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ABSTRACT 

Data analysis is challenging as it requires synthesizing domain 
knowledge, statistical expertise, and programming skills. Assistants 
powered by large language models (LLMs), such as ChatGPT, can 
assist analysts by translating natural language instructions into 
code. However, AI-assistant responses and analysis code can be 
misaligned with the analyst’s intent or be seemingly correct but 
lead to incorrect conclusions. Therefore, validating AI assistance is 
crucial and challenging. Here, we explore how analysts understand 
and verify the correctness of AI-generated analyses. To observe an-
alysts in diverse verifcation approaches, we develop a design probe 
equipped with natural language explanations, code, visualizations, 
and interactive data tables with common data operations. Through 
a qualitative user study (n=22) using this probe, we uncover com-
mon behaviors within verifcation workfows and how analysts’ 
programming, analysis, and tool backgrounds refect these behav-
iors. Additionally, we provide recommendations for analysts and 
highlight opportunities for designers to improve future AI-assistant 
experiences. 
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• Human-centered computing → Human computer interac-
tion (HCI); Natural language interfaces. 
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1 INTRODUCTION 

Data analysis is challenging as practitioners must synthesize do-
main knowledge with computational expertise to draw reliable 
conclusions. For practitioners, computational challenges may act 
as a barrier to exploring alternative and valid analysis decisions, 
and therefore conducting robust analyses [84, 86]. 

Improved capabilities of large language models (LLMs) for gen-
eral [18, 22, 24], data science [19, 76, 138], and visualization [30] 
programming tasks suggest LLM-based analysis assistants as a 
promising solution, enabling data analysts to execute and automate 
their analyses. Given the widespread deployment of assistants such 
as OpenAI’s Code Interpreter [96], there is an emerging paradigm 
in how analysts perform analyses. Rather than formulate the ex-
act transformations and operations in an analysis, analysts specify 
their analysis question through a natural language intent (Fig. 1 
right) [85]. The AI assistant then performs the analysis task, writes 
code to understand the data, makes the necessary data transfor-
mations, and interprets the results. Since many analysis tasks are 
time-consuming [20, 54, 55, 84], even for analysts well-versed in 
programming, natural language interactions can be more efcient 
especially when abstraction of the intent is possible. Furthermore, 
this natural language communication can broaden the usability of 
AI analysis tools, making them accessible even for analysts who 
are non-expert programmers [106]. 

Yet, a signifcant challenge remains. AI-based assistants, while 
powerful, can misinterpret user intentions (see Fig. 1) [48, 79, 137] 
or make seemingly correct erroneous outputs [13, 47]. Since mis-
interpretations is inherent in the fexibility of natural language 
communication [85, 106, 114], errors from existing AI-based assis-
tants are likely to persist no matter what the underlying LLM is. 
Moreover, because conclusions from data analyses often inform 
high-impact decisions in science [4, 8], business [54, 66, 67], and 
government [42, 124], it is important for users of AI-based analysis 
assistants to critically refect on the assistant’s outputs [106]. In 
this new paradigm, analysts’ focus now shifts from writing and 
validating their own analyses to understanding and evaluating the 
analyses generated by AI assistants [79]. This can be challenging 
as existing AI assistants lack verifcation support [106, 112] and 
even experts can be susceptible to automation bias and overre-
liance [100, 132]. 
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Figure 1: Analysts may now need to understand and verify AI-assisted analyses. In traditional analysis workfows, analysts 
specify and execute their data operations using tools such as computational notebooks (A) or spreadsheets (B). Engaged in 
these operations, analysts are familiar with the process and results of their work (e.g., reports, code, tables, and visualizations). 
However, with AI-assisted analysis, analysts can convey their intentions using natural language (e.g., "How many items purchased 
within the month of November were returned to the seller?"). The AI assistant handles the task of specifying and performing the 
data operations. This shift requires analysts, including those who may not be familiar with the underlying execution language 
the assistant uses, to understand and verify the process and results of the assistant (C). In this paper, we study the workfows 
analysts with varied backgrounds use to understand and verify AI-assisted data analyses. 

Recent work in the HCI community explored ways to provide the 
user with a better understanding of LLM-generated outputs, includ-
ing those from AI-based code assistants [120, 127]. However, these 
studies focus only on programmers and not the specifc domain of 
data analysis, missing a signifcant portion of data analysts [26, 84]. 
Since data analysis involves iteratively making sense of the underly-
ing data [69, 71, 104], analysts must juggle their mental model of the 
data in addition to their understanding of the AI’s procedure. There 
is limited insight into how analysts with diferent programming 
skills and computational reasoning abilities go about this process. 
Current code assistants such as Open AI’s Code Interpreter [96] 
present these steps in natural language, Python code, code com-
ments, and code execution outputs. It is unclear to what extent 

these interface afordances are helpful and how analysts use these 
diferent sources of information for accessing the correctness of 
AI-generated analyses. 

In this work, we build on the perspective of recent works in 
Human-Centered Explainable AI (HCXAI) [33, 68, 81, 82] in that 
users’ needs to understand AI-generated outputs are dependent on 
their backgrounds, social, and organizational contexts; we focus on 
data analysts as they understand AI-assisted analyses. We study 
the verifcation workfows of analysts, how diferent backgrounds 
may infuence analysts’ approaches, and opportunities to improve 
this experience. We aim to guide the design of AI assistants that 
empower analysts to critically refect on AI-generated outputs. 
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To explore analysts’ behaviors and elicit feedback for design 
opportunities, we developed a prototype interface that not only 
includes the AI’s code, code comments, and natural language ex-
planation but also additional interactive data tables and summary 
visualizations (Sec. 4). This design accommodated a broad spectrum 
of potential artifacts that analysts may employ during verifca-
tion, facilitating the observation of naturally emerging workfows. 
Analysts could access intermediary data tables that let them fl-
ter, search, and sort for values to explore the data and verify the 
AI-generated output. Using our tool as a probe, we conducted a qual-
itative study with 22 professional analysts (Sec. 5). We asked par-
ticipants to verify AI-generated analyses that involved sequences 
of data transformations covering a range of real-world datasets 
(Table 1). These generated analyses were in response to high-level 
analysis queries written by data scientists [138] which were pre-
sented to participants as prompts written by an intern. 

We fnd analysts often started their verifcation workfows with 
procedure-oriented behaviors (answering “what did the AI do?”) and 
shifted to data-oriented behaviors (answering “does the [resulting] 
data make sense?”) once they noticed issues in the AI-generated 
output (Table 4). Analysts adopted procedure-oriented behaviors to 
get a high-level understanding of the analysis steps and confrm low-
level details in the data operations. Meanwhile, analysts adopted 
data-oriented behaviors to make sense of the data. Notably, data 
artifacts (i.e., the data tables and summary visualizations) were 
often vital as secondary support in procedure-oriented behaviors, 
and vice versa for procedure artifacts (i.e., the natural language 
explanation and code/code comments) (Fig. 5). 

Based on these fndings (Sec. 6), we make recommendations 
to end-user analysts interacting with AI-based analysis assistants 
(Sec. 7.1). Additionally, we discuss implications for system designers 
(Sec. 7.2). These center around fuidly connecting data-oriented and 
procedure-oriented artifacts, communicating data operations and 
AI’s assumptions about the data, and incorporating AI guidance 
into verifcation workfows. 

This paper contributes the following: 

(1) Findings from a user study using our design probe that un-
cover common behavioral patterns in the verifcation of 
AI-generated analyses, 

(2) A set of implications for end-user analysts interested in AI-
assisted data analysis, paired with design implications for 
tool builders to improve verifcation workfows. 

2 MOTIVATING EXAMPLE 

To illustrate the potential errors and verifcation workfows in AI-
assisted analyses, we compare three hypothetical analysts working 
on the same analysis question (Fig. 1). This scenario highlights 
the workfow diferences between traditional and AI-assisted data 
analysis. Jane, Kate, and Alex are data analysts at a company that 
sells products on a popular e-commerce platform. They want to 
assess how many products may have quality control issues as the 
year draws to a close. Specifcally, they want to fnd out how many 
distinct products bought in November were later returned. To per-
form this analysis, they have a dataset of product orders where 
each row is a unique order for a product and its associated order 
status. The dataset contains the following key columns: 

• order_date: the date which the order was placed 
• sku: a unique identifed for the product 
• quantity: the number of units of the product ordered 
• order_status: indicating whether the order was Delivered 
to Buyer or Returned to Seller 

Traditional Data Analysis. Jane uses a spreadsheet for her analy-
sis (Fig. 1A). She explores the dataset in her spreadsheet tool. After 
grasping its structure, she zeros in on the task. She uses the spread-
sheet’s interface to flter the order_date column for the month of 
November and the order_status column for Delivered to Buyer. She 
sees that there are two rows left, indicating two unique products 
were ordered in November and returned to the seller. 

In contrast, Kate opts to use computational notebooks for data 
analysis, employing Python code to investigate the analysis ques-
tion (Fig. 1B). She writes code to read the dataset and to understand 
the data. She then writes code to flter the order_date column for 
the month of November and the order_status column for Delivered 
to Buyer. In her workfow, Kate validates her operations by writing 
code to get a quick sense of the intermediate data produced. Like 
Jane, Kate arrives at the same conclusion. Throughout this pro-
cess, Jane and Kate are actively engaged in the data and operations, 
giving them confdence in the correctness of their conclusion. 

AI-Assisted Data Analysis. Alex, meanwhile, decides to leverage 
an AI assistant for help. He uploads the dataset and writes a natural 
language prompt: How many items purchased within the month of 
November were returned to seller? 

The AI assistant writes and executes code to read the dataset. 
Next, it performs the analysis task, generating and running code 
before arriving at a fnal answer of 5. During this, the AI assistant 
also explains its steps in natural language. Because Alex was not 
directly involved in the analysis, he needs to validate its answer 
by inspecting the AI-generated output (Fig. 1C). He reads over the 
AI’s natural language explanation of its procedure and skims the 
code briefy. Without fully understanding the code, he deems the 
answer to be correct. However, upon comparing his answer with 
Jane’s and Kate’s, Alex realizes the AI made a mistake. Looking 
through the intermediate data in Kate’s work, Alex realizes the AI 
assistant calculated the number of units returned rather than the 
number of unique products returned. 

