)]
Check for
Updates

How Do Analysts Understand and Verify Al-Assisted Data

Analyses?
Ken Gu Ruoxi Shang Tim Althoff
kenqgu@cs.washington.edu rxshang@uw.edu althoff@cs.washington.edu

University of Washington
Seattle, WA, USA

Chenglong Wang
chenwang@microsoft.com
Microsoft Research
Redmond, WA, USA

ABSTRACT

Data analysis is challenging as it requires synthesizing domain
knowledge, statistical expertise, and programming skills. Assistants
powered by large language models (LLMs), such as ChatGPT, can
assist analysts by translating natural language instructions into
code. However, Al-assistant responses and analysis code can be
misaligned with the analyst’s intent or be seemingly correct but
lead to incorrect conclusions. Therefore, validating Al assistance is
crucial and challenging. Here, we explore how analysts understand
and verify the correctness of Al-generated analyses. To observe an-
alysts in diverse verification approaches, we develop a design probe
equipped with natural language explanations, code, visualizations,
and interactive data tables with common data operations. Through
a qualitative user study (n=22) using this probe, we uncover com-
mon behaviors within verification workflows and how analysts’
programming, analysis, and tool backgrounds reflect these behav-
iors. Additionally, we provide recommendations for analysts and
highlight opportunities for designers to improve future Al-assistant
experiences.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); Natural language interfaces.

KEYWORDS

Auto Data Science, Explainable Al, Human-Al Interaction, Human-
Al Verification, Data Science Assistant, Copilot, Design Probe

ACM Reference Format:

Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang, and Steven M. Drucker.
2024. How Do Analysts Understand and Verify Al-Assisted Data Analyses?.
In Proceedings of the CHI Conference on Human Factors in Computing Systems
(CHI °24), May 11-16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA,
22 pages. https://doi.org/10.1145/3613904.3642497

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 24, May 11-16, 2024, Honolulu, HI, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05

https://doi.org/10.1145/3613904.3642497

University of Washington
Seattle, WA, USA

University of Washington
Seattle, WA, USA

Steven M. Drucker
sdrucker@microsoft.com
Microsoft Research
Redmond, WA, USA

1 INTRODUCTION

Data analysis is challenging as practitioners must synthesize do-
main knowledge with computational expertise to draw reliable
conclusions. For practitioners, computational challenges may act
as a barrier to exploring alternative and valid analysis decisions,
and therefore conducting robust analyses [84, 86].

Improved capabilities of large language models (LLMs) for gen-
eral [18, 22, 24], data science [19, 76, 138], and visualization [30]
programming tasks suggest LLM-based analysis assistants as a
promising solution, enabling data analysts to execute and automate
their analyses. Given the widespread deployment of assistants such
as OpenAT’s Code Interpreter [96], there is an emerging paradigm
in how analysts perform analyses. Rather than formulate the ex-
act transformations and operations in an analysis, analysts specify
their analysis question through a natural language intent (Fig. 1
right) [85]. The Al assistant then performs the analysis task, writes
code to understand the data, makes the necessary data transfor-
mations, and interprets the results. Since many analysis tasks are
time-consuming [20, 54, 55, 84], even for analysts well-versed in
programming, natural language interactions can be more efficient
especially when abstraction of the intent is possible. Furthermore,
this natural language communication can broaden the usability of
Al analysis tools, making them accessible even for analysts who
are non-expert programmers [106].

Yet, a significant challenge remains. Al-based assistants, while
powerful, can misinterpret user intentions (see Fig. 1) [48, 79, 137]
or make seemingly correct erroneous outputs [13, 47]. Since mis-
interpretations is inherent in the flexibility of natural language
communication [85, 106, 114], errors from existing Al-based assis-
tants are likely to persist no matter what the underlying LLM is.
Moreover, because conclusions from data analyses often inform
high-impact decisions in science [4, 8], business [54, 66, 67], and
government [42, 124], it is important for users of Al-based analysis
assistants to critically reflect on the assistant’s outputs [106]. In
this new paradigm, analysts’ focus now shifts from writing and
validating their own analyses to understanding and evaluating the
analyses generated by Al assistants [79]. This can be challenging
as existing Al assistants lack verification support [106, 112] and
even experts can be susceptible to automation bias and overre-
liance [100, 132].

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Traditional Data Analysis

® order_status

Sort

44 Ascending 2} Descending

By color: None e
Filter

By color: None a8

Equals B Retumed..

© and or
Choose One] e
@&t)
(Select All)

Returned to seller
‘ F G H I
1 sku [~] order_date [-7|quantity [~|order_status |7
24 SKU: DN-OWDX-VYOT Fri, 26 Nov, 2021, n Returned to seller

41 SKU: 54-D265-B74K Fri, 26 Nov, 2021, i} Returned to seller

Clear Filter

import pandas as pd

df = pd.read_excel('orders_data.xlsx") b
df.head() —

wee
fl'order_date'] = pd.to_datetime(df['order_date'l)
f['order_date'].head()

d

d

0 2021-07-18 22:38:00
1 2021-10-19 18:05:00
2 2021-11-28 22:2
3
4
N,

2021-07-28 04:06:00
2021-09-28 14:50:
ame: order_date, dtype: datetime64[ns]

filter for orders in November
df_nov = df[df['order_date'].dt.month == 11]
df_nov['order_date'].dt.month.value_counts()

11 29
Name: order_date, dtype: int64

[4]: # filter for returned to seller ™~ Vv & F R
df_filt = df_nov[df_nov['order_status']l == 'Returned to seller']
df_filt[['sku', 'order_date', 'order_status', 'guantity'l]]

[41: sku order_date order_status quantity
22 SKU: DN-OWDX-VYOT 2021-11-26 19:22:00 Returned to seller 1
39 SKU: 54-D265-B74K 2021-11-26 21:12:00 Returned to seller 4

Gu et al.

Al-Assisted Data Analysis

@ orders_dataxisx

How many items purchased within the month of November were returned to seller?

- To determine how many items purchased in the month of November were returned to the

(ON¢)
w seller, I will:

Load the data from the provided Excel file.
2. Filter the data for purchases made in November.
3. Count the number of items that were returned from the filtered data.

Let's start by loading the data and inspecting the first few rows to understand its structure.
Show work

Finished working

The dataset contains several columns, including “order_date and ~order_status . \We'll

use these columns to: 7

Filter orders made in November. L]

K&

2. Count the number of items that were returned.

Let's proceed with these steps.

Finished working Hidework A

python
orders_datal] = pd.to_datetime{orders_datal
J.dt.menth == 11]

november_orders = orders_datalorders_datal

returned_items = november_orders[november_srders[

total _returned_items = returned_items[

total_returned_items

Atotal of 5 items purchased in the month of November were returned to the seller.

Figure 1: Analysts may now need to understand and verify Al-assisted analyses. In traditional analysis workflows, analysts
specify and execute their data operations using tools such as computational notebooks (A) or spreadsheets (B). Engaged in
these operations, analysts are familiar with the process and results of their work (e.g., reports, code, tables, and visualizations).
However, with Al-assisted analysis, analysts can convey their intentions using natural language (e.g., "How many items purchased
within the month of November were returned to the seller?"). The Al assistant handles the task of specifying and performing the
data operations. This shift requires analysts, including those who may not be familiar with the underlying execution language
the assistant uses, to understand and verify the process and results of the assistant (C). In this paper, we study the workflows
analysts with varied backgrounds use to understand and verify Al-assisted data analyses.

Recent work in the HCI community explored ways to provide the
user with a better understanding of LLM-generated outputs, includ-
ing those from Al-based code assistants [120, 127]. However, these
studies focus only on programmers and not the specific domain of
data analysis, missing a significant portion of data analysts [26, 84].
Since data analysis involves iteratively making sense of the underly-
ing data [69, 71, 104], analysts must juggle their mental model of the
data in addition to their understanding of the AI’s procedure. There
is limited insight into how analysts with different programming
skills and computational reasoning abilities go about this process.
Current code assistants such as Open AI's Code Interpreter [96]
present these steps in natural language, Python code, code com-
ments, and code execution outputs. It is unclear to what extent

these interface affordances are helpful and how analysts use these
different sources of information for accessing the correctness of
Al-generated analyses.

In this work, we build on the perspective of recent works in
Human-Centered Explainable AI (HCXALI) [33, 68, 81, 82] in that
users’ needs to understand Al-generated outputs are dependent on
their backgrounds, social, and organizational contexts; we focus on
data analysts as they understand Al-assisted analyses. We study
the verification workflows of analysts, how different backgrounds
may influence analysts’ approaches, and opportunities to improve
this experience. We aim to guide the design of Al assistants that
empower analysts to critically reflect on Al-generated outputs.

To explore analysts’ behaviors and elicit feedback for design
opportunities, we developed a prototype interface that not only
includes the AT’s code, code comments, and natural language ex-
planation but also additional interactive data tables and summary
visualizations (Sec. 4). This design accommodated a broad spectrum
of potential artifacts that analysts may employ during verifica-
tion, facilitating the observation of naturally emerging workflows.
Analysts could access intermediary data tables that let them fil-
ter, search, and sort for values to explore the data and verify the
Al-generated output. Using our tool as a probe, we conducted a qual-
itative study with 22 professional analysts (Sec. 5). We asked par-
ticipants to verify Al-generated analyses that involved sequences
of data transformations covering a range of real-world datasets
(Table 1). These generated analyses were in response to high-level
analysis queries written by data scientists [138] which were pre-
sented to participants as prompts written by an intern.

We find analysts often started their verification workflows with
procedure-oriented behaviors (answering “what did the Al do?”) and
shifted to data-oriented behaviors (answering “does the [resulting]
data make sense?”) once they noticed issues in the Al-generated
output (Table 4). Analysts adopted procedure-oriented behaviors to
get a high-level understanding of the analysis steps and confirm low-
level details in the data operations. Meanwhile, analysts adopted
data-oriented behaviors to make sense of the data. Notably, data
artifacts (i.e., the data tables and summary visualizations) were
often vital as secondary support in procedure-oriented behaviors,
and vice versa for procedure artifacts (i.e., the natural language
explanation and code/code comments) (Fig. 5).

Based on these findings (Sec. 6), we make recommendations
to end-user analysts interacting with Al-based analysis assistants
(Sec. 7.1). Additionally, we discuss implications for system designers
(Sec. 7.2). These center around fluidly connecting data-oriented and
procedure-oriented artifacts, communicating data operations and
AT’s assumptions about the data, and incorporating Al guidance
into verification workflows.

This paper contributes the following:

(1) Findings from a user study using our design probe that un-
cover common behavioral patterns in the verification of
Al-generated analyses,

(2) A set of implications for end-user analysts interested in Al-
assisted data analysis, paired with design implications for
tool builders to improve verification workflows.

2 MOTIVATING EXAMPLE

To illustrate the potential errors and verification workflows in Al-
assisted analyses, we compare three hypothetical analysts working
on the same analysis question (Fig. 1). This scenario highlights
the workflow differences between traditional and Al-assisted data
analysis. Jane, Kate, and Alex are data analysts at a company that
sells products on a popular e-commerce platform. They want to
assess how many products may have quality control issues as the
year draws to a close. Specifically, they want to find out how many
distinct products bought in November were later returned. To per-
form this analysis, they have a dataset of product orders where
each row is a unique order for a product and its associated order
status. The dataset contains the following key columns:

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

order_date: the date which the order was placed

sku: a unique identified for the product

quantity: the number of units of the product ordered
order_status: indicating whether the order was Delivered
to Buyer or Returned to Seller

Traditional Data Analysis. Jane uses a spreadsheet for her analy-
sis (Fig. 1A). She explores the dataset in her spreadsheet tool. After
grasping its structure, she zeros in on the task. She uses the spread-
sheet’s interface to filter the order_date column for the month of
November and the order_status column for Delivered to Buyer. She
sees that there are two rows left, indicating two unique products
were ordered in November and returned to the seller.

In contrast, Kate opts to use computational notebooks for data
analysis, employing Python code to investigate the analysis ques-
tion (Fig. 1B). She writes code to read the dataset and to understand
the data. She then writes code to filter the order_date column for
the month of November and the order_status column for Delivered
to Buyer. In her workflow, Kate validates her operations by writing
code to get a quick sense of the intermediate data produced. Like
Jane, Kate arrives at the same conclusion. Throughout this pro-
cess, Jane and Kate are actively engaged in the data and operations,
giving them confidence in the correctness of their conclusion.

Al-Assisted Data Analysis. Alex, meanwhile, decides to leverage
an Al assistant for help. He uploads the dataset and writes a natural
language prompt: How many items purchased within the month of
November were returned to seller?

The Al assistant writes and executes code to read the dataset.
Next, it performs the analysis task, generating and running code
before arriving at a final answer of 5. During this, the Al assistant
also explains its steps in natural language. Because Alex was not
directly involved in the analysis, he needs to validate its answer
by inspecting the Al-generated output (Fig. 1C). He reads over the
AT’s natural language explanation of its procedure and skims the
code briefly. Without fully understanding the code, he deems the
answer to be correct. However, upon comparing his answer with
Jane’s and Kate’s, Alex realizes the Al made a mistake. Looking
through the intermediate data in Kate’s work, Alex realizes the Al
assistant calculated the number of units returned rather than the
number of unique products returned.

The errors in Al-assisted data analysis are subtle and require
the analyst to carefully scrutinize the AI’s procedure and associ-
ated data involved. Additionally, current Al assistants do not facili-
tate the exploration of data along with the AT’s code and natural
language explanation, thereby constricting analysts’ verification
workflows. Further, it is unclear how analysts go about verification.
Therefore, this paper seeks to understand analysts’ workflows and
identify opportunities for improvement.

3 BACKGROUND AND RELATED WORK

3.1 AlI-Based Tools for Data Science Execution

Al-based code assistants can enable analysts to conduct analyses as
end-user programmers [70, 85]. With tools such as Github Copilot
and ChatGPT, analysts’ intent specified through natural language
can be more expressive and approachable than those conveyed in

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

domain-specific programming languages [27, 41]. Given the po-
tential of Al-supported natural language programming, there is
a growing body of research in the value and usability of these
tools [8, 31, 52, 79, 112, 126]. These works focus on programmer
experiences with Al-based code assistants and find common chal-
lenges in comprehending and verifying the Al-generated code [79,
112, 126].

Here, we build on prior work and study the verification chal-
lenges for data analysts as end-user programmers [70]. Compared
to software engineering, data analysis is more exploratory and itera-
tive [60, 86, 104, 110] as code is not the deliverable but the outcome
of the analysis [34, 54]. Importantly, making sense of the data is
an integral part of data analysis [38, 71, 104, 111]. While existing
work has studied how programmers validate Al-written code for
general programming tasks [9], our work observes how data an-
alysts’ sensemaking behaviors interplay with their verification of
Al-generated analyses.

Al-based analysis assistants have also received great attention.
Prior work has explored the design of analytical chatbots [44, 57,
142] such as what should the responses be from such an assis-
tant [114] and how analysts can request, specify, and refine assis-
tance [89]. Given the attention and promise, these assistants have
been integrated into popular analysis environments such as compu-
tational notebooks [39, 103] and spreadsheets [118], and released
as standalone systems [30, 125]. In contrast, we examine these tools
from the perspective of supporting analysts’ understanding and
verification of Al-generated analyses, especially as Al-assistants
can specify sequences of data operations (e.g., Fig. 1 right). In par-
ticular, we contribute the first user study examining the common
behaviors and challenges in verification workflows.

3.2 Understanding and Sensemaking in Data
Analysis

Prior work has found that data scientists often compare conclusions
with prior analyses and existing data [66, 86]. Likewise, as part of
data science collaboration and communication, it is common for
data analysts to interpret and understand the results of another
analyst’s work [26, 67, 99, 140]. During this sensemaking, analysts
often need help managing, tracking, and comparing the iterative
and messy nature of their computations [43, 59, 62, 131]. To support
this, prior work has explored how to help analysts track the data
provenance in their analyses [58, 59, 135] and visualize how their
data changes throughout various data operations [105, 129, 136].
While existing research has focused on understanding human-
written analyses, there are key differences between understand-
ing analyses written by a human, and those written by an Al
People develop diverse perceptions and levels of trust in Al sys-
tems [28, 39, 51, 64], leading to distinct behaviors when evaluating
Al-generated analyses. For example, McNutt et al. [89] observed
that some data scientists naturally trust analyses written by a col-
league and may overlook code auditing. Additionally, social factors
in data analysis communication often result in communicating asyn-
chronously [129], employing multiple platforms (i.e., Slack, Zoom,
Google Docs etc.) [99], and selectively sharing information [86, 99].
These qualities are less likely to appear when interacting with
an Al-assistant. Therefore, Al analysis assistants present a unique

Gu et al.

paradigm for analysis verification and sensemaking. Given the wide-
spread deployment of Al-based tools, our work seeks to understand
the intricacies of this paradigm.

