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Abstract

Evaluating two-terminal network reliability is a classical problem with numerous applications. Be-

cause this problem is #P-Complete, practical studies involving large systems commonly resort to approx-

imating or estimating system reliability rather than evaluating it exactly. Researchers have characterized

signatures, such as the destruction spectrum and survival signature, which summarize the system’s struc-

ture and give rise to procedures for evaluating or approximating network reliability. These procedures

are advantageous if the signature can be computed efficiently; however, computing the signature is chal-

lenging for complex systems. With this motivation, we consider the use of Monte Carlo (MC) simulation

to estimate the survival signature of a two-terminal network in which there are two classes of i.i.d. com-

ponents. In this setting, we prove that each MC replication to estimate the signature of a multi-class

system entails solving a multi-objective maximum capacity path problem. For the case of two classes
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of components, we adapt a Dijkstra’s-like bi-objective shortest path algorithm from the literature for

the purpose of solving the resulting bi-objective maximum capacity path problem. We perform compu-

tational experiments to compare our method’s efficiency against intuitive benchmark approaches. Our

computational results demonstrate that the bi-objective optimization approach consistently outperforms

the benchmark approaches, thereby enabling a larger number of MC replications and improved accuracy

of the reliability estimation. Furthermore, the efficiency gains versus benchmark approaches appear to

become more significant as the network increases in size.

Keywords: Survival signature, two-terminal reliability, network reliability, Monte Carlo simulation,

bi-objective optimization.

1 Introduction

In a network where some elements fail independently of the other components according to a known prob-

ability, the two-terminal reliability is the probability that there is at least one functional path between two

specified terminal nodes s and t. Evaluating the two-terminal (and the more general K-terminal) reliability is

a classical problem with applications in wired and wireless communication networks, electronic circuit design,

computer networks, and electrical power distribution, among other systems (Cook and Ramirez-Marquez,

2007; Gebre and Ramirez-Marquez, 2007; Silva et al., 2015; Chakraborty et al., 2020). The problem is known

to be #P-Complete in general (Valiant, 1979; Provan and Ball, 1983; Ball, 1986), and numerous exact and

approximate methods have been proposed to solve it. With the emergence of massive networked structures

with thousands of components, efficient algorithms for evaluating two-terminal network reliability remain an

important research topic.

One attractive approach for evaluating or comparing the reliability of complex systems is to use signatures

such as the system signature (Samaniego, 1985), the destruction spectrum (D-spectrum) (Gertsbakh and

Shpungin, 2009), and the survival signature (Coolen and Coolen-Maturi, 2012). Loosely speaking, a signature

is a compact summary of the system’s structure (e.g., the network’s topology) that, if computed, enables

efficient evaluation or approximation of system reliability (e.g., the probability that s and t are connected).

Whereas the system signature requires assuming components are independent and identically distributed
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(i.i.d.), the survival signature can be applied in cases where there are multiple classes of components and

components in different classes are permitted to be non-identical.

Because computing signatures for network systems is itself computationally challenging, it is common to

estimate a signature using Monte Carlo (MC) and then use the MC signature estimate to produce an estimate

of network reliability. In this context, such a combined MC/signature approach is known to be advantageous

compared to estimating the system reliability directly using crude MC (i.e., in which the system’s state is

repeatedly evaluated after sampling each component’s time to failure). For instance, combined MC/signature

approaches have been shown to have bounded relative error (Gertsbakh et al., 2016) whereas crude MC may

have unbounded relative error (Elperin et al., 1991). Nonetheless, computing signatures poses a major

challenge in terms of computational complexity, especially when considering large, heterogeneous networks.

In this paper, we consider the problem of estimating the two-terminal survival signature by MC simulation

for a system with two classes of unreliable nodes. The contributions are as follows:

1. We show that each MC replication entails solving a multi-objective maximum capacity path problem.

To the best of our knowledge, this is the first work to point out the relationship between survival

signature computation and a multi-objective optimization problem.

2. We adapt the Dijkstra’s-like algorithm of Sedeño-Noda and Colebrook (2019) to solve the resulting

bi-objective maximum capacity path problem for a system with two classes of components.

3. We show through numerical experiments that (i) the bi-objective optimization approach consistently

outperforms benchmark approaches, thereby increasing the rate at which MC replications can be

performed and improving the accuracy of reliability estimation; and (ii) the efficiency gains become

more significant as the network increases in size.

The remainder of this paper is organized as follows. In Section 2 we summarize literature related to

the two-terminal reliability problem and algorithms proposed to solve it. In Section 3, we present an MC

framework for estimating the two-terminal survival signature of a network system with two component classes

and describe methods for completing the calculations within a MC replication. We discuss computational

results in Section 4 and conclude in Section 5.
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2 Background and Literature Review

2.1 Evaluating Two-Terminal Network Reliability

Many exact approaches to solve the two-terminal reliability problem have been proposed since the late 1950s.

We refer the reader to Moore and Shannon (1956) and Barlow and Proschan (1965), for a summary of early

research in this area and to Brown et al. (2020) for a general view of more recent results. Although exact

algorithms have proven effective for small networks or networks with special structures, such as trees or

series-parallel, approximation algorithms are more commonly used for large, generally structured networks.

The most common approaches used to evaluate two-terminal reliability (and its generalizations, e.g.,

K-terminal reliability and multi-state two-terminal reliability) exactly are based on methods such as sum of

disjoint products (Jane and Yuan, 2001; Datta and Goyal, 2017), state-space decomposition (Aven, 1985;

Alexopoulos, 1995; Bai et al., 2018), cut/path-based state enumerations (Ramirez-Marquez et al., 2006;

Gebre and Ramirez-Marquez, 2007), factoring (Moskowitz, 1958; Satyanarayana and Chang, 1983; Wood,

1985, 1986; Burgos and Amoza, 2016), and binary decision diagrams (BDD) (Hardy et al., 2007; Kuo et al.,

2007). The exponential nature of these algorithms has prompted research into computationally efficient

bounds (Jane et al., 2009; Lê et al., 2013; Sebastio et al., 2014; Silva et al., 2015) and other methods for

estimating or approximating two-terminal reliability based on neural networks (Srivaree-ratana et al., 2002;

Altiparmak et al., 2009), network reduction procedures (Zhang and Shao, 2018), the cross-entropy method

(Hui et al., 2005), failure frequency approximation (Heidarzadeh et al., 2018), and spline interpolation

(Cristescu and Dragoi, 2021).

MC simulation has been widely utilized for estimating two-terminal reliability since the 1980s. Fish-

man (1986) evaluated four MC sampling methods to estimate two-terminal reliability: (1) dagger sampling,

which relies on inducing negative correlations between the replications’ outcome; (2) sequential destruc-

tion/construction based on permutations of the network elements; (3) bounds on the reliability; and (4)

failure sets enumeration, pointing out each method’s advantages and pitfalls.

Ramirez-Marquez and Gebre (2007) present an MC method to approximate bounds on the two-terminal

reliability of capacitated networks based on simulating network configurations and employing classification
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trees to obtain minimal cut or path vectors.

Stern et al. (2017) combines MC simulation and machine learning techniques to approximate two-terminal

reliability. Their method relies on MC simulation to generate components’ failure samples, which are used

to estimate the two-terminal reliability.

In recent years, researchers have combined MC simulation principles with the concept of a system signa-

ture to create improved methods for estimating the two-terminal reliability of complex systems. Two such

methods are presented in Reed et al. (2019) and Behrensdorf et al. (2021). We discuss these methods in

more details later in this paper, but first we introduce the concept of a system signature.

2.2 Signatures

To formally introduce the concept of signatures, consider a system in n components and let x be the state

vector whose elements are

xi =


1, if component i operates,

0, if component i has failed,

and suppose the system’s structure function Ψ is defined by

Ψ(x1, x2, . . . , xn) =


1, if the system operates,

0, if the system has failed.

(1)

The notion of a system signature was introduced by Samaniego (1985) for coherent systems composed

of n binary components. Under the assumption of coherence and i.i.d. component lifetimes, the system

signature s is an n-vector whose ith element si (i = 1, 2, . . . , n) is the probability that the ith component

failure causes the system to fail. The signature vector s does not depend on the common lifetime distribution

of the components and is, therefore, a measure of the system design (Samaniego, 1985; Navarro et al., 2008,

2011).

The system signature is closely related to the destruction spectrum (Gertsbakh and Shpungin, 2009,

2011; Gertsbakh et al., 2018) and these two signatures have been used extensively in applications such
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as comparison of coherent systems (Navarro et al., 2008; Samaniego and Navarro, 2016; Kochar et al.,

1999), lifetime estimation (Shpungin, 2007), analysis of queueing systems (Andronov et al., 2011), reliability

comparison of new and used systems (Samaniego et al., 2009), analysis of failure development in connected

networks (Gertsbakh and Shpungin, 2012), and evaluation of systems under minimal repair (Lindqvist and

Samaniego, 2015).

2.2.1 Survival Signature

The survival signature, introduced by Coolen and Coolen-Maturi (2012), extends the system signature to

the case of independent but not identically distributed component lifetimes while still isolating the system

structure’s contribution to reliability (Samaniego and Navarro, 2016).

We first define the survival signature for the i.i.d. case. Let the survival signature ϕ(ℓ), for ℓ = 0, . . . , n,

denote the probability that the system functions if exactly ℓ of its components function, and define Φ as the

(n+1)-vector whose entries are ϕ(ℓ), ℓ = 0, . . . , n. Let Sℓ denote the set of state vectors in which xi = 1 for

exactly ℓ components, and observe that |Sℓ| =
(
n
ℓ

)
. Because the components are i.i.d., all vectors in Sℓ are

equally likely, and therefore

ϕ(ℓ) =

(
n

ℓ

)−1 ∑
x∈Sℓ

Ψ(x), ℓ = 0, 1, . . . , n, (2)

as shown by Coolen and Coolen-Maturi (2012). It is straightforward to show (see Coolen and Coolen-Maturi

(2012)) that the survival signature and the system signature satisfy the relationship

ϕ(ℓ) =

n∑
j=n−ℓ+1

sj , ℓ = 0, 1, . . . , n. (3)

The right-hand side of Equation (3) denotes the probability that at least (n− ℓ+ 1) component failures are

required for the system to fail, which is equal to the probability that the system functions when exactly ℓ

components function, i.e., the left-hand side of Equation (3).

