝜏(𝑖) > 𝜄𝛽 (𝑖 − |𝛼 |).
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If 𝑛′ = 0, we denote 𝜏 = 𝜕. Finally, we write

J𝑛,𝑛′ = {(𝛼, 𝛽, 𝜏) : [𝛼, 𝛽] ∈ I𝑛,𝑛′ , 𝜏 ∈ K𝛼,𝛽

𝑛,𝑛′ }. (26)

Especially, J𝑛,0 = {(0𝑛, 𝜕, 𝜕)}.

Theorem A.1. Suppose that 𝑢0 ∈ M𝐹 (R). Let 𝑛 be a positive integer. Then, for any (𝑡, 𝑥) ∈ R+ × R,
the following identity holds,

E
(
𝑢𝑡 (𝑥)𝑛

)
=

𝑛−1∑

𝑛′=0

∑

(𝛼,𝛽,𝜏 ) ∈J𝑛,𝑛′

𝑛∏

𝑖=1

( ∫

R

𝑝(𝑡, 𝑥 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛼𝑖

×
∫

T
𝑡
𝑛′
𝑑s𝑛′

∫

R𝑛′
𝑑z𝑛′

𝑛′∏

𝑖=1

( ∫

R

𝑝(𝑠𝑖 , 𝑧𝑖 − 𝑧)𝑢0 (𝑑𝑧)
)1−𝛽𝑖 |𝛼 |∏

𝑖=1

𝑝(𝑡 − 𝑠𝜏 (𝑖) , 𝑥 − 𝑧𝜏 (𝑖) )

×
2𝑛′∏

𝑖= |𝛼 |+1

𝑝(𝑠 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑠𝜏 (𝑖) , 𝑧 𝜄𝛽 (𝑖−|𝛼 | ) − 𝑧𝜏 (𝑖) ), (27)

where the set J𝑛,𝑛′ of triples (𝛼, 𝛽, 𝜏) is defined as (26),

T
𝑡
𝑛′ =

{
s𝑛′ = (𝑠1, . . . , 𝑠𝑛′ ) ∈ [0, 𝑡]𝑛′ : 0 < 𝑠𝑛′ < 𝑠𝑛′−1 < · · · < 𝑠1 < 𝑡

}
.

Remark A.2. Theorem A.1 also holds for cases when 𝑢0 ∈ 𝐶𝑏 (R). In fact, if one examines the proof of

(Hu et al, 2023, Theorem 4.1), the initial condition does not matter, as long as the integrals appearing

in the formula are all finite.

Funding

Y. Hu is supported by an NSERC Discovery grant and a centennial fund from University of Alberta.

X. Wang is supported by a research fund from Johns Hopkins University. P. Xia is supported by NSF

grant DMS-2246850. J. Zheng is supported by NSFC grant 11901598 and Guangdong Characteristic

Innovation Project No.2023KTSCX163.

References

Bertini, L. and Cancrini, N. (1995). The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat.
Phys. 78 1377–1401.

Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math.
Phys. 183 571–607.

Carmona, R. A. and Molchanov, S. A. (1994). Parabolic Anderson problem and intermittency. Mem. Amer. Math.
Soc. 108 viii+125.

Chen, X. (2015). Precise intermittency for the parabolic Anderson equation with an (1+1)-dimensional time-space

white noise. Ann. Inst. Henri Poincaré Probab. Stat. 51 1486–1499.

Chen, L. and Dalang, R. C. (2015). Moments and growth indices for the nonlinear stochastic heat equation with

rough initial conditions. Ann. Probab. 43 3006–3051.

Chen, L., Guo, Y., and Song, J. (2024+). Moments and asymptotics for a class of SPDEs with space-time white

noise. To appear in Trans. Amer. Math. Soc.



Moment asymptotics for sBm’s 17

Chen, L., Xia, P. (2023). Asymptotic properties of stochastic partial differential equations in the sublinear regime.

arXiv preprint arXiv:2306.06761.

Conus, D., Joseph, M. and Khoshnevisan, D. (2013). On the chaotic character of the stochastic heat equation,

before the onset of intermitttency. Ann. Probab. 41 2225–2260.

Conus, D. and Khoshnevisan, D. (2012). On the existence and position of the farthest peaks of a family of stochastic

heat and wave equations. Probab. Theory Related Fields 152 681–701.

