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I. INTRODUCTION

The dynamics of nanoparticles (NPs) in suspensions play an important role in numerous

applications, ranging from cellular transport1 to the fabrication of functional nanomaterials.2

For example, therapeutic agents can be encapsulated inside or attached to NPs for targeted

drug delivery, and di↵erences in NP dynamics in the body can a↵ect their uptake and

e�cacy.3–5 Many factors impact the motion of NPs, including their size, interactions with

each other, and interactions with their surroundings.6 This work focuses specifically on the

e↵ect of shape, which has emerged as an important factor for modulating the properties

and function of NPs in many practical applications.7,8 For example, shape-anisotropic iron-

oxide-based magnetic NPs were shown to enhance contrast for magnetic resonance imaging

compared to spherical NPs,8 while quantum rods were shown to have enhanced di↵usion

compared to quantum dots in confined networks.9 Given that NPs with a variety of shapes

can be readily synthesized10–12 and that many naturally occurring NPs (e.g., the rod-like

tobacco mosaic virus13,14 and gibbsite platelets15) also exhibit pronounced shape anisotropy,

it is important to develop a fundamental understanding of the relationship between shape

and transport properties, such as di↵usion coe�cients, in order to engineer NPs for practical

applications.

Experimentally characterizing how NP dynamics depend on shape and concentration can

be challenging. For example, dynamic light scattering is a common technique for measuring

NP di↵usion from fluctuations in scattered light intensity.16 However, knowledge about the

distribution of NP sizes and/or shapes is needed to extract the di↵usion coe�cient from

the raw measurement data,17,18 and it is di�cult to perform this analysis for non-dilute

solutions.19 Camera-based tracking of tagged NPs is an alternative approach that allows

for the direct measurement of the NP di↵usion coe�cient,9,20 but this method has limited

spatial and temporal resolution.20 NP properties may also be a↵ected if labeling agents, such

as fluorescent markers, are used.21 Further, it can be di�cult to prepare NP suspensions with

su�ciently low polydispersity and at high enough concentrations to accurately assess how

the di↵usion coe�cient varies with both NP characteristics and concentration.

As a result, theory and simulations have proven to be useful approaches for studying

the dynamics of NP suspensions. Early theories predominantly focused on spherical NPs,

for which the single-particle translational and rotational di↵usion coe�cients can be calcu-
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lated using the classical Stokes–Einstein and Stokes–Einstein–Debye relations, respectively.

Theoretical predictions for the first-order concentration dependence of the long-time self-

di↵usion coe�cient for suspensions of spherical NPs have also been derived.22,23 Beyond

spherical NPs, pioneering works by Kuhn, Kirkwood, and others have led to estimates for

the single-particle translational and rotational di↵usion coe�cients of rod-like particles.24–29

At finite concentration, the di↵usive motion of the rods becomes more complex but can

be split qualitatively into three regimes: at dilute concentrations, rods have essentially un-

restricted motion in all directions; at semi-dilute concentrations, their motion is slightly

hindered perpendicular to the long axis of the rod; and at high concentrations, the per-

pendicular di↵usive motion is entirely suppressed.30 However, predicting the dynamics of

rod-like NPs with quantitative accuracy still remains challenging because their anisotropic

shape can lead to complex flow patterns around individual NPs and to non-trivial collective

behavior such as nematic or smectic ordering. For more complicated NP shapes than rods,

predicting even single-particle di↵usion coe�cients becomes challenging, and numerical ap-

proaches are often required.31,32 In general, fully analytic descriptions of NP dynamics in

suspensions are challenging to construct due to the many-body hydrodynamic interactions

(HIs) between NPs that are mediated by the solvent.

Computer simulations are highly useful tools for numerically investigating NP dynam-

ics in suspensions. The main challenge is to construct models that capture the relevant

physics while remaining computationally tractable. Explicitly resolving both the NPs and

the solvent molecules they are suspended in using, e.g., classical molecular dynamics (MD)

approaches, quickly becomes infeasible because NPs are typically much larger than sol-

vent molecules. However, given the corresponding separation of time scales between the

solvent dynamics and NP dynamics, it is often possible to overcome this di�culty using

coarse-grained models having simplified or implicit treatments of the solvent.33 For exam-

ple, Brownian dynamics (BD) is a well-known implicit-solvent technique that accounts for

solvent-induced drag and fluctuating forces on the NPs,34 but which neglects HIs between

the NPs in its most basic form. HIs can be introduced to BD through appropriate mo-

bility tensors,35 such as the pairwise far-field Rotne–Prager–Yamakawa tensor for spherical

particles.36,37 Stokesian dynamics, a gold-standard approach for simulating colloidal suspen-

sions, additionally accounts for short-range lubrication forces between NPs within the BD

framework.38,39 However, BD approaches that include HIs are often still computationally
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demanding to implement and require expressions for the mobility tensor, which may be

di�cult to obtain for complex NP shapes.