Although the survival signature can be applied to systems with i.i.d. components, its fundamental con-

tribution is the generalization of the theory of signatures to system with multiple classes of components.

Following Coolen and Coolen-Maturi (2012), consider a system with K ≥ 2 classes of components, where
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components of the same class have i.i.d. failure times and failure times of components of different classes

are independent but not identically distributed. Let nk denote the number of components of class k, where

the nk-values satisfy
∑K

k=1 nk = n. Let x = (x1,x2, . . . ,xK) denote the state vector, where the subvectors

xk = (xk
1 , x

k
2 , . . . , x

k
nk
) represent the states of the components of class k.

Let ϕ(ℓ1, ℓ2, . . . , ℓk) denote the probability that a system functions if exactly ℓk ∈ {0, 1, . . . , nk} of its class-

k components function for each k ∈ {1, 2, . . . ,K}. For K > 1, let Φ denote the generalized survival signature,

which is a K-dimensional matrix whose entries are ϕ(ℓ1, ℓ2, . . . , ℓk) for all the values of ℓ1, ℓ2, . . . , ℓK . In what

follows, we provide a mathematical characterization of the generalized survival signature.

For k ∈ {1, 2, . . . ,K}, let Sk
ℓ ⊆ {0, 1}nk denote the set of class-k state vectors xk satisfying

∑nk

i=k x
k
i =

ℓk, and observe that |Sk
ℓ | =

(
nk

ℓk

)
. Let Sℓ ⊆ {0, 1}n denote the set of whole-system state vectors x =

(x1,x2, . . . ,xk) satisfying xk ∈ Sk
ℓ for all k ∈ {1, 2, . . . ,K}. Given that components of class k have i.i.d.

failure times, all state vectors xk ∈ Sk
ℓ are equally likely and therefore

ϕ(ℓ1, ℓ2, . . . , ℓK) =

[
K∏

k=1

(
nk

ℓk

)−1
]
×

∑
x∈Sℓ

Ψ(x). (4)

Given the survival signature Φ, Coolen and Coolen-Maturi (2012) showed that

P{T > τ} =
n1∑

ℓ1=0

· · ·
nK∑

ℓK=0

[
ϕ(ℓ1, . . . , ℓK)

K∏
k=1

((
nk

ℓk

)
[Fk(τ)]

nk−ℓk [1− Fk(τ)]
ℓk

)]
, (5)

where Fk(τ) denotes the time-to-failure CDF for components of class k ∈ {1, 2, . . . ,K}. Computing Equa-

tion (5) is challenging because it requires evaluating all
∏K

k=1(nk + 1) elements of Φ.

Some notable developments of the theory of survival signature are summarized next. In Coolen et al.

(2014), the authors used the survival signature in nonparametric predictive inference for system reliability.

Aslett et al. (2015) applied the survival signature with Bayesian inference for system reliability quantification.

Najem and Coolen (2018) employed the survival signature to study system reliability when failed components

can be replaced by functioning components of the same class already in the system. Eryilmaz et al. (2018)

presented general results for coherent systems with multiple classes of dependent components, and Coolen-

Maturi et al. (2021) introduced a joint survival signature for multiple systems with multiple classes of
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components and with shared components between systems.

Eryilmaz and Tuncel (2016) generalized the survival signature to unrepairable homogeneous multi-state

systems with multi-state components, and Yi et al. (2022) considered a variety of types of multi-state module

systems, such as series, parallel, or recurrent structures, and derived their multi-state survival signatures in

terms of the survival signatures of its modules.

Nonetheless, computing the survival signature for complex systems poses a major challenge. With this

motivation, recent studies have focused on developing methods to compute or approximate the survival

signature to evaluate the reliability of complex systems. Reed (2017) propose an exact algorithm combining

dynamic programming and BDD to compute the survival signature of systems with multiple classes of

components. This method was extended by Reed et al. (2019) for the purpose of computing the K-terminal

survival signature of undirected networks with unreliable edges. Although efficient for small- and medium-

sized systems, these algorithms may not be suitable for large-scale systems due to large memory requirements

associated with the BDD system representation.

Xu et al. (2019) introduce an alternative method to compute the survival signature based on reliability

block diagram and universal generating function. The method, however, is limited due to large memory

requirements and was applied only to small networks with at most 21 components.

The literature on estimation methods for the survival signature is also in its infancy, but has received

considerable attention in recent years. Behrensdorf et al. (2021) propose an approximation method that

combines percolation theory and MC simulation. The authors applied this method to realistic networks such

as the Berlin metro system network, which consists of 306 nodes divided into two classes and 350 edges.

Already for this relatively small and sparse network, the method shows some difficulty as its algorithm

takes over 27 hours to estimate the survival signature. More recently, Di Maio et al. (2023) propose a

survival signature estimation method based on a combination of percolation theory with entropy-driven

MC simulation. The efficiency of the method over a crude MC methods is attested through computational

experiments with small networks, but the authors point out that the method may not be suited for larger

networks. Lastly, whereas estimating the survival signature is the focus of the works described above, MC

simulation has also been applied to estimate system reliability for a given survival signature (Patelli et al.,
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2017).

2.3 Other Closely Related Works

Our work builds upon prior works that have utilized an optimization subroutine in the context of evaluating

network reliability by MC simulation. The work of Elperin et al. (1991) shows that MC replications for

evaluating K-terminal reliability can be completed by solving a maximum-capacity spanning tree problem

(using, e.g., Kruskal’s algorithm). More recently, Boardman and Sullivan (2021) utilize MC simulation to

evaluate the system signature with respect to reliability of guaranteeing that a minimum number of nodes

remain connected to a designated sink node, and they show that MC replications can be performed by solving

a one-to-all maximum-capacity path problem (using Dijkstra’s algorithm). As a complementary note, it is

worth noting that other versions of shortest path problem/maximum capacity path problem have also been

applied in network reliability (see e.g., Ferone et al. (2021)). To our knowledge, no prior works have used

optimization subroutines for the purpose of evaluating a system’s survival signature.

3 Estimating the Two-terminal Survival Signature

Consider a directed network G = (N ,A) with node set N , where |N | = n, and arc set A, where |A| = m,

and let Γ−
i = {j ∈ N : (j, i) ∈ A} and Γ+

i = {j ∈ N : (i, j) ∈ A} denote, respectively, the set of predecessors

and successors of node i ∈ N . We assume binary-state nodes, which fail according to a specified probability

distribution. We assume arcs are perfectly reliable; however, the case of unreliable arcs and/or undirected

edges can be accommodated by standard network transformations. We further assume the terminal nodes s

and t cannot fail and their connectivity determines the state of the network, that is, the network is operational

whenever there is a functional path from s to t and the network is failed when all the s-t paths have failed.

The non-terminal nodes N \ {s, t} consist of two classes of nodes where nodes within each class share a

common time-to-failure distribution. Let Ne denote the subset of nodes in class e ∈ {1, 2}, i.e., such that

N \{s, t} = N1∪N2. We define ne = |Ne| as the number of nodes in class e ∈ {1, 2} and we assume n1 ≤ n2

without loss of generality. Let Fe(t) be the common time-to-failure CDF of nodes in class e, and assume

each node’s time to failure is independent of any other nodes’ time to failure.
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For convenience, we recall the definition of the generalized survival signature for the case in hand. Here,

the value ϕ(ℓ1, ℓ2) represents the probability that s is connected to t by a path of functioning nodes given

that exactly ℓ1 nodes from N1 and ℓ2 nodes from N2 are functioning. The survival signature Φ is the

(n1 + 1)× (n2 + 1) matrix whose entries are ϕ(ℓ1, ℓ2) for ℓ1 = 0, 1, . . . , n1, and ℓ2 = 0, 1, . . . , n2. We assume

both that ϕ(0, 0) = 0, that is, the network is failed when all nodes are failed, and that ϕ(n1, n2) = 1, that is,

the network is functioning when all nodes are functioning. Additionally, we observe that this system cannot

be deteriorated by changing a node from failed to functioning; thus, the network is a coherent system.

Given Φ, the two-terminal reliability at time τ > 0 can be obtained through Equation (5) as

P{T > τ} =
n1∑

ℓ1=0

n2∑
ℓ2=0

[
ϕ(ℓ1, ℓ2)

2∏
k=1

((
nk

ℓk

)
[Fk(τ)]

nk−ℓk [1− Fk(τ)]
ℓk

)]
. (6)

The main difficulty in this approach lies in obtaining the values of ϕ(ℓ1, ℓ2) for every combination of ℓ1 and ℓ2.

We analyze four methods to estimate ϕ(ℓ1, ℓ2), ℓ1 = 0, 1, . . . , n1, ℓ2 = 0, 1, . . . , n2, by using MC simulation.

The methods, summarized in following subsections, differ only in how computations are performed within a

MC replication. First, we summarize the common MC simulation framework of the methods.

Since nodes within the same class (N1 or N2) are equally likely to fail in any order, each of the n1!

permutations of nodes in N1 are equally likely outcomes of the order of node failures, and similarly, there

are n2! equally likely outcomes of the order of node failure in N2.

Thus, in each replication we independently generate a random permutation of failure times for all nodes

in N1 and all nodes in N2. From each pair of simulated permutations, we extract a state vector corresponding

to each pair (ℓ1, ℓ2) with ℓ1 = 0, 1, . . . , n1 and ℓ2 = 0, 1, . . . , n2, and assess the structure function for every

one of the state vectors formed. For every pair (ℓ1, ℓ2), we count the number of state vectors for which the

network is UP and divide this number by the number of replications generated, which gives the estimate of

ϕ(ℓ1, ℓ2). For a given replication, let

q1i = k if i ∈ N1 is the kth node to fail in N1, and

q2i = k if i ∈ N2 is the kth node to fail in N2.

