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Abstract

Evaluating two-terminal network reliability is a classical problem with numerous applications. Be-
cause this problem is #P-Complete, practical studies involving large systems commonly resort to approx-
imating or estimating system reliability rather than evaluating it exactly. Researchers have characterized
signatures, such as the destruction spectrum and survival signature, which summarize the system’s struc-
ture and give rise to procedures for evaluating or approximating network reliability. These procedures
are advantageous if the signature can be computed efficiently; however, computing the signature is chal-
lenging for complex systems. With this motivation, we consider the use of Monte Carlo (MC) simulation
to estimate the survival signature of a two-terminal network in which there are two classes of i.i.d. com-
ponents. In this setting, we prove that each MC replication to estimate the signature of a multi-class

system entails solving a multi-objective maximum capacity path problem. For the case of two classes



of components, we adapt a Dijkstra’s-like bi-objective shortest path algorithm from the literature for
the purpose of solving the resulting bi-objective maximum capacity path problem. We perform compu-
tational experiments to compare our method’s efficiency against intuitive benchmark approaches. Our
computational results demonstrate that the bi-objective optimization approach consistently outperforms
the benchmark approaches, thereby enabling a larger number of MC replications and improved accuracy
of the reliability estimation. Furthermore, the efficiency gains versus benchmark approaches appear to

become more significant as the network increases in size.

Keywords: Survival signature, two-terminal reliability, network reliability, Monte Carlo simulation,

bi-objective optimization.

1 Introduction

In a network where some elements fail independently of the other components according to a known prob-
ability, the two-terminal reliability is the probability that there is at least one functional path between two
specified terminal nodes s and ¢. Evaluating the two-terminal (and the more general K-terminal) reliability is
a classical problem with applications in wired and wireless communication networks, electronic circuit design,
computer networks, and electrical power distribution, among other systems (Cook and Ramirez-Marquez,
2007; Gebre and Ramirez-Marquez, 2007; Silva et al., 2015; Chakraborty et al., 2020). The problem is known
to be #P-Complete in general (Valiant, 1979; Provan and Ball, 1983; Ball, 1986), and numerous exact and
approximate methods have been proposed to solve it. With the emergence of massive networked structures
with thousands of components, efficient algorithms for evaluating two-terminal network reliability remain an
important research topic.

One attractive approach for evaluating or comparing the reliability of complex systems is to use signatures
such as the system signature (Samaniego, 1985), the destruction spectrum (D-spectrum) (Gertsbakh and
Shpungin, 2009), and the survival signature (Coolen and Coolen-Maturi, 2012). Loosely speaking, a signature
is a compact summary of the system’s structure (e.g., the network’s topology) that, if computed, enables
efficient evaluation or approximation of system reliability (e.g., the probability that s and ¢ are connected).

Whereas the system signature requires assuming components are independent and identically distributed



(i.i.d.), the survival signature can be applied in cases where there are multiple classes of components and
components in different classes are permitted to be non-identical.

Because computing signatures for network systems is itself computationally challenging, it is common to
estimate a signature using Monte Carlo (MC) and then use the MC signature estimate to produce an estimate
of network reliability. In this context, such a combined MC /signature approach is known to be advantageous
compared to estimating the system reliability directly using crude MC (i.e., in which the system’s state is
repeatedly evaluated after sampling each component’s time to failure). For instance, combined MC/signature
approaches have been shown to have bounded relative error (Gertsbakh et al., 2016) whereas crude MC may
have unbounded relative error (Elperin et al., 1991). Nonetheless, computing signatures poses a major
challenge in terms of computational complexity, especially when considering large, heterogeneous networks.

In this paper, we consider the problem of estimating the two-terminal survival signature by MC simulation

for a system with two classes of unreliable nodes. The contributions are as follows:

1. We show that each MC replication entails solving a multi-objective maximum capacity path problem.
To the best of our knowledge, this is the first work to point out the relationship between survival

signature computation and a multi-objective optimization problem.

2. We adapt the Dijkstra’s-like algorithm of Sedefio-Noda and Colebrook (2019) to solve the resulting

bi-objective maximum capacity path problem for a system with two classes of components.

3. We show through numerical experiments that (i) the bi-objective optimization approach consistently
outperforms benchmark approaches, thereby increasing the rate at which MC replications can be
performed and improving the accuracy of reliability estimation; and (ii) the efficiency gains become

more significant as the network increases in size.

The remainder of this paper is organized as follows. In Section 2 we summarize literature related to
the two-terminal reliability problem and algorithms proposed to solve it. In Section 3, we present an MC
framework for estimating the two-terminal survival signature of a network system with two component classes
and describe methods for completing the calculations within a MC replication. We discuss computational

results in Section 4 and conclude in Section 5.



2 Background and Literature Review

2.1 Evaluating Two-Terminal Network Reliability

Many exact approaches to solve the two-terminal reliability problem have been proposed since the late 1950s.
We refer the reader to Moore and Shannon (1956) and Barlow and Proschan (1965), for a summary of early
research in this area and to Brown et al. (2020) for a general view of more recent results. Although exact
algorithms have proven effective for small networks or networks with special structures, such as trees or
series-parallel, approximation algorithms are more commonly used for large, generally structured networks.

The most common approaches used to evaluate two-terminal reliability (and its generalizations, e.g.,
K-terminal reliability and multi-state two-terminal reliability) exactly are based on methods such as sum of
disjoint products (Jane and Yuan, 2001; Datta and Goyal, 2017), state-space decomposition (Aven, 1985;
Alexopoulos, 1995; Bai et al., 2018), cut/path-based state enumerations (Ramirez-Marquez et al., 2006;
Gebre and Ramirez-Marquez, 2007), factoring (Moskowitz, 1958; Satyanarayana and Chang, 1983; Wood,
1985, 1986; Burgos and Amoza, 2016), and binary decision diagrams (BDD) (Hardy et al., 2007; Kuo et al.,
2007). The exponential nature of these algorithms has prompted research into computationally efficient
bounds (Jane et al., 2009; Lé et al., 2013; Sebastio et al., 2014; Silva et al., 2015) and other methods for
estimating or approximating two-terminal reliability based on neural networks (Srivaree-ratana et al., 2002;
Altiparmak et al., 2009), network reduction procedures (Zhang and Shao, 2018), the cross-entropy method
(Hui et al., 2005), failure frequency approximation (Heidarzadeh et al., 2018), and spline interpolation
(Cristescu and Dragoi, 2021).

MC simulation has been widely utilized for estimating two-terminal reliability since the 1980s. Fish-
man (1986) evaluated four MC sampling methods to estimate two-terminal reliability: (1) dagger sampling,
which relies on inducing negative correlations between the replications’ outcome; (2) sequential destruc-
tion/construction based on permutations of the network elements; (3) bounds on the reliability; and (4)
failure sets enumeration, pointing out each method’s advantages and pitfalls.

Ramirez-Marquez and Gebre (2007) present an MC method to approximate bounds on the two-terminal

reliability of capacitated networks based on simulating network configurations and employing classification



trees to obtain minimal cut or path vectors.

Stern et al. (2017) combines MC simulation and machine learning techniques to approximate two-terminal
reliability. Their method relies on MC simulation to generate components’ failure samples, which are used
to estimate the two-terminal reliability.

In recent years, researchers have combined MC simulation principles with the concept of a system signa-
ture to create improved methods for estimating the two-terminal reliability of complex systems. Two such
methods are presented in Reed et al. (2019) and Behrensdorf et al. (2021). We discuss these methods in

more details later in this paper, but first we introduce the concept of a system signature.

2.2 Signatures

To formally introduce the concept of signatures, consider a system in n components and let x be the state

vector whose elements are

1, if component ¢ operates,

T =

0, if component i has failed,

and suppose the system’s structure function V¥ is defined by

1, if the system operates,
U(wy, 2, .., 2Tn) = (1)

0, if the system has failed.

The notion of a system signature was introduced by Samaniego (1985) for coherent systems composed
of n binary components. Under the assumption of coherence and i.i.d. component lifetimes, the system
signature s is an n-vector whose ith element s; (i = 1,2,...,n) is the probability that the ith component
failure causes the system to fail. The signature vector s does not depend on the common lifetime distribution
of the components and is, therefore, a measure of the system design (Samaniego, 1985; Navarro et al., 2008,
2011).

The system signature is closely related to the destruction spectrum (Gertsbakh and Shpungin, 2009,

2011; Gertsbakh et al., 2018) and these two signatures have been used extensively in applications such



as comparison of coherent systems (Navarro et al., 2008; Samaniego and Navarro, 2016; Kochar et al.,
1999), lifetime estimation (Shpungin, 2007), analysis of queueing systems (Andronov et al., 2011), reliability
comparison of new and used systems (Samaniego et al., 2009), analysis of failure development in connected
networks (Gertsbakh and Shpungin, 2012), and evaluation of systems under minimal repair (Lindqvist and

Samaniego, 2015).

2.2.1 Survival Signature

The survival signature, introduced by Coolen and Coolen-Maturi (2012), extends the system signature to
the case of independent but not identically distributed component lifetimes while still isolating the system
structure’s contribution to reliability (Samaniego and Navarro, 2016).

We first define the survival signature for the i.i.d. case. Let the survival signature ¢(¢), for £ =0, ..., n,
denote the probability that the system functions if exactly £ of its components function, and define ® as the
(n + 1)-vector whose entries are ¢(¢), £ =0, ...,n. Let Sy denote the set of state vectors in which x; =1 for
exactly ¢ components, and observe that |Sy| = (’g) Because the components are i.i.d., all vectors in S, are

equally likely, and therefore

o(f) = (2‘>_1 Y U(x), £=0,1,....n, 2)

x€ES,
as shown by Coolen and Coolen-Maturi (2012). It is straightforward to show (see Coolen and Coolen-Maturi

(2012)) that the survival signature and the system signature satisfy the relationship

n

¢ = > 55, £=01,...,n. (3)

j=n—~L+1

The right-hand side of Equation (3) denotes the probability that at least (n — ¢ + 1) component failures are
required for the system to fail, which is equal to the probability that the system functions when exactly /¢
components function, i.e., the left-hand side of Equation (3).

Although the survival signature can be applied to systems with i.i.d. components, its fundamental con-
tribution is the generalization of the theory of signatures to system with multiple classes of components.

