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Abstract

We evaluate the performance of the Legacy Survey of Space and Time Science Pipelines Difference Image
Analysis (DIA) on simulated images. By adding synthetic sources to galaxies on images, we trace the recovery of
injected synthetic sources to evaluate the pipeline on images from the Dark Energy Science Collaboration Data
Challenge 2. The pipeline performs well, with efficiency and flux accuracy consistent with the signal-to-noise ratio
of the input images. We explore different spatial degrees of freedom for the Alard–Lupton polynomial-Gaussian
image subtraction kernel and analyze for trade-offs in efficiency versus artifact rate. Increasing the kernel spatial
degrees of freedom reduces the artifact rate without loss of efficiency. The flux measurements with different kernel
spatial degrees of freedom are consistent. We also here provide a set of DIA flags that substantially filter out
artifacts from the DIA source table. We explore the morphology and possible origins of the observed remaining
subtraction artifacts and suggest that given the complexity of these artifact origins, a convolution kernel with a set
of flexible bases with spatial variation may be needed to yield further improvements.

Unified Astronomy Thesaurus concepts: Transient detection (1957); Supernovae (1668); Type Ia super-
novae (1728)

1. Introduction

The Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST; Ivezić et al. 2019) will survey the southern sky
from 2025 to 2035. This wide-field ground-based system uses
an 8.4 m (6.5 m effective) telescope with a 3.2 gigapixel camera
and a 9.6 deg2 field of view. The LSST survey will repeatedly
observe ∼18,000 deg2 of the sky in the ugrizy filters during its
10 yr of operations.

The LSST data will be useful for a wide variety of science
(LSST Science Collaboration et al. 2009), with guiding areas of
probing dark energy and dark matter, studying the transient
optical sky, producing an inventory of the solar system, and
mapping the Milky Way. Achieving these scientific goals
requires the discovery of transient sources and accurate
photometric measurements. The LSST is expected to discover
about 106 transient sources per night (Ridgway et al. 2014;
Graham et al. 2019; Ivezić et al. 2019), which requires a
detection pipeline with high efficiency and a low rate of
nonastrophysical artifacts.

The Rubin Observatory LSST Dark Energy Science
Collaboration (DESC) developed the dia_pipe6 package to run

the LSST Science Pipelines7 Difference Image Analysis (DIA)
algorithms. The dia_pipe combines different parts of the LSST
Science Pipelines difference imaging code into a single
pipeline, which enables the user to perform image difference,
source association, and forced photometry. The DESC dia_pipe
has been integrated with the LSST Data Release Production
pipeline.
The LSST DESC Data Challenge 2 (DC2; LSST Dark

Energy Science Collaboration (LSST DESC) et al. 2021) was a
modeling and simulation effort that generated simulated LSST
images. From a simulated Universe with galaxies, stars, and
Type Ia supernovae (SNe Ia), DC2 used GalSim (Rowe
et al. 2015) to render astronomical objects into a set of images
for 5 yr at 300 deg2 of the sky. These images were processed
through the LSST Science Pipelines into data products modeled
on those to be delivered by the Rubin Observatory. Sánchez
et al. (2022) compared the DIA performance metrics to the
Dark Energy Survey DIA performance (Kessler et al. 2015)
using a 15 deg2 subset of DC2 data, based on the SNe Ia that
had been included in the DC2 simulation, and found similar
performance to the DESC survey. Here, we perform a more in-
depth evaluation of DIA using additional synthetic source
injection on a subset of the DC2 data set. Our goal is to connect
and explore the DIA algorithmic concepts and code as
implemented in the LSST Science Pipelines.
In this work, we inject a controlled set of synthetic sources

onto DC2 images to (1) evaluate the pipeline at different source
magnitude levels and host magnitude levels, (2) compare the
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pipeline performance with different kernel spatial orders, and
(3) determine a set of flag-based cuts to removing false-positive
detections (“artifacts”).

The essential strategy of the synthetic source injection
technique is to add synthetic sources onto astronomical images
based on the measured point-spread function (PSF) and
monitor the detection status and flux measurements of these
synthetic sources.

Traditionally, the use of DIA algorithms in surveys has
suffered from significant subtraction artifacts, leading to the
need for human-based or machine-learning-based classification
(Kaiser et al. 2002; Frieman et al. 2008; Sako et al. 2008;
Bernstein et al. 2012; Kessler et al. 2015). We explore the
possible origins of these artifacts using difference images
produced by the DIA pipeline. We study both the statistical
properties of artifact measurements and the morphology of
artifacts. A few possible causes are discussed, and we give
suggestions for future improvements.

The outline of this work is as follows. Section 2 introduces
image difference algorithms, Section 3 introduces the analysis
framework of the synthetic source injection technique, Section 4
presents the analysis results of the DIA pipeline, Section 5
discusses the morphology and potential origin of subtraction
artifacts, Section 6 discusses the current status of the DIA
pipeline and possible future improvements, and we provide
conclusions and outline future directions in Section 7.

2. Difference Image Algorithms

To begin DIA, we prepare two images that cover the same
region of the sky with a time separation longer than a typical
light-curve duration. One image, which usually was taken in
good seeing conditions and has a high signal-to-noise
ratio (S/N) for the magnitude range of interest, is designated
as the template image. The other image is called the science
image. Typically, the template image was taken months to years
before the science image and may be a coaddition of many
images to reduce the photon noise. In this analysis, we use
coadded template images. The science image is typically from
the current night, where we search for new transient sources or
variations in the brightness or position of existing sources.

The next step is to match both images to the same seeing
condition and the same astrometric reference so that we can
subtract one image from the other to obtain a difference image
that ideally represents the astrophysical differences between
them. Source detection and photometric measurements are then
performed on the difference image to produce a detection
catalog. The LSST Science Pipelines version used in this work
provides both the Alard–Lupton (AL; Alard & Lupton 1998)
and the Zackay–Ofek–Gal–Yam (ZOGY; Zackay et al. 2016)
algorithms to perform image differencing. The AL algorithm
assumes that the PSFs of the science image (S) and template
image (T) can be matched using a kernel κ. This process is
done empirically by matching common sources in both
images and does not explicitly use calculated PSFs for the
images. The kernel κ is solved by minimizing the square sum
of pixels from the difference image. The ZOGY algorithm
assumes explicit knowledge of the PSF in each image and uses
the Fourier transform between them to achieve the same seeing
conditions of T and S and produce a detection image
highlighting the astrophysical sources. A decorrelation method
is also introduced in the ZOGY algorithm to perform
decorrelation of the difference image.

2.1. AL Algorithm

The AL algorithm solves for the matching kernel κ, which
uses stars in both images to match the PSF of the template
image to the PSF of the science image. Galaxies can be used in
addition to stars, although a galaxy provides less information
than a star of the same flux level. Thus, this process is not
dependent on reliable star–galaxy separation. In the spatially
varying (Alard & Lupton 1998; Alard 2000) situation, the
matching kernel can be expressed as

( ) ( ) ( ) ( )u v x y a x y k u v, , , , , . 1q
N

q q1
kk = S =

Here Nκ is the number of kernel bases, aq is a set of fitted
spatially varying coefficients, and kq is a set of kernel bases.
The most commonly used kernel bases are composed with a set
of Gaussian functions modulated with a set of polynomials
(Alard & Lupton 1998). Another type of kernel basis is
composed with delta bases (Bramich 2008; Miller et al. 2008),
which are “shape-free” delta functions defined for each kernel
pixel coordinate.
Using the matching kernel κ, the difference image of the AL

algorithm can be expressed as

( ) ( ) ( ) ( ) ( ) ( )D x y S x y T x y x y B x y, , , , , , 2k= - Ä -

where B(x, y) is the fitted sky background.

