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Abstract

Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory
(Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys.
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To prepare for this data deluge, we developed the PhotometricLSST Astronomical Time-series Classification
Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-
like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000
teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018
September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants
produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and
ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer
perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a
major improvement over the current state of the art within astronomy. This paper summarizes the most promising
methods and evaluates their results in detail, highlighting future directions both for classifier development and
simulation needs for a next-generation PLAsTiCC data set.

Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Observational cosmology (1146); Transient
detection (1957); Astronomy software (1855)

1. Introduction

The Legacy Survey of Space and Time (LSST; LSST
Science Collaboration et al. 2009) of the Vera C. Rubin
Observatory will be a survey of the full sky observable from its
location in the deserts of northern Chile, with a combination of
survey area and depth that is unprecedented. Rubin will make a
complete map of the sky every few days. This repeated
scanning of the sky will be used to generate difference images
formed by subtracting that map from a reference template,
leading to millions of “alerts” every night for objects (or
detected sources) changing flux. The repeated scanning will
also build up light curves (a time series of measured light
observed in various filters) for the transients and variable stars
(Ivezić et al. 2019), whose brightness changes with time.

This large and heterogeneous data set consisting of signals
from different types of astronomical objects will need to be
classified into different categories or types of transients and
variables from the photometric light-curve data. Only a small
fraction of objects will be followed up spectroscopically to
confirm their types. The need for accurate photometric
classification of light curves is therefore a longstanding goal
in transient astrophysics. Classification challenges have often
been designed with a focus on correctly identifying one class
from a given data set.

Previous community efforts to simulate future surveys
included the Supernova Photometric Classification Challenge
(SNPCC; Kessler et al. 2010), which galvanized the astronomy
community to develop classification methods for three classes
of supernovae given a smaller spectroscopic training set. The
SNPCC performance metric had a strong emphasis on returning
a sample that was both pure (one which had a small number of
false positive classifications) and complete (one which had a
large fraction of true positive classifications), and its perfor-
mance metric balanced those criteria. Classification challenges
must often balance competing goals, with the balance between
the two axes often depending on spectroscopic resource
efficiency and the brightness limit of any survey, known as
the photometric depth. While individual science groups have
historically focused on their specific science needs and
generated individualized simulations, any classification algo-
rithm that will be run on real and heterogeneous data from
LSST will need to be robust to that heterogeneity.

The motivations behind PLAsTiCC were somewhat different
than those of groups focused on one scientific question. Given
the heterogeneous types of objects that we expect LSST will
provide, and the range of science questions we will want to
answer with these data, the PLAsTiCC team instead asked the

question: Can you classify a broad range of objects with a good
overall/average classification of each type, and identify new
objects that are not included in the training set? The PLAsTiCC
challenge was presented to the broader public through the
Kaggle47 platform, a popular site for data challenges and
machine-learning competitions. While the participants in
PLAsTiCC submitted classification methods that were often a
combination of different strategies, their metric performance
was not tuned to any given type and allowed for the
comparison of classifiers in cases of degeneracies between
classes that had not been explored before.
The paper is organized as follows: In Section 2, we present a

general PLAsTiCC overview including data simulation,
validation, metric, and information about the competition.
Section 3 details the top three submissions and more general
aspects of the methods used in the top classifiers. We study
alternative methods of exploring the performance of the
classifiers in Section 4, and summarize the challenges presented
by the data in Section 5. We conclude with key insights from
this challenge in Section 6. The authors of the top 10
PLAsTiCC submissions (top 12 submissions overall) are
included in the author list of this paper to recognize their
contribution to the challenge and the community through their
shared solutions.

2. Overview of PLAsTiCC

2.1. Data Simulation

The PLAsTiCC data were simulated to mimic 3 yr of an
LSST-type survey (which is slated to run for a decade) using
the SuperNova ANAlysis package (SNANA; Kessler et al.
2009). In 2017 May, an initial call was put out to the astronomy
community to develop models of extragalactic transients,
Galactic variables, and novel astronomical transients. In
response to the call, 18 different models were generated
according to estimated rates and distributions on the sky. The
models included:

1. Extragalactic models including exploding supernovae
(SNe), which have large variations in peak brightness,
kilonova (KN) models, which are the electromagnetic
output from two colliding neutron stars, the emission
from the tidal disruption events (TDE) of stars due to the
supermassive black hole at the center of a galaxy, and
emission from gas falling onto the black hole creating an

47 The PLAsTiCC challenge is found at https://www.kaggle.com/c/
PLAsTiCC-2018.
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active galactic nucleus (AGN). The supernova models
represent a wide variety of scenarios, from the explosion
of stars at the end of their lives (SN II, SN Ibc), exploding
white dwarf progenitors (the SN Ia models including SN
Ia, SN Ia-91bg and SN Iax), and the superluminous
supernovae (SLSN).

2. Galactic models, which include variable stars (Mira
variables, RR Lyrae, and eclipsing binaries (EB)), and
nonrecurring models such as the single microlensing
events (μlens-Single) and the M-dwarf flares.

3. “Novel” objects: pair-instability supernovae (PISN),
calcium-rich transients (CaRTs), intermediate luminosity
optical transients (ILOTs), and binary microlensing
events (μlens-Binary). These objects do not appear in
large numbers in the simulation, and so may represent a
challenge to detection/classification algorithms.

The simulation generated 100 million sources, and a subset of
3.5 million were predicted to be detected by Rubin, and thus
useful for classification and analysis. These data were provided
to participants in PLAsTiCC as 3.5 million light curves in the
ugrizY filters containing over 453 million observations. These
data formed the “test” sample that PLAsTiCC participants were
asked to classify. The training set consisted of 8000 objects
constructed as a mock spectroscopic subset of the full data,
meant to mimic the available data from current and near-term
spectroscopic surveys that will be available at the start of Rubin
science operations. A small subset of triggered events were
flagged as spectroscopically identified and used for the training
set. We modeled the spectroscopic training set on a 4-meter
Multi-Object Spectrograph Telescope (4MOST; de Jong et al.
2019) which is a 2400-fiber spectroscopic instrument under
construction for the development of the Visible and Infrared
Survey Telescope for Astronomy. 4MOST will run a “Time
Domain Spectroscopic Survey” (Swann et al. 2019). The
training set is designed to be small, representing only 0.2% of
the test set, and is biased toward brighter events leading to a
nonrepresentative subsample of the full test set. The mock
spectroscopic selection function is described in more detail in
Section 6.4 of Kessler et al. (2019a). The differences in
numbers and representation between the training and test data
sets can be seen in Figure 1.

The PLAsTiCC data were simulated to mimic future Rubin
observations in both the deep-drilling fields (DDFs), which are
small patches of the sky that will be sampled often to achieve
enhanced depth, and a Wide–Fast–Deep (WFD) survey that
covers a larger part of the sky (at ; 18,000 square degrees it is
almost 400 times the DDF area) that will be observed less
frequently. Compared to DDFs, WFD will include many more
objects but have lower signal-to-noise ratios. While the
PLAsTiCC simulation was performed for one particular survey
configuration that is not optimal for transients, classification
performance can be used to evaluate survey design for
theLSST. We leave this to future work. The extragalactic
models were simulated from the PLAsTiCC models as described
in Kessler et al. (2019a, see Figure 13 for the full simulation
procedure) and Kessler et al. (2019b), by generating a spectral
energy distribution (SED) at each epoch for the source,
simulating a cosmological distance and peculiar velocity for
the source, computing the lensing seen by that source,
redshifting the SED, and accounting for Galactic extinction.
Each extragalactic object was simulated with a unique redshift,
host galaxy extinction, R.A. and decl., and cadence. The SED is
integrated in each filter to produce a light curve for the object.
The Galactic models are instead defined by a 4 yr time sequence
of true magnitudes in the ugrizY filter bands, which are then
sampled to form a light curve. The rates for the different objects
were supplied by the modelers. For the Galactic models, these
rates included a dependence on Galactic coordinates, while the
extragalactic rates were assumed to be isotropic. Galactic and
AGN models were simulated with the unique initial phase,
reference-image flux, R.A., and decl. and cadence.
Once the “pure” source model was obtained, it was combined

with a noise model specific to the observational conditions of the
Rubin Observatory (Biswas et al. 2020), including the cadence
information, zero-points, sky noise, and point-spread function (PSF;
Kessler et al. 2009). The objects have to be “detected” in order to be
included in PLAsTiCC. We required that each source be detected
twice at roughly 5σ in the difference image between two nights, so
sources must be bright and vary in brightness to be valid PLAsTiCC
objects. For detected events, a training subset was tagged as
spectroscopically identified, and another subset was tagged as
having a spectroscopically measured redshift of the host galaxy.