(7)
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For ℓ1 = 0, 1, . . . , n1 and ℓ2 = 0, 1, . . . , n2, define x(ℓ1, ℓ2) such that components i ∈ N1 are UP if q1i > n1−ℓ1

and DOWN otherwise, and similarly components i ∈ N2 are UP if q2i > n2− ℓ2 and DOWN otherwise. Thus,

the state vector x(ℓ1, ℓ2) represents the case where the last ℓ1 components in the sampled permutation of

N1 and the last ℓ2 components in the sampled permutation of N2 are UP, and all remaining components are

DOWN.

Following the above procedure, each MC replication j = 1, 2, . . . ,M yields a state vector xj(ℓ1, ℓ2) for

every pair (ℓ1, ℓ2). In replication j, we evaluate Ψ(xj(ℓ1, ℓ2)) for all ℓ1 = 0, 1, . . . , n1 and ℓ2 = 0, 1, . . . , n2,

where Ψ(xj(ℓ1, ℓ2)) = 1 if there exists a path of functioning nodes from s to t in state xj(ℓ1, ℓ2), and

Ψ(xj(ℓ1, ℓ2)) = 0 otherwise. Hereafter, we refer to the collection Ψ(xj(ℓ1, ℓ2)), ℓ1 = 0, 1, . . . , n1; ℓ2 =

0, 1, . . . , n2, as the system state matrix for replication j. After completing M MC replications, we estimate

ϕ(ℓ1, ℓ2) by

ϕ(ℓ1, ℓ2) =

∑M
j=1 Ψ(xj(ℓ1, ℓ2))

M
. (8)

In what follows, we first present an intuitive approach (hereafter referred to as the Naive approach), based

on breadth-first search (BFS), for evaluating the system state matrix in each replication. Then, we discuss

the incremental search approach, which improves upon the naive algorithm by leveraging the nondecreasing

nature of the structure function of coherent systems in order to avoid performing redundant searches. The

third method is an extension of the method of Boardman and Sullivan (2021), and hence we call it the single-

objective optimization approach. The last method, called the bi-objective optimization approach, is based on

solving a bi-objective maximum capacity path problem at every replication and is our main contribution.

3.1 Naive Approach

In this approach, the value of Ψ(xj(ℓ1, ℓ2)) is evaluated for each ℓ1 = 0, 1, . . . , n1 and ℓ2 = 0, 1, . . . , n2 by

performing BFS (see, e.g., Ahuja et al. (1993)); that is, BFS is run a total of M× (n1 + 1)× (n2 + 1) times.

Because each BFS has O(m) time complexity, the resulting complexity of the MC algorithm is O(n1n2mM).

The Naive approach is summarized in Algorithm 5 in Appendix A.
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3.2 Incremental Search Approach

The incremental search (IS) method exploits the fact that xj(ℓ1, ℓ2) and xj(ℓ1, ℓ2+1) are identical except for

the addition of the node q2n2−ℓ2
. Using this property, IS computes an entire row of the system state matrix

(i.e., Ψ(xj(ℓ1,−)) for a given value ℓ1) in the same worst-case time required to evaluate a single element of

the system state matrix in Naive. We explain this approach in the following paragraph.

For fixed ℓ1, steps 8–16 of Algorithm 5 compute the row Ψ(xj(ℓ1,−)) by running BFS n2 +1 times. The

IS method is identical to Algorithm 5 with the exception that we do not re-initialize BFS for (ℓ1, ℓ2) with

ℓ2 > 1; rather, we update the search from (ℓ1, ℓ2 − 1) to include the new node that was turned UP in N2.

The update can be done by checking whether the new node contains an incoming arc from any of the nodes

already marked in the search. If so, we add the new UP node to the list of nodes to explore and continue the

search as if the referred node had been encountered in the original search. For fixed ℓ1, this modified search

algorithm encounters each arc at most twice. To see this, observe that the predecessor list Γ−
i of each node i

is scanned at most once (i.e., after the node i is turned UP) and the successor list Γ+
i is also scanned at most

once (i.e., after the node i is marked). For fixed ℓ1, a total of O(m) effort is required because each arc is

examined at most twice. The total work required in each replication is therefore O(n1m) and the worst-case

complexity of IS is O(n1mM).

3.3 Single-objective Optimization Approach

Although IS is more efficient than Naive in that the first avoid performing many of the redundant steps

performed by the latter, both approaches follow the same principle. They both compute a row of the system

state matrix by adding nodes, according to the permutation of N2, until the network is connected. The

single-objective optimization approach (SO) is based on a different idea; that of solving an optimization

problem in order to directly determine how many nodes must be removed, according to the permutation of

N2, to disconnect the network assuming that all nodes in N2 are operational at the beginning.

In SO, we extend the work of Boardman and Sullivan (2021) by solving an optimization problem for each

value of ℓ1 to find the corresponding value of ℓ2 for which the network fails. We now explain the main ideas.

Consider Algorithm 5 again, and suppose we fix the value of ℓ1 in the jth replication. In place of steps
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7–13, we need only to identify the maximum value of ℓ2, ℓ2
∗, for which Ψ(xj(ℓ1, ℓ2)) = 0. Once ℓ2

∗ is

obtained, we have

Ψ(xj(ℓ1, 0)) = Ψ(xj(ℓ1, 1)) = · · · = Ψ(xj(ℓ1, ℓ2
∗)) = 0, and

Ψ(xj(ℓ1, ℓ2
∗ + 1)) = Ψ(xj(ℓ1, ℓ2 + 2)) = · · · = Ψ(xj(ℓ1, n2)) = 1,

(9)

since Ψ is nondecreasing in x.

The problem of finding ℓ2
∗ can be formulated as an instance of the single objective maximum capacity

path problem (Pollack, 1960; Hu, 1961). This idea was shown initially by Boardman and Sullivan (2021)

in the context of a similar problem involving i.i.d. components. For fixed ℓ1, we can adapt their approach

to find ℓ2
∗. The single-objective optimization approach is based on solving the single-objective maximum

capacity path problem once for each value of ℓ1 = 0, 1, . . . , n1, with the additional consideration that the ℓ1

components from N1 that are UP are uncapacitated, which we represent by assigning “∞” as their capacity.

To formalize the single-objective optimization approach, independently simulate a permutation of N1 and

a permutation of N2, and record these permutations according to Equation (7). Then, for fixed ℓ1, associate

a weight ui to each node i ∈ N according to

ui =



q2i , i ∈ N2,

0, if i ∈ N1 and q1i ≤ n1 − ℓ1,

∞, otherwise.

(10)

In practice, we substitute∞ by a number larger than or equal to max{q2i : i ∈ N2}, such as the total number

of nodes, n, in the network. Let P denote the set of all directed paths p from s to t. The value ℓ2
∗ is then

obtained by solving the maximum capacity path (MCP) problem

v∗ = max
p∈P
{min{uk : k ∈ p}}, (11)

and setting ℓ2
∗ = n2 − v∗. In Equation (11), min{uk : k ∈ p} represents the number of nodes (within the

simulated permutation of N2) that must fail to disconnect path p, and v∗ thus represents the number of
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node failures needed to cause system failure.

Pollack (1960) observed that the MCP problem can be solved using a slight modification of Dijkstra’s

algorithm. In the case of the node-capacitated MCP problem of Equation (11), Dijkstra’s algorithm can be

applied by initializing node labels as d(i) = 0 for all i ∈ N \ {s}, and d(s) = ∞, and then updating (when

considering an arc (i, j) leaving a node i whose label has been made permanent) according to

d(j) = max{d(j),min{d(i), uj}}. (12)

Additionally, a node label with maximum value is made permanent in each iteration instead of minimum

value, as in the case of the shortest path.

Algorithm 6 presents the pseudocode for our implementation of Dijkstra’s algorithm, which is an adap-

tation of the Dials-Dijkstra algorithm presented in Ahuja et al. (1993). Dial’s implementation of Dijkstra’s

algorithm is motivated for our problem because each label is bounded between 0 and n; thus, temporarily

labeled nodes can be stored in a sorted fashion using a small number of “bucket” sets, which allows the

algorithm to avoid scanning all temporarily labeled nodes at each iteration. The algorithm keeps n + 1

bucket sets numbered 0 through n, where bucket k stores all nodes with temporary label equal to k. The

while loop (lines 6–21) of Algorithm 6 identifies the greatest-numbered nonempty bucket. Once this bucket is

found, any node in it has its label made permanent and its outgoing arcs explored to propose new temporary

labels for adjacent nodes, possibly resulting in moving the nodes to a bucket set of increased number (lines

8–18).

Algorithm 7 states the SO approach. Noting that the Dials-MaxCapPath algorithm provides ℓ2
∗ for each

value of ℓ1, steps 8–12 of Algorithm 7 populate the corresponding row Ψ(xj(ℓ1,−)) according to Equation (9)

by simply adding 1 to any entry for which ℓ2 > ℓ2
∗. We demonstrate SO with the following example.

Example 1. Consider the network in Figure 1(a). For this network, n = 10 nodes, N1 = {1, 3, 5, 7} is

represented in red, and N2 = {2, 4, 6, 8} is represented in blue. Suppose that in the jth replication of

Algorithm 7, we generate the permutation P1 = {5, 7, 3, 1} for N1, and P2 = {2, 4, 8, 6} for N2. Therefore,

for these permutations, node 5 is the first node to fail in N1, followed by nodes 7, 3, and 1, respectively, and
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node 2 is the first node to fail in N2, followed by nodes 4, 8, and 6, respectively.

(a) Heterogeneous s-t network. (b) Network for ℓ1 = 2.

Figure 1: Computation of system state matrix row corresponding to ℓ1 = 2 using SO.

For every value of ℓ1, the algorithm associates to each node i ∈ N a capacity ui according to Equation (10);

for ℓ1 = 2, the algorithm obtains the network in Figure 1(b). Then, the algorithm solves the MCP problem.