3.3 Understanding and Verifying LLM Outputs

Prior work in the Human-Centered Explainable Al community
has emphasized the goal that understanding Al revolves around
empowering individuals to fulfill their objectives [33, 68, 81, 82].
Following this perspective, recent work has explored ways to make
LLMs more interpretable as they present their own explainability
challenges [31, 120, 127]. Specifically, these works have explored
opportunities for Al-code assistants in programming applications
and proposed different explainable AI (XAI) features to guide the
programmer’s understanding of the model. In contrast, our work
focuses on XAI features for data analysts. As data sensemaking is
inherent in data analysis [38, 71], we explore specific features that
help analysts in following the AI’s data operations (e.g., via the
natural language explanation and associated data tables).

We note that understanding and verifying Al-generated outputs
can involve additional follow-up prompts to the Al assistant [77, 85].
In this work, we focus on understanding the usage of supporting
artifacts and disentangle the verification workflow using these
artifacts from prompt writing (Sec. 4.1). Works studying abstraction
matching [85], prompt writing [139], and repair of Al-generated
programs [6, 94] are related but distinct.

4 METHOD: DESIGN PROBE AND PREPARED
TASKS

In this work, we aim to study how analysts verify Al-generated
analyses with features that support data sensemaking. In doing so,
we wanted to minimize the impact of variations in the dataset, task
difficultly, prompt expertise, and Al responses. To facilitate analysts’
natural sensemaking workflows when working with data, we chose
to purpose-build a design probe [14] and provide additional data
artifacts based on recommendations from prior work [5, 10, 23, 59,
61, 91, 135]. We made this decision because existing assistants, such
as Code Interpreter [96], do not allow easy exploration of data and
only provide natural language explanations, code, and execution
outputs. In this section, we discuss the key design considerations
involved in our study (Sec. 4.1) before outlining the specific de-
sign of our probe (Sec. 4.2) and the preparation of our study tasks
(Sec. 4.3).

4.1 Design Considerations

In building our design probe and formulating our user study, we
identified three central design considerations that involved different
trade-offs outlined below. These decisions are guided by our goal
to make reliable observations on analysts’ verification workflows
with different supporting artifacts, while minimizing distractions
from other aspects of the data analysis workflow.

Using familiar and approachable supporting artifacts. A cru-
cial decision in implementing our design probe revolved around
the choice of data artifacts. One option is to incorporate customized
feature-rich artifacts (e.g., those in Datamations or DITL [105, 128])
and verification interfaces (e.g., incorporating visualization tools

like Voyager [133, 134] or PygWalker [53] for verificaiton). Alter-
natively, we could opt for integrating a core set of simpler, more
user-friendly, and approachable data artifacts. These two options
contrast with each other in terms of the richness of actions analysts
can achieve with the interface and the time and effort analysts need
to spend to learn to perform these actions.

Ultimately, we opted for familiar and approachable artifacts as
our study focus is to observe verification workflows: we deter-
mined that the challenges tied to learning and interpreting cus-
tomized visual elements would limit our ability to observe these
workflows [37, 73, 78]. Likewise, while generic artifacts and in-
terfaces may overlook some features experienced analysts could
leverage, they let us focus on analyzing analysts’ workflows across
a broad audience and still gather concrete feedback on the features
they want.

Focus on one turn of the human-Al interaction. Another choice
that shaped our probe and study was whether or not to allow follow-
up prompts to the Al as part of the verification workflow. On one
hand, choosing to allow follow-up prompts enables analysts to use
them in their verification. However, besides interpreting the AI’s
current output, analysts would need to grapple with the challenge
of formulating prompts [90, 139]. On the other hand, opting against
follow-up prompts mitigates the impact of prompt expertise but
at the cost of confining analysts’ actions. In our study, we chose
to zoom in on one turn of the human-Al interaction and disallow
follow-up prompts. As every new prompt triggers a corresponding
response from the Al assistant, continuous interpretation and verifi-
cation of Al-generated outputs are inevitable. In reducing the scope,
we chose to thoroughly observe how analysts understand the AI’s
outputs and interact with supporting artifacts. Similarly, aiding an-
alysts in understanding the Al-generated output through artifacts
not only helps them rectify errors in immediate interactions but
also craft more effective prompts in future engagements.

Prepare standardized task materials. The choice of datasets and
verification tasks was also important to consider. One option is to
allow analysts to work with their own datasets while interacting
with the Al in real-time to verify the AI’s outputs. Alternatively,
we could pre-prepare the natural language prompts, associated
datasets, and Al-generated responses. These choices underscore a
trade-off between matching analysts’ natural workflows and miti-
gating variability associated with generative Al and dataset com-
plexity. In our study, to control potential confounding factors, we
chose to prepare all task materials. Although this approach may dif-
fer from the scenario where analysts’ verify their own datasets and
analyses, it closely aligns with situations where analysts need to
familiarize themselves with another analyst’s analysis [72, 99, 140].
To mitigate concerns related to dataset unfamiliarity, we carefully
prepared approachable and realistic datasets from diverse domains,
used prompts written by real-world data scientists, and provided
additional background descriptions of the dataset and analysis moti-
vation (Sec. 4.3). Given our chosen approach, it would be interesting
to apply the lessons learned in this study to analysts working on
their own datasets and tasks (Sec. 7.3).

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

4.2 Design of the Probe

Data analysts need to inspect the data (i.e., the data quality, format,
columns, values etc.) and engage with the data (e.g., understanding
relationships between columns, looking for outliers etc.) as part
of data sensemaking activities [71]. Therefore, we designed our
probe with facilities for understanding the data. This includes data
tables, and summaries and histograms of all the fields in the data.
To support sensemaking while making components approachable,
our probe incorporates abstractions of modalities found in popu-
lar data science tools: the code, code comments, natural language
explanations, data tables, and visualizations [1-3, 29, 32, 63, 135].

User Interface. The probe’s interface follows a multi-panel design.
The main panel shows the chat interface between the user and the
assistant (Fig. 2 left). The user’s prompt and subsequent response
from the assistant are shown. In the assistant’s response, following
Code Interpreter [96] and explanation practices recommended and
found favorable in prior work [32, 77, 120], the interface shows the
assistant’s natural language explanation of its procedure, associ-
ated code, code comments, and execution outputs (Fig. 2A and B).
These are interleaved together such that all artifacts are available at
any time. In addition, because understanding the sequence of data
manipulations is vital to understanding the output [105, 136], the
probe includes descriptions of any intermediate data computed as
a result of an atomic data wrangling operation (Fig. 2C) [56, 136].

Inspired by prior work detailing the importance of contextualized
intermediate data artifacts for analysis provenance [5, 10, 23, 59,
61, 91, 135], the probe includes a side data panel (Fig. 2 right) that
allows analysts to view all relevant data in the Al-generated analysis.
Having this as a side panel is helpful as it suggests the information is
of global scope [89]. Additionally, by keeping the data separate from
the Al-generated analysis, the probe minimizes any interference to
analysts following the AI's procedure in the main panel. In the side
panel, data tables are shown (i.e., the original data and the results
of intermediate calculations) as collapsible panels. Each collapsible
panel includes a raw data table and a summary visualization of the
table from [93]. The summary visualization offers a quick visual
summary of the overall table, the values and distribution of each
column, and basic descriptive statistics.

User Interactions. In the main panel, the probe’s interactions
prioritize easy access to the full/high-level abstraction of the pro-
cedure conveyed through the AI’s natural language explanation.
Because code and table descriptions can obstruct and interrupt this
view, the code and intermediate data descriptions in the main panel
are initially hidden which users can reveal via a show/hide button.
Analysts can also access the side data panels within the flow of the
AT’s explanation via in-context buttons which open and close the
corresponding panel (Fig. 2E1 and E2).

In the side panel, analysts can perform basic operations on each
table such as sorting columns and filtering rows based on specific
values in the column(s). To support easy navigation between the
data tables and AI’s procedure in the main panel [23, 135], clicking
on a data table scrolls the main panel to the corresponding context
of that data table.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

What is the least possible age of students having high adaptivity?

®

First, | will inspect the contents of the uploaded file to understand its structure
and the data it contains. After that, | can determine the least possible age of
students with high adaptivity. Let's start by loading and viewing the first few rows
of the dataset.

show/hide code +

Original Data

The dataset contains various attributes related to students, such as gender, age,
education level, institution type, IT expertise, location, and adaptivity level.

To determine the least possible age of students with high adaptivity, I'll filter the
dataset for students with an "Adaptivity Level" of "High" and then identify the
minimum age from that subset.

show/hide code X

"High"]

@ show/hide intermediate data description X

The code generates the following intermediate data:

» high_adaptivity_students (students with an "Adaptivity Level" of
"High")

udents

udents_data["Adaptivity Level"

_adaptivity_students @

The least possible age of students with a high adaptivity level is between 11 and
15 years.

©

Gu et al.

& Original Data

Dataset Summary
= m I Rows per page 10 v 1-10 of 1205 > >l
Gen Age Education Level Monthly Internet Usage (GB) Adaptivity Level Class Dur:
Boy 21-25 University 34
Girl 21-25 University 36
Girl 16-20 College 41 = Sort by Monthly Internet Usage (GB) ascending
Girl 11-15 School 57 = Sort by Monthly Internet Usage (GB) descending
Girl 16-20 School 33
Boy 11-15 School 43
= Filter by Monthly Internet Usage (GB)
Boy 11-15 School 25
Boy 11-15 School 24
Boy 16-20 College 48 & Hide Monthly Internet Usage (GB) column
Boy 11-15 School 8
G high_adaptivity_students @ ~
Dataset Summary
Dataset Table
NN
100
I
Column Snapshot Missing Mean Median SD
@ cender I 0.0% :
2 categories
© Age [0.0% -
5 categories
) Education Level [— 0.0%
3 categories
Monthly Internet Usage (GB) 5 | ':2 0.0% 38 36 21
High d
100.0%
@ Adaptivity Level 0.0% -
1 category
@ Class Duration 0.0% -
2 categories
@ Institution Type _ 0.0% =
2 categories
@ 17 Student 1 0.0% -
2 categories
@ vocation I 0.0% -

2 categories

Figure 2: Probe Interface. The analyst’s prompt and the assistant’s response are shown in the left panel. The AI’s response
includes its natural language explanation (A), the code and code comments involved in its calculations (B), and a description of
any intermediate data (C). The original data table and intermediate data table(s) are accessible via buttons interleaved in the
AT’s response (D1 and E1) and when clicked point to their corresponding data pane in the right panel (D2 and E2). These panes
can also be opened directly in the right panel. In each pane, analysts can view the raw data table in the Dataset tab with sort
and filter functionality (F). Analysts can also view a visualization showing the distribution and basic descriptive statistics of

each column in the Summary tab (G).

4.3 Preparation of Study Tasks

To prepare realistic analysis verification tasks and Al-written errors
representative of those made by state-of-the-art Al assistants, we
used the ARCADE benchmark dataset from Yin et al. [138]. AR-
CADE features multiple rounds of natural language intent to code
problems (i.e. a natural language query, dataset, and code solution)

situated in computational notebooks! written by data scientist an-
notators. In our task preparation, we ran queries from ARCADE
on Code Interpreter [96] and carefully selected a subset of queries
that contained errors, had good coverage across a range of domains
and error types, and were approachable to analysts (details in the

These notebooks used datasets uploaded to Kaggle and encompassed data wrangling
and EDA operations.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

TID Task Natural Language Prompt Error Type and Summary PIDs

TO [121] Tutorial What is the least possible age of students having Data—AI and took the minimum of age-range by al- Everyone
high adaptivity? phanumeric order.

T1[15] Amazon How many items purchased within the month of = Prompt—AI counted the quantity of products returned, P1, P7, P15,

Orders November were returned to seller? instead of the number of unique products. P20
T2 [46] Big Show a list of the top five rated Nivea products. Data—AI missed "Nivea Men" products in the data. P1,P2,P5,P12
Basket1
T3 [46] Big How expensive are gourmet products compared to ~ Correct P1,P2,P5,P12,
Basket2 beverage products in average? Show the value as a P22
percentage of beverage products.

T4 [108] Bollywood Show the top 5 movies with the highest percentage Calculation—Al mentioned but did not ignore rows P2, P6, P10,

return on investment. with bad budget values. The intern did not filter for P15, P21
only Bollywood movies.

T5 [11] Flights1 What is the city that has the highest number of Calculation & Data—AlI performed the wrong order of P4, P8, P10,
incoming flights? How many incoming flights does filtering. It also incorrectly counted incoming flights P14, P17
each airline have for that city with one week left based on booking rows rather than by unique flight
until departure? Show the city name, airline and codes.
number of incoming flights.

T6 [11] Flights2 What is the least expensive time of the day to de- Prompt—For each airline, the Al calculated the mini- P4, P8, P10,
part to Chennai in Economy class across all air- mum price of all flights during a time of day rather P14, P17, P20
lines? Show the time of the day and the fare price than the minimum of the average price of flights dur-
for each airline. ing a time of day.

T7[92] Hotels Which hotels had a worse ranking this year than = Data—AI misinterpreted a "2021" flag column as rep- P3, P4, P6, P8,
in 2021? Show the hotel name, location and the resenting the rank in 2021. P12, P16
difference in ranking from last year.

T8 [65] Movie What is the number of shows viewed in distinct ~ Calculation—Inverted the percentage calculation. P5, P7, P11,

Content languages within each genre as a percentage of the ~Summing across genres for a given language should P19, P22
total number of shows within each genre? Show add up to 100 but the AI’s calculation resulted in sum-
the genres as an index and languages as columns ming across languages for a genre adding up to 100.

T9 [117] Netflix Who is the actor who worked with the same direc- Correct P6, P9-11, P13,
tor the most? P18, P19, P21

T10 7] vV What are the top 5 most selling television frequen- Data—The Al cleaned dirty frequency data but it ne- P7, P13, P20,
cies? Show the frequencies with their counts glected correct data that existed in other columns. P22

Table 1: User Study Tasks. These tasks and natural language prompts were derived from Yin et al. [138]. The prompts were
written by data scientist annotators, who were instructed to be natural, concise, and avoid unnecessary elaborations. Al errors
encompassed poor interpretations of the prompt and data, and incorrect calculations. Although creating more precise prompts
can potentially reduce errors, our study is not centered on this aspect.

appendix). These queries and Code Interpreter responses formed
the backbone of our tasks.

In total, we prepared one tutorial task and 10 main tasks, 2
of which did not contain any errors, spanning 9 unique datasets
(Table 1). For each task, we used the generated code from Code
Interpreter’s output to prepare intermediate data tables and table
summary visualizations. To provide analysts with sufficient infor-
mation, we prepared additional intermediate data tables for all
major transformations, often breaking up chained function calls
in the code. We then verified with multiple expert data scientists
that these intermediate data tables were sufficient for the task. To
ease dataset understanding and help participants focus on verifica-
tion, we reduced the number of columns for excessively complex
datasets. We made sure to leave enough extra columns irrelevant

to the immediate analysis query such that the task remains non-
trivial. In addition, we provided a clear ground truth motivation and
a more detailed description of the analysis query. In the rest of the
paper, to differentiate the two, we refer to the detailed description
of the analysis query as the analysis goal. Finally, we provided a
description of the dataset and what each column in the dataset
represented.

In summary, we compiled the following primary materials for
each task: the natural language query from ARCADE, the unmod-
ified code, code comments, and natural language explanation re-
sponse from Code Interpreter, the prepared data tables and visual-
izations (Fig. 2 right), and a detailed description of the motivation,
analysis goal, and dataset.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Gu et al.

PID Role Exp. Primary Analysis Tools Analysis Frequency Coding Comfort Tasks Shown
P01 Data Scientist 6Y Code/Computational Notebooks — Daily Very Comfortable [T1, T2, T3]
P02 Software Engineer 4Y Data Visualization Tools Daily Very Comfortable [T2, T3, T4]
P03 Consultant 26 Y Spreadsheets Daily Somewhat Comfortable [T7]

P04 Data Analyst 10Y Data Visualization Tools Weekly Somewhat Comfortable [T5, T6, T7]
P05 Software Engineer 10Y Code/Computational Notebooks =~ Weekly Very Comfortable [T2, T3, T8]
P06 Program Manager 12Y Spreadsheets Weekly Very Comfortable [T4, T7, T9]
P07 Program Manager 6Y Spreadsheets Monthly Neutral [T1, T8, T10]
P08 Software Engineer 7Y Code/Computational Notebook ~ Weekly Very Comfortable [T5, T6, T7]
P09 Program Manager 3Y Spreadsheets Daily Neutral [T9]

P10 Tech. Strategist 15Y Spreadsheets Monthly Neutral [T4,T5, Te, T9]
P11 Program Manager 11Y Data Visualization Tools Daily Somewhat Comfortable [T8, T9]

P12 Program Manager 5Y Spreadsheets Daily Neutral [T2, T3, T7]
P13 Cloud Architect 5Y Spreadsheets Daily Somewhat Comfortable [T9, T10]
P14 Program Manager 0.5Y Code/Computational Notebook Weekly Very Comfortable [T5, T6]

P15 Program Manager 10Y Spreadsheets Daily Somewhat Comfortable [T1, T4]

P16 Program Manager 15Y Spreadsheets < Monthly Never Coded Before [T7]

P17 Software Engineer =~ 15Y Code/Computational Notebook ~ Weekly Very Comfortable [T5, T6]

P18 Program Manager 7Y Data Visualization Tools Daily Somewhat Comfortable [T9]

P19 Finance Manager 13Y Spreadsheets Daily Neutral [T8, T9]

P20 Program Manager 3Y Data Visualization Tools Daily Somewhat Comfortable [T1, T6, T10]
P21 Customer Manager 8Y Spreadsheets Daily Very Comfortable [T4, T9]

P22 Architect 5Y Code/Computational Notebook ~ Weekly Very Comfortable [T3, T8, T10]

Table 2: Participants reported using a variety of tools to perform data analysis in their normal workflows and came from a
variety of roles and teams. Over half (13/22) of the participants reported being somewhat comfortable (knowing programming
basics and can write simple programs) or less with programming,.

