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Fault attacks on cryptographic software use faulty ciphertext to reverse engineer the secret encryption key.
Although modern fault analysis algorithms are quite efficient, their practical implementation is complicated
because of the uncertainty that comes with the fault injection process. First, the intended fault effect may
not match the actual fault obtained after fault injection. Second, the logic target of the fault attack, the
cryptographic software, is above the abstraction level of physical faults. The resulting uncertainty with
respect to the fault effects in the software may degrade the efficiency of the fault attack, resulting in many
more trial fault injections than the amount predicted by the theoretical fault attack. In this contribution, we
highlight the important role played by the processor microarchitecture in the development of a fault attack.
We introduce the microprocessor fault sensitivity model to systematically capture the fault response of a
microprocessor pipeline. We also propose Microarchitecture-Aware Fault Injection Attack (MAFIA). MAFIA
uses the fault sensitivity model to guide the fault injection and to predict the fault response. We describe two
applications for MAFTA. First, we demonstrate a biased fault attack on an unprotected Advanced Encryption
Standard (AES) software program executing on a seven-stage pipelined Reduced Instruction Set Computer
(RISC) processor. The use of the microprocessor fault sensitivity model to guide the attack leads to an order
of magnitude fewer fault injections compared to a traditional, blind fault injection method. Second, MAFIA
can be used to break known software countermeasures against fault injection. We demonstrate this by
systematically breaking a collection of state-of-the-art software fault countermeasures. These two examples
lead to the key conclusion of this work, namely that software fault attacks become much more harmful and
effective when an appropriate microprocessor fault sensitivity model is used. This, in turn, highlights the
need for better fault countermeasures for software.
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1. INTRODUCTION

Today, a range of secure embedded systems from low-end smartcards to high-end net-
work equipments are extensively used to transfer, store, access, and manipulate sen-
sitive data such as personal passwords and copyrighted content [Kocher et al. 2004].
The secure embedded systems employ confidentiality, integrity, and authentication
mechanisms to ensure the security of the sensitive data. Implementation attacks, ex-
ploiting the vulnerabilities in the implementation of the security mechanisms, pose
a serious threat to the security of these systems. Implementation attacks on secure
embedded systems are relevant when the adversary can observe or influence the phys-
ical implementation of security mechanisms. Implementation attacks are applicable
to secure embedded systems in the Internet of Things, as well as to server comput-
ing applications that coexist with processes from different users on the same machine
[Genkin et al. 2015; Piscitelli et al. 2015; Gruss et al. 2015; Inci et al. 2015]. The main
principle of an implementation attack is to correlate observable effects of the physical
implementation with the hypothesized (key-dependent) operation of the secure system
internals. A positive correlation will then reveal a small part of the secret key, thereby
eliminating the exponential complexity of a brute-force key search.

The two main categories of implementation attacks include side-channel attacks
[Mangard et al. 2007] and fault attacks [Joye and Tunstall 2012]. In a side-channel
attack, the adversary passively observes physical variables of the security operations
and then correlates these with a model of the side-channel leakage of the secure em-
bedded system. In a fault attack, the adversary actively disturbs the execution of the
secure system, extracts a faulty result, and then correlates it with a fault model of
the system. Both side-channel attacks as well as fault injection attacks rely on models
to approximate the physical behavior of the secure embedded system [Mangard et al.
2007; Otto 2005].

There exists a rich collection of side-channel leakage models, which originate from
the insight into the exact source of side-channel leakage. For example, execution timing
and power consumption of a digital system can be modeled and predicted accurately us-
ing the synchronous (single-clock) design abstraction [Mangard et al. 2007]. Similarly,
cache side-channel attacks, which rely on the complex timing effects of software execu-
tion and cache organization, are possible because the timing effects are well understood
and predictable [Liu et al. 2015].

However, the same observation does not hold for fault attacks. The bulk of the
literature on fault attacks, including several seminal overviews, treat the modeling of
fault behavior only at the most basic level [Bar-El et al. 2006; Karaklajic et al. 2013;
Barenghi et al. 2012; Otto 2005; Joye and Tunstall 2012]. Fault injection methods
(under-powering [Barenghi et al. 2009], voltage and clock glitches [Korak and Hoefler
2014], EM pulses [Moro et al. 2013a], laser pulses [Van Woudenberg et al. 2011])
cause a fault effect, which is then captured in a fault model. Typical fault models
only capture basic parameters, such as the fault duration (transient or permanent),
the fault type (bit-flip, random, stuck-at), and the fault location [Otto 2005]. In recent
years this model was further refined into fault-sensitivity, which acknowledges a link
between fault injection intensity and fault effect [Li et al. 2010]. Yet, we argue that this
hardware-oriented model is still insufficient in many practical situations, including the
case of the embedded software fault attacks examined in this article. Indeed, a fault
attack on software requires a fault model that captures fault effects in software, and
not fault effects in the microprocessor that executes software.

A second challenge for fault modeling relates to model accuracy. Fault analysis tech-
niques commonly assume a perfect match between the fault model, and the actual fault
obtained in the implementation as a result of the fault injection [Sakiyama et al. 2012;
Ali and Mukhopadhyay 2011]. However, the efficiency of the fault analysis decreases
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quickly if this is not the case, and even a mismatch of 1 in 100 fault injections can
render the fault analysis ineffective [Ferretti et al. 2014].

An important insight contributed by this article is the need to expand the fault
modeling mechanism beyond the basic parameters of fault duration, fault type, and
fault location. A fault model for embedded software should capture the fault effects
experienced by microprocessor instructions in order to analyze the effects of a fault
injection on software. Thus, we need to model fault effects in the instruction-set archi-
tecture rather than faults purely at the hardware level. There are compelling reasons
for raising the abstraction level.

—First, the instruction set architecture (ISA) provides an execution model, and with
it comes the ability to model the impact of faults in the execution of instructions.
A typical instruction-execution cycle includes at least instruction-fetch, decode, and
execute. The effect of a fault can change according to each phase of the instruction-
execution cycle. For example, a fault on the instruction-fetch could affect the in-
struction opcode, while a fault on the execution phase could change the instruction
operands. Each of these faults has a different effect on the software program.

—Second, the instruction set architecture makes a clear distinction between data pro-
cessing (e.g., arithmetic instructions), control (e.g., jump instructions), storage (e.g.,
load/store of data), and input/output operations [Karaklajic et al. 2013]. Faults have
a different effect for each different instruction, and hence, software fault models
should be instruction-dependent.

—PFinally, the data dependencies, which are crucial to understand the propagation of
faults in software, only become visible in the software. It is impossible to analyze
fault propagation through the microprocessor hardware alone.

In this article, we will introduce a fault model for a pipelined microprocessor and
demonstrate how the model can be used for efficient fault attacks on secure micro-
processor software, and even for breaking fault attack countermeasures. We claim the
following novel contributions.

(1) We demonstrate a method to construct a fault sensitivity model of a microproces-
sor, for the specific purpose of fault attacks and fault analysis. We also provide
Microarchitecture-Aware Fault Injection Attack (MAFIA) to demonstrate the use
of the model. MAFIA allows an adversary to gain insight into the probable faults,
and to pinpoint the most suitable moments for fault injection during the execution
of a software program. The proposed method determines the required fault injec-
tion intensity for the attack, such that the mismatch between the injected fault
and the modeled fault becomes minimal.

(2) We show how the fault sensitivity model is used in a fault attack on secure software.
We demonstrate differential fault intensity analysis (DFIA) on Advanced Encryp-
tion Standard (AES) software executing on a seven-stage Reduced Instruction Set
Computer (RISC) pipeline. We demonstrate that fault modeling at the instruction-
architecture level reveals the effects of pipeline stalls and data dependencies, which
results in additional opportunities for fault injection.

(3) We show how the microprocessor fault sensitivity model helps to pinpoint the
weaknesses of a class of fault attack countermeasures in software, which rely
on instruction-level redundancy. In particular, we demonstrate successful attacks
on Instruction Duplication, instruction-level parity checking, and fault-tolerant
instruction sequences.