Figure 1. Relative numbers of objects of each class between the training (left) and test (right) data of PLAsTiCC. The size of the boxes is proportional to the relative
numbers in each set and the absolute numbers are in parentheses. The simulated ;8000 objects in the training set were distributed across the data classes in a different
ratio compared to the test data of over 3.5 million objects.
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Rubin may well discover new transients that are not captured
by current models, and it may be sensitive to theorized objects
that have not yet been observed due to the limitations of current
surveys. Thus, the training data will not be fully representative
of the larger test data that will probe fainter depths and larger
redshifts than the training data. To capture this nonrepresenta-
tivity, four of the models simulated in the PLAsTiCC test data,
namely the PISN, CaRTs, ILOT, and μlens-Binary were not
provided in the training set (see Kessler et al. 2019a, for
individual model references).

As part of the challenge, participants were asked to classify
objects in the test set into a different class of previously
unknown objects described also as the “Other” class.
Participants were not given any information about the “Other”
class or the composite nature of this class, which is discussed in
more detail in Section 3. The simulation procedure and the
models involved are discussed in extensive detail in Kessler
et al. (2019a). The models are provided for use by the
community (PLAsTiCC-Modelers 2019).

2.2. Data Validation

One of the most critical parts of developing PLAsTiCC was
validating the data, to ensure that all light curves had been
simulated without irregularities or too large/small errors, and
that unphysical correlations (e.g., catalog ID number versus
decl.) were not present. In addition, we validated the physical
models that were input to the simulations. We also validated
and improved the SNANA simulation code. We list the
validations performed on the simulations below.

Unphysical artifacts. When processing light curves and
metadata (additional information on the objects including their
sky position, redshift, etc.) in order to classify objects,
unphysical artifacts or missing light-curve data can lead to
leakage. As one example, modelers typically provided SED
information starting at 1000Å or 2000Å, which will cause the
u band (with a central wavelength around 3000Å) to drop out
at extreme redshift (z; 3). To avoid UV dropouts in the
simulation, we extrapolated the UV flux to 500Å to ensure that
all u-band observations were included (Kessler et al. 2019a). If
left unchecked, classifiers might use this zero flux as a feature;
however, this is unphysical and should be ignored. If we were
unable to debug or account for an artifact, the affected data
were removed.

Distribution tests. The PLAsTiCC data were simulated from
model objects at a given rate and from SEDs that were
redshifted, and then “observed” in the LSST bands with
suitable noise properties and observing conditions. The first
step in the validation procedure was to perform tests of the
distribution properties of the objects to ensure that they
matched those of known objects for models based on
observations or expected distributions for theoretically pro-
posed models. We performed checks of the distributions of the
maximum and minimum flux for the objects, their redshift
distribution, and rates. These tests caught a host of minor issues
in reported rates; in many cases the model assumptions were
revised for inclusion in the final suite of models. The real data
from Rubin will not be validated in exactly the same way given
that much of the initial classification will proceed from the alert
stream directly; however, quality cuts on the data will ensure
data quality for any light curves used for a specific scientific
question.

Light-curve tests. Once the average properties of the
population were inspected, individual light curves were plotted
from the simulated populations. These tests were particularly
relevant for models derived from objects that had previously
been observed (rather than objects simulated from purely
theoretical models). The light curves were compared to
databases of known examples to diagnose model inconsisten-
cies and shape discontinuities. This validation process led to
decisions on how the PLAsTiCC simulation would handle
saturation in the LSST bands for objects brighter than 16th
magnitude. However, we did not want to introduce saturation
issues in the challenge, and instead simulated a saturation level
at 12th mag, or 4 mag brighter than nominal. The small number
of saturated observations that remained were removed.
Prior to generating the PLAsTiCC sample, we simulated

“perfect” examples of each model type at a high cadence and
with no noise. These perfect light curves were compared with
the input observations used to generate the model, and then
with the results of small runs of the simulations in both the
DDFs (which would probe higher redshift with higher signal-
to-noise) and the WFD, to test the rates of objects more
completely and whether or not there were objects that would
not be detected given the cadence and brightness specifications
of the survey. Perfect simulations were used to validate the
models while the WFD and DDF light curves were used to
validate the realistic simulations.
Specialized model tests. Depending on the type of transient

or variable, specialized tests on object properties were carried
out for individual models. For example the period–luminosity
relationship was tested for variable objects like the RR Lyrae.
These tests were typically performed with input from the model
proposers directly, to ensure that the expected model relation-
ships remained intact in the PLAsTiCC simulations.
Checks on metadata. Once the models were verified for

correctness, the additional data about the objects, or metadata
(the redshifts, sky position, Galactic coordinates, extinction)
were analyzed to ensure that the data are simultaneously useful
and exhaustive without rendering the challenge trivial. This
involved iterating on the form and description of the metadata,
knowing that the user interface/workbook provided to initiate
the challenge would be the place where many participants got
their information. The metadata were also checked for
consistency by, for example, plotting R.A. and decl. per target.
Correlations between object variables. Related to checks of

the metadata, we tested for spurious or obvious correlations
between object metadata and classification type. A trivial
example would be to ensure that the object ID was in fact
randomly generated not only within a particular type but across
various types. If the objects are simulated in order then there
would be a type–ID correlation which would render the
classification challenge trivial. Some astrophysical correlations
do exist, for example the nature of the objects (Galactic versus
extragalactic) is correlated with the redshift. A plot of the
correlation between training set metadata parameters is shown
in Figure 2, where the simulated WFD sample has been split
into Galactic and extragalactic objects. There are correlations in
the metadata, but they are expected. For example, the redshift is
correlated with the redshift error and the target is associated
with the dust reddening of the Milky Way (Galactic objects will
have more dust than extragalactic). We also do not see
unphysical correlations such as with object ID or row ID.
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Simple classification of objects. An additional test of the
robustness of the training set was to train a “simple” random
forest classification algorithm (Ho 1995; Narayan et al. 2018)
on the PLAsTiCC data to ensure that the problem was not
trivially solvable, and also provided a rough benchmark for
comparing results throughout the challenge. The 11 extracted
features per passband are described in Table 2 of Narayan et al.
(2018), and included the autocorrelation length, the kurtosis
and skewness of the magnitude distribution. The classifier was
run on the DDFs and the WFD separately during the validation
phase and as such was not run on the complete data set after
production. Given that some rare objects such as the kilonovae
were not found in the DDFs, a direct comparison of the
performance of the simple classifier to the competition entries
is less straightforward; however, the simple classifier was
merely testing for obvious problems in the simulated sample. In
addition, the simple classifier was not run on the “Other” class
objects, as testing anomaly detection was not part of the
validation process. This classification testing (and the other
model validation) was only performed by members of the
PLAsTiCC team who had agreed not to submit an entry to the
challenge, and not to help challenge participants. Each model
type was validated by a subset of the PLAsTiCC development
team and was revalidated for each new version of the
simulated data.

2.3. The PLAsTiCC Metric

The choice of metric for PLAsTiCC was motivated by two
main drivers: the importance of classification uncertainties and
the lack of a single, unifying science goal. Unlike its
predecessor, the SNPCC, which was motivated by SNe Ia
cosmology, PLAsTiCC was motivated by dozens of science
drivers from Galactic population statistics to gravitational wave
electromagnetic counterparts. The metric was designed to be
sufficiently generic so that it would disfavor classifiers that
neglected any classes, especially those that are rare in the
Universe.

Because the data from Rubin is anticipated to be inherently
noisy, the PLAsTiCC metric did not reduce the classification
posteriors to deterministic class estimates, thereby including
classification uncertainty. In contrast to traditional classification

tasks that request a single estimated class mnˆ for each classified
object n, PLAsTiCC required participants to submit tables of
classification posterior probabilities 0� p(m|dn)� 1 where
object n= 1,..., N belongs to class m= 1,..., M, given the
light-curve data dn. The PLAsTiCC metric was a weighted log-
loss

L w p m dln , 1
m

M

m
n

N

n m n
1 1

,

m

[ ( ∣ )] ( )å å tº -
= =

where ⎧⎨⎩ m m
m m

0
1

2n m
n

n
, ( )t º

¹
=

is an indicator variable for the true class. This particular metric
strongly disfavors assigning very low probabilities to the classes
that the classifier thinks are not the correct ones, implying that
very low entropy classifications (i.e., with lots of zeros/small
values in the vector of class probabilities) are disfavored.