At termination, Algorithm 6 provides a tree of maximum capacity paths rooted in s, and v∗ = 4 is the

capacity of the s-t path in this tree (highlighted in blue in Figure 1(b)). Therefore, for any ℓ2 > ℓ2
∗

(= n2−v∗ = 4−4 = 0), the network is UP. The resulting system state matrix is shown in Table 1, where the

row corresponding to ℓ1 = 2 is highlighted in blue. Observe that the only value of ℓ2 for which the network

is DOWN is 0, which corresponds to ℓ2
∗ = 0, and is formatted in red.

Table 1: System state matrix for permutations P1 = {5, 7, 3, 1} and P2 = {2, 4, 8, 6} computed with SO.

Ψ(xj(ℓ1, ℓ2))
l1\l2 0 1 2 3 4
0 0 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

Proposition 3.1 states the complexity of the SO approach and its proof is presented in Appendix C. Notice

that the complexity of the SO approach is equal to the complexity of the IS approach.

Proposition 3.1. The overall complexity of the SO approach is O(n1nM + n1mM) = O(n1mM) provided

that n < m.
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3.4 Bi-objective Optimization Approach

3.4.1 Modeling of the Bi-objective Optimization Approach

Whereas SO solves an optimization problem for every row of the system state matrix, the bi-objective

optimization approach (BO) extends the idea of SO by solving a single bi-objective optimization problem to

evaluate the entire system state matrix in each replication.

As with the previous approaches, we begin each replication by generating q1i , i ∈ N1, and q2i , i ∈ N2

according to Equation (7). To every node i ∈ N , associate two weights according to

ue
i =


qei , i ∈ Ne,

∞, i ∈ N/Ne,

e = 1, 2. (13)

Again, in our implementation, we substitute ∞ by n, and hence the largest value of ue
i , e = 1, 2, is n.

To compute the system state matrix for the jth replication, we must determine all pairs (ℓ1, ℓ2) for

which the network is DOWN. In BO, we determine these combinations by solving the bi-objective maximum

capacity path problem (BOMCP), which can be defined as follows. For a network with weights u1
i and u2

i

associated to each node i ∈ N , let P denote the set of all s-t paths. For p ∈ P, define capacities

c1(p) := min{u1
i : i ∈ p} and c2(p) := min{u2

i : i ∈ p}.

Similarly to SO, these capacities represent the number of failures in N1 and in N2 that disconnects path p.

Define a path p from s to i as a non-dominated s-i path if there does not exist any other path p′ from s to

i such that c1(p′) ≥ c1(p) and c2(p′) ≥ c2(p) with at least one strict inequality, and define a non-dominated

s-i point as the image of a non-dominated s-i path p under c1 and c2. Then, the BOMCP problem can be

defined as

max
p∈P
{c1(p), c2(p)}, (14)

and a solution to this problem provides a set Ω of non-dominated s-t points (v∗1 , v
∗
2), which can be used to

derive the values of (ℓ1, ℓ2) for which Ψ(x(ℓ1, ℓ2)) = 0, for all ℓ1 = 0, 1, . . . , n1 and ℓ2 = 0, 1, . . . , n2. Letting
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(v∗1 , v
∗
2) denote such a non-dominated point, the network is UP (i.e., Ψ(x(ℓ1, ℓ2)) = 1) for every point (ℓ1, ℓ2)

with v∗1 > n1− ℓ1 and v∗2 > n2− ℓ2. Furthermore, the existence of such a non-dominated point is guaranteed

for any (ℓ1, ℓ2) in which Ψ(x(ℓ1, ℓ2)) = 1. We record this result in the following theorem.

Theorem 3.1. Ψ(x(ℓ1, ℓ2)) = 1 if and only if there exists a non-dominated point (v∗1 , v
∗
2) such that v∗1 >

n1 − ℓ1 and v∗2 > n2 − ℓ2.

Proof. (⇒) Suppose Ψ(x(ℓ1, ℓ2)) = 1. Then by definition of x(ℓ1, ℓ2), the system is UP when all components

i ∈ N1 with q1i > n1−ℓ1, and all components i ∈ N2 with q2i > n2−ℓ2 are UP, and the remaining components

in N1 and N2 are DOWN. Thus, there exists an s-t path p such that c1(p) > n1 − ℓ1 and c2(p) > n2 − ℓ2.

Either p is a non-dominated path or it is dominated by some other s-t path, and there exists a non-dominated

point (v∗1 , v
∗
2) with v∗1 ≥ c1(p) and v∗2 ≥ c2(p). Therefore, v∗1 > n1 − ℓ1 and v∗2 > n2 − ℓ2.

(⇐) Conversely, suppose that there exists a non-dominated point (v∗1 , v
∗
2) such that v∗1 > n1 − ℓ1 and

v∗2 > n2 − ℓ2. Then, there exists an s-t path p with capacity c1(p) = v∗1 and c2(p) = v∗2 , and hence

c1(p) > n1 − ℓ1 and c2(p) > n2 − ℓ2. Thus, for all i ∈ p, q1i > n1 − ℓ1 and q2i > n2 − ℓ2, that is, all

components i ∈ p are UP with respect to the state x(ℓ1, ℓ2). Because x(ℓ1, ℓ2) contains an s-t path of

functioning components, Ψ(x(ℓ1, ℓ2)) = 1.

3.4.2 Solution Methodology

We solve the BOMCP using the BO-MaxCapPath algorithm (given in Algorithm 1) by modifying the “BDi-

jkstra” bi-objective shortest path algorithm of Sedeño-Noda and Colebrook (2019) in essentially the same

way as Dijkstra’s algorithm (for single-objective shortest path) is modified for MCP.

In Algorithm 1, labels associated with each node i ∈ N contain the value of both c1(p) and c2(p) for a

candidate s-i path, i.e., a potential non-dominated s-i path. Let d1i and d2i respectively denote stored values

of c1(p) and c2(p) for the candidate s-i path, where the values d1s = d2s =∞ and d1i = d2i = 0 are initialized

in similar fashion to Algorithm 6. Let Ωi denote the set of non-dominated s-i points and, without loss of

generality, assume that the network contains a path from s to every other node i ∈ N \ {s}. Then, the

BOMCP problem satisfies the following principle of optimality: for every node i and every non-dominated

s-i point (d1, d2) ∈ Ωi, there exists a path from s to i with capacities (d1, d2) that can be composed as a
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non-dominated path from s to some node j ∈ Γ−
i plus the arc (j, i). With this, after a candidate s-i path p

is determined to be a non-dominated s-i path, the values (d1i , d
2
i ) are recorded (i.e., made permanent) as a

non-dominated s-i point and a new label is proposed for each node j ∈ Γ+
i based on adding the arc (i, j) to

the end of p in similar fashion to Equation (12).

The correctness of the BDijkstra algorithm has been proved for the bi-objective shortest path problem

(Sedeño-Noda and Colebrook, 2019). Because our extension of this algorithm is analogous to the extension

of Dijkstra’s algorithm from (single-objective) shortest path to MCP, we have not proven correctness here.

Besides the previously mentioned initialization of d1i and d2i , i ∈ N , the differences between Algorithm 1 and

BDijkstra are as follows: (i) Algorithm 1 extracts labels from the heap based on the lexicographic maximum

key (d1i , d
2
i ) instead of the lexicographic minimum key used by BDijkstra; (ii) Algorithm 1 proposes new

candidate labels for a node j based upon the minimum c1 and c2 capacities, respectively, in the non-dominated

s-j path instead of adding the lengths corresponding to each objective of each arc in the non-dominated s-j

path, as in BDijkstra; and (iii), Algorithm 1 accepts a new candidate label for node j if it lexicographically

increases (instead of lexicographically decreases as in BDijkstra) the current label and is not dominated by

a permanent label for node j. We now explain the extension of BDijkstra for BOMCP.

Algorithm 1: BO-MaxCapPath

1 Ni ← 0, d1i ← 0, d2i ← 0, InH[i] ← False, i ∈ N \ {s}
2 Ns ← 0, d1s ←∞, d2s ←∞, l← (s,∞,∞,−,−)
3 insert(l, H); InH[s]← True

4 while H ̸= ∅ do
5 l∗ ← find-max(H), delete-max(H)

6 d1i∗ ← 0, d2i∗ ← 0 // i∗ is the node with label l∗

7 Ni∗ ← Ni∗ + 1, L[i∗][Ni∗ ]← l∗, InH[i∗]← False

8 lnew ← NewCandidateLabel(i∗, l∗)

9 if lnew ̸= Null then

10 insert(lnew, H), InH[i∗] ← True

11 d1i∗ ← lnew.d1, d2i∗ ← lnew.d2

12 end

13 RelaxationProcess(i∗, H, l∗)

14 end
15 return L[t]

Following the notation of Sedeño-Noda and Colebrook (2019), the data structure used in Algorithm 1 to
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Algorithm 2: NewCandidateLabel(i∗, l∗)

1 d1 ← 0, d2 ← 0; lnew ← Null // Γ−
i is the set of predecessors of node i

2 for j ∈ Γ−
i∗ do

3 for l ∈ L[j] do

4 f1 ← min{l.d1, u1
i∗ , u

1
j}

5 f2 ← min{l.d2, u2
i∗ , u

2
j}

6 if f1 > d1 or f1 = d1 and f2 > d2 // lexmax cand label

7 then

8 if f1 < l∗.d1 and f2 > l∗.d2 // non-dom cand label

9 then

10 d1 ← f1; d2 ← f2

11 lnew ← (i∗, d1, d2, j, r) // r is the position of l in L[j]

12 end

13 end

14 end

15 end
16 return lnew

Algorithm 3: RelaxationProcess(i∗, H, l∗)

1 for j ∈ Γ+
i∗ do

2 f1 ← min{l∗.d1, u1
i∗ , u

1
j}

3 f2 ← min{l∗.d2, u2
i∗ , u

2
j}

4 if f1 > d1j or f1 = d1j and f2 > d2j // Relaxation (i∗, j)

5 then

6 if Nj = 0 or f1 < L[j][Nj ].d
1 and f2 > L[j][Nj ].d

2 // non-dom. label

7 then

8 d1j ← f1; d2j ← f2

9 l← (j, d1j , d
2
j , i

∗,Ni∗) // Ni∗ is the position of l∗ in L[i∗]

10 if InH[j] = False then
11 insert(l, H)

12 InH[j] ← True

13 end
14 else
15 increase-key(l, H)
16 end

17 end

18 end

19 end
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store the non-dominated points for i ∈ N is denoted by L[i]. Since multiple non-dominated points may be

associated with each node i ∈ N , L[i] is dynamically increased by one point each time a new non-dominated

point associated with i is found. The total number of non-dominated points associated with i, Ni, is not

known until termination. At termination, L[i] contains non-dominated points L[i][1], L[i][2], . . . , L[i][Ni],

stored in lexicographically decreasing order. Non-dominated points are represented by labels of the form

(i, d1, d2, j, r), (15)

where i denotes the node to which the non-dominated point is associated, d1 and d2 denote, respectively the

capacity of node i for the first and second objectives, j denotes the predecessor of node i in the respective non-

dominated path, and r denotes the position in L[i] of the non-dominated label j that allows the corresponding

non-dominated path to i to be obtained.