Following Coolen and Coolen-Maturi (2012), consider a system with K > 2 classes of components, where



components of the same class have i.i.d. failure times and failure times of components of different classes

are independent but not identically distributed. Let nj denote the number of components of class k, where

the ni-values satisfy Zle nr = n. Let x = (x!,x2,...,x%) denote the state vector, where the subvectors
xF = (zf,25,... 2k ) represent the states of the components of class k.

Let ¢(¢1, Lo, . . ., lx) denote the probability that a system functions if exactly ¢ € {0,1,..., ng} of its class-
k components function for each k € {1,2,..., K}. For K > 1, let ® denote the generalized survival signature,
which is a K-dimensional matrix whose entries are ¢(¢1, 2, ..., {) for all the values of {1, ¢s, ..., ¢x. In what
follows, we provide a mathematical characterization of the generalized survival signature.

For k € {1,2,..., K}, let S¥ C {0,1}™ denote the set of class-k state vectors x* satisfying Y i+, zF =
(), and observe that |SF| = (Z’j) Let S; C {0,1}™ denote the set of whole-system state vectors x =

(x',x2,...,x") satisfying x* € S} for all k € {1,2,...,K}. Given that components of class k have i.i.d.

failure times, all state vectors x* € S 1’? are equally likely and therefore

¢>(€17€2,...,5K):[

ﬁ (Z,f)_l] x> w(x). (4)

k=1 x€ESy

Given the survival signature ®, Coolen and Coolen-Maturi (2012) showed that

P{T > 1} = i % l(b(el,...,e,() ﬁ ((Z:>[Fk(7)]"k—ék[1 - Fk(f)]ek)] 7 (5)

¢1=0 L =0 k=1

where Fj(7) denotes the time-to-failure CDF for components of class k € {1,2,..., K}. Computing Equa-
tion (5) is challenging because it requires evaluating all Hszl(nk + 1) elements of ®.

Some notable developments of the theory of survival signature are summarized next. In Coolen et al.
(2014), the authors used the survival signature in nonparametric predictive inference for system reliability.
Aslett et al. (2015) applied the survival signature with Bayesian inference for system reliability quantification.
Najem and Coolen (2018) employed the survival signature to study system reliability when failed components
can be replaced by functioning components of the same class already in the system. Eryilmaz et al. (2018)
presented general results for coherent systems with multiple classes of dependent components, and Coolen-

Maturi et al. (2021) introduced a joint survival signature for multiple systems with multiple classes of



components and with shared components between systems.

Eryilmaz and Tuncel (2016) generalized the survival signature to unrepairable homogeneous multi-state
systems with multi-state components, and Yi et al. (2022) considered a variety of types of multi-state module
systems, such as series, parallel, or recurrent structures, and derived their multi-state survival signatures in
terms of the survival signatures of its modules.

Nonetheless, computing the survival signature for complex systems poses a major challenge. With this
motivation, recent studies have focused on developing methods to compute or approximate the survival
signature to evaluate the reliability of complex systems. Reed (2017) propose an exact algorithm combining
dynamic programming and BDD to compute the survival signature of systems with multiple classes of
components. This method was extended by Reed et al. (2019) for the purpose of computing the K-terminal
survival signature of undirected networks with unreliable edges. Although efficient for small- and medium-
sized systems, these algorithms may not be suitable for large-scale systems due to large memory requirements
associated with the BDD system representation.

Xu et al. (2019) introduce an alternative method to compute the survival signature based on reliability
block diagram and universal generating function. The method, however, is limited due to large memory
requirements and was applied only to small networks with at most 21 components.

The literature on estimation methods for the survival signature is also in its infancy, but has received
considerable attention in recent years. Behrensdorf et al. (2021) propose an approximation method that
combines percolation theory and MC simulation. The authors applied this method to realistic networks such
as the Berlin metro system network, which consists of 306 nodes divided into two classes and 350 edges.
Already for this relatively small and sparse network, the method shows some difficulty as its algorithm
takes over 27 hours to estimate the survival signature. More recently, Di Maio et al. (2023) propose a
survival signature estimation method based on a combination of percolation theory with entropy-driven
MC simulation. The efficiency of the method over a crude MC methods is attested through computational
experiments with small networks, but the authors point out that the method may not be suited for larger
networks. Lastly, whereas estimating the survival signature is the focus of the works described above, MC

simulation has also been applied to estimate system reliability for a given survival signature (Patelli et al.,



2017).

2.3 Other Closely Related Works

Our work builds upon prior works that have utilized an optimization subroutine in the context of evaluating
network reliability by MC simulation. The work of Elperin et al. (1991) shows that MC replications for
evaluating K-terminal reliability can be completed by solving a maximum-capacity spanning tree problem
(using, e.g., Kruskal’s algorithm). More recently, Boardman and Sullivan (2021) utilize MC simulation to
evaluate the system signature with respect to reliability of guaranteeing that a minimum number of nodes
remain connected to a designated sink node, and they show that MC replications can be performed by solving
a one-to-all maximum-capacity path problem (using Dijkstra’s algorithm). As a complementary note, it is
worth noting that other versions of shortest path problem/maximum capacity path problem have also been
applied in network reliability (see e.g., Ferone et al. (2021)). To our knowledge, no prior works have used

optimization subroutines for the purpose of evaluating a system’s survival signature.

3 Estimating the Two-terminal Survival Signature

Consider a directed network G = (N, A) with node set A/, where |N| = n, and arc set A, where |A| = m,
and let I, = {j € N': (j,i) € A} and T'; = {j € N': (i,j) € A} denote, respectively, the set of predecessors
and successors of node i € N. We assume binary-state nodes, which fail according to a specified probability
distribution. We assume arcs are perfectly reliable; however, the case of unreliable arcs and/or undirected
edges can be accommodated by standard network transformations. We further assume the terminal nodes s
and t cannot fail and their connectivity determines the state of the network, that is, the network is operational
whenever there is a functional path from s to ¢ and the network is failed when all the s-t paths have failed.

The non-terminal nodes N\ {s,t} consist of two classes of nodes where nodes within each class share a
common time-to-failure distribution. Let A, denote the subset of nodes in class e € {1,2}, i.e., such that
N\ {s,t} = N1 UN2. We define n, = |N;| as the number of nodes in class e € {1,2} and we assume n; < ns
without loss of generality. Let F.(¢) be the common time-to-failure CDF of nodes in class e, and assume

each node’s time to failure is independent of any other nodes’ time to failure.



For convenience, we recall the definition of the generalized survival signature for the case in hand. Here,
the value ¢(¢1,¢3) represents the probability that s is connected to ¢ by a path of functioning nodes given
that exactly ¢; nodes from AN; and f5 nodes from N, are functioning. The survival signature ® is the
(n1+ 1) X (ng + 1) matrix whose entries are ¢(¢1,43) for /1 =0,1,...,n1, and 5 =0,1,...,na. We assume
both that ¢(0,0) = 0, that is, the network is failed when all nodes are failed, and that ¢(ny,ng) = 1, that is,
the network is functioning when all nodes are functioning. Additionally, we observe that this system cannot
be deteriorated by changing a node from failed to functioning; thus, the network is a coherent system.

Given @, the two-terminal reliability at time 7 > 0 can be obtained through Equation (5) as

P =3 Y lwl,@) IT((})mmron - kak)] . (6)

£1=045=0 k=1

The main difficulty in this approach lies in obtaining the values of ¢(¢1, £2) for every combination of ¢; and 5.
We analyze four methods to estimate ¢(¢1,¥¢2), €1 =0,1,...,n1, €5 =0,1,...,n2, by using MC simulation.
The methods, summarized in following subsections, differ only in how computations are performed within a
MC replication. First, we summarize the common MC simulation framework of the methods.

Since nodes within the same class (N7 or N3) are equally likely to fail in any order, each of the n;!
permutations of nodes in A are equally likely outcomes of the order of node failures, and similarly, there
are ny! equally likely outcomes of the order of node failure in M.

Thus, in each replication we independently generate a random permutation of failure times for all nodes
in A7 and all nodes in N5. From each pair of simulated permutations, we extract a state vector corresponding
to each pair (¢1,/¢2) with ¢; = 0,1,...,n7 and o = 0,1,...,n9, and assess the structure function for every
one of the state vectors formed. For every pair (¢1,¢2), we count the number of state vectors for which the
network is UP and divide this number by the number of replications generated, which gives the estimate of

¢(l1,42). For a given replication, let

qi =k ifi € N is the kth node to fail in A7, and

¢ =k ifi € Ny is the kth node to fail in A.

10



For ¢ =0,1,...,n7 and f3 = 0,1,...,n2, define x(¢1, £2) such that components i € N are UP if %1 >ng—f
and DOWN otherwise, and similarly components ¢ € A5 are UP if qf > ng — f5 and DOWN otherwise. Thus,
the state vector x(¢1,¢2) represents the case where the last ¢; components in the sampled permutation of
N7 and the last ¢, components in the sampled permutation of N5 are UP, and all remaining components are
DOWN.

Following the above procedure, each MC replication j = 1,2,...,M yields a state vector x;(¢1,¢2) for
every pair (¢1,42). In replication j, we evaluate ¥(x;({1,¢3)) for all /1 =0,1,...,n7 and s = 0,1,...,no,
where U(x;(¢1,02)) = 1 if there exists a path of functioning nodes from s to t in state x;({1,¥2), and
U(x;(¢1,02)) = 0 otherwise. Hereafter, we refer to the collection ¥(x;(l1,¢2)), {1 = 0,1,...,n1; o =
0,1,...,n9, as the system state matriz for replication j. After completing M MC replications, we estimate

o0, 42) by

M .
b6, 0) = 2 j=1 le(l\);](élvEQ)). ®)

In what follows, we first present an intuitive approach (hereafter referred to as the Naive approach), based
on breadth-first search (BFS), for evaluating the system state matrix in each replication. Then, we discuss
the incremental search approach, which improves upon the naive algorithm by leveraging the nondecreasing
nature of the structure function of coherent systems in order to avoid performing redundant searches. The
third method is an extension of the method of Boardman and Sullivan (2021), and hence we call it the single-
objective optimization approach. The last method, called the bi-objective optimization approach, is based on

solving a bi-objective maximum capacity path problem at every replication and is our main contribution.

