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Axion dark matter (DM) constitutes an oscillating background that violates parity and time-reversal
symmitries. Inside piezoelectric crystals, where parity is broken spontaneously, this axion background can
result in a stress. We call this new phenomenon “the piezoaxionic effect.” When the frequency of axion DM
matches the natural frequency of a bulk acoustic normal mode of the piezoelectric crystal, the piezoaxionic
effect is resonantly enhanced and can be read out electrically via the piezoelectric effect. We explore all
axion couplings that can give rise to the piezoaxionic effect—the most promising one is the defining
coupling of the QCD axion, through the anomaly of the strong sector. We also point our another,
subdominant phenomenon present in all dielectrics, namely the ‘“electroaxionic effect.”” An axion
background can produce an electric displacement field in a crystal which in turn will give rise to a
voltage across the crystal. The electroaxionic effect is again largest for the axion coupling to gluons. We
find that this model-independent coupling of the QCD axion may be probed through the combination of the
piezoaxionic and electroaxionic effects in piezoelectric crystals with aligned nuclear spins, with near-future
experimental setups applicable for axion masses between 107! eV and 1077 eV, a challenging range for

most other detection concepts.
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I. INTRODUCTION

Axions are among the best motivated extensions of the
Standard Model. In particular, the quantum chromodynam-
ics (QCD) axion is a natural consequence of the symmetry
that can explain the smallness of the neutron’s electric
dipole moment and the absence of other charge-parity-
violating phenomena in the strong interactions [1-4],
providing a solution to the strong CP problem. In string
theory, a plethora of axions is a natural consequence of
topological complexity in compactified dimensions [5,6].
At the same time, axions are excellent dark matter (DM)
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candidates, since the misalignment mechanism of produc-
tion ensures a consistent cosmological history, an indis-
pensable ingredient of any DM model [4,7,8].

When axions make up (all or a component of) the DM of
our Universe, they manifest as a background that violates
parity (P) and time reversal (T) invariance. In this paper, we
show how a P-violating axion DM background produces a
stress in piezoelectric crystals, a new observable that we
call the piezoaxionic effect. Piezoelectric crystal structures
break parity, by definition. Therefore, no symmetry forbids
the occurrence of stress (even under P and 7) upon
application of an electric field (odd under P and even
under T)—the converse piezoelectric effect [9,10]. Vice
versa, an electric field results from an applied stress—the
piezoelectric effect [11,12]. For such a material, a stress can
appear across the crystal in an axion DM background, by
analogy to the (converse) piezoelectric effect. For the axion
coupling to anomaly of the strong interactions, which
violates simultaneously P and 7, a piezoelectric crystal
with polarized nuclear spins is needed for the stress to
appear. When the oscillation frequency of the axion DM
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wave matches an acoustic resonance frequency of the
crystal, the axion-induced stress results in a resonantly
enhanced strain.

Such strain, or simply put, a change in the length
of a crystal, is an observable that has been used for
decades in the context of resonant-mass gravitational wave
detectors [13—15]. Resonant-mass GW detectors measure
absolute changes in length much more more precisely than
LIGO [16]. A subset of the authors in this paper has shown
in the past that such sensitivity can be used to probe scalar
DM [17]. The AURIGA collaboration implemented this
idea and used their existing data to place the most stringent
constraints thus far on (P- and T-even) scalar DM that
couples to the electron and/or the photon [18], showing
sensitivity to strains as small as 1072, provided the signal
has a sufficiently long coherence time.

We expand on these ideas and demonstrate how a
resonant-mass detector made from a piezoelectric crystal
can be used to detect QCD axion DM with masses between
107" eV and 10~7 eV. While several axion couplings may
produce a signal in our setup, the most promising one at
low frequencies is the irreducible coupling of the QCD
axion to gluons.

There is one more observable associated with the P- and
T-violating nature of an axion background. Aligned nuclear
spins in any dielectric material, bathed in QCD axion DM,
source electric displacements [19], that produce an oscil-
lating voltage difference across two opposing surfaces of
the material. We call this phenomenon the electroaxionic
effect. As we will see, this effect does not benefit from
the same enhancement through mechanical resonance as
the piezoaxionic effect, but nevertheless contributes to the
axion signal when using an electrical readout. A similar
electroaxionic effect is also present for derivative couplings
of axionlike particles.

The observables discussed in this paper differ signifi-
cantly from solid-state EDM experiments [20-24] as well
as nuclear-magnetic-resonance-based techniques for QCD
axion DM detection [25], since they do not require the
application of an electric field to be effective or the use of
ferroelectric materials. Furthermore, both of these types of
experiments rely on detecting a change in the magnetiza-
tion of the sample due to a reversal of the electric field
(solid-state EDM experiments) or due to the precession of
the spins in the axion background. The piezoaxionic and
electroaxionic effects produce an oscillatory signal without
any change in the direction of the aligned spins.

Our paper is structured as follows. In Sec. II, we
calculate the piezoaxionic and the electroaxionic tensors
in piezoelectric crystals, focusing on the axion coupling to
the QCD anomaly. In Sec. III, we describe the experimental
setup, delineate the signal, discuss noise sources and
possible backgrounds, and present our forecast for the
reach to axion parameter space. Finally, we present
estimates for other couplings in Sec. IV and discuss our

assumptions and future directions in Sec. V. The data and
code used to obtain the results of this study are available
online [26], and a link at the end of each figure’s caption
provides the code with which it was generated. We use
natural units wherein 7 = ¢ = kz = 1. For the convenience
of the reader, Table I summarizes the main symbols
introduced in Secs. II and III.

II. THEORY

In this section, which is split into four parts, we work out
the theory of the piezoaxionic and electroaxionic effects. In
Sec. IT A, we summarize some basic properties of the QCD
axion and its fundamental coupling to gluons. Section II B
reviews the generation of P- and T-violating electromag-
netic moments of nuclei due to this coupling, in particular
the Schiff moment. Section IIC explains how a Schiff
moment leads to energy shifts at the atomic level, with
further details on atomic matrix elements provided in
Appendix A. Finally, in Sec. IID, a mapping of these
atomic energy shifts to the piezoaxionic and electroaxionic
crystal tensors is outlined.

A. Axion

The fundamental, defining interaction of the QCD axion
a(t, x) is its coupling to the QCD anomaly GG:

0!2 - a ~ d, - ~
LD>2(0+—)GL,G"™ =-20,G%,GH. 1
o (04 ) ouom = gaGacm ()

In the above Lagrangian £, the static theta angle @ para-
metrizes the static CP violation in the strong interactions,
with strong coupling a, to the canonically normalized
gluon field strength Gy, (with G = e"P°Gg,/2). The
resulting nonperturbative potential for the axion field is
minimized at 8, ~ 0, thus dynamically solving the strong
CP problem in the vacuum [1-3]. Axion particles are
effectively the excitations in this potential, and can con-
stitute the DM in our Universe, with an rms 6, angle
predicted to be [27]

— /2.
@) =YParyax 10, [ Lo (2)
mafa DM

where p, and ppy =~ 0.4 GeVecm™ are the local cosmic-
axion and (measured) DM energy densities ([28], Sec. 27),
respectively. The theta angle is odd under both parity and
time reversal, i.e. §, — —6, under P and T separately.

The field 6, oscillates with a frequency f = m,/(27) set
by the axion mass m,, which is related to the axion decay
constant f, as [29]

10'6 GeV
m, ~ (5.70 + 0.07) x 10710 eV <f46) (3)
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TABLE 1. List of primary symbols appearing in the four
subsections of both Secs. II and III, their transformations
(even = +, odd = —) under parity P and time-reversal 7 (where
relevant), and the subsections where they first appear.

Quantity Symbol P T Subsection
Axion mass, decay constant my, faq
Axion frequency f A
Axion coherence time Teoh
Effective theta angle (with axion) 0, - -
Schiff moment (magnitude) S - -
Schiff moment S - + 1B
Nuclear spin I, + -
Atomic charge, number Z, A
Atomic matrix element M, -+
Relativistic enhancement factor R Inc
Wave function [s), |p;) coefficients €5 €p,
Effective quantum numbers Vs Up,
Mass density (crystal) p
Heavy-nucleon number density ny
Volume of unit cell V.
Potential energy density (crystal) U
Strain Syp + +
Stress Ty + +
Electric field E, -+ oD
Electric displacement D, - +
Elastic stiffness (at constant D) c5ﬁ775 + +
Impermittivity (at constant S) S PR
Piezoelectric tensor hays — +
Piezoaxionic tensor Eaps —
Electroaxionic polarizability Cap  + +
Impedance of circuit element X Zx
Inductance Ly
Capacitance Cy ImTA
Resistance Ry
Mutual inductance, coupling My, kx
Crystal length in direction i ¢
Mechanical resonance frequency fo
Natural resonance frequency [ na
Mechanical displacement u;
Sound speed (longitudinal) vP 1B
Electromechanical coupling k
Quality factor O(w)
Axion-induced voltage, current Vi l,
SQUID flux O
Noise spectral density (voltage) Sy
Loss angle of X Ox
Temperature T nrc
SQUID noise parameter 1750
Cooling power, decay heat 0
Signal-to-noise ratio SNR
Resonance frequency (circuit) Jres

. 118D)
Shot time tohot
Total integration time tint

or in terms of frequency, f = 0.138 MHz (10'® GeV/f,).
This inverse relation between the mass and the axion decay
constant is why the typical amplitude of 8, of Eq. (2) is
independent of mass. The coherence time 7, of the axion
field is determined by the inverse kinetic energy spread of
the axion DM, given by

272 1
Teoh :m—v—% = }(3.3 x 10°), (4)

a

where we have used the local Milky Way DM velocity
dispersion vy &~ 235 km/s ([28], Sec. 27).

The mass-coupling relation of Eq. (3) can be broken in
principle. In practice, a modification to lower the m,f,
product of the QCD axion, which would increase the
effective theta angle amplitude in Eq. (2), requires a fine
tuning of both the first and second derivatives of the
potential, to preserve the Peccei-Quinn solution to the
strong CP problem and to partially cancel the QCD
contributions to the axion mass, respectively. Even with
significant model-building efforts, this part of parameter
space is precarious, as finite-density and finite-temperature
effects can undo the fine tuning in the vacuum, leading to
wildly different in-medium minima in stellar systems [30].
(We return to signatures and potential constraints from this
effect in Sec. III D.) A significant increase in the m,f,
product is generically only fine-tuned in the first derivative
of the potential, so that @ ~ 0 in Eq. (1), but would lower the
rms 6, angle and thus render the effects discussed in this
work less significant.

B. Nucleus

In this section, we compute the 6,-dependent Schiff
moment of nuclei. The most basic P- and T-violating
electromagnetic moment of a nucleus is its electric dipole
moment (EDM). (An EDM is P-odd and T-even, but its
alignment with spin, which itself is P-even and 7-odd, is
what violates P and T separately.) Our ability to probe
nuclear EDMs in atomic systems is, however, restricted by
Schiff’s screening theorem [31-35]. In any system composed
of nonrelativistic, pointlike, charged particles (e.g. an atom or
crystal), the bare EDMs of all particles are perfectly screened
by a spatial rearrangement of the (monopole) electric
charges. However, nuclei have a finite radius R, so the
position of their EDMs need not coincide with their centers of
charge. One can systematically take into account these finite-
size effects through a nuclear multipole expansion: an EDM
at dimension 1, a magnetic quadrupole moment (MQM) at
dimension 2, an electric octupole moment (EOM) and a
Schiff moment at dimension 3, etc. The EDM is screened, the
MQM only has effects in magnetic materials, and effects on
the electronic wave function from the EOM are suppressed
by the angular-momentum barrier near the nucleus [34].

072009-3



ARVANITAKI, MADDEN, and VAN TILBURG

PHYS. REV. D 109, 072009 (2024)

(Moments at dimension 4 and higher are completely
negligible.)

Hence our focus on the Schiff moment, which interacts
with electrons via the Hamiltonian:

Hg = 47eS - V§(r), (5)

where Vé(r) is to be evaluated on the electron wave
function. Like an EDM, a Schiff moment is P-odd and
T-even, but its alignment with the nuclear spin violates both
P and T invariance. Note that the effective operator on
electrons is P-odd and T-even. A Schiff moment [35]

S = Sgpm + Sen (6)

can arise from EDMs of the constituent nucleons

1 1
Sepm = Z {66 [l'j(l'j -dj) - 3 <r2>chdj:|
j=p.n

1
+ge(rjrj —

P)ar)} )
and from an asymmetrical distribution of charge (i.e.
protons) within the nucleus

1 5
SCh = Z]()e(r%rp —3<72>Chr[)>. (8)

P

In Eq. (7), the sum over j runs over all nucleons (protons p
and neutrons n), while the sum in Eq. (8) runs over all
protons. Above, we have also used shorthand for the mean
squared radius of the nuclear charge distribution (with
density pg):

(o= [ Pripa(n), ©

with Z the total nuclear charge. The magnitude of the Schiff
moment is defined as S = (S_),,_,, i.e. the magnitude of
the expectation value of S in the +z direction, for a fully
polarized nuclear spin along the +z direction (M = I).