As in the BDijkstra algorithm of Sedeño-Noda and Colebrook (2019), Algorithm 1 maintains a heap, H,

that stores at most one candidate label for each node i ∈ N , and therefore has a maximum size of n. Every

label has an associated key given by the pair (d1, d2). The candidate label l ∈ H associated with node i is

not in L[i] since a label is stored in L only when the label becomes permanent. Similarly to BDijkstra, our

algorithm maintains the invariant that the key of a label l in H associated with node i is not dominated

by the key of any label in L[i], for all i ∈ N . Additionally, the key of the candidate label for node i is the

lexicographic maximum among all paths to node i that can be created by a known non-dominated path to

some predecessor node j ∈ Γ−
i plus the arc (j, i). The heap performs the following basic operations on labels:

find-max(H), delete-max(H), insert(l, H), and increase-key(l, H), and labels are extracted from the heap in

lexicographic maximum order of their keys, i.e., a label l∗ = (i, d1, d2, j, r) is extracted from the heap if, for

any other label l in the heap, l∗.d1 > l.d1 or l∗.d1 = l.d1 and l∗.d2 > l.d2.

For a label l∗ associated with a node i∗ to become permanent (i.e., recording its key as a non-dominated

s-i∗ point) it has to satisfy two conditions: (1) its key must not be dominated by the key of any label already

in L[i∗]; and (2) there does not exist a non-explored path from s to i∗ whose key dominates the key of l∗.

Item (1) is satisfied by any label in H at any time by the invariant already discussed. Due to the label

update procedures NewCandidateLabel (Algorithm 2) and RelaxationProcess (Algorithm 3), it can be shown
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that item (2) is satisfied by a label l∗ extracted from the heap. Therefore, the label l∗ extracted from the

heap in an iteration becomes permanent and it is added to the end of L[i∗]. In this way, the key of a new

permanent label associated with a node i∗ is non-dominated by and lexicographically smaller than any other

permanent label in L[i∗].

With the exception of the first label, (s,∞,∞,−,−), any other label is generated by either NewCandi-

dateLabel or RelaxationProcess from a permanent label. When a label l∗ associated with a node i∗ ∈ N is

made permanent, NewCandidateLabel determines whether there is another explored path to node i∗ that is

not dominated by any point already in L[i∗], and RelaxationProcess explores all s-j paths by extending the

non-dominated s-i∗ path corresponding to l∗ by a single arc (i∗, j), where j ∈ Γ+
i∗ .

If NewCandidateLabel finds a new s-i∗ path and/or RelaxationProcess finds a new non-dominated s-j path,

j ∈ Γ+
i∗ , a new label is created and inserted into the heap. Furthermore, since the labels are made permanent

in decreasing order and a permanent label associated with a node i∗ is added to the end of L[i∗], in the

dominance test for a new label l∗ it is only necessary to check whether the key of the last label in L[i∗]

dominates the key of l∗.

Solving the BOMCP provides the set of non-dominated points Ω. Then, we can update Φ by looping

over Ω and adding 1 to every entry that satisfies the condition v∗1 > n1 − ℓ1 and v∗2 > n2 − ℓ2. Algorithm 4

states the BO approach.

We establish the complexity of the bi-objective optimization approach with Proposition 3.2, and Corol-

lary 3.1.1, and we refer the reader to Appendix D for the proof of 3.2. We illustrate the BO approach with

the example below.

Proposition 3.2. The complexity of Algorithm 1 is O(n2
1m+ n1m log n).

Corollary 3.1.1 follows directly from the fact that Algorithm 4 solves the BOMCP problem for each

replication.

Corollary 3.1.1. The complexity of the bi-objective optimization approach is O(n2
1mM+ n1m log nM).

Example 1 (continued). Consider the network in Figure 1(a). For this network, n = 10, N1 = {1, 3, 5, 7}

and N2 = {2, 4, 6, 8}. Suppose that in the jth replication, the algorithm generates the permutations P1 =
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Algorithm 4: BO

1 Φ← 0
2 for j = 1 to M do
3 ▷ Simulate a permutation of N1 and a permutation of N2

4 ▷ Update ui, i ∈ N , according to Equation (13)

5 Ω← BO-MaxCapPath(G) // Ω stores all (v∗1 , v
∗
2) points

6 for (v∗1 , v
∗
2) ∈ Ω do

7 for ℓ1 = 0 to n1 do

8 for ℓ2 = 0 to n2 do

9 if v∗1 > n1 − ℓ1 and v∗2 > n2 − ℓ2 then

10 ϕ(ℓ1, ℓ2)← ϕ(ℓ1, ℓ2) + 1

11 end

12 end

13 end

14 end

15 end
16 Φ← Φ/M.
17 return Φ

Figure 2: Network after the updating of ui.

{5, 7, 3, 1} and P2 = {2, 4, 8, 6} for N1 and N2, respectively. The algorithm then updates the values of u1
i

and u2
i , i ∈ N , according to Equation (13) (see Figure 2), and solves the corresponding BOMCP problem.

The solution of the BOMCP problem shows that there are three non-dominated s-t paths (marked in blue

in Figure 2): p1 = s - 4 - 8 - t, p2 = s - 1 - 6 - t, and p3 = s - 3 - 7 - t, with respective non-dominated

points (∞, 2), (4, 4), and (2,∞); these are the points stored in Ω. The algorithm then loops over these

points populating the survival signature matrix. Consider the first point stored in Ω, (∞, 2). The network

is UP for every point (ℓ1, ℓ2) such that ∞ > 4− ℓ1 and 2 > 4− ℓ2, that is, the network is UP for ℓ1 > −∞
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(ℓ1 ≥ 0) and ℓ2 > 2 (this area is outlined in red in Table 2). Similarly, point (v∗1 , v
∗
2) = (4, 4) (yellow) and

(v∗1 , v
∗
2) = (2,∞) (blue). The brown region is where the three other regions overlap.

Table 2: System state matrix for permutations P1 = {5, 7, 3, 1} and P2 = {2, 4, 8, 6} computed with BO.

Ψ(xj(ℓ1, ℓ2))
l1\l2 0 1 2 3 4
0 0 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

4 Computational Experiments

4.1 Implementation Details and Experiments Setup

We implemented the four methods in Section 3 and published the codes, as well as all the results from the

experiments discussed in this section, at the dblsBR/Heterogeneous_Signature repository. All algorithms

were implemented in C++, and all experiments were performed on an Intel® Core i7-1165G7 CPU laptop

with a 2.80 GHz processor and 16 GB RAM running on Windows 10 OS.

To validate our methods, we (i) verified that the estimated survival signature produced by all four methods

were equivalent for all instances; (ii) verified that the methods produced the (exact) survival signature for a

small network commonly used to validate exact and estimating methods (see Patelli et al. (2017); Behrensdorf

et al. (2021); Coolen-Maturi et al. (2021); Di Maio et al. (2023)) — see Figure 3 for a diagram and Table 3

for the corresponding survival signature) when the MC simulation was configured to generate each pair of

permutations (one from N1 and one from N2) once; and (iii) created a non-trivial system for which we can

compute the exact survival signature (by observing properties of the system’s topology), and therefore assess

the accuracy of our method through hypothesis tests.
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Figure 3: Bridge system from Patelli et al.
(2017), where N1 = {1, 2, 3} and N2 = {4, 5, 6}

ℓ1\ℓ2 0 1 2 3

0 0 0 0 0

1 0 0 1/9 1/3

2 0 0 4/9 2/3

3 1 1 1 1

Table 3: Survival signature of Figure (3).

For item (iii) of the preceding list, i.e., the accuracy of our methods, we first computed the exact survival

signature of two instances of a chain network (see Figure 6 for an illustration of one of the instances), one

small instance with 25 nodes and a larger instance with 61 nodes. Then, we estimated the signature for each

instance (with 20000 replications for the small instance and 75000 replications for the larger instance) and

conduct a hypothesis test on proportion where we test the hypothesis that the true MC estimated signature

was equal to the exact signature. For a level of significance α = 0.05, the rejection rates were 3.57% for the

small instance and 3.16% for the larger instance, and therefore very close to the 5% rejection rate expected

in this setting. The details about the computation of the exact signatures and the hypothesis tests are

discussed in details in Appendix E .

We performed two sets of experiments. The first set focused on evaluating the performance of each

approach for a varying number of replications as well as on verifying that the running time of each approach

increases approximately linearly with the number of replications. Hence, we compare the running time of

each approach for a varying M with a fixed rate of n1/n2. Once we verify the linearity of the running time

with M, we can compute the rate of time per replication based on a relatively small number of replications

(say 5000), and then estimate the total running time for a large number of replications (say 1000000). For

this set we considered medium-sized systems commonly used in reliability analysis.