Figure 2. Correlation tests for the simulated WFD PLAsTiCC data. We used this test to detect any spurious correlations between object ID and the type and other
properties provided to the contestants. We disambiguate Galactic and extragalactic sources and consider the WFD and DDF data separately as there are physical
correlations that are introduced when aggregating these groups, e.g., all Galactic variables will have a host redshift of z = 0, and all sources within the four DDFs will
show strongly correlated values of the Milky Way reddening.

Table 1
Table of Weights and Target Numbers for the Various Classification Types

Included in PLAsTiCC

Class Name Class ID Number Weight

Point source μ-lensing 6 2
Tidal disruption event (TDE) 15 2
Eclipsing binary event (EBE) 16 1
Core-collapse supernova Type II (SN II) 42 1
Supernova Type Ia-x (SN Iax) 52 1
Mira variable 53 1
Core-collapse supernova Type Ibc (SN Ibc) 62 1
Kilonova (KN) 64 2
M dwarf 65 1
Supernova Type Ia-91bg (SN Ia-91bg) 67 1
Active galactic nucleus (AGN) 88 1
Supernova Type Ia (SN Ia) 90 1
RR Lyrae 92 1
Superluminous supernova (SLSN) 95 2
“Other” class 99 2

Note. Rare or interesting objects were upweighted to increase their contribution
to the total metric.
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The weights wm= J/NM, where J= 1 for most classes, but
J= 2 for rare objects, as shown in Table 1. These weights were
chosen by the PLAsTiCC team to discourage participants from
classifying all objects as the most populous class, ensuring that
appropriate attention was directed to the classification of rare
classes that otherwise would not have much influence on a
metric that gave equal weight to all objects. A detailed
description of the PLAsTiCC metric may be found in Malz
et al. (2019), along with an investigation of its assessment of
archetypal classification pathologies.

2.4. The PLAsTiCC Competition

PLAsTiCC ran from 2018 September 28 until 2018
December 17, and received entries from 1094 teams around
the world from a variety of different groups. The demographic
information of the 1315 participants is summarized in Figure 3
and was determined from the Kaggle or GitHub profiles of the
participants in each team. Some of the participants have
subsequently deleted their accounts, or do not have complete
profiles, and so Figure 3 provides an estimate of the group
demographics. While a substantial fraction of participants has a
background in data science/software, only a fraction of
entrants had formal astronomy training. A reasonable subset
of the PLAsTiCC participants were students. These included a
group from the University of Warwick in the United Kingdom
who entered PLAsTiCC as part of a class project.

PLAsTiCC led to publications by participating groups,
including presentations of the winning avocado algorithm
(Boone 2019) and that of the group “Day meets night”
(Gabruseva et al. 2020). The data set itself has also been used
for several publications on classification methods and anomaly
detection approaches. Table 2 provides a table of publications
from the PLAsTiCC team, and a subset of publications enabled
by this challenge. The full list of 96 papers related to
PLAsTiCC is given in an ADS link.48

Though participants submitted their classifications on the full
PLAsTiCC test data set, the metric was evaluated on representative
subsets whose distinctions were not made known to participants.
The metric computed on one-third of the full data set was posted to

a “public leaderboard,” whereas the metric evaluated on the
remaining two-thirds of the test data was the basis for the official
ranking Kaggle used to award the cash prize. This procedure could
be applied to subsets of the data to determine a classification
“error,” however Kaggle did not include any such error estimation
in their application of the PLAsTiCC metric.
This approach of keeping data hidden from participants is in

place to discourage “probing the leaderboard” (hereafter LB
probing), wherein one’s position on the leaderboard (LB) is
used as a metric on its own to tweak a submitted algorithm until
it is tuned to the LB performance. While this will lead to
improved performance in one particular challenge/realization
of the data, this approach does not yield algorithms robust to
changes in data simulation, or more general intuition-building
about the problem.
The distribution of submissions over time and their

corresponding metric values are shown in Figure 4. Interest
in the challenge grew over time as more participants joined.
Kaggle restricts participating teams to a maximum of five
submissions per day, a limitation that proved critical near the
end of the challenge, when participants had to be selective in
making submissions that would best inform final adjustments
to their classifiers.
The performance of the three winning solutions are highlighted

in the plot as colored lines. The horizontal clustering of the
PLAsTiCC metric near scores of log weighted  log[ -
loss score 1]  and ;1.6 (where the log-loss score is given in
Equation (1)) can be seen in the one-dimensional histogram of
scores on the right-hand panel of Figure 4 and could be a result of
overfitting (“playing the leaderboard”), particularly where
weighted combinations of classification probabilities for some
objects are used to determine the probabilities of other objects (e.g.,
the “Other” class objects).

3. Solutions to PLAsTiCC

PLAsTiCC ended on 2018 December 17. The competition
was won by Kyle Boone which is described in Boone (2019),
with the second-place prize awarded to Mike and Silogram49 and
third place was awarded to “Major Tom, mamas & nyanp”50.
The top three teams were selected to present their methods at a
meeting with the PLAsTiCC team and the staff at Kaggle.
Figure 5 shows the performance of the top three entries

according to the metrics considered in Malz et al. (2019),
namely the weighted log-loss used in PLAsTiCC, an
unweighted log-loss, and the Brier score (Brier 1950, equiva-
lent to the mean square error of the prediction), normalized to
the Kyle Boone score. The left panel shows the metrics
evaluated on the full test set, rather than the one-third subset
that formed the basis of the PLAsTiCC competition results,
while the right panel performance when the “Other” class
objects were excluded from the test data. The scores of the top
three entries tighten in that case and the top two places are
reversed, highlighting the importance of returning a classifica-
tion probability for objects whose class was not present in the
training set. All three top finishers were very close in score
throughout the competition in both the public and the private

Figure 3. Demographic information for entrants to PLAsTiCC. Only a small
fraction of 1315 participants with known demographics were part of the
astronomy community. Many of the participants have some data science
background. These data were determined from the Kaggle entries or GitHub
user pages of the entrants, future studies will include self-identification
information from participants.

48 The shortened search link is https://bit.ly/PLAsTiCC_Papers.

49 The second-place solution is described in a Kaggle post (https://www.
kaggle.com/c/PLAsTiCC-2018/discussion/75059).
50 The third-place solution is described in two separate posts, one describing
the CNN (https://www.kaggle.com/c/PLAsTiCC-2018/discussion/75116)
and another describing the model including code repositories (https://www.
kaggle.com/c/PLAsTiCC-2018/discussion/75131).
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LBs. We summarize their solutions and their relative
performance in the subsections that follow.

3.1. Summary of Methods Used

The Kaggle discussion board was an excellent forum for the
dissemination and discussion of methods used to provide
solutions to PLAsTiCC. The entrants from the top 1251 entrees
discussed their solutions on the forum, and here we briefly
summarize the elements used in their solutions in Tables 3 and
4 shows the classification algorithms that were implemented.
An introductory explanation of the methods/concepts used in
those algorithms is provided in Table 5.

Combining multiple approaches. The unifying characteristic
of the solutions is the fact that they employed a mixture of
classification approaches from neural networks to gradient
boosting. The entrants often tried different combinations of
approaches and adjusted their mixture within different iterations,
effectively playing multiple classification methods “against”
each other internally before submitting their solutions at each
step. We refer to this as “Ensemble” in Table 3. Common among
most solutions was the use of the LightGBM (Ke et al. 2017).
Approaches varied when it came to feature selection. Some
groups built on previous attempts by performing template light-
curve fits to extract features, using known fitting software such
as the SALT2 package (Guy et al. 2007) or the Bazin et al.
(2011) model. Some used the more time consuming but less
model-dependent Gaussian process (GP) fitting. Originally
developed in the context of mining surveying (first published
in Krige 1951), GP interpolation relies on the assumption that
the interpolated values can be modeled by a Gaussian process, or
one in which the process is defined by a prior covariance, or
kernel. This interpolation allows one to easily map not only the
interpolated values, but the uncertainty band around the
interpolation without assuming any physical relationship
between the variables. This makes it well suited to light-curve
fitting. A more thorough discussion of the techniques used in
geostatistics can be found in Chilès & Jean-Paul (2012).

A few groups described fitting for hundreds of features and
then using feature importance ranking to reduce the feature
space over which classification was performed.