3.1 Naive Approach

In this approach, the value of W(x;(¢;,¢2)) is evaluated for each ¢; = 0,1,...,ny and ¢, = 0,1,...,ny by
performing BFS (see, e.g., Ahuja et al. (1993)); that is, BFS is run a total of M x (ny + 1) x (n2 + 1) times.
Because each BFS has O(m) time complexity, the resulting complexity of the MC algorithm is O(ninomM).

The Naive approach is summarized in Algorithm 5 in Appendix A.

11



3.2 Incremental Search Approach

The incremental_search (IS) method exploits the fact that x;(¢1,¢2) and x;(¢1, l2 + 1) are identical except for
the addition of the node quZ _¢,- Using this property, IS computes an entire row of the system state matrix
(i.e., U(x;(¢1,—)) for a given value ¢1) in the same worst-case time required to evaluate a single element of
the system state matrix in Naive. We explain this approach in the following paragraph.

For fixed £1, steps 8-16 of Algorithm 5 compute the row ¥(x; (¢, —)) by running BFS ny + 1 times. The
IS method is identical to Algorithm 5 with the exception that we do not re-initialize BFS for ({1, ¢s) with
{3 > 1; rather, we update the search from (¢1,¢2 — 1) to include the new node that was turned UP in N5.
The update can be done by checking whether the new node contains an incoming arc from any of the nodes
already marked in the search. If so, we add the new UP node to the list of nodes to explore and continue the
search as if the referred node had been encountered in the original search. For fixed ¢;, this modified search
algorithm encounters each arc at most twice. To see this, observe that the predecessor list I';” of each node ¢
is scanned at most once (i.e., after the node i is turned UP) and the successor list I';" is also scanned at most
once (i.e., after the node i is marked). For fixed ¢, a total of O(m) effort is required because each arc is
examined at most twice. The total work required in each replication is therefore O(nym) and the worst-case

complexity of IS is O(nymM).

3.3 Single-objective Optimization Approach

Although IS is more efficient than Naive in that the first avoid performing many of the redundant steps
performed by the latter, both approaches follow the same principle. They both compute a row of the system
state matrix by adding nodes, according to the permutation of N>, until the network is connected. The
single-objective optimization approach (SO) is based on a different idea; that of solving an optimization
problem in order to directly determine how many nodes must be removed, according to the permutation of
N3, to disconnect the network assuming that all nodes in N> are operational at the beginning.

In SO, we extend the work of Boardman and Sullivan (2021) by solving an optimization problem for each
value of ¢; to find the corresponding value of /o for which the network fails. We now explain the main ideas.

Consider Algorithm 5 again, and suppose we fix the value of £; in the jth replication. In place of steps

12



7-13, we need only to identify the maximum value of ¢5, £5*, for which W¥(x;(¢1,¢2)) = 0. Once £" is

obtained, we have

U(x;(01,0)) = U(x;(l1,1)) = --- = ¥(x;(l1,£2")) = 0, and

U(xj(ly, 02" + 1)) = W(x;(l1, b2 +2)) = - = U(x;({1,n2)) =1,

since ¥ is nondecreasing in x.

The problem of finding £2™ can be formulated as an instance of the single objective maximum capacity
path problem (Pollack, 1960; Hu, 1961). This idea was shown initially by Boardman and Sullivan (2021)
in the context of a similar problem involving i.i.d. components. For fixed ¢;, we can adapt their approach
to find £5*. The single-objective optimization approach is based on solving the single-objective maximum
capacity path problem once for each value of /; = 0,1,...,ny, with the additional consideration that the ¢,
components from N; that are UP are uncapacitated, which we represent by assigning “oc” as their capacity.

To formalize the single-objective optimization approach, independently simulate a permutation of NV; and
a permutation of N5, and record these permutations according to Equation (7). Then, for fixed ¢;, associate

a weight u; to each node i € N according to

q?, i€N27

Ui =190, ifieNandq <ng—4, (10)

oo, otherwise.

In practice, we substitute oo by a number larger than or equal to max{g? : i € Na}, such as the total number
of nodes, n, in the network. Let P denote the set of all directed paths p from s to t. The value £3* is then

obtained by solving the maximum capacity path (MCP) problem

v* = max{min{uy : k € p}}, (11)
pEP

and setting £2* = ny — v*. In Equation (11), min{uy : & € p} represents the number of nodes (within the

simulated permutation of N3) that must fail to disconnect path p, and v* thus represents the number of

13



node failures needed to cause system failure.

Pollack (1960) observed that the MCP problem can be solved using a slight modification of Dijkstra’s
algorithm. In the case of the node-capacitated MCP problem of Equation (11), Dijkstra’s algorithm can be
applied by initializing node labels as d(:) = 0 for all i € A\ {s}, and d(s) = oo, and then updating (when

considering an arc (7, j) leaving a node ¢ whose label has been made permanent) according to

d(j) = max{d(j), min{d(i), u;}}. (12)

Additionally, a node label with maximum value is made permanent in each iteration instead of minimum
value, as in the case of the shortest path.

Algorithm 6 presents the pseudocode for our implementation of Dijkstra’s algorithm, which is an adap-
tation of the Dials-Dijkstra algorithm presented in Ahuja et al. (1993). Dial’s implementation of Dijkstra’s
algorithm is motivated for our problem because each label is bounded between 0 and n; thus, temporarily
labeled nodes can be stored in a sorted fashion using a small number of “bucket” sets, which allows the
algorithm to avoid scanning all temporarily labeled nodes at each iteration. The algorithm keeps n + 1
bucket sets numbered 0 through n, where bucket k stores all nodes with temporary label equal to k. The
while loop (lines 6-21) of Algorithm 6 identifies the greatest-numbered nonempty bucket. Once this bucket is
found, any node in it has its label made permanent and its outgoing arcs explored to propose new temporary
labels for adjacent nodes, possibly resulting in moving the nodes to a bucket set of increased number (lines
8-18).

Algorithm 7 states the SO approach. Noting that the Dials-MaxCapPath algorithm provides £2* for each
value of 1, steps 8-12 of Algorithm 7 populate the corresponding row ¥(x; (¢, —)) according to Equation (9)

by simply adding 1 to any entry for which £ > £5*. We demonstrate SO with the following example.

Example 1. Consider the network in Figure 1(a). For this network, n = 10 nodes, N7 = {1,3,5,7} is
represented in red, and N = {2,4,6,8} is represented in blue. Suppose that in the jth replication of
Algorithm 7, we generate the permutation P = {5,7,3,1} for Vq, and P, = {2,4,8,6} for N3. Therefore,

for these permutations, node 5 is the first node to fail in A1, followed by nodes 7, 3, and 1, respectively, and

14



node 2 is the first node to fail in N>, followed by nodes 4, 8, and 6, respectively.

u; capacity of ¢

@ node ¢

(a) Heterogeneous s-t network. (b) Network for ¢ = 2.

Figure 1: Computation of system state matrix row corresponding to ¢; = 2 using SO.

For every value of ¢, the algorithm associates to each node i € A a capacity u; according to Equation (10);
for ¢; = 2, the algorithm obtains the network in Figure 1(b). Then, the algorithm solves the MCP problem.
At termination, Algorithm 6 provides a tree of maximum capacity paths rooted in s, and v* = 4 is the
capacity of the s-t path in this tree (highlighted in blue in Figure 1(b)). Therefore, for any ¢, > £5*
(=ng—v* =4—4=0), the network is UP. The resulting system state matrix is shown in Table 1, where the
row corresponding to £; = 2 is highlighted in blue. Observe that the only value of ¢5 for which the network

is DOWN is 0, which corresponds to £2* = 0, and is formatted in red. O

Table 1: System state matrix for permutations Py = {5,7,3,1} and P, = {2,4,8,6} computed with SO.

W(x;(f1,42))
ll\lg 0O 1 2 3 4
0 0o 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

Proposition 3.1 states the complexity of the SO approach and its proof is presented in Appendix C. Notice

that the complexity of the SO approach is equal to the complexity of the IS approach.

Proposition 3.1. The overall complezity of the SO approach is O(ninM + nymM) = O(nymM) provided

that n < m.
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3.4 Bi-objective Optimization Approach
3.4.1 Modeling of the Bi-objective Optimization Approach

Whereas SO solves an optimization problem for every row of the system state matrix, the bi-objective
optimization approach (BO) extends the idea of SO by solving a single bi-objective optimization problem to
evaluate the entire system state matrix in each replication.

As with the previous approaches, we begin each replication by generating q},i € N7, and ¢2,i € N>

according to Equation (7). To every node i € N, associate two weights according to

a5, €N,
ue = e=1,2. (13)

00, i €N/N,

Again, in our implementation, we substitute oo by n, and hence the largest value of u$, e = 1,2, is n.

To compute the system state matrix for the jth replication, we must determine all pairs ({1, ¢3) for
which the network is DOWN. In BO, we determine these combinations by solving the bi-objective maximum
capacity path problem (BOMCP), which can be defined as follows. For a network with weights u; and u?

associated to each node i € N, let P denote the set of all s-t paths. For p € P, define capacities

ct(p) = min{u} :i € p} and c*(p) = min{u?:i € p}.

Similarly to SO, these capacities represent the number of failures in N} and in N5 that disconnects path p.

Define a path p from s to 7 as a non-dominated s-i path if there does not exist any other path p’ from s to
i such that c'(p’) > cl(p) and c?(p) > c2(p) with at least one strict inequality, and define a non-dominated
s-i point as the image of a non-dominated s-i path p under ¢' and c?. Then, the BOMCP problem can be

defined as

max{e! (p), ¢*(p)}, (14)

and a solution to this problem provides a set £ of non-dominated s-t points (v}, v3), which can be used to

derive the values of (¢1,¢s) for which ¥(x(¢1,¢5)) =0, for all £, =0,1,...,n1 and 5 =0,1,...,n9. Letting
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(v¥, v3) denote such a non-dominated point, the network is UP (i.e., ¥(x(¢1,¢3)) = 1) for every point (¢1,¢)
with v] > n; —#; and v5 > ng — 3. Furthermore, the existence of such a non-dominated point is guaranteed

for any (¢1,¢2) in which ¥(x(¢1,¢2)) = 1. We record this result in the following theorem.