The second set of experiments focused on comparing the performance of the approaches for a fixed

number of replications and a varying rate n1/n2. For this set of experiments, we considered a relatively

extensive collection of instances: two medium-sized systems commonly used in reliability analysis, a large-

scale, generally structured system with multiple density rates, and a large-scale realistic power system. We

introduce each test instance in the next section.
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4.2 Test Instances

We have employed a variety of network systems with different sizes and from different areas of application.

For the first set of experiments, we adapted two medium-sized networks commonly used in reliability studies

from Sebastio et al. (2014).

The first network is a communication system, has n = 59 nodes, m = 142 arcs, and is composed of three

replicas of the 1973 Arpanet network (see Figure 4(a)). We adapted this network in the following fashion:

the 57 nodes in N \ {s, t} (numbered from 1 to 57) are divided into two classes of nodes such that n1 = 28

first even-numbered nodes are assigned to class 1 (i.e., 2, 4, . . . , 56) and the remaining n2 = 29 nodes are

assigned to class 2.

The second network is a typical electrical system of an airplane and is depicted in Figure 4(b). The

airplane system has n = 82 nodes and m = 268 arcs. We divided the nodes in N \ {s, t} into N1 and N2

with n1 = 40 and n2 = 40 in a similar fashion to what was done for the Arpanet system.

The Arpanet system and the Airplane electrical system were used both in the first and the second set

of experiments. However, to provide a comprehensive evaluation of the performance of each approach, we

considered additional networks in the second set of experiments. These additional networks are presented

next.

We also considered more challenging test instances. We started by considering large-scale, generally

structured graphs of theoretical interest. We generated a random geometric graph (RGG) with 350 nodes

according to the following procedure: in the X-Y plane, we located node s with coordinates xs = 0 and

ys = 10 and node t with coordinates xt = 10 and yt = 0. For any other node i ∈ N \ {s, t}, we randomly

generated coordinates xi and yi between 0 and 10 according to a uniform distribution, and we created an

arc from node i to node j ∈ N if and only if the Euclidean distance between i and j is smaller than or equal

to a parameter d. Notice that this procedure does not prevent the creation of cycles, which adds another

layer of generality to the RGG. We then assign nodes in N \ {s, t} to each class, where the first n1 nodes

are assigned to N1, and the remaining n2 nodes are assigned to N2. To evaluate the performance of the

approaches with respect to the density of the system, we generated three RGGs by setting the value of the

parameter d to 1.5, 3.0, and 4.5. An example of the RGG generated with d = 1.5 is shown in Figure 5.
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To conclude the experiments, we considered a realistic, large-scale power system. The 2000-bus power

system, which has 4000 nodes and 29336 arcs and includes cycles and self-loops, is a synthetic but realistic

electric grid model maintained by Texas A&M Smart Grid center (electricgrids.engr.tamu.edu); see (Birch-

field et al., 2017a,b, 2018) for more information. We adapted the network by partitioning the nodes into

two classes such that the first n1 even-numbered nodes are assigned to class 1 and the remaining nodes are

assigned to the second class.

4.3 Experiments Results

For the first set of experiments, we estimated the survival signatures of the Arpanet system and the Airplane

electrical system for M = 100, 500, 1000, 5000, 10000 replications. We then recorded the time each algorithm

needs to estimate the survival signature and divide the respective time by the corresponding number of

replications to obtain the rates (in seconds per replication, with four decimal digits) shown in Tables 4 and

5.

(a) System composed of three replicas of 1973 Arpanet. (b) Typical airplane electrical system.

Figure 4: Arpanet network and airplane electrical system adapted from Sebastio et al. (2014).

From Tables 4 and 5, we observe that the rate of each algorithm is approximately constant with a varying

number of replications, and that their run time increases approximately linearly with an increase in M. This

implies that we can obtain a good estimate of the total run time of an algorithm with respect to a system

for a large M by running a small number of iterations, obtaining the rate, and multiplying it by M. Tables

4 and 5 also show the superiority of BO over the other three methods in these experiments. Between IS and

SO, neither seems to dominate the other, while Naive was at least one order of magnitude slower than the

other algorithms.
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Table 4: Arpanet System with n = 59, n1 = 28, n2 = 29, m = 142.

All entries are given in seconds per replication
M = 100 M = 500 M = 1000 M = 5000 M = 10000

Naive 0.0061 0.0061 0.0061 0.0061 0.0061
IS 0.0004 0.0004 0.0004 0.0004 0.0004
SO 0.0005 0.0005 0.0005 0.0005 0.0005
BO 0.0002 0.0002 0.0002 0.0002 0.0002

Table 5: Airplane electrical system with n = 82, n1 = 40, n2 = 40, m = 268.

All entries are given in seconds per replication
M = 100 M = 500 M = 1000 M = 5000 M = 10000

Naive 0.0265 0.0264 0.0264 0.0265 0.0275
IS 0.0013 0.0012 0.0012 0.0012 0.0012
SO 0.0012 0.0011 0.0011 0.0011 0.0011
BO 0.0005 0.0005 0.0005 0.0005 0.0005

We start the second set of experiments using the same networks of the first set, but now we evaluate the

effect of varying the size of the classes of nodes, N1 and N2, on the running time. For this set of experiments,

we fix M at 5000 replications and estimate the survival signature for different combinations of n1/n2. For

the Arpanet system, we consider the following combinations of n1/n2: 2/55, 5/52, 12/45, 20/37, and 28/29.

For the Airplane system, we consider the following combinations of n1/n2: 2/78, 10/70, 20/60, 30/50, and

40/40. The results shown in Tables 6 and 7 reaffirm BO as the fastest method in all cases except for the

extreme case where n1 = 2, in which case SO seems to perform slightly better. These results also suggest

that BO is the most robust against variations in the ratio n1/n2.

Table 6: Arpanet system for fixed M = 5000 and different values of n1 and n2.

All entries are given in seconds per replication
n1 = 2, n2 = 55 n1 = 5, n2 = 52 n1 = 12, n2 = 45 n1 = 20, n2 = 37 n1 = 28, n2 = 29

Naive 0.0012 0.0022 0.0042 0.0056 0.0061
IS 0.0001 0.0001 0.0003 0.0004 0.0004
SO 0.0001 0.0001 0.0003 0.0004 0.0005
BO 0.0002 0.0001 0.0002 0.0002 0.0002

Table 7: Airplane system for fixed M = 5000 and different values of n1 and n2.

All entries are given in seconds per replication
n1 = 2, n2 = 78 n1 = 10, n2 = 70 n1 = 20, n2 = 60 n1 = 30, n2 = 50 n1 = 40, n2 = 40

Naive 0.0037 0.0126 0.0204 0.0245 0.0265
IS 0.0002 0.0005 0.0008 0.0010 0.0012
SO 0.0001 0.0004 0.0007 0.0009 0.0011
BO 0.0003 0.0003 0.0005 0.0005 0.0005
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To further investigate the performance and the robustness of the algorithms, we estimated the survival

signature of the RGGs with M = 5000 replications and varying values of n1/n2. Figure 5 shows the RGG

generated for d = 1.5, n1 = 149 and n2 = 199.

Figure 5: Network with n = 350, where n1 = 149, n2 = 199, and m = 7446 arcs.

Table 8 shows the results of the computational experiments performed with this RGG. For this RGG, the

superiority of BO is highlighted in terms of both running time and robustness in almost all scenarios. The

exception is again the extreme case of n1 = 2. In terms of run time rates, BO becomes orders of magnitude

faster than the other approaches in most cases with SO competing an order of magnitude slower than BO in

most cases. The BO approach is also the most robust when we increase n1 as shown in Table 8.

Table 8: Random Geometric Graph system with 350 nodes with d = 1.5 and different values of n1 and n2.

All entries are given in seconds per replication
RGG for d = 1.5, m = 7446, density=0.06

n1 = 2, n2 = 346 n1 = 49, n2 = 299 n1 = 99, n2 = 249 n1 = 149, n2 = 199
Naive 0.2406 4.1139 8.5229 9.5301
IS 0.0103 0.1556 0.2491 0.4188
SO 0.0016 0.0219 0.0376 0.0508
BO 0.0037 0.0056 0.0075 0.0079

Notice that the density of the RGG discussed above (created with d = 1.5) is approximately 0.06. For

d = 3.0, the resulting RGG has 25412 arcs and a density of 0.21. Lastly, for d = 4.5 the corresponding RGG

has 49208 arcs and a density of 0.40. The results for the RGGs with d = 3.0 and d = 4.5 are shown in Tables

9 and 10.

Tables 8, 9 and 10 reinforce the dominance of BO over the benchmarks for practical cases and highlight
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Table 9: Random Geometric Graph system with 350 nodes with d = 3.0 and different values of n1 and n2.

All entries are given in seconds per replication
RGG for d = 3.0, m = 25412, density=0.21

n1 = 2, n2 = 346 n1 = 49, n2 = 299 n1 = 99, n2 = 249 n1 = 149, n2 = 199
Naive 0.4151 8.0551 11.2330 12.9170
IS 0.1130 1.7651 2.6720 4.0805
SO 0.0027 0.0542 0.0740 0.0988
BO 0.0095 0.0111 0.0125 0.0130

Table 10: Random Geometric Graph system with 350 nodes with d = 4.5 and different values of n1 and n2.

All entries are given in seconds per replication
RGG for d = 4.5, m = 49208, density=0.40

n1 = 2, n2 = 346 n1 = 49, n2 = 299 n1 = 99, n2 = 249 n1 = 149, n2 = 199
Naive 0.7278 11.2240 15.2810 20.6890
IS 0.5217 7.4703 12.0010 12.0300
SO 0.0041 0.06154 0.1110 0.1544
BO 0.0174 0.0178 0.0180 0.0181

its robustness against variations in n1 and network density. In these experiments, SO outperforms the other

approaches for n1 = 2, n2 = 346, and is markedly faster than IS, whereas in the previous experiments this

difference was not clear.