2.2. ZOGY Algorithm

The ZOGY algorithm was designed for the case where PSFs
and flux scaling factors for T and S are properly estimated, and
the sky backgrounds of both images have been properly
subtracted.8 The difference image from the ZOGY algorithm in
Fourier space can be expressed as

ˆ ˆ ˆ ˆ ˆ
∣ ˆ ∣ ∣ ˆ ∣
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The equivalent PSF of the ZOGY difference image is
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t s t s

D s t t t s s
2 2 2 2 2 2s s

=
+

Here the hat symbol represents the Fourier transform of each
quantity, Pt and Ps are the PSFs of T and S, Ft and Fs are the
flux scaling factors of both images, σt and σs are background
noise levels, and FD is the normalization constant. The
expression in the denominator of D̂ plays the role of
decorrelating the noise.
However, ZOGY provides no mechanism to include

information about the spatial variation of PSFs. One approach
to using a spatially varying ZOGY would be to split T and S
into subregions within which the spatial variation of PSFs is
much smaller (Zackay et al. 2016; Reiss 2017; Hu et al. 2022).
Performing the ZOGY algorithm on each subregion is
achievable at the expense of more CPU and more complicated
bookkeeping for detections near and across the edges of
subregions. Such a “cell-based” approach to templates and
subtraction could fail if the PSFs are varying rapidly across the
images.

8 The ZOGY paper uses N to denote the science image and R for the template
image. We here use T and S consistently for both AL and ZOGY.
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3. The DC2 Data Set and Analysis Framework

3.1. The DC2 Data Set

To prepare for analysis of LSST data, LSST DESC created
the DC2 data set with an end-to-end approach (LSST Dark
Energy Science Collaboration (LSST DESC) et al. 2021) to
simulate a subset of the full LSST survey. This approach
started with a large N-body simulation of galaxies in the
Universe, applied LSST-like observations, simulated each
exposure, ran the LSST Data Release Processing pipeline,9

and produced data products analogous to those that will be
delivered by the Rubin Observatory. The DC2 observations
include six optical bands (ugrizy) with coverage of 300 deg2 in
a wide-fast-deep area and 1 deg2 in a deep drilling field. It
simulates 5 yr of the LSST survey.

The DC2 data set provides two classes of imaging data. For
single-frame processing, it provides calibrated exposures
(calexps) with sky background subtraction. Each calexp image
is a 4000× 4072 pixel image array with 0 2 pixel−1 scale. It
also has a source catalog (src) that contains measurements of
sources in that visit. After producing calexps, multiple visits are
coadded together to create deepCoadd exposures. The
resampling grid of deepCoadds is defined with tracts and
patches. Each tract contains 7× 7 patches, and each patch
contains 4100× 4100 pixels with a scale of 0 2 pixel−1. A
visual representation of the tract-and-patch structure can be
found in Sánchez et al. (2022) or LSST Dark Energy Science
Collaboration (LSST DESC) et al. (2021).

3.2. Template Exposure

We focus on i-band exposures of the DC2 data set for our
analysis. We choose “deepCoadd” exposures with seven
patches as template exposures. The total area analyzed in this
paper is about 0.36 deg2.

3.3. Host Selection Criteria and Science Exposure

We undertook this work from the perspective of SN
cosmology, and so we are interested in the detection and
photometric accuracy of new point sources (SNe) on top of
extended sources (galaxies). GCRCatalogs (Mao et al. 2018) is
a DESC package that provides users with a consistent interface
to access both the input truth catalogs and the output processed
catalogs for the DC2 simulations. We use GCRCatalogs to
extract a list of potential host galaxies from the input truth table
with a range of apparent host magnitudes. Next, we measure
the local surface brightness (SB) with 1″ aperture photometry at
the center of each galaxy in the simulated images. We sort the
galaxy sample into 1 mag arcsec−2 bins distributed from 20 to
25 mag arcsec−2 with 1 mag arcsec−2 bin widths. While in the
real Universe, SNe occur throughout galaxies, what we really
want to explore here is the dependence of SN detection on
underlying SB. Thus, we place the SN at the centers of galaxies
with different central SB.

Within each patch and each SB magnitude bin, we select a
set of 20 hosts. Galaxies are chosen to satisfy two criteria: (1)
each host center is at least 200 pixels away from the image
boundaries in both the x- and y-directions, and (2) each host
center is at least 100 pixels away from another host center.
These criteria help us avoid subtractions near image edges and

injecting overlapping synthetic sources. Locations of hosts on a
patch are shown in Figure 1.
After selecting the host set within each patch and each host

SB magnitude bin, we match each host set to 10 calexps using
the tracts_mapping.sqlite3 database file of the DC2 data set.
We inject synthetic sources onto each calexp and then use those
as the science exposures for running the image difference
algorithm. We define a calexp and its corresponding
deepCoadd exposure as an “image pair.” In total, we have 70
image pairs. The LSST survey takes images at a range of
spatial and rotational dithers; thus, a single calexp often does
not fully cover all 20 hosts in each host set. We restrict our
sample to calexps that cover at least 15 host galaxies.

3.4. Synthetic Source Injection Framework

Our synthetic source injection procedure is based on the
insertFakes module of the pipe_tasks10 package of the LSST
Science Pipelines. We convert the R.A., decl. of the host to the
x, y coordinate on the image. We then simulate point sources
based on the calexp PSF model at that location on the image.
The synthetic source injection framework converts the
magnitude to the instrumental flux and scales the normalized
synthetic source model by the instrumental flux. In the single-
frame processing, the instrumental flux to magnitude calibra-
tion of the images was calculated with respect to a 12 pixel
radius aperture. While the PSF model is finite in size, it is
always larger than the calibration radius. The PSF model is
normalized to sum to 1. We calculate the aperture correction
between the full PSF and the smaller calibration radius and
scale the model of the PSF by this correction. We then multiply
the scaled PSF by the instrumental flux from the calibration to
inject a source that has the correct photoelectron contribution
for its magnitude. The scaled model is added to the image plane
of the calexp without making any changes to its variance plane,
which means we ignore the Poisson noise of the synthetic
source.
After finishing the injection stage, we run the DIA pipeline

on the injected data set using the imageDifferenceDriver.py of
the dia_pipe package with v23.0.011 of the LSST Science
Pipelines. This stage produces difference images and then runs
photometry measurement algorithms on that difference image
to produce the DIA source (diaSrc) table, which contains
source measurements of the detected source. We obtain
positions of variable stars and active galactic nuclei (AGNs)
from the truth tables in GCRCatalogs and match them to the
diaSrc tables. All variables and AGNs that get matched are
removed from the diaSrc tables. As a result, the detections from
the diaSrc tables only have synthetic sources and artifacts.12

Next, we match the known injection positions to the diaSrc
tables to determine whether the injected synthetic sources are
detected in the difference exposures. The diaSrc fluxes and the
flag information of the detected sources are also extracted from
the diaSrc tables for further analysis.

3.5. LSST Software

In this work, we use the v23.0.0 version of the LSST stack
package to provide basic functionalities for synthetic source

9 https://pipelines.lsst.io/

10 https://github.com/lsst/pipe_tasks
11 https://pipelines.lsst.io/releases/v23_0_0.html
12 Strictly speaking, diaSrc tables also have simulated SNe. Given the rarity of
the true SNe, classifying them as artifacts does not affect our statistics.
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injection and image difference. We have documented the
proper software versions in the GitHub repo LSSTDESC/
dia_improvement,13 which includes scripts to reproduce
our work.

4. DIA Pipeline Analysis

In this section, we describe performance metrics, injection
strategy, and analysis results of the DIA pipeline. Different
kernel spatial degree of freedoms have been implemented in the
pipeline to reduce subtraction artifacts. We compare their
performance here and identify the photometric flags that
effectively select true positives with high efficiency and a low
artifact rate.

4.1. Metrics

We evaluate the subtraction quality of the DIA pipeline
using the following metrics. These metrics should reflect the
detection ability and the photometric measurement accuracy of
the pipeline.

1. Efficiency14 (Eff): the number of detected synthetic
sources divided by the number of injected synthetic
sources. We expect it to approach unity when synthetic
sources are bright and decrease to 0 at the faint magnitude

end. The efficiency curve can be fitted using a sigmoid
model. In this work, we use the function

( ) ( )( )m
e

eff
1

1
5

a m b
=

+ - -

to fit our data, with a and b as fitting parameters and m as
the synthetic source magnitude.15 Using this equation, we
can solve the magnitude depth m1/2, which corresponds
to the synthetic source magnitude, where the efficiency
drops to 50%. The magnitude depth m1/2 is mathema-
tically equivalent to the fitting parameter b.