Theorem 3.1. U(x(¢1,¢3)) = 1 if and only if there exists a non-dominated point (vi,v3) such that vy >

ny — {1 and v5 > ng — o

Proof. (=) Suppose ¥(x(¢1,¢2)) = 1. Then by definition of x(¢1,£s), the system is UP when all components
i € N7 with g} > n;—/y, and all components i € Ny with g7 > ny— {3 are UP, and the remaining components
in A7 and Ny are DOWN. Thus, there exists an s-t path p such that c¢!(p) > ny — ¢ and c?(p) > ny — lo.
Either p is a non-dominated path or it is dominated by some other s-t path, and there exists a non-dominated
point (vf,v3) with vf > ¢!(p) and vi > ¢?(p). Therefore, vi > ny — ¢ and v} > ny — flo.

(<) Conversely, suppose that there exists a non-dominated point (vj,v3) such that vy > ny — ¢; and
vy > ng — fo. Then, there exists an s-t path p with capacity ¢'(p) = vf and ¢*(p) = v}, and hence
ct(p) > ny — 41 and *(p) > na — ly. Thus, for all i € p, ¢} > ny — ¢1 and ¢Z > ng — {5, that is, all
components i € p are UP with respect to the state x(¢1,¢2). Because x(¢1,¢3) contains an s-t path of

functioning components, ¥(x(¢1,¥¢2)) = 1. O

3.4.2 Solution Methodology

We solve the BOMCP using the BO-MaxCapPath algorithm (given in Algorithm 1) by modifying the “BDi-
jkstra” bi-objective shortest path algorithm of Sedefio-Noda and Colebrook (2019) in essentially the same
way as Dijkstra’s algorithm (for single-objective shortest path) is modified for MCP.

In Algorithm 1, labels associated with each node i € A/ contain the value of both c!(p) and ¢2(p) for a
candidate s-i path, i.e., a potential non-dominated s-i path. Let d} and d? respectively denote stored values
of ¢!(p) and ¢*(p) for the candidate s-i path, where the values d} = d? = co and d} = d? = 0 are initialized
in similar fashion to Algorithm 6. Let €; denote the set of non-dominated s-i points and, without loss of
generality, assume that the network contains a path from s to every other node ¢ € N\ {s}. Then, the

BOMCP problem satisfies the following principle of optimality: for every node ¢ and every non-dominated

s-i point (d',d?) € Q;, there exists a path from s to i with capacities (d',d?) that can be composed as a
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non-dominated path from s to some node j € I';” plus the arc (j,4). With this, after a candidate s-i path p
is determined to be a non-dominated s-i path, the values (d}, d?) are recorded (i.e., made permanent) as a
non-dominated s-i point and a new label is proposed for each node j € I‘;" based on adding the arc (i, 7) to
the end of p in similar fashion to Equation (12).

The correctness of the BDijkstra algorithm has been proved for the bi-objective shortest path problem
(Sedeno-Noda and Colebrook, 2019). Because our extension of this algorithm is analogous to the extension
of Dijkstra’s algorithm from (single-objective) shortest path to MCP, we have not proven correctness here.
Besides the previously mentioned initialization of d} and d?, i € AV, the differences between Algorithm 1 and
BDijkstra are as follows: (i) Algorithm 1 extracts labels from the heap based on the lexicographic maximum
key (d},d?) instead of the lexicographic minimum key used by BDijkstra; (ii) Algorithm 1 proposes new
candidate labels for a node j based upon the minimum ¢! and ¢? capacities, respectively, in the non-dominated
s-j path instead of adding the lengths corresponding to each objective of each arc in the non-dominated s-j
path, as in BDijkstra; and (iii), Algorithm 1 accepts a new candidate label for node j if it lexicographically

increases (instead of lexicographically decreases as in BDijkstra) the current label and is not dominated by

a permanent label for node j. We now explain the extension of BDijkstra for BOMCP.

Algorithm 1: BO-MaxCapPath

1 N; < 0, d! + 0, d? < 0, InH[i] + False, i € A"\ {s}
2 Ny + 0, d! « 00, d? + 00, I + (s,00,00, —, —)
3 insert(l, H); InH[s] < True

4 while H # () do
5 1* + find-max(H), delete-max(H)

6 d. <« 0,d%«0 // i* is the node with label [*
7 N;« <= Ny« 4+ 1, L[*][N;«] < I*, InH[¢*] + False

8 ["*" ¢+ NewCandidateLabel (i*, [*)

9 if [™* £ Null then

10 insert(I™°*, H), InH[¢*] + True

11 dl « [mew dl, d2 « [mew d?

12 end

13 RelaxationProcess (¢, H, [*)

14 end

15 return L[{]

Following the notation of Sedeno-Noda and Colebrook (2019), the data structure used in Algorithm 1 to
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Algorithm 2: NewCandidateLabel(i*, [*)

1 d! <0, d? < 0; ["" < Null
2 for j € I';. do
3 for [ € L[j] do

4 fl min{l.d17u%*,u}

5 2« min{l.d* ui , u}

6 if f1 > d! or f! =d! and 2 > d?
7 then

8 if f! < 1*.d! and f? > [*.d?
9 then

10 dl « fl; d? « f2

11 [mew « (i*,dt, d?, 4,7)
12 end

13 end

14 end

15 end

16 return ["¢?

// T'; is the set of predecessors of node i

// lexmax cand label

// non-dom cand label

// r is the position of [ in L[j]

Algorithm 3: RelaxationProcess(i*, H, [*)

1 for j €'} do

2 f! — min{l*.d", ul.,uj}

3 f2 « min{l*.d* u., u?

4 iff1>d;0rf1:d;andf2>d?
5 then

6 if N; =0 or fl < L[j][Nj].d1 and 2 > L[j][Nj].d2
7 then

8 d} «— fl; d? — f2

9 l%(]ad}adivl*aNl*)

10 if InH[j] = False then

11 insert(l, H)

12 InH[j] + True

13 end

14 else

15 increase-key(l, H)

16 end

17 end

18 end

19 end

// Relaxation (i*, j)

// non-dom. label

// N;= is the position of [* in L[i*]
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store the non-dominated points for 4 € A is denoted by L[i]. Since multiple non-dominated points may be
associated with each node ¢ € AV, L[¢] is dynamically increased by one point each time a new non-dominated
point associated with 4 is found. The total number of non-dominated points associated with 7, N;, is not
known until termination. At termination, L[i] contains non-dominated points L[¢][1], L[¢][2],. .., L[#][N;],

stored in lexicographically decreasing order. Non-dominated points are represented by labels of the form

(i,d",d% j,7), (15)

where i denotes the node to which the non-dominated point is associated, d' and d? denote, respectively the
capacity of node 7 for the first and second objectives, j denotes the predecessor of node 7 in the respective non-
dominated path, and r denotes the position in L[¢] of the non-dominated label j that allows the corresponding
non-dominated path to i to be obtained.

As in the BDijkstra algorithm of Sedefio-Noda and Colebrook (2019), Algorithm 1 maintains a heap, H,
that stores at most one candidate label for each node ¢ € N, and therefore has a maximum size of n. Every
label has an associated key given by the pair (d!,d?). The candidate label I € H associated with node i is
not in L[i] since a label is stored in L only when the label becomes permanent. Similarly to BDijkstra, our
algorithm maintains the invariant that the key of a label | in H associated with node 4 is not dominated
by the key of any label in L[i], for all # € A/. Additionally, the key of the candidate label for node 7 is the
lexicographic maximum among all paths to node ¢ that can be created by a known non-dominated path to
some predecessor node j € I';” plus the arc (j,4). The heap performs the following basic operations on labels:
find-max(H), delete-max(H), insert(l, H), and increase-key(l, H), and labels are extracted from the heap in
lexicographic maximum order of their keys, i.e., a label I* = (i,d!,d?, j,7) is extracted from the heap if, for
any other label [ in the heap, [*.d! > [.d! or [*.d! = [.d! and I*.d? > [.d?.

For a label I* associated with a node i* to become permanent (i.e., recording its key as a non-dominated
s-i* point) it has to satisfy two conditions: (1) its key must not be dominated by the key of any label already
in L[¢*]; and (2) there does not exist a non-explored path from s to ¢* whose key dominates the key of [*.
Item (1) is satisfied by any label in H at any time by the invariant already discussed. Due to the label

update procedures NewCandidateLabel (Algorithm 2) and RelaxationProcess (Algorithm 3), it can be shown
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that item (2) is satisfied by a label I* extracted from the heap. Therefore, the label I* extracted from the
heap in an iteration becomes permanent and it is added to the end of L[¢*]. In this way, the key of a new
permanent label associated with a node ¢* is non-dominated by and lexicographically smaller than any other
permanent label in L[i*].

With the exception of the first label, (s, 00,00, —, —), any other label is generated by either NewCandi-
dateLabel or RelaxationProcess from a permanent label. When a label [* associated with a node i* € A is
made permanent, NewCandidatelLabel determines whether there is another explored path to node ¢* that is
not dominated by any point already in L[i*], and RelaxationProcess explores all s-j paths by extending the
non-dominated s-i* path corresponding to I* by a single arc (i*,j), where j € Ff

If NewCandidateLabel finds a new s-i* path and/or RelaxationProcess finds a new non-dominated s-j path,
je I‘?;, a new label is created and inserted into the heap. Furthermore, since the labels are made permanent
in decreasing order and a permanent label associated with a node i* is added to the end of L[i*], in the
dominance test for a new label [* it is only necessary to check whether the key of the last label in L[i*]
dominates the key of [*.

Solving the BOMCP provides the set of non-dominated points €2. Then, we can update ® by looping
over €) and adding 1 to every entry that satisfies the condition vi > ny — ¢; and v} > ng — f2. Algorithm 4
states the BO approach.

We establish the complexity of the bi-objective optimization approach with Proposition 3.2, and Corol-
lary 3.1.1, and we refer the reader to Appendix D for the proof of 3.2. We illustrate the BO approach with

the example below.
Proposition 3.2. The complexity of Algorithm 1 is O(n?m + nymlogn).

Corollary 3.1.1 follows directly from the fact that Algorithm 4 solves the BOMCP problem for each

replication.

Corollary 3.1.1. The complexity of the bi-objective optimization approach is O(n?mM + nymlognM).