Lastly, using BO, SO, and IS, we estimated the survival signature of the 2000-bus power system with

M = 250 replications for varying values of n1/n2. Because Naive required in excess of 10 hours per replication,

we excluded it from this experiment. Table 11 shows the results for the other three approaches.

Table 11: TAMU SmartGridCenter 2000-bus power system.

All entries are given in seconds per replication
n1 = 2, n2 = 3996 n1 = 999, n2 = 2999 n1 = 1499, n2 = 2499 n1 = 1999, n2 = 1999

IS 0.0218 5.3674 5.7789 6.3404
SO 0.1235 26.1520 36.1740 44.0640
BO 0.1012 0.1872 0.1851 0.2040

Table 11 confirms the results of previous experiments and highlights the advantages of BO over the other

benchmark methods in almost all scenarios. BO algorithm scaled well and in the worst case (n1 = 1999, n2 =

1999) yielded a rate of 0.2040 seconds per iteration, demonstrating that BO is well-suited to handle large-

scale systems. For instance, for the same setting but changing M to a more realistic number such as 10000

replications, BO would complete the survival signature estimation in less than one hour. By comparison,

IS yielded a rate of 6.34 seconds per iteration in the worst case and would take more than 17 hours to run

10000 replications.
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As a secondary point, it is interesting to note that in the RGG experiments (Tables 8, 9 and 10), SO

outperformed IS by a considerable margin, whereas in the 2000-bus power system experiments, SO fared

markedly worse than IS even for the extreme case where n1 = 2, n2 = 3996. Although in both cases the

network considered was a large-scale system, the density in all three RGGs were considerably larger than the

density of the 2000-bus power system, which is approximately 0.0018. This result suggests that SO may not

perform well with massive but sparse networks compared to IS. Although SO and IS are equal in worst-case

complexity, we believe this difference in performance can be explained by differences in the computations

carried out by each algorithm. In SO, each arc is considered at most once but some additional work is

created due to manipulating the bucket data structures. On the other hand, IS may consider each arc at

most twice: once when scanning the predecessor list of the arc’s head node and once when scanning the

successor list of its tail node. Furthermore, in instances where s and t become connected after adding only

a few nodes, it is possible for a majority of the arcs considered when scanning predecessor lists to be arcs

that are never encountered when scanning successor lists, meaning the number of arcs examined in IS can

be more than twice the number examined in SO. This difference in computational effort can become more

pronounced as the number of arcs grows, thus leading SO to be preferred for denser networks. We did not

pursue further investigation in this direction since BO decisively outperformed both SO and IS for every

instance of considerable size and in all scenarios except for the extreme cases where n1 = 2.

5 Considerations and Future Research

In this paper, we proposed a bi-objective optimization-based MC method (which we refer to as BO) to es-

timate the two-terminal survival signature of networks with two component classes. To the best of our

knowledge, this is the first work to point out the relationship between survival signature computation

and multi-objective optimization. In addition, we discussed three alternative approaches to estimate the

two-terminal survival signature within a MC framework without exploiting the relation to multi-objective

optimization.

We conducted extensive computational experiments to compare the performance of the methods in terms

of run time and robustness. Although IS and SO have better worst-case complexity, the experiments revealed
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BO to be the fastest and the most robust method. The experiments also showed that BO is well-suited to

estimate the survival signature of realistic, large-scale systems, while the other three approaches become

unpractical as the size of the network becomes large.

This work contributes to the network reliability literature from both theoretical and practical perspectives.

From a theoretical perspective, the possibility of estimating the survival signature by solving a multi-objective

network optimization problem, and the efficiencies gained by doing so, indicates an interesting path for

developing efficient algorithms for reliability estimation. From an practical perspective, we have shown that

BO is well-suited to estimate the survival signature of realistic, generally structured systems in a reasonable

amount of time even for systems with thousands of nodes and arcs.

Interesting future research directions branching from this work includes: (i) generalizing our approach

to estimate the two-terminal survival signature for networks with more than two component classes; (ii)

generalizing our approach to multi-state systems; and (iii) generalizing our approach to other reliability

metrics such as K-terminal reliability and coverage metrics.

6 Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Number

CMMI-1751191. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

J. L. Cook and J. E. Ramirez-Marquez. Two-terminal reliability analyses for a mobile ad hoc wireless

network. Reliability Engineering & System Safety, 92(6):821–829, 2007.

B. A. Gebre and J. E. Ramirez-Marquez. Element substitution algorithm for general two-terminal network

reliability analyses. IIE Transactions, 39(3):265–275, 2007.

J. Silva, T. Gomes, D. Tipper, and L. Martins. An effective algorithm for computing all-terminal reliability

bounds. Networks, 66(4):282–295, 2015.

31



S. Chakraborty, N. K. Goyal, S. Mahapatra, and S. Soh. Minimal path-based reliability model for wireless

sensor networks with multistate nodes. IEEE Transactions on Reliability, 69(1):382–400, 2020.

L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):

410–421, 1979.

J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability that a graph

is connected. SIAM Journal on Computing, 12(4):777–788, 1983.

M. O. Ball. Computational complexity of network reliability analysis: An overview. IEEE Transactions on

Reliability, 35(3):230–239, 1986.

F. J. Samaniego. On closure of the IFR class under formation of coherent systems. IEEE Transactions on

Reliability, R-34:69–72, 1985.

I. Gertsbakh and Y. Shpungin. Models of Network Reliability: analysis, combinatorics, and Monte Carlo.

CRC Press, Boca Raton, 2009.

F. P. A. Coolen and T. Coolen-Maturi. Generalizing the signature to systems with multiple types of com-

ponents. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, editors, Complex

Systems and Dependability, pages 115–130, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

I. B. Gertsbakh, Y. Shpungin, and R. Vaisman. D-spectrum and reliability of a binary system with ternary

components. Probability in the Engineering and Informational Sciences, 30:25–39, 2016.

T. Elperin, I. Gertsbakh, and M. Lomonosov. Estimation of network reliability using graph evolution models.

IEEE Transactions on Reliability, 40(5):572–581, 1991.

A. Sedeño-Noda and M. Colebrook. A biobjective Dijkastra algorithm. European Journal of Operational

Research, 276:106–118, 2019.

E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays. Journal of Franklin Institute,

1956.

R. E. Barlow and F. Proschan. Mathematical Theory of Reliability. John Wiley & Sons, 1965.

32



I. Brown, C. Graves, B. Miller, and T. Russell. Most reliable two-terminal graphs with node failures.

Networks, 76:414–426, 2020.

C.-C. Jane and J. Yuan. A sum of disjoint products algorithm for reliability evaluation of flow networks.

European Journal of Operational Research, 131:664–675, 2001.

E. Datta and N. K. Goyal. Sum of disjoint product approach for reliability evaluation of stochastic flow

networks. International Journal of Systems Assurance Engineering and Management, 8:1734–1749, 2017.

T. Aven. Reliability evaluation of multistate systems with multistate components. IEEE Transactions on

Reliability, R-34(5):473–479, 1985.

C. Alexopoulos. A note on state-space decomposition methods for analyzing stochastic flow networks. IEEE

Transactions on Reliability, 44(2):354–357, 1995.

G. Bai, Z. Tian, and M. J. Zuo. Reliability evaluation of multistate networks: An improved algorithm using

state-space decomposition and experimental comparison. IISE Transactions, 50(5):407–418, 2018.

J. E. Ramirez-Marquez, D. Coit, and M. Tortorella. A generalized multi-state-based path vector approach

to multistate two-terminal reliability. IIE Transactions, 38(6):477–488, 2006.

F. Moskowitz. The analysis of redundancy networks. Transactions of the American Institute of Electrical

Engineers, Part I: Communication and Electronics, 77(5):627–632, 1958.

A. Satyanarayana and M. K. Chang. Network reliability and the factoring theorem. Networks, 13(1):107–120,

1983.

R. K. Wood. A factoring algorithm using polygon-to-chain reductions for computing k-terminal network

reliability. Networks, 15(2):173–190, 1985.

R. K. Wood. Factoring algorithms for computing k-terminal network reliability. IEEE Transactions on

Reliability, 35(3):269–278, 1986.

J. M. Burgos and F. R. Amoza. Factorization of network reliability with perfect nodes I: Introduction and

statements. Discrete Applied Mathematics, 198:82–90, 2016.

33



G. Hardy, C. Lucet, and N. Limnios. K-terminal network reliability measures with binary decision diagrams.

IEEE Transactions on Reliability, 56(3):506–515, 2007.

S.-Y. Kuo, F.-M. Yeh, and H.-Y. Lin. Efficient and exact reliability evaluation for networks with imperfect

vertices. IEEE Transactions on Reliability, 56(2):288–300, 2007.

C.-C. Jane, W.-H. Shen, and Y.-W. Laih. Practical sequential bounds for approximating two-terminal

reliability. European Journal of Operational Research, 195:427–441, 2009.
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Appendix A Naive Approach Algorithm

Algorithm 5: Naive

1 Φ← 0
2 for j = 1 to M do
3 ▷ Generate a permutation of N1 and a permutation of N2

4 ▷ Represent the permutations according to Equation (7)
5 ▷ Turn DOWN q1i for i = 1, . . . , n1

6 for ℓ1 = 0 to n1 do
7 ▷ Turn DOWN q2i , for i = 1, . . . , n2

8 for ℓ2 = 0 to n2 do
9 ▷ Run a BFS from node s

10 if the BFS reaches t then
11 ϕ(ℓ1, ℓ2)← ϕ(ℓ1, ℓ2) + 1
12 end
13 if ℓ2 < n2 then
14 ▷ Turn q2n2−ℓ2

UP

15 end

16 end
17 if ℓ1 < n1 then
18 ▷ Turn q1n1−ℓ1

UP

19 end

20 end

21 Φ← 1
MΦ

22 end
23 return Φ
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Appendix B Single-objective Optimization Approach Algorithms

Algorithm 6: Dials-MaxCapPath

1 bucket[i]← ∅, ∀i ∈ {0, 1, . . . , n}
2 d(i)← 0, ∀ i ∈ N \ {s}
3 d(s)← n
4 idx← n
5 bucket[idx]← bucket[idx] ∪ {s}
6 while idx ≥ 0 do
7 if bucket[idx] ̸= ∅ then
8 for i ∈ bucket[idx] do
9 for j ∈ Γ+

i do
10 if d(j) < min{d(i), uj} then
11 if d(j) > 0 then
12 bucket[d(j)]← bucket[d(j)] \ {j}
13 end
14 d(j)← min{d(i), uj}
15 bucket[d(j)]← bucket[d(j)] ∪ {j}
16 end

17 end

18 end

19 end
20 idx← idx− 1

21 end
22 return d(t)

Algorithm 7: SO

1 Φ← 0
2 for j = 1 to M do
3 ▷ Simulate a permutation of N1 and a permutation of N2

4 for ℓ1 = 0 to n1 do

5 ▷ Update ui, i ∈ N , according to Equation (10)

6 v∗ ← SO-MaxCapPath(G)
7 ℓ2

∗ ← n2 − v∗

8 for ℓ2 = 0 to n2 do

9 if ℓ2 > ℓ2
∗ then

10 ϕ(ℓ1, ℓ2)← ϕ(ℓ1, ℓ2) + 1

11 end

12 end

13 end

14 end
15 Φ← Φ/M.