The errors in AI-assisted data analysis are subtle and require 
the analyst to carefully scrutinize the AI’s procedure and associ-
ated data involved. Additionally, current AI assistants do not facili-
tate the exploration of data along with the AI’s code and natural 
language explanation, thereby constricting analysts’ verifcation 
workfows. Further, it is unclear how analysts go about verifcation. 
Therefore, this paper seeks to understand analysts’ workfows and 
identify opportunities for improvement. 

3 BACKGROUND AND RELATED WORK 

3.1 AI-Based Tools for Data Science Execution 

AI-based code assistants can enable analysts to conduct analyses as 
end-user programmers [70, 85]. With tools such as Github Copilot 
and ChatGPT, analysts’ intent specifed through natural language 
can be more expressive and approachable than those conveyed in 
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domain-specifc programming languages [27, 41]. Given the po-
tential of AI-supported natural language programming, there is 
a growing body of research in the value and usability of these 
tools [8, 31, 52, 79, 112, 126]. These works focus on programmer 
experiences with AI-based code assistants and fnd common chal-
lenges in comprehending and verifying the AI-generated code [79, 
112, 126]. 

Here, we build on prior work and study the verifcation chal-
lenges for data analysts as end-user programmers [70]. Compared 
to software engineering, data analysis is more exploratory and itera-
tive [60, 86, 104, 110] as code is not the deliverable but the outcome 
of the analysis [34, 54]. Importantly, making sense of the data is 
an integral part of data analysis [38, 71, 104, 111]. While existing 
work has studied how programmers validate AI-written code for 
general programming tasks [9], our work observes how data an-
alysts’ sensemaking behaviors interplay with their verifcation of 
AI-generated analyses. 

AI-based analysis assistants have also received great attention. 
Prior work has explored the design of analytical chatbots [44, 57, 
142] such as what should the responses be from such an assis-
tant [114] and how analysts can request, specify, and refne assis-
tance [89]. Given the attention and promise, these assistants have 
been integrated into popular analysis environments such as compu-
tational notebooks [39, 103] and spreadsheets [118], and released 
as standalone systems [30, 125]. In contrast, we examine these tools 
from the perspective of supporting analysts’ understanding and 
verifcation of AI-generated analyses, especially as AI-assistants 
can specify sequences of data operations (e.g., Fig. 1 right). In par-
ticular, we contribute the frst user study examining the common 
behaviors and challenges in verifcation workfows. 

3.2 Understanding and Sensemaking in Data 
Analysis 

Prior work has found that data scientists often compare conclusions 
with prior analyses and existing data [66, 86]. Likewise, as part of 
data science collaboration and communication, it is common for 
data analysts to interpret and understand the results of another 
analyst’s work [26, 67, 99, 140]. During this sensemaking, analysts 
often need help managing, tracking, and comparing the iterative 
and messy nature of their computations [43, 59, 62, 131]. To support 
this, prior work has explored how to help analysts track the data 
provenance in their analyses [58, 59, 135] and visualize how their 
data changes throughout various data operations [105, 129, 136]. 

While existing research has focused on understanding human-
written analyses, there are key diferences between understand-
ing analyses written by a human, and those written by an AI. 
People develop diverse perceptions and levels of trust in AI sys-
tems [28, 39, 51, 64], leading to distinct behaviors when evaluating 
AI-generated analyses. For example, McNutt et al. [89] observed 
that some data scientists naturally trust analyses written by a col-
league and may overlook code auditing. Additionally, social factors 
in data analysis communication often result in communicating asyn-
chronously [129], employing multiple platforms (i.e., Slack, Zoom, 
Google Docs etc.) [99], and selectively sharing information [86, 99]. 
These qualities are less likely to appear when interacting with 
an AI-assistant. Therefore, AI analysis assistants present a unique 

paradigm for analysis verifcation and sensemaking. Given the wide-
spread deployment of AI-based tools, our work seeks to understand 
the intricacies of this paradigm. 

3.3 Understanding and Verifying LLM Outputs 

Prior work in the Human-Centered Explainable AI community 
has emphasized the goal that understanding AI revolves around 
empowering individuals to fulfll their objectives [33, 68, 81, 82]. 
Following this perspective, recent work has explored ways to make 
LLMs more interpretable as they present their own explainability 
challenges [31, 120, 127]. Specifcally, these works have explored 
opportunities for AI-code assistants in programming applications 
and proposed diferent explainable AI (XAI) features to guide the 
programmer’s understanding of the model. In contrast, our work 
focuses on XAI features for data analysts. As data sensemaking is 
inherent in data analysis [38, 71], we explore specifc features that 
help analysts in following the AI’s data operations (e.g., via the 
natural language explanation and associated data tables). 

We note that understanding and verifying AI-generated outputs 
can involve additional follow-up prompts to the AI assistant [77, 85]. 
In this work, we focus on understanding the usage of supporting 
artifacts and disentangle the verifcation workfow using these 
artifacts from prompt writing (Sec. 4.1). Works studying abstraction 
matching [85], prompt writing [139], and repair of AI-generated 
programs [6, 94] are related but distinct. 

4 METHOD: DESIGN PROBE AND PREPARED 
TASKS 

In this work, we aim to study how analysts verify AI-generated 
analyses with features that support data sensemaking. In doing so, 
we wanted to minimize the impact of variations in the dataset, task 
difcultly, prompt expertise, and AI responses. To facilitate analysts’ 
natural sensemaking workfows when working with data, we chose 
to purpose-build a design probe [14] and provide additional data 
artifacts based on recommendations from prior work [5, 10, 23, 59, 
61, 91, 135]. We made this decision because existing assistants, such 
as Code Interpreter [96], do not allow easy exploration of data and 
only provide natural language explanations, code, and execution 
outputs. In this section, we discuss the key design considerations 
involved in our study (Sec. 4.1) before outlining the specifc de-
sign of our probe (Sec. 4.2) and the preparation of our study tasks 
(Sec. 4.3). 

4.1 Design Considerations 

In building our design probe and formulating our user study, we 
identifed three central design considerations that involved diferent 
trade-ofs outlined below. These decisions are guided by our goal 
to make reliable observations on analysts’ verifcation workfows 
with diferent supporting artifacts, while minimizing distractions 
from other aspects of the data analysis workfow. 

Using familiar and approachable supporting artifacts. A cru-
cial decision in implementing our design probe revolved around 
the choice of data artifacts. One option is to incorporate customized 
feature-rich artifacts (e.g., those in Datamations or DITL [105, 128]) 
and verifcation interfaces (e.g., incorporating visualization tools 
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like Voyager [133, 134] or PygWalker [53] for verifcaiton). Alter-
natively, we could opt for integrating a core set of simpler, more 
user-friendly, and approachable data artifacts. These two options 
contrast with each other in terms of the richness of actions analysts 
can achieve with the interface and the time and efort analysts need 
to spend to learn to perform these actions. 

Ultimately, we opted for familiar and approachable artifacts as 
our study focus is to observe verifcation workfows: we deter-
mined that the challenges tied to learning and interpreting cus-
tomized visual elements would limit our ability to observe these 
workfows [37, 73, 78]. Likewise, while generic artifacts and in-
terfaces may overlook some features experienced analysts could 
leverage, they let us focus on analyzing analysts’ workfows across 
a broad audience and still gather concrete feedback on the features 
they want. 

Focus on one turn of the human-AI interaction. Another choice 
that shaped our probe and study was whether or not to allow follow-
up prompts to the AI as part of the verifcation workfow. On one 
hand, choosing to allow follow-up prompts enables analysts to use 
them in their verifcation. However, besides interpreting the AI’s 
current output, analysts would need to grapple with the challenge 
of formulating prompts [90, 139]. On the other hand, opting against 
follow-up prompts mitigates the impact of prompt expertise but 
at the cost of confning analysts’ actions. In our study, we chose 
to zoom in on one turn of the human-AI interaction and disallow 
follow-up prompts. As every new prompt triggers a corresponding 
response from the AI assistant, continuous interpretation and verif-
cation of AI-generated outputs are inevitable. In reducing the scope, 
we chose to thoroughly observe how analysts understand the AI’s 
outputs and interact with supporting artifacts. Similarly, aiding an-
alysts in understanding the AI-generated output through artifacts 
not only helps them rectify errors in immediate interactions but 
also craft more efective prompts in future engagements. 

Prepare standardized task materials. The choice of datasets and 
verifcation tasks was also important to consider. One option is to 
allow analysts to work with their own datasets while interacting 
with the AI in real-time to verify the AI’s outputs. Alternatively, 
we could pre-prepare the natural language prompts, associated 
datasets, and AI-generated responses. These choices underscore a 
trade-of between matching analysts’ natural workfows and miti-
gating variability associated with generative AI and dataset com-
plexity. In our study, to control potential confounding factors, we 
chose to prepare all task materials. Although this approach may dif-
fer from the scenario where analysts’ verify their own datasets and 
analyses, it closely aligns with situations where analysts need to 
familiarize themselves with another analyst’s analysis [72, 99, 140]. 
To mitigate concerns related to dataset unfamiliarity, we carefully 
prepared approachable and realistic datasets from diverse domains, 
used prompts written by real-world data scientists, and provided 
additional background descriptions of the dataset and analysis moti-
vation (Sec. 4.3). Given our chosen approach, it would be interesting 
to apply the lessons learned in this study to analysts working on 
their own datasets and tasks (Sec. 7.3). 