To circumvent issues determining inputs needed for a fully implicit treatment of the

solvent, several mesoscale simulation methods, including multiparticle collision dynamics

(MPCD),33,40,41 dissipative particle dynamics,42,43 and the lattice Boltzmann method,44,45

use simplified particle-based solvent models that are less demanding to simulate than an

atomistic model but still have properties resembling that of real solvents. In this work,

we will use MPCD because we have recently shown that MPCD can reasonably reproduce

expected results for the long-time self-di↵usion coe�cient and sedimentation coe�cient for

suspensions of spherical NPs over a range of NP concentrations,46 and the same approach

used to model the spherical NPs can be extended to NPs with other shapes. In MPCD,

NPs are modeled as conventional MD particles that can be coupled to the solvent through

di↵erent schemes to ensure HIs develop.46–52 The current state-of-the-art coupling scheme,

first proposed by Poblete et al., uses a discrete particle model that represents an NP as a

mesh of “vertex” particles interconnected via elastic springs.47 The solvent particles interact

with the NPs only through stochastic collisions that are straightforward to compute. We

used a discrete particle model to study the long-time self-di↵usion of cubes,46 and similar

models have been used to simulate the self-assembly of colloids with shape and/or interaction

anisotropy.53–58 However, we are unaware of a systematic study using MPCD to character-

ize the long-time self-di↵usion coe�cients and sedimentation coe�cients for suspensions of

shape-anisotropic NPs at varying concentrations.

In this work, we use MPCD with a discrete particle model to study the long-time self-

di↵usion and sedimentation coe�cients of octahedra, cubes, tetrahedra, and spherocylinders

as a function of NP concentration. We investigate the e↵ect of shape by comparing the results

for the di↵erent NP shapes with each other and with spheres. We also assess the influence of

solvent-mediated HIs by comparing the MPCD simulations with implicit-solvent Langevin

dynamics simulations.
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II. MODELS

A. Multiparticle collision dynamics

In MPCD, the solvent consists of point particles that are propagated in alternating

streaming and collision steps that occur at a regular time interval �t. During the streaming

step, the solvent particles move according to Newton’s equations of motion,

dri
dt

= vi

mi
dvi

dt
= Fi, (1)

where ri is the position, vi is the velocity, and mi is the mass of particle i, while Fi is the

force acting on particle i. All solvent particles have the same mass m. Unlike standard

MD particles, MPCD particles do not interact with each other by pairwise forces, but each

particle may be acted on by a body force. For a constant Fi, eq. (1) can be integrated

analytically to give the standard equations of ballistic motion.

In the collision step, the solvent particles are sorted into cubic cells of edge length `,

then exchange momentum with particles in the same cell according to a collision scheme.

Here, we use the stochastic rotation dynamics (SRD) scheme without angular momentum

conservation.40,41 SRD updates the velocity of particle i in cell j according to:

vi  uj +⌦j · (vi � uj), (2)

where uj is the mass-averaged velocity of the particles in cell j and ⌦j is the rotation matrix

for cell j. The matrix ⌦j rotates about an axis randomly selected for cell j by a fixed angle

↵. At each collision step, the collision cells are shifted along each Cartesian direction by a

random amount drawn uniformly from [�`/2,+`/2] to ensure Galilean invariance,59,60 and

a cell-level Maxwellian thermostat is used to maintain a constant temperature T .61

The natural units for MPCD simulations are the length ` of the collision cells, the mass m

of the solvent particles, and the thermal energy kBT , where kB is the Boltzmann constant.

The corresponding unit of time is ⌧ =
p
m`2�, where � = 1/(kBT ). We adopted the

standard SRD parameters �t = 0.1 ⌧ , ↵ = 130�, and average solvent number density 5 `�3,

which give a liquid-like Newtonian fluid with dynamic viscosity ⌘0 = 3.95 kBT ⌧/`3.62
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B. Discrete particle model

A discrete particle model was used to represent the NPs and couple them to the

solvent.46,47 The NP shapes we modeled were a sphere, an octahedron, a cube, a tetra-

hedron, and two spherocylinders with di↵erent aspect ratios (Fig. 1). Each NP consisted of

Nv vertex particles on the surface of the shape, and each vertex particle had mass 5m. The

vertex particles were bonded to their nearest neighbors with a harmonic potential,