16 return Φ
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Appendix C Single-objective Optimization Approach Complexity

Proposition C.1. The overall complexity of the SO approach is O(n1nM+ n1mM).

Proof. We start by stating the complexity of Algorithm 6. The initialization portion of the algorithm (steps

1–5) can be performed in O(n), but the dominating factor is the while loop which is used by the algorithm

to check buckets and update labels. Using doubly linked list as the underlying structure of the bucket sets,

each label update is performed in O(1) and since each label is made permanent once, we examine each arc

at most once, and the total work through the algorithm to update all labels (lines 9–16) requires O(m) time.

Checking all the bucket sets can be performed in O(n) since the algorithm keeps n+1 buckets and it checks

each bucket once. Thus, the complexity of Algorithm 6 is O(n +m). Since Algorithm 7 solves a MCP for

each value of ℓ1 and MC replication, the overall complexity of SO is O(n1nM + n1mM), which is equal to

O(n1mM) provided that n ≤ m.
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Appendix D Complexity of Bi-objective Optimization Approach

Proposition D.1. The complexity of Algorithm 1 is O(n2
1m+ n1m log n).

Proof. We first analyze the work performed for every iteration of the while loop. When a node label l∗ is made

permanent, the algorithm performs a find-max operation in O(1), a delete-max operation in O(log n), a series

of assignment operations each having complexity O(1), and, when the label returned by NewCandidateLabel is

not Null, the algorithm performs an insert in O(log n) and another series of assignment operations in constant

time. The work performed in one iteration of the while loop is therefore O(log n) plus the complexity of

NewCandidateLabel and RelaxationProcess. The algorithm performs an iteration of the while loop Ni times

for every i ∈ N , and since Ni ≤ n1 + 1 (because every non-dominated point must have a different value

of d1i ), the work performed for all nodes is O(n1n log n) plus the complexity of NewCandidateLabel and

RelaxationProcess. In every iteration, function NewCandidateLabel performs a series of comparisons and

assignments in constant time |L[j]| ≤ Nj times for every j ∈ Γ−
i . Because NewCandidateLabel is called

exactly Ni times for each node (i.e., once for every label made permanent), the total work for node i is

O(Ni

∑
j∈Γ−

i
Nj) = O(n1

∑
j∈Γ−

i
n1) = O(n2

1|Γ−
i |). Therefore, the total time due to NewCandidateLabel is

O(
∑

i∈N n2
1|Γ−

i |) = O(n2
1

∑
i∈N |Γ

−
i |) = O(n2

1m), noting that
∑

i∈N |Γ
−
i | = m.

In each iteration, for every j ∈ Γ+
i , RelaxationProcess performs a sequence of constant time opera-

tions and either an insert or increase-key operation in the worst case with complexity O(log n). Like

the NewCandidateLabel, RelaxationProcess is called Ni times for each i ∈ N , which amounts to a to-

tal complexity of O(
∑

i∈N
(
Ni log n|Γ+

i |
)
). Noting that Ni = O(n1) and

∑
i∈N |Γ

+
i | = m, this com-

plexity reduces to O(n1m log n). Comparing the results above, the overall complexity of Algorithm 1 is

O(nn1 log n+ n2
1m+ n1m log n), which is O(n2

1m+ n1m log n) provided that n < m.
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Appendix E Validation and Accuracy of the Proposed Methods

We assess the accuracy of our methods by considering a chain network constructed as follows: given a positive

integer number n1, we have nodes 0, 1, 2, . . . , 3n1, whereN1 = {1, 4, 7, . . . , 3n1−2}, N2 = {2, 5, 8, . . . , 3n1−1},

and nodes {0, 3, 6, . . . , 3n1} are completely reliable. The arcs are created as follows: let i = 0, 3, 6, . . . , 3n1,

add the arcs (i, i+1), (i, i+2), (i+1, i+3), and (i+2, i+3). Nodes 0 and 3n1 are, respectively, the source

and sink nodes in this network.

The example below shows a chain network for n1 = 8, where N1 = {1, 3, 7, 10, 13, 16, 19, 22}, N2 =

{2, 5, 8, 11, 14, 17, 20, 23}, and {s, 3, 6, 9, 12, 15, 18, 21, t} are completely reliable nodes.

s 3 6 9 12 15 18 21 t

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

Figure 6: Chain network with n1 = 8.

We can compute the exact survival signature of this network for a positive integer parameter n1 denoting

the number of nodes in each class (N1 and N2) by making the following observations: (i) at least n1 UP

components from N1 ∪ N2 are necessary to have s-t connection; therefore, ϕ(ℓ1, ℓ2) = 0 for any entry such

that ℓ1 + ℓ2 < n1; (ii) if all n1 nodes from the same class are UP, the network is UP: ϕ(ℓ1, ℓ2) = 1 for any

entry such that ℓ1 = n1 or ℓ2 = n1; and (iii) for ℓ1 + ℓ2 ≥ n1, we have the following result.

Proposition E.1. Given a chain network constructed according to the procedure described above, the exact

survival signature entries for ℓ1 + ℓ2 ≥ n1 can be computed according to

ϕ(ℓ1, ℓ2) =

(
ℓ1

ℓ2−(n1−ℓ1)

)(
n1

ℓ2

) . (16)

Proof. Given a subset Q ⊆ N1 of ℓ1 UP nodes from N1, let R ⊆ N2 denote the set of n1 − ℓ1 nodes from N2

that must be UP for the network to be UP. Since each subset of ℓ2 nodes in N2 is equally likely to comprise

the set of UP nodes for N2, the network is UP if a sample of ℓ2 nodes from N2 (with nodes drawn equally
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likely and without replacement) contains all the nodes in R. Thus, the probability that network is UP given

that the ℓ1 nodes in Q are UP follows a hypergeometric distribution given by the number of samples of ℓ2

nodes in N2 that contain all of the nodes in R divided by the number of samples of ℓ2 nodes in N2. Because

the sample in the numerator must include all of the nodes in R, we can rewrite the numerator as the number

of samples of ℓ2 − (n1 − ℓ1) nodes in N2 \R, which equals
(

ℓ1
ℓ2−(n1−ℓ1)

)
.

Table 12 shows the exact survival signature for the network of Figure 16 up to 7 decimal digits, and

Table 13 shows the estimates obtained by applying our method with M = 20000 replications.

Table 12: Exact survival signature (up to 7 decimal digits).

ℓ1\ℓ2 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0.125 1
2 0 0 0 0 0 0 0.0357143 0.25 1
3 0 0 0 0 0 0.0178571 0.107143 0.375 1
4 0 0 0 0 0.0142857 0.0714286 0.214286 0.5 1
5 0 0 0 0.0178571 0.0714286 0.178571 0.357143 0.625 1
6 0 0 0.0357143 0.107143 0.214286 0.357143 0.535714 0.75 1
7 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
8 1 1 1 1 1 1 1 1 1

Table 13: Estimated survival signature (M = 20000 replications).

ℓ1\ℓ2 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0.1244 1
2 0 0 0 0 0 0 0.03525 0.25265 1
3 0 0 0 0 0 0.0178 0.10595 0.37195 1
4 0 0 0 0 0.01585 0.0707 0.21495 0.50325 1
5 0 0 0 0.0193 0.0697 0.17685 0.35525 0.6261 1
6 0 0 0.03505 0.1056 0.2135 0.3567 0.53645 0.75035 1
7 0 0.12225 0.24335 0.36905 0.4971 0.62065 0.74775 0.87545 1
8 1 1 1 1 1 1 1 1 1

We evaluated the accuracy of the estimates by performing, for every entry whose exact signature is

different from 0 and different from 1, the following hypothesis test on proportions:

H0: The MC estimate ϕ̂(ℓ1, ℓ2) equals the exact signature ϕ(ℓ1, ℓ2).

H1: ϕ̂(ℓ1, ℓ2) ̸= ϕ(ℓ1, ℓ2).
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For a level of significance α = 0.05, the test resulted in “reject” for only one of the estimates, which

implies a 3.57% rejection rate when considering the 28 entries for which 0 < ϕ(ℓ1, ℓ2) < 1, and therefore very

close to the 5% rate that is expected in this setting.

We also computed the exact and estimated (M = 75000 replications) signatures for a chain network with

n1 = 20, i.e., 20 nodes in N1, 20 nodes in N2, and 61 nodes in total. As before, we conducted the hypothesis

test on proportion, which resulted in “reject” for 6 of the 190 entries with 0 < ϕ(ℓ1, ℓ2) < 1, indicating a

3.16% rejection rate and, therefore, very close to the 5% rate that is expected for α = 0.05. All the files

corresponding to the exact and estimated signatures, as well as an R-script with the hypothesis test and the

files containing the p-values for each network instance can be found on the repository.
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