Data augmentation. Central to the PLAsTiCC challenge was
data augmentation, the supplementation of training data with
new light curves derived through small changes to the original
training set, and other approaches to mitigate nonrepresentativity
of the training set and class imbalance in both the training and
test sets. Several groups tried a range of approaches to augment
the data and rectify the class imbalance, which are discussed in
more detail in Section 5, where we illustrate the degeneracies
between the “Other” class objects and the rest of the classes).
The “Other” class objects. One of the most popular methods

of computing probabilities for the “Other” class was to probe the
LB. All of the top models that provided information on their
handling of “Other” class objects used LB probing. One
approach (“Weighted Average”) produced an “Other” class
probability formed from a weighted combination of the super-
novae class probabilities, and then determined the best weights
by optimizing over their score or position on the LB. The
“Tuned Combination” from the MTMN method (see
Section 3.4) used a power law combination of supernovae
probabilities and tuned the power and multiplicative factor using
the LB. They also had two different functions for Galactic and
extragalactic objects. Ahmet Erdem found which classes that
“Other” class objects were not like (TDE, KN, AGN, SN Ia, SN
Ia-91bg) and applied a constant multiplication factor found
through LB probing depending on which class had the highest
probability outside of those classes. Four of the top participants
used a method that was shown on a kernel on Kaggle that
involved scaling all the class probabilities with weights based on
the LB probing from another user (“Probability Scaling”).
Redshift. As described in Kessler et al. (2019a), the SED

models input in PLAsTiCC are redshifted, peculiar velocity
and lensing effects are applied and the SED is convolved with
the Rubin passbands and “observed” with various telescope
noise properties and calibrations applied. These operations can
by construction not be rerun by participants in PLAsTiCC, and
so any augmentation of the training data due to redshift effects
was done at the light-curve level.
Dependence on simulated cadence. While the PLAsTiCC

data were simulated for one proposed observing strategy for the
LSST, we note that the features themselves will in general be
strongly dependent on the particular cadence or observational
strategy of a survey. We leave a full investigation of
classification performance for different observing cadences to

Table 2
A Selection of Publications Resulting from PLAsTiCC

Reference Topic Comment

The PLAsTiCC team et al. (2018) PLAsTiCC Release Note Main PLAsTiCC data note
Kessler et al. (2019a) PLAsTiCC Models Main PLAsTiCC publication
Malz et al. (2019) PLAsTiCC Metric Main PLAsTiCC publications
This work PLAsTiCC Results Main PLAsTiCC publications

Boone (2019) Challenge solution PLAsTiCC submission write-up
Gabruseva et al. (2020) Challenge solution PLAsTiCC submission write-up
Ishida et al. (2021) Paper using PLAsTiCC to test classification method Paper by PLAsTiCC member
Soraisam et al. (2020) Paper using PLAsTiCC to test classification method General paper
Sravan et al. (2020) Paper using PLAsTiCC for imbalance tests General paper
Dobryakov et al. (2021) Paper using PLAsTiCC for imbalance tests General paper
Hosenie et al. (2020) Paper using PLAsTiCC for imbalance tests General paper
Villar et al. (2020) Paper using PLAsTiCC to test the method General paper

Note. The papers are sorted into ones coming directly from the PLAsTiCC team, and publications enabled by the challenge and its associated simulation set.

51 The seventh and 10th place entries did not provide their solutions on the
Kaggle forums so they are not included here.
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future work. In the subsections below we summarize in more
detail the winning solutions.

3.2. Kyle Boone

The overall winner of PLAsTiCC was Kyle Boone, then a
graduate student at the University of California at Berkeley. His
method using GP light-curve fitting, data augmentation, and a
gradient boost (Friedman 2001) classification strategy is
described in detail in Boone (2019), which presented a slightly
improved version of his submission to the PLAsTiCC
competition. For the discussion here, we focus on the version
of avocado that was submitted to PLAsTiCC. Boone was the
only astronomer in the top three finishers, and his astronomical
domain knowledge played a role in the choices he made for
feature selection. For example, Boone extracted the color of the
object at maximum light and computed the time to decline to
20% of the maximum light of the transient, which resulted in
greater accuracy of classification of SN Ia-like objects in
avocado than other challenge entries.

Premaximum observations are a useful indicator of the type
of supernova. As a corollary, the lack of premaximum
observations can serve as a useful flag of how discerning the
data will be in separating out different classes, and hence are a
measure of the accuracy in the classification of the simulations.
avocado includes a flag for “incomplete” simulated light
curves, which can help remove spurious classifications that
might degrade the overall metric score.

Data augmentation also features strongly in the avocado
classifier from Kyle Boone. The nonrepresentativity of
PLAsTiCC led to a pristine but small training data set and a
large (3.5 M-object sized) test data set, with much larger
measurement uncertainties. Boone focused on augmenting the

training data by shifting the data in time (without changing the
shape of any light-curve features), and removing or “dropping”
observations at random time positions. Boone also increased
the scatter in the data to make it more representative of the test
data quality, as shown in Figure 6. In order to supplement the
training data, Boone generated high-z light curves from low-z
analogs by degrading the signal-to-noise ratio as a function of
distance. This data augmentation greatly improved the accuracy
of his avocado. The change of light-curve colors with the
redshifting of the SED was not included in avocado.

3.3. Mike and Silogram

The second-place winners of PLAsTiCC were from a pair of
competitors (Mike and Silogram) who joined forces to produce an
ensemble solution of seven recurrent neural network classifiers
(RNN; Rumelhart et al. 1986) and two light gradient boosting
machine (LightGBM; Ke et al. 2017) models. Rather than focus
on selecting one classifier, the ensemble provided diversity across
model space, to avoid overfitting the training data.
The RNN model was a one-layer bidirectional gated recurrent

unit (GRU; Cho et al. 2014). The seven different RNN models used
between 80 and 160 units. The input data for the RNN was the flux
and its associated uncertainty, the intervals between the measure-
ments, the wavelength, and the passband, which were included with
“one-hot” encoding, where combinations of the data are only those
with a single value at a time (see Harris & Harris 2012, for details
on this method). The models reduced the dimensionality by
downsampling the layers and then combined the max pooled layer
with light-curve metadata, specifically the host galaxy photo-z and
associated error, the Milky Way extinction, and flags for the
observational area/field. This model was novel in the simplicity of
the individual NNs, and did not involve the computational overhead

Figure 4. The distribution of the submissions to PLAsTiCC and the log of the PLAsTiCC metric score as a function of time since the start of the challenge relative to
the start of the challenge. The three colored lines indicate the performance of the three prize-winning entries. As the challenge neared completion, the scores started to
asymptote to metric scores of near unity. Note that the competition remains “live” to this day, hence the few submissions received after the closing deadline.
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associated with light-curve fitting. The RNN implementation was
released as a kernel on the Kaggle site.52

As with the other solutions, the issues of data augmentation
and feature selection were perhaps the most pressing for Mike
and Silogram. This method was supplemented to include
augmentation near the closing date for submissions to the
competition and so did not have the opportunity to retrain on a
comprehensively augmented data set. The Mike and
Silogram method dropped 30% of the measurements and
adjusted the redshifts and the flux of the training data.

In the LightGBM models, adjusting the flux values according
to the photometrically derived redshift (photo-z) value helped
“normalize” the flux, effectively correcting for the cosmological
redshift of the object, which stretches spectrum of the object and
dims its brightness. While the photo-z was provided in
PLAsTiCC, the spectroscopic redshift (spec-z) is the more
useful quantity as it is free of modeling errors. For both the RNN
and the LightGBM models in this submission, the authors were
able to build a separate model to predict the spec-z of the host
galaxy from the other properties of the object. This approach is
useful particularly to flag potential outliers in photo-z space
(incorrectly predicted photo-z values).53 This photo-z modeling
will be one of the key systematic issues that Rubin observations
will face, and any mitigation of this issue by classifiers is very
valuable. The Mike and Silogram authors stated that they
converted all time and wavelength-related features to redshift-
independent versions before training the RNN.