2. Artifact rate (AR): the number of subtraction artifacts per
square degree.

3. Flux pull (ΔF/σ):

( ) ( )fluxpull measuredflux injectedflux fluxerror .= -

This flux pull should follow a normal distribution with a
mean of 0 and a standard deviation of 1. In this analysis,
we calculate the pull statistic of the diaSrc PSF flux.

4.2. Analysis Strategies

We apply two analysis strategies to sets of DC2 calexps. The
first strategy is to focus on measuring efficiency as a function
of source magnitude and background SB; we inject synthetic

Figure 1. Locations of host galaxies on a patch (4100 × 4100 pixels). Hosts with different SB are indicated with different colors.

13 https://github.com/LSSTDESC/dia_improvement
14 In this work, we estimate the detection efficiency using synthetic sources
that are injected on host galaxies. A method that untangles the effects of
Poisson noise versus subtraction artifacts can be found in Doctor et al. (2017).

15 This equation is correct for constant noise and PSF within an image. Our use
across a set of images with some variation in noise and PSF is an
approximation. A more robust relationship would be efficiency versus injected
S/N.
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sources from 20–23 mag in 0.5 mag steps and 23–24 mag in
0.1 mag steps. These finer steps focus on the magnitude range
where the efficiency drops rapidly. We use this strategy to
determine the magnitude depth m1/2 at which 50% of the
sources are recovered.

For the second strategy, we undertook a related but separate
campaign of studying efficiency and artifact rate for high
signal-to-noise synthetic sources and low signal-to-noise
synthetic sources with different subtraction configurations with
two consistent sets of 20 mag (MAG20) sources and 23 mag
(MAG23) sources.

4.3. Performance of the Default Configuration of the DIA
Pipeline

To get a baseline evaluation of the performance of the DIA
pipeline, we run dia_pipe using the default configuration of the
pipeline. The default difference imaging algorithm is AL with a
set of Gauss-polynomial bases. The AL kernel has three
Gaussians with sigma values of 0.7, 1.5, and 3.0 pixels, with
respective order 4, 2, and 2 polynomials in kernel (u, v) space.
These kernel terms are allowed to spatially vary at first order in
x, y across the image. The background level is allowed to vary
spatially at second order in x, y.

The upper plot of Figure 2 shows our recovered detection
efficiency as a function of synthetic source magnitude. The
efficiency follows predicted smooth curve efficiency functions,
with a decrease in efficiency as a function of both (1)
decreasing injected flux and (2) increasing underlying SB (and
thus background noise) at the location the synthetic source is
placed. The effect of the underlying host galaxy light is most
visible for the brightest hosts, SB= 20–21 mag arcsec−2,
which shows a substantial 0.25 mag m1/2 shift in the efficiency
curve. The DIA pipeline successfully recovers all16 synthetic
sources brighter than 22 mag. The efficiency starts to drop
below 1 around 22 mag, and it drops below 0.5 between 23 and
24 mag. In the lower plot of Figure 2, we focus on the detection
efficiency at the faint magnitude (low S/N) limit. The predicted
values of the m1/2 of the fitted function are between 23.40 and
23.71 mag.
Figure 3 shows the S/N distribution of the detected synthetic

sources when injected at 21, 22, 23, and 24 mag. At the
synthetic source magnitude of 21, the S/N distribution is far
above the detection limit, which means the pipeline should be
able to recover all synthetic sources. At the injected magnitude
of 23, the S/N distribution overlaps the detection threshold,
and the efficiency begins to drop. When the synthetic source

Figure 2. Detection efficiency vs. source mag (dots). Solid lines are sigmoid models fitted to the data. Different SB magnitudes are indicated using the colors shown in
the legend. The upper plot corresponds to 20–24 synthetic source magnitudes with a 0.5 mag interval. The lower plot corresponds to 23–24 synthetic source
magnitudes with a 0.1 mag interval. The m1/2 for different host SBs are 23.40 (20–21 mag arcsec−2), 23.55 (21–22 mag arcsec−2), 23.64 (22–23 mag arcsec−2), 23.66
(23–24 mag arcsec−2), and 23.71 (24–25 mag arcsec−2). They are shown as vertical lines in the lower plot.

16 Efficiency of 0.989.
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magnitude is 24, most injections are below the detection
threshold, which explains why the efficiency is low at this
magnitude.

Figure 4 shows the distributions of the detected magnitude
and injected magnitude of synthetic sources. At the injected
magnitude of (20, 21, 22, 23, 24), more than (99%, 99%, 90%,

Figure 3. S/N distribution of detected sources with true mag listed above each panel. Injections from different host SB are binned together. The efficiency at each
source magnitude is shown on each plot. The vertical line in each plot shows the S/N = 5.5 detection threshold. The S/N distribution is closer to the threshold for
fainter synthetic sources.

Figure 4. Distributions of recovered magnitudes (solid lines) of synthetic sources at different injected magnitudes (dashed lines). For injected magnitudes of (20, 21,
22, 23, 24), more than (99%, 99%, 90%, 57%, 8%) of the recovered flux measurements are within 0.1 mag of the injected magnitudes. At 24 mag, the distribution of
recovered magnitudes is significantly biased toward the bright side due to Malmquist bias.
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57%, 8%) of the flux measurements are within 0.1 mag of the
injected magnitudes. At 24 mag, the distribution is significantly
biased toward the bright side due to the Malmquist bias
(Malmquist 1922, 1925).

4.4. Comparison with Previous DESC DC2 Analysis

Here we give a comparison of the i-band m1/2 to the
previous DESC DC2 DIA (Sánchez et al. 2022). That
work evaluated the m1/2 of the LSST DIA pipeline using
about 15 deg2 of the DC2 data set with artificial SN Ia light
curves overlaid onto exposures. The estimated m1/2 in the i
band is 23.50 mag for all sources.

In this work, we estimate the m1/2 in the i band using about
0.36 deg2 of the DC2 data set with carefully controlled
synthetic point sources distributed across different host
brightness. The fitted m1/2 is between 23.40 mag and
23.71 mag, depending on the underlying SB.

4.5. Kernel Spatial Degree of Freedom

Alard & Lupton (1998) and Alard (2000) suggest expanding
the AL kernel coefficients aq(x, y) (Section 2.1) as a function of
a power series of positions. The highest-order ds of the power
series defines the kernel spatial degree of freedom. The
implementation of the AL algorithm in the DIA pipeline can
be configured to run with different values of ds. In this section,
we explore the pipeline performance with ds varying from 1 to
4. The pipeline default value of ds is 1. Our analysis was
constrained to a maximum spatial order of ds= 4 due to
limitations in v23.0.0 of the LSST Science Pipelines, which
have since been lifted. Raising ds beyond 4 offers increased
kernel flexibility, thereby potentially reducing the artifact rate.

However, this approach carries the risk of overfitting, since the
number of spatial polynomials scales proportionally with ds

2

(Alard 2000; Bramich et al. 2013). Additionally, it would result
in an increase in computational time.
The primary goal of exploring the spatial degrees of

freedom is to reduce artifacts while maintaining high efficiency
and flux accuracy. We focus here on high-S/N sources at
20 mag (MAG20), which is far above the detection limit, and
low-S/N sources at 23 mag (MAG23), which is close to the
m1/2. Since the comparison focuses on the region that is away
from the image edge,17 it is possible that the high dss are
performing worse near the image edge. More evaluations near
the image boundary are still needed in future work.
In Table 1, we show the efficiency, artifact rate,18 mean, and

standard deviation of the flux pull distribution for each spatial
degree of freedom at MAG20 and MAG23. We find that the
results from high S/N and low S/N are consistent. Up to
ds= 4, the artifact rate is a monotonically decreasing function
of ds. The fluctuation of the recovered mean pull of the flux of
the injected sources is less than 0.020. The fluctuation of the
standard deviation is less than 0.010. The fluctuation of the
efficiency is less than 0.013.
In Figure 5, we show the postage stamps of difference

images from different spatial degrees of freedom. Each column
of stamps is made at the same position, while each row
corresponds to a specific ds. By comparing the stamps, we find
that high dss, especially ds= 4, can produce cleaner difference

Figure 5. Postage stamps of difference images from different kernel spatial degrees of freedom (ds). Each column shows one location on the subtraction image. Each
row corresponds to a specific ds.