5 USER STUDY

Using our probe and prepared tasks, we conducted a user study to
observe analysts’ verification workflows of Al-generated analyses.
Our goal was not to evaluate our specific interface but rather to
understand behaviors that emerge when verification artifacts are
available. Three research questions guide our study design and
analysis.

e RQ1 - Behaviors: What patterns of behaviors do analysts
follow in a verification workflow?

o RQ2 - Artifacts: What artifacts do analysts use and for what
purposes?

e RQ3 - Background: How are analysts’ backgrounds re-
flected in their behaviors and artifact usage?

Participants. We recruited participants from a large data-driven
software company and advertised an opportunity to work with
Al-generated analyses. Participants were recruited via email based
on data analysis interest groups and organization mailing lists. We
selected participants with data analysis experience and from diverse
backgrounds, including how often they performed data analysis, the
types of tools they used for analysis, and their self-reported comfort
with programming (Table 2). Participants were compensated with
a $30 USD Amex gift certificate.

Study Procedure. We conducted our study remotely with partici-
pants sharing their screens over a video conferencing tool. Because
our design probe was built as a web application, participants loaded
the interface on their computer with their choice of browser.

The study was structured into three parts lasting approximately
60 minutes total: a tutorial phase (~10 min), an activity phase (~40

minutes) in which participants worked through the prepared tasks,
and a semi-structured interview phase (~10 minutes). In the tuto-
rial phase, we presented participants with the following scenario:
Imagine having an intern who is provided with a dataset to address an
analysis problem. The enthusiastic intern decides to use an Al assistant
to complete the problem, correctly uploading the relevant dataset and
crafting a prompt that is their interpretation of the original analysis
problem. The Al assistant produces an output but the intern is unsure
whether it is correct.

We clarified that the input to the Al assistant is only the intern’s
prompt and the uploaded dataset. In particular, we directed analysts
not to focus on the quality of the prompt, but on the Al-generated
output in response to the prompt. We mention that although the
code executes, there might be issues with the information the Al
uses or how it interprets the intern’s prompt. Next, we presented the
participants with the intern’s prompt and the assistant’s response
in our interface (Fig. 2). We asked participants to determine if the
Al assistant’s answer correctly addressed the initial problem, and
if not, point to reasons why they think there was a mistake. To
eliminate the challenge of participants having to craft their own
prompts—a task that presents its own set of difficulties [139]—we
chose to assign the responsibility of prompt authoring to the intern.
This choice also dissociated participants’ personal preferences for
how they would write prompts which is not the core focus of our
study.

After introducing the analysis scenario, we gave participants a
brief walk-through of the interface (Fig. 2). We then had participants
complete a fixed tutorial task to familiarize themselves with the
interface (T0 in Table 1). The task intentionally contained an error

Label Definition
Start Start of a verification workflow
Data Only Using data artifacts only

Data + Procedure Mainly focusing on the data and using procedure

artifacts as secondary support

Procedure Only Using procedure artifacts only

Procedure + Data Mainly focusing on the procedure and using data
artifacts as secondary support
Notice Noticing an issue that may affect the correctness

of the Al-generated result
Confirm Confirming or rejecting that the Al-generated anal-

ysis has an error

Table 3: Definition of labels used to annotate participants’ ver-
ification workflows. Data Only and Data + Procedure are
behaviors under data-oriented behaviors while
Procedure Only and Procedure + Data are behaviors
within procedure-oriented behaviors.

in which the Al assistant misinterpreted the values of a column and
poorly sorted the answer. This strategy aimed to make participants
cognizant of potential assistant errors and to encourage vigilance
in subsequent tasks.

Next, in the activity phase, participants read the analysis goal and
reviewed the work of the assistant and intern. We assigned tasks
to participants to ensure that, collectively, all tasks were covered
(Table 1). For all tasks in the study, the motivation, analysis goal, and
description of the dataset were always available in a left side panel
(see appendix for an example). To make sure the participants fully
understood the analysis goal, we discussed any areas they found
unclear. We also clarified any questions about the dataset or analysis
goal while participants were working through the task. To reduce
time pressure and encourage a realistic workflow, we emphasized
the exploratory nature of our study, allowing participants to work
at their own pace until they were satisfied with their conclusion.
After completing each task, participants were asked to complete a
brief survey that asked for a confirmation as to whether the AT’s
generation was erroneous and their reasoning.

While participants were completing the tasks, we encouraged
them to think aloud and describe their reasons for interacting with
different components of the interface. If they remained relatively
silent, we regularly prompted them to speak about their workflow.
We provided minimal help beyond clarifying the analysis goal or
semantics of the data. Finally, in the semi-structured interview,
we asked open-ended questions to understand participants’ back-
grounds and prior experiences, overall verification workflows, and
rationales behind their behaviors.

Transcript and Workflow Analysis. To identify recurring themes,
two authors reviewed the participants’ screen recordings, engaged
in several rounds of open coding, and had multiple meetings to
refine their observations. The themes we observed highlighted vari-
ations in participants’ workflows and the artifacts they used. In the
analysis and results, we distinguish between data artifacts (those
in Fig. 2 right) and procedure artifacts (those in Fig. 2 left). Data ar-
tifacts pertain to the original, intermediate, and result data (i.e., the

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Behaviors Across All Participants And Tasks

50+ 48
45-
40 38
35
30+
-
H
2 25+
o
20 17
154 13
10-| 9
5.
T T T T
Data Only Data + Pi dure Pr d Only P dure + Data Notice

Figure 3: Participants often followed procedure-oriented be-
haviors.

data table and summary visualization). Conversely, procedure arti-
facts encompass the natural language explanation, code/comments,
and the AT’s explanation and interpretation of its result.

Additionally, to systematically understand participants’ verifi-
cation workflows, we delineated these into sequences of primary
observations. Informed by the themes from open coding, the two
authors who developed the themes drafted an initial set of obser-
vation labels (e.g., read data table or raising a consideration). Both
authors annotated a few participants’ workflows independently
before meeting to resolve ambiguities and unclear interpretations.
These discussions facilitated a refinement of the observation labels
by broadening their scope. Using the final refined set of labels (Ta-
ble 3), they rewatched the recordings and annotated all end-to-end
verification workflows in the study (see Fig. 4 for examples), includ-
ing observations of the artifacts being used.

Each workflow starts when participants began verifying the Al-
generated analysis (after understanding the task and data) and ends
when they confirmed or rejected the existence of an error. We list
all participants’ verification workflows in the appendix.

6 RESULTS

Participants engaged in a variety of different steps to identify po-
tential issues and ultimately confirm or reject the AI's analysis.
These were guided by two high-level behaviors participants had
within a verification workflow: procedure-oriented behaviors and
data-oriented behaviors (Fig. 3).

Within a verification workflow, participants with procedure-
oriented behaviors were primarily focused on validating the AI’s
procedure, possibly drawing upon data artifacts to aid their un-
derstanding. In contrast, participants exhibiting data-oriented be-
haviors gave precedence to scrutinizing the data involved in the
analysis, relegating the AI's procedure to a supplementary role.
The distinction between these behaviors lies in the participants’ in-
tention. Participants following procedure-oriented behaviors were
concerned with what does the AI do? Meanwhile participants follow-
ing data-oriented behaviors focused on does the data make sense?
This was clear from observing their interaction patterns and verbal
comments. For example, while some participants engaged exten-
sively with intermediate datasets, their main goal in those moments

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Gu et al.

Original Data
NL Explanation Intermediate Data
Code/Code Comments Result Data
NL Explanation Original Data Original Data Code/Code Comments Original Data
P1,T2 Start — Procedure + Data — Notice — Data + Procedure — Notice — Confirm
NLExplanation
Code/Code Comments
Result (Procedure + Data)
Original Data
NL Explanation NL Explanation NL Explanation Intermediate Data Code/Code Comments Result (Data)
P4,T5 Start — ProcedureOnly — Notice — Procedure + Data — Notice — Data Only — Confirm
Original Data
Intermediate Data
NL Explanation
NL Explanation Code/Code Comments Intermediate Data Intermediate Data
P9, T9 Start — Data +Procedure — Notice — Data Only — Confirm

Figure 4: We show examples of interesting end-to-end verification workflows and associated artifacts using our labels in Table 3.
The labels help get a sense of the overall workflow and capture relevant behavioral patterns. For example, in T5, we observed P4
starting out (Start) focusing only on the natural language explanation (Procedure Only) before noticing an issue (Notice)

from the explanation. Their behavior then shifts slightly as they include data artifacts (Procedure + Data) before noticing a
subsequent issue in the code (Notice). Finally, they check the result data (Data Only) to confirm an error in the AI’s analysis

(Confirm). Overall, we observed 52 verification workflows in our study (39 of which involved errors) with an average length
of 4.40 (std=1.42) labels. Four of these had two Notice patterns occur, 30 had one Notice pattern occur and the rest had none.

was to confirm the correctness of the AI’s procedure; this behav-
ior was labeled as a procedure-oriented behavior with the use of
data artifacts as secondary support (i.e., Procedure + Data). In this
section, we provide a detailed account of findings pertinent to our
research questions.

6.1 What patterns of behaviors do analysts
follow in a verification workflow?

Overall, we observed most participants (18/22) followed all or parts
of the AI’s procedure at some point during their verification work-
flows (44/52). In workflows in which participants did not follow the
AT’s procedure, they only used the analysis goal, intern’s prompt,
and data (original and intermediate) artifacts. Likewise, most par-
ticipants (18/22) had data-oriented behaviors in their verification
workflows (25/52). Participants generally exhibited different behav-
iors at different moments in their workflows to focus on different
parts of the Al-generated response.

6.1.1 Analysts initially gravitate toward procedure-oriented behav-
iors. Participants usually had procedure-oriented behaviors ini-
tially during their verification workflows (41/52). These behaviors
were relatively time-consuming and similar to when programmers
thoroughly examine the code’s logic when they validate sugges-
tions from an Al programming assistant. However, in contrast to
the programming assistant setting, procedure-oriented behaviors
were rarely as brief as the quick verification methods (e.g., visual
inspection and pattern matching) programmers most commonly
employ [9, 80].

6.1.2 Analysts shift toward data-oriented behaviors once they no-
ticed an issue. Upon identifying a concern, participants’ strategies
diversified, delving deeper to explore and validate the perceived is-
sue (Table 4). Of the 31 times in which participants noticed an issue
but had not yet confirmed an error, 17 times (15/22 participants) they
continued their verification workflow with data-oriented behaviors.

Patterns Count Occurrences in Verification Workflows

T1 [P1], T2 [P5, P12], T4 [P2], T5 [P4], T6
[P14], T8 [P22], T9 [P6], T10 [P22]

T3 [P5, P12], T6 [P4, P14], T7 [P12], T10
[P20]

PD—-N-D 9

PD—-N—-PD 6

PD-N—-C 5 T1 [P7], T2 [P2], T4 [P6], T5 [P10, P14]
PD—N—DP 3 T2 [P1], T4 [P21], T10 [P13]
P-N—-PD 3 T5 [P4, P8], T8 [P11]

DP—-N-D 3 T4 [P15], T7 [P16], T9 [P9]
DP—-N—-C 2 T2 [P1], T10 [P13]

P—N-P 2 T7 [P4, P6]

Table 4: Participants’ behaviors around noticing an issue.
We report patterns around noticing an issue that occurred
more than once in our study. Participants often followed
procedure-oriented behaviors before noticing an issue and
used a variety of data-oriented behaviors and procedure-
oriented behaviors afterwards to validate their concerns.

In particular, 13 of 17 of these occurrence were when participants
switched from procedure-oriented behaviors to data-oriented be-
haviors after noticing an issue.

Some participants (P2, P15, P16, P20, P22) identified the source
of the issue through eyeballing different data tables, while others
had data-oriented behaviors to check more closely the potential
source of an issue (P4, P5). In T2, P5 correctly noticed that there was
no consideration for Nivea Men. To explore this further, they focused
on the original data table, filtering for rows in which the brand was
Nivea and applying additional filters to spot check specific products.
Similarly, to affirm their suspicions of an error, P4 investigated the
final result table after noticing the Al may not have grouped rows
by flight code (Fig. 4 second row) [T5].

6.1.3 Analysts adopt procedure-oriented behaviors to get a high-
level understanding of the analysis steps. Many participants looked
over the AI’s procedure to get a high-level understanding of the
analysis steps (P1, P2, P4, P8, P11, P17, P18, P20). For instance, in T9,
P18 wanted to understand how the Al arrived at a particular actor-
director pair in the result: “I'm trying to read the code and I'm trying
to understand ... like how is it generating that pair and if there is any
error in that process.” Sometimes, participants gained confidence
in the AT’s correctness from this high-level understanding (P1, P2,
P11, P20). For example, P1 confirmed their understanding after
reading the AI’s procedure one last time: “seems reasonable to me.”
P11 was reassured by the AI’s overall procedure matching their
own: “the steps it described is exactly what I would have done but in
SQL.” In other cases, participants’ focus on the procedure helped
them notice and subsequently confirm a particular step the AI did
wrong (P4, P8). For example, P4 and P8 both noticed from the NL
explanation that the AT’s order of analysis steps were incorrect [T5].
In T6, similar to P11, P4 broke down the general steps on their own
and realized the Al missed calculating the average after inspecting
the AT's procedure.

6.1.4 Analysts adopt procedure-oriented behaviors to confirm de-
tails in the data operations. Participants also focused on lower-level
details involved in the AT’s data operations (P2, P7, P8, P9, P10, P11,
P13, P15, P17, P22). Participants checked functions used in the code,
logic around the data operations, and specific result values. P13 was
especially vigilant making sure that “the spelling was correct” in the
data columns mentioned in the code, and that “syntactically ... (they)
appear to be correct.” P19 was also following the AI’s data operations
to see how it handled unusual values the Al had identified earlier
in its procedure. Focusing on low-level details was one way partic-
ipants gained confidence in the Al or noticed issues (P7, P8, P10,
P11). For instance, in T9, P10 focused on the AI's data operations in
the code which helped them conclude the Al had indeed found the
highest count. P11, while not the most comfortable with Python,
used code comments to translate the AI's procedure into familiar
data operations, noticing the AI's procedure was inconsistent with
the analysis goal description [T8].

However, participants sometimes formed incorrect conclusionsa
due to their reliance on the AI’s procedure (P15, P17). In T5, P17 was
initially skeptical of the result table due to insufficient information
presented, but gained confidence that the result “looked more or less
correct” after cross referencing the AI's NL explanation and code
with the data. P15 manually reviewed the original data and used
the AI's NL explanation and code to form an incorrect expectation
of the output. They confirmed that the Al was correct when the
result data table matched their expectation [T1].

6.1.5 Analysts adopt data-oriented behaviors to better understand
the structure of and relationships in the data. Participants in data-
oriented behaviors focused on the data in a variety of ways. Some
participants (P3, P7, P15, P19) were keen on understanding the data
(original and intermediate) and the specific columns that were per-
tinent to the analysis goal. For instance, P7 adopted data-oriented
behaviors using only data tables at the beginning of their process,
exploring the column of interest in the analysis goal and subse-
quently identifying a data quality issue in the frequency column
[T10]. Meanwhile, for P9, a prototypical data-oriented participant,

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

their data-oriented behaviors involved comparing all data tables
[T9]. Specifically, they delved into the directors and actors inter-
mediate data tables to gather an expectation of what they would
expect in the subsequent merged data table (Fig. 4 third row). Af-
ter, they checked if specific actors in the result data existed in the
merged data. In the process, they spent significant time forming an
expectation of the result data, transitioning back and forth between
all data tables.

6.2 What artifacts do analysts use and for what
purposes?

Across all participants, both data and procedure artifacts were used
consistently in their verification workflow (Fig. 5). Data artifacts
were frequently employed to support procedure-oriented behav-
iors (17/22 participants and in 41/52 workflows), while procedure
artifacts were utilized during data-oriented behaviors (10/22 par-
ticipants and in 13/52 workflows). Within the data, participants
engaged with the intermediate data roughly equally as often as
the original data and result data. Similarly, for procedure artifacts,
participants leveraged code and code comments as often as the nat-
ural language explanation. However, these preferences for artifacts
were not consistent between participants (see Sec. 6.3).