As we derive below, the effects from the Schiff moment
are largest in high-Z nuclei, because of their larger size and
because of relativistic enhancement effects of the electron
density for heavy nuclei (see Sec. II C for this second
effect). In Sec. II B 1, we evaluate the size of the Schiff
moments from bare nucleon EDMs through Eq. (7). In
Sec. I B 2, we review the PT-violating nuclear forces that
arise at finite 6,, and then evaluate the resulting Schiff
moments via Eq. (8) in nondeformed nuclei in Sec. II B 3,
and in octupole-deformed nuclei in Sec. II B 4.

1. Schiff moment from the EDM of a valence nucleon

A theta term, from a static @ or from an oscillating 8, in a
QCD axion DM background, induces a typical nucleon
EDM of order [33,36]:

d,~ 10730, e fm. (10)

This nucleon EDM in turn produces a nuclear Schiff
moment in nuclei with odd atomic number A. For an
odd-A nucleus with a static, spherically symmetric core of
radius R, ~ ryA'/? with ry ~ 1.2 fm, the valence nucleon
EDM leads to a Schiff moment magnitude [34]:

g L 2K+
M 10705 (14 1)

~ K+1) [ A\%3
~ 107, ¢ fm . 2 1
0700 et 7 (230) - (1D

with K= (I—1)(2I — 1), I the nuclear spin, and [ the
valence nucleon’s orbital angular momentum. The nuclear
core may exhibit significant polarizability and deforma-
tions from sphericity, in which case the estimate of Eq. (11)
will receive large corrections. However, in those cases, the
Sgpum contribution to the Schiff moment will be subdomi-
nant to the asymmetric charge distribution of the nucleus, to
which we turn next.

2. P- and T-violating forces

Forces between nucleons that violate parity and time-
reversal symmetries can cause an asymmetric (parity-odd)
charge distribution of the nucleus that is aligned with the
nuclear spin, thus generating a Schiff moment S, via
Eq. (8) [37-39]. Since this is a tree-level effect from light-
meson exchange between nucleons, this contribution to the
Schiff moment will typically dominate over the loop-level
effect from Egs. (10) and (11). To leading order, these
P- and T-violating forces are mediated by pion exchange; in
the heavy-pion limit (1, R > 1) and nonrelativistic approxi-
mation, they are given by the effective interaction potential:

p— (MapGa = Mpa0p) - VO(ry —1).  (12)
N

T

Ver =

where my =~ m, =~ m,, is the nucleon mass, the Pauli matrix &
acts on the spin Hilbert space of the nucleons a and b, and r on
the position Hilbert space. The effective couplings among
protons p and neutrons n are

Npp = —Mnp = 95(90 + 91)- (13)

Nan = —Mpn = 95(91 — 90)- (14)

The coupling g, is the standard P- and T-conserving pion-
nucleon coupling, while g, and g; are the P- and T-violating
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isoscalar and isovector couplings, respectively, sourced by the
0, term. We assume the numerical values [40]:

gy~ —13.45, (15)
go ~ (15.5 +£2.6) x 10734,,, (16)

We neglect the numerically smaller isotensor pion-
nucleon coupling ¢,. The contributions to Vpr from
exchange of p and @ mesons have been argued by
Refs. [41,42] to be smaller than the pion-exchange contri-
butions from Eq. (12), by the numerical factor 0.3 (m2/m3 ,,).

3. Nondeformed nuclei

The P- and T-odd internucleon potential of Eq. (12)
provides the symmetry breaking needed to create a P-odd
charge distribution of a spin-polarized nucleus. Since the
values of @, of interest are tiny [cf. Eq. (2)], we will
evaluate the Schiff moment in perturbation theory:

Su) =3 <O|VF’;L">_<’;|S°‘1|O> FHe,  (18)

n
where the sum is over nuclear states n with energies E,,;
n = 0 labels the ground state.

In the nuclear shell model, where the core is treated as a
static source, only a valence proton can generate a nonzero
Schiff moment. The effective mean-field interaction poten-
tial of the valence nucleon (with label a) stemming from
Eq. (12) becomes

1

Ver = Iy 1% V.p(r,). (19)
Z A-Z
Na = napZ"i_’]anT’ (20)
with p the number density of core neutrons and protons
normalized as [ d*rp(r) = A. (In the above formulas, we
ignore corrections of order 1/A and 1/Z.) The contribution
to the Schiff moment from a valence proton in the nuclear
shell model is [37]
e MNa  Po 3en,

Sch =

10 2mym2 U

477:2mN R(z) (21)

with py =~ 3/(4xry) the nucleon number density, and U =~
37/(60m3r3) the spherically symmetric potential of the
nuclear core.

However, excitations of core protons, which are
dynamics not captured within the nuclear shell model,
by either a valence proton or neutron, can yield Schiff
moment contributions of similar size as the expression in

Eq. (21) [43]. This means that P- and T-odd forces
can generate Schiff moments in nuclei with either an
odd number of protons or an odd number neutrons.
Numerically, the effect in Eq. (21) is typically much larger
than that of Eq. (11). For example, one finds

S (18'Ta) ~0.20, e fm? (22)

for the stable nucleus of 1§'Ta, which has one valence
proton. Estimates for other stable isotopes of heavy nuclei
can be found e.g. in Ref. [35].

4. Octupole-deformed nuclei

A class of nuclei with strongly enhanced P- and
T-violating moments are those possessing permanent octu-
pole deformations or soft octupole modes. (For reviews on
deformed nuclei, see Refs. [44-47].) Such nuclei typically
have anomalously large values for certain transition matrix
elements, paired with small energy splittings between oppo-
site-parity nuclear levels. The origin of these two signatures
and their role in collective enhancements of the nuclear Schiff
moment will be summarized here, following Refs. [48,49].

We first discuss permanent octupole deformation of
heavy nuclei. Analogously to the Born-Oppenheimer
approximation in molecules, where one factorizes rota-
tional motion of a “rigid” shape from the internal excita-
tions (vibration, electronic excitations, etc.), we can
consider the shape of the nucleus in the intrinsic (body-
fixed) frame of the nucleus. Assuming the nuclear core to
be axially symmetric and of constant density (equal for
protons and neutrons), the core shape is described by the
location of its surface R, expanded into the following
multipoles [:

R =Ry <1 + Zﬂlyl()>7 (23)
=1

where the f5; parameters characterize the strength of the
dipole, quadrupole, octupole, etc. deformations. The dipole
deformation f; is fixed such that the center of mass/charge
is at the origin. In the intrinsic frame, and with the above
assumptions, the Schiff moment can then be straightfor-
wardly calculated using Eq. (8):

= ZeR3

VBiBr
4
Ozonz./21+ (20+3)’ (24)

with the main piece typically coming from the first
term o ﬂ2ﬁ3.

If a deformed nucleus is reflection asymmetric in its
intrinsic frame, then in the laboratory frame, its ground
state wave function will be composed of a parity doublet:

1 l
S
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1
V2

Here [ is the nuclear spin, M is the quantum number of 7,
and K that of the operator I -n, with n the nuclear axis.
The wave functions W* are good parity states since
(P£|n|P*) =0, i.e. there is no average orientation of
the nuclear axis, and P and T are preserved. Turning around
the argument, a tell-tale signature of static octupole
deformation of a nucleus is the presence of a low-lying
opposite-parity level with the same angular momentum as
the ground state. (In reality, the members of the parity
doublet are not exactly degenerate due to Coriolis forces
and other effects; these are analogous to the rovibrational
and vibronic couplings that signal corrections to the Born-
Oppenheimer approximation for molecular states.)

Interactions that violate both P and 7 can mix these
opposite-parity states of a spin-polarized nucleus, and
partially align the nuclear axis with the nuclear spin,
leading to a collective enhancement of the Schiff moment.
The perturbed wave functions under the interaction
Hamiltonian of Eq. (19) are

et ([IMK) £ |IM - K)). (25)

=9t Lay, P =9 -a¥vt, (26)
where
- <\P_‘VPT|‘P+> - N4 50 keV ﬂ'; 230 1/3
= = ’~050,-% 2= 27
“ AE, 0.0 aE, 01\a ) o @7

with AE, = E* — E~ the energy splitting of the doublet
and 5, the effective coupling of the valence nucleon as in
Eq. (20). Within this framework, we then finally have
(P |n, |P*) = 2aKM/[(I + 1)I], and since the ground-
state wave function typically has K = I [48], a laboratory-
frame Schiff moment of

- I it

~50 fmsﬁSOkeV& P\ Z (AN (28)
Ve G 1TAE, 0.12\0.1) 88\230) -

Contributions from higher-order deformations of the
nucleus are usually subdominant. We observe that the
collective (Z-enhanced) effect of static octupole deforma-
tion can lead to very large Schiff moments, compared to the
contributions from valence nucleons in nondeformed nuclei
[Egs. (21) and (22)] and from bare EDMs of the valence
nucleons [Eq. (11)]. Tabulations of the parameters f,, /3,
and AE, can be found in Ref. [50] for the ground states of
nearly all nuclei, though estimates with other nuclear
structure models often give different results [51,52].

The class of nuclei with collectively enhanced Schiff
moments extends beyond those with static octupole defor-
mations, and includes also those with soft octupole modes.

Reference [49] showed that it is sufficient to have a
significant octupole-deformation-squared, i.e. (f3) # 0,
even if (f;) =0, for a nucleus to have a Z-enhanced
Schiff moment. This dynamical octupole deformation can
be thought of as a collective nuclear octupole vibration with
angular frequency AE,, and corresponding zero-point
amplitude-squared inversely proportional to this frequency,
(f3) x 1/AE,, as for any quantum harmonic oscillator.
An ideal octupole-enhanced candidate nuclear isotope
(with either static or dynamical deformation) should thus
have an opposite-parity level with a small energy gap above
the ground state. For the experimental concept proposed in
this paper, the isotope needs to be (meta)stable (cf. the
discussion on heating from radioactivity in Sec. IIIC).
Energy splittings and half-lives are tabulated in Ref. [53].
Three potentially suitable isotopes were suggested in
Ref. [54], together with estimates of their Schiff moments:

Sen('3Eu) ~3.70, e fm’, (29)

Sa(®33U) % 3.00, e fm?, 71,27 x 108 yr,  (30)

S (%INp) ~ 6.00, e fm®, T ~2x 100 yr.  (31)
In addition, the isotopes $'Dy and }3Gd are known to have
very small energy gaps between the ground state and the
excited state of opposite parity [53], which suggests a
possible octupole enhancement. According to Ref. [50],
they are not statically octupole deformed, but they could
still exhibit significant dynamical octupole deformation.
We therefore estimate the Schiff moment from soft octu-
pole vibrations using Eq. (28) as suggested in Ref. [49],
with the squared octupole deformation estimated using the
collective B(E3) octupole transition probability for neigh-
boring even-even nuclei found in e.g. Ref. [55]:

BE s = (51) @Ry @

Data from Ref. [53] with Egs. (28) and (32) then yields our
estimates:

S ('8Dy) ~ 40, e fm?, (33)
Sen(15Gd) ~ 10, ¢ find. (34)

Despite these encouragingly large fiducial values, the
accuracy of the predictions in this section is under poor
control, as different nuclear structure models suggest
widely different values [46,47]. More theoretical support
is needed to identify suitable candidate isotopes for a large-
scale experiment, and to provide accurate and precise
determinations of the predicted Schiff moments in the
presence of a nonzero @, parameter.
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C. Atom

In Eq. (5) of Sec. I B, we already wrote down the parity-
odd electrostatic potential for electrons produced by a
nuclear Schiff moment. This potential can mix opposite-
parity electronic states, or equivalently, lead to an atomic
energy shift if the electronic wave function already breaks
parity (which is the case inside a piezoelectric crystal).

The energy shift of an atom with a polarized nuclear spin
and Schiff moment, from the perturbing Hamiltonian in
Eq. (5), is

(Hg) = —4meS Zikese;j_ij jmk ec., (35)

Jimj.k

= —4r7eSY Ml (36)
k

where the quantum numbers j and m; are those of the total
angular momentum and its projection on the z axis, respec-
tively, the index k denotes spatial direction, 1 « 1s the direction
of the nuclear spin (normalized such that | I| = 1 corresponds
to a fully polarized nuclear spin state, and |I| =0 an
: _ (013 5 3 0 :

unpolarized state), and M, , = (s°|#0,8°(r)|pj,, ) is
an atomic matrix element. The coefficients ¢, and €pim

Jomj
parametrize the admixture of atomic s and p;, valence

. _ |0 0

electron states, i.e. |ye) = €|s”) + >, €pim, | P} m,)» and

characterize the breaking of parity symmetry by the crystal
potential. (This treatment of the atom’s wave function in a
crystal is only possible in the tight-binding approximation,
which holds to leading order for the insulating crystals
considered in this paper.) The admixture of opposite-parity
states in the atom’s ground state in the crystal allows for a
piezoaxionic effect linear in the Schiff moment, without the
need of other parity-breaking sources such as the application
of an external electric field. We expand on this procedure in
Appendix A.