Example 1 (continued). Consider the network in Figure 1(a). For this network, n = 10, V7 = {1,3,5,7}

and Ny = {2,4,6,8}. Suppose that in the jth replication, the algorithm generates the permutations P, =
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Algorithm 4: BO

19+0
2 for j =1 to M do

3 > Simulate a permutation of N7 and a permutation of A5
4 > Update u;, i € N, according to Equation (13)

5 Q + BO-MaxCapPath(G) // € stores all (v],v3) points
6 for (vi,v3) € 2 do

7 for /1 =0 to n; do

8 for ¢/ =0 to ny do

9 if v > n; —¢; and v3 > ng — ¢z then
10 d(l1,02) « d(l1,02) + 1
11 end
12 end
13 end
14 end
15 end
16 &+ O/M.

17 return ¢

1
i’

(u},u?) capacities of i

@ node 4

Figure 2: Network after the updating of u;.

{5,7,3,1} and P, = {2,4,8,6} for N7 and N, respectively. The algorithm then updates the values of ull
and u?, i € N, according to Equation (13) (see Figure 2), and solves the corresponding BOMCP problem.
The solution of the BOMCP problem shows that there are three non-dominated s-t paths (marked in blue
in Figure 2): py =s-4-8-t, po=s5-1-6-1t and p3s =s-3-7-t, with respective non-dominated
points (00,2), (4,4), and (2,00); these are the points stored in Q. The algorithm then loops over these
points populating the survival signature matrix. Consider the first point stored in €, (00, 2). The network

is UP for every point (¢1,¢3) such that co > 4 — ¢; and 2 > 4 — {5, that is, the network is UP for ¢; > —oco
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(¢, > 0) and ¢5 > 2 (this area is outlined in red in Table 2). Similarly, point (v}, vs) = (4,4) (yellow) and
(v, v3) = (2,00) (blue). The brown region is where the three other regions overlap. O
Table 2: System state matrix for permutations P; = {5,7,3,1} and P, = {2,4,8,6} computed with BO.

W(x; (41, £2))

N[0 1 2 3 4
0 |0 0 01 1
1 o 1 1 1 1
2 |o 1 1 1 1
3 /1 1 1 1 1
4 11 1 1 1 1

4 Computational Experiments

4.1 Implementation Details and Experiments Setup

We implemented the four methods in Section 3 and published the codes, as well as all the results from the
experiments discussed in this section, at the dblsBR/Heterogeneous_Signature repository. All algorithms
were implemented in C++, and all experiments were performed on an Intel® Core i7-1165G7 CPU laptop
with a 2.80 GHz processor and 16 GB RAM running on Windows 10 OS.

To validate our methods, we (i) verified that the estimated survival signature produced by all four methods
were equivalent for all instances; (ii) verified that the methods produced the (exact) survival signature for a
small network commonly used to validate exact and estimating methods (see Patelli et al. (2017); Behrensdorf
et al. (2021); Coolen-Maturi et al. (2021); Di Maio et al. (2023)) — see Figure 3 for a diagram and Table 3
for the corresponding survival signature) when the MC simulation was configured to generate each pair of
permutations (one from A7 and one from N3) once; and (iii) created a non-trivial system for which we can

compute the exact survival signature (by observing properties of the system’s topology), and therefore assess

the accuracy of our method through hypothesis tests.
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G\l | 0 1 2 3
0 0 0 O 0
1 00 1/9 1/3
2 0 0 4/9 2/3
3 1 1 1 1
Figure 3: Bridge system from Patelli et al.
(2017), where N7 = {1,2,3} and N> = {4,5,6} Table 3: Survival signature of Figure (3).

For item (iii) of the preceding list, i.e., the accuracy of our methods, we first computed the exact survival
signature of two instances of a chain network (see Figure 6 for an illustration of one of the instances), one
small instance with 25 nodes and a larger instance with 61 nodes. Then, we estimated the signature for each
instance (with 20000 replications for the small instance and 75000 replications for the larger instance) and
conduct a hypothesis test on proportion where we test the hypothesis that the true MC estimated signature
was equal to the exact signature. For a level of significance o = 0.05, the rejection rates were 3.57% for the
small instance and 3.16% for the larger instance, and therefore very close to the 5% rejection rate expected
in this setting. The details about the computation of the exact signatures and the hypothesis tests are
discussed in details in Appendix E .

We performed two sets of experiments. The first set focused on evaluating the performance of each
approach for a varying number of replications as well as on verifying that the running time of each approach
increases approximately linearly with the number of replications. Hence, we compare the running time of
each approach for a varying M with a fixed rate of ny/ns. Once we verify the linearity of the running time
with M, we can compute the rate of time per replication based on a relatively small number of replications
(say 5000), and then estimate the total running time for a large number of replications (say 1000000). For
this set we considered medium-sized systems commonly used in reliability analysis.

The second set of experiments focused on comparing the performance of the approaches for a fixed
number of replications and a varying rate nj/ny. For this set of experiments, we considered a relatively
extensive collection of instances: two medium-sized systems commonly used in reliability analysis, a large-
scale, generally structured system with multiple density rates, and a large-scale realistic power system. We

introduce each test instance in the next section.
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4.2 Test Instances

We have employed a variety of network systems with different sizes and from different areas of application.
For the first set of experiments, we adapted two medium-sized networks commonly used in reliability studies
from Sebastio et al. (2014).

The first network is a communication system, has n = 59 nodes, m = 142 arcs, and is composed of three
replicas of the 1973 Arpanet network (see Figure 4(a)). We adapted this network in the following fashion:
the 57 nodes in N\ {s,¢} (numbered from 1 to 57) are divided into two classes of nodes such that n; = 28
first even-numbered nodes are assigned to class 1 (i.e., 2,4,...,56) and the remaining ny = 29 nodes are
assigned to class 2.

The second network is a typical electrical system of an airplane and is depicted in Figure 4(b). The
airplane system has n = 82 nodes and m = 268 arcs. We divided the nodes in N \ {s,¢} into N7 and N,
with n; = 40 and ns = 40 in a similar fashion to what was done for the Arpanet system.

The Arpanet system and the Airplane electrical system were used both in the first and the second set
of experiments. However, to provide a comprehensive evaluation of the performance of each approach, we
considered additional networks in the second set of experiments. These additional networks are presented
next.

We also considered more challenging test instances. We started by considering large-scale, generally
structured graphs of theoretical interest. We generated a random geometric graph (RGG) with 350 nodes
according to the following procedure: in the X-Y plane, we located node s with coordinates x; = 0 and
ys = 10 and node ¢ with coordinates z; = 10 and y; = 0. For any other node i € A"\ {s,¢}, we randomly
generated coordinates x; and y; between 0 and 10 according to a uniform distribution, and we created an
arc from node 7 to node j € A if and only if the Euclidean distance between ¢ and j is smaller than or equal
to a parameter d. Notice that this procedure does not prevent the creation of cycles, which adds another
layer of generality to the RGG. We then assign nodes in A\ {s,t} to each class, where the first n; nodes
are assigned to N7, and the remaining no nodes are assigned to N>. To evaluate the performance of the
approaches with respect to the density of the system, we generated three RGGs by setting the value of the

parameter d to 1.5, 3.0, and 4.5. An example of the RGG generated with d = 1.5 is shown in Figure 5.
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To conclude the experiments, we considered a realistic, large-scale power system. The 2000-bus power
system, which has 4000 nodes and 29336 arcs and includes cycles and self-loops, is a synthetic but realistic
electric grid model maintained by Texas A&M Smart Grid center (electricgrids.engr.tamu.edu); see (Birch-
field et al., 2017a,b, 2018) for more information. We adapted the network by partitioning the nodes into
two classes such that the first n; even-numbered nodes are assigned to class 1 and the remaining nodes are

assigned to the second class.

4.3 Experiments Results

For the first set of experiments, we estimated the survival signatures of the Arpanet system and the Airplane
electrical system for M = 100, 500, 1000, 5000, 10000 replications. We then recorded the time each algorithm
needs to estimate the survival signature and divide the respective time by the corresponding number of

replications to obtain the rates (in seconds per replication, with four decimal digits) shown in Tables 4 and

e

(a) System composed of three replicas of 1973 Arpanet. (b) Typical airplane electrical system.

Figure 4: Arpanet network and airplane electrical system adapted from Sebastio et al. (2014).

From Tables 4 and 5, we observe that the rate of each algorithm is approximately constant with a varying
number of replications, and that their run time increases approximately linearly with an increase in M. This
implies that we can obtain a good estimate of the total run time of an algorithm with respect to a system
for a large M by running a small number of iterations, obtaining the rate, and multiplying it by M. Tables
4 and 5 also show the superiority of BO over the other three methods in these experiments. Between IS and
SO, neither seems to dominate the other, while Naive was at least one order of magnitude slower than the

other algorithms.
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Table 4: Arpanet System with n = 59, n; = 28, ny = 29, m = 142.

All entries are given in seconds per replication

M=100 M=500 M=1000 M =5000 M = 10000
Naive | 0.0061 0.0061 0.0061 0.0061 0.0061
IS 0.0004 0.0004 0.0004 0.0004 0.0004
SO 0.0005 0.0005 0.0005 0.0005 0.0005
BO 0.0002 0.0002 0.0002 0.0002 0.0002

Table 5: Airplane electrical system with n = 82, n; = 40, ny = 40, m = 268.

All entries are given in seconds per replication

M=100 M=500 M=1000 M =5000 M = 10000
Naive | 0.0265 0.0264 0.0264 0.0265 0.0275
IS 0.0013 0.0012 0.0012 0.0012 0.0012
SO 0.0012 0.0011 0.0011 0.0011 0.0011
BO 0.0005 0.0005 0.0005 0.0005 0.0005

We start the second set of experiments using the same networks of the first set, but now we evaluate the
effect of varying the size of the classes of nodes, N7 and N3, on the running time. For this set of experiments,
we fix M at 5000 replications and estimate the survival signature for different combinations of ny/ns. For
the Arpanet system, we consider the following combinations of n; /ng: 2/55, 5/52, 12/45, 20/37, and 28/29.
For the Airplane system, we consider the following combinations of nj/ny: 2/78, 10/70, 20/60, 30/50, and
40/40. The results shown in Tables 6 and 7 reaffirm BO as the fastest method in all cases except for the
extreme case where n; = 2, in which case SO seems to perform slightly better. These results also suggest

that BO is the most robust against variations in the ratio ny/ns.