This article is based upon two earlier conference publications, published at Fault
Diagnosis and Tolerance in Cryptography (FDTC) 2015 [Yuce et al. 2015a] and FDTC
2016 [Yuce et al. 2016b], respectively. Compared to these publications, this article
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generalizes the development of a fault sensitivity model for microprocessors and then
demonstrates how this concept unifies the attacks discussed in both papers.

The rest of the article is organized as follows. In Section 2, we introduce important
preliminaries and differentiate fault attacks on hardware secure systems from fault
attacks on software secure systems. We discuss fault effects in a typical stored-program
computer built around a RISC processor. In Section 3, we show how these effects can
be captured in a microprocessor fault sensitivity model, and how such a model can be
used to develop a fault attack (i.e., MAFIA) on embedded software. In Section 4, we
use the microprocessor fault sensitivity model to mount a biased-fault attack on the
well-known TBOX implementation of AES. In Section 5, we use the microprocessor
fault sensitivity model to break a collection of software-based fault countermeasures.
In Section 6, we provide details on the practical implementation setup. In Section 7,
we summarize the key results of our experiments. In Section 8, we conclude the article.

2. PRELIMINARIES

This section explains the fundamental concepts that are required to follow the rest of
the article.

2.1. Using Faults as a Hacking Tool

In a fault attack, an adversary first alters the physical operating conditions of a secure
system to inject well-defined, targeted faults into the system operation. The estimated
fault effects are captured with a fault model. Next, the adversary breaks the security of
the secure system by systematically correlating the actual fault response of the system
with the fault model. A well known technique that follows this strategy is Differential
Fault Analysis [Giraud 2005], and many variations have been demonstrated that follow
this attack scheme. In a typical fault attack framework, an adversary is not capable
of directly modifying/monitoring the internals of a chip, or changing the binary of the
target program [Lemke-Rust and Paar 2006]. The adversary can alter the execution of
a program/system via fault injection, and can observe the fault effects at output of the
program/system.

To alter the execution in a desired way, the adversary varies the fault intensity, which
is the strength of the physical stress by which the system is pushed outside of its nom-
inal operating conditions. The adversary controls the fault intensity via fault injection
parameters. For clock glitching, shortening the length of the glitch increases the fault
intensity. It is controlled by glitch/pulse voltage and length for voltage glitching, elec-
tromagnetic pulse injection, and laser pulse injection. The laser and electromagnetic
pulse injections also enable the adversary to localize the fault intensity by controlling
the shape, size, and position of the injection probe.

The previous works have revealed a correlation between the fault intensity and the
fault response: A gradual increase in fault intensity yields a proportional change in the
fault response of the system. We call this relation biased fault behavior. This behavior
is valid independent of the used fault injection method, and it enables the adversary to
control the induced fault effects [Korak and Hoefler 2014; Moro et al. 2013a; Courbon
et al. 2014; Yuce et al. 2015a].

Because of the biased fault behavior, the adversary is able to find a critical fault
intensity point, at which the target system begins to reflect faulty behavior. This critical
point is the fault sensitivity of the target system. To find the fault sensitivity, the
adversary starts with a low fault intensity value and gradually increases the intensity
until seeing a faulty output.

Next, we will compare and contrast the fault manifestation and propagation mecha-
nisms in the hardware and software secure systems.
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2.2. Comparison of Fault Attacks on Hardware and Software Secure Systems

Fault attacks on both hardware and software systems require the knowledge of the
target system’s implementation. Having more knowledge of the target system increases
the adversary’s control on the induced fault effects, and thus, yields more efficient
fault attacks. In practice, the fault manifestation and the propagation mechanisms in
hardware and software systems are different. Therefore, mounting an efficient fault
attack on a software system requires the knowledge of different abstraction layers than
attacking a hardware system does.

In a hardware secure system, a security algorithm is mapped into a netlist of logic
gates and registers. The execution of the mapped algorithm is embodied as a sequence
of register-transfer operations scheduled over multiple clock cycles. Every bit-level op-
eration of the algorithm thus maps into a particular clock cycle and register transfer.
During a fault attack on the hardware system, an adversary will target a sensitive
bit-level operation by selecting specific clock cycles and register-transfers, and by ap-
plying a suitable fault injection method. Next, the effects of the fault injection will be
propagated into a faulty system output through register transfers with a dependency
on the faulty register transfer. In order to mount a fault attack on such a hardware
model, it is sufficient for the adversary to understand the hardware-level operation,
and to apply generic, gate-level fault models.

In a software secure system, a security algorithm is implemented as a sequence
of instructions executed by a microprocessor. Each instruction execution, in turn, is
composed of several steps. The processor loads each instruction from program memory
(instruction-fetch), determines the meaning of the current instruction through its op-
code (instruction-decode), executes the current instruction (instruction-execution), and
then determines the next instruction to fetch (program counter update). The number
of steps in the instruction-execution cycle is architecture dependent, and it can vary
considerably from one microprocessor to the next. However, we observe that the small-
est execution step in software, the instruction, still corresponds to multiple register-
transfers at the hardware level.

A fault injection in a microprocessor will affect the correctness of instruction execu-
tion. The effect of the fault will be propagated into a faulty system output by instruc-
tions that have data-dependencies or control-dependencies on the faulty instruction.
Hence, knowledge of the microprocessor architecture is insufficient to mount a success-
ful fault attack; the adversary also needs to understand the dependencies defined by
the software. Furthermore, the precise effect of a fault on a microprocessor instruction
depends on the type of the instruction. For instance, a bit-flip fault injected during
the execution step of an addition instruction may yield a single-bit fault in the result
of this instruction. However, the same bit-flip fault injected during a memory-load in-
struction would cause a single-bit fault in the effective address calculation, and thus,
data is loaded from a wrong memory location. In the former case, only a single bit of
the destination register is faulty, while in the latter case, the destination register has
a random number of faulty bits.

We conclude that a fault model for a software secure system must capture both the
hardware and software aspects of the fault behavior. For a given processor architec-
ture, it should show the potential fault effects for each instruction during each step
of the instruction cycle. The fault effects may depend on the type of the instruction
as well as on the step of the instruction cycle affected by the fault. Furthermore, in
complex processor architectures such as the RISC processor architectures considered
in this article, the execution of multiple instructions is overlapping. A single fault in-
jection during a single clock cycle may affect sequential instructions. To analyze these
complex effects, the adversary needs to understand the fault sensitivity of instruc-
tions with overlapping execution. In the microprocessor fault model proposed in this
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article, we provide support for overlapping instruction execution. We also introduce a
microarchitecture-aware fault attack methodology based on the proposed fault model.

In the following sections, we elaborate these concepts for the case of the RISC
pipeline.

2.3. Fault Behavior in a RISC Pipeline

The RISC architecture is the dominant processor architecture in modern embedded
systems, and, therefore, the analysis of this architecture is a meaningful starting point
to develop a systematic fault model for software. In the following sections, we provide a
brief review of a typical RISC pipeline. Next, we define the generic fault injection mech-
anism that we will assume for the rest of the article. We then describe the expected fault
effects in a standard RISC-based stored-program architecture consisting of a pipeline
and a memory. This leads to the classification of fault types utilized in our work. Using
these preliminaries, we will then introduce our fault attack methodology in Section 3.

2.3.1. RISC Pipeline. We describe the example of the LEONS3 pipeline, an open-
source, 32-bit, The Scalable Processor Architecture (SPARC)-compilant RISC processor.
LEONS partitions the instruction cycle into seven steps, which leads to the following
seven-stage pipeline.

(1) Fetch (F): An instruction is fetched from the memory or instruction cache and copied
into the instruction register (IR).

(2) Decode (D): The instruction from the IR is decoded to determine the operation and
operands. For branch and CALL instructions, the target address is computed.

(3) Register Access (A): The operands are read from the data register file or from
internal forwarding paths.

(4) Execution (E): Arithmetic, logical, and shift operations are computed. For memory-
load and store, the effective data address is computed.

(5) Memory (M): Memory instructions access the data memory using the effective
address.

(6) Exception (X): Traps and interrupts (such as divide-by-zero exceptions) are
resolved.