3.4. Major Tom, Mamas, and Nyanp

The third-place solution also went to a combination of teams,
“Major Tom” and “mamas,” themselves made of individuals
with different implementations that were combined. In

addition, “nyamp” provided feature engineering expertise to
the combined group, hereafter known as the MTMN method.
The final solution was a one-dimensional convolutional neural
network (CNN) with 256 8,5,3 convolution neurons followed
by global max pooling as described above, with a stride of
unity. The inputs to the CNN in this case was a series of 128-
long vectors over different “channels.” Six of these channels
were constructed out of linear interpolated flux values (as a
function of time) in the six bands, while another six were made
of linearly interpolated vectors of flux multiplied by time,
which forms a crude integral in the band. The final six channels
in the set described the distance of the current point (in time)
from the true input, effectively providing a vector describing
the interpolation error.
Three different CNNs were constructed based on different

metadata features sent to the multilayer perceptron (MLP)
which was the basis for the backpropagation: a minimal CNN
based on using only the galaxy photo-z, distance modulus,
MJD, and flux error as metadata; a minimal CNN supplemen-
ted by the 16 best features obtained from features extracted in a
separate CatBoost model framework; a minimal model
supplemented by features obtained through template fitting
from the Supernova Cosmology package (sncosmo; Barbary
et al. 2016). The models are described in more detail on the
Kaggle discussion boards,54 and the CNN architecture is shown
in Figure 1 of Wang et al. (2016).

4. Comparison of Top-ranked Classifiers by Additional
Metrics

The PLAsTiCCmetric was designed to evaluate submissions
of classification probability mass functions (PMFs) without
favoring any particular science case. For example,

Figure 5. The performance of the top three entrants to the PLAsTiCC across three different metrics. In each case a lower score indicates better performance of the
classifier. The left panel shows the metrics for the full test data set including the unseen “Other” class objects. All classifiers were asked to return probabilities for the
“Other” class objects. The right panel shows the scores on the test data set excluding the “Other” class objects. The scores have been normalized to the score of Kyle
Boone, indicated in parenthesis on the x-axis label. This plot illustrates how close the first- and second-place finish was, and the importance of the unknown objects on
the final classifier performance. In the case where the “Other” class objects were not included, the first- and second-place positions would have been reversed.

52 https://www.kaggle.com/zerrxy/plasticc-rnn
53 This is described in a note on the Kaggle discussion board online (https://
www.kaggle.com/c/PLAsTiCC-2018/discussion/75059#latest-462457).

54 See, e.g., the online links for thethird-place CNN (https://www.kaggle.
com/yuval6967/3-place-cnn),third-place CatBoost (https://www.kaggle.
com/c/PLAsTiCC-2018/discussion/75131), andthird-place sncosmo entries
(https://www.kaggle.com/c/PLAsTiCC-2018/discussion/75222).
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cosmological classification efforts have traditionally focused on
removing contamination of non-Ia objects to yield a “pure” SN
Ia photometric sample, but metrics that reward only the purity
of this class would be inappropriate for other science goals,
such as novelty detection.

The caveats to the nominally science-agnostic global metric
were twofold. The classification of rare and novel classes was
encouraged by increasing the relative weight of the contrib-
ution of these classes to an overall metric that was otherwise
evenly weighted across classes. This division into classes did
not encode class hierarchy; had all supernova subclasses been
combined into a single class, or had galactic and extragalactic
classes been evaluated separately, it is possible that a metric
would have favored different classifiers.

While the Kaggle metric was required to be a scalar so that a
cash prize could be awarded to an overall winner, the resulting
classifications in the form of submitted PMF catalogs are a
much richer data set. In this section, we compare the top-ranked
classifiers by some more nuanced and higher-dimensional
metrics of estimated classification PMFs, including the
precision recall and the Kullback–Leibler divergence (KLD).
This list is not exhaustive, and several other metrics can be
used to compare classifier performance (e.g., the Mathews
correlation coefficient, the F-score, and the false detection rate).

We leave a comprehensive comparison across a range of
metrics for future work. Similarly, we do not focus on
investigating metrics tuned to any specific science goals (e.g.,
cosmology constraints given a classified sample). We leave
such an exploration for future work.

4.1. Pseudoconfusion Matrices

The confusion matrix is a classic metric of deterministic
classifications (see e.g., Lochner et al. 2016, for one such
astronomical example). To put the PLAsTiCC results into
context for those familiar with the confusion matrix, we present
an adaptation thereof to probabilistic classifications. For each
classifier, we assign each light curve a deterministic classifica-
tion corresponding to the mode (maximum) of its PMF. To
remove the visual domination of class imbalance, we normalize
the rows (corresponding to predicted classifications for a given
true class) of a standard confusion matrix, whose cells contain
counts rather than proportions relative to the number of objects
in the true classes.
The pseudoconfusion matrices for the solutions of the top

three classifiers are shown in Figure 7. The matrices show a
distinct difference in the performance of the classifiers when
distinguishing between different types of supernovae, which

Table 3
Methods Employed by Classifiers in PLAsTiCC

Final Name Public Private Class Imbalance Nonrepresentativity “Other” Class Ensemble Light-curve
Rank Score Score Mitigation Mitigation Fit

1 Kyle Boone 0.6706 0.6850 Light-curve Data degradation Weighted Average No GP
augmentation

2 Mike and Silogram 0.6937 0.6993 L Model spec-z, Probability Yes L
Data degradation Scaling

3 Major Tom 0.6804 0.7002 L Model spec-z, Tuned Yes SALT2
mamas & nyanp Data degradation Combination

4 Ahmet Erdem 0.6913 0.7042 L Model spec-z Weight based on Yes Bazin
top prediction

5 SKZ Lost in 0.7397 0.7523 Flux error Removed photo-z Probability Yes L
Translation augmentation Scaling

6 Stefan Stefanov 0.7933 0.8017 Flux Dropped light curve L Yes L
augmentation points, photo-z

augmentation

8 rapids.ai 0.7922 0.8091 Pseudo label L L Yes L
on test data L

9 Three 0.7921 0.8131 L Dropped light-curve Probability Yes L
Musketeers points Scaling

11 Simon Chen 0.7948 0.8225 L L L No SALT2

12 Go Spartans! 0.8112 0.8265 L L Probability Yes Bazin
Scaling

Note. The scores are taken from the Kaggle site, and illustrate how many methods were tuned to the public data/scores, and performed worse on the private data. The
class imbalance techniques were used to address the fact that the different classes were present in very different numbers in the data set. Techniques include
augmenting the light curve or fluxes, and adding approximate/pseudo “labels” to the test data to supplement the training data. The nonrepresentativity techniques
modified data to account for the differences in the test and training data (e.g., that the test data were noisier and more sparse) by either degrading the data (error bars),
removing light-curve points and modeling the spectroscopic redshift (spec-z) from the photometric redshifts (photo-z). The light-curve fitting techniques included
Gaussian Process (GP) interpolation and template fitting (using the Bazin et al. 2011; Guy et al. 2007, light-curve fits). As discussed in Section 3.1, the entrants used a
range of methods listed here to derive a probability for the “Other” class objects, and then probed the LB to optimize their procedure. In all columns above, if there is
no entry for a given column, it indicates either that the model did not address the column or that the information was not provided in the write-ups presented on
Kaggle.
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are clustered in the top left-hand corner of the diagram. In
addition, the degeneracy between the classification of true
“Other” class objects (right column) and Type II supernovae
(fourth row of the matrix) is shown in Figure 7. The degeneracy
arises because three of the four novel objects included in
the “Other” class had supernova-like light curves and were
difficult to disentangle from the supernovae. In addition, some

entrants formed a composite classification probability for this
class from a weighted average combination of probabilities of
the other classes (notably the SN Ibc and the SN Ia classes),
leading to the correlation between the classification probabil-
ities of specific objects and the “Other” class.
We show the confusion matrices considered without the

“Other” class objects in Figure 8. The classifiers were not rerun

Table 4
Classification Algorithms of the Top Entrants to PLAsTiCC, Sorted into Common Approaches

Name Boosted Decision Trees Neural Nets

LightGBM CatBoost XGBoost NN CNN RNN MLP

Kyle Boone ✓ × × × × × ×
Mike and Silogram ✓ × × × × ✓ ×
Major Tom, mamas & nyanp ✓ ✓ × × ✓ × ×
Ahmet Erdem ✓ × × ✓ × × ×
SKZ Lost in Translation ✓ × × × × ✓ ✓
Stefan Stefanov × × × ✓ × × ×
rapids.ai ✓ × × × × ✓ ✓
Three Musketeers ✓ ✓ ✓ × ✓ × ×
Simon Chen ✓ × × × × × ×
Go Spartans! ✓ × ✓ × × × ×

Note. A key result of the challenge was the observation of how different solutions combined various machine-learning techniques. The various methods are
summarized in Table 5.

Table 5
A Brief Description of the Methods Used and Acronyms in PLAsTiCC

Method Description Reference

Random Forest Also known as random decision trees, random forests are a method of classification that
constructs many decision trees between different classes. The mode of multiple trees
is computed to obtain a final classification.