The energy shift of Eq. (36) can be reliably calculated in
perturbation theory up to a wave function normalization
constant, as the Schiff interaction of Eq. (5) is a short-
distance effect where screening effects are unimportant.
Armed with only a few inputs, namely E; = a’m,/2v, and
E, = a’m,/ 2v,, with effective quantum numbers v, and
vj, the normalization of the radial part of the wave functions
can be fixed by the matching procedure of Ref. [34],
Chap. 8. This leads to a matrix element of the form

Z2
M o = Q|| i ) —————=7 R 37
Jomj.k < | k| DsJs j>ag(l/slfpj)3/2 J ( )

where ay = 1/am, is the Bohr radius, Q are the spinor
spherical harmonics as in Ref. [56], and their angular
matrix elements in Eq. (37) are O(1) and evaluated in

Appendix A. The relativistic enhancement factors R ; are
defined as

R

(38)

[T

_ 312y - 1) 4 ag \>
27/% +1 FZ(Zy% + 1) \2ZR,

6[(rs + (3 +2) + 2%
L2+ DrQr+1)

a 3—1’%—7%
<tr-2(gm) 69

Y= \/<j+%)2—zza2. (40)

These enhancement factors are defined such that they go to
unity in the limit Za — 0, and evaluate to about 3-8 for
nuclei of interest, with 60 < Z < 93, see Fig. 1.

A numerical estimate of the energy shift yields

Rs =
2

(Hg) ~2.0 x 1072* eV

L (Z 2R(vw,)? S
80 10  6,efm?

esepjk <Qr|?k|9p>
1 9
(41)

where we assume 6, is given by the rms amplitude of
Eq. (2), i.e. that the QCD axion makes up all of the DM.

D. Crystal

Up to this point, we have reviewed how QCD axion DM
gives rise to an oscillatory 6, angle (Sec. II A), nuclear
Schiff moments (Sec. IIB), and atomic energy shifts
(Sec. I C). In this section, we will show how the latter

10

relativistic enhancement factor R;

0 20 40 60 80 100 120
nuclear charge Z

FIG. 1. The relativistic enhancement factor R; of Egs. (38)
and (39) as a function of the proton number Z, assuming an
atomic number of A ~ 2Z, for two values of the total electron
angular momentum j=1/2,3/2. https://github.com/kenvantilburg/
piezoaxionic-effect/blob/main/code/supporting_plots_eta20.ipynb.
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translates in effective stresses and electric displacements in
macroscopic crystals.

The internal energy density U of the crystal can be
expanded to quadratic order around its equilibrium as

DD

STePS
U= 2

—DThS + - ST1eio, - Di¢lo,.  (42)

Here the independent variables are the strain 2-tensor S, the
electric displacement vector D, the nuclear spin polarization
direction I (normalized so that saturated spin polarization
corresponds to |I| = 1), and the axionic theta angle 6,.
The proportionality constants of the first three terms are
given by the elastic stiffness 4-tensor (at constant electric
displacement) cP, piezoelectric 3-tensor h, and dielectric
impermittivity 2-tensor (at constant strain) #5. In the last two
terms, we introduce new interactions at linear order in the
nuclear Schiff moment direction, whose proportionality
constants we will refer to as the “piezoaxionic” 3-tensor &
and “electroaxionic” 2-tensor . In absence of these two
nuclear-spin-induced contributions, the internal energy
density above reduces to the usual expression for a piezo-
electric crystal, which can be found e.g. in Ref. [57], Chap. 5.
Superscripts T denote transposed quantities. We assume all
quantities are given at (or near) zero temperature. We have
also integrated out short-wavelength fluctuations, such as
individual atomic displacements, a more detailed treatment
of which is given in Appendix B; all quantities in Eq. (42)
should be understood to be (nearly) homogeneous.

The constitutive equations for the stress T and electric
field E can be written as first derivatives of the internal
energy density of Eq. (42) [57],

oU as
T=—=+c’S—h'D-€&I 4
5 = ¢S Elo,, (43)
oU .-
E=-—=-h SpD —¢l0,. 44
op ~ S +A°D-¢lo, (44)

Equations (43) and (44) reveal that an axion DM back-
ground in the presence of nuclear spin polarization man-
ifests itself both as a stress across the crystal due to € and an
electric field due to €.

For the subsequent discussion of our proposed exper-
imental setup and sensitivity, it is instructive to introduce
Voigt notation. In this notation, the independent compo-
nents of 3 X 3 symmetric tensors such as the strain S,; and
stress T, are reduced to 6 dimensional “vectors” S; and T';,
and the indices of their proportionality constants are
reduced similarly (see Appendix B for further details).
The above equations can thus be written as

Tn = +Cf,)k5k - hI,ka - é:nkjkéa’ (45)
En = _hnkSk + ,H;S;ka - anjkéa; (46)

with Einstein summation convention on repeated indices.

The piezoaxionic tensor in Eq. (42) can be computed
from the atomic matrix element M of Sec. Il C through

d Vs d €S€;jm-Mjsmisk
== 4zeS ST T e
b= 2 S Z[ e

mj,m;

()
_ 4ﬂ'€Ns§
T A

(47)

which follows directly from Eq. (36), and where the
subscript t = 1, ..., Ng runs over the spin-polarized nuclei
(which are all assumed to have the same Schiff moment S)
in the unit cell with volume V.. The electroaxionic tensor is
given by a similar formula:

*
€s€pj_mj Mj.m/-.k

0 &2 0
— 2N 4zeS LI
S 09; "D Z{ V. rece

nim.
Jim;

(1)

_ - 4rmeNgeaddS

= Z.:nk Vc a dé k- (48)
In Egs. (47) and (48), we have defined the dimensionless
quantities & and £, respectively, and are the only factors
through which the electron wave function properties of the
atoms in the crystal enter.

A density functional theory (DFT) calculation of Eand ¢
for materials of interest is left to future work. Here, we will
content ourselves with naive dimensional analysis (NDA)
estimates, guided by crystal symmetry principles and
augmented with certain measured crystal tensors. From
NDA, we expect the “conventional” crystal tensors to be
given by

.n N.a
ka = ka aV,’ (49)
-~ N_.eay
h,,=h , 50
nk nk VCE ( )
ﬂﬁk = ng (51)

with N the number of atoms per unit cell and ¢ the relevant
component of the dielectric tensor for a given mode. The
factor of ¢ is necessary to convert between the density of
electric dipole moments produced by the piezoaxionic
effect and the resultant electric field. This NDA approach,
which we have been unable to find in the literature,
typically agrees with the measured (and/or calculated)
values of the corresponding stiffness, piezoelectricity,
and dielectric properties within an order of magnitude.
The disagreement between the universal NDA approach
and individual material properties is captured by the tensors
&b, ., and 5, which generally have O(1) dimensionless
coefficients.
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Crystal symmetry dictates that certain components of
crystal tensors vanish. For example, %, and &, are odd
under a parity transformation of the crystal lattice, so they
must vanish identically for parity-even crystals. The pie-
zoaxionic effect can therefore only be present in crystals
with piezoelectric point groups, which constitute 20 geo-
metric crystal classes (out of a total of 32) [58]. The point
group of the crystal further constrains relations among the
components of the piezoelectric and piezoaxionic tensors.
For example, for the crystal class 32 which includes quartz,
the symmetry of the piezoelectric tensor is given by

hy ~hy O hy 00
hi=| 0 0 0 0 —hy —hy|. (52
0 0 0 O 0 0

and the & tensor has exactly the same symmetry structure.
The electroaxionic tensor ¢, is even under a parity trans-
formation of the crystal structure, and is generally non-
vanishing for any crystal.

Based on the crystal symmetries and the parity properties
of the different coefficients, we expect that

(Enk)T ~ ilnk and an NB;S;IO (53)

allowing a preliminary estimate of the piezoaxionic and
electroaxionic tensors from measurements of piezoelectric
and dielectric properties. The relations in Eq. (53) capture
suppression (enhancement) effects in the crystal, leading to
numerically small (large) £, and ;. In the case of quartz,
for example, the piezoelectric tensor components are
e;; =0.17 C/m? and e, = —0.041 C/m? at room tem-
perature [59], corresponding to /;; = 0.80 and h, =
—0.19 (these piezoelectric constants are related as h,,; =
P neni [60], Chap. IIIA), suggesting that the piezoaxionic
and electroaxionic tensors in the quartz crystal are also
O(1). (Quartz is not a good candidate material, primarily
due to the smallness of the 13Si Schiff moment.) We have
verified this NDA estimate for a number of materials using
measured values also found in reference [59]. For langasite,
hy; = 0.71, and for PZT (lead zirconate titanate), /53 can
vary from ~20-70.

We do not expect Eq. (53) to hold much better than up to
an O(1) number. Firstly, piezoelectricity depends on
electron charge redistribution (under strain) in the entire
unit cell, whereas piezoaxionicity only depends on elec-
tronic wave function changes near spin-polarized nuclei of
interest. Secondly, only electron wave function components
with minimal angular momentum (and thus large nuclear
overlap) contribute to the piezoaxionic effect, whereas there
is no such restriction for piezoelectricity.

In summary, we have shown that a nuclear Schiff
moment can lead to stresses and electric fields via
Eqgs. (43) and (44), respectively. QCD axion dark matter

generates oscillatory Schiff moments, so these stresses and
electric fields also oscillate in time, and can in turn excite
acoustic modes and currents, which we aim to detect with
setups described in the next section.

Finally, we provide a numerical estimate of the magni-
tude of the piezoaxionic effect. From Eq. (43), the stress
induced by a Schiff moment is equal to the stress induced
by an equivalent strain of

Z*R  4medS .
~ENs 2R Areds, 54
&P N (vyv,)3? aad d6 ¢ (54)

~3x 10

6 EPNg (Z)zR(vsvp)_% S

= _ . (55
PN, 10 0,efm’ (55)

80

where we have assumed that the amplitude of 6, is that of
Eq. (2) and that S is linear in 6,. The fiducial equivalent
strain of Eq. (55) is just one order of magnitude smaller
than the constraints achieved by the AURIGA collabora-
tion, which set a limit on strains induced by scalar dark
matter in an aluminum resonant-mass detector at the level
of S~ few x 1072, based on a one-month dataset [18].

III. EXPERIMENT

In Sec. II, we reviewed the mechanisms by which QCD
axion DM can mix opposite-parity electronic states through
short-range interactions with the nucleus, most notably via
the nuclear Schiff moment induced by the irreducible QCD
axion coupling. It is well known that the resulting effective
Hamiltonian induces nuclear spin precession in parity-
violating systems. This effect has been exploited in isolated
atoms or molecules, where parity is broken by a back-
ground electric field, to perform static measurements of the
strong CP angle 0 [61]. References [19,25] proposed using
this nuclear precession effect combined with nuclear
magnetic resonance techniques in solid-state systems, to
look for an oscillatory @, angle from QCD axion DM. Both
of these aforementioned schemes rely on changes in the
spin state, specifically transverse polarization, as their
primary signature.

The experimental setup we describe in this section
utilizes the piezoaxionic effect of Eq. (47) in piezoelectric
crystals with spin-polarized nuclei. This setup does not rely
on changes of the magnetization of the crystal. Instead,
with the nuclear spin polarization fixed both in magnitude
and direction, the oscillatory Schiff moment changes the
electronic wave function so that the crystal lattice structure
is no longer in equilibrium, resulting in a stress given by
Eq. (43). This axion-induced stress excites bulk acoustic
modes in the piezoelectric crystal, whose electromechani-
cal coupling admits an electric readout of this strain.
Concurrently, the secondary electroaxionic effect parame-
trized by the { tensor of Eq. (48) is also generally present in

072009-9



ARVANITAKI, MADDEN, and VAN TILBURG

PHYS. REV. D 109, 072009 (2024)

any crystal, and produces an additional electric field
contribution via Eq. (44).

Our proposed setup detects axion DM through the
measurement of these bulk acoustic mode excitations.
The acoustic modes are read out electrically (capacitively),
and the resulting current is fed to a superconducting
quantum interference device (SQUID). The main advan-
tage of our proposal is the extraordinarily low mechanical
losses of certain piezoelectric crystals. This fact implies
very high quality factors (Q-factors) of bulk acoustic
modes, and low thermal noise. The associated mechanical
Q-factors can be much larger than those of solid-state
nuclear spin precession systems or those of purely electric
modes. Furthermore, centimeter-scale crystals have natural
mechanical resonance frequencies in the MHz range,
providing natural amplification around all of the harmon-
ics, with further scanning possible through electrical
loading by an external circuit, as explained below.