Table 6: Arpanet system for fixed M = 5000 and different values of n; and ns.

All entries are given in seconds per replication
ny =295, ng=>52 ny =12, ng =45 ny =20, ng =37

n1:2,n2:55 n1:28,n2:29

Naive 0.0012 0.0022 0.0042 0.0056 0.0061
IS 0.0001 0.0001 0.0003 0.0004 0.0004
SO 0.0001 0.0001 0.0003 0.0004 0.0005
BO 0.0002 0.0001 0.0002 0.0002 0.0002
Table 7: Airplane system for fixed M = 5000 and different values of ny and ns.
All entries are given in seconds per replication
n =2 n,=78 ny =10, no =70 ny =20, no =60 ny =30, no =50 ny =40, ny, =40
Naive 0.0037 0.0126 0.0204 0.0245 0.0265
IS 0.0002 0.0005 0.0008 0.0010 0.0012
SO 0.0001 0.0004 0.0007 0.0009 0.0011
BO 0.0003 0.0003 0.0005 0.0005 0.0005
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To further investigate the performance and the robustness of the algorithms, we estimated the survival
signature of the RGGs with M = 5000 replications and varying values of ny/ns. Figure 5 shows the RGG

generated for d = 1.5, n; = 149 and ny = 199.

Figure 5: Network with n = 350, where n; = 149, ny = 199, and m = 7446 arcs.

Table 8 shows the results of the computational experiments performed with this RGG. For this RGG, the
superiority of BO is highlighted in terms of both running time and robustness in almost all scenarios. The
exception is again the extreme case of n; = 2. In terms of run time rates, BO becomes orders of magnitude
faster than the other approaches in most cases with SO competing an order of magnitude slower than BO in

most cases. The BO approach is also the most robust when we increase nq as shown in Table 8.

Table 8: Random Geometric Graph system with 350 nodes with d = 1.5 and different values of n; and ns.

All entries are given in seconds per replication
RGG for d = 1.5, m = 7446, density=0.06
ny = 2, Nno = 346 ny = 49, No = 299 ny = 99, ng = 249 ny = 1497 No = 199

Naive 0.2406 4.1139 8.5229 9.5301
IS 0.0103 0.1556 0.2491 0.4188
SO 0.0016 0.0219 0.0376 0.0508
BO 0.0037 0.0056 0.0075 0.0079

Notice that the density of the RGG discussed above (created with d = 1.5) is approximately 0.06. For
d = 3.0, the resulting RGG has 25412 arcs and a density of 0.21. Lastly, for d = 4.5 the corresponding RGG
has 49208 arcs and a density of 0.40. The results for the RGGs with d = 3.0 and d = 4.5 are shown in Tables
9 and 10.

Tables 8, 9 and 10 reinforce the dominance of BO over the benchmarks for practical cases and highlight
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Table 9: Random Geometric Graph system with 350 nodes with d = 3.0 and different values of n; and ns.

All entries are given in seconds per replication
RGG for d = 3.0, m = 25412, density=0.21
ny = 2, Nno = 346 ny = 49, Nog = 299 ny = 99, Nnog = 249 ny = 1497 No = 199

Naive 0.4151 8.0551 11.2330 12.9170
IS 0.1130 1.7651 2.6720 4.0805
SO 0.0027 0.0542 0.0740 0.0988
BO 0.0095 0.0111 0.0125 0.0130

Table 10: Random Geometric Graph system with 350 nodes with d = 4.5 and different values of n; and ns.

All entries are given in seconds per replication
RGG for d = 4.5, m = 49208, density=0.40
ny = 2, Nng = 346 ny = 49, Ng = 299 ny = 99, nog = 249 ny = 1497 Nng = 199

Naive 0.7278 11.2240 15.2810 20.6890
IS 0.5217 7.4703 12.0010 12.0300
SO 0.0041 0.06154 0.1110 0.1544
BO 0.0174 0.0178 0.0180 0.0181

its robustness against variations in n; and network density. In these experiments, SO outperforms the other
approaches for n; = 2,ny = 346, and is markedly faster than IS, whereas in the previous experiments this
difference was not clear.

Lastly, using BO, SO, and IS, we estimated the survival signature of the 2000-bus power system with
M = 250 replications for varying values of ny /ns. Because Naive required in excess of 10 hours per replication,

we excluded it from this experiment. Table 11 shows the results for the other three approaches.

Table 11: TAMU SmartGridCenter 2000-bus power system.

All entries are given in seconds per replication

ny =2, no=3996 ni =999, ny = 2999 ny = 1499, ny = 2499 n; = 1999, ny = 1999

IS 0.0218 5.3674 5.7789 6.3404
SO 0.1235 26.1520 36.1740 44.0640
BO 0.1012 0.1872 0.1851 0.2040

Table 11 confirms the results of previous experiments and highlights the advantages of BO over the other
benchmark methods in almost all scenarios. BO algorithm scaled well and in the worst case (nq = 1999, ny =
1999) yielded a rate of 0.2040 seconds per iteration, demonstrating that BO is well-suited to handle large-
scale systems. For instance, for the same setting but changing M to a more realistic number such as 10000
replications, BO would complete the survival signature estimation in less than one hour. By comparison,

IS yielded a rate of 6.34 seconds per iteration in the worst case and would take more than 17 hours to run

10000 replications.
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As a secondary point, it is interesting to note that in the RGG experiments (Tables 8, 9 and 10), SO
outperformed IS by a considerable margin, whereas in the 2000-bus power system experiments, SO fared
markedly worse than IS even for the extreme case where n; = 2,ny = 3996. Although in both cases the
network considered was a large-scale system, the density in all three RGGs were considerably larger than the
density of the 2000-bus power system, which is approximately 0.0018. This result suggests that SO may not
perform well with massive but sparse networks compared to 1S. Although SO and IS are equal in worst-case
complexity, we believe this difference in performance can be explained by differences in the computations
carried out by each algorithm. In SO, each arc is considered at most once but some additional work is
created due to manipulating the bucket data structures. On the other hand, IS may consider each arc at
most twice: once when scanning the predecessor list of the arc’s head node and once when scanning the
successor list of its tail node. Furthermore, in instances where s and ¢t become connected after adding only
a few nodes, it is possible for a majority of the arcs considered when scanning predecessor lists to be arcs
that are never encountered when scanning successor lists, meaning the number of arcs examined in IS can
be more than twice the number examined in SO. This difference in computational effort can become more
pronounced as the number of arcs grows, thus leading SO to be preferred for denser networks. We did not
pursue further investigation in this direction since BO decisively outperformed both SO and IS for every

instance of considerable size and in all scenarios except for the extreme cases where n; = 2.

5 Considerations and Future Research

In this paper, we proposed a bi-objective optimization-based MC method (which we refer to as BO) to es-
timate the two-terminal survival signature of networks with two component classes. To the best of our
knowledge, this is the first work to point out the relationship between survival signature computation
and multi-objective optimization. In addition, we discussed three alternative approaches to estimate the
two-terminal survival signature within a MC framework without exploiting the relation to multi-objective
optimization.

We conducted extensive computational experiments to compare the performance of the methods in terms

of run time and robustness. Although IS and SO have better worst-case complexity, the experiments revealed
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BO to be the fastest and the most robust method. The experiments also showed that BO is well-suited to
estimate the survival signature of realistic, large-scale systems, while the other three approaches become
unpractical as the size of the network becomes large.

This work contributes to the network reliability literature from both theoretical and practical perspectives.
From a theoretical perspective, the possibility of estimating the survival signature by solving a multi-objective
network optimization problem, and the efficiencies gained by doing so, indicates an interesting path for
developing efficient algorithms for reliability estimation. From an practical perspective, we have shown that
BO is well-suited to estimate the survival signature of realistic, generally structured systems in a reasonable
amount of time even for systems with thousands of nodes and arcs.

Interesting future research directions branching from this work includes: (i) generalizing our approach
to estimate the two-terminal survival signature for networks with more than two component classes; (ii)
generalizing our approach to multi-state systems; and (iii) generalizing our approach to other reliability

metrics such as K-terminal reliability and coverage metrics.

6 Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Number
CMMI-1751191. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

J. L. Cook and J. E. Ramirez-Marquez. Two-terminal reliability analyses for a mobile ad hoc wireless

network. Reliability Engineering € System Safety, 92(6):821-829, 2007.

B. A. Gebre and J. E. Ramirez-Marquez. Element substitution algorithm for general two-terminal network

reliability analyses. IIE Transactions, 39(3):265-275, 2007.

J. Silva, T. Gomes, D. Tipper, and L. Martins. An effective algorithm for computing all-terminal reliability

bounds. Networks, 66(4):282-295, 2015.

31



S. Chakraborty, N. K. Goyal, S. Mahapatra, and S. Soh. Minimal path-based reliability model for wireless

sensor networks with multistate nodes. IEEE Transactions on Reliability, 69(1):382-400, 2020.

L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):

410-421, 1979.

J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability that a graph

is connected. SIAM Journal on Computing, 12(4):777-788, 1983.

M. O. Ball. Computational complexity of network reliability analysis: An overview. IEEE Transactions on

Reliability, 35(3):230-239, 1986.

F. J. Samaniego. On closure of the IFR class under formation of coherent systems. IEEE Transactions on

Reliability, R-34:69-72, 1985.

I. Gertsbakh and Y. Shpungin. Models of Network Reliability: analysis, combinatorics, and Monte Carlo.

CRC Press, Boca Raton, 2009.

F. P. A. Coolen and T. Coolen-Maturi. Generalizing the signature to systems with multiple types of com-
ponents. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, editors, Complex

Systems and Dependability, pages 115-130, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

I. B. Gertsbakh, Y. Shpungin, and R. Vaisman. D-spectrum and reliability of a binary system with ternary

components. Probability in the Engineering and Informational Sciences, 30:25-39, 2016.

T. Elperin, I. Gertsbakh, and M. Lomonosov. Estimation of network reliability using graph evolution models.

IEEE Transactions on Reliability, 40(5):572-581, 1991.

A. Sedeno-Noda and M. Colebrook. A biobjective Dijkastra algorithm. FEuropean Journal of Operational

Research, 276:106-118, 2019.

E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays. Journal of Franklin Institute,

1956.