6.2.1 Analysts use data artifacts for sensemaking. Unsurprisingly,
most participants leveraged data artifacts to understand and inter-
pret the data, a standard practice in data analysis practices [5, 10, 38].
For instance, P7 used the data summary visualizations to under-
stand the data, and expressed liking “the summary stats to be able
to do a quick view of the data and understand what it is instead of
having to manually check everything.” P3, meanwhile, meticulously
examined the original, intermediate, and result data to have a com-
prehensive understanding of the analysis. Consequently, several
participants expressed appreciation for the data table summary and
visualizations provided in the AT’s procedure (P5, P7, P13, P17, P20).
Through closely examining the data tables, participants were
able to identify issues with the Al-generated analyses (P1, P3, P7,
P9, P13, P15, P16). For instance, from the data tables, P1 noticed
that there was also the Nivea Men brand in the dataset which the
Al missed (Fig. 4 first row), ultimately leading them to confirm that
the Al-generated analysis contained an error. Likewise, for P9, their
exploration of the data tables led them to perceive a discrepancy
with the number of rows in merged data table and the count from a
quick mental calculation. These observations align with established
guidelines in data analysis practices and implementations of data
analysis tools, and underscore the importance of data visualizations
alongside the analysis procedure [5, 10, 23, 59, 61, 91, 135] .

6.2.2 Analysts frequently use data artifacts for both quick checks and
detailed calculations to support procedure-oriented behaviors. Some
participants glanced at the data artifacts to quickly check things
they noticed in the Al’s procedure (P6, P8, P22). For instance, P22
noticed that the AT’s calculation for the average price of gourmet
food was not a number, prompting them to check the original
data table and discover the Al used the wrong column name [T2].
Similarly, participants used data artifacts to conduct data sanity
checks to verify the procedure (P1, P3, P4, P5, P19, P20, P21, P22).
For instance, P19 wanted to see if percentages in a column added

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Gu et al.

Artifacts Used In Data And Procedure-Oriented Behaviors

2 oote- NI
2 Data Only Artifact
g Procedure)
g M Intermediate Data
Original Data
1
[0} Data
‘® Data + Procedure “ Result (Data)
a Procedure Code/Code Comments
NL Explanation
B Result (Procedure)
2 Data
- Procedure Only
‘= Procedure
Q
g
.g Data
@ Procedure + Data
8 Procedure
= [} T T T T T T T T T T T T T T T T T T 1
o 0 5 10 15 20 25 30 40 45 50 55 60 65 70 75 80 85 90 95100
Count
Artifacts That Helped Participants Notice An Issue
Data-Oriented Data
Procedure
R Data
Procedure-Oriented
Procedure

T T T T T T T T 1

10 12 14 16 18 20 22 24 26
Count

Figure 5: Both data and procedure artifacts were used to support participant’s primary behaviors. For each type of behavior
illustrated in Fig. 3, we tally the unique artifacts involved, counting each artifact once per occurrence in a behavior. This
distribution shows that participants extensively used data artifacts to support procedure-oriented behaviors and used procedure
artifacts to support data-oriented behaviors (Top). The intermediate data, original, data, code, and natural language explanation

were all pivotal for analysts’ to notice an issue (Bottom).

up to 100: “If the percentages tied to 100%, I would feel confident just
at a glance that you know everything and action was allocated to
one of those languages” [T8]. P20, meanwhile, went back and forth
between the code and table to verify the procedure, stating, “just like
understanding what the code did and then each of the intermediate
steps in seeing like ... it looks like it joined it” [T6]. Alternatively,
participants also tried to replicate the AI's data operations using
the supported functionalities in the data tables to compare with
the result in the AI’s procedure and verify what the Al did (P2, P9,
P12, P14, P22). For example, P22 filtered on the frequency column
following the AT’s steps to see how many rows were filtered out
[T10].

These approaches align with common Al-assisted programming
verification methods [9, 80], resembling visual inspection and pat-
tern matching for quick data checks, and code execution for repli-
cating the ATl’s data operations. However, distinct from Al-assisted
programming, data (in addition the procedure) serves as a central
artifact for verification.

6.2.3 Analysts use procedure artifacts to find discrepancies in the
procedure. Some participants were keen on verifying the consis-
tency between the high-level analysis steps in the NL explanation
and the specific data operations in the code (P5, P11, P17, P22).
Meanwhile, other participants compared the NL explanation with
their own common knowledge. For example, P10 felt that “2800
flights felt like a lot” for a day [T5], leading them to investigate the
AT’s procedure. Similarly, from inspecting the AI’s explanation of

the result, P6 noticed “Jurassic World is not a Bollywood movie” [T4].
These discrepancies prompted them to question the AT’s data opera-
tions and understanding of the dataset. Moreover, participants used
procedure artifacts to verify the AI’s interpretation of the prompt
and original dataset (P4, P12). As a result, in T7, both P4 and P12
noticed issues with the AT's understanding of the data, stating an
incorrect interpretation of a column.

6.2.4 Analysts use procedure artifacts for tracing data provenance
to support data-oriented behaviors. Many participants (P1, P3, P13,
P15, P16) used the NL explanation and code to trace the provenance
of data. P1in T2 is a typical example (Fig. 4 first row). P1 started out
with procedure-oriented behaviors but upon perceiving an issue
in the original data table where more than 5 items had a rating
of 5, transitioned into data-oriented behaviors. They scrutinized
the original data table but became confused when the result data
table displayed values less than 5. This contradicted their initial
observation where more than five products had a 5 rating in the
original data. To resolve this, they turned to the intermediate data
and the AI's procedure, tracing the steps in the code that derived
the result table.

Participants also noticed issues when using procedure artifacts
to support their understanding of the provenance of the data (P1, P9,
P13,P15,P16,P17,P21). For instance, P17 wanted to explore why the
intermediate data table contained all kinds of departure time. They
checked the code to see where it did the filtering on the Departure
Time and realized the Al missed taking into account the time of the

day when calculating the minimum of prices [T6]. These behaviors
reiterate the importance of tracking data provenance in analysis
tools and highlight opportunities to adopt and adapt methods in
existing implementations [58, 62, 101, 105, 109, 128, 135].

6.3 How are analysts’ backgrounds reflected in
their behaviors and artifact usage?

In the post-task interviews, we explored participants’ prior experi-
ences with data analysis, coding, and existing analysis tools. We
noted a range of experiences that might be associated with partici-
pants’ behaviors and interactions with artifacts.

6.3.1 Prior Experience With Data. Some participants with data-
oriented behaviors mentioned their prior experience working with
data (P6, P9, P11, P16, P17, P18, P22). For instance, P15, who had
previous experience working with large datasets, expressed comfort
with directly manipulating the datasets, stating, “I'm used to working
with hundreds of thousands of rows, so the size of the spreadsheet
wouldn’t have been a problem.” In both tasks P15 did, they only
followed data-oriented behaviors.

These prior analysis experiences also led participants to be vigi-
lant about the data (P6, P9, P11, P22). P6, who self-identified as a
“data guy”, was inclined to dive directly into the data and scrutinize
the tables and numbers. P11, an electrical engineer by training, also
favored a data-oriented approach. They compared the study tasks
to their past experiences designing systems, explaining how they
always “went straight to the data” and asked “hey, can I trust that
it’s quality data?” P9, with a background in finance and accounting,
was accustomed to handling datasets that were “routinely between
100 and 500,000 rows.” In the study, P9 focused on validating the
data, underscoring the importance of ensuring data integrity and
rational calculations. Similarly, P22 cited their prior work experi-
ences as informing their analysis verification approach: “we were
maniacal about not drawing the wrong conclusion.” During their ver-
ification workflows, they demonstrated a methodical approach to
problem-solving, routinely considering “lots of caveats and checks.”

Moreover, we noticed participants’ prior experiences forming
conclusions and insights from data shaped their behavior in the
study tasks. Participants (P1, P6, P9, P19, P22) who started their ver-
ification workflow by proactively devising a plan mentioned being
accustomed to formulating error hypotheses, setting expectations,
and actively identifying problems in the data. For example, P19
commented how in their own data analysis workflow they were
always on the lookout for “weird stuffs” like data classes, data types,
and anomalies. This was reflected in their systematic approach
when faced with our study tasks.

6.3.2 Prior Experience With Code. While participants’ experiences
working with data sometimes led them to being more data-oriented,
a couple participants’ coding comfort made them inclined towards
procedure-oriented behaviors and examining the code (P5, P8). For
instance, P8, a software engineer, naturally tried to verify the cor-
rectness of the code: “as a developer, just let me look at the code.”
Similarly, P5, compared the tasks to doing a “code review.” Inter-
estingly, participants who were not familiar or comfortable with
Python but had a familiarity of data operations and/or data-oriented
programming languages (e.g., SQL and Visual Basics for Applica-
tions) managed to leverage their knowledge to understand the AT’s

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

procedure on the data (P10, P15, P19, P20, P21). For example, P4
looked for key words in the code to understand the the AI's op-
erations. For P10 in T9, despite having no prior experience with
Python, they were able to devise the analysis steps in SQL and
cross-check them against the AI's explanation and code comments:

“If I were to do this in SQL Server with the table that
you gave me, I would have created ... select unique ID
where director and popped the table out ... So basically,
I’'m translating Python into the technologies I know to
see if the Al is doing what I need them to do.”

However, while able to parse key words or main points from the
code, a lack of understanding of the code hindered some partici-
pants’ confidence (P2, P12, P14, P18, P20, P21). For example, P20
found T5 “difficult because (they didn’t) fully understand the code.”
For P18, an incomplete comprehension in T9 led them to focus
more on the original data as opposed to the intermediate data since
they were unsure how the intermediate data was generated: “in the
intermediate steps, I am not confident if the slicing and the dicing is
being done the way it should be.” To bridge this gap, a couple partic-
ipants mentioned liking code documentation or being able to easily
translate the code to a more familiar languages (P11, P21). For P12
and P21 in particular, a lack of code comprehension led them to pre-
fer the NL explanations over the code. P12 found the explanations
to be “a very concrete and precise way that makes sense.”

6.3.3 Prior Experience With Existing Analysis Tools. Our study
aimed to include participants with a diverse usage of existing analy-
sis tools (Table 2). While there were ways to verify the Al-generated
output using our design probe (Fig. 2), some participants expressed
a preference for functionality they were familiar with from exist-
ing tools that were unsupported by our interface (P12, P13, P15,
P18, P21). For example, P12 mentioned wanting to use conditional
sorting on the columns, and P17 wanted support for comparison
operators in data filtering. Several participants also expressed a
desire to have pivot tables (P11, P17, P18, P21), making it easier to
understand the data. Moreover, while many participants expressed
appreciation for the visual summaries of the data tables (P5, P7,
P13, P17, P20), some participants (P4, P18, P21) expressed low trust
in the data artifacts because they were unsure how the artifacts
were created in the first place. P21 in particular stated:

“The (visualization) summary tab was kind of useless
to me... I didn’t really trust it and and it was unclear to
me how the the data was being summarized.”

7 DISCUSSION

In this work, we examined how data analysts understand and ver-
ify Al-generated analyses. We developed a design probe, prepared
realistic analysis queries and Al-generated analyses, and conducted
a user study observing analysts’ verification workflows and com-
mon behaviors. In this section, we synthesize the results from our
user study and share implications for data analysts using Al-based
analysis tools (Sec. 7.1) and system designers building these tools
(Sec. 7.2).

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

7.1 Implications for Data Analysts

7.1.1 The Role of Data Literacy in Analysis Verification. Our find-
ings suggest that while a lack of familiarity with one particular
programming language (i.e., Python) is not a barrier for verify-
ing Al-generated analyses, prior experience with data operations
in other languages (e.g., SQL or Visual Basics for Applications)
can aid in understanding the AI's procedure (Sec. 6.3.2). Likewise,
knowledge and experience in data analysis are often indispens-
able for grasping Al-generated analyses, mirroring the requirement
for computational thinking skills when working with Al-based
code assistants [112]. Here, we highlight two recommendations for
analysts to be more effective in verifying Al-generated analyses.

Know Common Data Operations. We observed participants closely
examined the AI's data operations and sometimes performed these
operations on the datasets directly to compare with Al’s result
(Secs. 6.1.4 and 6.2.2). Their actions involved understanding com-
mon operations such as filtering, sorting, and merging the data.
Similarly, understanding aggregation operations, such as sum, av-
erage, count, were essential to verify how the Al grouped data and
performed calculations on those groups.

Develop Strategies for Quick Data Validations. Our observations re-
vealed analysts often employed quick sanity checks on the data to
assess Al-generated outputs (Secs. 6.2.1 and 6.2.2). Such strategies
involved eyeballing values, manual summation of rows, using vi-
sualizations to check the value distributions, spot checking result
values against original data table, and comparing things against
common knowledge. These were effective for analysts to either
build confidence in the results or identify unexpected patterns. The
sanity checks often involved forming expectations around the re-
sult and then comparing them with the Al-generated output. Any
discrepancies signaled potential issues that demanded further in-
spection. Given the effectiveness, analysts should actively identify
quick sanity checks and externalize their expectations [111]. How-
ever, as there may be data issues hidden by seemingly reasonable
patterns [25], analysts should employ a variety of different sanity
checks.

7.1.2 The Role of Al Assistants in Data Analysis. Participants’ var-
ied experiences working with data and analysis tools (Sec. 6.3) led
to a wide range of comments about their preferred use of general
Al-based analysis assistants. Here, we discuss how Al assistants
could be used in data analysis.

Some participants commented how Al-assistance would be help-
ful for getting them a partial answer that might guide them in their
analysis (P1, P6, P7, P14, P20, P21). For instance, P6 mentioned how
the Al can help them consider alternative steps: “It’ll help me say
‘oh maybe I didn’t think of this way of solving this and I can now go
down that path.” Al assistants can help inspire ideas for analysis
steps similar to when programmers follow an exploration mode
in Al-assisted programming [9]. Presenting alternative approaches
is especially critical in analysis assistance as analysts can often
be limited in their consideration of analysis approaches [84, 86],
thereby affecting the robustness of their subsequent analysis con-
clusions [16, 113, 116]. Thus, Al analysis assistance can improve
analysis quality by broadening the analysis decision space analysts
consider [40, 86].

Gu et al.

Similarly, participants noted that assistants can expedite their
analysis workflow (P1, P13, P20), corroborating the findings from
prior research on Al-code assistants [31, 52, 126, 143]. However,
to ensure the robustness of analysis conclusions, it is crucial to
balance the acceleration of analysis with measures that surface
potential errors, underlying data assumptions, and alternative ap-
proaches [39].

Finally, some participants expressed a preference to reserve Al
assistance for peripheral tasks such as error-checking or report
generation rather than the central analysis. Utilizing Al assistance
for crafting reports [130, 141] and similar subsidiary activities offers
a low stakes environment for analysts to evaluate the quality of
Al-generated outputs within data analysis workflows. Such use
cases can also facilitate a deeper understanding of the assistant’s
capabilities and limitations.

7.1.3 Understanding the Bounds of the Al and the Tool. Participants
sometimes expressed doubt on the intermediate data artifacts as
it was unclear what artifacts had the potential to be a result of Al
“hallucinations" [47] and which were consistent with the data and
procedure (Sec. 6.3.3). As the boundary blurs between Al-generated
artifacts and tool-generated artifacts, analysts should clearly distin-
guish what is and what is not produced by AL

Tool artifacts compiled from code is deterministic (i.e., the same
summary visualization will be produced given the same code and
input data) [112]. The Al-generated outputs and their associated
errors are stochastic in nature, varying each time the Al is prompted
to conduct the analysis. Knowing the provenance of artifacts used
to support verification—what is tool-generated (e.g., the visual sum-
mary of data) and Al-generated (e.g., the intermediate data feeding
into the visualization)—is important to assess the reliability of the
information associated with these artifacts. Additionally, under-
standing the strengths and limitations of the AI [106, 120] is crucial
to knowing what types of mistakes to look for.

7.2 Implications for System Designers

Informed by our study findings of verification workflows and noted
challenges, we highlight four design implications for designers of
Al-based analysis assistants.

7.2.1 Fluidly connecting data-oriented and procedure-oriented arti-
facts at various levels of granularity. Our study on analysts’ verifica-
tion workflows indicated the use of data-oriented and procedure-
oriented artifacts was often intimately tied to each other, requir-
ing analysts to switch between the two (e.g., intermediate data
table and the code snippet that generated this data). Therefore,
tools should facilitate a seamless connection between the data and
procedure. Integrating the data with the procedure aligns with
existing implementations in data science and machine learning
tools [12, 23, 63, 107, 135]. Likewise, as analysts prefer different
functionality based on their prior experiences (Sec. 6.3.3), data com-
ponents should be interactive, reusable, and customizable to cater
to specific preferences and applications [12, 23, 107].