17 Host galaxies are selected to be 200 pixels away from the image boundary.
18 To be consistent with Section 4.6, we use only detections from
SB = 20–21 mag arcsec−2 to calculate efficiency and artifact rate.
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images. As a result, the artifact rate decreases as the ds
increases.

4.6. Detection Flags

The LSST Science Pipelines are configured to detect any
possible source and characterize it with flags to indicate
detections that are not real astrophysical sources. These 109
flags identify pixel-level features such as saturation, bad pixels,
and cosmic rays as well as characteristics of the source in the
subtraction such as moment and dipole fits. We use these flags
to reject artifacts, which we here define as detections that are
not in circular regions with 0 8 radii of known synthetic
sources. The data are from MAG20 and MAG23, with host SB
between 20 and 21 mag arcsec−2. In this synthetic source
injection analysis, we split the detected sources from each
diaSrc table into two tables: one for the detected synthetic

sources (MAG20: 1184 entries; MAG23: 1003 entries) and the
other for detections that are artifacts (MAG20: 2446 entries;
MAG23: 2464 entries).
We use the efficiency and artifact rate to examine the power

of each flag to classify sources into real and artifact. We
calculate these metrics for all flags and show the full table in
Table 2. From this information in this table, we can select a
small set of flags where (1) the efficiency of each flag is close
to 1 at MAG20 and (2) each flag has a clear physical
interpretation related to artifact classification. We document
this “selected flags” set in Table 3. To evaluate the efficacy of
this flag set, we compare the efficiency and artifact rate before
and after applying the union of these flags to our detection. At
MAG20, we find that the efficiency drops from 1.000 to 0.999,
and the artifact rate drops from 695 deg−2 to 69 deg−2. At
MAG23, the efficiency drops from 0.847 to 0.791, and the
artifact rate drops from 700 deg−2 to 68 deg−2. These results

Figure 6. Artifacts commonly seen in difference images. Sources with saturated pixels (left) are easy to identify and marked with saturation flags in the diaSrc table.
Clustering pixels (second from left) come from subtraction residuals of background sources or background noise. Dipoles (second from right) require measurements
and fitting; many are successfully identified, but there is a continuum of less-offset and lower signal-to-noise dipoles that are hard to identify. The dipole artifact is a
subclass of the clustering-pixels artifact. Deconvolution (right) leaves characteristic rings from trying to invert information that is not available in the larger PSF image.

Table 1
Flux Difference Pull Distribution, Efficiency, and Artifact Rate with Different Kernel Spatial Degree of Freedom

MAG20 MAG23

ds Mean Std. Eff. Artifact Rate Mean Std. Eff. Artifact Rate
ΔF/σ (deg−2) ΔF/σ (deg−2)

1 0.090 1.232 1.000 695 0.096 1.000 0.847 700
2 0.087 1.228 1.000 689 0.090 0.999 0.840 693
3 0.092 1.237 1.000 650 0.088 1.011 0.843 651
4 0.106 1.232 1.000 612 0.092 1.006 0.852 608

Note. The mean and standard deviations are of the pull distribution of the difference between detected flux and injected flux (ΔF/σ). We apply a 5σ clip to the pull
distribution to remove outliers. At MAG20, the percentages of outliers are (0.249%, 0.232%, 0.182%, 0.265%) at (ds = 1, 2, 3, 4). At MAG23, the percentages of
outliers are (0.054%, 0.036%, 0.054%, 0.036%) at (ds = 1, 2, 3, 4). The default spatial degree of freedom is ds = 1.
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Table 2
Efficiency and Artifact Rate of All Flags

MAG20 MAG23

Flag Description Eff.
Artifact
Rate Eff.

Artifact
Rate

(deg−2) (deg−2)

No flag applied L 1.000 695 0.847 700
flags_negative Set if source was detected as significantly negative 1.000 695 0.847 700
base_NaiveCentroid_flag General failure flag 1.000 685 0.847 689
base_NaiveCentroid_flag_noCounts Object to be centroided has no counts 1.000 695 0.847 700
base_NaiveCentroid_flag_edge Object too close to edge 1.000 695 0.847 700
base_NaiveCentroid_flag_resetToPeak Set if CentroidChecker reset the centroid 1.000 685 0.847 689
base_PeakCentroid_flag Centroiding failed 1.000 695 0.847 700
base_SdssCentroid_flag General failure flag 1.000 230 0.846 220
base_SdssCentroid_flag_edge Object too close to edge 1.000 683 0.847 689
base_SdssCentroid_flag_noSecondDerivative Vanishing second derivative 1.000 695 0.847 700
base_SdssCentroid_flag_almostNoSecondDerivative Almost vanishing second derivative 1.000 676 0.847 681
base_SdssCentroid_flag_notAtMaximum Object is not at a maximum 1.000 275 0.846 266
base_SdssCentroid_flag_resetToPeak Set if CentroidChecker reset the centroid 1.000 679 0.847 683
base_SdssCentroid_flag_badError Error on x and/or y position is NaN 1.000 681 0.847 685
ip_diffim_NaiveDipoleCentroid_flag General failure flag, set if anything went wrong 1.000 695 0.847 700
base_CircularApertureFlux_flag_badCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
base_GaussianFlux_flag_badCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
base_NaiveCentroid_flag_badInitialCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
base_PeakLikelihoodFlux_flag_badCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
base_PsfFlux_flag_badCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
base_SdssCentroid_flag_badInitialCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
base_SdssShape_flag_badCentroid General failure flag, set if anything went wrong 1.000 695 0.847 700
slot_Centroid_flag General failure flag, set if anything went wrong 1.000 695 0.847 700
ip_diffim_NaiveDipoleCentroid_pos_flag Failure flag for positive, set if anything went wrong 1.000 695 0.847 700
slot_Centroid_pos_flag Failure flag for positive, set if anything went wrong 1.000 695 0.847 700
ip_diffim_NaiveDipoleCentroid_neg_flag Failure flag for negative, set if anything went wrong 1.000 695 0.847 700
slot_Centroid_neg_flag Failure flag for negative, set if anything went wrong 1.000 695 0.847 700
base_SdssShape_flag General failure flag 1.000 161 0.791 157
base_GaussianFlux_flag_badShape General failure flag 1.000 161 0.791 157
slot_Shape_flag General failure flag 1.000 161 0.791 157
base_SdssShape_flag_unweightedBad Both weighted and unweighted moments were

invalid
1.000 229 0.826 225

base_GaussianFlux_flag_badShape_unweightedBad Both weighted and unweighted moments were
invalid

1.000 229 0.826 225

slot_Shape_flag_unweightedBad Both weighted and unweighted moments were
invalid

1.000 229 0.826 225

base_SdssShape_flag_unweighted Weighted moments converged to an invalid value;
using unweighted moments

1.000 633 0.812 639

base_GaussianFlux_flag_badShape_unweighted Weighted moments converged to an invalid value;
using unweighted moments

1.000 633 0.812 639

slot_Shape_flag_unweighted Weighted moments converged to an invalid value;
using unweighted moments

1.000 633 0.812 639

base_SdssShape_flag_shift Centroid shifted by more than the maximum allowed
amount

1.000 665 0.847 673

base_GaussianFlux_flag_badShape_shift Centroid shifted by more than the maximum allowed
amount

1.000 665 0.847 673

slot_Shape_flag_shift Centroid shifted by more than the maximum allowed
amount

1.000 665 0.847 673

base_SdssShape_flag_maxIter Too many iterations in adaptive moments 1.000 681 0.825 684
base_GaussianFlux_flag_badShape_maxIter Too many iterations in adaptive moments 1.000 681 0.825 684
slot_Shape_flag_maxIter Too many iterations in adaptive moments 1.000 681 0.825 684
base_SdssShape_flag_psf Failure in measuring PSF model shape 1.000 695 0.847 700
base_GaussianFlux_flag_badShape_psf Failure in measuring PSF model shape 1.000 695 0.847 700
slot_Shape_flag_psf Failure in measuring PSF model shape 1.000 695 0.847 700
base_CircularApertureFlux_3_0_flag General failure flag 1.000 695 0.847 700
base_CircularApertureFlux_3_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 695 0.847 700
base_CircularApertureFlux_3_0_flag_sincCoeffsTruncated Full sinc coefficient image did not fit within

measurement image
1.000 695 0.847 700

base_CircularApertureFlux_4_5_flag General failure flag 1.000 695 0.847 700
base_CircularApertureFlux_4_5_flag_apertureTruncated Aperture did not fit within measurement image 1.000 695 0.847 700
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Table 2
(Continued)

MAG20 MAG23

Flag Description Eff.
Artifact
Rate Eff.