4.2 Design of the Probe 

Data analysts need to inspect the data (i.e., the data quality, format, 
columns, values etc.) and engage with the data (e.g., understanding 
relationships between columns, looking for outliers etc.) as part 
of data sensemaking activities [71]. Therefore, we designed our 
probe with facilities for understanding the data. This includes data 
tables, and summaries and histograms of all the felds in the data. 
To support sensemaking while making components approachable, 
our probe incorporates abstractions of modalities found in popu-
lar data science tools: the code, code comments, natural language 
explanations, data tables, and visualizations [1ś3, 29, 32, 63, 135]. 

User Interface. The probe’s interface follows a multi-panel design. 
The main panel shows the chat interface between the user and the 
assistant (Fig. 2 left). The user’s prompt and subsequent response 
from the assistant are shown. In the assistant’s response, following 
Code Interpreter [96] and explanation practices recommended and 
found favorable in prior work [32, 77, 120], the interface shows the 
assistant’s natural language explanation of its procedure, associ-
ated code, code comments, and execution outputs (Fig. 2A and B). 
These are interleaved together such that all artifacts are available at 
any time. In addition, because understanding the sequence of data 
manipulations is vital to understanding the output [105, 136], the 
probe includes descriptions of any intermediate data computed as 
a result of an atomic data wrangling operation (Fig. 2C) [56, 136]. 

Inspired by prior work detailing the importance of contextualized 
intermediate data artifacts for analysis provenance [5, 10, 23, 59, 
61, 91, 135], the probe includes a side data panel (Fig. 2 right) that 
allows analysts to view all relevant data in the AI-generated analysis. 
Having this as a side panel is helpful as it suggests the information is 
of global scope [89]. Additionally, by keeping the data separate from 
the AI-generated analysis, the probe minimizes any interference to 
analysts following the AI’s procedure in the main panel. In the side 
panel, data tables are shown (i.e., the original data and the results 
of intermediate calculations) as collapsible panels. Each collapsible 
panel includes a raw data table and a summary visualization of the 
table from [93]. The summary visualization ofers a quick visual 
summary of the overall table, the values and distribution of each 
column, and basic descriptive statistics. 

User Interactions. In the main panel, the probe’s interactions 
prioritize easy access to the full/high-level abstraction of the pro-
cedure conveyed through the AI’s natural language explanation. 
Because code and table descriptions can obstruct and interrupt this 
view, the code and intermediate data descriptions in the main panel 
are initially hidden which users can reveal via a show/hide button. 
Analysts can also access the side data panels within the fow of the 
AI’s explanation via in-context buttons which open and close the 
corresponding panel (Fig. 2E1 and E2). 

In the side panel, analysts can perform basic operations on each 
table such as sorting columns and fltering rows based on specifc 
values in the column(s). To support easy navigation between the 
data tables and AI’s procedure in the main panel [23, 135], clicking 
on a data table scrolls the main panel to the corresponding context 
of that data table. 
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Figure 2: Probe Interface. The analyst’s prompt and the assistant’s response are shown in the left panel. The AI’s response 
includes its natural language explanation (A), the code and code comments involved in its calculations (B), and a description of 
any intermediate data (C). The original data table and intermediate data table(s) are accessible via buttons interleaved in the 
AI’s response (D1 and E1) and when clicked point to their corresponding data pane in the right panel (D2 and E2). These panes 
can also be opened directly in the right panel. In each pane, analysts can view the raw data table in the Dataset tab with sort 
and flter functionality (F). Analysts can also view a visualization showing the distribution and basic descriptive statistics of 
each column in the Summary tab (G). 

4.3 Preparation of Study Tasks situated in computational notebooks1 written by data scientist an-
notators. In our task preparation, we ran queries from ARCADE To prepare realistic analysis verifcation tasks and AI-written errors 
on Code Interpreter [96] and carefully selected a subset of queries representative of those made by state-of-the-art AI assistants, we 
that contained errors, had good coverage across a range of domains used the ARCADE benchmark dataset from Yin et al. [138]. AR-
and error types, and were approachable to analysts (details in the CADE features multiple rounds of natural language intent to code 

problems (i.e. a natural language query, dataset, and code solution) 

1These notebooks used datasets uploaded to Kaggle and encompassed data wrangling 
and EDA operations. 
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TID Task Natural Language Prompt Error Type and Summary PIDs 

T0 [121] Tutorial What is the least possible age of students having DataÐAI and took the minimum of age-range by al- Everyone 
high adaptivity? phanumeric order. 

T1 [15] Amazon How many items purchased within the month of PromptÐAI counted the quantity of products returned, P1, P7, P15, 
Orders November were returned to seller? instead of the number of unique products. P20 

T2 [46] Big 
Basket1 

Show a list of the top fve rated Nivea products. DataÐAI missed "Nivea Men" products in the data. P1, P2, P5, P12 

T3 [46] Big 
Basket2 

How expensive are gourmet products compared to 
beverage products in average? Show the value as a 
percentage of beverage products. 

Correct P1, P2, P5, P12, 
P22 

T4 [108] Bollywood Show the top 5 movies with the highest percentage 

return on investment. 
CalculationÐAI mentioned but did not ignore rows 
with bad budget values. The intern did not flter for 
only Bollywood movies. 

P2, P6, P10, 
P15, P21 

T5 [11] Flights1 What is the city that has the highest number of 
incoming fights? How many incoming fights does 
each airline have for that city with one week left 
until departure? Show the city name, airline and 
number of incoming fights. 

Calculation & DataÐAI performed the wrong order of 
fltering. It also incorrectly counted incoming fights 
based on booking rows rather than by unique fight 
codes. 

P4, P8, P10, 
P14, P17 

T6 [11] Flights2 What is the least expensive time of the day to de-
part to Chennai in Economy class across all air-
lines? Show the time of the day and the fare price 
for each airline. 

PromptÐFor each airline, the AI calculated the mini-
mum price of all fights during a time of day rather 
than the minimum of the average price of fights dur-
ing a time of day. 

P4, P8, P10, 
P14, P17, P20 

T7 [92] Hotels Which hotels had a worse ranking this year than 
in 2021? Show the hotel name, location and the 
diference in ranking from last year. 

DataÐAI misinterpreted a "2021" fag column as rep-
resenting the rank in 2021. 

P3, P4, P6, P8, 
P12, P16 

T8 [65] Movie 
Content 

What is the number of shows viewed in distinct 
languages within each genre as a percentage of the 
total number of shows within each genre? Show 

the genres as an index and languages as columns 

CalculationÐInverted the percentage calculation. 
Summing across genres for a given language should 
add up to 100 but the AI’s calculation resulted in sum-
ming across languages for a genre adding up to 100. 

P5, P7, P11, 
P19, P22 

T9 [117] Netfix Who is the actor who worked with the same direc-
tor the most? 

Correct P6, P9-11, P13, 
P18, P19, P21 

T10 [7] TV What are the top 5 most selling television frequen-
cies? Show the frequencies with their counts 

DataÐThe AI cleaned dirty frequency data but it ne-
glected correct data that existed in other columns. 

P7, P13, P20, 
P22 

Table 1: User Study Tasks. These tasks and natural language prompts were derived from Yin et al. [138]. The prompts were 
written by data scientist annotators, who were instructed to be natural, concise, and avoid unnecessary elaborations. AI errors 
encompassed poor interpretations of the prompt and data, and incorrect calculations. Although creating more precise prompts 
can potentially reduce errors, our study is not centered on this aspect. 

appendix). These queries and Code Interpreter responses formed 
the backbone of our tasks. 

In total, we prepared one tutorial task and 10 main tasks, 2 
of which did not contain any errors, spanning 9 unique datasets 
(Table 1). For each task, we used the generated code from Code 
Interpreter’s output to prepare intermediate data tables and table 
summary visualizations. To provide analysts with sufcient infor-
mation, we prepared additional intermediate data tables for all 
major transformations, often breaking up chained function calls 
in the code. We then verifed with multiple expert data scientists 
that these intermediate data tables were sufcient for the task. To 
ease dataset understanding and help participants focus on verifca-
tion, we reduced the number of columns for excessively complex 
datasets. We made sure to leave enough extra columns irrelevant 

to the immediate analysis query such that the task remains non-
trivial. In addition, we provided a clear ground truth motivation and 
a more detailed description of the analysis query. In the rest of the 
paper, to diferentiate the two, we refer to the detailed description 
of the analysis query as the analysis goal. Finally, we provided a 
description of the dataset and what each column in the dataset 
represented. 

In summary, we compiled the following primary materials for 
each task: the natural language query from ARCADE, the unmod-
ifed code, code comments, and natural language explanation re-
sponse from Code Interpreter, the prepared data tables and visual-
izations (Fig. 2 right), and a detailed description of the motivation, 
analysis goal, and dataset. 
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PID Role Exp. Primary Analysis Tools Analysis Frequency Coding Comfort Tasks Shown 

P01 Data Scientist 6 Y Code/Computational Notebooks Daily Very Comfortable [T1, T2, T3] 
P02 Software Engineer 4 Y Data Visualization Tools Daily Very Comfortable [T2, T3, T4] 
P03 Consultant 26 Y Spreadsheets Daily Somewhat Comfortable [T7] 
P04 Data Analyst 10 Y Data Visualization Tools Weekly Somewhat Comfortable [T5, T6, T7] 
P05 Software Engineer 10 Y Code/Computational Notebooks Weekly Very Comfortable [T2, T3, T8] 
P06 Program Manager 12 Y Spreadsheets Weekly Very Comfortable [T4, T7, T9] 
P07 Program Manager 6 Y Spreadsheets Monthly Neutral [T1, T8, T10] 
P08 Software Engineer 7 Y Code/Computational Notebook Weekly Very Comfortable [T5, T6, T7] 
P09 Program Manager 3 Y Spreadsheets Daily Neutral [T9] 
P10 Tech. Strategist 15 Y Spreadsheets Monthly Neutral [T4, T5, T6, T9] 
P11 Program Manager 11 Y Data Visualization Tools Daily Somewhat Comfortable [T8, T9] 
P12 Program Manager 5 Y Spreadsheets Daily Neutral [T2, T3, T7] 
P13 Cloud Architect 5 Y Spreadsheets Daily Somewhat Comfortable [T9, T10] 
P14 Program Manager 0.5 Y Code/Computational Notebook Weekly Very Comfortable [T5, T6] 
P15 Program Manager 10 Y Spreadsheets Daily Somewhat Comfortable [T1, T4] 
P16 Program Manager 15 Y Spreadsheets < Monthly Never Coded Before [T7] 
P17 Software Engineer 15 Y Code/Computational Notebook Weekly Very Comfortable [T5, T6] 
P18 Program Manager 7 Y Data Visualization Tools Daily Somewhat Comfortable [T9] 
P19 Finance Manager 13 Y Spreadsheets Daily Neutral [T8, T9] 
P20 Program Manager 3 Y Data Visualization Tools Daily Somewhat Comfortable [T1, T6, T10] 
P21 Customer Manager 8 Y Spreadsheets Daily Very Comfortable [T4, T9] 
P22 Architect 5 Y Code/Computational Notebook Weekly Very Comfortable [T3, T8, T10] 

Table 2: Participants reported using a variety of tools to perform data analysis in their normal workfows and came from a 
variety of roles and teams. Over half (13/22) of the participants reported being somewhat comfortable (knowing programming 
basics and can write simple programs) or less with programming. 