�ub(r) =
kb
2
(r � rb)

2, (3)

where r is the distance between two particles, rb is the distance required for the bond by

the shape, and kb is the spring constant. To ensure that the NPs maintained their shapes,

the vertex particles were also bonded to either an additional particle in the center of the NP

(sphere, octahedron, cube, & tetrahedron) or their diametrically opposed vertex particle

(spherocylinders). Excluded-volume interactions between NPs were modeled by applying

the Weeks–Chandler–Andersen repulsive potential63 between vertex particles

�u(r) =

8
><

>:

4

⇣�
r

⌘12
�
⇣�
r

⌘6�
+ 1, r  21/6 �

0, otherwise

. (4)

All vertex particles (but not the central particle) were coupled to the MPCD solvent through

the collision step eq. (2).47 Between collision steps, the central and vertex particles moved

according to eq. (1). Based on our prior work,46 we used kb = 5000 `�2 to make sti↵ bonds

and � = `, and we integrated eq. (1) using the velocity Verlet algorithm with time step

0.005 ⌧ . We visually confirmed that all NPs maintained a nearly rigid shape and that no

NPs penetrated each other for the vertex-particle configurations chosen as described next.

Sphere.—We modeled a sphere having diameter d = 6 ` [Fig. 1(a)] as a reference point.

To create the vertex particles, we subdivided the triangular faces of a regular icosahedron

twice and scaled the positions of all vertices to lie on the surface of the sphere. This process

resulted in Nv = 162 vertex particles with a typical nearest-neighbor distance between 0.83 `

and 0.97 `. Note that this model di↵ers from the one we used in ref. 46 in two ways: (1)

the number of vertex particles is larger and (2) the excluded volume is handled through the

vertex particles rather than through the central particle. These choices were made in this

work so that the spheres would have a comparable surface density of vertex particles and

the same style of excluded-volume interactions as the anisotropic NPs we studied.
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(a) (b) (c) (d) (e)

FIG. 1. Discrete particle model for (a) sphere, (b) octahedron, (c) cube, (d) tetrahedron and (e)

two spherocylinders (aspect ratios � = 1 and 2). The Nv vertex particles are shown in orange, and

the bonds to their nearest neighbors are shown in blue. To improve the clarity of these renderings,

the size of the vertex particles has been decreased, and central particles and additional bonds used

to maintain the shape have been omitted. These snapshots were rendered using Visual Molecular

Dynamics (version 1.9.3).64

Octahedron and tetrahedron.—We modeled a regular octahedron and a regular tetrahe-

dron both having edge length a = 6 ` [Figs. 1(b) and 1(d)]. Because the faces of these

polyhedra are equilateral triangles, we first created a three-dimensional triangulated model

of each shape using computer-aided design software, then subdivided the faces 3 times to

create a triangular mesh of vertex particles. This process resulted in 9 vertex particles per

edge and distance a/8 = 0.75 ` between all nearest-neighbor vertex particles for both shapes.

The total number of vertex particles was Nv = 258 for the octahedron and Nv = 130 for the

tetrahedron.

Cube.—We modeled a cube with edge length a = 6 ` [Fig. 1(c)] using a square mesh with

8 vertex particles per edge. The total number of vertex particles was Nv = 296, and the

distance between nearest-neighbor vertex particles was a/7 ⇡ 0.86 `. This is the same vertex

particle configuration as in ref. 46, and the description here corrects a typographical error

for the number of vertex particles per edge. Unlike in ref. 46, though, a central particle was

used to maintain rigidity to keep consistency with the sphere, octahedron, and tetrahedron.

Spherocylinder.—We modeled two types of spherocylinders: both had two hemispheres

with diameter d = 6 `, but one had a cylinder of length h = 6 ` while the other cylinder had

the length h = 12 ` [Fig. 1(e)]. Thus, the spherocylinders had aspect ratios � ⌘ d/h = 1

and 2, respectively. This degree of anisotropy is much smaller than that of many rod-

like particles, such as those of biological origin like the fd virus65,66 and tobacco mosaic

virus,13 that is often in the range � & 10. Nanorods with smaller aspect ratios can be
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synthesized,67–69 but we found surprisingly little data on their transport coe�cients. Hence,

we chose to study spherocylinders with these smaller aspect ratios to begin to bridge the

knowledge gap between spheres and long rod-like NPs. Discrete particle models for the

spherocylinders were constructed through a multi-step process: First, a mesh of vertex

particles for the hemispheres was created by slicing our discrete sphere model in half along

a plane that exposed 20 evenly spaced vertex particles around its circumference and had

91 vertex particles in total. Then, vertex particles for the cylinder were generated from the

ring of 20 exposed vertex particles by translating the ring by 0.75 ` and rotating it around

the axis of the cylinder by 9� to stagger the particles on consecutive rings. This process

was repeated until the entire cylinder surface was covered with vertex particles. The total

number of vertex particles per spherocylinder was Nv = 322 for � = 1 and Nv = 482 for

� = 2, with the nearest-neighbor distance between vertex particles ranging from 0.83 ` to

0.97 `.