Artifact
Rate

(deg−2) (deg−2)

base_CircularApertureFlux_4_5_flag_sincCoeffsTruncated Full sinc coefficient image did not fit within
measurement image

1.000 694 0.847 699

base_CircularApertureFlux_6_0_flag General failure flag 1.000 695 0.847 700
base_CircularApertureFlux_6_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 695 0.847 700
base_CircularApertureFlux_6_0_flag_sincCoeffsTruncated Full sinc coefficient image did not fit within

measurement image
1.000 694 0.847 699

base_CircularApertureFlux_9_0_flag General failure flag 1.000 695 0.847 700
base_CircularApertureFlux_9_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 695 0.847 700
base_CircularApertureFlux_9_0_flag_sincCoeffsTruncated Full sinc coefficient image did not fit within

measurement image
1.000 676 0.847 681

base_CircularApertureFlux_12_0_flag General failure flag 1.000 695 0.847 700
slot_ApFlux_flag General failure flag 1.000 695 0.847 700
base_CircularApertureFlux_12_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 695 0.847 700
slot_ApFlux_flag_apertureTruncated Aperture did not fit within measurement image 1.000 695 0.847 700
base_CircularApertureFlux_17_0_flag General failure flag 1.000 691 0.847 696
base_CircularApertureFlux_17_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 691 0.847 696
base_CircularApertureFlux_25_0_flag General failure flag 1.000 682 0.847 687
base_CircularApertureFlux_25_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 682 0.847 687
base_CircularApertureFlux_35_0_flag General failure flag 1.000 668 0.847 673
base_CircularApertureFlux_35_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 668 0.847 673
base_CircularApertureFlux_50_0_flag General failure flag 1.000 651 0.847 656
base_CircularApertureFlux_50_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 651 0.847 656
base_CircularApertureFlux_70_0_flag General failure flag 1.000 637 0.847 641
base_CircularApertureFlux_70_0_flag_apertureTruncated Aperture did not fit within measurement image 1.000 637 0.847 641
base_GaussianFlux_flag General failure flag 1.000 267 0.837 260
base_LocalPhotoCalib_flag Set for any fatal failure 1.000 695 0.847 700
base_LocalWcs_flag Set for any fatal failure 1.000 695 0.847 700
base_PeakLikelihoodFlux_flag General failure flag 1.000 695 0.847 700
base_PixelFlags_flag General failure flag, set if anything went wrong 1.000 695 0.847 700
base_PixelFlags_flag_offimage Source center is off image 1.000 695 0.847 700
base_PixelFlags_flag_edge Source is outside usable exposure region (masked

EDGE or NO_DATA)
1.000 556 0.847 561

base_PixelFlags_flag_interpolated Interpolated pixel in the source footprint 0.796 322 0.747 328
base_PixelFlags_flag_saturated Saturated pixel in the source footprint 1.000 337 0.847 343
base_PixelFlags_flag_cr Cosmic ray in the source footprint 0.796 562 0.747 567
base_PixelFlags_flag_bad Bad pixel in the source footprint 1.000 695 0.847 700
base_PixelFlags_flag_suspect Source's footprint includes suspect pixels 1.000 695 0.847 700
base_PixelFlags_flag_interpolatedCenter Interpolated pixel in the source center 0.935 362 0.795 369
base_PixelFlags_flag_saturatedCenter Saturated pixel in the source center 1.000 340 0.847 345
base_PixelFlags_flag_crCenter Cosmic ray in the source center 0.935 660 0.795 665
base_PixelFlags_flag_suspectCenter Source's center is close to suspect pixels 1.000 695 0.847 700
base_PsfFlux_flag General failure flag 1.000 673 0.847 678
slot_PsfFlux_flag General failure flag 1.000 673 0.847 678
base_PsfFlux_flag_noGoodPixels Not enough nonrejected pixels in data to attempt

the fit
1.000 695 0.847 700

slot_PsfFlux_flag_noGoodPixels Not enough nonrejected pixels in data to attempt
the fit

1.000 695 0.847 700

base_PsfFlux_flag_edge Object was too close to the edge of the image to use
the full PSF model

1.000 689 0.847 694

slot_PsfFlux_flag_edge Object was too close to the edge of the image to use
the full PSF model

1.000 689 0.847 694

ip_diffim_NaiveDipoleFlux_flag General failure flag, set if anything went wrong 1.000 695 0.847 700
ip_diffim_NaiveDipoleFlux_pos_flag Failure flag for positive, set if anything went wrong 1.000 695 0.847 700
ip_diffim_NaiveDipoleFlux_neg_flag Failure flag for negative, set if anything went wrong 1.000 695 0.847 700
ip_diffim_PsfDipoleFlux_flag General failure flag, set if anything went wrong 1.000 647 0.847 650
ip_diffim_PsfDipoleFlux_pos_flag Failure flag for positive, set if anything went wrong 1.000 695 0.847 700
ip_diffim_PsfDipoleFlux_neg_flag Failure flag for negative, set if anything went wrong 1.000 695 0.847 700
ip_diffim_ClassificationDipole_flag Set to 1 for any fatal failure 1.000 695 0.847 700
ip_diffim_DipoleFit_flag_classification Flag indicating diaSrc is classified as a dipole 0.999 474 0.846 480
ip_diffim_DipoleFit_flag_classificationAttempted Flag indicating attempt to classify diaSrc as a dipole 0.999 472 0.846 478
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suggest that using the “selected flags” to sift artifacts
significantly improves the artifact rate with only a small
decline in efficiency. We strongly recommend the use of these
flags when looking to identify a set of real astrophysical
detections in diaSrc tables.

5. Artifact Morphology

5.1. Artifact Definition

Now that we can identify artifacts using the “selected flags”
discussed in Section 4.6, we examine their physical origins
using artifacts from AL-based subtractions on the MAG20 data
set. We define four types of artifacts that are commonly seen in
difference images. The morphology of these artifacts is shown
in Figure 6.

1. Saturation artifact: caused by saturated pixels, where the
PSF shape is distorted. As a result, an optimal kernel
solution does not exist.

2. Clustering-pixels artifact: a clustering-pixels artifact
appears as clusters of positive pixels and negative pixels.
It comes from subtraction residuals of background
sources or background noise.

3. Dipole artifact: offset positive and negative lobes.
Inaccurate image registration or nonoptimal image
resampling can cause dipole artifacts. It is a subclass of
the clustering-pixels artifact.

4. Deconvolution artifact: a ring pattern. It is found in AL
difference images when the full width at half-maximum
(FWHM) of the science image is sharper than the FWHM
of the template image. In this scenario, the matching

Table 2
(Continued)

MAG20 MAG23

Flag Description Eff.
Artifact
Rate Eff.

Artifact
Rate

(deg−2) (deg−2)

ip_diffim_DipoleFit_flag General failure flag for dipole fit 0.001 222 0.001 221
ip_diffim_DipoleFit_flag_edge Flag set when dipole is too close to edge of image 1.000 693 0.847 699
base_GaussianFlux_flag_apCorr Set if unable to aperture correct base_GaussianFlux 1.000 695 0.847 700
base_PsfFlux_flag_apCorr Set if unable to aperture correct base_PsfFlux 1.000 695 0.847 700
slot_PsfFlux_flag_apCorr Set if unable to aperture correct base_PsfFlux 1.000 695 0.847 700
ip_diffim_forced_PsfFlux_flag Forced PSF flux general failure flag 1.000 689 0.847 694
ip_diffim_forced_PsfFlux_flag_noGoodPixels Forced PSF flux not enough nonrejected pixels in

data to attempt the fit
1.000 695 0.847 700

ip_diffim_forced_PsfFlux_flag_edge Forced PSF flux object was too close to the edge of
the image

1.000 689 0.847 694

to use the full PSF model
Union of flags Apply all above flags for source selection 0.000 0 0.000 0

Note. Flags can be used for removing artifacts. For a specific flag, detected sources are classified as artifacts if the flag is set to True. The first row shows the results
without applying flags. The last row shows the results of applying all of the above flags.