5 USER STUDY 

Using our probe and prepared tasks, we conducted a user study to 
observe analysts’ verifcation workfows of AI-generated analyses. 
Our goal was not to evaluate our specifc interface but rather to 
understand behaviors that emerge when verifcation artifacts are 
available. Three research questions guide our study design and 
analysis. 

• RQ1 - Behaviors: What patterns of behaviors do analysts 
follow in a verifcation workfow? 

• RQ2 - Artifacts: What artifacts do analysts use and for what 
purposes? 

• RQ3 - Background: How are analysts’ backgrounds re-
fected in their behaviors and artifact usage? 

Participants. We recruited participants from a large data-driven 
software company and advertised an opportunity to work with 
AI-generated analyses. Participants were recruited via email based 
on data analysis interest groups and organization mailing lists. We 
selected participants with data analysis experience and from diverse 
backgrounds, including how often they performed data analysis, the 
types of tools they used for analysis, and their self-reported comfort 
with programming (Table 2). Participants were compensated with 
a $30 USD Amex gift certifcate. 

Study Procedure. We conducted our study remotely with partici-
pants sharing their screens over a video conferencing tool. Because 
our design probe was built as a web application, participants loaded 
the interface on their computer with their choice of browser. 

The study was structured into three parts lasting approximately 
60 minutes total: a tutorial phase (∼10 min), an activity phase (∼40 

minutes) in which participants worked through the prepared tasks, 
and a semi-structured interview phase (∼10 minutes). In the tuto-
rial phase, we presented participants with the following scenario: 
Imagine having an intern who is provided with a dataset to address an 
analysis problem. The enthusiastic intern decides to use an AI assistant 
to complete the problem, correctly uploading the relevant dataset and 
crafting a prompt that is their interpretation of the original analysis 
problem. The AI assistant produces an output but the intern is unsure 
whether it is correct. 

We clarifed that the input to the AI assistant is only the intern’s 
prompt and the uploaded dataset. In particular, we directed analysts 
not to focus on the quality of the prompt, but on the AI-generated 
output in response to the prompt. We mention that although the 
code executes, there might be issues with the information the AI 
uses or how it interprets the intern’s prompt. Next, we presented the 
participants with the intern’s prompt and the assistant’s response 
in our interface (Fig. 2). We asked participants to determine if the 
AI assistant’s answer correctly addressed the initial problem, and 
if not, point to reasons why they think there was a mistake. To 
eliminate the challenge of participants having to craft their own 
promptsÐa task that presents its own set of difculties [139]Ðwe 
chose to assign the responsibility of prompt authoring to the intern. 
This choice also dissociated participants’ personal preferences for 
how they would write prompts which is not the core focus of our 
study. 

After introducing the analysis scenario, we gave participants a 
brief walk-through of the interface (Fig. 2). We then had participants 
complete a fxed tutorial task to familiarize themselves with the 
interface (T0 in Table 1). The task intentionally contained an error 
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Label Defnition 

Start Start of a verifcation workfow 

Data Only Using data artifacts only 

Data + Procedure Mainly focusing on the data and using procedure 
artifacts as secondary support 

Procedure Only Using procedure artifacts only 

Procedure + Data Mainly focusing on the procedure and using data 

artifacts as secondary support 

Notice Noticing an issue that may afect the correctness 
of the AI-generated result 

Confrm Confrming or rejecting that the AI-generated anal-
ysis has an error 

Table 3: Defnition of labels used to annotate participants’ ver-
ifcation workfows. Data Only and Data + Procedure are 
behaviors under data-oriented behaviors while 
Procedure Only and Procedure + Data are behaviors 
within procedure-oriented behaviors. 

in which the AI assistant misinterpreted the values of a column and 
poorly sorted the answer. This strategy aimed to make participants 
cognizant of potential assistant errors and to encourage vigilance 
in subsequent tasks. 

Next, in the activity phase, participants read the analysis goal and 
reviewed the work of the assistant and intern. We assigned tasks 
to participants to ensure that, collectively, all tasks were covered 
(Table 1). For all tasks in the study, the motivation, analysis goal, and 
description of the dataset were always available in a left side panel 
(see appendix for an example). To make sure the participants fully 
understood the analysis goal, we discussed any areas they found 
unclear. We also clarifed any questions about the dataset or analysis 
goal while participants were working through the task. To reduce 
time pressure and encourage a realistic workfow, we emphasized 
the exploratory nature of our study, allowing participants to work 
at their own pace until they were satisfed with their conclusion. 
After completing each task, participants were asked to complete a 
brief survey that asked for a confrmation as to whether the AI’s 
generation was erroneous and their reasoning. 

While participants were completing the tasks, we encouraged 
them to think aloud and describe their reasons for interacting with 
diferent components of the interface. If they remained relatively 
silent, we regularly prompted them to speak about their workfow. 
We provided minimal help beyond clarifying the analysis goal or 
semantics of the data. Finally, in the semi-structured interview, 
we asked open-ended questions to understand participants’ back-
grounds and prior experiences, overall verifcation workfows, and 
rationales behind their behaviors. 

Transcript and Workfow Analysis. To identify recurring themes, 
two authors reviewed the participants’ screen recordings, engaged 
in several rounds of open coding, and had multiple meetings to 
refne their observations. The themes we observed highlighted vari-
ations in participants’ workfows and the artifacts they used. In the 
analysis and results, we distinguish between data artifacts (those 
in Fig. 2 right) and procedure artifacts (those in Fig. 2 left). Data ar-
tifacts pertain to the original, intermediate, and result data (i.e., the 
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Figure 3: Participants often followed procedure-oriented be-
haviors. 

data table and summary visualization). Conversely, procedure arti-
facts encompass the natural language explanation, code/comments, 
and the AI’s explanation and interpretation of its result. 

Additionally, to systematically understand participants’ verif-
cation workfows, we delineated these into sequences of primary 
observations. Informed by the themes from open coding, the two 
authors who developed the themes drafted an initial set of obser-
vation labels (e.g., read data table or raising a consideration). Both 
authors annotated a few participants’ workfows independently 
before meeting to resolve ambiguities and unclear interpretations. 
These discussions facilitated a refnement of the observation labels 
by broadening their scope. Using the fnal refned set of labels (Ta-
ble 3), they rewatched the recordings and annotated all end-to-end 
verifcation workfows in the study (see Fig. 4 for examples), includ-
ing observations of the artifacts being used. 

Each workfow starts when participants began verifying the AI-
generated analysis (after understanding the task and data) and ends 
when they confrmed or rejected the existence of an error. We list 
all participants’ verifcation workfows in the appendix. 

6 RESULTS 

Participants engaged in a variety of diferent steps to identify po-
tential issues and ultimately confrm or reject the AI’s analysis. 
These were guided by two high-level behaviors participants had 
within a verifcation workfow: procedure-oriented behaviors and 
data-oriented behaviors (Fig. 3). 

Within a verifcation workfow, participants with procedure-
oriented behaviors were primarily focused on validating the AI’s 
procedure, possibly drawing upon data artifacts to aid their un-
derstanding. In contrast, participants exhibiting data-oriented be-
haviors gave precedence to scrutinizing the data involved in the 
analysis, relegating the AI’s procedure to a supplementary role. 
The distinction between these behaviors lies in the participants’ in-
tention. Participants following procedure-oriented behaviors were 
concerned with what does the AI do? Meanwhile participants follow-
ing data-oriented behaviors focused on does the data make sense? 
This was clear from observing their interaction patterns and verbal 
comments. For example, while some participants engaged exten-
sively with intermediate datasets, their main goal in those moments 
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Figure 4: We show examples of interesting end-to-end verifcation workfows and associated artifacts using our labels in Table 3. 
The labels help get a sense of the overall workfow and capture relevant behavioral patterns. For example, in T5, we observed P4 
starting out ( Start ) focusing only on the natural language explanation ( Procedure Only ) before noticing an issue ( Notice ) 

from the explanation. Their behavior then shifts slightly as they include data artifacts ( Procedure + Data ) before noticing a 
subsequent issue in the code ( Notice ). Finally, they check the result data ( Data Only ) to confrm an error in the AI’s analysis 

( Confrm ). Overall, we observed 52 verifcation workfows in our study (39 of which involved errors) with an average length 
of 4.40 (std=1.42) labels. Four of these had two Notice patterns occur, 30 had one Notice pattern occur and the rest had none. 

was to confrm the correctness of the AI’s procedure; this behav-
ior was labeled as a procedure-oriented behavior with the use of 
data artifacts as secondary support (i.e., Procedure + Data ). In this 
section, we provide a detailed account of fndings pertinent to our 
research questions. 