C. Simulation details

We performed bulk simulations containing N NPs in a cubic simulation box with edge

length L = 120 ` and periodic boundary conditions. We simulated a range of nominal NP

volume fractions � = Nv/L3, where v is the nominal volume of each NP (Table I), by varying

N . We created equilibrated configurations of NPs at the di↵erent volume fractions using

Langevin dynamics (LD) simulations. LD simulations are faster to perform than MPCD

simulations because they do not include HI, and we also chose the friction coe�cient for

the LD simulations to give faster NP dynamics than in the MPCD simulations in order

to accelerate equilibration. Starting from these configurations, we measured the long-time

self-di↵usion coe�cient as a function of � using equilibrium simulations (Section IIIA) and

the sedimentation coe�cient as a function of � using nonequilibrium simulations (Section

III B). All simulations were conducted using HOOMD-blue70,71 (version 2.9.7) extended with

azplugins72 (version 0.12.0).

For the spheres and regular polyhedra, we performed one equilibrium simulation of length

2 ⇥ 105 ⌧ and recorded the position of all central particles every 10 ⌧ . We performed one

nonequilibrium simulation consisting of a warmup period of 0.5⇥105 ⌧ to reach steady state

followed by a production period of length 1.5⇥105 ⌧ in which we recorded the average velocity
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of the NPs every 0.105 ⌧ and the average velocity of the solvent every 0.1 ⌧ . The di↵erent

sampling frequencies for the NPs and solvent were chosen to account for acceleration of the

NPs between solvent collisions.46 To estimate error bars, we subdivided these trajectories

into three blocks and computed the standard error between blocks.

For the spherocylinders, we performed eight equilibrium simulations of length 105 ⌧ and

recorded the position of enough vertex particles to reconstruct the center of mass of each

NP every 2.5 ⌧ . We performed three nonequilibrium simulations consisting of a 0.5 ⇥ 105 ⌧

warmup period and 1⇥105 ⌧ production period with the velocities sampled in the same way

as for the other shapes. Error bars were estimated as the standard error of the independent

simulations.

III. RESULTS AND DISCUSSION

A. Long-time self-di↵usion coe�cient

We computed the long-time self-di↵usion coe�cientD of the NPs from the time derivative

of the average mean squared displacement h�r2i of each NP,34

D = lim
t!1

1

6

dh�r2i
dt

. (5)

To improve statistics, we averaged h�r2i over NPs and time origins, and we extracted D

from the time average of the long-time plateau of dh�r2i/ dt, which we fit in the time range

104 ⌧  t < 2 ⇥ 104 ⌧ for the spheres and regular polyhedra and in the range 3 ⇥ 104 ⌧ 

t < 5 ⇥ 104 ⌧ for the spherocylinders. Note that in defining D in this way, the long-time

self-di↵usion coe�cient is a scalar quantity. For anisotropic NPs, the short-time motion is

characterized by a di↵usion tensor; this tensor is isotropic for the regular polyhedra we have

studied,73 but it is anisotropic for the spherocylinders.74 Hence, D reported in this work

implies an orientational average at long times for the spherocylinders.

Due to the long-ranged nature of solvent-mediated HIs, self-di↵usion coe�cients mea-

sured in simulations with periodic boundary conditions can su↵er from noticeable finite-size

e↵ects.75–77 For a cubic simulation box such as ours, the self-di↵usion coe�cient in an in-

finitely large box D1 is related to D in a finite box with edge length L by76,77

D1 = D + ⇠
kBT

6⇡⌘L
, (6)
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where ⇠ ⇡ 2.837297 and ⌘ is the suspension viscosity. Applying eq. (6) can be challenging

in practice because it requires knowledge of ⌘, which depends on the shape and volume

fraction of the NPs. Analytic expressions for ⌘ exist for some NP shapes,78,79 but they are

typically only valid for small NP volume fractions;80 hence, additional costly simulations are

usually needed to accurately determine ⌘. To avoid this step, we approximated ⌘ with a