Table 3
Efficiency and Artifact Rate of Selected Flags

MAG20 MAG23

Flag Description Eff. Artifact Rate Eff. Artifact Rate
(deg−2) (deg−2)

No flag applied L 1.000 695 0.847 700
base_PixelFlags_flag_saturated Saturated pixel in the source footprint 1.000 337 0.847 343
base_PixelFlags_flag_saturatedCenter Saturated pixel in the source center 1.000 340 0.847 345
base_PixelFlags_flag_suspect Source's footprint includes suspect pixels 1.000 695 0.847 700
base_PixelFlags_flag_suspectCenter Source's center is close to suspect pixels 1.000 695 0.847 700
base_PixelFlags_flag_offimage Source center is off image 1.000 695 0.847 700
base_PixelFlags_flag_edge Source is outside usable exposure region (masked EDGE or

NO_DATA)
1.000 556 0.847 561

base_PixelFlags_flag_bad Bad pixel in the source footprint 1.000 695 0.847 700
ip_diffim_DipoleFit_flag_classification Flag indicating diaSrc is classified as a dipole 0.999 474 0.846 480
ip_diffim_DipoleFit_flag_classificationAttempted Flag indicating classification of diaSrc as a dipole was

attempted
0.999 472 0.846 478

base_SdssShape_flag General failure flag 1.000 161 0.791 157
base_GaussianFlux_flag_badShape General failure flag 1.000 161 0.791 157
slot_Shape_flag General failure flag 1.000 161 0.791 157
Union of flags Apply all above flags for source selection 0.999 69 0.791 68

Note. Flags can be used for removing artifacts. For a specific flag, detected sources are classified as artifacts if the flag is set to True. The first row shows the results
without applying flags. The last row shows the results of applying all of the above flags.
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kernel has to “deconvolve” the PSF of the template but is
not able to do so because the necessary information is not
available.

5.2. Artifact Morphology and Flags

To help us understand the relationship between flags and
artifact morphology, we split the “selected flags” defined in
Section 4.6 into three groups: saturation flags, dipole flags, and
shape flags. As their names suggest, saturation flags are set to
True if the detected source contains saturated pixels. We name
detected artifacts with the saturation flag set to True saturation-
flag artifacts and name the rest non-saturation-flag artifacts.
Dipole flags are set to True for dipole artifacts. It is possible
that a detected source visually appears as a dipole but has no
dipole flags set to True. This could be related to the trigger
mechanism and flux separation of dipole measurements. When
the DIA pipeline is making a dipole classification for a detected
source, it fits the fluxes of the negative and positive lobes and
their corresponding centroids simultaneously. A detected
source is classified as a dipole if the quadrature sum of the
fitted fluxes is above the corresponding minimum S/N
threshold and the fitted fluxes weighted by the total flux are
both smaller than the maximum flux ratio threshold. Any
detection that visually appears as a dipole but does not satisfy
these criteria is not classified as a dipole artifact. Also, the
fitting algorithm itself may have degeneracy in estimating
dipole fluxes. Dipoles from faint and highly separated sources
are almost indistinguishable from dipoles from bright and
closely separated sources (Reiss 2016). The inaccuracy of
dipole flux estimation could further affect dipole classification.
Possible improvements such as using presubtraction images in
dipole fitting are discussed in Reiss (2016). Shape flags are set
to True if the detected source has second moments that are
inconsistent with a Gaussian shape. More detailed definitions
of these flag sets are given in Table 4.

5.3. Seeing Conditions

Artifact morphology can be affected by the relative seeing
conditions of template images and science images. We split our
image pairs defined in Section 3.3 into three classes based on

the FWHM of their coadd (template)/calexp (science) image
PSFs. These classes are defined as

1. broad: calexp FWHM � coadd FWHM;
2. near: calexp FWHM < coadd FWHM and (calexp FWHM

− coadd FWHM) / (coadd FWHM) >−0.05; and
3. sharp: (calexp FWHM − coadd FWHM) / (coadd

FWHM) �−0.05.

In the broad class, calexps have larger PSFs than coadd
exposures, which is the condition that the AL algorithm is
capable of matching the coadd PSF to the calexp PSF. In the
near class, calexp PSFs are smaller than coadd PSFs. However,
the relative difference of FWHMs is still close. In the sharp
class, calexp PSFs are much smaller than coadd PSFs. The AL
matching kernel has to “deconvolve” the coadd PSF to match
the calexp PSF.

5.4. Artifact Morphology and Artifact Fraction

Using the above definitions, we can study artifact
morphology in each FWHM class. We start with calculating
the proportions of artifacts in each flag group. The results are
shown in Table 5. The fraction of artifacts in each class with
saturation flags set to True is nearly 50%. Since they are
subtraction residuals of bright background sources (starts,
galaxies, etc.), it is important to understand at what background
source S/N this issue occurs most frequently. We match
background sources from the calexp src (Section 3.1) to
artifacts using a one-direction-matching19 method with a 2″
search radius. Figure 7 shows the artifact fraction with respect
to the calexp source S/N.20 There is an increasing trend
between the artifact fraction and the source S/N. This
comparison shows that using saturation flags to identify pixel
issues can help us to remove saturation artifacts, especially
when the source S/N is greater than 600.
Next, we study the artifacts that have no saturation flags set

to True. These non-saturation-flag artifacts are detected under
different seeing conditions with different artifact rates. For our

Table 4
Definitions of Saturation Flags, Dipole Flags, and Shape Flags

Flag Set Flags Notes

Saturation
flags

base_PixelFlags_flag_saturated, base_PixelFlags_flag_saturatedCenter, base_Pixel-
Flags_flag_suspect, base_PixelFlags_flag_suspectCenter, base_PixelFlags_fla-
g_offimage, base_PixelFlags_flag_edge, base_PixelFlags_flag_bad

Some of these flags are not actually for saturation but
rather for other types of pixel-level issues. We include
them here because they also indicate pixel issues.
Visually inspecting detected sources shows that the
majority of artifacts that have these flags set to True
are saturation artifacts.

Dipole flags ip_diffim_DipoleFit_flag_classification,
ip_diffim_DipoleFit_flag_classificationAttempted

L

Shape flags base_SdssShape_flag, base_GaussianFlux_flag_badShape The algorithm is based on the elliptical shape (Lupton
et al. 2001; Bosch et al. 2017) of the detected sources.
The implementation (v23.0.0) used in our analysis
flags negative pixel values, which is not what we want
for time-variable objects that can be brighter and
fainter than in the template image. This bug has been
fixed in v25.0.0 of the LSST Science Pipelines.

19 One background source may cause subtraction artifacts in many science
images.
20 We calculate the S/Ns of the original contributing sources by dividing
base_PsfFlux_instFlux by base_PsfFlux_instFluxErr from the src.
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analysis, we find that the rates of non-saturation-flag artifacts
per square degree are 286 (broad), 312 (near), and 414 (sharp),
which suggests that as the calexp PSFs become sharper, the
artifact rate increases (Table 5).

The morphologies of non-saturation-flag artifacts are shown
in Figures 8, 9, and 10. By inspecting postage stamps of these
artifacts, we find that the majority of artifacts in the broad class
are dipole artifacts and clustering-pixels artifacts. In the near
class, the artifact morphology is similar to the broad class.
However, in the sharp class, there are more ring artifacts,
which indicates the PSF matching kernel is deconvolving the
seeing condition of the template image.

To understand the source properties of the non-saturation-
flag artifacts, we match them to the src using the one-direction-
matching method with a 2″ matching radius.21 Of the
artifacts, 80.2% have matches in the src, which means most
of these artifacts are also subtraction residuals of background
sources. In Figure 11, S/N distributions of matched sources in
each FWHM class are plotted. Most sources have S/Ns close to
or higher than 200, which means bright sources are the main
contribution to detection artifacts. This is reasonable because
we can only observe artifacts from bright sources where
subtraction residuals can exceed sky background fluctuations.
It is hard for faint sources to produce visible artifacts because
their subtraction residuals are overwhelmed by sky background
noise. Other than bright sources, we also find clusters of faint
sources in the S/N distributions of each class. In Figure 12, we
plot a few stamps of faint sources from coadd exposures,
calexps, and their corresponding artifacts from difference
exposures. These plots show that peak pixels are the main
causes of these artifacts. As to the artifacts that have no
matches from the src, we show their morphology in Figure 13.
Clearly, background noise is the origin of these artifacts. The
artifact rate of this type is 62 deg–2 in the broad class, 57 deg–2

in the near class, and 79 deg–2 in the sharp class.