These connections should also prioritize verification behaviors.
Participants often explored Al-generated analyses at different levels
of abstraction (Secs. 6.1.3 and 6.1.4) and transitioned between arti-
facts for quick glances of specific information (e.g., column names)
or in-depth examinations involving multiple steps (Secs. 6.2.2 and

6.2.4). Therefore, tools should allow analysts to specify the scope
of their current verification actions and surface the most relevant
information. For example, when an analyst selects the text of a
column name or cell value in the procedure, the tool can quickly
highlight the corresponding data (and vice-versa). If the analyst
selects a code snippet containing multiple data operations, the tool
can highlight the corresponding data differences between the oper-
ations [128]. Furthermore, to support analysts in tracing the data
provenance of a given intermediate data (Sec. 6.2.4), the tool can
highlight just the data operations in the procedure that produced
it [43, 58]. To support these features on the back-end, the Al can
dynamically augment its text response to include semantically rele-
vant connections to the data. Recent systems have demonstrated
the efficacy of augmenting the AI's output for Al-assisted writing
and exploration [49, 74].

7.2.2 Communicating the semantics of data operations. We ob-
served Al-generated code to be a common part of analysts’ verifi-
cation workflows in procedure-oriented and data-oriented behav-
iors (Secs. 6.2.3 and 6.2.4). However, a lack of comprehension of the
code and the exact data operations impacted analysts’ confidence
in their verification findings and even pushed them to alternative
behaviors (Sec. 6.3.2). Nevertheless, participants who were able to
translate the AI's code into familiar data operations were able to
understand the procedure and not be significantly impacted. There-
fore, consistent with implications from prior work [39, 68], tools
should provide multiple methods to communicate the operations
in the AT’s procedure.

For instance, participants suggested translating the Python code
into programming languages they were comfortable with. This
translation can be achieved with neural code translators [75] or
existing Al-code assistants [36, 95] at the code snippet level. If trans-
lated at the operation level, it is essential to ensure faithfulness
to the original operator. Alternatively, the code can be translated
into systematic and consistent natural language utterances rep-
resenting the data operations. On a limited set of operations and
data problems, Liu et al. [85] found this approach improved users’
understanding of the code-generating model. Additionally, besides
code and natural language, tools can communicate data opera-
tions through visualizations such as those in Datamations [105],
and SOMNUS [136]. Likewise, tools can show differences in inter-
mediate data between calculations to further enhance analysts’
understanding of the operations [128].

7.2.3 Communicating Al’s assumptions and interpretations of the
data. We observed participants often noticed errors faster in tasks
where the Al clearly stated its assumptions about the data (e.g.,
the data column semantics, assumed data types, and relationships
between data columns etc.) and its interpretation of the prompt
(P6, P10, P12, P22). For example, in T7, the Al clearly stated its
interpretation of what the data in key columns represented: “2021:
(Assuming) Rank of the hotel in 2021” and “Past_rank: Past rank
(unclear for which year).” However, we noticed similar assumptions
were not always stated in other tasks.

Therefore, tools should consistently communicate the assump-
tions and interpretations of the dataset and analysis, a well-regarded
best practice for data analysis [35]. This implication narrows down
a broader recommendation for Al-based code assistants to artic-
ulate the generated code within the context of a programmer’s

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

specific task and environment [112]. One strategy to facilitate regu-
lar communication could be to prompt the Al system to enumerate
its assumptions explicitly. Another avenue, as exemplified by LLMs
such as GPT-4 being good evaluators for tasks like natural language
summarization and visualization [30, 83, 87], can involve employ-
ing a separate agent to evaluate the assistant-generated analysis,
thereby listing any assumptions, interpretations, or discrepancies.

7.2.4 Incorporating Al guidance into verification workflows. In a
world where Al can generate data analyses, analysis verification
becomes an increasingly important skill [122]. In our study, we
noticed variations in participants’ verification approaches, with
more experienced participants proactively formulating systematic
plans (Sec. 6.3.1). As LLMs show promise for making data analysis
approachable to broader audiences, there is an opportunity for tools
to guide analysts in their verification workflows.

For example, to help with quick data checks (Sec. 6.2.2), LLMs
can generate test cases. For instance, if a field represents age, then
only values between 0 and around 120 might be appropriate. Fur-
thermore, identifying missing values (which might be 0) might
help in the analysis process. However, different than prior work
where generated test cases were for general programming prob-
lems [21, 123], test cases for data analyses need to consider the
semantics and domain of the data. Specifically, as outputs from data
analysis are meant for human understanding and involve complex
data structures (e.g., data tables, plots), there can be alternative
ways to present the answer (e.g., different views of the same data ta-
ble) [45, 76, 138]. Likewise, since Al-generated analyses can involve
sequences of data operations, it is pertinent to create test cases for
both the final output and intermediate steps.

Additionally, as a key part of verification involves checking for
inconsistencies (Sec. 6.2.3), our findings suggest opportunities for
Al self-reflection [50, 102, 115, 119] to help analysts identify poten-
tial discrepancies, formulate specific checklists, and improve their
data literacy (Sec. 7.1.1). This reflection should be contextualized
with external knowledge of existing best analysis practices and the
contents of the working analysis. In incorporating Al self-reflection,
the interface can visually highlight specific sections of the analysis
that require verification. Such visual warnings can help reduce an-
alysts’ overconfidence in the AI's procedures [74]. However, given
the failure modes of LLMs [13, 47], it is crucial to communicate to
the analyst the parts of guidance that are Al generated.

7.3 Limitations and Future Work

We note several limitations in our study and discuss opportunities
for future work.

First, the analysis queries involved in the study tasks primar-
ily involved sequences of data transformations. Other aspects of
data analysis (e.g., data visualization, statistical modeling, machine
learning, etc.) were not explored. However, our study still pro-
vided insight into common analysis workflows, as participants (P9,
P22) mentioned the issues they encountered in the study tasks
were ones they commonly faced in their own data analyses. Our
study is a first step towards uncovering verification workflows of
Al-generated outputs where data and manipulations on data are
centrally involved. Future work should explore analysts’ verifica-
tion of Al-generated data visualizations, statistical analyses, and
machine learning pipelines [26].

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Second, since our study contained a small number of verifica-
tion tasks while using real responses generated by state-of-the-art
nondeterministic models, components of the AI's explanation (e.g.,
listing its assumptions of the data and columns) and specific data
operations involved in the data analysis task (i.e., filtering for data
or merging data) were not controlled for across tasks. Future work
could experiment with how varying components of the AI’s expla-
nation or analysis task impact analysts’ verification processes.

Third, as discussed in our study desisgn considerations (Sec. 4.1)
participants were not the ones gathering the data and coming up
with the analysis goal. As a result, prior to them verifying the Al-
generated analyses, they first spent time understanding the data and
analysis goal, a process that may not be as pertinent in conducting
their own data analysis with Al assistants. However, all tasks used
in the study involved real-world datasets with analysis prompts
written by data scientists (Sec. 5). In addition, we quickly clarified
any questions regarding the analysis goal to facilitate analysts’
verification. Future work could explore verification workflows when
analysts work with an Al assistant on their own data and analysis.

Finally, study participants were not responsible for creating the
Al prompts (Sec. 4.1). While more elaborate prompts may be ar-
gued for reducing the errors presented in our study, writing these
prompts is challenging [90, 139]. Brevity of the prompt can be
in tension with a precise one that reflects all aspects of the anal-
ysis [138]. Therefore, given that the misalignment between the
analyst’s intent and AI’s actions is inherent in natural language
communication [85, 88, 98], subtle Al-generated analysis errors
(at least those due to misalignment) and the need for verification
workflows persist. In a few cases, our participants (P6, P10, P22)
noticed issues directly from language ambiguities in the intern’s
prompt. As a logical next step, future research should study how
expertise in prompt writing influence analysts’ interactions with
Al assistants and how these analysts integrate prompts into their
verification and repair strategies.

8 CONCLUSION

In this paper, we explore data analysts’ behaviors when verifying
Al-generated analyses. We build a design probe and prepare tasks
with realistic analysis intent and LLM outputs generated by Ope-
nAT’s Code Interpreter. In a controlled user study, we find analysts
frequently interleaved procedure-oriented and data-oriented behav-
iors, using data artifacts in support of procedure-oriented behaviors
and procedure artifacts in support of their data-oriented behaviors.
We also find analysts’ prior analysis and programming experiences
influenced their approach and understanding of the AI's output.
Based on our findings, we synthesize recommendations for data
analysts and highlight opportunities for future tools to enhance the
verification experience, including communicating the AT's assump-
tions and interpretations of the data, and ways to incorporate Al
guidance in verification workflows.

ACKNOWLEDGMENTS

We thank analysts from Microsoft for their eager participation in
our study and anonymous reviewers for their insightful comments.
We also thank Bongshin Lee, Dan Marshall, Dave Brown, Robert
DeLine, Priyan Vaithilingam and others from Microsoft Research
for their valuable feedback throughout the project.

Gu et al.

REFERENCES

[1] 2023. JupyterLab. https://jupyterlab.readthedocs.io/en/stable/ Accessed: 2023-
09-02.

2023. RStudio: Integrated Development for R. https://www.rstudio.com/ Accessed:
2023-09-02.

2023. Tableau Software. https://www.tableau.com/ Accessed: 2023-09-02.
Alexander A. Aarts, Joanna E. Anderson, Christopher J. Anderson, Peter Ray-
mond Attridge, Angela S. Attwood, Jordan R. Axt, Molly Babel, Stépan Bah-
nik, Erica Baranski, Michael Barnett-Cowan, Elizabeth Bartmess, Jennifer S.
Beer, Raoul Bell, Heather Bentley, Leah Beyan, Grace Binion, Denny Bors-
boom, Annick Bosch, Frank Bosco, Sara D. Bowman, Mark John Brandt, Erin L
Braswell, Hilmar Brohmer, Benjamin Thomas Brown, Kristina Brown, Jovita
Briining, Ann Calhoun-Sauls, Shannon P. Callahan, Elizabeth Chagnon, Jesse J.
Chandler, Christopher R. Chartier, Felix Cheung, Cody Daniel Christopherson,
Linda Cillessen, Russ Clay, Hayley M. D. Cleary, Mark D. Cloud, Michael Conn,
Joanne McGrath Cohoon, Simon Columbus, Andreas Cordes, Giulio Costantini,
Leslie D. Cramblet Alvarez, Edward J. Cremata, Jan Crusius, Jamie DeCoster, M.
DeGaetano, Nicolas Delia Penna, Bobby Den Bezemer, Marie Katharina Deserno,
Olivia Devitt, Laura Dewitte, David G. Dobolyi, Geneva T. Dodson, M. Brent
Donnellan, Ryan Donohue, Rebecca A. Dore, Angela Rachael Dorrough, Anna
Dreber, Michelle Dugas, Elizabeth W. Dunn, Kayleigh E. Easey, Sylvia Eboigbe,
Casey Eggleston, Jo Embley, Sacha Epskamp, Timothy M. Errington, Vivien Estel,
Frank J. Farach, Jenelle Feather, Anna Fedor, Belén Fernandez-Castilla, Susann
Fiedler, James G. Field, Stanka A. Fitneva, Taru Flagan, Amanda L. Forest, Eskil
Forsell, Joshua D. Foster, Michael C. Frank, Rebecca S. Frazier, Heather M. Fuchs,
Philip A Gable, Jeff Galak, Elisa Maria Galliani, Anup Gampa, Sara Garcia, Dou-
glas Gazarian, Elizabeth Rees Gilbert, Roger Giner-Sorolla, Andreas Glockner,
Lars Goellner, Jin X. Goh, Rebecca M. Goldberg, Patrick T. Goodbourn, Shauna
Gordon-McKeon, Bryan H. Gorges, Jessie Gorges, Justin Goss, Jesse Graham,
James A. Grange, Jeremy R. Gray, C.H.J. Hartgerink, Joshua K. Hartshorne, Fred
Hasselman, Timothy Hayes, Emma Heikensten, Felix Henninger, John Hodsoll,
Taylor Holubar, G. C. Hoogendoorn, Denise J. Humphries, Cathy On-Ying Hung,
Nathali Immelman, Vanessa C. Irsik, Georg Jahn, Frank Jakel, Marc Jekel, Mag-
nus Johannesson, Larissa Gabrielle Johnson, David J. Johnson, Kate M. Johnson,
William Johnston, Kai J. Jonas, Jennifer A. Joy-Gaba, Heather Barry Kappes,
Kim Kelso, Mallory C. Kidwell, Seung K. Kim, Matthew W. Kirkhart, Bennett
Kleinberg, Goran KneZzevi¢, Franziska Maria Kolorz, Jolanda Jacqueline Kos-
sakowski, Robert W. Krause, J.M.T. Krijnen, Tim Kuhlmann, Yoram K. Kunkels,
Megan M. Kyc, Calvin K. Lai, Aamir Laique, Daniel Lakens, Kristin A. Lane,
Bethany Lassetter, Ljiljana B. Lazarevi¢, Etienne P. Le Bel, Key Jung Lee, Minha
Lee, Kristi M. Lemm, Carmel A. Levitan, Melissa Lewis, Lin Lin, Stephanie C. Lin,
Matthias Lippold, Darren Loureiro, Ilse Luteijn, Sean P. Mackinnon, Heather N.
Mainard, Denise C. Marigold, Daniel P. Martin, Tylar Martinez, E. J. Masi-
campo, Joshua J. Matacotta, Maya B. Mathur, Michael May, Nicole C Mechin,
Pranjal H. Mehta, Johannes M. Meixner, Alissa Melinger, Jeremy K. Miller, Mal-
lorie Miller, Katherine Sledge Moore, Marcus Moschl, Matt Motyl, Stephanie L.
Muller, Marcus Robert Munafo, Koen Ilja Neijenhuijs, Taylor Nervi, Gandalf
Nicolas, Gustav Nilsonne, Brian A. Nosek, Michéle B. Nuijten, Catherine Olsson,
Colleen Osborne, Lutz Ostkamp, Misha Pavel, Ian S. Penton-Voak, Olivia Kath-
leen Perna, Cyril R. Pernet, Marco Perugini, R. Nathan Pipitone, Michael C.
Pitts, Franziska Plessow, Jason Prenoveau, Rima-Maria Rahal, Kate A. Ratliff,
David A. Reinhard, Frank Renkewitz, Ashley A. Ricker, Anastasia E. Rigney,
Andrew M Rivers, Mark A. Roebke, Abraham M. Rutchick, Robert S. Ryan,
Onur Sahin, Anondah Saide, Gillian M. Sandstrom, David Santos, Rebecca Saxe,
René Schlegelmilch, Kathleen Schmidt, Sabine Scholz, Larissa Seibel, Dylan
Selterman, Samuel Shaki, William Brand Simpson, H. Colleen Sinclair, Jeanine
L. M. Skorinko, Agnieszka Slowik, Joel S. Snyder, Courtney K. Soderberg, Ca-
rina M. Sonnleitner, Nicholas Brant Spencer, Jeffrey R. Spies, Sara Steegen, Stefan
Stieger, Nina Strohminger, Gavin Brent Sullivan, Thomas Talhelm, Megan Tapia,
Anniek te Dorsthorst, Manuela Thomae, Sarah L. Thomas, Pia Tio, Frits Traets,
Steve Tsang, Francis Tuerlinckx, Paul Turchan, Milan Valasek, Anna van ’t Veer,
Robbie C. M. Aert, Marcel A.L.M. van Assen, Riet Van Bork, Mathijs van de
Ven, Don van den Bergh, Marije van der Hulst, Roel van Dooren, Johnny van
Doorn, Daan R. van Renswoude, Hedderik van Rijn, Wolf Vanpaemel, Alejandro
Echeverria, Melissa Vazquez, Natalia Vélez, Marieke Vermue, Mark Verschoor,
Michelangelo Vianello, Martin Voracek, Gina Vuu, Eric-Jan Wagenmakers, Joan-
neke Weerdmeester, Ashlee Welsh, Erin C. Westgate, Joeri Wissink, Michael D.
Wood, Andy Woods, Emily M. Wright, Sining Wu, Marcel Zeelenberg, and
Kellylynn Zuni. 2015. Estimating the reproducibility of psychological science.
Science 349 (2015). https://api.semanticscholar.org/CorpusID:218065162

Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin, and Marti A. Hearst. 2019.
Futzing and Moseying: Interviews with Professional Data Analysts on Explo-
ration Practices. IEEE Transactions on Visualization and Computer Graphics 25
(2019), 22-31. https://api.semanticscholar.org/CorpusID:52068378

Zahra Ashktorab, Mohit Jain, Qingzi Vera Liao, and Justin D. Weisz. 2019. Re-
silient Chatbots: Repair Strategy Preferences for Conversational Breakdowns.
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems

[2

[3
[4

&

=

(14

[15

[16

(17

]

(2019). https://api.semanticscholar.org/CorpusID:85503944

Md Waquar Azam. 2022. TELEVISION DATASET 2022. Kaggle. https://www.
kaggle.com/datasets/mdwaquarazam/

Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533
(2016), 452-454.

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proceedings
of the ACM on Programming Languages 7 (2022), 85 — 111.