6.1 What patterns of behaviors do analysts 
follow in a verifcation workfow? 

Overall, we observed most participants (18/22) followed all or parts 
of the AI’s procedure at some point during their verifcation work-
fows (44/52). In workfows in which participants did not follow the 
AI’s procedure, they only used the analysis goal, intern’s prompt, 
and data (original and intermediate) artifacts. Likewise, most par-
ticipants (18/22) had data-oriented behaviors in their verifcation 
workfows (25/52). Participants generally exhibited diferent behav-
iors at diferent moments in their workfows to focus on diferent 
parts of the AI-generated response. 

6.1.1 Analysts initially gravitate toward procedure-oriented behav-
iors. Participants usually had procedure-oriented behaviors ini-
tially during their verifcation workfows (41/52). These behaviors 
were relatively time-consuming and similar to when programmers 
thoroughly examine the code’s logic when they validate sugges-
tions from an AI programming assistant. However, in contrast to 
the programming assistant setting, procedure-oriented behaviors 
were rarely as brief as the quick verifcation methods (e.g., visual 
inspection and pattern matching) programmers most commonly 
employ [9, 80]. 

6.1.2 Analysts shif toward data-oriented behaviors once they no-
ticed an issue. Upon identifying a concern, participants’ strategies 
diversifed, delving deeper to explore and validate the perceived is-
sue (Table 4). Of the 31 times in which participants noticed an issue 
but had not yet confrmed an error, 17 times (15/22 participants) they 
continued their verifcation workfow with data-oriented behaviors. 

Patterns Count Occurrences in Verifcation Workfows 

PD Ð N Ð D 

PD Ð N Ð PD 

9 

6 

T1 [P1], T2 [P5, P12], T4 [P2], T5 [P4], T6 
[P14], T8 [P22], T9 [P6], T10 [P22] 
T3 [P5, P12], T6 [P4, P14], T7 [P12], T10 

[P20] 

PD Ð N Ð C 5 T1 [P7], T2 [P2], T4 [P6], T5 [P10, P14] 

PD Ð N Ð DP 3 T2 [P1], T4 [P21], T10 [P13] 

P Ð N Ð PD 3 T5 [P4, P8], T8 [P11] 

DP Ð N Ð D 3 T4 [P15], T7 [P16], T9 [P9] 

DP Ð N Ð C 2 T2 [P1], T10 [P13] 

P Ð N Ð P 2 T7 [P4, P6] 

Table 4: Participants’ behaviors around noticing an issue. 
We report patterns around noticing an issue that occurred 
more than once in our study. Participants often followed 
procedure-oriented behaviors before noticing an issue and 
used a variety of data-oriented behaviors and procedure-
oriented behaviors afterwards to validate their concerns. 

In particular, 13 of 17 of these occurrence were when participants 
switched from procedure-oriented behaviors to data-oriented be-
haviors after noticing an issue. 

Some participants (P2, P15, P16, P20, P22) identifed the source 
of the issue through eyeballing diferent data tables, while others 
had data-oriented behaviors to check more closely the potential 
source of an issue (P4, P5). In T2, P5 correctly noticed that there was 
no consideration for Nivea Men. To explore this further, they focused 
on the original data table, fltering for rows in which the brand was 
Nivea and applying additional flters to spot check specifc products. 
Similarly, to afrm their suspicions of an error, P4 investigated the 
fnal result table after noticing the AI may not have grouped rows 
by fight code (Fig. 4 second row) [T5]. 
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6.1.3 Analysts adopt procedure-oriented behaviors to get a high-
level understanding of the analysis steps. Many participants looked 
over the AI’s procedure to get a high-level understanding of the 
analysis steps (P1, P2, P4, P8, P11, P17, P18, P20). For instance, in T9, 
P18 wanted to understand how the AI arrived at a particular actor-
director pair in the result: “I’m trying to read the code and I’m trying 
to understand ... like how is it generating that pair and if there is any 
error in that process.” Sometimes, participants gained confdence 
in the AI’s correctness from this high-level understanding (P1, P2, 
P11, P20). For example, P1 confrmed their understanding after 
reading the AI’s procedure one last time: “seems reasonable to me.” 
P11 was reassured by the AI’s overall procedure matching their 
own: “the steps it described is exactly what I would have done but in 
SQL.” In other cases, participants’ focus on the procedure helped 
them notice and subsequently confrm a particular step the AI did 
wrong (P4, P8). For example, P4 and P8 both noticed from the NL 
explanation that the AI’s order of analysis steps were incorrect [T5]. 
In T6, similar to P11, P4 broke down the general steps on their own 
and realized the AI missed calculating the average after inspecting 
the AI’s procedure. 

6.1.4 Analysts adopt procedure-oriented behaviors to confirm de-
tails in the data operations. Participants also focused on lower-level 
details involved in the AI’s data operations (P2, P7, P8, P9, P10, P11, 
P13, P15, P17, P22). Participants checked functions used in the code, 
logic around the data operations, and specifc result values. P13 was 
especially vigilant making sure that “the spelling was correct” in the 
data columns mentioned in the code, and that “syntactically ... (they) 
appear to be correct.” P19 was also following the AI’s data operations 
to see how it handled unusual values the AI had identifed earlier 
in its procedure. Focusing on low-level details was one way partic-
ipants gained confdence in the AI or noticed issues (P7, P8, P10, 
P11). For instance, in T9, P10 focused on the AI’s data operations in 
the code which helped them conclude the AI had indeed found the 
highest count. P11, while not the most comfortable with Python, 
used code comments to translate the AI’s procedure into familiar 
data operations, noticing the AI’s procedure was inconsistent with 
the analysis goal description [T8]. 

However, participants sometimes formed incorrect conclusionsa 
due to their reliance on the AI’s procedure (P15, P17). In T5, P17 was 
initially skeptical of the result table due to insufcient information 
presented, but gained confdence that the result “looked more or less 
correct” after cross referencing the AI’s NL explanation and code 
with the data. P15 manually reviewed the original data and used 
the AI’s NL explanation and code to form an incorrect expectation 
of the output. They confrmed that the AI was correct when the 
result data table matched their expectation [T1]. 

6.1.5 Analysts adopt data-oriented behaviors to beter understand 
the structure of and relationships in the data. Participants in data-
oriented behaviors focused on the data in a variety of ways. Some 
participants (P3, P7, P15, P19) were keen on understanding the data 
(original and intermediate) and the specifc columns that were per-
tinent to the analysis goal. For instance, P7 adopted data-oriented 
behaviors using only data tables at the beginning of their process, 
exploring the column of interest in the analysis goal and subse-
quently identifying a data quality issue in the frequency column 
[T10]. Meanwhile, for P9, a prototypical data-oriented participant, 

their data-oriented behaviors involved comparing all data tables 
[T9]. Specifcally, they delved into the directors and actors inter-
mediate data tables to gather an expectation of what they would 
expect in the subsequent merged data table (Fig. 4 third row). Af-
ter, they checked if specifc actors in the result data existed in the 
merged data. In the process, they spent signifcant time forming an 
expectation of the result data, transitioning back and forth between 
all data tables. 

6.2 What artifacts do analysts use and for what 
purposes? 

Across all participants, both data and procedure artifacts were used 
consistently in their verifcation workfow (Fig. 5). Data artifacts 
were frequently employed to support procedure-oriented behav-
iors (17/22 participants and in 41/52 workfows), while procedure 
artifacts were utilized during data-oriented behaviors (10/22 par-
ticipants and in 13/52 workfows). Within the data, participants 
engaged with the intermediate data roughly equally as often as 
the original data and result data. Similarly, for procedure artifacts, 
participants leveraged code and code comments as often as the nat-
ural language explanation. However, these preferences for artifacts 
were not consistent between participants (see Sec. 6.3). 

6.2.1 Analysts use data artifacts for sensemaking. Unsurprisingly, 
most participants leveraged data artifacts to understand and inter-
pret the data, a standard practice in data analysis practices [5, 10, 38]. 
For instance, P7 used the data summary visualizations to under-
stand the data, and expressed liking “the summary stats to be able 
to do a quick view of the data and understand what it is instead of 
having to manually check everything.” P3, meanwhile, meticulously 
examined the original, intermediate, and result data to have a com-
prehensive understanding of the analysis. Consequently, several 
participants expressed appreciation for the data table summary and 
visualizations provided in the AI’s procedure (P5, P7, P13, P17, P20). 

Through closely examining the data tables, participants were 
able to identify issues with the AI-generated analyses (P1, P3, P7, 
P9, P13, P15, P16). For instance, from the data tables, P1 noticed 
that there was also the Nivea Men brand in the dataset which the 
AI missed (Fig. 4 frst row), ultimately leading them to confrm that 
the AI-generated analysis contained an error. Likewise, for P9, their 
exploration of the data tables led them to perceive a discrepancy 
with the number of rows in merged data table and the count from a 
quick mental calculation. These observations align with established 
guidelines in data analysis practices and implementations of data 
analysis tools, and underscore the importance of data visualizations 
alongside the analysis procedure [5, 10, 23, 59, 61, 91, 135] . 

6.2.2 Analysts frequently use data artifacts for both quick checks and 
detailed calculations to support procedure-oriented behaviors. Some 
participants glanced at the data artifacts to quickly check things 
they noticed in the AI’s procedure (P6, P8, P22). For instance, P22 
noticed that the AI’s calculation for the average price of gourmet 
food was not a number, prompting them to check the original 
data table and discover the AI used the wrong column name [T2]. 
Similarly, participants used data artifacts to conduct data sanity 
checks to verify the procedure (P1, P3, P4, P5, P19, P20, P21, P22). 
For instance, P19 wanted to see if percentages in a column added 
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Figure 5: Both data and procedure artifacts were used to support participant’s primary behaviors. For each type of behavior 
illustrated in Fig. 3, we tally the unique artifacts involved, counting each artifact once per occurrence in a behavior. This 
distribution shows that participants extensively used data artifacts to support procedure-oriented behaviors and used procedure 
artifacts to support data-oriented behaviors (Top). The intermediate data, original, data, code, and natural language explanation 
were all pivotal for analysts’ to notice an issue (Bottom). 

up to 100: “If the percentages tied to 100%, I would feel confdent just 
at a glance that you know everything and action was allocated to 
one of those languages” [T8]. P20, meanwhile, went back and forth 
between the code and table to verify the procedure, stating, “just like 
understanding what the code did and then each of the intermediate 
steps in seeing like ... it looks like it joined it” [T6]. Alternatively, 
participants also tried to replicate the AI’s data operations using 
the supported functionalities in the data tables to compare with 
the result in the AI’s procedure and verify what the AI did (P2, P9, 
P12, P14, P22). For example, P22 fltered on the frequency column 
following the AI’s steps to see how many rows were fltered out 
[T10]. 