(7) Write-back (W): The results of the instruction are written into the register file.

2.3.2. Cycle Accurate Fault Injection. An adversary can choose among many different
forms of fault injection, from very coarse and generic to very precise and specific.
However, there is a tradeoff between the accuracy of a fault injection and the complexity
to perform it. Therefore, we make the following assumption, which covers a large
portion of practical fault-injection cases.

We assume that the adversary can select a precise clock cycle for fault injection
(precise timing control), but not necessarily a precise fault location (imprecise location
control). We also assume that the adversary can vary the intensity of the fault injection,
and that it’s possible to achieve different fault effects by varying the fault intensity.

Some examples of fault injection mechanisms that are feasible in the cycle-accurate
fault injection scheme are clock-glitch injection [Korak and Hoefler 2014], injection
of synchronized power-line voltage-glitches [Barenghi et al. 2009], and injection of
synchronized magnetic pulses [Moro et al. 2013a]. These injection methods can be
tuned with voltage starvation, temperature hikes, or over-clocking.

2.3.3. Fault Injection in the RISC Pipeline. Figure 1 demonstrates the effect of a cycle-
accurate fault injection on the execution of the seven-stage LEON3 pipeline. In any
given clock cycle, multiple instructions execute simultaneously, each of them at a dif-
ferent step of the instruction cycle. Therefore, a fault injection can potentially affect
as many instructions as the number of pipelines stages. However, the actual number
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Fig. 1. Fault propagation in a seven-stage RISC pipeline. A glitch can affect as many instructions as there
are RISC pipeline stages. Careful control of the fault intensity limits the fault to the slowest pipeline stage.
Furthermore, pipeline stalls will temporarily blind stalled pipeline stages from glitches.

of affected pipeline stages is determined by fault injection intensity, and by pipelining
effects.

Pipelining effects such as data dependencies between the concurrently executed
instructions, cache misses, and branch interlocks cause stalls in the pipeline. The
stalled pipeline stages are not affected by the fault injection. For example, the fault
injection in cycle 4 in Figure 1 does not affect the Memory Stage.

Under a constant fault injection intensity, the fault effect will be different for different
stages of the pipeline. This is because of variations in the detailed architecture of
pipeline. Therefore, it is also possible that a fault injection at a specific fault intensity
can affect some pipeline stages while leaving others untouched. A pipeline stage is
affected by the fault injection only if the applied fault intensity is greater than the
fault sensitivity for that pipeline stage. For example, consider again cycle 4 of the
pipeline in Figure 1. By reducing the fault intensity, the adversary will eventually end
up with a single faulty pipeline stage, namely the most sensitive pipeline stage. Assume
for example that the execution stage would have the longest critical delay. Then, a fault
injection with low intensity will affect only E3, the execution of instruction 3 in cycle 4.
After such an isolated fault is injected, it will further propagate through the pipeline
stages and affect instructions with dependencies on the faulty instruction 3.

Thus, we observe two important effects in a running RISC pipeline that provide an
adversary with additional opportunities for controlled fault injection. The first effect
is the pipeline hazard, which may depend on software as well as on the processor
architecture. The second effect is the variation of fault sensitivity with RISC pipeline
stage, which may provide the ability to target a single pipeline stage through a carefully
chosen fault injection intensity. In our proposed attack methodology, we utilize both of
these effects to our advantage.

2.3.4. Instruction Faults and Computation Faults. As every instruction moves through the
instruction-execution cycle, its fault behavior changes as a function of the step within
the instruction-execution cycle. We partition the fault effects into two main categories.

(1) Instruction Faults (IF) are faults that affect the control flow or instruction sequence
of a program. Instruction Faults are created by fault injection in the fetch or decode
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Create an Instruction Fault Sensitivity Model for the Target Processor
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2. Attack Phase:
Analyze the Execution of the Target Program

test()
NOP sequence
target instruction i
NOP sequence
isFaulty = checkResult()
return isFaulty

foreach instruction i
foreach step s of instruction i
F =F_safe
while (1)
# Inject fault during s
# with intensity F

Algorithm-level Analysis:
- Determine high-level attack objective(s)

v

Instruction-level Analysis:
- Determine potential instruction(s) to attack

isFaulty = inject (test(), s, F)
F: Fault Intensity if (isFaulty)

F_safe: Safe fault intensity value FS[i[s] = F

A: A small change in F break

FS: Fault Sensitivity F=F+A

v

Microarchitecture-level Analysis:
- Determine potential clock cycle(s) to attack
with the help of the instruction FS model

Fig.2. Overview of MAFIA: (1) An instruction fault sensitivity model is built for the target processor. (2) The
created model is combined with the analysis of the software program to determine the best fault injection
parameters.

pipeline stages (see Figure 1). For example, a fault could skip an instruction. An
adversary can leverage this to break software fault countermeasures by bypassing
instructions that check integrity or branch when an error is detected. A fault
could also change the meaning of an instruction by modifying the opcode. Balasch
describes the effect of faults on the instruction fetch of an AVR microcontroller
[Balasch et al. 2011]. By gradually increasing the fault intensity, the opcodes of
instructions are modified (as a result of timing violations) until they eventually
turn into a nop instruction.

(2) Computational Faults (CF) are faults that cause errors in the data used by a
program. They are created by any error in the stages A, E, M, and W as indicated
in Figure 1. An error in any of these stages can contribute a faulty value to the
register file or memory. Faults in these stages will eventually propagate to the
output, and they are suitable for traditional fault analysis mechanisms such as
Differential Fault Analysis (DFA) or DFIA.

2.3.5. Fault Injection in the Memory. An alternate target for fault injection is the
instruction-memory or data-memory used by a RISC processor. We can distinguish
two types of memory faults: those that happen as a result of the direct execution of
a RISC instruction, and those that happen independently of software execution. Our
instruction fault model concentrates on the first case, and it can capture faults that
occur as a result of instruction-fetch, operand-fetch, and result-writeback. On the other
hand, in this article, we will not further develop fault attacks based on independent
memory faults. We observe that error-check mechanisms are quite common in contem-
porary memory architectures—and this provides additional justification for our focus
on processor faults.

3. MAFIA: MICROARCHITECTURE-AWARE FAULT INJECTION ATTACK

This section proposes an instruction fault sensitivity model and a fault attack strategy
Microarchitecture-Aware Fault Injection Attack (MAFIA) to satisfy the requirements
examined in the previous section. As it is shown in Figure 2, the proposed methodology
consists of two phases: (i) Characterization Phase and (ii) Attack Phase.

The purpose of the characterization phase is to create an instruction fault sensitiv-
ity model for the target processor. The instruction fault sensitivity model shows the
fault sensitivity for the steps of each instruction. A processor potentially carries out
each step of an instruction on a different microarchitectural block. Therefore, one can
also think of the instruction fault sensitivity model as the characterization of main
microarchitectural blocks for each instruction. The key point is that the fault sensi-
tivity is instruction-dependent because each instruction uses a specific subset of the
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available microarchitectural blocks. The instruction fault sensitivity model can be gen-
erated once for a specific fault injection method and a target processor, and it can be
used multiple times for different attacks on the target processor. Section 3.1 explains
the details of the characterization phase for an example architecture and fault injection
method.

The purpose of the attack phase is to design and implement a fault attack on a
target program running on the characterized processor. The adversary analyzes the
target program at different abstraction levels, and then combines this analysis with
the instruction fault sensitivity model to determine the best clock cycle(s) and processor
part(s) to attack. The attack phase consists of three steps. An adversary first analyzes
the target program at the algorithm-level to determine the application-specific attack
objectives. Then the adversary applies an instruction-level analysis to determine poten-
tial instructions to attack in the program flow. In the last step, the adversary analyzes
the execution of the software program on the target microarchitecture to identify po-
tential clock cycles to attack. Finally, the adversary uses an instruction fault sensitivity
model to determine fault injection parameters for each potential clock cycle to attack.
As the result, the adversary has a set of (clock cycles, fault parameters) pairs to at-
tack. Using this information, the adversary can carry out the actual fault injection
experiments. Section 3.2 explains these steps on an example.