We sketch a simplified experimental setup in Sec. III A,
where we also discuss possible candidate materials. For
concreteness, we quantitatively describe the signal for one
particular geometry in Sec. III B. We discuss different
backgrounds and how they can be mitigated in Sec. III C.
We finally present our sensitivity forecasts for our sim-
plified setup with an idealized material in Sec. III D.

A. Setup

Our proposed setup consists of a piezoelectric crystal
with electrodes placed on two of its faces, connected to a
SQUID via a transformer circuit and variable input inductor
and capacitor, as shown schematically in Fig. 2. For
simplicity of description, we will take the crystal to be a
rectangular prism in the form of a thin plate, with electrodes
on the two opposing major faces. The nuclear spins are
aligned along an appropriately chosen crystal axis in order
to maximize sensitivity. For nuclear spins, O(1) polariza-
tion can be achieved through the application of a large
magnetic field at the cryogenic temperatures relevant for
this experiment, since the Zeeman energy is of order the

T ORI sauro

e ———— t

FIG. 2. A simplified illustration of the proposed experimental
setup. The axion-induced stress and resulting strain signal in a
piezoelectric crystal with polarized nuclear spins is read out
capacitively and ultimately measured through a SQUID. The
circuit includes variable inductive and capacitive elements to scan
around the mechanical resonance frequency, as well as a
transformer circuit for impedance matching with the SQUID.

temperature yyB ~ 3.7 mK at B = 10 T. Due to the long
relaxation times in solids, this polarization can be preserved
for extended periods of time under application of a
moderate magnetic field on the order of 1074~1073 T [62].

We focus our treatment of the signal in Sec. III B on the
thickness expander mode, which has an acoustic wave
vector and electric field perpendicular to the major faces;
other geometries and modes are also possible and are
discussed in Appendix D. Bulk acoustic modes in thin
piezoelectric plates have been widely studied (see for
example [63-65]) and utilized in industrial, sensing, and
fundamental physics applications [66,67]. We note that
curvature of some of the crystal surfaces may help localize
acoustic modes in the transverse direction and help min-
imize clamping losses [68], but for illustrative purposes we
ignore this complication.

The axion signal and the electromechanical dynamics of
the crystal will be further expounded in the next section,
where we show that they can be modeled by an effective
axion voltage V, in series with an effective “primary”
impedance Zy, respectively, as shown in the equivalent
circuit of Fig. 3. Near one of the acoustic resonances, the
primary impedance can then further be approximated with
an effective mechanical capacitance C,,, inductance L,,,
and resistance R, (see Appendix C), all in parallel with the
“clamped capacitance” C,. The electrodes are connected
to a variable capacitor C; and a variable inductor with

Ty 1

1 1

1 1

v Chm |

! ' | ZB1

1 1

1 1

T :

1 1

: ——c Vo
"R, |

| |

: : M M
1 1

1 1
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1 1

1 1

Vin
R R | Ll '<}

FIG. 3. Equivalent electric circuit of the experimental set-up
described in Sec. III A and shown in Fig. 2. The axion signal
appears as an in-series voltage, V,,, to the piezoelectric crystal
with capacitance C,,, inductance L,,, and resistance R,, around
mechanical resonance. Two of the crystal’s faces are connected to
electrodes, resulting in a clamped capacitance C,. The electrodes
are connected to variable electrical components L; and C;. The
current inside the circuit is read out inductively by a SQUID
through a transformer. The SQUID and transformer contribute
also a back-impedance Zg; to the circuit (see text for more
details).

072009-10



PIEZOAXIONIC EFFECT

PHYS. REV. D 109, 072009 (2024)

self-inductance L;. The latter has a mutual inductance M,
to an inductor with self-inductance L,, as part of a trans-
former circuit. The current inside the transformer circuit is
sent to a SQUID with input inductance L;, mutual inductance
M;, and SQUID self-inductance Lgq, as depicted in Fig. 3.

1. Materials

The sensitivity of our setup relies crucially on a number
of material properties, most importantly piezoelectric and
dielectric properties, low mechanical losses, and a high
concentration of nuclei with large Schiff moments. In this
section, we identify a number of suitable crystals with these
properties, and discuss possible measures to improve the
sensitivity of a given crystal.

Before discussing candidate materials, we point out that
since piezoelectric crystals are anisotropic, the orientation of
different crystal cuts can result in significantly different
material properties. These include variations in temperature
coefficients, frequency stability, resonator quality factors,
and spurious modes. For the example of quartz-type reso-
nators, a comparison of state-of-the-art cuts and their proper-
ties can be found in Refs. [69,70], while Ref. [70] also
presents a comparison of the properties of stress compen-
sated (SC)- and Low isochronism defect (LD)-cut resonators
at cryogenic temperatures. Non-contacting electrode designs
where the electrodes are not deposited on the resonator itself
can further reduce acoustic losses [63,66,70].

Piezoelectrics make up a large class of materials; of the
32 possible crystal symmetry classes, 20 exhibit piezo-
electricity [71]. Nevertheless, the success of just a handful
of piezoelectric crystals, for example quartz and langasite,
has meant little previous need to explore the wide arena of
potential materials. We provide in Table II an indicative
(but not exhaustive) list of promising candidate materials
collected from the database of The Materials Project [72].
The properties of these materials are predicted using
DFT and matched to an experimentally determined

TABLE II. Candidate crystals for our setup, categorized by
their crystal structure, as found in Ref. [72]. The nucleus with the
largest Schiff moment in each compound is printed in bold.

Class Candidates
32 NaDyH2 S 2 Og
BiPO,
3m UOF,
UCd
4mm DySizIr
PbZr, Ti;_,O3 (PZT)
DyAgSe,
42m DyAgTe,
Dy2 B (&) GeO7
mm2 UCO;

crystal structure. We searched for crystals with a high
concentration of nuclei with large Schiff moments. We have
also listed the crystal symmetry group as this can give an
indication of whether crystals in that group have been
grown for the purposed of resonators in the past, or whether
the crystal could be ferroic. For examples of piezoelectric
crystal classes and their properties, see Ref. [64].

We expect that the ideal material will be comprised of a
single crystal and not be ferromagnetic or ferroelectric, so
as to reduce losses associated with movement of domain
walls. This is not a requirement however—for instance we
consider the reach of PZT in Fig. 8, which is ferroelectric
and has a poor quality factor but compensates due to its
strong piezoelectric effects, and therefore a large piezoax-
ionic tensor. A number of optimal, octupole-deformed
nuclei are listed at the end of Sec. II B 4. In practice, the
electronic properties of Eu (europium) and Gd (gadolin-
ium) mean that their compounds are usually ferromagnetic.
As a result, Table II mainly contains compounds of
U (uranium) and Dy (dysprosium). We have also included
crystals containing 33'Bi and 39'Pb as examples of high-Z
nondeformed nuclei (Sec. II B 3).

While DFT can be used to predict the unit cell volume,
stiffness, dielectric, and piezoelectric properties of a candi-
date crystal with good accuracy, the loss angles of the
material (the imaginary parts of the crystal tensors) remain
critical unknowns that must be determined experimentally.
Any resonator’s quality factor can nevertheless be further
improved by increased purity, choice of cut, surface polish-
ing, use of energy-trapping geometries, and lower temper-
ature. It has been suggested that these measures can reliably
improve the quality factor of many crystals by 3—4 orders of
magnitude, with Q factors approaching 10'° for quartz
[63,66]. While the exact choice of material for our setup
is still to be determined, we think the requirements are not
overly restrictive, and can hopefully be satisfied by existing
crystals. This will require future experimental investigation.

B. Signal

In this section, we describe the axion DM signal and how
it excites the crystal’s electromechanical modes, as well as
the entire circuit. We focus on the thickness expander
mode, with electric field parallel to the thickness direction
(normal to the electrodes). It should be noted that the
relevant indices for these modes will change depending on
the crystal class; for concreteness, they have been chosen
with quartz-type symmetry class 32 in mind. Other possible
modes and geometries are discussed in Appendix D, and
could be useful for searching for axion signals at lower
frequencies and with other crystal classes.

1. Thickness expander mode of a thin plate

Other than the excitation due to the piezoaxionic effect,
the setup and treatment below are analogous to that of
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Ref. [60], Sec. IV D. We will take the piezoelectric
crystal to be a rectangular prism with side lengths £; of high
aspect ratio (thin plate): ; < ¢, 3. We are interested in
the “fast thickness expander mode”: an electro-acoustic
wave with both the propagation and displacement in the
thickness direction, i.e. wave number k « X, and displace-
ment u « X;. Such a mode only has a normal strain §; # 0,
while the other five strain components vanish identically.
For a high-permittivity dielectric medium with negligible
flux leakage, we have that the electric displacements D,
and D5 vanish on the minor faces, and because all gradients
are in the x; direction, they also vanish in the bulk.
Furthermore, inside the insulating crystal, we have
V-D =0, so D, is spatially uniform. Since the major
faces are connected to electrodes in our fiducial setup, we
are interested only in the electric field in the thickness
direction. The constitutive Eqgs. (45) and (46) therefore
reduce to

Ty =+ S — hyDy - &1,0,; (56)
El = —]’11151 +ﬂf|D1 _Clljléa‘ (57)

The equation of motion for this effectively one-
dimensional acoustic mode is pii, = 0,T| = cPd}u,, the
latter equality following from uniformity of Dy, I, and 8,.
The solution to this equation that also satisfies the boundary
conditions 7y = 0 at x; = 0,7, is

hiDy+ &0, | . wx ot WX
| =@ D sm—D—tan—Dcos—D s (58)
B v 20 v

with v? = /cP,/p the crystal sound speed. Above, the

quantities u,, D, and 6, are assumed to be oscillatory with

angular frequency w; the factors of e/ are not shown.
The voltage difference

4
v [ anE = zod+v, (59)
0

measured across the electrodes attached to the crystal can
be separated in a term equal to the current [ = iw?,¢3D,
times the impedance

1 20 wf
Zorys = —— |1 — k> —tan —= 60
Y wC, [ ot a 21)D:| (60)

and the axion-induced voltage

V, =

hy & 200wt 5 7
—{ C?l 7tan2?+g“”f1 Ilea (61)

proportional to the nuclear spin polarization fraction 7, and
axion-induced, oscillatory theta angle 8,. In Eq. (60), we

have defined the clamped capacitance C, = £,¢5/(¢,/},)
and the electromechanical coupling factor:

2

2= hiy
=75
b

(62)

The axion-induced voltage V, thus appears in series with
that of the entire equivalent circuit of the crystal resonator.
In the top panel of Fig. 4, we plot in black the axion voltage
amplitude, V,, near the crystal’s fundamental mechanical
frequency f ~ f, = vP/2¢, (vertical black dashed line).

frequency relative to fundamental antiresonance w/wq
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FIG. 4. Top panel: axion induced voltage V, from Eq. (61) as
function of frequency f for the idealized crystal with parameters
shown in Table III. The piezoaxionic (blue dashed) and electro-
axionic (red dashed) contributions are plotted separately, giving
the total voltage in black. The piezoaxionic effect changes sign,
and adds constructively (destructively) to the axioelectric polar-
izability effect just above (below) the fundamental mechanical
resonance frequency (dashed black vertical line), for our choice of
relative sign between the piezoaxionic and electroaxionic coef-
ficients & and . Bottom panel: Crystal quality factor Q from
Eq. (65) as a function of frequency f for the same idealized crystal.
The fundamental and the natural resonance frequencies f and f
are depicted by the black and dashed gray vertical lines, respec-
tively. (See https://github.com/kenvantilburg/piezoaxionic-eftect/
blob/main/code/supporting_plots_eta20.ipynb.
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(The fundamental resonance frequency is sometimes also
referred to as the “antiresonance frequency,” because it
maximizes the effective impedance of the unloaded crys-
tal.) We also define the natural resonance frequency f,,, =
/27 as the frequency at which the imaginary part of the
crystal impedance Z, vanishes, and is depicted as the
vertical gray dashed line in Fig. 4. Below the fundamental
frequency f < fy, the & and ¢ contributions (plotted
separately in red and blue, respectively) add constructively,
while they add destructively above the mechanical resonant
frequency. (This cancellation depends on the relative sign
between £ and £, which we have taken to be the same here;
an opposite relative sign causes a cancellation below the
fundamental resonance.) Near the fundamental resonance
frequency, the voltage from the piezoaxionic effect domi-
nates, due to the enhancement of the bulk acoustic mode
displacement amplitude [Eq. (58)]. This resonant enhance-
ment turns out to be crucial to reach sensitivity to QCD
axion DM parameter space.