5.5. Dipole Artifacts

Because dipole artifacts are prevalent in all classes with the
AL algorithm, we investigate whether the ZOGY algorithm
also produces dipole artifacts at the same locations. Figure 14
shows postage stamps of AL dipoles and postage stamps of the
ZOGY algorithm at the same positions. Both the kernel
matching method (AL) and the cross-filtering method (ZOGY)
have dipole artifacts with the same orientations at the same
locations.
Here, we give a brief discussion of several different possible

causes of dipole artifacts.
(1) Image registration. It is possible that dipoles are caused

by small errors in the relative astrometric registration of the
images. Applying astrometric calibration may reduce the
registration error. However, even subpixel errors could be
magnified by bright sources, thereby producing visible dipole
artifacts that have positive–negative separations of multiple
pixels. (2) Sampling. Another possible origin of dipoles is the
sampling process used for observing or warping exposures.
Errors introduced in this process can be magnified by the
brightness of background stars, which would result in dipole
artifacts. (3) Moving object. An object with a small motion
between the images can create a dipole that represents real
astrophysical change. However, there are no stars with proper
motion in the DC2 simulation, so this particular effect is not
applicable to our testing here. (4) PSF matching. It is also
possible that the AL algorithm finds an approximate kernel
solution. An asymmetric kernel convolving a symmetric coadd
source and subtracted by a symmetric calexp source could
produce a dipole artifact. However, we also find dipole artifacts
using the ZOGY cross-filtering method, which has no kernel
fitting involved (Figure 14). We do not entirely exclude the
kernel fitting explanation because the PSF models used for
cross-filtering are measured from images. It is thus also
possible that the approximate PSF used for cross-filtering
caused the dipole artifact, which is mathematically similar to a
nonoptimal AL matching kernel. (5) Poisson fluctuation. In the
bright region, the Poisson fluctuation of background sources
can exceed the background sky fluctuation, which leads to local
bright/faint residuals. These residuals can spread to nearby
pixels after convolution operation, which may appear as dipole
artifacts in difference images. More accurate estimations of
variance and covariance may increase the detection
thresholds and thereby remove these artifacts from the diaSrc
table. (6) Differential chromatic refraction (DCR). The
atmosphere of the Earth refracts incident light, thereby
deflecting the observed positions of sources (FILIP-
PENKO 1982). This effect could result in dipole artifacts in
difference images. Since the DC2 images do not include this
effect, we exclude DCR as the cause of the artifacts in our
analysis.
From this discussion, we conclude that the origin of the

dipole artifacts is still undetermined. To thoroughly understand
the cause will require control of the image resampling in more
detail and carefully considering the resulting PSFs of the
calexps and coadd templates.

6. Possible Improvements

We here summarize some potential improvements to the
performance of the LSST Science Pipelines image subtraction
algorithms.

Table 5
Artifact Morphology Fraction

Broad Near Sharp

Saturation flags 51.90% 47.60% 53.31%
Dipole flags only 1.45% 2.92% 3.08%
Shape flags only 25.11% 24.84% 21.76%
Both dipole flags and shape flags 12.28% 12.74% 12.14%
Remaining 9.26% 11.90% 9.71%

Non-saturation-flag artifacts per square
degree

286 312 414

Note. Percentage of artifacts in each flag set of the broad class, near class, and
sharp class. The first row shows the fraction of saturation-flag artifacts. The
second row shows the fraction of non-saturation-flag artifacts that have dipole
flags set to True and shape flags set to False. The third row shows the fraction
of non-saturation-flag artifacts that have dipole flags set to False and shape
flags set to True. The fourth row shows the fraction of non-saturation-flag
artifacts that have both dipole flags set to True and shape flags set to True. The
fifth row shows the fraction of non-saturation-flag artifacts that have both
dipole flags and shape flags set to False. The last row shows the artifact rate
(deg−2) of non-saturation-flag artifacts.

21 We exclude the saturation artifacts because the origin of these artifacts can
be inferred by the name of the flag, which is set to True.
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Figure 7. Artifacts come from the mis-subtraction of bright sources. Here we show the fraction of detections that are artifacts as a function of the S/N of the nearest
background source within 2″. The dashed line shows the fraction of all artifacts. The solid line shows the fraction of artifacts that have no saturation flags set to True.

Figure 8. Morphology of non-saturation-flag artifacts from the broad class. The top row shows artifacts with both dipole flags and shape flags set to True. The second
row from the top shows artifacts with dipole flags set to True and shape flags set to False. The second row from the bottom shows artifacts with dipole flags set to False
and shape flags set to True. The bottom row shows artifacts with both dipole flags and shape flags set to False.
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(1) Implement spatially varying delta bases. In our work,
we find that the default kernel bases used in the DIA pipeline
do not fully correct sampling or registration issues. Instead of
using Gauss-polynomial functions as the bases, we suggest
using delta bases (Bramich 2008; Miller et al. 2008), which
are the most flexible bases for image difference. We also
recommend including spatial variation in the delta kernel
because noise properties and PSF shapes may vary across a
CCD image. To avoid overfitting the model to noise using
these more flexible bases, different regularization techniques
(Becker et al. 2012; Bramich et al. 2016) should also be
tested.

(2) Correct the kernel solution when using preconvolution or
choosing calexps as templates. When the PSF of a calexp is
sharper than the PSF of a coadd exposure, the image
subtraction kernel needs to perform the deconvolution to the
coadd exposure, which usually results in ring artifacts in the
difference image. To avoid ring artifacts, one approach is to
“preconvolve” the calexp using either its own PSF or a more
generic Gaussian kernel. The other approach is to use the
calexp as the template image and match its PSF to the PSF of
the coadd exposure. Both approaches involve convolving the
calexp, which adds correlations between pixels. The default
normal equation of the image difference solution assumes the
template is noiseless. To account for the effect of correlations,

we suggest including the pixel covariance matrix Σ in the
kernel solution of the AL algorithm. Due to the huge size of Σ,
how to properly estimate the correlations of neighboring pixels
and store Σ are worthy questions for consideration in
implementation.
(3) Improve the numerical stability of the ZOGY

decorrelation kernel and its AL equivalent. The ZOGY
algorithm provides a source-detection optimal difference image
with the advantage of noise decorrelation. However, the
numerical instability caused by the division of small values at
high frequencies can affect the quality of its difference
image and equivalent PSF (Reiss 2017; Kovacs 2021).
Kovacs (2021) suggests that if we express the ZOGY D̂
image as ˆ ˆ ˆ ˆ ˆD k S k Ts t= - , with ˆ ˆ

∣ ˆ ∣ ∣ ˆ ∣
ks

F P

F P F P

t t

s t t t s s
2 2 2 2 2 2

º
s s+

and

ˆ ˆ
∣ ˆ ∣ ∣ ˆ ∣

kt
F P

F P F P

s s

s t t t s s
2 2 2 2 2 2

º
s s+

, the asymptotic behaviors of k̂s and

k̂t can be determined by examining the ratio of ∣ ˆ ∣
∣ ˆ ∣

P

P
t

s
, which is

either 0 or ∞. In practice, the fast Fourier transform applied to
obtain frequency images cannot maintain this ratio as a smooth
function of frequency due to numerical accuracy. To correct
this issue, Kovacs (2021) proposes three possible work-
arounds, which are (a) using Gaussian models to create PSFs
in Fourier space directly, (b) replacing the high-frequency
noise using Gaussian limit values, and (c) using the score

Figure 9. Morphology of non-saturation-flag artifacts from the near class. The top row shows artifacts with both dipole flags and shape flags set to True. The second
row from the top shows artifacts with dipole flags set to True and shape flags set to False. The second row from the bottom shows artifacts with dipole flags set to False
and shape flags set to True. The bottom row shows artifacts with both dipole flags and shape flags set to False.