Stokes–Einstein-like proportionality, ⌘/⌘0 = D0/D1,46,77 where D0 = kBT/�0 is the long-

time self-di↵usion coe�cient at infinite dilution (i.e., the single-particle limit) and �0 is the

corresponding hydrodynamic friction coe�cient for the NP (again, orientationally averaged

for the spherocylinders). Substituting for ⌘ in eq. (6) and solving for D1 yields

D1 ⇡ D

✓
1� ⇠ �0

6⇡⌘0L

◆�1

. (7)

We previously tested this approximate correction by computing D for spherical NPs in

di↵erent box sizes L and confirming that D1 was independent of L within our measurement

accuracy.46

To apply eq. (7), �0 must be determined for each NP shape. Experimental correlations81

for �0 exist [e.g., eq. (9) below]; however, it is not guaranteed that the MPCD simulations

are consistent with these. Instead, we noted that all di↵usivities are corrected by the same

factor in eq. (7) regardless of � and that eq. (6) can be used directly when � is su�ciently

small that ⌘ ⇡ ⌘0. Accordingly, we linearly extrapolated our measured D to � = 0, using

the data from the smallest two values of � that we simulated, to obtain a measured D0 with

finite-size e↵ects. We then applied eq. (6) with ⌘ = ⌘0 to calculate D1
0 from D0 and used

the ratio D1
0 /D0 as the finite-size correction factor for all D. In the rest of the paper, all

di↵usion coe�cients have been corrected for finite-size e↵ects in this way, but we will still

refer to them as D and D0 for notational simplicity.

1. Regular polyhedra

We first investigated the shape-dependence of the long-time self-di↵usion coe�cient ex-

trapolated to infinite dilution D0 for the regular polyhedra we simulated (octahedron, cube,

and tetrahedron). Pettyjohn and Christiansen experimentally measured the settling rates of

particles with these shapes at low Reynolds number.73,81 They found that the settling rate

could be correlated with particle shape using the sphericity  , defined as the ratio of the
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TABLE I. Geometric properties of the regular polyhedra investigated. General formulae are given

in terms of the edge length a, with the specific value for a = 6 ` (the edge length for all our

polyhedral NPs) quoted in parentheses. The properties are the volume v, surface area A, sphericity

 , inscribed-sphere diameter dI, circumscribed-sphere diameter dC, and mean of inscribed-sphere

and circumscribed-sphere diameters d̄.

v (`3) A (`2)  dI (`) dC (`) d̄ (`)

octahedron

p
2

3
a3 (101.8) 2

p
3a2 (124.7) 0.846

r
2

3
a (4.9)

p
2a (8.5)

p
2 +
p
3p

6
a (6.7)

cube a3 (216.0) 6a2 (216.0) 0.806 a (6.0)
p
3a (10.4)

1 +
p
3

2
a (8.2)

tetrahedron
a3

6
p
2

(25.5)
p
3a2 (62.4) 0.671

ap
6

(2.4)

r
3

2
a (7.3)

r
2

3
a (4.9)

surface area of a sphere having the same volume as the shape to the actual surface area A

of the shape,

 =
⇡1/3(6v)2/3

A
. (8)

The sphericities of our regular polyhedra are listed in Table I. Using the correlation for the

settling velocity from ref. 81, a correlation for the hydrodynamic friction coe�cient �0 is

�0 = 3⇡⌘0

✓
6v

⇡

◆1/3 
0.843 log10

✓
 

0.065

◆��1

. (9)

Note that the first term in parentheses is the diameter of an equivalent-volume sphere to

the shape, so eq. (9) gives �0 = 3⇡⌘0d for a sphere with diameter d as expected.

Based on eq. (9), a cube should di↵use more slowly than an octahedron, while an octa-

hedron should di↵use more slowly than a tetrahedron when all have the same edge length

a; a sphere with diameter d = a is predicted to have D0 between that of the octahedron and

the tetrahedron (Table II). Indeed, our simulation results for D0 were qualitatively consis-

tent with these predictions. Quantitatively, D0 from the cube simulations was in excellent

agreement with the value predicted using eq. (9), but D0 from the octahedron and tetrahe-

dron simulations was 9% and 18% smaller, respectively. We calculated a similar deviation

between the measured and predicted D0 for tetrahedra in recent experiments by Ho↵mann

and coworkers, who fabricated tetrahedral clusters from four spherical polystyrene NPs

with diameter 154 nm; they measured a self-di↵usion coe�cient of D0 = 1.72 ⇥ 10�12 m2/s

in water,82,83 which is 22% smaller than the predicted value of D0 = 2.2⇥ 10�12 m2/s when
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TABLE II. Di↵usion coe�cient at infinite dilution D0 for the sphere and regular polyhedra calcu-

lated from our simulations, using eq. (9), and using the Stokes–Einstein relationship for a sphere

with mean diameter d̄ given in Table I. All are in units of 10�3 `2/⌧ .

simulation using eq. (9) using d̄

sphere 4.32 4.48

octahedron 3.95 4.36 4.01

cube 3.31 3.33 3.28

tetrahedron 5.14 6.29 5.48

using an edge length of a = 308 nm in eq. (9). These clusters are, however, not true tetra-

hedra so it is unclear whether this deviation from eq. (9) should be expected in the MPCD

simulations too.