R. E. Barlow and F. Proschan. Mathematical Theory of Reliability. John Wiley & Sons, 1965.

32



I. Brown, C. Graves, B. Miller, and T. Russell. Most reliable two-terminal graphs with node failures.

Networks, 76:414-426, 2020.

C.-C. Jane and J. Yuan. A sum of disjoint products algorithm for reliability evaluation of flow networks.

European Journal of Operational Research, 131:664-675, 2001.

E. Datta and N. K. Goyal. Sum of disjoint product approach for reliability evaluation of stochastic flow

networks. International Journal of Systems Assurance Engineering and Management, 8:1734-1749, 2017.

T. Aven. Reliability evaluation of multistate systems with multistate components. IEEE Transactions on

Reliability, R-34(5):473-479, 1985.

C. Alexopoulos. A note on state-space decomposition methods for analyzing stochastic flow networks. IEEFE

Transactions on Reliability, 44(2):354-357, 1995.

G. Bai, Z. Tian, and M. J. Zuo. Reliability evaluation of multistate networks: An improved algorithm using

state-space decomposition and experimental comparison. IISE Transactions, 50(5):407-418, 2018.

J. E. Ramirez-Marquez, D. Coit, and M. Tortorella. A generalized multi-state-based path vector approach

to multistate two-terminal reliability. ITE Transactions, 38(6):477-488, 2006.

F. Moskowitz. The analysis of redundancy networks. Transactions of the American Institute of Electrical

Engineers, Part I: Communication and Electronics, 77(5):627-632, 1958.

A. Satyanarayana and M. K. Chang. Network reliability and the factoring theorem. Networks, 13(1):107-120,

1983.

R. K. Wood. A factoring algorithm using polygon-to-chain reductions for computing k-terminal network

reliability. Networks, 15(2):173-190, 1985.

R. K. Wood. Factoring algorithms for computing k-terminal network reliability. IEEE Transactions on

Reliability, 35(3):269-278, 1986.

J. M. Burgos and F. R. Amoza. Factorization of network reliability with perfect nodes I: Introduction and

statements. Discrete Applied Mathematics, 198:82-90, 2016.

33



G. Hardy, C. Lucet, and N. Limnios. K-terminal network reliability measures with binary decision diagrams.

IEEFE Transactions on Reliability, 56(3):506-515, 2007.

S.-Y. Kuo, F.-M. Yeh, and H.-Y. Lin. Efficient and exact reliability evaluation for networks with imperfect

vertices. IEEE Transactions on Reliability, 56(2):288-300, 2007.

C.-C. Jane, W.-H. Shen, and Y.-W. Laih. Practical sequential bounds for approximating two-terminal

reliability. Furopean Journal of Operational Research, 195:427-441, 2009.

M. Lé, M. Walter, and J. Weidendorfer. A memory-efficient bounding algorithm for the two-terminal relia-

bility problem. Electronic Notes in Theoretical Computer Science, 291:15-25, 2013.

S. Sebastio, K. S. Trivedi, D. Wang, and X. Yin. Fast computation of bounds for two-terminal network

reliability. Furopean Journal of Operational Research, 238:810-823, 2014.

C. Srivaree-ratana, A. Konak, and A. E. Smith. Estimation of all-terminal network relibility using an artificial

neural network. Computers & Operations Research, 29:849-868, 2002.

F. Altiparmak, B. Dengiz, and A. E. Smith. A general neural network model for estimating telecommunica-

tions network reliability. IEEE Transactions on Reliability, 58(1):2-9, 2009.

Z.Zhang and F. Shao. A diameter-constrained approximation algorithm of multistate two-terminal reliability.

IEEE Transactions on Reliability, 67(3):1249-1260, 2018.

K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese. The cross-entropy method for network reliability estima-

tion. Annals of Operations Research, 134:101-118, 2005.

A. Heidarzadeh, A. Sprintson, and C. Singh. A fast and accurate failure frequency approximation for k-

terminal reliability systems. IEEE Transactions on Reliability, 67(3):933-950, 2018.

G. Cristescu and V.-F. Dragoi. Efficient approximation of two-terminal networks reliability polynomials

using cubic splines. IEEE Transactions on Reliability, 70(3):1193-1203, 2021.

G. S. Fishman. A comparison of four Monte Carlo methods for estimating the probability of s-t connectedness.

IEEE Transactions on Reliability, 35(2):145-155, 1986.

34



J. E. Ramirez-Marquez and B. A. Gebre. A classification tree based approach for the development of minimal

cut and path vectors of a capacitated network. IEEE Transactions on Reliability, 56(3):474-487, 2007.

R. E. Stern, J. Song, and D. B. Work. Accelerated Monte Carlo system reliability analysis through machine-
learning-based surrogate models of network connectivity. Reliability Engineering € System Safety, 164:

1-9, 2017.

S. Reed, M. Lofstrand, and J. Andrews. An efficient algorithm for computing exact system and survival

signatures of k-terminal network reliability. Reliability Engineering & System Safety, 185:429-439, 2019.

J. Behrensdorf, T.-E. Regenhardt, M. Broggi, and M. Beer. Numerically efficient computation of the survival
signature for the reliability analysis of large networks. Reliability Engineering € System Safety, 216:107935,

2021.

J. Navarro, F. J. Samaniego, N. Balakrishnan, and D. Bhattacharya. On the application and extension of

system signatures in engineering reliability. Naval Research Logistics, 55:317-327, 2008.

J. Navarro, F. J. Samaniego, and N. Balakrishnan. Signature-based representations for the reliability of

systems with heterogeneous components. Journal of Applied Probability, 48(3):856-867, 2011.

I. Gertsbakh and Y. Shpungin. Network Reliability and Resilience. Springer Briefs in Electrical and Computer

Engineering. Springer, 2011.

I. B. Gertsbakh, Y. Shpungin, and R. Vaisman. Reliability of a network with heterogeneous components. In
A. Lisnianski, L. Frenkel, and A. Karagrigoriou, editors, Recent Advances in Multi-state Systems Reliabil-

ity: Theory and Applications, Springer Series in Reliability Engineering, pages 3-18. Springer, 2018.

F. J. Samaniego and J. Navarro. On comparing coherent systems with heterogeneous components. Advances

in Applied Probability, 48(1):88-111, 2016.

S. Kochar, H. Mukerjee, and F. J. Samaniego. The “signature” of a coherent system and its application to

comparisons among systems. Naval Research Logistics, 46:507-523, 1999.

Y. Shpungin. Networks with unreliable nodes and edges: Monte Carlo lifetime estimation. International

Journal of Electrical and Computer Engineering, 1(3):466-471, 2007.

35



A. M. Andronov, I. B. Gertsbakh, and Y. Shpungin. On an application of signatures (D-Spectra) to analysis

of single-line queueing system. Automatic Control and Computer Sciences, 45(4):181-191, 2011.

F. J. Samaniego, N. Balakrishnan, and J. Navarro. Dynamic signatures and their use in comparing the

reliability of new and used systems. Naval Research Logistics, 56:577-591, 2009.

I. B. Gertsbakh and Y. Shpungin. Failure development in a system of two connected networks. Transport

and Telecommunication, 13(4):255-260, 2012.

B. H. Lindqvist and F. J. Samaniego. On the signature of a system under minimal repair. Applied Stochastic

Models in Business and Industry, 31:297-306, 2015.

F. P. A. Coolen, T. Coolen-Maturi, and A. H. Al-Nefaiee. Nonparametric predictive inference for system

reliability using the survival signature. Journal of Risk and Reliability, 228(5):437-448, 2014.

L. J. M. Aslett, F. P. A. Coolen, and S. P. Wilson. Bayesian inference for reliability of systems and networks

using the survival signature. Risk Analysis, 35(9), 2015.

A. Najem and F. P. A. Coolen. System reliability and component importance when components can be

swapped upon failure. Applied Stochastic Models in Business and Industry, 35:399-413, 2018.

S. Eryilmaz, F. P. A. Coolen, and T. Coolen-Maturi. Mean residual life of coherent systems consisting of

multiple types of dependent components. Naval Research Logistics, 65:86-97, 2018.

T. Coolen-Maturi, F. P. A. Coolen, and N. Balakrishnan. The joint survival signature of coherent systems

with shared components. Reliability Engineering € System Safety, 207:107350, 2021.

S. Eryilmaz and A. Tuncel. Generalizing the survival signature to unreparable homogeneous multi-state

systems. Naval Research Logistics, 63(8):593-599, 2016.

H. Yi, N. Balakrishnan, and X. Li. Signatures of multi-state systems based on a series/parallel/recurrent

structure of modules. Probability in the Engineering and Informational Sciences, 36(3):824-850, 2022.

S. Reed. An efficient algorithm for exact computation of system and survival signatures using binary decision

diagrams. Reliability Engineering & System Safety, 165:257-267, 2017.

36



B.-H. Xu, D.-Z. Yang, C. Qian, Q. Feng, Y. Ren, Z.-L. Wang, and B. Sun. A new method for computing
survival signature based on extended universal generating function. In 2019 International Conference on

Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), 2019.

F. Di Maio, C. Pettorossi, and E. Zio. Entropy-driven monte carlo simulation method for approximating the

survival signature of complex infrastructures. Reliability Engineering & System Safety, 231:108982, 2023.

E. Patelli, G. Feng, F. P. A. Coolen, and T. Coolen-Maturi. Simulation methods for system reliability using

survival signature. Reliability Engineering € System Safety, 167:327-337, 2017.

N. T. Boardman and K. M. Sullivan. Time-based node deployment policies for reliable wireless sensor

networks. IEEFE Transactions on Reliability, 70(3):1204-1217, 2021.

D. Ferone, P. Festa, S. Fugaro, and T. Pastore. A dynamic programming algorithm for solving the k-color

shortest path problem. Optimization Letters, 15(6):1973-1992, 2021.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.

Prentice-Hall, Inc., 1993.

M. Pollack. Letter to the editor - the maximum capacity through a network. Operations Research, 8(5):

733-736, 1960.

T. C. Hu. Letters to the editor - the maximum capacity route problem. Operations Research, 9(6):898-900,

1961.

A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye. Grid structural characteristics as

validation criteria for synthetic networks. IEEE Transactions on Power Systems, 32(4):3258-3265, 2017a.