The proposed method requires ISA-level, microarchitecture-level, and hardware-
level knowledge of the target system. The ISA-level knowledge is required to under-
stand specifications and semantics of the instructions. The adversary can use open-
source architecture manuals to acquire this knowledge. The microarchitectural-level
knowledge enables the adversary to understand how a given instruction is executed
on the target platform. The adversary may have an instruction-accurate model (e.g., a
software-level emulator such as QEMU [Bellard 2005]), a cycle-accurate model (e.g., a
microarachitecture simulator such as gem5 [Binkert et al. 2011]), a register-transfer
level model, or a commercial-of-the-shelf (COTS) implementation of the processor. The
hardware-level knowledge is necessary to determine the sensitivity of the processor
hardware to the physical fault injection. The adversary can gather hardware-level in-
formation from the gate-level netlist, transistor-level netlist, layout, register-transfer
level definition, or a COTS implementation of the processor hardware. As a result, an
adversary’s knowledge level may vary from zero-knowledge to full-knowledge in prac-
tice. The key point is that a fault attack would be more efficient if an adversary has
more knowledge of the implementation. The proposed method provides a methodology
to systematically combine the knowledge of different abstraction layers.

Next, we explain the details of the proposed methodology by means of an example.
This illustrates how the proposed instruction fault model is used in practice. We follow
the assumption of a conventional, pipelined RISC microprocessor. Instructions flow
through seven stages of a pipeline and can be stalled because of hazards. In addi-
tion, the effects of hazards can be minimized through conventional techniques such as
forwarding or careful instruction scheduling.

3.1. Characterization Phase: The Instruction Fault Sensitivity Model

In this section, we provide an example instruction fault sensitivity model for a subset of
SPARC instructions. We characterized the fault sensitivity of instructions on a LEON3
processor for setup-time violation based faults. We implemented LEONS processor on
a 45nm Spartan 6 FPGA (Field Programmable Gate Array), and we characterized the
fault sensitivity by applying gate-level simulation on the post place-and-route model of
the implementation. We used combinational path delays as the fault sensitivity metric
because it has been shown that there is a significant correlation between the path
delays of an implementation and its sensitivity to setup-time violation attacks [Yuce
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Table I. LEONS Pipeline Fault Sensitivity Model for DFIA (Critical Delay in ns)

Instruction F D A E M X w Meaning
xor reg, reg, reg || 554 | 3.72 || 6.52 | 5.12 | O 3.26 | 4.92 || Bit-wise xor
1d mem, reg 5.72 | 3.36 || 5.4 5.2 7.58 2.82 | 5.6 Load from memory
1di mem, reg 3.563 | 3.26 || 5.62 | 5.2 7.58 3.17 | 4.45 || Load Indexed
st reg, mem 591 | 3.5 5.78 | 5.37 | 5.35 3.77 | 0 Store Word
sll reg, imm, reg || 5.53 | 3.26 || 5.2 509 | 0 2.16 | 5.6 Shift Left Logical
srl reg, imm, reg || 591 | 2.83 || 4.7 567 | 0 3.25 | 5.61 || Shift Right Logical
cmp reg, reg 6.86 | 553 || 498 | 523 | 0 4.78 | 5.6 Compare
bne add 6.40 | 5.00 || 5.85 | 3.92 | 2.020 | O 5.6 Branch on Not Equal
‘ Fault Type ‘ Instr Fault ‘ Computation Fault ‘ ‘

et al. 2015b; Zussa et al. 2012]. Gate-level simulation has been employed earlier to
create a better fault sensitivity models of AES ASIC (Application Specific Integrated
Circuit) implementations [Sugawara et al. 2012; Barenghi et al. 2015]. However, we
used the gate-level simulation for characterization of individual processor instructions.

Fault sensitivity of an instruction is not constant. Rather, it varies as a function of
the pipeline stage. We verified this by extracting the combinational delay of individual
pipeline stages for each instruction. For each target instruction, we wrote a test pro-
gram and applied a fault sensitivity characterization algorithm as shown in Figure 2.
The test program includes the target instruction surrounded by two sequences of nop
instructions. For a test program, we characterized the sensitivity of a pipeline stage by
injecting faults with varying fault intensities during the execution of this specific stage:
Starting from a safe fault intensity value, we gradually increased the fault intensity
until we observe a faulty output. Repeating this analysis for each target instruction,
we obtained the instruction fault sensitivity model.

In our simulations, we simulated each instruction one time with arbitrarily selected
operands to accelerate the characterization process. We assumed that the impact of
the operand values on the variation of instruction timing is smaller than the impact
of the instruction type and the pipeline stage. We made this assumption based on
the previous work [Korak and Hoefler 2014; Balasch et al. 2011]. For example, Korak
and Hoefler [2014] analyzed two different microcontrollers (an ATMega256 and an
ARM Cortex-MO0) against voltage and clock glitching. They observed different fault
intensity intervals for different instructions and pipeline stages. They showed that
the decode stage of their target was always fault-free while they were able to create
faults in fetch and execute stages. Their results also demonstrated that execution
stages of different instructions have different timing values. In Sections 6 and 7, we
experimentally demonstrated that such an approach is sufficient to mount efficient
fault attacks. One can also run each instruction with multiple data sets and apply
statistical processing of the results to create the instruction fault sensitivity model.
Such an approach would capture the variation effects in a more accurate way while
increasing the characterization time.

Table I illustrates the obtained instruction fault sensitivity model. The figures in the
table cells indicate the critical delay (in ns) of the instruction as it flows through each
pipeline stage. One can clearly distinguish a variation in timing horizontally, across
a single instruction. This confirms that the critical delay varies as a function of the
pipeline stage. In addition, one can see a timing variation vertically, across a column
for a particular pipeline stage. This means that different instructions have a different
timing requirement. Now, imagine a running software program; the pipeline is filled
with instructions as illustrated in Figure 1. Using the instruction fault sensitivity
model, it is clear that we can predict which pipeline stages will be faulty when we

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 95, Publication date: July 2017.



Analyzing the Fault Injection Sensitivity of Secure Embedded Software 95:11

inject a fault with a given fault intensity. This will be the basis of the fault attack
methodology, explained in the next section.

The obtained model captures several fault injection methods because setup-time
violation faults can be achieved by various techniques including clock glitching, voltage
glitching, voltage underfeeding, overheating, and electromagnetic pulses [Zussa et al.
2012; Hayashi et al. 2015]. For other fault injection methods such as laser pulses,
the same approach can be used to obtain a similar instruction sensitivity model. In
addition, the same algorithm can also be used to build an instruction fault sensitivity
model with physical fault injection. If an adversary has a COTS implementation of the
target and a fault injection setup, the adversary can use the same test program and
algorithm to create an instruction fault sensitivity model.

3.2. Attack Phase: Analyzing the Target Embedded Software

This section demonstrates how the instruction fault-sensitivity model can be used to
design an attack on a software secure system. We will describe a generic methodology,
which will be applied on specific cases in later sections. The methodology has three
phases, and we will briefly describe each of them through an example.

3.2.1. Algorithm-level Analysis. Initially, the adversary investigates the software imple-
mentation at the highest level of abstraction available. This could be C source code,
or a binary of the software secure system. During algorithm analysis, the adversary
defines the application-dependent attack objectives. For example, the differential fault
analysis attack of Piret and Quisquater [2003] requires a fault differential on the ci-
phertext, obtained after injecting a fault into the last-round state of block cipher. In
the following example, we assume a last-round computation of the following form. The
fault attack target, in this case, is the state, and the objective is to capture a faulty
ciphertext.

ciphertext = key xor sbox[state]

3.2.2. Instruction-level Analysis. Next, the adversary studies the software implementa-
tion at instruction level, in order to identify the candidate instructions for the fault
attack. Consider the following example, which is a simplified implementation of the
last-round of a block cipher, implemented using LEONS instructions.