Ho (1995)

Gradient Boosting Gradient boosting produces a combined model from an ensemble of prediction models
(often but not always comprised of decision trees). Each new tree is fit on a modified
version of the original data set, and the weights of subsequent trees are adjusted
according to which objects were difficult to classify by previous trees (upweighting
difficult classifications).

Friedman (2001)

Light Gradient Boosting Machine
(LightGBM)

LightGBM is a gradient-boosting framework originally developed by Microsoft, but is
now open source. It is based on decision trees.

Ke et al. (2017)

CatBoost CatBoost is a popular open-source algorithm for gradient boosting on decision trees. It
includes an implementation of ordered boosting, and an algorithm for processing
categorical features in data.

Prokhorenkova et al. (2017)

XGBoost XGBoost is another gradient boosting algorithm, which performs tree boosting in
parallel.

Chen & Guestrin (2016)

Neural network (NN) A neural network mimics the way the human brain operates by connecting a system of
connected nodes (neurons) connected by edges. The inputs to neurons are real
numbers, and the output of each neuron is computed by some nonlinear function of its
inputs. The separate neurons are combined with different weights.

See Schmidhuber (2015) for a
recent review

Recurrent neural network (RNN) This is a NN where node edges/connections have a direction to them. This means the
RNN can display temporal dynamic behavior.

Rumelhart et al. (1986)

Gated recurrent unit (GRU) A popular variant of RNN, GRU includes gating units which control the amount of
information flow inside each recurrent unit (controlling when the hidden state in a unit
should be updated).

Cho et al. (2014)

Multilayer perceptrons (MLP) MLPs are NNs where each neuron in one layer is connected to all neurons in the next
layer.

Rosenblatt (1963)

Convolutional neural net-
work (CNN)

CNNs are regularized versions of MLPs and are commonly used on images. Fukushima (1980)
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without the “Other” class objects. We removed the “Other”
class objects from the submissions and renormalized the
probabilities. None of the classifiers shown here attempted to
classify “Other” class objects through their machine-learning
algorithms but instead combined the probabilities from other
classes. The validation classifier was also run without “Other”
class objects such that it is a better comparison to these
confusion matrices than the ones in Figure 7.

4.2. Distributions of Assigned Classification Probabilities

PLAsTiCC required submissions of posterior PMF vectors f i

for each light curve i satisfying f i(m)> 0 and f m 1m
M i

1 ( )å ==
for each class m out of M total classes. This requested data

product comprises a much richer set of resultant data than
solely deterministic metrics such as those related to the
numbers of objects classified as true/false positives/negatives.
The violin plots of Figure 9 depict the probability density
functions (PDFs) of estimated PMF values across all predicted
classes for each true class’s light curves, illustrating more than
just a summary statistic of the PDF of estimated posterior PMF
values, such as the mode or mean. Though the per-light-curve
covariance is lost, such a visualization still conveys some of the
degeneracies between different true and predicted classes, like
an expanded form of each row in a confusion matrix.
For a light curve of a given true class, one would hope that a

classifier would assign it a high probability for being of that
class and low probabilities for being all other classes. Two

Figure 6. Data augmentation as part of the KB method. The light curves have been interpolated using GP interpolation, shown as shaded regions with the largest
spread where there is no data. The top panel shows the augmentation in light-curve space, where points are removed, the object is moved to a higher redshift and the
errors on the light-curve points are increased. The bottom panel illustrates the augmentation in feature space for a subset of the PLAsTiCC models. The augmented
sample not only has a larger spread in the maximum r-band flux, one of the features used by the avocado classifier but extends each class to a higher redshift and
helps increase the sample.
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panels of Figure 9 show that the winning classifier exemplifies
this desirable behavior for true SN Ia and SN Ibc by assigning
high probabilities for their true class and low probabilities for
all other classes. The degeneracies between classes can be seen
as PDFs of the estimated posterior PMFs where there is
substantial density for a predicted class that is not the true class
(i.e., the peak of the PDF is skewed away from zero for a class
other than the true class). The remaining two panels of Figure 9
provide illustrations of this undesirable effect: objects with true
SN Iax and SN Ia-91bg type are assigned comparable
probabilities for several classes including the true class.
Although the centering of the PDF density around zero PMF
for some mismatched classes indicates that the winning
classifier did indeed easily rule out those incorrect classes,
there is also low PDF density at high PMF for the true class
(consider that the PDF drops off sharply for probability >0.15
for the SN Iax in the top right panel of Figure 9), meaning that
the classifier was unable to distinguish between those SN
subtypes.
Figure 10 isolates the true KN to compare the performance

of the top three classifiers to that of the naïve “validation”
classifier, whose inclusion is facilitated by including only light
curves evaluated by the validation classifier that also appeared
in the PLAsTiCC data set and omitting the probabilities
assigned to the “Other” class prior to renormalizing the
probabilities assigned to the remaining classes. All of the top
three classifiers were able to classify the true KN objects, as
they assigned high PMF values for the predicted KN class and
low PMF values for all other classes. The validation classifier,
on the other hand, assigns nonzero PMF values over all the SN
subtypes, effectively misclassifying KN as SN without being
able to distinguish the SN subtype.
Figure 11 shows the performance of the top three classifiers

in the “Other” class. All three top classifiers successfully
isolated the “Other” class light curves from most of the named
classes and for the most part, successfully assigned a higher
posterior PMF value for the correct class. However, all three
top classifiers also had high PDF density at nonzero PMF
values for SN II and SN Ibc, meaning that they frequently
allocated nontrivial probability to the possibility that “Other”
class light curves were SN II and SN Ibc.

4.2.1. Classifier Disagreement

To compare classifier performance, we need to define the
level of disagreement between the estimated posterior PMFs
across classifiers and classes on the basis of information
content. Since we do not have access to the true PMF values
corresponding to the PLAsTiCC data set, we cannot measure
the loss of information due to using an estimated PMF g(x) as
opposed to the true PMF f (x). Instead, we can calculate the
continuous KLD (cKLD) of the probability density functions
(PDFs g(x), f (x) from the approximating PMF values relative to
those of the true PMF values (e.g., the “violin plots” from
Figure 9–11):

f g f x f x g x dxcKLD , log log , 3( ) ( )( [ ( )] [ ( )]) ( )ò= -

where x is the set of real numbers between 0 and 1, and the KLD
is measured in nats, the unit of base-e information. The appendix
of Malz et al. (2018) is a good primer on the KLD including a
demonstration to build intuition for the behavior of the KLD in

Figure 7. Pseudoconfusion matrices for the top three entries to PLAsTiCC. The
metric scores for these entries were 0.68503 (Kyle Boone), 0.69933 (Mike and
Silogram), and 0.70016 (Major Tom, mamas, and nyanp). The top entries are
described fully in Tables 3 and 4.
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limiting cases. While we lack a notion of a ground truth for
comparison in the simulation, we can establish an ordering of
probabilistic classifications “closer to the truth” by assuming that
the Kaggle ranking metric correctly sorts classifiers by how close
their submitted PMFs are to the (unknown) true PMFs. This
assumption implies that the Kaggle scope is sufficient to define a
directionality for evaluating the KLD:55

f g f x f x g x dxcKLD , log log , 4b a b b a( ) ( )( [ ( )] [ ( )]) ( )ò= -

where the index b indicates the better of the two classifiers being
compared and index a indicates the approximating classifier
ranked lower than b. For a specific class, a given classifier b
might perform better than another a, even if a has a higher metric

score than b overall/across all classes. We also note that the raw
leaderboard data are available at https://www.kaggle.com/
competitions/PLAsTiCC-2018/leaderboard.
To visualize the disagreements between classifiers, we

consolidate the cKLD values of Equation (4) for each true
class (e.g., SN-Ia, KN, etc.) and each predicted class pair as
follows. For a given true class, we compute the summed cKLD
of the PDFs of the predicted class PMFs, which is interpretable
as a measure of the information loss for that true class.
To produce a scalar value (that is shown in Figure 12 we

compute the weighted sum of these cKLD terms across the true
classes using the original per-true-class weights of the original
Kaggle metric (as defined in Table 1).
This integrated cKLD may then be interpreted as the value of

the information loss due to using the approximating classifier
rather than the one that is closer to the truth. This scalar value is
shown for all pairs of classifiers in Figure 12, where the color
indicates the scalar cKLD score for a pair of classifiers. The

Figure 8. Similar to Figure 7, but in this case the probabilities assigned to “Other” class objects in the test set are omitted and the remaining probabilities are
renormalized in the test data set. This illustrates more clearly the degeneracies between the known and the “Other” class objects. The large “subsuming” classification
systematic visible in Figure 7 that arises since many classifiers provided a probability for “Other” class objects based on a weighted sum of probabilities from the
known objects is no longer present (consider the SN II-“Other” class subsuming systematic in the Kyle Boone entry of Figure 7). We also show the results from the
“validation classifier” run on the WFD data (without “Other” class objects).