Das, S. and Tsai, L. (2021). Fractional moments of the stochastic heat equation. Ann. Inst. Henri Poincaré Probab.
Stat. 57 778–799.

Dawson, D. A. (1993). Measure-valued Markov processes. In École d’Été de Probabilités de Saint-Flour XXI—
1991, vol. 1541 of Lecture notes in Mathematics, pp. 1–260. Berlin, Heidelberg: Springer-Verlag.

Dawson, D. A. and Kurtz, T. G. (1982) Applications of duality to measure-valued diffusion processes. In Advances
in filtering and optimal stochastic control (Cocoyoc, 1982), vol. 42 of Lect. Notes Control Inf. Sci., pp. 91–105.

Springer, Berlin.

Dynkin. E. B. (2002). Diffusions, superdiffusions and partial differential equations. Providence: American Math-

ematical Soc.

Dynkin. E. B. (2004). Superdiffusions and positive solutions of nonlinear partial differential equations. Provi-

dence: American Mathematical Soc.

Etheridge, A., P. (2000). An introduction to superprocesses. Providence: American Mathematical Soc.

Mohammud F. and Davar K. (2009) Intermittence and nonlinear parabolic stochastic partial differential equations.

Electron. J. Probab. 14 548–568.

Hairer, M. (2013) Solving the KPZ equation. Ann. Math. 178 559–664.

Hu, Y., Kouritzin, M. A., Xia, P., and Zheng, J. (2023) On mean-field super Brownian motions. Ann. Appl. Probab.
33 3872–3915.

Hu, Y., Nualart, D. and Xia, P. (2019) Hölder continuity of the solutions to a class of SPDE’s arising from branching

particle systems in a random environment. Electron. J. Probab. 24 Paper No. 105, 52.

Hu, Y., and Wang, X. (2024). Matching upper and lower moment bounds for a large class of stochastic PDEs driven

by general space-time Gaussian noises. Stoch. Partial Differ. Equ. Anal. Comput. 12 1-52.

Iscoe, I. and Lee, T.-Y. (1993). Large deviations for occupation times of measure-valued branching Brownian

motions. Stochastic Stochastic Rep. 45 177–209.

Kardar, M., Parisi, G. and Zhang, Y.-C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889–

892.

Khoshnevisan, D. (2014). Analysis of stochastic partial differential equations. vol. 119 of CBMS Regional Confer-
ence Series in Mathematics. Providence: American Mathematical Soc.

Khoshnevisan, D., Kim, K. and Xiao, Y. (2017). Intermittency and multifractality: A case study via parabolic

stochastic PDEs. Ann. Probab. 45 3697–3751.

Khoshnevisan, D., Kim, K. and Xiao, Y. (2018). A macroscopic multifractal analysis of parabolic stochastic PDEs.

Comm. Math. Phys. 360 307–346.

Konno, N., and Shiga, T. (1988). Stochastic partial differential equations for some measure-valued diffusions.

Probab. Theory Related Fields 79 201–225.

Lee, T.-Y. and Remillard, B. (1995). Large deviations for the three-dimensional super-Brownian motion. Ann.
Probab. 23 1755–1771.

Li, Z., and Pu, F. (2023). Gaussian fluctuation for spatial average of super-Brownian motion. Stoch. Anal. Appl. 41

752–769.

Mueller, C. (2009). Some Tools and Results for Parabolic Stochastic Partial Dierential Equations. In A minicourse
on stochastic partial differential equations, vol. 1962 of Lecture notes in Mathematics, pp. 111–144. Berlin:

Springer-Verlag.

Perkins, E. (2002). Dawson-Watanabe superprocesses and measure-valued diffusions. pp. 125–329. In Lectures
on probability theory and statistics. vol. 1781 of Lecture notes in Mathematics. Berlin: Springer.

Wang, H. (1998). A class of measure-valued branching diffusions in a random medium. Stoch. Anal. Appl. 16

753–786.


	Introduction
	Proof of Theorem 1.1
	The upper bound
	The lower bound
	Completion of the proof of Theorem 1.1

	Proofs of Propositions 1.4 and 1.5
	A moment formula for sBm's
	Funding
	References