We and others previously found that D0 for a cube can also be reasonably well-

approximated by D0 for a sphere with diameter d̄ = (dI + dC)/2, the arithmetic mean

of the diameters dI and dC of the spheres that inscribe and circumscribe it, respectively.32,46

We carried out the same calculation for the octahedron and tetrahedron, and we again found

good agreement with our simulations (Table II). Thus, using d̄ seems to provide a quick

and reasonable estimate of D0 for regular polyhedra as an alternative to eq. (9).

We next investigated the volume-fraction dependence of D [Fig. 2(a)]. Given that the dif-

ferent NP shapes had di↵erent D0, we report D/D0 to facilitate comparison between shapes

[Fig. 2(b)]. The tetrahedra exhibited the strongest dependence on �, the spheres exhibited

the weakest dependence on �, while both the cubes and octahedra exhibited a similar de-

pendence on � that was intermediate between the spheres and tetrahedra. In general, we

expected D to decrease when � increased because increased interactions between NPs usu-

ally slow their motion. At low NP volume fractions, long-ranged solvent-mediated HIs are

important because short-ranged interactions are infrequent. Di↵erences in the dependence

of D/D0 on � seen in Fig. 2 when � is small are then likely caused by di↵erences in HIs

between shapes.

At higher NP volume fractions, direct interactions between NPs become more frequent

and significant, particularly those due to excluded-volume between NPs. Indeed, we expect

that eventually D/D0 ! 0 when the NPs reach a freezing or jamming transition that
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FIG. 2. (a) Long-time self-di↵usion coe�cient D of spheres, octahedra, cubes, and tetrahedra as

a function of nominal volume fraction �. (b) D normalized by its value linearly extrapolated to

infinite dilution D0.

essentially traps each NP in a local cage of surrounding NPs. Based on �, the regular

polyhedra we simulated were all expected to be fluids even at our largest concentration

(� = 0.20).84–87 However, we noted that the actual excluded volume vex of the NPs (and

hence excluded-volume fraction �ex) di↵ers from the nominal volume v (and nominal volume

fraction �) because the vertex particles in our discrete model have a finite size. For example,

the vertex particles on the surface of the cube [Fig. 1(c)] protrude roughly �/2, so the edge

length of the volume excluded by the cube is roughly � longer than the nominal edge length.

In general, we define the excluded volume as that of the regular polyhedron that contains

the spheres with diameter � on the surface of the nominal regular polyhedron. Geometric

considerations give the edge length aex of our excluded-volume regular polyhedron as aex =

a(1+�/dI). The ratio of the excluded volume to nominal volume is then vex/v ⇡ (1+�/dI)3

and �ex is proportionally larger than � by the same factor. This larger excluded size aex is

evident in the radial distribution function g(r) (Fig. 3) for all shapes.

We attempted to assess the e↵ect of this di↵erence in nominal and excluded volume

using the spherical NPs. We performed additional simulations where we implemented

the excluded-volume interaction between spheres through a core-shifted Weeks–Chandler–
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FIG. 3. Radial distribution function for (a) spheres, (b) octahedra, (c) cubes, and (d) tetrahedra at

di↵erent nominal volume fractions �. The arrows in (d) denote signature peaks for the transition

to pentagonal dipyramids at 0.55aex and 0.75aex.84,85

Andersen potential between only their central particles, like in ref. 46. As expected, we found

that there was less structuring in the fluid, measured through g(r), at a given nominal volume

fraction � due to the smaller excluded volume of each sphere [Fig. 4(a)]. However, we found

little di↵erence in the di↵usivity over the range of volume fractions investigated [Fig. 4(b)].

Moreover, the simulation data of D/D0 agreed well with experimental data when plotted

using �. We observed similar agreement between MPCD simulations and experiments for

cubes using the nominal volume fraction � in our prior work46 [see also Fig. 5(c)]. Hence,

at least over the range of volume fractions considered for the spheres, the nominal volume

fraction � seems to be a good description of the concentration.