Losses in the system are introduced through the complex
stiffness and impermittivity tensors:

¢y = Re{ef H(1 +i6,), (63)

1 = Re{pi, }(1 - idp); (64)

where the loss angles . and §; parametrize the mechanical
and dielectric losses in the piezoelectric crystal. (For all
quantitative results in this work, the signal response and noise
treatment utilizes the above loss angles, not resistive elements
such as R,, from Sec. C and shown in Fig. 3.) The effective
quality factor Q of the piezoelectric plate, as a circuit element
referred to the primary circuit, can be calculated as
Q(w) = (stored energy)/ (energy dissipated per cycle). One
then finds a frequency-dependent quality factor:

of P
0(w) = —————— |1+ i? ' 65
( ) chRe{Zcrys} 1+ COS(‘;_L;] ( )

The quality factor is plotted in the bottom panel of Fig. 4. We
observe that, near the fundamental mechanical resonance
frequency, the quality factor approaches the inverse of the
mechanical loss angle .. Far away from this resonance, the
quality factor asymptotes to the inverse dielectric loss angle
5/;1, which is empirically much worse than the mechanical

one for most materials. Thermal noise is therefore substan-
tially reduced near the fundamental mechanical frequency of
the system compared to that of a purely electrical resonator
(Sec. I C).

2. Readout circuit components

Having described the signal and response of the piezo-
electric crystal, we now turn to the other circuit components
used for the readout of the signal due to the axion voltage of

Eq. (61), which are qualitatively similar to that of other
experimental setups [67,70,73-75]. The total impedance
Z.; of the circuit loop containing the piezoelectric crystal,
which we shall refer to as the input circuit, is

Ztot = Zcrys + L + la)L1 + AZBI' (66)
iwC

The second and third terms in Z, are the impedances of the
capacitor with capacitance C;, and inductor with self-
inductance L, respectively. These two impedances serve as
the main loads of the resonator, and can be used to control
the setup’s resonant frequency fi., = Wys/27, i.e. the
frequency at which Im{Z,} vanishes, as shown in
Fig. 5. As discussed in Sec. III D, changing L, or C, is
one of the methods that can be used to shift the resonance
frequency of the circuit and scan (continuously) over
possible axion masses. The transformer circuit and the
SQUID contribute a fourth term to Z,, in Eq. (66), the back
impedance [76]:

_ w*M3,
ioLy + ioL; + 0*M? (z + 77)

AZg; . (67)

where £" and R" are the reduced dynamical inductance and
resistance of the SQUID, respectively [77]. This back
impedance is typically negligible under optimal operating
conditions.

The ultimate readout observable is the flux ®g, through
the SQUID:

IMM,
T Li+Ly

(68)

where [ is the input circuit current, which receives an
additive contribution /, due to the axion voltage V, from
Eq. (61):

— Va
Zlot .

1, (69)

We take the mutual inductances to have fixed coupling
coefficients ki, =M ,/\/L L, and k; =M;/\/L;Lgq,
respectively. While the flux through the SQUID (from
the axion voltage) is maximized when L, = L;, it is
not generally optimal in view of back action noise (see
Sec. III C2). We note that the readout signal, for fixed
axion voltage, is enhanced for two reasons in the above
setup. Firstly, the axion signal current from Eq. (69) is
enhanced on resonance (when |Im{Z,}| is small).
Secondly, the transformer current steps up the current in

the transformer circuit by a factor of O(\/L/L,), resulting

in a corresponding enhancement of the flux through
the SQUID.
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FIG. 5. Top panel: total impedance as referred to the input circuit

of Fig. 3, for fixed C; = C./3 and different values of the
transformer inductance L;. For small L; = 0.01 mH (black), the
resonance frequency f,., below the fundamental mechanical
resonance angular frequency f (black dashed line) is shifted up
above the natural resonance frequency f,, (gray dashed line) due to
the finite value of C;. For increasing L, the resonance frequency is
tuned downwards, as indicated by the blue lines for L; =
12.0,12.5 mH. For yet larger inductances L; = 16.0, 16.5 mH,
the resonance frequency associated with the mode above the
fundamental mechanical resonance approaches f, (red lines).
Bottom panel: resonance angular frequency w,. (in units of @)
as a function of L, and C,. Blue (red) colors indicate the resonant
branch below (above) @y, like in the top panel. For both panels,
the parameters of the idealized crystal used are given in Table III.
See  https://github.com/kenvantilburg/piezoaxionic-effect/blob/
main/code/supporting_plots_eta20.ipynb.

C. Backgrounds

In Sec. III B, we computed how the axion DM back-
ground sourced the signal voltage V, in the input circuit,
and how this propagated to a flux ®@g, through the SQUID.
In this section, we will outline the main backgrounds that
compete with this signal. These noise sources can be
divided into three categories: thermal noise due to dis-
sipative circuit elements (Sec. III C 1), SQUID flux noise
(Sec. III C 2), and spin projection noise, i.e. magnetization

noise (Sec. III C 3). For direct comparison to the axion
voltage V ,, we quantify all noise sources in terms of their
equivalent voltage noise spectral densities:

St = S+ S3Q + s (70)

as referred to the input circuit, and assume a noise model with
vanishing cross-correlations between voltage and current
(see Ref. [78] for more discussion). We also comment on
nonthermal vibration or seismic noise (Sec. III C 4), as well
the limitations in cryogenic cooling arising from the possible
use of metastable nuclei such as 233U and %3] Np (Sec. II1 C 5).

1. Thermal noise

Thermal noise due to the lossy circuit elements is the
primary source of noise on and near resonance. Its equivalent
voltage noise spectral density St can be written as

SB = 4T Re{Zy} = SP° + Sy + Sy + S8, (71)

where T is the thermodynamic temperature, and the break-
down in terms of different thermal noise sources is the
same as in the sum of Eq. (66). The thermal noise is
proportional to the real part of the impedance, and thus to
the loss angles 6. and 65 for the crystal circuit element,
0c, for the capacitor with complex capacitance C; =
|Ci|(1+id¢,), and &, for the inductor with complex
inductance L = |L|(1 — i, ). The thermal voltage noise
from the SQUID back impedance is linearly proportional to
‘R’ In the top panel of Fig. 6, we plot representative values
for the thermal voltage noise S} of the crystal (blue), as well

as Sk of the inductor (green). The contribution SB! of the
backaction impedance of the SQUID readout system is
negligible, and we assume the capacitance has a negligible
loss angle (compared to that of C,.). Fiducial parameters for
the setup are given in Table III. The combined thermal noise
is seen to dominate the total noise (black) on resonance. The
total noise off-resonance is dominated by the SQUID noise to
which we turn next.

2. SQUID noise

The voltage noise spectral density for the SQUID
amplifier consists of current imprecision noise S™* (due
to the finite precision with which the flux can be read out)
and backaction noise S}k

Soaor = | Ziog 2 STx 4 sbck, (72)

As demonstrated in Ref. [78] (Appendixes E and F), under
operating conditions with vanishing cross-correlated noise,
these two noise sources are related by
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FIG. 6. Amplitude spectral densities of all noise sources
considered in the experimental setup with a crystal of dimensions
¢1 =4 cm and ¢, ;3 = 40 cm, variable capacitance C; = C../10,
and variable inductance L; = 0.06 H. All other parameters are
the fiducial ones from Table III. The top panel depicts noise

. . . 1/2
sources expressed as equivalent voltage noise amplitudes S/~ of
Egs. (70), (71), and (74), as referred to in the input circuit of
Fig. 3. Via Eq. (61), they can be expressed as effective noise
amplitudes for ¢,,0, (right axis of top panel) and &,,0, (middle
panel). In the bottom panel, they are shown as effective noise
amplitudes for the Schiff moment S (left axis) and the QCD 6,
angle (right axis), via Egs. (47) and (48). See https://github.com/
kenvantilburg/piezoaxionic-effect/blob/main/code/supporting
_plots_eta20.ipynb.

2 2
. MsQ®w
SI\D/de = S;]ux ’ (7 3 )

where 7gq > 1 determines the noise temperature Ti,Q =
Nsqw/m at each angular frequency w, and saturation of the
inequality is achieved at the standard quantum limit. We
take 7go = 20 as a fiducial SQUID sensitivity, a value
that has already been reached in a read-out circuit of a
kHz-frequency mechanical resonator [79].

TABLE III.  Fiducial parameters for an idealized setup assumed
throughout this work. The definitions of each symbol can be
found in the main text, primarily Sec. [I D and Sec. III B.

Parameter ~ Value/formula  Parameter ~ Value/formula
P 12 gem™ V. amuA/p
Ns 5 [$59)1/2 2.5 x 1077®, Hz™!/?
Nc 10 LSQ 0.1 nH
z 92 Rsq 10Q
S 50, e fm? ki kin 0.75
ny NS/VC Li 1 MH
Rlvsw,) ™ 10 Ci, Ly, Ly Variable
M, ZR(vy,) ay* dr, 107°

D D
v p/c?l 5Cl 0
cf N.a/agV, 8 107

it 1/3 3 1076
]’111 NL.eao/VL. 5h 0
{n (4ﬂ)2Nsa(2)MS/VC 1, 1
511 47T€NSMS/VC T 1 mK

The imprecision noise of the SQUID is related to the
finite flux noise spectral density S5 and quantifies how
small a flux @ can be read out by the device. Translating
this flux noise to an equivalent current noise in the input
circuit gives

2
PREUETS CE
As mentioned in Sec. III B, the value of L, that maximizes
the flux through the SQUID at fixed coupling coefficients k,
and k; (and thus minimizes S™*) is L, = L;. However, this
flux maximization also maximizes the backaction noise,
cf. Eq. (73), and is typically suboptimal. Reference [78]
(Appendix F) found the best operating point for any search
for a near-monochromatic signal with log-uniform priors on
its frequency; in the limit of 7 > w, which applies to our
low-frequency setup, this corresponds to

St‘)/ack =27 Re{zlot}’ (75)

which we take to hold on resonance. For any resonance
frequency of our system, we try to satisfy Eq. (75) by tuning
the value of L,. This could also be improved in the future by
using a readout that can perform backaction evading mea-
surements, for example [80].

The energy resolution of an optimized SQUID is limited
by the uncertainty principle to satisfy the inequality [81]:

§3Q
®_ >, (76)

a limit that has been nearly saturated within a factor of O(1)
by many groups [82]. For the purposes of our projections,
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we assume fiducial SQUID parameters from reference [79]
of [$592 =2.5% 1077®) Hz"'/?, Lgy = 0.1 nH and
L; =1 pH, where ®, = /e is the magnetic flux quantum.
The SQUID’s energy resolution is however not the sensi-
tivity-limiting factor, which is instead the balancing of
back impedance and backaction and imprecision noise of
Egs. (67), (73) and (74).

In the top panel of Fig. 6, we plot the equivalent
imprecision voltage noise of the SQUID flux noise in
red [the first term in Eq. (74)]; off-resonance, imprecision
noise is the sensitivity-limiting factor. In gold, we plot the
corresponding backaction voltage noise at the optimal
operating point of Eq. (75), which is always of order the
thermal noise from the other circuit components.

3. Spin noise

For a crystal to exhibit the piezoaxionic effect due to the
irreducible coupling of QCD axion DM, it needs to be
populated by a high density of nuclear spins, whose
fluctuations—spin projection noise or magnetization
noise—can source an effective noise voltage in the circuit.
The effective magnetic field noise spectral density of these
spin fluctuations is [25]

spin :ulz\lnN T2
S5 = 80165051 + T5(w — puyBo)*’ (77)
where py, ny, and T, are the nuclear magnetic moment, the
nuclear spin density, and the transverse spin relaxation time,
respectively. There is generically a static magnetic field B,
present in the material, from an externally applied field and/
or from the aligned nuclear spins (unless they cancel each
other). The resulting voltage noise spectral density into the
input circuit can then be estimated as

i i (24 2 n
Spin __ 2 50 0 ospin 203 HNNN
B 17 B 2

, (78)

where we have assumed @ > uy B,. The voltage amplitude
spectral density of these spin fluctuations evaluates to
[SP"]/2 ~ 1.0 x 107'® VHz™'/? for a magnetic moment
equal to a nuclear magneton uy = e/2m,,, a typical solid-
state transverse spin relaxation time 7, = 1073 s, and
otherwise the same parameters as used in Fig. 6; this
value is far below the other noise sources depicted in the
top panel.