These approaches align with common AI-assisted programming 
verifcation methods [9, 80], resembling visual inspection and pat-
tern matching for quick data checks, and code execution for repli-
cating the AI’s data operations. However, distinct from AI-assisted 
programming, data (in addition the procedure) serves as a central 
artifact for verifcation. 

6.2.3 Analysts use procedure artifacts to find discrepancies in the 
procedure. Some participants were keen on verifying the consis-
tency between the high-level analysis steps in the NL explanation 
and the specifc data operations in the code (P5, P11, P17, P22). 
Meanwhile, other participants compared the NL explanation with 
their own common knowledge. For example, P10 felt that “2800 
fights felt like a lot” for a day [T5], leading them to investigate the 
AI’s procedure. Similarly, from inspecting the AI’s explanation of 

the result, P6 noticed “Jurassic World is not a Bollywood movie” [T4]. 
These discrepancies prompted them to question the AI’s data opera-
tions and understanding of the dataset. Moreover, participants used 
procedure artifacts to verify the AI’s interpretation of the prompt 
and original dataset (P4, P12). As a result, in T7, both P4 and P12 
noticed issues with the AI’s understanding of the data, stating an 
incorrect interpretation of a column. 

6.2.4 Analysts use procedure artifacts for tracing data provenance 
to support data-oriented behaviors. Many participants (P1, P3, P13, 
P15, P16) used the NL explanation and code to trace the provenance 
of data. P1 in T2 is a typical example (Fig. 4 frst row). P1 started out 
with procedure-oriented behaviors but upon perceiving an issue 
in the original data table where more than 5 items had a rating 
of 5, transitioned into data-oriented behaviors. They scrutinized 
the original data table but became confused when the result data 
table displayed values less than 5. This contradicted their initial 
observation where more than fve products had a 5 rating in the 
original data. To resolve this, they turned to the intermediate data 
and the AI’s procedure, tracing the steps in the code that derived 
the result table. 

Participants also noticed issues when using procedure artifacts 
to support their understanding of the provenance of the data (P1, P9, 
P13, P15, P16, P17, P21). For instance, P17 wanted to explore why the 
intermediate data table contained all kinds of departure time. They 
checked the code to see where it did the fltering on the Departure 
Time and realized the AI missed taking into account the time of the 
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day when calculating the minimum of prices [T6]. These behaviors 
reiterate the importance of tracking data provenance in analysis 
tools and highlight opportunities to adopt and adapt methods in 
existing implementations [58, 62, 101, 105, 109, 128, 135]. 

6.3 How are analysts’ backgrounds refected in 
their behaviors and artifact usage? 

In the post-task interviews, we explored participants’ prior experi-
ences with data analysis, coding, and existing analysis tools. We 
noted a range of experiences that might be associated with partici-
pants’ behaviors and interactions with artifacts. 

6.3.1 Prior Experience With Data. Some participants with data-
oriented behaviors mentioned their prior experience working with 
data (P6, P9, P11, P16, P17, P18, P22). For instance, P15, who had 
previous experience working with large datasets, expressed comfort 
with directly manipulating the datasets, stating, “I’m used to working 
with hundreds of thousands of rows, so the size of the spreadsheet 
wouldn’t have been a problem.” In both tasks P15 did, they only 
followed data-oriented behaviors. 

These prior analysis experiences also led participants to be vigi-
lant about the data (P6, P9, P11, P22). P6, who self-identifed as a 
“data guy”, was inclined to dive directly into the data and scrutinize 
the tables and numbers. P11, an electrical engineer by training, also 
favored a data-oriented approach. They compared the study tasks 
to their past experiences designing systems, explaining how they 
always “went straight to the data” and asked “hey, can I trust that 
it’s quality data?” P9, with a background in fnance and accounting, 
was accustomed to handling datasets that were “routinely between 
100 and 500,000 rows.” In the study, P9 focused on validating the 
data, underscoring the importance of ensuring data integrity and 
rational calculations. Similarly, P22 cited their prior work experi-
ences as informing their analysis verifcation approach: “we were 
maniacal about not drawing the wrong conclusion.” During their ver-
ifcation workfows, they demonstrated a methodical approach to 
problem-solving, routinely considering “lots of caveats and checks.” 

Moreover, we noticed participants’ prior experiences forming 
conclusions and insights from data shaped their behavior in the 
study tasks. Participants (P1, P6, P9, P19, P22) who started their ver-
ifcation workfow by proactively devising a plan mentioned being 
accustomed to formulating error hypotheses, setting expectations, 
and actively identifying problems in the data. For example, P19 
commented how in their own data analysis workfow they were 
always on the lookout for “weird stufs” like data classes, data types, 
and anomalies. This was refected in their systematic approach 
when faced with our study tasks. 

6.3.2 Prior Experience With Code. While participants’ experiences 
working with data sometimes led them to being more data-oriented, 
a couple participants’ coding comfort made them inclined towards 
procedure-oriented behaviors and examining the code (P5, P8). For 
instance, P8, a software engineer, naturally tried to verify the cor-
rectness of the code: “as a developer, just let me look at the code.” 
Similarly, P5, compared the tasks to doing a “code review.” Inter-
estingly, participants who were not familiar or comfortable with 
Python but had a familiarity of data operations and/or data-oriented 
programming languages (e.g., SQL and Visual Basics for Applica-
tions) managed to leverage their knowledge to understand the AI’s 

procedure on the data (P10, P15, P19, P20, P21). For example, P4 
looked for key words in the code to understand the the AI’s op-
erations. For P10 in T9, despite having no prior experience with 
Python, they were able to devise the analysis steps in SQL and 
cross-check them against the AI’s explanation and code comments: 

“If I were to do this in SQL Server with the table that 
you gave me, I would have created ... select unique ID 
where director and popped the table out ... So basically, 
I’m translating Python into the technologies I know to 
see if the AI is doing what I need them to do.” 

However, while able to parse key words or main points from the 
code, a lack of understanding of the code hindered some partici-
pants’ confdence (P2, P12, P14, P18, P20, P21). For example, P20 
found T5 “difcult because (they didn’t) fully understand the code.” 
For P18, an incomplete comprehension in T9 led them to focus 
more on the original data as opposed to the intermediate data since 
they were unsure how the intermediate data was generated: “in the 
intermediate steps, I am not confdent if the slicing and the dicing is 
being done the way it should be.” To bridge this gap, a couple partic-
ipants mentioned liking code documentation or being able to easily 
translate the code to a more familiar languages (P11, P21). For P12 
and P21 in particular, a lack of code comprehension led them to pre-
fer the NL explanations over the code. P12 found the explanations 
to be “a very concrete and precise way that makes sense.” 

6.3.3 Prior Experience With Existing Analysis Tools. Our study 
aimed to include participants with a diverse usage of existing analy-
sis tools (Table 2). While there were ways to verify the AI-generated 
output using our design probe (Fig. 2), some participants expressed 
a preference for functionality they were familiar with from exist-
ing tools that were unsupported by our interface (P12, P13, P15, 
P18, P21). For example, P12 mentioned wanting to use conditional 
sorting on the columns, and P17 wanted support for comparison 
operators in data fltering. Several participants also expressed a 
desire to have pivot tables (P11, P17, P18, P21), making it easier to 
understand the data. Moreover, while many participants expressed 
appreciation for the visual summaries of the data tables (P5, P7, 
P13, P17, P20), some participants (P4, P18, P21) expressed low trust 
in the data artifacts because they were unsure how the artifacts 
were created in the frst place. P21 in particular stated: 

“The (visualization) summary tab was kind of useless 
to me... I didn’t really trust it and and it was unclear to 
me how the the data was being summarized.” 

7 DISCUSSION 

In this work, we examined how data analysts understand and ver-
ify AI-generated analyses. We developed a design probe, prepared 
realistic analysis queries and AI-generated analyses, and conducted 
a user study observing analysts’ verifcation workfows and com-
mon behaviors. In this section, we synthesize the results from our 
user study and share implications for data analysts using AI-based 
analysis tools (Sec. 7.1) and system designers building these tools 
(Sec. 7.2). 
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7.1 Implications for Data Analysts 

7.1.1 The Role of Data Literacy in Analysis Verification. Our fnd-
ings suggest that while a lack of familiarity with one particular 
programming language (i.e., Python) is not a barrier for verify-
ing AI-generated analyses, prior experience with data operations 
in other languages (e.g., SQL or Visual Basics for Applications) 
can aid in understanding the AI’s procedure (Sec. 6.3.2). Likewise, 
knowledge and experience in data analysis are often indispens-
able for grasping AI-generated analyses, mirroring the requirement 
for computational thinking skills when working with AI-based 
code assistants [112]. Here, we highlight two recommendations for 
analysts to be more efective in verifying AI-generated analyses. 

Know Common Data Operations. We observed participants closely 
examined the AI’s data operations and sometimes performed these 
operations on the datasets directly to compare with AI’s result 
(Secs. 6.1.4 and 6.2.2). Their actions involved understanding com-
mon operations such as fltering, sorting, and merging the data. 
Similarly, understanding aggregation operations, such as sum, av-
erage, count, were essential to verify how the AI grouped data and 
performed calculations on those groups. 