We note, though, that structural e↵ects caused by di↵erences in nominal and excluded

volume may still become significant at su�ciently high excluded volume fractions, particu-

larly if a phase transition is approached. The tetrahedron, which has the largest vex/v ratio
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FIG. 4. (a) Radial distribution functions for spheres with excluded volume handled through either

vertex particles (solid lines) or a central particle (dashed lines). (b) Long-time self-di↵usion coef-

ficient D (normalized by D0) for the same systems compared with experimental data.88,89

of our regular polyhedra, is an excellent example of this point. Previous simulations of hard

tetrahedra84,85 revealed a transition to a fluid consisting of pentagonal dipyramids when the

volume fraction was 0.47. That study found that g(r) showed a distinct signature of this

transition: at low volume fractions where dipyramids did not form, g(r) had its first peak at

r = 0.75 a; whereas, at higher volume fractions where dipyramids formed, this original peak

disappeared, and the first peak shifted to a much smaller distance r = 0.55 a. Our largest

nominal volume fraction � = 0.20 is well below the reported transition to dipyramids, but

if we instead consider the excluded volume fraction (�ex = 0.56), then the system should

have surpassed this transition. When we computed g(r) for the tetrahedra [Fig. 3(d)], we

observed these signature peaks emerging at the reported r if aex was used rather than a.

Thus, the tetrahedra appear to undergo a transition to dipyramids that is not expected us-

ing only �. The more dramatic slowing down of the tetrahedra dynamics with � compared

to the other shapes could be partially due to this transition.

Finally, we assessed the influence of HIs between the NPs on their long-time self-di↵usion

by performing complementary LD simulations that do not have these interactions (Fig. 5).

Due to the lack of long-ranged solvent-mediated HIs, we did not perform any finite-size
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FIG. 5. Comparison of long-time self-di↵usion coe�cient D (normalized by D0) of (a) spheres, (b)

octahedra, (c) cubes, and (d) tetrahedra as functions of volume fraction � from MPCD and LD

simulations. Experimental data is included in (a) and (c) from multiple sources. The experimental

values of D for the spheres88,89 were scaled by the Stokes–Einstein prediction for D0, while the ex-

perimental values of D for the cubes90 were scaled such that D/D0 = 1 for the lowest-concentration

point in that data set (� ⇡ 0).

corrections for the di↵usion coe�cients. Qualitatively, D/D0 had a similar dependence on

� both with and without HIs, with di↵erences for the tetrahedra being most pronounced

and di↵erences for the cubes being least pronounced. However, there were clear quantitative

di↵erences between the MPCD simulations with HIs and the LD simulations without HIs.

For all shapes, D/D0 was smaller for a given � (had a stronger � dependence) in the LD

simulations compared to the MPCD simulations. Taken together, these di↵erences support

the established picture that solvent-mediated HIs and excluded-volume interactions between

NPs that determine their fluid structure both play a role in determining the NP dynamics.

As an aside, we remark that the agreement between our MPCD simulations and

experiments88,89 significantly improved for the spherical NPs compared to our previous

study,46 which is likely due to the higher surface density of vertex particles used in this
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work. The accuracy of discrete particle models typically improves with increasing surface

density,91 and the surface density of vertex particles on the sphere was roughly four times

that of ref. 46. We note that Poblete et al. recommended an optimal surface density of

0.53/`2 for spheres in MPCD to balance discretization and inertia e↵ects,47 which lies be-

tween the value of 0.37/`2 used in ref. 46 and 1.43/`2 used here. The surface density of

vertex particles used for the other regular polyhedra was comparable to that of the spheres.

2. Spherocylinders

Having studied the self-di↵usion of these regular polyhedra, we next investigated the

long-time self-di↵usion of spherocylinders. Bolhuis and Frenkel numerically studied the

phase diagram of hard spherocylinders for a range of aspect ratios �.92 For �  2, the

spherocylinders exhibited only two phases—a low-density isotropic phase and a high-density

crystal phase—with the transition between these occurring at volume fraction 0.58 and 0.53

for � = 1 and 2, respectively. We therefore restricted our simulations to �  0.30, which

corresponds to �ex < 0.44 for our spherocylinders (vex/v = 1.45 and 1.41 for � = 1 and 2),

in order to focus our calculations on the isotropic phase. We confirmed this was the case

by computing a global nematic order parameter,93,94 finding it to be close to zero (0.02 and

0.03 for � = 1 and 2 when � = 0.30) as expected for an isotropic phase.