Magnetization noise can also arise from fluctuating
magnetic impurities in the crystal. The electron impurity
spin noise is similar to the one shown above, with uy
substituted by the effective electron magnetic moment yu, ~
up = e/2m, and correspondingly shorter transverse relax-
ation times T~ 1073T,, since the electrons interact

Uo/ty ~ 103 times more strongly with their environment.
Magnetic impurity concentrations as low as 1 part per
billion have previously been reported [83]. We find this
source of noise to be subdominant to nuclear magnetization
noise as long as magnetic impurities are kept to below 1
part per million, and certainly below the other noise sources
plotted in Fig. 6, even for much higher concentrations.
Magnetization noise would however become the dominant
source of broadband noise for any version of our proposed
experiment with order-unity polarization fraction of elec-
tron spins. For such magnetically ordered materials, mag-
netomechanical effects such as magnetostriction [84] and
piezomagnetism [60]—lattice strain/stress proportional to
magnetic fields—must also be considered in the noise
budget, but are highly suppressed for the nonmagnetic
crystals (with only nuclear spin polarization) considered in
this work.

4. Vibration noise

Nonthermal, external sources of vibration, such as those
from seismic noise or human activity must be isolated from
the crystal’s acoustic modes. Around f ~ kHz frequencies,

the displacement noise amplitude spectral density Sclli/si is
empirically found to scale as [85]

1/2
Sdisp

kHz\ 2
~ 10713 mHz"1/2 <—Z> (79)
f
with f a parameter ranging from 1 to 10 depending on the
amount of surrounding human activity. In order to keep this
vibration noise down to an equivalent strain noise ampli-

tude of SY/Z ~ 1072 Hz '/2—as needed to detect the
piezoaxionic effect from QCD axion DM [see Eq. (55)]—
in a crystal of thickness £ ~ cm at f ~ MHz, one requires a
vibration attenuation of at least —160 dB. In other words,
the rms displacement of the crystal’s major surfaces (off-
resonance) needs to be suppressed by at least 8 orders of
magnitude compared to the rms absolute displacement
of the environment in the same frequency band. Such
levels of vibration mitigation are well within the —240 dB
attenuation levels achieved by the AURIGA collaboration
at f ~900 Hz [86].

5. Cooling limitations

In order to achieve our target sensitivity, a crystal
containing a high concentration of nuclei with octupole-
enhanced Schiff moments needs to be cooled to cryogenic
temperatures. Some candidate nuclear isotopes, such as
233U and %Np, are radioactive. The decay heat [87] from
these metastable nuclei presents a challenge, as the cooling
power of dilution refrigerators is limited.
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A dilution refrigerator’s cooling power Q depends chiefly
on the target temperature 7 and the He flow rate 7 [88]:

. i T \?
Qx84 pW<10_3 mol/s) <10 mK> ’ (80)

with a (high) fiducial flow rate indicated in brackets.

The largest crystal size 4 x 40 x 40 cm?® under consid-
eration, with a density of 12 g/cm?, contains 64 kg of
heavy (and potentially radioactive) nuclei, if they make up
10 g/cm? in terms of mass density. The decay heating
power of e.g. 23U is approximately 60 pW /kg [87], which
would preclude reaching temperatures below 200 mK. This
problem is even more severe for ZSng, which has a decay
heating power of 0.02 W/kg.

This decay heat makes the presence of metastable nuclei
in a cryogenic environment challenging, if not prohibitive.
As noted in Sec. II B, there are several stable nuclear
isotopes with octupole-enhanced Schiff moments which
do not suffer from this problem. Finally, it may also be
possible to cool a single acoustic mode below the thermo-
dynamic temperature of the crystal via optomechanical
methods [89]. Such futuristic experimental directions are
outside the scope of this work.

D. Sensitivity

In Secs. III B and I C, we calculated the axion signal
voltage V, [Eq. (61) and Fig. 4] and the voltage noise spec-
tral density SY' [Eq. (70) and Fig. 6], respectively, as referred
to the input circuit. We will now synthesize these results to
compute the sensitivity of our proposed experiment.

After one “shot” of time fy,,, which we assume to be
larger than the coherence time 7., of the axion DM signal
in Eq. (4), the signal-to-noise ratio (SNR) is

|Va |2 \Y tshotTcoh

SNRShOt = St‘(/)t ’

(81)

where SY' is to be evaluated at an angular frequency of
o = m,. The SNR of a single shot is largest whenever
|V, |?/S%t is largest, which typically only occurs for axion
frequencies f = m,/2x in a small bandwidth around the
resonance frequencies fi.s = /27 of the complete
circuit. This is shown in Fig. 7, which assumes a crystal
of size 4 x 40 x 40 cm? with parameters given in Table III.
The red curve is a SNRy,,, = 1 contour expressed in terms
of 0, sensitivity as a function of axion frequency. In
addition to noise suppression, whenever a resonance is
close to a fundamental resonance frequency of the crystal
(the vertical black dashed line in Fig. 7), the sensitivity is
enhanced further due to the increase of the axion voltage
signal (see Fig. 4 and also the bottom panel of Fig. 6).
The narrow instantaneous bandwidth of the setup neces-
sitates a scanning strategy to achieve sensitivity to a broad

f=4cm, tinn=1yr QCD axion ||
10—15 4
—— one shot
I —— Nahots = 10°
\r‘
10716 4
2
>
g 10—17 4
Q
wn
< |
10718 | \‘4
10719 4 |
0061 0062 0063 0064 0065 0.066  0.067
axion frequency f [MHz]
FIG. 7. Sensitivity to an oscillatory theta angle 6, as a function

of frequency for a single shot (red line) and for a scan around the
mechanical resonance frequency of the first acoustic thickness
expander mode of an idealized crystal with fiducial parameters
given by Table III. The green line shows the prediction for QCD
axion DM. See https://github.com/kenvantilburg/piezoaxionic-
effect/blob/main/code/sensitivity_eta20.ipynb.

range of axion masses. Our suggested strategy in this paper
is to dial the resonance frequencies by changing the electric
loads, namely the readout circuit’s capacitance C; and
inductance L; between each shot. For the resonance peak
below the mechanical resonance, we take C; = 10|C.|, and
C, = 0.1|C,| for the resonance peak above the mechanical
resonance frequency. We suggest scanning the resonance
frequency with a large number N = 10* shots over regu-
larly spaced steps in the range of [2w,, — @g, 3w) — 2w,
by changing the inductance L in incremental steps. The
value of the inductance needed lies in a range of a few
orders of magnitude around the typical impedance-matched
value of |L;| ~ 1/(@3|C.|). The total SNR of all shots is
computed as

SNR,, = Y (SNRg!

shot

y (52

shots

The isocontour SNR,,; = 1 as a result of this procedure is
plotted as the red line of Fig. 7.

Figure 8 shows in blue the forecasted sensitivity for
13 crystals with thicknesses ¢; logarithmically spaced
between 4 cm and 2 cm and an aspect ratio of 10 (i.e. trans-
verse sizes £, = £3 = 40 — 20 cm), for a total integration
time of #;,, = 10 yr, and other parameters matching those
of Fig. 7 and Table III. Sensitivity to the QCD axion can be
reached for such a setup over an octave in axion masses.
The red region is a scaled-down version of the setup with
13 different values of #; = 4 — 2 mm, 64 identical crystals
hooked up in series, and an aspect ratio of ¢, 3/¢; = 20.

The gold region in Fig. 8 is the parameter space that can
plausibly be covered by setups similar to those previously
described, assuming mechanical scanning of frequency,
which is not discussed in detail in this work. Mechanical
scanning would allow taking full advantage of the high Q
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FIG. 8. Axion parameter space probed by the setup described in Sec. III and parameters given in Table III as a function of the axion
decay constant f, (inverse, vertical axis) and the axion mass m, (the top axis also indicates the corresponding frequency f). The blue
and red shaded regions show the reach [SNR,,, = 1 with Eq. (82)] by scanning electrically around the first acoustic modes of a series of
crystals with 13 different thicknesses. The gold region outlines the ultimate reach assuming mechanical scanning of the frequency for the
parameters indicated. The ultimate reach, limited by a combination of SQUID noise and the crystal thermal noise, is shown for different
values of 775, the parameter indicating how close the SQUID operates to the quantum limit (see Sec. III C2 and Sec. III D for more
details). Similarly, the sensitivity achieved by the electroaxionic effect alone is outlined by the brown dashed line. The QCD axion
relation between the mass and the decay constant [Eq. (3)] is shown in green. The gray shaded regions are disfavored from BH
superradiance [90], BBN [91], the structure of the Sun [30], white dwarfs [92], and neutron star binary mergers [93]. The brown dotted
line is the projected sensitivity for commercially available PZT crystals with 775, = 1, assuming an O(1) concentration of 39'Pb. See

https://github.com/kenvantilburg/piezoaxionic-effect/blob/main/code/sensitivity _eta20.ipynb.

factor around the resonance frequency. This plotted region
is constructed by interpolating between the on-resonance
sensitivity for four setups (indicated by gold circles) with
dimensions ¢, x £, x 3 equal to 40 x40 x 4 cm?,
4x40x40cm3, 4x40x40mm?3, and 0.01 x 1 x 1 mm?,
respectively. The third and fourth fiducial setups assume a
large number of crystals in series and parallel at any one
time, namely 64 x 1 and 512 x 32 = 8192. For each setup,
we take C; = 0.1|C.| and L; = («3|C.|)~!. To cover an
octave within a 10-year integration time, the shot time is
assumed to be Zy,o; = fin/(Qyes In2) where Qg = 0o/ Aw
is the inverse fractional bandwidth, and Aw is the range
of w over which S(w) < 4S(w,). With those assump-
tions, sensitivity to the QCD axion may be attained over a
mass range of m, €[107!" eV, 1078 eV] for a fiducial
SQUID noise temperature determined by 7gq = 20, and
over [107!" eV, 1077 eV] for a quantum-limited amplifier

(nsq = 1). Also shown is the reach due to the electro-
axionic effect (dashed brown), which is weaker. The
superiority of the piezoaxionic effect is due to the enhance-
ment of the axion-induced voltage on resonance and the
large Q factor associated with mechanical oscillations of
the crystal. The brown dotted line in Fig. 8 corresponds to
the reach of the piezoaxionic effect using commercially
available PZT-7A [59] grown with a 100% abundance of
the lead isotope 39'Pb, assuming the same experimental
setup and a quantum-limited amplifier (75q = 1). The
mechanical and electrical loss angles of the crystal have
been taken conservatively to be of the order of 1073,
The green line in Fig. 8 shows the QCD axion prediction,
while gray regions indicate previously known constraints.
Black-hole (BH) superradiance [6,94] is a process wherein
the spontaneous/stimulated production of axions can
extract a large amount of angular momentum from BHs;
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we take the updated constraints from Ref. [90], outlining
parameter space that is inconsistent with spin measure-
ments on five known BHs in x-ray binary systems. (These
are lower bounds on f,, as axion self-interactions can
quench this process.) At sufficiently small values of f,, the
value of 6, could be so large that the neutron-proton mass
difference at neutron freeze-out alters big-bang nucleosyn-
thesis (BBN) predictions significantly [91]. The region
labeled “Sun” is excluded by direct measurements of the
Sun, as the in-medium reduction of the axion potential will
generically destabilize the axion to |@,| ~ « at those small
values of f, [30]. A similar destabilization can occur much
more easily (for much larger f,) in neutron stars, with the
sourced axion field altering short-range forces within a
double-neutron-star binary system—shown are corre-
sponding gravitational-wave (GW) constraints from
Ref. [93]. Near nuclear saturation densities, as exhibited
by supernova remnants and cores of neutron stars (e.g.
SN1987A and Cassiopeia A, respectively), axion produc-
tion through the nuclear coupling is very efficient, leading
to a bound of order f, = 108 GeV (outside the plot range in
Fig. 8), though the precise value of this bound is not yet
settled [28]. As discussed in Sec. II A, any bounds (and also
our projections) above the QCD axion line prediction of
Fig. 8 are model-dependent due to the fine-tuning needed in
this part of the parameter space.

In summary, Fig. 8 illustrates how the piezoaxionic effect
can be used to search for the irreducible coupling of QCD
axion DM. For other setups and proposals to search for this
coupling, see Refs. [25,95-98]. Because of derivative
suppression, this is also a challenging mass range for
detection concepts that search for other couplings of QCD
axion DM [95,99-102]. The parameters of Table III should
be taken as indicative, with significant research and
development needed to achieve the sensitivity curves of
Fig. 8 in practice. Nevertheless, we believe our idealized
forecast demonstrates that the piezoaxionic effect can be a
powerful probe of QCD axion DM.

IV. OTHER AXION COUPLINGS

In Secs. II and III, we have focused on the irreducible
coupling of QCD axion DM in Eq. (1), and the resulting
P- and T-violating effects. Generic axionlike particles
(ALP), as well as the QCD axion [29], can have shift-
symmetric couplings to fermions and photons:

G, - G, _
LD 47}' aF, F* — Z %dﬂawfy”yswf, (83)
f=p.n.e

with F* =ewoF, /2. The shift symmetry [a —
a + constant] of the resulting action implies that all
physical effects from these couplings are proportional to
derivatives of the axion field, i.e. d,a, where now a can be a
generic ALP or the QCD axion. We do not consider in

detail the effects from the axion-photon coupling in this
work, as our preliminary calculations indicate they are
numerically small, and electrical resonator setups such as
those of Refs. [73-75,99,103] are better suited.