Develop Strategies for Quick Data Validations. Our observations re-
vealed analysts often employed quick sanity checks on the data to 
assess AI-generated outputs (Secs. 6.2.1 and 6.2.2). Such strategies 
involved eyeballing values, manual summation of rows, using vi-
sualizations to check the value distributions, spot checking result 
values against original data table, and comparing things against 
common knowledge. These were efective for analysts to either 
build confdence in the results or identify unexpected patterns. The 
sanity checks often involved forming expectations around the re-
sult and then comparing them with the AI-generated output. Any 
discrepancies signaled potential issues that demanded further in-
spection. Given the efectiveness, analysts should actively identify 
quick sanity checks and externalize their expectations [111]. How-
ever, as there may be data issues hidden by seemingly reasonable 
patterns [25], analysts should employ a variety of diferent sanity 
checks. 

7.1.2 The Role of AI Assistants in Data Analysis. Participants’ var-
ied experiences working with data and analysis tools (Sec. 6.3) led 
to a wide range of comments about their preferred use of general 
AI-based analysis assistants. Here, we discuss how AI assistants 
could be used in data analysis. 

Some participants commented how AI-assistance would be help-
ful for getting them a partial answer that might guide them in their 
analysis (P1, P6, P7, P14, P20, P21). For instance, P6 mentioned how 
the AI can help them consider alternative steps: “It’ll help me say 
‘oh maybe I didn’t think of this way of solving this and I can now go 
down that path.’” AI assistants can help inspire ideas for analysis 
steps similar to when programmers follow an exploration mode 
in AI-assisted programming [9]. Presenting alternative approaches 
is especially critical in analysis assistance as analysts can often 
be limited in their consideration of analysis approaches [84, 86], 
thereby afecting the robustness of their subsequent analysis con-
clusions [16, 113, 116]. Thus, AI analysis assistance can improve 
analysis quality by broadening the analysis decision space analysts 
consider [40, 86]. 

Similarly, participants noted that assistants can expedite their 
analysis workfow (P1, P13, P20), corroborating the fndings from 
prior research on AI-code assistants [31, 52, 126, 143]. However, 
to ensure the robustness of analysis conclusions, it is crucial to 
balance the acceleration of analysis with measures that surface 
potential errors, underlying data assumptions, and alternative ap-
proaches [39]. 

Finally, some participants expressed a preference to reserve AI 
assistance for peripheral tasks such as error-checking or report 
generation rather than the central analysis. Utilizing AI assistance 
for crafting reports [130, 141] and similar subsidiary activities ofers 
a low stakes environment for analysts to evaluate the quality of 
AI-generated outputs within data analysis workfows. Such use 
cases can also facilitate a deeper understanding of the assistant’s 
capabilities and limitations. 

7.1.3 Understanding the Bounds of the AI and the Tool. Participants 
sometimes expressed doubt on the intermediate data artifacts as 
it was unclear what artifacts had the potential to be a result of AI 
“hallucinations" [47] and which were consistent with the data and 
procedure (Sec. 6.3.3). As the boundary blurs between AI-generated 
artifacts and tool-generated artifacts, analysts should clearly distin-
guish what is and what is not produced by AI. 

Tool artifacts compiled from code is deterministic (i.e., the same 
summary visualization will be produced given the same code and 
input data) [112]. The AI-generated outputs and their associated 
errors are stochastic in nature, varying each time the AI is prompted 
to conduct the analysis. Knowing the provenance of artifacts used 
to support verifcationÐwhat is tool-generated (e.g., the visual sum-
mary of data) and AI-generated (e.g., the intermediate data feeding 
into the visualization)Ðis important to assess the reliability of the 
information associated with these artifacts. Additionally, under-
standing the strengths and limitations of the AI [106, 120] is crucial 
to knowing what types of mistakes to look for. 

7.2 Implications for System Designers 

Informed by our study fndings of verifcation workfows and noted 
challenges, we highlight four design implications for designers of 
AI-based analysis assistants. 

7.2.1 Fluidly connecting data-oriented and procedure-oriented arti-
facts at various levels of granularity. Our study on analysts’ verifca-
tion workfows indicated the use of data-oriented and procedure-
oriented artifacts was often intimately tied to each other, requir-
ing analysts to switch between the two (e.g., intermediate data 
table and the code snippet that generated this data). Therefore, 
tools should facilitate a seamless connection between the data and 
procedure. Integrating the data with the procedure aligns with 
existing implementations in data science and machine learning 
tools [12, 23, 63, 107, 135]. Likewise, as analysts prefer diferent 
functionality based on their prior experiences (Sec. 6.3.3), data com-
ponents should be interactive, reusable, and customizable to cater 
to specifc preferences and applications [12, 23, 107]. 

These connections should also prioritize verifcation behaviors. 
Participants often explored AI-generated analyses at diferent levels 
of abstraction (Secs. 6.1.3 and 6.1.4) and transitioned between arti-
facts for quick glances of specifc information (e.g., column names) 
or in-depth examinations involving multiple steps (Secs. 6.2.2 and 
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6.2.4). Therefore, tools should allow analysts to specify the scope 
of their current verifcation actions and surface the most relevant 
information. For example, when an analyst selects the text of a 
column name or cell value in the procedure, the tool can quickly 
highlight the corresponding data (and vice-versa). If the analyst 
selects a code snippet containing multiple data operations, the tool 
can highlight the corresponding data diferences between the oper-
ations [128]. Furthermore, to support analysts in tracing the data 
provenance of a given intermediate data (Sec. 6.2.4), the tool can 
highlight just the data operations in the procedure that produced 
it [43, 58]. To support these features on the back-end, the AI can 
dynamically augment its text response to include semantically rele-
vant connections to the data. Recent systems have demonstrated 
the efcacy of augmenting the AI’s output for AI-assisted writing 
and exploration [49, 74]. 

7.2.2 Communicating the semantics of data operations. We ob-
served AI-generated code to be a common part of analysts’ verif-
cation workfows in procedure-oriented and data-oriented behav-
iors (Secs. 6.2.3 and 6.2.4). However, a lack of comprehension of the 
code and the exact data operations impacted analysts’ confdence 
in their verifcation fndings and even pushed them to alternative 
behaviors (Sec. 6.3.2). Nevertheless, participants who were able to 
translate the AI’s code into familiar data operations were able to 
understand the procedure and not be signifcantly impacted. There-
fore, consistent with implications from prior work [39, 68], tools 
should provide multiple methods to communicate the operations 
in the AI’s procedure. 

For instance, participants suggested translating the Python code 
into programming languages they were comfortable with. This 
translation can be achieved with neural code translators [75] or 
existing AI-code assistants [36, 95] at the code snippet level. If trans-
lated at the operation level, it is essential to ensure faithfulness 
to the original operator. Alternatively, the code can be translated 
into systematic and consistent natural language utterances rep-
resenting the data operations. On a limited set of operations and 
data problems, Liu et al. [85] found this approach improved users’ 
understanding of the code-generating model. Additionally, besides 
code and natural language, tools can communicate data opera-
tions through visualizations such as those in Datamations [105], 
and SOMNUS [136]. Likewise, tools can show diferences in inter-
mediate data between calculations to further enhance analysts’ 
understanding of the operations [128]. 

7.2.3 Communicating AI’s assumptions and interpretations of the 
data. We observed participants often noticed errors faster in tasks 
where the AI clearly stated its assumptions about the data (e.g., 
the data column semantics, assumed data types, and relationships 
between data columns etc.) and its interpretation of the prompt 
(P6, P10, P12, P22). For example, in T7, the AI clearly stated its 
interpretation of what the data in key columns represented: “2021: 
(Assuming) Rank of the hotel in 2021” and “Past_rank: Past rank 
(unclear for which year).” However, we noticed similar assumptions 
were not always stated in other tasks. 

Therefore, tools should consistently communicate the assump-
tions and interpretations of the dataset and analysis, a well-regarded 
best practice for data analysis [35]. This implication narrows down 
a broader recommendation for AI-based code assistants to artic-
ulate the generated code within the context of a programmer’s 

specifc task and environment [112]. One strategy to facilitate regu-
lar communication could be to prompt the AI system to enumerate 
its assumptions explicitly. Another avenue, as exemplifed by LLMs 
such as GPT-4 being good evaluators for tasks like natural language 
summarization and visualization [30, 83, 87], can involve employ-
ing a separate agent to evaluate the assistant-generated analysis, 
thereby listing any assumptions, interpretations, or discrepancies. 

7.2.4 Incorporating AI guidance into verification workflows. In a 
world where AI can generate data analyses, analysis verifcation 
becomes an increasingly important skill [122]. In our study, we 
noticed variations in participants’ verifcation approaches, with 
more experienced participants proactively formulating systematic 
plans (Sec. 6.3.1). As LLMs show promise for making data analysis 
approachable to broader audiences, there is an opportunity for tools 
to guide analysts in their verifcation workfows. 

For example, to help with quick data checks (Sec. 6.2.2), LLMs 
can generate test cases. For instance, if a feld represents age, then 
only values between 0 and around 120 might be appropriate. Fur-
thermore, identifying missing values (which might be 0) might 
help in the analysis process. However, diferent than prior work 
where generated test cases were for general programming prob-
lems [21, 123], test cases for data analyses need to consider the 
semantics and domain of the data. Specifcally, as outputs from data 
analysis are meant for human understanding and involve complex 
data structures (e.g., data tables, plots), there can be alternative 
ways to present the answer (e.g., diferent views of the same data ta-
ble) [45, 76, 138]. Likewise, since AI-generated analyses can involve 
sequences of data operations, it is pertinent to create test cases for 
both the fnal output and intermediate steps. 

Additionally, as a key part of verifcation involves checking for 
inconsistencies (Sec. 6.2.3), our fndings suggest opportunities for 
AI self-refection [50, 102, 115, 119] to help analysts identify poten-
tial discrepancies, formulate specifc checklists, and improve their 
data literacy (Sec. 7.1.1). This refection should be contextualized 
with external knowledge of existing best analysis practices and the 
contents of the working analysis. In incorporating AI self-refection, 
the interface can visually highlight specifc sections of the analysis 
that require verifcation. Such visual warnings can help reduce an-
alysts’ overconfdence in the AI’s procedures [74]. However, given 
the failure modes of LLMs [13, 47], it is crucial to communicate to 
the analyst the parts of guidance that are AI generated. 