Andrea Batch and Niklas ElImqvist. 2018. The Interactive Visualization Gap in Ini-
tial Exploratory Data Analysis. IEEE Transactions on Visualization and Computer
Graphics 24 (2018), 278-287. https://api.semanticscholar.org/CorpusID:963684
Shubham Bathwal. 2022. Flight Price Prediction. Kaggle. https://www.kaggle.
com/datasets/shubhambathwal/flight-price-prediction

Alex Bauerle, Angel Alexander Cabrera, Fred Hohman, Megan Maher Welsh,
David Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony:
Composing Interactive Interfaces for Machine Learning. Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems (2022). https:
//api.semanticscholar.org/CorpusID:246996743

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big? Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency (2021). https://api.semanticscholar.org/CorpusID:232040593
Kirsten Boehner, Janet Vertesi, Phoebe Sengers, and Paul Dourish. 2007. How
HClI interprets the probes. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 1077-1086.

Pranali Bose. 2022. Amazon Seller - Order Status Prediction. Kaggle. https://
www.kaggle.com/datasets/pranalibose/amazon-seller-order-status-prediction
Nate Breznau, Eike Mark Rinke, Alexander Wuttke, Muna Adem, Jule Adri-
aans, Amalia Alvarez-Benjumea, Henrik Kenneth Andersen, Daniel Auer, Flavio
Azevedo, Oke Bahnsen, David Balzer, Gerrit Bauer, Paul Cornelius Bauer, Markus
Baumann, Sharon Baute, Verena Benoit, Julian Bernauer, Carl C. Berning, A.
Berthold, Felix S. Bethke, Thomas Biegert, Katharina Blinzler, Johannes N. Blu-
menberg, Licia Bobzien, Andrea Bohman, Thijs Bol, Amie Bostic, Zuzanna Brzo-
zowska, Katharina Burgdorf, Kaspar Burger, Kathrin Barbara Busch, Juan Carlos
Castillo, Nathan Kar Ming Chan, Pablo Christmann, Roxanne Connelly, Chris-
tian S. Czymara, Elena Damian, Alejandro Ecker, Achim Edelmann, Maureen A.
Eger, Simon Ellerbrock, Anna Forke, Andrea Gabriele Forster, Chris Gaasendam,
Konstantin Gavras, Vernon Gayle, Theresa Gessler, Timo Gnambs, Amélie Gode-
froidt, Max Gromping, Martin Gross, Stefan Gruber, Tobias Gummer, Andreas
Hadjar, Jan Paul Heisig, Sebastian Hellmeier, Stefan Heyne, Magdalena Hirsch,
Mikael Hjerm, Oshrat Hochman, Andreas Hévermann, Sophia Hunger, Chris-
tian Hunkler, Nora Huth, Zso6fia S. Ignacz, Laura Jacobs, Jannes Jacobsen, Bastian
Jaeger, Sebastian Jungkunz, Nils Jungmann, Mathias Kauff, Manuel Kleinert,
Julia Klinger, Jan-Philipp Kolb, Marta Kolczynska, John Kuk, Katharina Kunifien,
Dafina Kurti Sinatra, Alexander Greinert, Philipp M. Lersch, Lea-Maria Lobel,
Philipp M. Lutscher, Matthias Mader, Joan Eliel Madia, Natalia C. Malancu,
Luis Maldonado, Helge Marahrens, Nicole S. Martin, Paul Martinez, Jochen
Mayerl, Oscar Jose Mayorga, Patricia McManus, Kyle Wagner, Cecil Meeusen,
Daniel Meierrieks, Jonathan Mellon, Friedolin Merhout, Samuel Merk, Danie J.
Meyer, Leticia Rettore Micheli, Jonathan J. B. Mijs, Cristébal Moya, Marcel
Neunhoeffer, Daniel Niist, Olav Nygard, Fabian Ochsenfeld, Gunnar Otte, A. A.
Pechenkina, Christopher Prosser, Louis Raes, Kevin M. Ralston, Miguel Ramos,
Arne Roets, Jonathan Rogers, Guido Ropers, Robin Samuel, Gergor Sand, Ariela
Schachter, Merlin Schaeffer, David Schieferdecker, Elmar Schlueter, Katja G.
Schmidt, Regin Schmidt, Alexander W. Schmidt-Catran, Claudia Schmiedeberg,
Jirgen Schneider, Martijn Schoonvelde, Julia Schulte-Cloos, Sandy Schumann,
Reinhard Schunck, Juergen Schupp, Julian Seuring, Henning Silber, Willem
W. A. Sleegers, Nicole Sonntag, Alexander Staudt, Nadia Steiber, Nils D. Steiner,
Sebastian Sternberg, Dieter Stiers, Dragana Stojmenovska, Nora Storz, Erich
Striessnig, Anne-Kathrin Stroppe, Janna Teltemann, Andrey Tibajev, Brian Tung,
Giacomo Vagni, Jasper van Assche, Meta van der Linden, Jolanda van der Noll,
Arno Van Hootegem, Stefan Vogtenhuber, Bogdan Voicu, Fieke Maria Antoinet
Wagemans, Nadja Wehl, Hannah Werner, Brenton M. Wiernik, Fabian Winter,
Christof Wolf, Yuki Yamada, Nan Zhang, Conrad Ziller, Stefan Zins, Tomasz
Zé6ltak, and Hung Hoang Viet Nguyen. 2022. Observing many researchers
using the same data and hypothesis reveals a hidden universe of uncertainty.
Proceedings of the National Academy of Sciences of the United States of America
119 (2022).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learn-
ers. ArXiv abs/2005.14165 (2020). https://api.semanticscholar.org/CorpusID:
218971783

[18]

[19

[20

[21

[22

[23

[24

[25

[26]

[27

[28

[29]

[30]

[31

[32]

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, John A. Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuan-Fang Li, Scott M. Lundberg, Har-
sha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Arti-
ficial General Intelligence: Early experiments with GPT-4. ArXiv abs/2303.12712
(2023).

Shubham Chandel, Colin B. Clement, Guillermo Serrato, and Neel Sundaresan.
2022. Training and Evaluating a Jupyter Notebook Data Science Assistant. ArXiv
abs/2201.12901 (2022).

Souti Chattopadhyay, I. V. R. K. V. Prasad, Austin Z. Henley, Anita Sarma, and
Titus Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points,
Needs, and Design Opportunities. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (2020). https://api.semanticscholar.org/
CorpusID:210927488

Bei Chen, Fengji Zhang, A. Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. 2022. CodeT: Code Generation with Generated Tests. ArXiv
abs/2207.10397 (2022). https://api.semanticscholar.org/CorpusID:250920542
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared
Kaplan, Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex
Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol,
Igor Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evalu-
ating Large Language Models Trained on Code. ArXiv abs/2107.03374 (2021).
Frederick Choi, Sajjadur Rahman, Han Jun Kim, and Daz Zhang. 2023. To-
wards Transparent, Reusable, and Customizable Data Science in Computational
Notebooks. Extended Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems (2023). https://api.semanticscholar.org/CorpusID:257687372
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S.
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022.
PaLM: Scaling Language Modeling with Pathways. ArXiv abs/2204.02311 (2022).
Michael Correll, Mingwei Li, Gordon Kindlmann, and Carlos Scheidegger. 2018.
Looks good to me: Visualizations as sanity checks. IEEE transactions on visual-
ization and computer graphics 25, 1 (2018), 830-839.

Anamaria Crisan, Brittany Fiore-Gartland, and Melanie K. Tory. 2020. Passing
the Data Baton : A Retrospective Analysis on Data Science Work and Workers.
IEEE Transactions on Visualization and Computer Graphics 27 (2020), 1860-1870.
https://api.semanticscholar.org/CorpusID:222351819

Robert DeLine. 2021. Glinda: Supporting Data Science with Live Programming,
GUIs and a Domain-specific Language. Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (2021). https://api.semanticscholar.
org/CorpusID:233987681

Michael Ann Devito, Jeremy P. Birnholtz, Jeffrey T. Hancock, Megan French,
and Sunny Xun Liu. 2018. How People Form Folk Theories of Social Media
Feeds and What it Means for How We Study Self-Presentation. Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (2018).
https://api.semanticscholar.org/CorpusID:5048366

Jacob Diamond-Reivich. 2020. Mito: Edit a Spreadsheet. Generate Production
Ready Python.. In LIVE: Workshop on Live Programming.

Victor C. Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-
Agnostic Visualizations and Infographics using Large Language Models. ArXiv
abs/2303.02927 (2023).

Victor C. Dibia, Adam Fourney, Gagan Bansal, Forough Poursabzi-Sangdeh,
Han Liu, and Saleema Amershi. 2022. Aligning Offline Metrics and Human
Judgments of Value of Al-Pair Programmers. ArXiv abs/2210.16494 (2022).
https://api.semanticscholar.org/CorpusID:253237523

Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani.
2020. Wrex: A Unified Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (2020). https://api.semanticscholar.org/
CorpusID:212684638

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

(33]

(34]

[38

[39

(40]

(41

[42

[43

(44

[46

[47

(48

[49

(50

[51

o
&,

[53

(54

Upol Ehsan and Mark O. Riedl. 2021. Explainability Pitfalls: Beyond Dark
Patterns in Explainable AL ArXiv abs/2109.12480 (2021). https://api.
semanticscholar.org/CorpusID:237940863

Will Epperson, Yi Wang, Robert DeLine, and Steven Mark Drucker. 2022. Strate-
gies for Reuse and Sharing among Data Scientists in Software Teams. 2022
IEEE/ACM 44th International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP) (2022), 243-252. https://api.semanticscholar.org/
CorpusID:248726301

Andy P. Field, Jeremy Miles, and Zoé Field. 2012. Discovering statistics using R,
1st Edition. https://api.semanticscholar.org/CorpusID:45575760

GitHub. 2022. GitHub Copilot. .https://github.com/features/copilot. Accessed:
Sept 12, 2023.

Lars Grammel, Melanie Tory, and Margaret-Anne D. Storey. 2010. How Informa-
tion Visualization Novices Construct Visualizations. IEEE transactions on visual-
ization and computer graphics 16 6 (2010), 943-52. https://api.semanticscholar.
org/CorpusID:8568910

Garrett Grolemund and Hadley Wickham. 2014. A Cognitive Interpreta-
tion of Data Analysis. International Statistical Review 82 (2014). https:
//api.semanticscholar.org/CorpusID:53622653

Ken Gu, Madeleine Grunde-McLaughlin, Andrew M. McNutt, Jeffrey Heer, and
Tim Althoff. 2023. How Do Data Analysts Respond to AI Assistance? A Wizard-
of-Oz Study. ArXiv abs/2309.10108 (2023). https://api.semanticscholar.org/
CorpusID:262054482

Ken Gu, Eunice Jun, and Tim Althoff. 2022. Understanding and Supporting
Debugging Workflows in Multiverse Analysis. Proceedings of the 2023 CHI Confer-
ence on Human Factors in Computing Systems (2022). https://api.semanticscholar.
org/CorpusID:252780673

Sumit Gulwani and Mark Marron. 2014. NLyze: interactive programming by
natural language for spreadsheet data analysis and manipulation. Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data (2014).
https://api.semanticscholar.org/CorpusID:13004424

Keiran Hardy and Alana Maurushat. 2017. Opening up government data for
Big Data analysis and public benefit. Comput. Law Secur. Rev. 33 (2017), 30-37.
https://api.semanticscholar.org/CorpusID:63875487

Andrew Head, Fred Hohman, Titus Barik, Steven Mark Drucker, and Robert
DeLine. 2019. Managing Messes in Computational Notebooks. Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (2019).

Gan Keng Hoon, Loo Ji Yong, and Goh Kau Yang. 2019. Interfacing Chatbot
with Data Retrieval and Analytics Queries for Decision Making. Lecture Notes
in Mechanical Engineering (2019). https://api.semanticscholar.org/CorpusID:
198329911

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong Yan, Haotian Cui, Jee-
vana Priya Inala, Colin B. Clement, Nan Duan, and Jianfeng Gao. 2022.
Execution-based Evaluation for Data Science Code Generation Models. ArXiv
abs/2211.09374 (2022). https://api.semanticscholar.org/CorpusID:253581341
Suraj Jha. 2022. BigBasket Entire Product List (28K datapoints). Kag-
gle. https://www.kaggle.com/datasets/surajjha101/bigbasket-entire-product-
list-28k-datapoints

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Yejin Bang, Wenliang Dai, Andrea Madotto, and Pascale Fung. 2022. Survey of
Hallucination in Natural Language Generation. Comput. Surveys 55 (2022), 1 —
38. https://api.semanticscholar.org/CorpusID:246652372

Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J. Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(2022). https://api.semanticscholar.org/CorpusID:248419806

Peiling Jiang, Jude Rayan, Steven W. Dow, and Haijun Xia. 2023. Graphologue:
Exploring Large Language Model Responses with Interactive Diagrams. Pro-
ceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology (2023). https://api.semanticscholar.org/CorpusID:258823121
Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. SelfEvolve: A Code Evolution
Framework via Large Language Models. ArXiv abs/2306.02907 (2023). https:
//api.semanticscholar.org/CorpusID:259076266

Jiyun Jung, Sihang Qiu, Alessandro Bozzon, and Ujwal Gadiraju. 2022. Great
Chain of Agents: The Role of Metaphorical Representation of Agents in Con-
versational Crowdsourcing. Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (2022). https://api.semanticscholar.org/CorpusID:
248419779

Eirini Kalliamvakou. 2022. Research: Quantifying GitHub Copilot’s Impact
on Developer Productivity and Happiness. https://github.blog/2022-09-07-
research-quantifying-github- copilots-impact-on-developer-productivity-
and-happiness/ Accessed on November 16, 2023.

Kanaries. 2023. PygWalker. https://kanaries.net/home/pygwalker. Accessed
December 1, 2023.

Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012. En-
terprise Data Analysis and Visualization: An Interview Study. IEEE Transactions
on Visualization and Computer Graphics 18 (2012), 2917-2926.

[55]

[56

[57

[58

[59

[60

[61

[62

[63

[64

[65

[66

[67

[68

[69

[70]

(71

[72

[73

Gu et al.

Eser Kandogan, Aruna D. Balakrishnan, Eben M. Haber, and Jeffrey S. Pierce.
2014. From Data to Insight: Work Practices of Analysts in the Enterprise.
IEEE Computer Graphics and Applications 34 (2014), 42-50. https://api.
semanticscholar.org/CorpusID:6438612

Stephen Kasica, Charles Berret, and Tamara Munzner. 2020. Table Scraps: An
Actionable Framework for Multi-Table Data Wrangling From An Artifact Study
of Computational Journalism. IEEE Transactions on Visualization and Com-
puter Graphics 27 (2020), 957-966. https://api.semanticscholar.org/CorpusID:
221516111

Jan-Frederik Kassel and Michael Rohs. 2018. Valletto: A Multimodal Interface
for Ubiquitous Visual Analytics. Extended Abstracts of the 2018 CHI Conference
on Human Factors in Computing Systems (2018). https://api.semanticscholar.
org/CorpusID:5083557

Mary Beth Kery, Amber Horvath, and Brad A. Myers. 2017. Variolite: Sup-
porting Exploratory Programming by Data Scientists. Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (2017). https:
//api.semanticscholar.org/CorpusID:2174858

Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A.
Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices. Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (2019). https://api.semanticscholar.org/CorpusID:140210955

Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory program-
ming. 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) (2017), 25-29. https://api.semanticscholar.org/CorpusID:21574188
Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling Messy
History in a Computational Notebook. 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC) (2018), 147-155. https:
//api.semanticscholar.org/CorpusID:53080227

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool. Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (2018). https://api.semanticscholar.org/CorpusID:
5060661

Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (2020). https:
//api.semanticscholar.org/CorpusID:221836345

Pranav Khadpe, Ranjay Krishna, Fei-Fei Li, Jeffrey T. Hancock, and Michael S.
Bernstein. 2020. Conceptual Metaphors Impact Perceptions of Human-AI Col-
laboration. Proceedings of the ACM on Human-Computer Interaction 4 (2020), 1 -
26. https://api.semanticscholar.org/CorpusID:221005643

Owais Khan. 2022. RISE. - Research. Innovate. Solve. copilot. Kag-
gle. https://www.kaggle.com/datasets/owaiskhan9654/rise-research-innovate-
solve-copilot

Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The Emerging Role of Data Scientists on Software Development Teams. 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE) (2016),
96-107. https://api.semanticscholar.org/CorpusID:7977224

Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2018.
Data Scientists in Software Teams: State of the Art and Challenges. IEEE Transac-
tions on Software Engineering 44 (2018), 1024-1038. https://api.semanticscholar.
org/CorpusID:53280229

Sunnie S. Y. Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth C. Fong,
and A. Monroy-Hernandez. 2022. "Help Me Help the AI": Understanding How
Explainability Can Support Human-Al Interaction. Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (2022). https://api.
semanticscholar.org/CorpusID:252780815

Gary Klein, Jennifer K. Phillips, Erica Rall, and Deborah A. Peluso. 2007. A
Data-Frame Theory of Sensemaking.