55 The validity of this assumption is equivalent to KLD[i + 1; i − 1] = KLD
[i + 1; i] + KLD[i; i − 1], which is formally untrue for this data set, but the
assumption is useful in this context.
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name of the class that is the largest contributor to the score is
listed in the matrix entry, and the numerical value shows the
percentage that that class contributes to the total cKLD score
for the classifier pair.

Figure 9. The estimated posterior probabilities (violins) for each predicted class (columns) among a given true class (panels) for the Kyle Boone method, where the
assigned class corresponding to the true class is highlighted in color. Top row: the estimated probabilities for well-classified SN Ia and those of the less well-classified
SN Iax. The assigned probability of being the true class for SN Ia has a long tail but a high mode of ∼0.8, whereas SN Iax is degenerate with the “Other” class type,
whose mode is ∼0.2. Bottom row: the classification probabilities for SN Ia-91bg and SN Ibc (core-collapse SN). The estimated classification probabilities for true SN
Ia-91bg objects reflects uncertainty; while roughly two-thirds of the true SN Ia-91bg objects have a mode corresponding to the predicted SN Ia-91bg class, their
classification probabilities span the entire range of probability. The uncertainty of estimated probabilities for SN Ibc objects manifests differently; the probability for
predicted class SN Ibc has a less pronounced tail, but there is considerable probability mass assigned to the predicted “Other” class. This is not surprising given that the
Kyle Boone classifier determined the “Other” class classification probability from a combination of the probabilities of the SN Ia, SN Ibc, and SN II.

Figure 10. Performance of the “validation” classifier compared to the top three
entries to PLAsTiCC. The naïve classifier does not correctly classify the rare
KN objects, while a classifier more optimized to find rare objects through data
augmentation is a very accurate classifier of these bright transients.

Figure 11. Performance of the top three classifiers for the “Other” class. The
predicted probability distributions for the 13087 true type “Other” class objects.
The numbers in different colors reflect how many objects were incorrectly
classified as a given type by each of the three classifiers, and the shaded regions
show the predicted probability distributions for each class. Note how the
“Other” class is most often confused with SN II and SN Ibc. This occurred as a
result of many of the classifiers generating their “Other” class probability as a
combination of probabilities from the other classes.
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The scalar KLD values of the pairs span 3 orders of base-e
magnitude; however, if we exclude the eighth ranked classifier,
then the pairwise information losses in the PDFs of PMFs only
span two base-e orders of magnitude. The reason for this large
range in KLD values is that the affected classifier (“8_rapid-
sai”) assigned nearly deterministic classifications to the
M-dwarf class, meaning the PMF values tended to be
approximately 1 for one predicted class and approximately 0
for all other predicted classes. This choice induced long tails in
the per-assigned class PDFs of true M-dwarf PMF values, to
which the KLD is known to be sensitive, particularly when the
PDF taken as closer to truth is affected. While the PLAsTiCC
metric was designed with probabilistic classifications in mind,
classifiers submitted both probabilistic (aka “soft”) and
deterministic (“hard”) classifications to PLAsTiCC. Interest-
ingly, Liu et al. compare the merits of deterministic and
probabilistic classifier approaches (and suggest a unified/
hybrid scheme that incorporates the best of both in Liu et al.
2011). They note that objects with smoother features may be
better suited to soft classifications, while objects with sharp
features may be better classified by hard algorithms, and could

explain some of the performance of “8_rapidsai” on the
M-dwarf objects. We leave an explicit comparison of the same
classifiers on PLAsTiCC simulations using a deterministic
metric for future study.
Figure 12 illustrates a few additional trends. The top two

classifiers disagree more strongly with all other classifiers than
the other classifiers do with one another. The class for which
the discrepancy is greatest varies quite a bit among classifier
pairs, but aside from the outlier classifier discussed above, the
KN and Mira objects appear most discrepant frequently,
indicating that the other ranked classifiers’ strategies resulted
in very different classification performance on those classes in
particular.

4.3. Precision-recall Plots

Deterministic classifiers are often evaluated using functions
of the true and false positive and negative rates. The true
positive (TP) rate is the ratio of TP classifications to the sum of
both the TP and false negative (FN) classifications
NTP/(NTP+ NFN). The false positive (FP) rate is the ratio of
the FPs to the sum of both the FP and true negative (TN) rates.

Figure 12. The disagreement matrix for the top classifiers. Colors indicate the disagreement metric between each classifier (x-axis) and all classifiers ranked better than
it (y-axis), where darker cells correspond to lower Kullback–Leibler Divergence from the worse-ranked classifiers’ probability densities of assigned posterior
classification probabilities to those of the better-ranked classifier. The higher- and lower-ranked classifier pairs’ cells are labeled with the class that was most different
between the two classifiers and the percentage of the total disagreement between the two classifiers for which that class is responsible. The methods used by each
classifier are summarized in Table 3.
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One example of such a function is the receiver operating
characteristic (ROC) curve, the TP rate as a function of the FP
rate for a given classifier.

Another is the precision-recall (also referred to as “com-
pleteness-purity”) plot of the precision P= NTP/(NTP+NFP) as
a function of the recall R=NTP/(NTP+ NFN). Recall is a
performance measure of the TP compared to total actual
positives, whether TP or FN, whereas precision is a
performance measure of TP predictions compared to the total
positive predictions (whether true or false). We choose to use
precision-recall plots over ROC curves because they are
appropriate for imbalanced data sets (see, e.g., Saito &
Rehmsmeier 2015). The precision and recall are calculated

for different values of the threshold of the classifier to map the
performance of both as a function of the threshold. We require
higher classification confidence with increasing threshold
values. As the threshold increases, our precision increases,
and recall (akin to sensitivity) decreases. Good performance on
these plots would be indicated by having high precision and
high recall, which would indicate that the classifiers are
returning a lot of labels that are accurate.
A perfect classifier in these plots would have a precision of

unity for all values of the recall. A bad classifier will output
scores whose values are only slightly associated with the true
outcome, and so will achieve high recall for low values of
precision. Figure 13 shows examples of precision-recall plots

Figure 13. The precision-recall plots for the top three classifiers and the “validation” classifier as a function of threshold (color) for three classes of interest: KN, TDE,
and SLSN.
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for three different objects classified by the top three classifiers
and the validation classifier. For the top three participants,
SLSN are more well classified than KN or TDE but are not
perfectly classified.

The classifiers also did approximately the same in precision
and recall for TDEs. Of the transient events shown in this
example, the KN are the most easily misclassified. This object
has low precision, meaning that true positive classifications are
a small fraction of total positive classifications. As the
threshold value increases (needed to improve the precision
performance), the recall (true positives relative to true positives
and false negatives) drops relatively slowly as the number of
false negatives is high for the KN class. The greatest
contaminants to KN classification are SN Ia and SN II, which
is seen in both the PLAsTiCC simulations and in the Dark
Energy Survey observations (Doctor et al. 2017; Morgan et al.
2020). The MTMN and MS methods have a poor performance
on this class throughout the plot whereas the KB method has
good early “retrieval.”

The SLSN has high values of recall for a range of thresholds,
with P> 0.9 for all thresholds >0.7, indicating it is a well-

classified object. TDE requires a high threshold to be correctly
classified, but then plateau at constant P for threshold 0.9 for
all classifiers. For the SLSN, the validation classifier performed
significantly better than the top three classifiers, reaching P; 1
for thresholds 0.25.

4.3.1. Redshift Evolution of Metrics

While the global precision-recall plots for various classifiers
and types are shown in Figure 13, it is worth considering the
evolution of the classifier performance with redshift. In
Figure 14, we show the precision and recall of the top three
classifiers as a function of redshift for a given threshold value
of ∼0.6 for two object types, namely SNe Ia and TDEs. Also
shown are the redshift distributions of the transients. The
relative numbers of TDE peak at lower redshift (while there are
still greater total numbers of SN Ia than TDE at all redshifts),
leading to a peak in recall. The precision of the classifier peaks
later, with the corresponding drop in the recall. This behavior is
also seen in Figure 13 which shows the precision-recall curves
as a function of threshold value rather than redshift. The ability
to classify objects well with increasing redshift is driven in part
by the redshift distribution of the sources themselves, and by
the quality of data augmentation of the training set. As noted in
Boone (2019), prioritization of completeness of a given survey
as a function of redshift will lead to a rather different tuning of
classifier performance.