For the axion-fermion couplings, one finds the following
single-particle Hamiltonian:

H = %aﬂayoy"ys o~ —Jaf . {Va + a—f} . (84)

with 6, py, and m; the spin, momentum, and mass of the
fermion f, respectively. The nonrelativistic limit was taken
in the second equality. The “axion wind” interaction, the
P-even and T-odd operator proportional to Va (and thus the
axion velocity) in Eq. (84), has been proposed to search for
ALPs and the QCD axion, by detecting changes in trans-
verse magnetization from precessing nuclear [19] and
electron spins [104].

In a parity violating medium, the P-odd and T-even
operator proportional to @ in Eq. (84), generically contrib-
utes to the internal energy density U of Eq. (42) an additive
correction:

unit cell .
<He> Gaeea
Ud el o Tgee” <
ze: VC 2VC 2 ll/e

since there is no symmetry that forbids such a nonzero
contribution, in analogy to the piezoelectric effect. The
axion-nucleon coupling G,yy Yyields numerically small
effects in what follows, since nuclear contributions to
the crystal lattice dynamics are suppressed by positive
powers of m,/my and/or R/ ay, so we focus on electronic
contributions from hereon; the sum in Eq. (85) is over all
electrons in the unit cell. Note that since the operator in
Eq. (85) is T-even, the electrons need not be spin-polarized
or unpaired, which is advantageous from the point of view
spin-noise backgrounds (Sec. III C 3). The internal energy
density correction of Eq. (85) results in corresponding
additive changes to the constitutive equations for the stress
and electric field [e.g. Egs. (45) and (46)]:

P. 0,

e

ve).  (89)

oUu G oot Gyee@aN, ~
T — _ Haee 0 =— aee 09 i 36
nTas 2T =TTy oy O (86)
oU Gooll Geol 0N, ea?
E — _ —aee = _ aee c 0~ .
n aDn D 2 ’7}1 2 VL, a ’7”’ (87)

where by NDA, the 2-tensors 6, and 7, should be of order
unity. In Egs. (86) and (87), we estimate that there are N,
number of valence electrons, and that each matrix element
in Eq. (85) is O(a). Unlike in the case of the piezoaxionic
and electroaxionic effects from a Schiff moment, where
only j = 1/2 electrons around a high-Z nucleus contribute,
here all valence electrons participate.
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FIG. 9. Sensitivity to the derivative axion-electron coupling G ..,
of Eq. (83) as a function of mass m,, of the axionlike particle. The
setup and parameters are the same as in Fig. 8, with the additional
assumption of 0, =7, = lin Egs. (86) and (87). The gray region
indicates couplings strongly disfavored by cooling of white
dwarf (WD) stars [105]. See https:/github.com/kenvantilburg/
piezoaxionic-effect/blob/main/code/sensitivity_eta20.ipynb.

In Fig. 9, we show that with the same setup as described
in the previous section, one is also sensitive to the axion-
electron coupling of ALP DM. [The sensitivity calculation
is completely analogous to the steps in Sec. III with the
appropriate substitutions of the axion-induced effects in
Egs. (45) and (46) with those of Egs. (86) and (87), and is
not repeated here.] The ultimate reach is up to one order of
magnitude stronger than the bound |G| <3 x 10713 /m,,
obtained from considering the influence of axion-induced
excess cooling on white-dwarf luminosity functions [105].
While sensitivity to the irreducible coupling of the QCD
axion requires a crystal hosting nuclei with large Schiff
moments, a competitive reach to G,,,—and scalar DM
couplings [17]—can be already realized with commercially
available crystal resonators such as quartz or gallium
arsenide, and is thus an interesting target for a pilot
experiment.

V. DISCUSSION

In this work, we have described two new axion DM
phenomena, and proposed an experimental concept that
may discover QCD axion DM through its model-indepen-
dent coupling over several decades in mass range. The
setup relies on the intrinsic parity breaking in piezoelectric
crystals. In such a material, an axion background results in
a stress that can resonantly excite bulk acoustic modes if the
axion frequency matches a fundamental acoustic frequency
(or any of its harmonics) of the crystal, a phenomenon

that we call the “piezoaxionic effect.” Due to the piezo-
electric effect, this excited mode produces a voltage
difference across the material that can be read out electri-
cally. An axion background will also generically give
another, nonresonant, additive contribution to this voltage
difference—the “electroaxionic effect.” Our proposed setup
is capable of detecting axions from tens of kHz to up to
hundred(s) of MHz using well-known techniques from
resonant-mass detectors developed for gravitational-wave
detection, and low-noise electrical readout circuits used in
other axion and dark-photon DM experiments. The most
exciting signal is produced by the irreducible P- and
T-violating coupling of the QCD axion to gluons, which
furthermore requires that the piezoelectric crystal contain
spin-polarized nuclei (to break 7' symmetry) with large
Schiff moments. A detectable signal can also arise from the
derivative coupling of axionlike particles to electrons,
which is less challenging experimentally since the occur-
rence of the piezoaxionic effect for this coupling does not
require polarized spins or the presence of special nuclear
isotopes.

On the theoretical front, our treatment in Sec. III B of the
magnitude of the signal carries a large fractional uncer-
tainty. The three bottlenecks are a systematically improv-
able computation of nuclear Schiff moments proportional
to 6, (Sec. IIB); an accurate determination of (soft)
octupole deformation parameters for (meta)stable nuclear
isotopes (Sec. II B 4); and a DFT calculation of the £ and ¢
3-tensors (Sec. I D), as well as the 8 and 7 2-tensors for the
ALP-electron coupling (Sec. 1V). While difficult, these
theoretical issues are not insurmountable, and we plan on
addressing them in a future publication.

More research and development is also needed on the
experimental front, regarding the following four issues in
particular. Firstly, once a suitable crystal is identified using
nuclear and crystal DFTs, its synthetic growth methods
need to be studied and evaluated. Secondly, the elastic and
electric loss angles 6. and Jz need to be experimentally
determined at cryogenic temperatures, as well as optimal
cut geometries and clamping methods to minimize external
losses and optimize the signal. Thirdly, more investigation
of frequency scanning strategies is desirable: this work
showed that electric loading can effectively tune the
resonance frequency [and retain sensitivity in a fractional
bandwidth of order k*> in Eq. (62)], but a (coarse)
mechanical loading would reduce the total number of
crystals needed to cover a fixed frequency range, and
put less stringent requirements on the electrical components
of the readout circuit (L, Cy, and the SQUID). Finally, it is
worthwhile to study the feasibility of quantum-optics-based
refrigeration of single acoustic modes (as opposed to the
entire crystal), which would suppress the primary back-
ground (thermal noise) in our proposed setup and thus
further enhance its sensitivity to this guaranteed signal of
QCD axion DM. In a shorter time frame, and without these
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four advances, pathfinder experiments would already be
sensitive to other dark matter candidates such as pseudo-
scalars coupled to electrons (Sec. IV and Fig. 9) and scalars
coupled to electrons and/or photons [17].

This work studies the implementation of the piezoax-
ionic effect in the direct detection of DM; in forthcoming
work, we will outline its potential applications to static
searches for P- and T-violating phenomena. This new
observable thus opens up exciting new avenues in the
search for physics beyond the Standard Model.

The data and code used to obtain the results of this study
are available from GitHub [26].
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APPENDIX A: ATOMIC MATRIX ELEMENTS

In this appendix, we elaborate on the calculation of the
atomic matrix elements used in Sec. I C. Symmetry dictates
that to produce an expectation value for a P-even observable
such as an energy shift or mechanical stress, ones requires an
even number of P-violating perturbations. In other words, we
know that a perturbation to an atomic orbital induced by a
P-violating potential from a nuclear Schiff moment, e.g. Hg,
is not sufficient on its own to produce a P-even effect at linear
order by symmetry. The second P-violating perturbation is
sourced by the potential of the piezoelectric crystal lattice,

Verys- We assume V. constitutes only a small correction to
the atomic potential, such as in the tight-binding model for
insulating materials [106].

For specificity, let us suppose that the ground-state wave
function is |s°), a mixed s-wave state with j = 1/2 and
equal admixtures of m; = £1/2, perturbed by the crystal
potential as

(P Vel s?)
5) (|s X)) (A
=+ e, Pl (A2)

J.m;j

with C =1— Zj,mj |<p9.mj|vcrys|so>|2/(E(s) - E(I)?/:mj)z' The
superscript 0 denotes an unperturbed atomic wave function,
and {j,m;} indicate the relativistic orbitals of the atomic
p-level, ie. (j=1/2,m;=1/2,-1/2) and (j=3/2,
m; =3/2,1/2,-1/2,-3/2). In practice, one can perform
the above and following calculations for the m; = +1/2
admixture of the |s°) ground state, and then average the
final result with the same for the m; = —1/2 admixture.

The € coefficients can be read off from matching
Egs. (Al) and (A2). They can in principle be computed
ab initio within the framework of DFT, but care must be
taken to compute atomic orbital projection coefficients in
the presence of many valence electrons, and to ensure that
the variation (with external strain or electric field/displace-
ment) of these coefficients respects the point group sym-
metries of the crystal. This technically difficult calculation
is left to future work, and instead we will use order-of-
magnitude estimates based on experimentally measured
quantities in Sec. II D.

We can now consider the leading-order energy shift
when the atomic wave functions are perturbed by both the
Schiff and crystal potentials as

(5|Hgl3

)= ey, (Hs|p),, ) +ec. (A3)

.f,mj

which directly leads to Egs. (36) and (37) in the main text.
The angular parts of the matrix elements between the spinor
spherical harmonics € ; ,, in Eq. (37) are

L,

<Q |+1|I'|Qpl+> —§Z, (A4)
. Lo i
Q4 l1lQ,y 1) = - 3% +37. (AS5)
. | N

(Q B9, 15) = _—6X - \%y, (A6)

V2,
<Q |+1|I’|Qp%+1> = +Tza (A7)

| . i

(QuplflQpyp) = +2-5% = =55 (A8)
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and similarly for the / = 0,m; = —1/2 admixture:
1, i,
<Qs,l —1‘r|Qp%+l> = —§X - gy, (A9)
1
(g 1[F1R, 3 1) = +32, (A10)
. |
(Q 1 [F|Q,511) = RV AW, 24 (Al1)
3 V2,
<QS’%._%‘I'|.QP%7_%> = +TZ, (A12)
. L. i
(QylF1Q5) = +%X - %y, (A13)

Transitions with [Aj| > 2 or |Am;| > 2 are forbidden by
selection rules.

APPENDIX B: LONG-WAVELENGTH
REDUCTION

In this appendix, we derive Eq. (42) as the long-wavelength
description of the crystal, reduced from the full energy
functional that includes short-wavelength degrees of freedom,
which are “integrated out.” We also derive how the piezoax-
ionic tensor £ and the axioelectric tensor { relate to wave
function coefficients that can be computed within DFT and to
the atomic matrix elements of Sec. II C. Our treatment of the
short-wavelength modes is based on Refs. [57,107,108].

Denote the position of atom I = ([, s) by

Rl =RL + 75 + ul, (B1)
where R! is the position of the /th unit cell in the Bravais
lattice, 7° is the relative position of the sth atom within the
unit cell, and u” is the out-of-equilibrium deviation. In what
follows, vector indices will be {a, 3,7, ...} subscripts run-
ning over the three spatial directions, unit cell labels {7, m}
superscripts running over N unit cells with volume V., and
atomic labels within the unit cell {s, ¢} superscripts.

We can express the total internal energy density around
equilibrium to quadratic order in deviations, namely a
homogeneous strain S,; and electric displacement vector
D“ as well as the individual atomic displacements u%, as

1 1
U= +§ cgﬁ,y(sSa/;Sya - hg,yﬁDaSﬁ + EﬂZCIJfD“Dﬁ

1 ls,mt
+ NV ZC uls uﬁ

€ Im,st

e
NV, 2 Ds

Is 0,
yﬁu(;SyrS aﬂ 119 D[)’ - ng ;512911‘9

NV

NV Zwaﬁulszj,e (B2)

In the first two lines of the above equation, we have defined
the bare elastic tensor Cg/;.y(s» the bare piezoelectric tensor

hO

a,ys?
interatomic force matrix Cijﬁm’ , the effective charge matrix

?ﬁ , the internal strain tensor G*

the bare dielectric impermittivity tensor fgp, the

wys and homogeneous
electric displacement vector Dy (inhomogeneous vector
field contributions are absorbed into C). Finally, & and £°
are the bare piezoaxionic and electroaxionic tensors of
Eqgs. (47) and (48), respectively, while the effective “axi-
onic charge tensor” Wis is given by

Y s o .
VV(I/;y = 47[6@M‘Z[€‘Y€pmv/\/{

J.mj

jm;.pB + C.C.].