Amy J. Ko, Robin Abraham, Laura Beckwith, Alan F. Blackwell, Margaret M.
Burnett, Martin Erwig, Christopher Scaffidi, Joseph Lawrance, Henry Lieberman,
Brad A. Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan
Wiedenbeck. 2011. The state of the art in end-user software engineering. ACM
Computing Surveys (CSUR) 43 (2011), 1 — 44. https://api.semanticscholar.org/
CorpusID:9435548

Laura M. Koesten, Kathleen Gregory, Paul T. Groth, and Elena Paslaru Bontas
Simperl. 2019. Talking datasets: Understanding data sensemaking behaviours.
Int. J. Hum. Comput. Stud. 146 (2019), 102562. https://api.semanticscholar.org/
CorpusID:208176144

Laura M. Koesten, Emilia Kacprzak, Jeni Tennison, and Elena Paslaru Bontas
Simperl. 2019. Collaborative Practices with Structured Data: Do Tools Support
What Users Need? Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (2019). https://api.semanticscholar.org/CorpusID:140240430
Bum Chul Kwon, Brian D. Fisher, and Ji Soo Yi. 2011. Visual analytic roadblocks
for novice investigators. 2011 IEEE Conference on Visual Analytics Science and
Technology (VAST) (2011), 3-11. https://api.semanticscholar.org/CorpusID:
8617319

(74]

[75]

[76

(78

[79

[80

oo
=

[82

(83

[84

oo
S

[86

[87

(88]

(89

[90

[91

[92

)
&

[94

[95

Philippe Laban, Jesse Vig, Marti A. Hearst, Caiming Xiong, and Chien-Sheng Wu.
2023. Beyond the Chat: Executable and Verifiable Text-Editing with LLMs. ArXiv
abs/2309.15337 (2023). https://api.semanticscholar.org/CorpusID:262938226
Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lam-
ple. 2020. Unsupervised Translation of Programming Languages. ArXiv
abs/2006.03511 (2020). https://api.semanticscholar.org/CorpusID:219401607
Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Scott Yih, Daniel Fried, Si yi Wang, and Tao Yu. 2022. DS-1000: A
Natural and Reliable Benchmark for Data Science Code Generation. ArXiv
abs/2211.11501 (2022). https://api.semanticscholar.org/CorpusID:253734939
Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer
Singh. 2022. Rethinking Explainability as a Dialogue: A Practitioner’s Perspec-
tive. ArXiv abs/2202.01875 (2022). https://api.semanticscholar.org/CorpusID:
246607834

Sukwon Lee, Sung-Hee Kim, Ya-Hsin Hung, Heidi Lam, Youn ah Kang, and
Ji Soo Yi. 2016. How do People Make Sense of Unfamiliar Visualizations?: A
Grounded Model of Novice’s Information Visualization Sensemaking. IEEE
Transactions on Visualization and Computer Graphics 22 (2016), 499-508. https:
//api.semanticscholar.org/CorpusID:12291419

Jenny Liang, Chenyang Yang, and Brad A. Myers. 2023. Understanding the
Usability of Al Programming Assistants. ArXiv abs/2303.17125 (2023). https:
//api.semanticscholar.org/CorpusID:257833548

Jenny T Liang, Chenyang Yang, and Brad A. Myers. 2023. A Large-Scale Survey
on the Usability of Al Programming Assistants: Successes and Challenges. https:
//api.semanticscholar.org/CorpusID:257833548

Qingzi Vera Liao, Dan Gruen, and Sarah Miller. 2020. Questioning the Al:
Informing Design Practices for Explainable AI User Experiences. Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (2020).
https://api.semanticscholar.org/CorpusID:210064344

Qingzi Vera Liao, Microsoft Research, Canada Kush, Richa Varshney, and Kush R.
Varshney. 2021. Human-Centered Explainable AI (XAI): From Algorithms to
User Experiences. ArXiv abs/2110.10790 (2021). https://api.semanticscholar.
org/CorpusID:239050385

Stephanie C. Lin, Jacob Hilton, and Owain Evans. 2022. Teaching Models to
Express Their Uncertainty in Words. Trans. Mach. Learn. Res. 2022 (2022).
https://api.semanticscholar.org/CorpusID:249191391

Jiali Liu, Nadia Boukhelifa, and James R. Eagan. 2020. Understanding the Role
of Alternatives in Data Analysis Practices. IEEE Transactions on Visualization
and Computer Graphics 26 (2020), 66-76.

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin G. Zorn, J.
Williams, Neil Toronto, and Andrew D. Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (2023). https://api.semanticscholar.org/
CorpusID:258107840

Yang Liu, Tim Althoff, and Jeffrey Heer. 2019. Paths Explored, Paths Omitted,
Paths Obscured: Decision Points & Selective Reporting in End-to-End Data
Analysis. Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (2019).

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen Xu, and Chenguang Zhu.
2023. G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment. ArXiv
abs/2303.16634 (2023). https://api.semanticscholar.org/CorpusID:257804696
Ewa Luger and Abigail Sellen. 2016. "Like Having a Really Bad PA": The Gulf
between User Expectation and Experience of Conversational Agents. Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (2016).
https://api.semanticscholar.org/CorpusID:1036498

Andrew M Mcnutt, Chenglong Wang, Robert DeLine, and Steven Mark Drucker.
2023. On the Design of Al-powered Code Assistants for Notebooks. Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (2023).
https://api.semanticscholar.org/CorpusID:256274637

Swaroop Mishra and Elnaz Nouri. 2022. HELP ME THINK: A Simple Prompting
Strategy for Non-experts to Create Customized Content with Models. ArXiv
abs/2208.08232 (2022).

Dominik Moritz, Danyel Fisher, Bolin Ding, and Chi Wang. 2017. Trust, but
Verify: Optimistic Visualizations of Approximate Queries for Exploring Big
Data. Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (2017). https://api.semanticscholar.org/CorpusID:15419853

Chadner Navarro. 2022. Travel+Leisure World’s Best Hotels 2022. Kaggle. https:
//www.kaggle.com/datasets/narmelan/travelleisure-worlds-best-hotels- 2022
ObservableHQ. 2023. Summary Table. https://observablehq.com/
@observablehq/summary-table Accessed: July 30, 2023.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and
Armando Solar-Lezama. 2023. Demystifying GPT Self-Repair for Code Genera-
tion. ArXiv abs/2306.09896 (2023). https://api.semanticscholar.org/CorpusID:
259187989

OpenAl 2022. ChatGPT: Conversational Al Language Model. https://chat.
openai.com. Accessed on June 1, 2023.

[96

[97
[98]

[99]

[100

[101

[102

[103

[104

[105

[106

[107

[108

[109

[110

[111

[112

[113

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

OpenAl 2023. Chat with GPT-4 Code Interpreter. https://chat.openai.com/
?model=gpt-4-code-interpreter. Accessed August 26, 2023.

OpenAl 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023).

Fatma Ozcan, Abdul Quamar, Jaydeep Sen, Chuan Lei, and Vasilis Efthymiou.
2020. State of the Art and Open Challenges in Natural Language Interfaces to
Data. Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (2020). https://api.semanticscholar.org/CorpusID:218881987
Rock Yuren Pang, Ruotong Wang, Joely Nelson, and Leilani Battle. 2022. How
Do Data Science Workers Communicate Intermediate Results? 2022 IEEE Visu-
alization in Data Science (VDS) (2022), 46-54. https://api.semanticscholar.org/
CorpusID:252124317

Raja Parasuraman and Dietrich Manzey. 2010. Complacency and Bias in Human
Use of Automation: An Attentional Integration. Human Factors: The Journal
of Human Factors and Ergonomics Society 52 (2010), 381 — 410. https://api.
semanticscholar.org/CorpusID:2279803

Deok Gun Park, Mohamed Suhail, Minsheng Zheng, Cody Dunne, Eric D. Ragan,
and Niklas Elmqvist. 2021. StoryFacets: A design study on storytelling with
visualizations for collaborative data analysis. Information Visualization 21 (2021),
3 - 16. https://api.semanticscholar.org/CorpusID:237102555

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simu-
lacra of Human Behavior. Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (2023). https://api.semanticscholar.org/
CorpusID:258040990

Chris Perry and Shrestha Basu Mallick. 2023. Al-powered coding, free of charge
with Colab. https://blog.google/technology/developers/google-colab-ai-coding-
features/

Peter Pirolli. 2007. The Sensemaking Process and Leverage Points for Analyst
Technology as Identified Through Cognitive Task Analysis.

Xiaoying Pu, Sean Kross, Jake M. Hofman, and Daniel G. Goldstein. 2021.
Datamations: Animated Explanations of Data Analysis Pipelines. Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems (2021).
https://api.semanticscholar.org/CorpusID:233987105

Sruti Srinivasa Srinivasa Ragavan, Zhitao Hou, Yun Wang, Andrew D. Gordon,
Haidong Zhang, and Dongmei Zhang. 2022. GridBook: Natural Language
Formulas for the Spreadsheet Grid. 27th International Conference on Intelligent
User Interfaces (2022). https://api.semanticscholar.org/CorpusID:247585151
Sajjadur Rahman, Peter Griggs, and cCaugatay Demiralp. 2020. Leam: An
Interactive System for In-situ Visual Text Analysis. ArXiv abs/2009.03520 (2020).
https://api.semanticscholar.org/CorpusID:221534816

Shivani Rana. 2022. Bollywood Movies Box-Office Collection 2022. Kag-
gle. https://www.kaggle.com/datasets/shivanirana63/bollywood-movies-
boxoffice-collection-2022

Adam Rule, Ian Drosos, Aurélien Tabard, and James Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
Proceedings of the ACM on Human-Computer Interaction 2 (2018), 1 — 12. https:
//api.semanticscholar.org/CorpusID:52258235

Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and
Explanation in Computational Notebooks. Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (2018). https://api.semanticscholar.
org/CorpusID:5048947

Daniel M. Russell, Mark Stefik, Peter Pirolli, and Stuart K. Card. 1993. The cost
structure of sensemaking. Proceedings of the INTERACT ’93 and CHI ’93 Confer-
ence on Human Factors in Computing Systems (1993). https://api.semanticscholar.
org/CorpusID:207177544

Advait Sarkar, Andrew D. Gordon, Carina Negreanu, Christian Poelitz, Sruti
Srinivasa Srinivasa Ragavan, and Benjamin G. Zorn. 2022. What is it like to
program with artificial intelligence?. In Annual Workshop of the Psychology of Pro-
gramming Interest Group. https://api.semanticscholar.org/CorpusID:251554706
Martin Schweinsberg, Michael Feldman, Nicola Staub, Olmo van den Akker,
Robbie C. M. Aert, Marcel A.L.M. van Assen, Yang Liu, Tim Althoff, Jeffrey Heer,
Alex Kale, Zainab Mohamed, Hashem Amireh, Vaishali Venkatesh Prasad, Abra-
ham Bernstein, Emily Spears Robinson, Kaisa Snellman, S. Amy Sommer, Sarah
M. G. Otner, David Robinson, Nikhil Madan, Raphael Silberzahn, Pavel Gold-
stein, Warren Tierney, Toshio Murase, Benjamin Mandl, Domenico Viganola,
Carolin Strobl, Catherine Schaumans, Stijn Kelchtermans, Chan Naseeb, S. Ma-
son Garrison, Tal Yarkoni, C. S. Richard Chan, Prestone Adie, Paulius Alaburda,
Casper Johannes Albers, Sara Alspaugh, Jeff Alstott, Andrew Arthur Nelson,
Eduardo Arifio de la Rubia, Adbi Arzi, Stépén Bahnik, Jason Baik, Laura Winther
Balling, Sachin Banker, David A.A. Baranger, Dale J. Barr, Brenda A. Barros-
Rivera, M. Bauer, E. T. Blaise, Lisa Boelen, Katerina Bohle Carbonell, Robert A.
Briers, Oliver Burkhard, Miguel A. Canela, Laura Castrillo, Timothy S. Catlett,
Olivia Chen, Michael Clark, Brent Cohn, Alexander Coppock, Natalia Cuguero-
Escofet, Paul G. Curran, Wilson Cyrus-Lai, David Dai, Giulio Valentino Dalla
Riva, Henrik Danielsson, Rosaria de Fatima Russo, Nipun de Silva, Curdin
Derungs, Frank Dondelinger, Carolina Duarte de Souza, Benjamin Dube, Ma-
rina A. Dubova, Benjamin M Dunn, Peter Adriaan Edelsbrunner, Sara Finley,

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Nicholas William Fox, Timo Gnambs, Yuan Juan Gong, Erin Grand, Brandon
Greenawalt, Dan Han, Paul H. P. Hanel, Antony B. Hong, David Hood, Justin
Hsueh, Lilian Huang, Kent Ngan-Cheung Hui, Keith A. Hultman, Azka Javaid,
Lily Jiang, Jonathan Jong, Jash Kamdar, David Kane, Gregor Kappler, Erikson
Kaszubowski, Christopher Michael Kavanagh, Madian Khabsa, Bennett Klein-
berg, Jens Kouros, Heather Krause, Angelos-Miltiadis Krypotos, Dejan Lavbi¢,
Ruiwen Lee, Timothy Leffel, Wei Yang Lim, Silvia Liverani, Bi Ying. Loh, Dorte
Lensmann, Jia-Wei Low, Alton Lu, Kyle MacDonald, Christopher R. Madan,
Lasse Hjorth Madsen, Christina Maimone, Alexander Mangold, Adrienne M.
Marshall, He Matskewich, Kimia Mavon, Katherine L. McLain, Amelia A. Mc-
Namara, Mhairi McNeill, Ulf Kai Mertens, David I Miller, Ben Moore, Andrew
Moore, Eric Nantz, Ziauddin Abil Fath Nasrullah, Valentina Nejkovic, Colleen S.
Nell, Andrew Nelson, Gustav Nilsonne, Rory Nolan, Christopher E. O’Brien,
Patrick K. O’Neill, Kieran J. O’Shea, Toto Olita, Jahna Otterbacher, Diana Palse-
tia, Bianca Pereira, Ivan Pozdniakov, John Protzko, Jean-Nicolas Reyt, Travis A.
Riddle, Amal Ridhwan Omar Ali, Ivan Ropovik, Joshua M. Rosenberg, Stéphane
Rothen, Michael Schulte-Mecklenbeck, Nirek Sharma, Gordon Shotwell, Martin
Skarzynski, Will Stedden, Victoria Stodden, Martin A. Stoffel, Scott Stoltzman,
Subashini Subbaiah, Rachael Tatman, Paul H. Thibodeau, Sabina Tomkins, Ana
Valdivia, Gerrieke B. Druijff van de Woestijne, Laura Viana, Florence Villeséche,
W. Duncan Wadsworth, Florian Wanders, Krista L. Watts, Jason D Wells, Christo-
pher E. Whelpley, Andy Won, Lawrence Wu, Arthur Yip, Casey Youngflesh,
Ju-Chi Yu, Arash Zandian, Leilei Zhang, Chava Zibman, and Eric Luis Uhlmann.
2021. Same data, different conclusions: Radical dispersion in empirical results
when independent analysts operationalize and test the same hypothesis. Orga-
nizational Behavior and Human Decision Processes (2021).

Vidya Setlur and Melanie K. Tory. 2022. How do you Converse with an Analytical
Chatbot? Revisiting Gricean Maxims for Designing Analytical Conversational
Behavior. Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (2022). https://api.semanticscholar.org/CorpusID:247054720

Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection. ArXiv abs/2303.11366
(2023). https://api.semanticscholar.org/CorpusID:257636839

Raphael Silberzahn, Eric Luis Uhlmann, Daniel P. Martin, Pasquale Anselmi,
Frederik Aust, Eli Awtrey, Stépan Bahnik, Fangxing Bai, Colin Bannard, Evelina
Bonnier, Rickard Carlsson, Felix Cheung, G. Christensen, Russ Clay, Maureen A.
Craig, Anna Dalla Rosa, Lammertjan Dam, Mathew H. Evans, Ismael Flores
Cervantes, N. Fong, Monica Gamez-Djokic, Andreas Glenz, Shauna Gordon-
McKeon, Timothy J. Heaton, Karin Hederos, Moritz Heene, Alicia Hofelich
Mobhr, Fabia Hégden, K. Hui, Magnus Johannesson, Jonathan Kalodimos, Erik-
son Kaszubowski, Deanna M. Kennedy, R. Lei, Thomas Lindsay, Silvia Liverani,
Christopher R. Madan, Daniel C. Molden, Eric Molleman, Richard Donald Morey,
Laetitia B. Mulder, B. R. Nijstad, Nolan G. Pope, B. Pope, Jason Prenoveau, Floor
Rink, Egidio Robusto, H. Roderique, Anna Sandberg, Elmar Schliter, Felix D.
Schénbrodt, Martin F. Sherman, S. Amy Sommer, Kristin Lee Sotak, S Spain,
Christoph Spérlein, Tom Stafford, Luca Stefanutti, Susanne Téuber, Johannes
Ullrich, Michelangelo Vianello, Eric-Jan Wagenmakers, Maciej Witkowiak, Sang-
suk Yoon, and Brian A. Nosek. 2018. Many Analysts, One Data Set: Making
Transparent How Variations in Analytic Choices Affect Results. Advances in
Methods and Practices in Psychological Science 1 (2018), 337 — 356.