1D [%ofp — 121, %gl ;LD1 (state)

LD [%ofp — 16], %g2 ;LD2 (key)

LD [0x100 + %gl],%g3 ;LD3 (lookupl[state])
XOR %g3, %2, %g4 ;XOR1 (key, state)
STD %g4, [%fp — 20] ;STD1 (output)

This program snippet loads a state variable and a key from data memory, substitutes
the state variable using a lookup table, and applies exclusive-OR (XOR) on the result
and key. The output is then transferred to a memory location. Based on the DFA tech-
nique of Piret, the candidate instruction for fault injection is the first load instruction,
which transfers the last-round state from data memory into processor register %gl.
Additional study of the control-flow and data-flow of the instructions may be required
in order to identify dependent instructions, which are also suitable for the fault attack.
In this case, only the first load LD1 is a suitable fault-injection candidate. The second
load, LD2 does not contribute to the desired fault analysis, and faults in the third load
LD3 would cause faults at the output of the lookup table rather than at the input.
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F | D | A E | M| X | W, F | D A E | M | X W
| | I I I | il I | | I
0| 1 0 E
1|2 LD 1572 3.36
2| b3 LD2 2 (572 336 54
3 |XOR1 LD3 3|554 33 54 52
4 | ST1 XOR1 4591 372 54 52
5| stall stall 5| o0 0 0 52 758 2.82
6 sT1 LD1 6 35 652 0 758 282 56
7 LD2 7 578 512 0 282 56
8 LD3 8 537 0 0 56
9 stall 9 535 326 O
10 ST1  XOR1 10 3.77 492
11 sT1 11 0
(a) (b)
[ ain ) Fault Propagation Path

Stall

Fig. 3. (a) Pipeline analysis and fault propagation path for the lookup table target. (b) Pipeline sensitivity
analysis for the lookup table target.

3.2.3. Microarchitecture-level Analysis. The third step is to examine the software behavior
closely in order to select the exact clock cycle that would lead to the desired error. One
would need to do this analysis at the cycle-accurate level, in order to account for pipeline
effects. Figure 3(a) illustrates the result of this analysis. The instruction sequence
requires 12 clock cycles to complete and experiences one data hazard to accommodate
the table lookup. According to the pipeline analysis, LD1 occupies seven clock cycles and
a fault in any of these seven cycles can potentially create a fault of the desired kind.

However, not all seven cycles can lead to useful LD1 errors. Some of the fault injections
may also affect other instructions. We can use the instruction fault-sensitivity model
to identify the cycle most suited for fault injection. Figure 3(b) shows an overlay of the
instruction fault sensitivity data (Table I) on the instructions in the pipeline. Looking
across rows, one can now identify the most sensitive pipeline stage in every clock
cycle. For the LD1 instruction, the instruction-fetch and memory-access step are most
sensitive, which implies that clock cycle 0 and clock cycle 4 are suitable candidates for
fault injection. The fault intensity would have to be chosen such that a fault is induced
in LD1 but not in other instructions. Assuming that we would select cycle 4 for fault
injection, Figure 3(a) shows the fault propagation to the memory stage of the final
instruction STD. As we will demonstrate in the next sections, the analysis of the fault
propagation path may sometimes lead to additional candidates for fault injection.

4. CASE STUDY: FAULT ATTACKS ON SECURE EMBEDDED SOFTWARE

In this section, we will apply the principles of the proposed fault attack methodology
on two case studies - one involving a DFIA analysis on AES and the other involving an
attack on software-implemented fault countermeasures.

4.1. CASE STUDY I: DFIA on TBOX AES

This section builds a DFIA on the software implementation of the AES algorithm
on LEON3. We implemented the AES algorithm as a TBOX design. TBOX design is
a word-oriented implementation suited for 32-bit microprocessors. The details of the
DFIA attack on the AES algorithm can be found in Ghalaty et al. [2014].

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 95, Publication date: July 2017.



Analyzing the Fault Injection Sensitivity of Secure Embedded Software 95:13

4.1.1. Algorithm-level Analysis. The objective of the DFIA attack on the AES algorithm
is to mount a biased fault injection attack on the output of AES round-9. For the attack
on the TBOX design, we consider the expression that generates (one quarter of) the
round-9 output state. It includes four TBOX-table lookups, which are all added together
with a roundkey to produce the round-9 output t0.

t0 = TeO[ sO >> 24 1
Tel[(sl >> 16) & 0xff]
Te2[(s2 >> 8) & 0xff]
Te3[s3 & Oxff 1
rk[36]; // Target for biased fault injection: Output of Round 9: tO

> > > >

4.1.2. Instruction-level Analysis. Now, we must define the set of instructions that would
lead to the required fault model. The following code shows some instructions in the
AddRoundKey function of the TBOX AES in round-9. The instructions in range of [48, 5¢]
are the instructions that are doing shift and XOR operations on the state word (%g1).
Instruction LDI7 loads the key word, and instruction XORS8 applies a bit-wise XOR
operation on the key and the state words.

48: ILD [%13 + %031, %02 ; LD1 5C: XOR %gl, %05, %gl ; XOR6
4C: SLL %04, 2, %04 ; SLL2 60: LD [%12 + 0x981, %04 ;LD7
50: LD [%07 + %041, %05 ; LD3 64: XOR %gl, %04, %16 ; XOR8
54: XOR %gl, %02, %gl ; XOR4 68: SRL %i5, Oxe, %05 ; SRL9
58: LD [%fp + Ox4c]l, %12 ;LD5 6C: SRL %i4, 0x18, %gl ;SRLI10

4.1.3. Microarchitecture-level Analysis. To apply DFIA to a RISC pipeline, we need to
induce biased data errors into selected instructions. Biased data errors mean that the
effects of the injected fault must be revealed on the data computation rather than the
control flow of the program or the instruction opcodes. Therefore, we will consider a
(pipeline stage, instruction) pair as a valid fault injection target if attacking that pair
yields a biased fault.

Figure 4 shows the behavior of the previously analyzed instructions in the pipeline.
There are some data dependencies between the instructions for TBOX as well which
are shown by blue circles in the graph. All the data dependencies can be solved by for-
warding technique, except the dependency from LDI7 to XORS8. Therefore, the pipeline
will have a stall in cycle 26. Due to the cache miss processing for LDI5, the pipeline
will be held still until the data is ready. The HOLD cycles extend the time of the in-
struction causing the miss by the corresponding number of cycles. The potential points
of observing biased fault is shown by red circled instructions in the pipeline in the
Figure 4.

In order to perform an efficient attack and obtain useful faulty values, the adversary
must only affect the circled pipeline stages only and avoid affecting other pipeline stages
in a cycle. In order to find the fault injection location and the valid fault intensity range,
we need to look into the timing characterization of each of the potential targets.

There are 32 opportunities to inject fault into AddRoundKey of TBOX since we can
inject fault in any cycle of this function. In Figures 5(a)-5(d), we show four of these
targets. Based on analyzing the instructions that might be affected by each of these
targets, we will choose the specific target and fault intensity to inject the fault.

(1) Fault Injection in Cycle 6 (Figure 5(a)): The only blue operations in cycle 6 are
the XOR4(E) and LD3(M). Figure 5(a) shows the length of critical path for each
operation in cycle 6. The largest critical path is for LD3(M), which is equal to
7.58ns. By gradually increasing the fault intensity, we will affect the LDI5(A),
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(2)

3
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Fig. 4. Pipeline behavior for AddRoundKey of TBOX AES.

which is 5.45ns. Since LDI5(A) is an invalid fault injection target, Figure 4, the
maximum fault intensity can be 5.45ns.

Fault Injection in Cycle 25 (Figure 5(b)): By injecting fault in this cycle, we are
allowed to affect XOR6(E), XOR4(X), and LD3(W). The largest critical path belongs
to LDI5(M). Since LDI5(M) is not blue, we cannot inject fault into this cycle.

Fault Injection in Cycle 27 (Figure 5(c)): In this figure, we are allowed to affect
XORS8(A) and LDI7(M). We can only affect LDI7(M) with the fault intensity of
7.58ns. The maximum fault intensity will be 5.91ns since we do not wish to affect
the SRL10(F).