We can write Eq. (B2) in a more compact matrix form:

1 1 - -
U= +§STc°S —DTh’S +§DTﬂ°°D -176,£°S-1"0,°D

1 (1 -
ZuCu — eu’ TGS — eul
NVC{2u Cu—eu'ZD+u'GS —cu WIGa},

(B3)

with bold type indicating matrix form of the tensors, and
index contractions understood through tensor ordering and
the transpose T.

We are interested in long-wavelength modes of strain S
and electric displacement vector D, with short-wavelength
atomic displacements u integrated out. These “‘short
modes” can be integrated out by requiring that the force
on each atom vanishes:

ou

O=——=u= C'[eZD -GS + eW1d,].  (B4)
Insertion of this solution back into Eq. (B3) yields:
1 1 o=
U= +§STCDS — DThS + EDTﬁsD - 179,E8
—10,¢D, (BS)

which is identical to Eq. (42) in the main text, with the
effective crystal tensors given by

P =c0 —%, (B6)
B =p —eZZTNCV_jZ , (B7)
h— ho — e%, (BS)
§=§°—eW1TVC‘:G, (B9)
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0, 2 WICT'Z
=0 e (B10)
& and ¢ are the piezoaxionic and electroaxionic effective
tensors after integrating out the high-wave number modes.
This procedure is analogous to the well-known correspon-
dence for the standard crystal tensors ¢?, #5, and h to their
bare counterparts ¢°, g, and h°.

In much of the main text, we follow Voigt notation to
describe the constitutive equations and dynamics implied
by Eq. (BS), for clarity, and consistency with literature on
piezoelectric crystals. The Voigt prescription reduces the
order of symmetric tensors by removing repeated compo-
nents; for instance, it reduces all 3 x 3 symmetric tensors to
six-dimensional vectors. The strain tensor is given by

Sxx Sxy sz
Sop=| S Sy Sy | (B11)
sz Syz Szz

and is therefore simplified to the six-dimensional vector:

Si - (SX)USVV’ SZ7’Sy25sz9S ) (BlZ)
= (81,55, 53,584,855, S¢), (B13)

such that the scalar product is preserved, i.e.,
(B14)

> SupSup =Y _SiSi.
ap i

Vectors (1-tensors) such as Dy still have three components,
while 4-tensors and 3-tensors reduce to 6 x 6 and 6 x 3
“2-tensors” (in the Voigt convention), respectively. It is now
straightforward to rewrite the constitutive Egs. (44), and
(43) in Voigt notation as Eqs. (46) and (45) in Sec. II D, for
example.

APPENDIX C: PIEZOELECTRIC EQUIVALENT
CIRCUIT COMPONENTS

To separate the immittance of the piezoelectric crystal
into constituent electrical components, we make use of the
power series [109]:

tanx = Z(QJ - 1)2 e (C1)

Each subsequent term in the expansion corresponds to an
overtone of the mechanical resonance. In the vicinity of the
fundamental resonance, we can approximate the immit-
tance by the first term in the series. For modes whose
electric field is along the direction of acoustic wave
propagation, e.g. Eq. (60) this gives an expression for
the impedance of the form

Equation (C2) is equivalent to the following electrical
components, arranged as in Fig. 3

8C K2

Cn =25 (©3)
l/ﬂZ

bn = 3e2 (4

To take into account mechanical losses, we add a resistor to
the circuit whose value is set by the mechanical quality
factor Q,, of the crystal:

¢ 1

" TRV, )
We reiterate that we do not use the circuit elements of
Egs. (C3)—(C5) in the analysis in the main text—we use the
exact expression of Eq. (60) with imaginary crystal tensors.
They are shown here to illustrate that near any mechanical
resonance frequency, the behavior of the crystal can be
accurately described by “standard” circuit elements.

In Appendix D, we include additional modes that could
be used in our setup. For modes such as the whose electric
field is in the perpendicular direction to the acoustic
excitation, using Eq. (C1) gives an admittance of the form

| B 8

The equivalent circuit components are given by

8C.K?
Co=—5—. (C7)
fZ
Ln=gc o2 (C8)
£ 1
g (C9)

Ry=—r .
8C.K*v Q,,

APPENDIX D: MORE MODES

In the main text (Sec. III), we introduced the thickness
expander mode, which is well understood and known to
possess high mechanical quality factors in cryogenically
cooled quartz and similar materials [63,70]. Here we
present two more modes that could be relevant for our
setup. These have been constructed with the symmetry
group of quartz, 32, in mind, but can be easily adapted to
crystals of other symmetry groups. Much of the analysis in
this appendix is based on the modes presented in [60].
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First, we give an example of a length expander mode,
which could be useful at low frequencies. Since the
mechanical resonance frequency of this mode is set by
the (longer) length dimension of a crystal bar rather than the
thickness dimension of a thin plate, it could probe lower
frequencies using a crystal of similar size compared to a
thickness mode. The length expander mode, however,
typically has a lower mechanical Q-factor than the thick-
ness mode [65].

The second mode we include in this appendix is a
thickness mode of a thin plate with a lateral electric field.
Like the thickness mode in the main text, the acoustic
excitations propagate in the thickness direction of the
crystal, i.e. the shortest dimension of the thin plate, but
the electrodes are now placed on the minor faces so that the
direction of electrical excitation is perpendicular to the
thickness direction instead of parallel. This mode is less
well explored experimentally but has some theoretically
promising features: the axion induced voltage is integrated
over the length of the plate rather than the thickness
direction, which could increase the signal size by around
an order of magnitude, while in principle having similar
mechanical losses to the standard thickness mode. In
addition, the electromechanical resonance frequency of
the crystal coincides with the resonant frequency of the
signal, unlike in the parallel field case where the signal
frequency coincides with antiresonance, which could also
improve the sensitivity of the setup and make frequency
scanning simpler.

Another useful measure for comparing the potential
effectiveness of different modes is the electromechanical
coupling factor k, which expresses the proportion of
electrical energy that can be converted into mechanical
energy by the crystal, or vice versa, and can be seen as a
measure of the strength of electro-elastic interactions of a
given mode [60]. High coupling factors suggest a larger
piezoaxionic signal due to efficient conversion of mechani-
cal energy, and can also be seen directly from Eq. (C5) to
lower the mechanical losses of the system. We will see that
the new modes here have coupling factors that are com-
parable to the original length expander mode, which has
k ~0.09 for quartz with parameters as given in [110].

We focus on longitudinal modes rather than shear modes
since these develop larger quality factors at very low
temperatures [66,70]. Nevertheless, we briefly mention
here that one of the most commonly used modes in quartz
is the thickness shear mode, which has the largest coupling
factor k ~ 0.14. To obtain analogous expressions for V,
Zcrys» and Q for the thickness shear mode, a similar analysis
to Sec. III applies if ones takes the thickness, wave number,
and electric field to be aligned in the 2 direction
(¢, < l,03 k xX,, and E « X,), and the displacement
in the 1 direction (u « X;). The constitutive equations
then take the same form as Egs. (56), (57) with the
replacements 7, - Ty, S| =S¢, E; = E,, D; — D,,

I, = I, 0?1 - Cgﬁ, hyi = hag, ﬁ]% —>ﬁ§2, & — &6, and
¢ = .

1. Length expander mode in bar with the
axion-induced electric field parallel to length

Consider a narrow bar with its length along the x;
direction, and cross-sectional dimensions that are small
compared to its length: ¢,,#3 < ;. The electrodes are
placed on the faces normal to the x; direction. Like with the
thickness modes, D, = D; =0 and D, is spatially uni-
form. Negligible cross-sectional dimensions gives only
T, # 0. We therefore choose D and 7 as independent
variables, which suggests using the following alternative
form of the constitutive equations [60]:

Sy =+s%T, + gD, +§/1171@w (D1)
E; =—gy T, + 1D, - (11,0, (D2)

We see that the nuclear spins should be polarized in the x;
direction. The matrices of proportionality constants, written
in terms of those contained in the internal energy of
Eq. (B3), are given by

s? = (e?)7, (D3)

g = hs”, (D4)

B = p* —hsPhr, (D5)
£ =s"E, (D6)

¢" =&+ hsPg; (D7)

where superscripts 7 and D denote tensors defined at
constant stress or electric displacement (and superscript T
once again denotes a transpose).

The equation of motion for this mode is pii; = 0,T; =
d%u,/sP,. The solution to this equation that also satisfies
the boundary conditions at the free surfaces 7; =0 at
X1 = (O, 4 1) is

_ gDy + 5’1121@

uj
w/vP
. WX, Wt wx,
X Sll’l—D—tan—DCOS—D s (Dg)
v 20 v

with v2 = | /-1 the crystal sound speed for a bar with
b S

constant-D conditions. Above, the quantities u,, Dy, and I,
are again assumed to be oscillatory with angular fre-
quency a.

Rearranging the constitutive equation for the component
E| in terms of S; gives
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g g1 g, 5 2
E, = —isl + (%"’ﬁﬂ)Dl + ( ISID” +C{l>119a7
1

Sll 1 11

(D9)

which can be integrated over the length of the crystal to find
the voltage across the electrodes like for the thickness
modes:

14
_/ "dvE, = ZI+ V,, (D10)
0

S;p @ ST

(D11)

1 20 w?l
Z= 1 -k —tan—2], D12
iwC, [ wt ZUD} (D12)

t2t5 (g7 7\
C — | = , D13
c fl <S11)1 11 ( )
[ — (D14)

Vi +BLsh

For quartz, the coupling factor k of this mode is ~0.10,
which is comparable to the thickness expander mode in the
main text.

2. Thickness expander mode with axion-induced
electric field perpendicular to thickness

Like in Sec. III, we will again take the piezoelectric
crystal to be a rectangular prism with side lengths £; of high
aspect ratio (thin plate): £, < ¢, ¢5. Notice this time we
have oriented the crystal slightly differently, with [, rather
than /; being the thickness dimension. The faces with
electrodes are normal to the x; direction, which leads to the
boundary condition that on the faces with electrodes
E, = E; = 0. The surfaces with electrodes are also equi-
potential surfaces, meaning that E; is independent of x,,
i.e. 0E;/dx, =0 The plate is considered to be laterally
clamped, so that only S, # 0, with the other 5 strains
vanishing identically. On the free surfaces at x, = (0, /),
the stress 7, = 0. These conditions suggest that the
independent variables are chosen to be S and E, which
leads to the constitutive equations:

- égll 1911 )

Ty = +c55, — e E (D15)

Dy = +epSy + €}, Ey = {110, (D16)

The nuclear spins are polarized in the x; direction. The
Voigt matrices of proportionality constants are given by

cf = c? — hTedh, (D17)
et = ()", (D18)

e = ¢5h, (D19)
EE=E+hTeSg (D20)
¢ =eC (D21)

The wave equation for this mode is pii, = 0,T, = ¢,03u,.
As usual, we take harmonic factors to be implicit. The
solution to the wave equation that satisfies the boundary
conditions listed above is given by

EF 7
_epkE + 81,0,
cKaw/vE
(%)

WXy Wt
X sm——tan—cos— ,
vE vE

5ot (D22)

= \/Cpi the crystal sound speed for a bar with

constant-E conditions.

We can now find the current in the piezoelectric by
integrating the time derivative of the electric displacement
over its thickness:

‘.
sz’;/ D]dXz,
0

while the voltage across the electrodes is given by the
integral over its length:

with of

(D23)

4
V:/ Eldxl. (D24)
0
This gives the results:
1%
I==+1, D25
711 (D25)
2 l A=
I, = it [eL,fﬂit n2 ’le}l d,. (D26)
Cy 2v
C()lxﬂz
—=iwC,.|1 kz—t , D27
iw [ + o an—— ] (D27)
214
C.=—2"2¢f, (D28)
7
k=212 (D29)

E S’
V Cn€

where we see that the axion signal enters as a current source
in parallel with the crystal. The coupling factor k in quartz
is almost identical to the other thickness expander mode,
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with both having k ~ 0.09 for quartz parameters. Conver-
ting to an equivalent voltage source gives

V,=1,2
2 wE wty) !
=<1+ k—tan—=
efl{ N w?t, MoE
612551 2UE a)fz P N
—tan — — 1,0,. D30
G- . 00

At the mechanical resonance frequency of the plate,
f= %, the admittance 1/Z diverges, implying that the

plate is also at electromechanical resonance (assuming it is
not yet loaded by external electrical components).
The equivalent circuit components can be found using
Egs. (C7), (C8), and (C9).

The additional modes presented in this appendix suggest
that by changing the orientation of the crystal, the direction
of nuclear spin polarization and the placement of electro-
des, one could improve the frequency range and sensitivity
of the experiment when subject to limitations in number of
crystals and their size. A full optimization analysis includ-
ing a larger variety of crystal modes such as these will be
left to future work.
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