15

The Astrophysical Journal, 967:10 (20pp), 2024 May 20 Liu et al.



image of the ZOGY algorithm for detection because the score
image is further convolved by PD, which can suppress the
noisy part in D. The validity of these work-arounds has not
been thoroughly studied and would benefit from careful
thought and testing.

(4) Decorrelate the Poisson noise for bright sources. The
ideal difference image is expected to have white noise, which
means the covariance matrix of the pixels of the difference is
diagonal. The ZOGY algorithm proposes dividing the cross-
filtering difference image by

∣ ˆ ∣ ∣ ˆ ∣F P F P

1

s t t t s s
2 2 2 2 2 2s s+

for image

Figure 10.Morphology of non-saturation-flag artifacts from the sharp class. The top row shows artifacts with both dipole flags and shape flags set to True. The second
row from the top shows artifacts with dipole flags set to True and shape flags set to False. The second row from the bottom shows artifacts with dipole flags set to False
and shape flags set to True. The bottom row shows artifacts with both dipole flags and shape flags set to False.

Figure 11. Signal-to-noise distribution of the sources in different FWHM classes.
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noise whitening. Mathematically, this is equivalent to the zero-
phase component analysis (ZCA; Kessy et al. 2015) in complex
space. The proof of this equivalence is given in the Appendix.
In reality, however, the white-noise assumption for the original
template image and science image is not proper for bright
sources, where the Poisson noise of bright pixels is dominant.
To obtain white noise for bright sources, it would be possible to
apply a standard whitening process for the region around each
bright source as long as we have its covariance matrix.

However, given the large number of bright sources, calculating
the inverse matrix of the covariance matrix may be time-
consuming. A work-around method would be to treat each row
or column of the stamp as a random vector and require the
correlation between rows or columns to be white (Shi
et al. 2016; Seghouane & Shokouhi 2018). This simplification
significantly reduces the dimensions of the covariance matrix;
however, the reliability of this method for image difference has
not been tested.

Figure 12. Morphology of artifacts from faint background sources. (Top row) Postage stamps of coadd images. (Second row from top) Postage stamps of calexp
images. (Bottom row) Postage stamps of artifacts.

Figure 13. Morphology of artifacts that have no matches from the src. These artifacts are visually similar in each class. Inspecting their stamps shows that they are
from correlated noise.
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7. Conclusions

We have evaluated the LSST Science Pipelines DIA
pipeline using synthetic source injection. We selected seven
coadd template exposures along with 10 calexps overlap-
ping each coadd in the i band from the DC2 data set. By
tracing the recovery of injected synthetic sources, we predict
the range of the magnitude depth (m1/2) of the pipeline
for realistic simulated LSST images to be 23.40–23.71 mag
when the host SB ranges between 20–21 mag arcsec−2

and 24–25 mag arcsec−2. We explored the effects of
changing the AL kernel spatial degree of freedom on
reducing artifacts with synthetic injections at MAG20 and
MAG23.

We find that the default setup of the AL algorithm is good
in terms of transient source detection and photometric
measurements. At the injected magnitudes of 20 and 21, the
efficiency is above 0.989, and more than 99% of the flux
measurements are within 0.1 mag of the injected magnitudes.
In the region away from the image edge, increasing the spatial
degrees of freedom up to 4 can reduce the artifact rate without
hurting efficiency and flux measurement. We calculate the
efficiency and artifact rate of the flags from the diaSrc table.
We find that by applying a proper combination of saturation
flags, dipole flags, and shape flags to the detection from the
diaSrc table, we can reduce the artifact rate from 695 deg−2 to
69 deg−2 at MAG20, and the efficiency only drops from 1.000
to 0.999. At MAG23, the artifact rate drops from 700 deg−2 to
68 deg−2, while the efficiency drops from 0.847 to 0.791. To

study the morphology of the artifacts and understand their
origins, we split the artifacts into broad, near, and sharp
classes, which correspond to the seeing condition where the
calexp PSF is larger than the coadd PSF, the calexp PSF is
smaller but less than 5% smaller than the coadd PSF, and the
calexp PSF is more than 5% smaller than the coadd PSF. After
removing saturation artifacts from the analysis, the artifact per
square degree rate is 286 in the broad class, 312 in the near
class, and 414 in the sharp class. We find dipole artifacts and
correlated-pixel artifacts in subtractions from all classes. Ring
artifacts are seen only in the sharp class, which is consistent
with rings being decorrelation artifacts. By mapping these
artifacts to the src of the original calexp, we find that most of
the artifacts are subtraction residuals from regions around
bright (S/N� 200) stars. Possible causes of these artifacts
include inexact PSF matching, registration issues, sampling
errors, and Poisson fluctuation of bright pixels. To remove
these artifacts from difference images, we suggest possible
improvements, such as applying a set of more flexible kernel
bases with spatial variation and improving the treatment of
correlated noise in the images.
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Appendix
Connections between the ZOGY Algorithm and ZCA

Whitening

In signal processing, whitening is defined as a linear
transformation that maps a random vector to a new vector
with an identity covariance matrix. The ZCA is a whitening
process that minimizes the squared distance between the
original vector and the whitened vector (Kessy et al. 2015) in
real space. In this section, we prove that the ZOGY
decorrelation is equivalent to the ZCA whitening in complex
space. For simplicity, we assume that the expectation of the
original random vector is 0.

In ZCA whitening, a random vector X with covariance ΣX
can be transformed to a white vector Z via matrix W as Z
= WX. The solution of W is

( )W U U , A1X
T

1
2

1
2= S = L- -

with X
T

X X
11

2
1
2S S = S- - - . U is an orthogonal transformation, and

Λ is a diagonal matrix where each element is an eigenvalue
of ΣX.

The covariance matrix of Z is the identity matrix I:

( ) ( ) ( )E ZZ W W U U I. A2Z
T

X
T

X
T

X
T1

2
1
2S = = S = S L S =- -

In complex space, we generalize the ZCA whitening as

( )†W U U , A3X

1
2

1
2= S = L- -

with U as a unitary matrix and U† as its conjugate transpose.
Suppose we want to decorrelate a 1D cross-filtering

difference vector M, defined as

( )M p T p S. A4s t= Ä - Ä

The decorrelation matrix WM should equal M

1
2S- . Define Ps

and Pt as circulant matrices of 1D vectors ps and pt. M can be
expressed as M= PsT− PtS. Ps and Pt can be diagonalized by
the Fourier transform matrix F and its conjugate transpose F†

as ˆ†P F P Fs s= and ˆ†P F PFt t= , with P̂s and P̂t being the
diagonal eigenvalue matrices of Ps and Pt, which are also the
Fourier transforms of ps and pt. The Fourier transform matrix F
is defined as

⎜ ⎟⎛⎝ ⎞⎠( ) ( )F
N

e
1

. A5mn
mni

N
2= - p

Now we can express ΣM as

( ˆ ˆ ˆ ˆ ) ( )

† †

† † † † †
P P P P

F P F F P P F F P F. A6

M P T P S s T s t S t

s T s t S t

s tS = S + S = S + S

= S + S

If T and S are white with covariance matrices It
2s and Is

2s ,
ΣM can be simplified as

( ∣ ˆ ∣ ∣ ˆ ∣ ) ( )†F P P F. A7M t s s t
2 2 2 2s sS = +

The inverse square root of ΣM is

( ∣ ˆ ∣ ∣ ˆ ∣) ( )†F P P F. A8M t s s t
2 2 2 21

2
1
2s sS = +- -

We can interpret WM M

1
2= S- as a rotation of M to M̂ by the

Fourier transform. It then divides each component of M̂ by the
corresponding component of ( ˆ ˆ )P Pt s s t

2 2 2 2 1
2s s- - . Finally, it

rotates the ( ∣ ˆ ∣ ∣ ˆ ∣) ˆP P Mt s s t
2 2 2 2 1

2s s+ - back to the original
coordinate system. This is exactly the same whitening procedure
as the ZOGY deconvolution solution in one dimension.
In 2D, images can be represented as 1D row-ordered vectors,

and PSFs can be represented as doubly circulant matrices. The
Fourier transform can be represented as a Kronecker product of
1D Fourier transform matrices. The inverse of the 2D Fourier
transform matrix can diagonalize circulant matrices with their
Fourier transforms as eigenvalues (Jain 1989). Thus, the proof
in 1D can be generalized to 2D.
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