Fault Injection in Cycle 28 (Figure 5(d)): In this figure, we are allowed to effect
XORS(E) and XOR6(W). We can affect the XOR8(E) and the maximum intensity
that we can apply is the delay of SRLI(A) (4.7ns), since SRLI(A) is an invalid target
of fault injection in Figure 4.

Using this analysis, we launched the DFIA attack on the TBOX implementation of the
AES algorithm. The number of required fault injections and the results of this attack
will be discussed in Section 7.

4.2,

CASE STUDY II: Analysis of Instruction-level Countermeasures on LEON3 Pipeline

The redundancy-based, instruction-level countermeasures against fault attacks
have been trusted for years. Traditionally, it is assumed that breaking these
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Fig. 5. Fault sensitivity analysis for different target cycles of the TBOX AES.

countermeasures requires multiple identical faults, which can be achieved by ex-
pensive fault injection setups with back-to-back injection capabilities [Barenghi
et al. 2010; Moro et al. 2013b]. In this section, to break common instruction-level
countermeasures, we describe different attack scenarios that can be potentially
achieved by single glitches without requiring back-to-back injections. We will use
a microarchitecture-level analysis to identify the attack scenarios. In Section 7, we
experimentally verify the defined scenarios with single clock glitch injections.

4.2.1. Instruction Duplication Countermeasure. In the Instruction Duplication countermea-
sure [Barenghi et al. 2010], sensitive instructions are duplicated selectively and their
computation results are stored in different destinations. Then, these results are com-
pared to detect faults.

Figure 6 illustrates the Instruction Duplication countermeasure on a memory-load
(LD1) instruction and its behavior on the pipeline. This code protects the LD1 instruction
by storing the load value in both %g2 and %g3 registers. The values of these two registers
are compared by CMP instruction and an error policy is called if a mismatch is detected.

The gray instructions show stalls in the pipeline. Stall 1 in Figure 6 is due to the data
dependency between the LD2 and CMP instructions. As shown, the results of LD2 will be
ready in the Stage E at Cycle 4. The CMP instruction in Stage A waits for the result
of LD2 until Cycle 5 and then continues its execution. Stall 2 on the BNE instruction is
due to the branch interlock. The branch interlock happens in the case of a conditional
branch. When a conditional branch is performed in 1-2 cycles after an instruction that
modifies the condition codes, 2 cycles of delay are added to allow the condition to be
computed.

The target of fault injection to thwart this countermeasure can have two forms. The
first involves injecting two identical faults in each of the LD instructions to bypass
the equality check. The second is a single fault injection into the LD1 instruction and
skipping the CMP or BNE. In this section, we use the pipeline analysis of the Instruction
Duplication code to find vulnerable points of fault injection to create different scenarios
explained earlier. The first step is to define the valid targets of fault injection in each
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Fig. 6. Pipeline behavior for Instruction Duplication countermeasure for LD instruction.

Table II. Attack Scenarios to Thwart Instruction Duplication Countermeasure

# of Glitch Targeted Instruction, Fault Type
Scenarios Injections Cycles LD1 LD2 CMP BNE
Al 1 3 CF CF - -
2 CF - IF -
A2. 1 4 CF - IF -
CF - - IF

cycle. Based on the previous analysis, the valid stages to inject faults are defined as
follows. The red circled instructions show the valid instructions to target computa-
tion faults. These instructions can be targeted to generate different faulty values in
registers. Affecting the black squared pairs of (instruction, pipeline stages) will cause
instruction faults. For example, targeting the LD instructions in Stage M or W will gen-
erate different faulty values, and targeting the CMP or BNE instruction in Stage F and
Stage D will cause instruction faults. Then, an adversary can define different scenarios
for fault injection in each cycle.

Table IT summarizes the two potential scenarios. In this table, columns 2 and 3 show
the potential targets of fault injection in the pipeline for achieving each scenario. The
last column shows the type of fault that is injected into each instruction of the pipeline.
The two scenarios are explained in detail as follows.

(1) Scenario A.1. Double Computation Fault: The purpose of this fault injection is
to inject exactly the same faults into the original and redundant copies of the LD1
instruction. These fault injections must not affect the CMP or BNE instructions. This
scenario can be achieved by injecting a fault into Cycle 3 of the pipeline. Injecting
a fault into this cycle does not have any effect on the CMP or BNE instructions, due
to Stall 1 in the pipeline.

(2) Scenario A.2. Single Computation Fault-Single Instruction Fault: Another
way to bypass this countermeasure is to create faulty values in register %g2 by a
computational fault in LD1 and skip the CMP or BNE instructions. To achieve this
type of fault, we can trigger the fault injection in different cycles. The single glitch
injection must accurately target the cycle that is performing both computational
operations on LD1 and instructional operations on CMP or BNE. As shown in the
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Fig. 7. Pipeline behavior for instruction parity countermeasure for LD instruction.
Table Ill. Fault Attack Scenarios to Thwart Instruction Parity Countermeasure
# of Glitch Targeted Instruction, Fault Type
Scenarios Injections Cycles LD1 SRL1-AND LD2 CMP BNE
C1. 1 234,13 CF - - - -
C.2. 1 3,4,13 CF IF - - -
CF - - - IF
C.3. 1 2,20
CF - - IF -

pipeline, these cycles can be Cycle 2 that affects CMP (F) or Cycle 4 that can affect
CMP (D) or BNE(F).

4.2.2. Instruction Parity Countermeasure. This software countermeasure is proposed by
Barenghi et al. [2010]. In this technique, we first save the precomputed value for
the parity bit in a register. Then, the parity is computed on the fly for the protected
register’s value. The computed parity value is compared to the precomputed value and
an alarm is raised if a mismatch happens.

Figure 7 shows an example of the parity countermeasure. In this example, the pro-
tected instruction is a memory-load instruction that loads a value from [%fp-12] into
register %g3. The precomputed parity value is stored in %g2. The computed parity value
is obtained using some Shift-Right (SRL) and XOR instructions and stored in %g4.
The value of the precomputed parity bit will be compared to the value of %g4 and the
countermeasure will raise an alarm in case of mismatch.

As shown in Figure 7, there are several opportunities to inject useful faults into
this countermeasure. The parity countermeasure is vulnerable to many types of fault
injection scenarios as it contains many instructions for computing the parity. Some
of these opportunities are explained in the following text, which is summarized in
Table III.

(1) Scenario C.1. Single Computation Fault: The purpose of this fault injection is
to inject computational faults into the original LD instruction, so that the effects of
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Table IV. Fault Attack Scenarios to Thwart Instruction Skip Countermeasure

stages

Scenarios # of Glitch Targeted Instruction, Fault Type
Injections Cycles LD1 LD2
D.1. 1 1 IF IF

fault can change an even number of bits in register %g3. Therefore, the computed
value for parity bit will still be the same as the correct execution. These fault
injections must not affect the CMP or BNE instructions. This scenario can be achieved
by injecting a fault into the Cycle 2, 3, 4, or 13.

Scenario C.2. Single Computation Fault-Multiple Instruction Fault: The
purpose of this fault injection is to inject computation fault into the LD instruction
and inject instruction faults in the computation of the parity bit. This scenario
can be obtained by a single glitch injection. The single glitch injection must accu-
rately target the cycle that is performing both computational operations on LD3 and
instructional operations on SRL1(F-D-E), MOV(D-M), XOR1(F-A), XOR2(F), SRL2(D),
XOR1(F) .

Scenario C.3. Single Computation Fault-Single Instruction Fault: Another
way to bypass this countermeasure is to create faulty values in register %g3 by a
computational fault in LD1 and skip the CMP or BNE instructions. To achieve this
type of fault, we should trigger the computation fault in Cycle 2 and the instruction
fault in Cycle 20 to target the BNE(F).

(2)

3

4.2.3. Instruction Skip Countermeasure. This countermeasure is proposed by Moro et al.
[2013b]. This redundancy technique is used to avoid the instruction skip faults. Instruc-
tion skip fault is defined as a fault that can change an instruction to an effective NOP
instruction. Therefore, the fault model is not defined as a computational fault model,
but it can only change the opcode of the protected instruction. The following shows the
assembly code for the instruction skip countermeasure on LD instruction.