5. Discussion of Challenges in the PLAsTiCC Data

The PLAsTiCC data set was rich in complexity and highly
nonrepresentative.
Detection of novel objects. An additional class in the test set

but not present in the training set, named the “Other” class,
added the task of anomaly detection to the challenge. This
unseen class proved challenging and led to confusion
classifications that exhibit the “subsumed-to” behavior as
described in Malz et al. (2019), where a first class is
consistently mistaken for a second, but the second class is
not commonly mistaken for the first. In Figure 8 we show the
confusion matrices for the same entries as in Figure 7. In this
case while the “Other” class objects were included in the test
set, the classifiers did not return a classification for the objects
(hence the predicted probabilities are set to zero for these
objects). Hence while the true “Other” class objects have
predicted probabilities of the other classes by construction, the
subsuming probability systematic where true objects are
confused for “Other” class objects is reduced. This can be
most easily observed for the SN II objects in, e.g., the Kyle
Boone classifier. We do not investigate separately the
confusion between the four subclasses that made up the
“Other” class, however future work and larger simulations
could tease out the relative confusion of these interesting
objects with well-known types.
This confusion between the other classes and the “Other”

class objects is illustrated in Figure 9 through violin plots of the
probability density of the posterior probability assigned to each
predicted class, for a given true class. There are a few things
worth noting in the violin plots. First, the distribution of
probability extends to zero for some true objects, like the SN
Ia-91bg which is shown in the bottom left panel of Figure 9,
indicating that this true type is intrinsically uncertain. For the
true type SN Ibc, the violin plots are even more interesting.

Figure 14. The precision and recall as a function of redshift for the SN Ia
objects (top two panels) and TDE (bottom two panels). The average value of
the threshold used across the classifiers is indicated in the text on the figure.
The shaded distributions in each panel show the fractional distribution of the
numbers of the transients as a function of redshift. The total number of
transients in the sample is also indicated. The evolution with redshift of the
metrics depends both on the redshift distribution of the objects and the
evolution of the light curves with changing redshift.
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Here the violin plot for the “Other” class has a peak at P(type)
=0.4 significantly away from zero. This arises from the fact
that the assigned probability of the “Other” class in Boone’s
solution was derived as a combination of probabilities from SN
Ia, SN Ibc, and SN II.

Feature selection. The participants in the PLAsTiCC
challenge were unanimous that the biggest challenge they
faced was the extraction of features from the large training and
test sets of PLAsTiCC. Feature extraction is often the limiting
factor in these classification challenges. Given the existence
and use of the Bazin et al. (2011) light-curve fitting model
(which is a four-parameter model that tends to zero flux as
t→±∞) which is in many commonly used astronomical
codes, many groups started with fits to the model, and trained
their classifiers on the fit parameters. Consistently one of the
top features was either the host galaxy photometric redshift or a
proxy for the spectroscopic redshift modeled from the
photometric redshift. Only two of the top 10 PLAsTiCC
entries did not include an estimate of the redshift or the distance
modulus. The maximum flux was also frequently used as a
feature for classification. The Kyle Boone classifier included
many signal-to-noise features whereas most other submissions
traced the time-dependent movements of the light curves
between the maximum and minimum flux. Many people used
some form of the ratios of flux in different filters (essentially a
“color”) as classification features.

GP regression proved a more model-independent approach,
but added the complexity of ensuring the correct choice of the
kernel to do the regression.

Nonrepresentativity of the PLAsTiCC test data. The Rubin
Observatory will map out the sky to a coadded magnitude
depth of 27–28 and a single-visit depth of 24 in the various
bands. This depth will yield a survey that has orders of
magnitude more objects than current wide-field surveys. No
current survey will be capable of providing distributions of
classes as a function of redshift that will be representative of
LSST. Any classifications performed based on low-z training
sets will by definition be incomplete. To emphasize the
importance of developing classifiers robust to this, the
PLAsTiCC training set is nonrepresentative by design. The
training set of 7486 objects was chosen to represent a probable
spectroscopic survey made from a combination of objects from
the Dark Energy Survey (DES) and other low-redshift surveys
like the Foundations survey (Foley et al. 2018). The procedure
for determining the spectroscopic training sample is outlined in
Section 6.4 of Kessler et al. (2019a). The roughly 3 million
objects in the test set not only had a different redshift
distribution, but included the “Other” class as a way to test the
robustness of classifiers to new objects and provide a sample
for anomaly detection, as discussed above.

A small fraction of the 3 million test objects included
spectroscopic “confirmation” and therefore had a small redshift
error, while others had their redshifts assigned according to an
example of the projected LSST photometric redshift perfor-
mance. A small bias to the photo-z values is introduced as a
result of the broadband data and training process. Many groups
used the photo-z and/or the flux information to determine a
proxy for the more informative spectroscopic redshift, which
was used to determine an effective distance for the objects.
These are labeled as “Model spec-z” in Table 3. We leave it to
future work to investigate the impact the photo-z bias had on
classification performance explicitly. Several groups performed

data augmentation to address some of the issues with
nonrepresentativity of the data by resampling in time to match
the cadence of the test data, and adding noise to the training
data that was similar to the (larger) scatter in the test data, as
summarized in Table 3.
Class imbalance in PLAsTiCC. In addition to the test data

being nonrepresentative of the training data set, the classes
within the training and test data sets had significantly different
proportions relative to the total population of objects. This class
imbalance reflects true imbalances in nature, and was hence a
designed feature of PLAsTiCC. Successful classifiers
accounted for these imbalances by oversampling rare light
curves, augmenting fluxes and errors, or including test data
with pseudo labels. The approaches employed by the various
classifiers are shown in Table 3.

6. Conclusion

The PLAsTiCC studies evaluate the classification probabil-
ities derived by a range of methods for classifying a
heterogeneous assortment of astronomical transients and
variables. While previous challenges and data sets have
focused on classifier performance related to one type of object
or science case, PLAsTiCC represents the most complete
simulation of future photometric surveys to date and challenged
the community to take into account degeneracies between
different types of interesting objects without a unifying science
application and to prepare for future data that will contain
novel/unknown objects that require classification and flagging
for observational follow-up.
Accurate classification of transients in future surveys

remains one of the key challenges for time domain observa-
tional astrophysics. While astronomers with domain knowledge
are able to develop classification/selection methods tailored to
individual science cases, the creativity and flexibility of the
data science entries to PLAsTiCC suggest a collaborative future
across disciplines will be key to making progress.
The PLAsTiCC challenge yielded a few key insights:

1. data augmentation of sparse nonrepresentative training
data is key to accurate performance on the full test set;

2. a metric weighted by the number of objects in a class
ensures that classification performance in the most
populous class does not dominate overall performance;

3. data fitting and feature selection are the most computa-
tionally time-consuming parts of any classification
challenge;

4. one successful approach is pulling out a larger set of
features over which to train, and then determining the
feature importance before classifying the objects on the
smaller subset of features;

5. objects with similar light-curve shapes are broadly
degenerate (e.g., SN Iax and SN Ia) and may present
challenges to future surveys, motivating the inclusion of
additional information about the host galaxy, where
applicable;

6. no strong preference for any one machine-learning
architecture was found; successful classification proce-
dures often combine a range of methods from neural
networks to tree-based approaches;

7. domain knowledge helped mainly in identifying more
useful features over which to train, which was an asset,
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given that this was often the most time-consuming part of
the classification;

8. all classifiers struggled to classify objects with low
frequency in the training data, or novel (unknown)
objects

Classifying objects from their photometric information alone
will unlock the potential of using these interesting objects in a
range of science applications.

This challenge assumed that the full light curves for the
objects were available. Long-lived transients can be followed
up with ground-based resources within a few days of detection
in a photometric survey. For some of the most interesting
objects, however, waiting even a few days will mean losing
valuable information about the evolution of the transient. As
such, early classification of these bright objects becomes
essential. We did not focus on the problem of early
classification in PLAsTiCC, but the next step in using these
simulations to prepare for the LSST Will be to provide an extra
performance score to classifiers capable of rapidly classifying
transient sources, based on both their light curves and any
additional data about their environment and location. This may
prove more challenging or prone to bias than classification
using the full light curve.
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