A. Birchfield, E. Schweitzer, M. Athari, T. Xu, T. Overbye, A. Scaglione, and Z. Wang. A metric-based

validation process to assess the realism of synthetic power grids. Energies, 10(8):1233, 2017b.

A. B. Birchfield, T. Xu, and T. J. Overbye. Power flow convergence and reactive power planning in the

creation of large synthetic grids. IEEE Transactions on Power Systems, 33(6):6667-6674, 2018.

37



Appendix A Naive Approach Algorithm

Algorithm 5: Naive

1P+0
2 for j =1 to M do

3 > Generate a permutation of A and a permutation of N5
4 > Represent the permutations according to Equation (7)
5 > Turn DOWN g} for i =1,...,n
6 for /1 =0 to n; do
7 > Turn DOWN ¢2, for i = 1,...,ns
8 for /5 =0 to ny do
9 > Run a BFS from node s
10 if the BFS reaches ¢ then
11 ¢(€1,£2) — ¢(€1,€2) +1
12 end
13 if /5 < ny then
14 > Turn q%rb upP
15 end
16 end
17 if /1 < nq then
18 > Turn qr1L1—€1 UP
19 end
20 end
21 D ﬁ@
22 end

23 return ¢
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Appendix B Single-objective Optimization Approach Algorithms

Algorithm 6: Dials-MaxCapPath

1 bucket[i] + @, Vi € {0,1,...,n}
2 d(i) « 0, Vie N\ {s}

3 d(s) < n

4 idxr +—n

5 bucket[idx] < bucket[idz] U {s}
6 while idx > 0 do

7 if bucket[idz] # & then

8 for i € bucket[idz] do

9 for j € F;r do

10 if d(j) < min{d(¢),u;} then

11 if d(j) > 0 then

12 bucket[d(j)] + bucket[d(5)] \ {4}
13 end

14 d(j)  min{d(3),u;}

15 bucket[d(j)] + bucket[d(5)] U {j}
16 end

17 end

18 end

19 end

20 tdr < idxr — 1

21 end

22 return d(t)

Algorithm 7: SO

1P+ 0

2 for j =1 to M do

3 > Simulate a permutation of Aj and a permutation of A5
4 for /1 =0 to ny do

5 > Update w;, i € N, according to Equation (10)
6 v* + SO-MaxCapPath(G)

7 05" +— ng —v*

8 for /3 =0 to ny do

9 if {5 > £5™ then
10 d(l1,02) + d(b1,02) + 1
11 end
12 end
13 end
14 end
15 & +— O/M.

16 return ¢
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Appendix C Single-objective Optimization Approach Complexity

Proposition C.1. The overall complexity of the SO approach is O(ninM + nymM).

Proof. We start by stating the complexity of Algorithm 6. The initialization portion of the algorithm (steps
1-5) can be performed in O(n), but the dominating factor is the while loop which is used by the algorithm
to check buckets and update labels. Using doubly linked list as the underlying structure of the bucket sets,
each label update is performed in O(1) and since each label is made permanent once, we examine each arc
at most once, and the total work through the algorithm to update all labels (lines 9-16) requires O(m) time.
Checking all the bucket sets can be performed in O(n) since the algorithm keeps n + 1 buckets and it checks
each bucket once. Thus, the complexity of Algorithm 6 is O(n + m). Since Algorithm 7 solves a MCP for
each value of ¢; and MC replication, the overall complexity of SO is O(nynM + nymM), which is equal to

O(nymM) provided that n < m. O
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Appendix D Complexity of Bi-objective Optimization Approach
Proposition D.1. The complezity of Algorithm 1 is O(n?m + nymlogn).

Proof. We first analyze the work performed for every iteration of the while loop. When a node label I* is made
permanent, the algorithm performs a find-max operation in O(1), a delete-max operation in O(logn), a series
of assignment operations each having complexity O(1), and, when the label returned by NewCandidateLabel is
not Null, the algorithm performs an insert in O(log n) and another series of assignment operations in constant
time. The work performed in one iteration of the while loop is therefore O(logn) plus the complexity of
NewCandidatelLabel and RelaxationProcess. The algorithm performs an iteration of the while loop N; times
for every ¢ € N, and since N; < ny + 1 (because every non-dominated point must have a different value
of d}), the work performed for all nodes is O(nijnlogn) plus the complexity of NewCandidateLabel and
RelaxationProcess. In every iteration, function NewCandidatelLabel performs a series of comparisons and
assignments in constant time |L[j]| < N; times for every j € I';. Because NewCandidatelabel is called
exactly N; times for each node (i.e., once for every label made permanent), the total work for node i is
O(N; Zjer; N;) = O(m Zjer; n1) = O(n?|l';|). Therefore, the total time due to NewCandidateLabel is
O(Xien i 1) = O(ni e n [T |) = O(ndm), noting that 35, Ty | = m.

In each iteration, for every j € F;-", RelaxationProcess performs a sequence of constant time opera-
tions and either an insert or increase-key operation in the worst case with complexity O(logn). Like
the NewCandidatelLabel, RelaxationProcess is called N; times for each i € A/, which amounts to a to-
tal complexity of O(},cn (Nilogn|I'f|)). Noting that N; = O(ny) and > ;.5 TS| = m, this com-
plexity reduces to O(nymlogn). Comparing the results above, the overall complexity of Algorithm 1 is

O(nnylogn + n3m + nymlogn), which is O(n$m + nymlogn) provided that n < m. O
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Appendix E Validation and Accuracy of the Proposed Methods

We assess the accuracy of our methods by considering a chain network constructed as follows: given a positive
integer number n;, we have nodes 0,1,2,...,3ny, where N1 = {1,4,7,...,3n1—2}, Nb = {2,5,8,...,3n1—1},
and nodes {0,3,6,...,3n;} are completely reliable. The arcs are created as follows: let i = 0,3,6,...,3n;,
add the arcs (i,i+1), (i,i+2), (i+1,9+3), and (i + 2,7+ 3). Nodes 0 and 3n; are, respectively, the source

and sink nodes in this network.

The example below shows a chain network for ny = 8, where A7 = {1,3,7,10,13,16,19,22}, Ny =

{2,5,8,11,14,17,20, 23}, and {s,3,6,9,12,15,18,21,¢} are completely reliable nodes.

Figure 6: Chain network with n, = 8.

We can compute the exact survival signature of this network for a positive integer parameter n; denoting
the number of nodes in each class (N7 and N3) by making the following observations: (i) at least m; UP
components from N U N5 are necessary to have s-t connection; therefore, ¢(f1,f2) = 0 for any entry such
that €1 + ¢35 < nq; (ii) if all n; nodes from the same class are UP, the network is UP: ¢(¢y,¢2) = 1 for any

entry such that ¢ = ny or f5 = nq; and (iii) for ¢; + €5 > ny, we have the following result.

Proposition E.1. Given a chain network constructed according to the procedure described above, the exact

survival signature entries for €1 + £o > ny can be computed according to

(- (mr—e)) .

P, l2) = (m) (16)
12

Proof. Given a subset Q C N7 of ¢; UP nodes from N7, let R C N5 denote the set of ny — £; nodes from N>
that must be UP for the network to be UP. Since each subset of ¢5 nodes in N5 is equally likely to comprise

the set of UP nodes for N3, the network is UP if a sample of £5 nodes from A5 (with nodes drawn equally
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likely and without replacement) contains all the nodes in R. Thus, the probability that network is UP given
that the ¢; nodes in @ are UP follows a hypergeometric distribution given by the number of samples of /5
nodes in N> that contain all of the nodes in R divided by the number of samples of £ nodes in 5. Because
the sample in the numerator must include all of the nodes in R, we can rewrite the numerator as the number

of samples of f5 — (ny — ¢1) nodes in A5 \ R, which equals (52_(7‘;11 —él))' O

Table 12 shows the exact survival signature for the network of Figure 16 up to 7 decimal digits, and

Table 13 shows the estimates obtained by applying our method with M = 20000 replications.

Table 12: Exact survival signature (up to 7 decimal digits).

£1\l2 | O 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0.125 1
2 0 0 0 0 0 0 0.0357143 0.25 1
3 0 0 0 0 0 0.0178571  0.107143 0375 1
4 0 0 0 0 0.0142857 0.0714286  0.214286 05 1
5 0 0 0 0.0178571 0.0714286  0.178571  0.357143 0.625 1
6 0 0 0.0357143  0.107143  0.214286  0.357143  0.535714  0.75 1
7 0 0.125 0.25 0.375 0.5 0.625 0.75 0875 1
8 1 1 1 1 1 1 1 1 1
Table 13: Estimated survival signature (M = 20000 replications).

£1\ls | O 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0.1244 1

2 0 0 0 0 0 0 0.03525 0.25265 1

3 0 0 0 0 0 0.0178  0.10595 0.37195 1

4 0 0 0 0 0.01585 0.0707 0.21495 0.50325 1

5 0 0 0 0.0193  0.0697 0.17685 0.35525 0.6261 1

6 0 0 0.03505  0.1056  0.2135  0.3567 0.53645 0.75035 1

7 0 0.12225 0.24335 0.36905 0.4971 0.62065 0.74775 0.87545 1

8 1 1 1 1 1 1 1 1 1

We evaluated the accuracy of the estimates by performing, for every entry whose exact signature is

different from 0 and different from 1, the following hypothesis test on proportions:

Hy: The MC estimate ¢(¢1, ¢2) equals the exact signature ¢(¢1,¢3).

Hi: (b, L) # ¢(L1,La).
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For a level of significance o = 0.05, the test resulted in “reject” for only one of the estimates, which
implies a 3.57% rejection rate when considering the 28 entries for which 0 < ¢(¢1,£3) < 1, and therefore very
close to the 5% rate that is expected in this setting.

We also computed the exact and estimated (M = 75000 replications) signatures for a chain network with
ny = 20, i.e., 20 nodes in N7, 20 nodes in N>, and 61 nodes in total. As before, we conducted the hypothesis
test on proportion, which resulted in “reject” for 6 of the 190 entries with 0 < ¢(¢1,¢2) < 1, indicating a
3.16% rejection rate and, therefore, very close to the 5% rate that is expected for a = 0.05. All the files
corresponding to the exact and estimated signatures, as well as an R-script with the hypothesis test and the

files containing the p-values for each network instance can be found on the repository.
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