The pipeline behavior for the instruction skip countermeasure is shown in Figure 8.
As shown, since the adversary does not target for computational faults, he can only
target the first three cycles. Therefore, there is only one scenario that can achieve such
a fault.

(1) Scenario D.1. Double Instruction Fault: There are two ways to achieve instruc-
tion faults in both LD instructions.
—Single Fault Injection: By injecting a fault into Cycle 1, the adversary can change
the opcode of the instruction in the LD2(F) and LD1(D) (as shown in Table IV).

5. EXPERIMENTAL SETUP

The example fault model in Section 3.2 characterizes the sensitivity of the target pro-
cessor to setup-time violation faults. Our fault injection and measurement setup injects
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Fig. 9. Block diagram of experimental setup.

setup-time violation faults via clock glitching: A clock glitch causes timing violations
by temporarily shortening the clock period of the target processor. Our setup can gen-
erate clock glitches up to a few hundreds of MHz, which is sufficient to demonstrate
our method on our target. For more advanced targets, other methods such as voltage
glitching can also be used to generate timing violations [Timmers et al. 2016; Giller
2015].

Figure 9 gives an overview of the setup. It consists of a Control PC, a Device Under
Test (DUT), a pulse generator, and a clock glitcher module. We implement the glitcher
module and DUT on a SAKURA-G board [Satoh 2013]. The Control PC manages the
fault injection process by controlling both the clock glitcher module and DUT. The clock
glitcher module takes a glitch-free clock signal from the pulse generator, and produces
a glitchy clock signal. It consists of a clock glitch controller and clock glitch injector.
Initially, the PC configures the clock glitch controller by setting the required glitch
parameters. The clock glitch controller records these specified parameters and waits
for trigger from DUT. The PC also configures the DUT which runs a cryptographic pro-
gram. The DUT sends a trigger signal to the clock glitcher module when it reaches the
predefined point in the program. After receiving the ¢rigger signal, the clock glitch con-
troller arms the injector. Then, after a predefined number of cycles, the injector injects
the specified glitch. It also generates the capture signal for latching values of pipeline
registers into the Pipeline Trace Register (PTR) after glitch injection. These signals
are later analyzed to understand the effect of fault injection on pipeline registers.

5.1. Implementation of Clock Glitcher

We implemented the clock glitcher module on the controller FPGA (Xilinx Spartan-6
XC6SLX9) of the SAKURA-G board. The top part of Figure 9 shows the block diagram
for the clock glitcher module of our setup. The glitcher module takes a glitch-free clock
signal as an input from the pulse generator and generates a glitchy clock signal as
an output. In this setup, we use a 24MHz clock input generated by a pulse generator
(Agilent 81110A). The generation of glitches is done with two variable phase shift
modules [Endo et al. 2011].

The Control PC communicates with the glitcher via a USB communication link. We
dynamically set the glitch parameters using Python scripts from the Control PC. The
glitch injector then injects the glitch with these specified parameters when it receives
the trigger signal. Using our setup, we can generate Ty, values between 3ns and
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20ns with 100ps step-size. We also have a control on the time between the trigger
event and the glitch injection, which allows us to target a specific pipeline stage of a
given instruction.

5.2. Implementation of Data Acquisition

The bottom part of Figure 9 shows the block diagram for the data acquisition part of
our setup. Our DUT is a LEONS processor, which is implemented on the main FPGA
(Xilinx Spartan-6 XC6SLX75) of the SAKURA-G board. For data acquisition, we utilize
three hardware blocks: Debug Support Unit (DSU) of LEON3, Instruction Trace Buffer
(ITB) of LEONS provided as a part of GRLIB IP library [Gaisler 2016a], and a PTR.

DSU is a non-intrusive on-chip debug core which controls the operation of the pro-
cessor in the debug mode. In the debug mode, the processor pipeline is held idle and
the software-visible processor state can be accessed by DSU. DSU can read/write the
architectural registers and memory locations, load the program executable, start the
execution of a program, and halt/continue the operation of the processor. It can also
set/use breakpoints and watchpoints.

ITB is an on-chip memory buffer that stores the executed instructions. The buffer
operates as a circular buffer, continuously capturing trace information until it is halted.
It is located in a LEONS processor and is read out via DSU core. It traces the instruc-
tion address, instruction result, load/store data and address, and instruction timing
information. We use typical 64-entry ITB for our experimental setup.

PTR stores the values of pipeline registers just after the faulty (glitchy) cycle. The
operation of PTR is controlled by the capture signal generated by the clock glitcher.
When the capture signal is asserted, the contents of Pipeline Registers are copied into
PTR. When the capture goes low, it will freeze the contents of the register and stored
data can be read out via the DSU interface.

The Control PC runs the GRMON Debug Monitor [Gaisler 2016b] program. GRMON
is used to manage/configure the hardware data acquisition cores, to load the executable
of the cryptographic software and to start the execution of the program. It also supports
reading out the processor state, managing breakpoints and watchpoints, and reading
the ITB and PTR. GRMON connects to the on-chip components via a Joint Test Action
Group Debug Link.

The DSU and ITB cores can only access the software-visible architectural registers
and memory locations. Therefore, they can only show the fault effects on the software-
visible architecture of the LEON3 processor. On the other hand, the PTR can access
any signal in the processor pipeline, and thus, it can provide information about the
fault effects on the microarchitecture of the LEONS processor.

In conclusion, our experimental setup enables high-precision fault injection and
detailed analysis of the fault effects on the pipeline registers.

6. EXPERIMENTAL EVALUATION OF CASE STUDY |

In this section, we provide experimental results to demonstrate the impact of the
proposed method on the efficiency of fault injection and fault analysis parts of the
DFIA attack. In the injection part, an adversary applies the physical stress (e.g., clock
glitches) and collects faulty outputs. In the analysis part, the collected faults are ana-
lyzed to retrieve the secret key. We attacked the TBOX AES program running on FPGA
implementation of LEONS for two cases:

(1) Grey-box approach: In this case, the adversary uses the information provided

by the instruction fault sensitivity model. The adversary also has the knowledge
of the software behavior in the pipeline. Therefore, the adversary can identify the
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Table V. Comparison of Fault Injection Cost for Black-box and Grey-box Attack Strategies on TBOX AES

Number of Attacked Cycles | Tglitch Range Num(léizl())gﬂzu:tfg;gwns
Black-box
Approach 16 [3.0, 15.8] 1,280
Grey-box
Approach 9 [5.43, 6.59] 81

most suitable clock cycles and fault intensity range for fault injection, aiming at
creating biased data faults.

(2) Black-box approach: In this case, the adversary does not have the instruction
fault sensitivity model. In addition, the adversary’s knowledge about the pipeline
behavior of the software is limited. The adversary can still do a limited timing
characterization for the processor using the existing black-box approaches [Korak
and Hoefler 2014; Balasch et al. 2011; Moro et al. 2013a]. However, the pipeline
state is unknown to the adversary. Therefore, the adversary cannot combine this
timing characterization with the software behavior in the pipeline.

In both cases, our purpose was retrieving the AES secret key with the DFIA attack.
We used one plaintext value and one key value for our experiments. We collected faulty
ciphertexts for different fault intensity values. We controlled the fault intensity by
increasing/decreasing the glitch width Tg;;c;,. Here, we present our results for retrieving
1 byte of the AES key.

The adversary starts with the fault injection part to collect biased data faults, which
are required for the fault analysis part of the DFIA attack. In the grey-box strategy,
the adversary uses MAFIA (Section 3) to find the most suitable points and injection
parameters for biased data fault injection. Then, he injects faults into these points in
the execution of AES software and collects faulty ciphertexts.

In the black-box case, the adversary has a limited knowledge of the target system.
Therefore, to collect biased data faults, he has to exhaustively inject faults into all points
in the execution of software and hope they will lead to biased data faults. However, in
this approach, a large number of fault injection attempts will cause random effects in
the fault injection point. For example, a fault injection attempt might affect the address
calculation of a memory-load instruction and cause the fetching of an irrelevant data
from the memory. This will create a random effect, rather than a biased effect, in the
fault injection point. Although this fault injection creates a faulty ciphertext, it will not
be useful for DFTA. Next, we investigate the required effort for biased fault injection
for both cases.