Victor Soeiro. 2022. Netflix TV Shows and Movies. Kaggle. https://www.kaggle.
com/datasets/victorsoeiro/netflix- tv- shows-and-movies

Colette Stallbaumer. 2023. Introducing Microsoft 365 Copilot—A whole new
way to work. https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/
16/introducing- microsoft-365- copilot-a-whole-new-way- to-work/

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths.
2023. Cognitive Architectures for Language Agents. ArXiv abs/2309.02427
(2023). https://api.semanticscholar.org/CorpusID:261556862

Jiao Sun, Qingzi Vera Liao, Michael J. Muller, Mayank Agarwal, Stephanie Houde,
Kartik Talamadupula, and Justin D. Weisz. 2022. Investigating Explainability
of Generative Al for Code through Scenario-based Design. 27th International
Conference on Intelligent User Interfaces (2022). https://api.semanticscholar.org/
CorpusID:246705915

Md Mahmudul Hasan Suzan and Nishat Ahmed Samrin. 2022. Students Adapt-
ability Level in Online Education. Kaggle. https://www.kaggle.com/datasets/
mdmahmudulhasansuzan/students-adaptability-level-in-online-education
Xinming Tu, James Y. Zou, Weijie Su, and Linjun Zhang. 2023. What Should
Data Science Education Do with Large Language Models? ArXiv abs/2307.02792
(2023). https://api.semanticscholar.org/CorpusID:259361007

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit Test Case Generation with Transformers and Focal
Context. https://api.semanticscholar.org/CorpusID:235165921

Barbara Ubaldi. 2013. Open Government Data: Towards Empirical Analysis of
Open Government Data Initiatives. https://api.semanticscholar.org/CorpusID:
260737241

Unknown. 2023. Create Models and Automate Data Workflows with AL https:
//www.datagran.io

Gu et al.

[126] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation

vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. CHI Conference on Human Factors in Computing Systems
Extended Abstracts (2022). https://api.semanticscholar.org/CorpusID:247255943
Helena Vasconcelos, Gagan Bansal, Adam Fourney, Qingzi Vera Liao, and Jen-
nifer Wortman Vaughan. 2023. Generation Probabilities Are Not Enough: Explor-
ing the Effectiveness of Uncertainty Highlighting in AI-Powered Code Comple-
tions. ArXiv abs/2302.07248 (2023). https://api.semanticscholar.org/CorpusID:
256846746

April Yi Wang, Will Epperson, Robert DeLine, and Steven Mark Drucker. 2022.
Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis.
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(2022). https://api.semanticscholar.org/CorpusID:248419893

April Yi Wang, Anant Mittal, Christopher A. Brooks, and Steve Oney. 2019. How
Data Scientists Use Computational Notebooks for Real-Time Collaboration.
Proceedings of the ACM on Human-Computer Interaction 3 (2019), 1 - 30. https:
//api.semanticscholar.org/CorpusID:207946488

Fengjie Wang, Xuye Liu, Oujing Liu, Ali Neshati, Tengfei Ma, Min Zhu, and J.
Zhao. 2023. Slide4N: Creating Presentation Slides from Computational Note-
books with Human-AI Collaboration. Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (2023). https://api.semanticscholar.org/
CorpusID:258216753

Jiawei Wang, Tzu yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and
Restoring Reproducibility of Jupyter Notebooks. 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) (2020), 138-149.
https://api.semanticscholar.org/CorpusID:229703261

Christopher D. Wickens, Benjamin A. Clegg, Alex Z. Vieane, and Angelia Sebok.
2015. Complacency and Automation Bias in the Use of Imperfect Automation.
Human Factors: The Journal of Human Factors and Ergonomics Society 57 (2015),
728 - 739. https://api.semanticscholar.org/CorpusID:12243641

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock D. Mackinlay,
Bill Howe, and Jeffrey Heer. 2016. Voyager: Exploratory Analysis via Faceted
Browsing of Visualization Recommendations. IEEE Transactions on Visualization
and Computer Graphics 22 (2016), 649-658. https://api.semanticscholar.org/
CorpusID:2366653

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock D. Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager
2: Augmenting Visual Analysis with Partial View Specifications. Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (2017).
https://api.semanticscholar.org/CorpusID:14999239

Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology
(2020). https://api.semanticscholar.org/CorpusID:221492874

Kai Xiong, Siwei Fu, Guoming Ding, Zhongsu Luo, Rong Yu, Wei Chen, Hujun
Bao, and Yingcai Wu. 2022. Visualizing the Scripts of Data Wrangling with
SOMNUS. IEEE Transactions on Visualization and Computer Graphics PP (2022),
1-1. https://api.semanticscholar.org/CorpusID:246287020

Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2021. In-IDE Code
Generation from Natural Language: Promise and Challenges. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 31 (2021), 1 — 47.
https://api.semanticscholar.org/CorpusID:231718679

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, A. Eashaan Rao, Yeming Wen, Kensen
Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex
Polozov, and Charles Sutton. 2022. Natural Language to Code Generation in
Interactive Data Science Notebooks. ArXiv abs/2212.09248 (2022).

J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qiang Yang.
2023. Why Johnny Can’t Prompt: How Non-Al Experts Try (and Fail) to Design
LLM Prompts. Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (2023). https://api.semanticscholar.org/CorpusID:258217984
Amy X. Zhang, Michael J. Muller, and Dakuo Wang. 2020. How do Data Science
Workers Collaborate? Roles, Workflows, and Tools. Proceedings of the ACM on
Human-Computer Interaction 4 (2020), 1 - 23. https://api.semanticscholar.org/
CorpusID:210839751

Chengbo Zheng, Dakuo Wang, April Yi Wang, and Xiaojuan Ma. 2022. Telling
Stories from Computational Notebooks: Al-Assisted Presentation Slides Cre-
ation for Presenting Data Science Work. Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (2022). https://api.semanticscholar.
org/CorpuslD:247594488

Qiyu Zhi and Ronald A. Metoyer. 2020. GameBot: A Visualization-augmented
Chatbot for Sports Game. Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems (2020). https://api.semanticscholar.org/
CorpusID:216611752

Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Al-
ice Li, Andrew SC Rice, Devon Rifkin, and Edward Aftandilian. 2022. Pro-
ductivity assessment of neural code completion. Proceedings of the 6th ACM
SIGPLAN International Symposium on Machine Programming (2022). https:
//api.semanticscholar.org/CorpusID:248798468

A TASK SELECTION PROCESS

To avoid datasets overlapping with the training data of LLMs [17,
97], we chose natural language queries associated with datasets
uploaded to Kaggle after February 2022. This included 660 queries
from 70 distinct datasets.

We selected a subset of analysis queries that were incorrectly
answered by current state-of-the-art LLMs (GPT-4 and Code Inter-
preter). First, we tested the 660 queries against GPT-4 [97] using its
API (temperature=0.7, n=3). For this, GPT-4 was provided a dataset
summary similar to that of other LLM-based analysis tools [30],
a scaffold to write code in, and the natural language query. Next,
we sampled a set of 50 queries that resulted in incorrect outputs
from GPT-4, specifically selecting more complex queries with a
high number of Pandas API calls in the solution. These queries (and
corresponding datasets) were then presented to Code Interpreter.
Code Interpreter executed the code for the analysis, and detailed
its steps in natural language.

After manually inspecting the 50 queries GPT-4 struggled with,
we identified 22 that were also incorrectly answered by Code Inter-
preter. These errors included bad calculations, semantic misinter-
pretations of the prompt, and misunderstandings of the data. We
then chose a subset of these 22 queries that cover a variety of error
types (i.e., misunderstanding column semantics, bad calculations,
or misunderstanding the query) and involve datasets and domains
that were approachable to general audiences. Using this subset, we
constructed the tutorial and primary tasks of our study. Sometimes,
Code Interpreter encountered ambiguities and sought clarification
from the user. For these cases, we included a follow-up prompt and
integrated the multi-turn interaction into our study tasks.

A.1 Example of Dataset Summary used for
GPT-4 Prompt

The following is an example of the dataset summary used as part
of the prompt for GPT-4 for the Amazon Orders dataset (T1),

{

"name":

nn

W

"file_name": s
"dataset_description":
"fields": [
{
"column": "order_no",
"properties": {

"dtype": "string",

"samples": [
"171-5463316-4433940",
"407-6814126-3628337"

1,

"num_unique_values": 171,

"semantic_type": ""

"description": ""

}

1,

{
"column": "order_date",
"properties": {

"dtype": "date",

"min": "2021-06-13T719:08:00",

"max": "2022-02-25T20:44:00",

"samples": [
"2022-01-27T17:31:00",
"2021-10-15T20:27:00"

1,

"num_unique_values": 171,

wn

CHI 24, May 11-16, 2024, Honolulu, HI, USA

o

"semantic_type":
"description": ""
}
1,

{
"column": "sku",
"properties": {
"dtype": "category",
"samples": [
"SKU:CR-6E69-UXFW",
"SKU:ST-27BR-VEMQ"
1,
"num_unique_values": 54,
"semantic_type": ""
"description": ""
}
1,
"column": "quantity",
"properties": {
"dtype": "number",
"std": ©.44513190725972585,
"min": 1,
"max": 4,
"samples": [

1
1,
"num_unique_values": 4,
"semantic_type": ""
"description": ""
3
1,
{
"column": "order_status",
"properties": {
"dtype": "category",
"samples": [
"Returned_to_seller"
1,
"num_unique_values": 2,
"semantic_type": ""
"description": ""
}
}
1,
"field_names": [
"order_no",
"order_date",
"buyer",
"ship_city",
"ship_state",
"sku",
"quantity",
"order_status"

B PARTICIPANTS’ VERIFICATION PROCESSES

We include the verification processes of all participants in Table 5.

C EXAMPLE INTERFACE IN THE USER STUDY

An example of the interface used during the study for T7 is shown
in Fig. 6.

CHI 24, May 11-16, 2024, Honolulu, HI, USA Gu et al.

Verification Processes Count Occurrences
S—PD—-C

S —BDI— N —B|—C
S—PD-N-C
S—PD-N-PD-C
S—DP—-N—-D—C
S—PD-N—-DP—-N-C
S—P—N—BDI—C
S—DP—-C
S—P-N-P-C
S—DP—-N-PD-C

S —BD|—bi—C

S|— 1R — Ni—R— N —ib—(C
SI—iB] BRl—C
S—P-N-DP-C

S—PD—- R
S—D-C

S—IDE| BBl N —|Bi—IBb]—|C
S —PBI— N —DPI—|C
S
S
S
S

—_

T4 [P10], T6 [P10, P20, P8], T9 [P10, P11, P21], T3 [P2, P22], T8 [P7], T7 [P8]
T1 [P1], T2 [P12, P5], T4 [P2], T8 [P22], T10 [P22], T9 [P6]
T5 [P10, P14], T2 [P2], T4 [P6], T1 [P7]
T3 [P12, P5], T7 [P12], T10 [P20], T6 [P4]
T4 [P15], T7 [P16], T9 [P9]
T2 [P1], T10 [P13]
T8 [P11], T5 [P8]
T5 [P17], T1 [P20]
T7 [P4, P6]
T3 [P1]
T9 [P13]

T6 [P14]

T1 [P15]

T6 [P17]

T9 [P18]

T8 [P19]

T9 [P19]

T4 [P21]

T7 [P3]

Ts [P4]
T8 [P5]
T10 [P7]

—DP —R
—PD—-N-D-C
—PD—R
—D—-N-PD-C

N
N

L S e e e SR "SI I CREN TV, RS, BN B

Table 5: All Participants’ Behaviors in Their Workflows. R is when the participant ran out of time on the task or was unable to
confirm or reject the Al-generated output has an error. In 52 verification workflows, we observed 3 such cases.

Analysis Task Study Scenario Which hotels had a worse ranking this year than in 20212 Show the hotel name, location and & Original Data ~

the difference in ranking from last year.

Motivation Dataset Summary

In the competitive hospitality industry, maintaining or improving

hotel rankings is vital for attracting customers and sustainin = 0 Y
9 9 9 To determine which hotels had a worse ranking this year compared to 2021, I'll need to = W03 age 50 150 of 101 > ol
business growth. Travelers often rely on these rankings to make

informed decisions about where to stay. By identifying which - Load the 2022 dataset provided.

20. ¢ Hotel | Country : Regi.. ! Location : Sc.. : R..
hotels have seen a decrease in ranking since 2021, stakeholders 2. Examine the structure of the dataset to understand the available columns and their '
meanings. 0 Rosew... ltaly Euope Montaldino 9925 1
can pinpoint areas of concern, strategize on improvements, and gs.
make informed decisions about marketing, promotions, and other 3. Identify the relevant columns that contain the hotel names, locations, and rankings. 1 Grace .. Greece Europe Santorini 9022 2
business-related inftiatives. 4. Calculate the difference in rankings from last year. 1 Waldorf... Maldives ~ Southea... lthaafushil... 99.11 3
5. Filter out the hotels that had a worse ranking this year compared to 2021 s Pickerl.. United St.. NothA.. Wolfeboro 9895 4
Analysis Task Let's start by loading the data and inspecting its structure. 5 L D O M e (6D 8
You want to identify the hotels that have seen a decline in their showfhide code + 0 Royal... Morocco Affica Marrakech 9893 5
ranking (numeric decrease) as compared to 2021. For each of 1 Capella... Indonesia Southea... Bali 9897 7
these hotels, provide details such as the hotel name, its location, Original Data o The Lo... United St... NorthA... NewYork 988 8
and the exact drop in ranking (L., the difference between the 5 T 55 O
current year's rank and the rank in 2021). This will give a clear .
y 021), g The dataset has been successfully loaded. Based on the columns provided, here's a brief o Rosew... Spain Europo Madrid w7 10
picture of the hotels that need attention and the severity of their G
rank drop. 1 The Ob... India Southea... New Delhi ~ 98.67 10
+ Hotel: Name of the hotel.
; 1 The Ob... India Southea... Udaipur 9858 12
+ Country: Country where the hotel is located.
o CET i Crame i e R R, 1 Manda... Indonesia Southea... Bali 9831 13
- + Location: Location of the hotel 0 Wildern... Rwanda Affica Musanze 9829 14
Dataset Description . i
« Score: Score assigned to the hotel. 0 Portrait... Italy Europe Florence 9825 15
This dataset contains the results of the World's Best 100 Hotels
! ! Y * Rank: Rank of the hotel in 2022 1 Raffles ... Turkey Middle E.... Istanbul 97.72 16
in 2022 published by Travel+Leisure. Included are details about « Yaar: Vo of setablichment or apenk
the hotels that made 2022 list. . [The Ob... Morocco Africa Marrakech ~ 98.24 17
e hotels that made 2022 lis « 2021: (Assuming) Rank of the hotel in 2021
Each row is a hotel that appeared on 2022's list. « Past_rank: Past rank (unclear for which year). 0 Capella... Vietnam Southea... Hanoi %18 18
To determine which hotels had a worse ranking this year compared to 2021, we'll compare the g White ._Uned St..._NorhA._PalmBeach 98.13 10
Columns "Rank" column to the "2021" column. Let's filter the data to find the hotels that fit this criteria
& result) v
The dataset contains the following columns, not all of which may and calculate the difference in ranking (result)
be necessary for the analysis task. showfhide code +
+ Hotel: accommodation name @ (intermediate) Worse Ranking Hotels v
« Country: country of the hotel m
« Region: region of the hotel based on continent, sub-region ¢, (intermediate) Worse Ranking Hotels With Rank .

and culture showfhide intermediate data description + Difference
« Location: location of the hotel

« Score: hotel rating given by Travel+Leisure e

+ Rank: the hotel's rank in 2022

* Year:year the hotel was bull/opened (intermediate) Worse Ranking Hotels With Rank Difference
* 2021: if the hotel is on 2021's top 100 list (1 means yes)

« Past_rank: the hotel's rank in 2021
Here are the hotels that had a worse ranking in 2022 compared to 2021:

View Ori | Data Hotel Location Ranking Difference

Rosewood Castiglion del Bosco Montalcino 1

Figure 6: An example study task. We include the description of the analysis goal and dataset in the left side-panel.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background and Related Work
	3.1 AI-Based Tools for Data Science Execution
	3.2 Understanding and Sensemaking in Data Analysis
	3.3 Understanding and Verifying LLM Outputs

	4 Method: Design Probe and Prepared Tasks
	4.1 Design Considerations
	4.2 Design of the Probe
	4.3 Preparation of Study Tasks

	5 User Study
	6 Results
	6.1 What patterns of behaviors do analysts follow in a verification workflow?
	6.2 What artifacts do analysts use and for what purposes?
	6.3 How are analysts' backgrounds reflected in their behaviors and artifact usage?

	7 Discussion
	7.1 Implications for Data Analysts
	7.2 Implications for System Designers
	7.3 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References
	A Task Selection Process
	A.1 Example of Dataset Summary used for GPT-4 Prompt

	B Participants' Verification Processes
	C Example Interface In The User Study