7.3 Limitations and Future Work 

We note several limitations in our study and discuss opportunities 
for future work. 

First, the analysis queries involved in the study tasks primar-
ily involved sequences of data transformations. Other aspects of 
data analysis (e.g., data visualization, statistical modeling, machine 
learning, etc.) were not explored. However, our study still pro-
vided insight into common analysis workfows, as participants (P9, 
P22) mentioned the issues they encountered in the study tasks 
were ones they commonly faced in their own data analyses. Our 
study is a frst step towards uncovering verifcation workfows of 
AI-generated outputs where data and manipulations on data are 
centrally involved. Future work should explore analysts’ verifca-
tion of AI-generated data visualizations, statistical analyses, and 
machine learning pipelines [26]. 
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Second, since our study contained a small number of verifca-
tion tasks while using real responses generated by state-of-the-art 
nondeterministic models, components of the AI’s explanation (e.g., 
listing its assumptions of the data and columns) and specifc data 
operations involved in the data analysis task (i.e., fltering for data 
or merging data) were not controlled for across tasks. Future work 
could experiment with how varying components of the AI’s expla-
nation or analysis task impact analysts’ verifcation processes. 

Third, as discussed in our study desisgn considerations (Sec. 4.1) 
participants were not the ones gathering the data and coming up 
with the analysis goal. As a result, prior to them verifying the AI-
generated analyses, they frst spent time understanding the data and 
analysis goal, a process that may not be as pertinent in conducting 
their own data analysis with AI assistants. However, all tasks used 
in the study involved real-world datasets with analysis prompts 
written by data scientists (Sec. 5). In addition, we quickly clarifed 
any questions regarding the analysis goal to facilitate analysts’ 
verifcation. Future work could explore verifcation workfows when 
analysts work with an AI assistant on their own data and analysis. 

Finally, study participants were not responsible for creating the 
AI prompts (Sec. 4.1). While more elaborate prompts may be ar-
gued for reducing the errors presented in our study, writing these 
prompts is challenging [90, 139]. Brevity of the prompt can be 
in tension with a precise one that refects all aspects of the anal-
ysis [138]. Therefore, given that the misalignment between the 
analyst’s intent and AI’s actions is inherent in natural language 
communication [85, 88, 98], subtle AI-generated analysis errors 
(at least those due to misalignment) and the need for verifcation 
workfows persist. In a few cases, our participants (P6, P10, P22) 
noticed issues directly from language ambiguities in the intern’s 
prompt. As a logical next step, future research should study how 
expertise in prompt writing infuence analysts’ interactions with 
AI assistants and how these analysts integrate prompts into their 
verifcation and repair strategies. 

8 CONCLUSION 

In this paper, we explore data analysts’ behaviors when verifying 
AI-generated analyses. We build a design probe and prepare tasks 
with realistic analysis intent and LLM outputs generated by Ope-
nAI’s Code Interpreter. In a controlled user study, we fnd analysts 
frequently interleaved procedure-oriented and data-oriented behav-
iors, using data artifacts in support of procedure-oriented behaviors 
and procedure artifacts in support of their data-oriented behaviors. 
We also fnd analysts’ prior analysis and programming experiences 
infuenced their approach and understanding of the AI’s output. 
Based on our fndings, we synthesize recommendations for data 
analysts and highlight opportunities for future tools to enhance the 
verifcation experience, including communicating the AI’s assump-
tions and interpretations of the data, and ways to incorporate AI 
guidance in verifcation workfows. 
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A TASK SELECTION PROCESS 

To avoid datasets overlapping with the training data of LLMs [17, 
97], we chose natural language queries associated with datasets 
uploaded to Kaggle after February 2022. This included 660 queries 
from 70 distinct datasets. 

We selected a subset of analysis queries that were incorrectly 
answered by current state-of-the-art LLMs (GPT-4 and Code Inter-
preter). First, we tested the 660 queries against GPT-4 [97] using its 
API (temperature=0.7, n=3). For this, GPT-4 was provided a dataset 
summary similar to that of other LLM-based analysis tools [30], 
a scafold to write code in, and the natural language query. Next, 
we sampled a set of 50 queries that resulted in incorrect outputs 
from GPT-4, specifcally selecting more complex queries with a 
high number of Pandas API calls in the solution. These queries (and 
corresponding datasets) were then presented to Code Interpreter. 
Code Interpreter executed the code for the analysis, and detailed 
its steps in natural language. 

After manually inspecting the 50 queries GPT-4 struggled with, 
we identifed 22 that were also incorrectly answered by Code Inter-
preter. These errors included bad calculations, semantic misinter-
pretations of the prompt, and misunderstandings of the data. We 
then chose a subset of these 22 queries that cover a variety of error 
types (i.e., misunderstanding column semantics, bad calculations, 
or misunderstanding the query) and involve datasets and domains 
that were approachable to general audiences. Using this subset, we 
constructed the tutorial and primary tasks of our study. Sometimes, 
Code Interpreter encountered ambiguities and sought clarifcation 
from the user. For these cases, we included a follow-up prompt and 
integrated the multi-turn interaction into our study tasks. 

A.1 Example of Dataset Summary used for 
GPT-4 Prompt 

The following is an example of the dataset summary used as part 
of the prompt for GPT-4 for the Amazon Orders dataset (T1), 

{ 

"name ": "" , 

"file_name ": "" , 

"dataset_description ": "" , 

"fields ": [ 

{ 

"column ": "order_no ", 

"properties ": { 

"dtype ": "string ", 

"samples ": [ 

"171 -5463316 -4433940 ", 

"407 -6814126 -3628337 " 

], 

"num_unique_values ": 171 , 

"semantic_type ": "" , 

"description ": "" 

} 

}, 

{ 

"column ": "order_date ", 

"properties ": { 

"dtype ": "date ", 

"min ": "2021 -06 -13 T19 :08:00 ", 

"max ": "2022 -02 -25 T20 :44:00 ", 

"samples ": [ 

"2022 -01 -27 T17 :31:00 ", 

"2021 -10 -15 T20 :27:00 " 

], 

"num_unique_values ": 171 , 
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"semantic_type ": "" , 

"description ": "" 

} 

}, 

... 

{ 

"column ": "sku ", 

"properties ": { 

"dtype ": "category ", 

"samples ": [ 

" SKU :CR -6 E69 -UXFW ", 

" SKU :ST -27BR -VEMQ " 

], 

"num_unique_values ": 54, 

"semantic_type ": "" , 

"description ": "" 

} 

}, 

"column ": "quantity ", 

"properties ": { 

"dtype ": "number ", 

"std ": 0.44513190725972585 , 

"min ": 1, 

"max ": 4, 

"samples ": [ 

4, 

1 

], 

"num_unique_values ": 4, 

"semantic_type ": "" , 

"description ": "" 

} 

}, 

{ 

"column ": "order_status ", 

"properties ": { 

"dtype ": "category ", 

"samples ": [ 

"Returned␣to␣seller " 

], 

"num_unique_values ": 2, 

"semantic_type ": "" , 

"description ": "" 

} 

} 

], 

"field_names ": [ 

"order_no ", 

"order_date ", 

"buyer ", 

"ship_city ", 

"ship_state ", 

"sku ", 

"quantity ", 

"order_status " 

] 

} 

B PARTICIPANTS’ VERIFICATION PROCESSES 

We include the verifcation processes of all participants in Table 5. 

C EXAMPLE INTERFACE IN THE USER STUDY 

An example of the interface used during the study for T7 is shown 
in Fig. 6. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Gu et al. 

S Ð PD Ð C 

S Ð PD Ð N Ð D Ð C 

S Ð PD Ð N Ð C 
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S Ð PD Ð N Ð DP Ð N Ð C 

S Ð P Ð N Ð PD Ð C 

S Ð DP Ð C 

S Ð P Ð N Ð P Ð C 

S Ð DP Ð N Ð PD Ð C 

S Ð PD Ð D Ð C 

S Ð PD Ð N Ð PD Ð N Ð D Ð C 

S Ð D Ð DP Ð C 

S Ð P Ð N Ð DP Ð C 

S Ð PD Ð R 

S Ð D Ð C 

S Ð DP Ð PD Ð N Ð P Ð PD Ð C 

S Ð PD Ð N Ð DP Ð C 

S Ð D Ð N Ð DP Ð R 

S Ð P Ð N Ð PD Ð N Ð D Ð C 

S Ð PD Ð R 

S Ð D Ð N Ð PD Ð C 

Verifcation Processes Count Occurrences 

11 T4 [P10], T6 [P10, P20, P8], T9 [P10, P11, P21], T3 [P2, P22], T8 [P7], T7 [P8] 
7 T1 [P1], T2 [P12, P5], T4 [P2], T8 [P22], T10 [P22], T9 [P6] 

5 T5 [P10, P14], T2 [P2], T4 [P6], T1 [P7] 

5 T3 [P12, P5], T7 [P12], T10 [P20], T6 [P4] 

3 T4 [P15], T7 [P16], T9 [P9] 

2 T2 [P1], T10 [P13] 

2 T8 [P11], T5 [P8] 

2 T5 [P17], T1 [P20] 

2 T7 [P4, P6] 

1 T3 [P1] 

1 T9 [P13] 

1 T6 [P14] 

1 T1 [P15] 

1 T6 [P17] 

1 T9 [P18] 

1 T8 [P19] 

1 T9 [P19] 

1 T4 [P21] 

1 T7 [P3] 

1 T5 [P4] 

1 T8 [P5] 

1 T10 [P7] 

Table 5: All Participants’ Behaviors in Their Workfows. R is when the participant ran out of time on the task or was unable to 
confrm or reject the AI-generated output has an error. In 52 verifcation workfows, we observed 3 such cases. 

Figure 6: An example study task. We include the description of the analysis goal and dataset in the left side-panel. 
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