Table V demonstrates the effect of the proposed method on the efficiency of the fault
injection part of the attack. The table shows Ty, range and the number of clock cycles
that an adversary can exploit to create biased data faults. The first column of the table
lists the number of clock cycles during which a fault injection attempt might yield a
biased data fault. The total number of these cycles for the TBOX AES is 16 (Figure 4).
For the black-box case, the adversary attempts to inject faults into all of these cycles
as he is not aware of the pipeline behavior of the AES software. For the grey-box case,
this number reduces to nine with the microarchitecture-aware fault attack strategy.

The second column of Table V shows the T, range in which the adversary attempts
to inject biased data faults. The overall range for our LEON3 implementation and
experimental setup is [3.0, 15.8]ns, as the critical path of the processor is 15.8ns and the
minimum glitch period of our setup is 3.0ns. For the black-box strategy, the adversary
tries all possible glitch width (i.e., fault intensity) values. For the grey-box case, this
range will be reduced due to the proposed methodology. For every target cycle, we will
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Table VI. Fault Injection Results on Instruction Duplication Countermeasure

Glitching Scenari Target of Glitch Width Impacted Observed
1tehing Scenario Fault Injection (ns) Instruction(s) Fault Effect

A.1. Single Glitch - - . _

A.2. Single Glitch Cycle 2 9.0-12.6 s a8 Fg;}}tt;nsgf

A.2. Single Glitch Cycle 4 12.0 - 14.6 ENELF Fault in g2

have a different valid T, range as it is previously shown. In our case, there are nine
valid Tyisr, ranges. In Table V, we list the average lower and upper bound values for
the grey-box approach rather than showing bounds of each Tglitch range.

The third column of Table V is the total number of fault injection attempts for 162ps
step-size. These numbers show the required fault injection attempts to explore all
possible Ty, values that might yield biased data faults. We obtained these numbers
by multiplying the number of attacked clock cycles and the number of Tg;;s levels
within the corresponding T, range. As it can be seen, the number of total fault
injections for the black-box case (1,280) is greater than the grey-box case (81). As
a result, the proposed methodology significantly increases the efficiency of the fault
injection part by reducing the effort for biased fault injection.

In the fault analysis part, the adversary uses the collected faults to retrieve the
secret key byte. In this experiment, the DFIA attack was able to retrieve the key byte
with 31 faults in the black-box case, and with 17 fault injections in the grey-box case.
In other words, the faults in the grey-box case provide more information on the secret
key then the faults in the black-box case do. This is expected as the proposed method
increases the control of the adversary on the induced fault effects.

In conclusion, these experimental results demonstrate that DFIA attacks are feasible
on pipelined RISC processors for the black-box and grey-box approaches. They also
show that the grey-box strategy significantly reduces the fault injection effort required
to create biased data faults, and it enables more efficient DFIA attacks.

7. EXPERIMENTAL EVALUATION OF CASE STUDY I

For each attack scenario and countermeasure investigated in Section 5, we launched
a clock glitch injection campaign using our experimental setup. In the following para-
graphs, we will list the observed faulty behavior for each countermeasure.

Table VI shows the results of our experiments on the Instruction Duplication
countermeasure. The first column of this table shows the fault injection scenario. Col-
umn 2 and 3 show the clock cycle for the fault injection and the glitch width, respec-
tively. The last two columns list the faulty instructions and the observed fault effect.

In our experiments, we were not able to achieve the Scenario A.1., which requires
injecting the same fault into both copies of the instruction with a single glitch injection.
We observed that the effect of fault on the two LD instructions is different because they
are in different stages of the pipeline. The table shows that we have successfully
injected faults that result in other scenarios. We successfully created Scenario A.2. by
injecting a single glitch fault into Cycle 2 or Cycle 4. By injecting glitches in Cycle 2, we
were able to affect the operands fetched in Stage A of LD1 instruction, and change the
value stored in %g2. This fault injection also affected the Stage F' of CMP and changed
this CMP instruction into a shift-right instruction (SRL). By injecting a fault in Cycle 4,
we affected the Stage M of LD1 and Stage F. This fault injection caused a faulty value
in the result of LD1 (%g2), and replaced the branch-on-not-equal (BNE) instruction into
a NOP instruction. Therefore, the code did not jump to the error handling procedure,
although there was a mismatch between the results of LD1 and LD2.

Table VII shows the result of fault injection into the Instruction Parity coun-
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Table VII. Fault Injection Results on Instruction Parity Countermeasure

Glitching Target of Glitch Impacted Observed
Scenario Fault Injection | Width (ns) | Instruction(s) | Fault Effect
C.1. Single Glitch | Cycle 4 13.2 LD1, M Fault in g3
C.2. Single Glitch | Cycle 13 12.1-13.3 LD1,W Fault in %g3
XOR2, E XOR to NOP
Table VIII. Fault Injection Results on Instruction Skip Countermeasure
Glitch Target of Glitch Impacted Observed
Scenario Fault Injection | Width (ns) | Instruction(s) | Fault Effect
D.1. Single Glitch | Cycle 1 9.0-9.2 LD1,D LD1 to SETHI
LD2, F LD2 to NOP
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termeasure. As shown, since the parity countermeasure has many instructions for
computation of the parity bit, there are several points in the program that are vul-
nerable to the fault injection. In this table, we show that the adversary can exploit
single glitch injection to either corrupt multiple bits in the protected register’s value or
the computation of the parity bit. For example, by injecting the glitch in Cycle 13, the
condition codes and the XOR instruction changes to a NOP instruction.

Table VIII shows the result for the Instruction Skip countermeasure. As shown,
with single, we are able to change the opcode of the LD instructions to other opcodes
and skip two consecutive instructions. For example, by injecting fault in the Cycle 1,
we converted LD1 instruction into a SETHI instruction and LD2 instruction into a TADCC
instruction. The SETHI instruction uses the least significant 22 bits of the instruction
value, and writes this value into the destination register (%g2 in this case). TADCC is a
special addition instruction and it does not update any register; it is effectively a NOP.
As a result, we update the destination register with a random value. Other scenarios
of fault injection are explained in Yuce et al. [2016Db].

8. CONCLUSIONS

This work was motivated by the need for an efficient fault model, which can explain
the fault effects experienced by a software program in the instruction-set-architecture
level, and can guide the fault injection process to induce the desired fault effects in the
program. To fulfill these requirements, we developed a fault sensitivity model for the
underlying processor on which the embedded program is executed. This model allows
an adversary to identify the potential fault effects on every (instruction, pipeline stage)
pair. It also enables the adversary to tune the fault injection parameters to induce the
desired effects in each (instruction, pipeline stage) pair.

Relying on this model, we also built a systematic fault attack methodology, so-called
MAFTA. MAFIA enables an adversary to launch an efficient fault attack on an embed-
ded software by exploiting different layers of abstraction. The adversary starts with
algorithm-level analysis to determine application-specific fault injection and analysis
objectives. Then, the adversary studies the software implementation of the algorithm
in the instruction level and finds the candidate (instruction, pipeline stage) pairs for
fault injection. Finally, the adversary examines the execution of the instructions on
the pipeline to determine clock cycles to inject faults as well as the fault injection
parameters to create the desired effects.

We showed the efficiency of MAFIA with two case studies. First, we developed a
DFIA attack on an unprotected AES software program running, and we showed that
the use of the proposed methodology reduced the number of fault injections an order
of magnitude in comparison to the traditional attack methodology. Second, we studied
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instruction-level software countermeasures. We identified their vulnerabilities using
our method, and demonstrated that all of the studied countermeasures can be broken
with single fault injections with low-cost injection setups such as clock glitching. We
also experimentally demonstrated the attacks on an FPGA implementation of LEON3
processor. Finally, we conclude that efficient countermeasures to protect embeddedsoft-
ware must consider multiple abstraction layers [Yuce et al. 2016a].
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