In the isotropic phase, the translational di↵usion of rod-like objects is the orientational

average of their parallel and normal components. The self-di↵usion coe�cient of rods in the

infinite dilution limit can be estimated as95

D0 =
kBT

3⇡⌘(�+ 1)d


ln(�+ 1) + 0.316 +

0.5825

(�+ 1)
+

0.050

(�+ 1)2

�
, (10)

where the last three terms in the parenthesis correct for end e↵ects.28,29,96 This equation

gives D0 = 2.94 ⇥ 10�3 `2/⌧ and 2.41 ⇥ 10�3 `2/⌧ for rods with � = 1 and 2 in our MPCD

solvent, respectively. Our simulated values D0 = 3.09⇥ 10�3 `2/⌧ and 2.57⇥ 10�3 `2/⌧ were

within 5% of eq. (10), showing the expected decrease of D0 with �. We also note that

eq. (10) underpredicts the di↵usivity of a sphere (� = 0) by about 5% compared to the

classical Stokes–Einstein relation.

The concentration dependence of D/D0 with � was similar for both spherocylinders

(Fig. 6). Indeed, D/D0 for the spherocylinders with � = 1 was nearly indistinguishable
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FIG. 6. (a) Long-time self-di↵usion coe�cient D for spherocylinders with aspect ratios � = 1 and

2 as functions of volume fraction �. The sphere data from Fig. 2 is included as a reference point

with � = 0. (b) D normalized by its value extrapolated to infinite dilution D0. The dashed curves

in (b) are D/D0 predicted from the fit of ref. 97.

from that for the spheres (� = 0). The longer spherocylinders with � = 2 showed some

systematic di↵erences, consistently having a slightly smaller value than for � = 1 at a given

�. This result indicates that even a small amount of anisotropy may begin to have an e↵ect

on the di↵usive dynamics, but the magnitude of this e↵ect seems to be small. We also

compared our simulation data to the parametric fit of ref. 97. Our simulations qualitatively

agreed with the prediction that D/D0 should be smaller for a larger � at a given �, but the

simulations consistently had smaller values of D/D0 than predicted. We note that ref. 97

used BD simulations that lacked HIs to develop this fit, so it is unclear to what extent we

should expect agreement to simulations with HIs.

B. Sedimentation

After investigating the long-time self-di↵usion coe�cients of our shape-anisotropic NPs,

we characterized their sedimentation coe�cients. This complementary dynamic property of

a suspension is important for understanding, e.g., how NPs settle under gravity. We defined

the sedimentation coe�cient K from the linear proportionality between the average velocity
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u of an NP under a su�ciently small applied force F,

u = K��1
0 F. (11)

To measure K in our simulations, we imposed a constant force F = fxx̂ on all NPs, where

x̂ is the unit vector in the x direction, and measured their average velocity ux = u · x̂.

The applied forces were fx = 0.5 kBT/` and 1.0 kBT/` per NP, which we distributed evenly

among all the vertex and central particles in each NP. A balancing force was applied to

the MPCD particles to ensure that the total force on the system was zero. We allowed the

system to reach a steady state under the imposed forces, performed a production run where

we measured ux, and extracted K from a linear regression of ux and fx.

As for di↵usion coe�cients, the sedimentation coe�cients from our MPCD simulations

must be corrected for finite-size e↵ects from periodic boundary conditions. The sedimenta-

tion coe�cient measured in an infinitely large box K1 is related to the one measured in a

finite box by98

K1 = K + ⇠S(0)
�0

6⇡⌘L
(12)

where S(0) is the static structure factor at zero wavevector. This structure factor is related

to the isothermal compressibility and so can be computed from an equation of state. Here,

we used the virial expansion of the pressure, which gives

S(0) =

 
1 +

X

n=2

nB̂n�
n�1
ex

!�1

(13)

where B̂n = Bn/vn�1 and Bn is the n-th virial coe�cient. We used �ex in eq. (13) be-

cause it should characterize the structure of the suspension better than � (see discussion

of Fig. 3). We used up to the 8th virial coe�cient for the regular polyhedra99 and up to

the 5th virial coe�cient for the spherocylinders.100,101 Like eq. (6), eq. (12) also includes the

suspension viscosity ⌘ so we made the same Stokes–Einstein-like approximation to eliminate

this dependency,

K1 ⇡ K + ⇠S(0)
D

D0

�0
6⇡⌘0L

. (14)

We used the finite-size-corrected D/D0 and computed �0 = kBT/D0 from the finite-size-

corrected D0. Note that eqs. (12) and (14) fix an error in eqs. (19) and (20) of ref. 46. All

sedimentation coe�cients are corrected in this way, but for notational simplicity, we will

refer to them as K in the remaining discussion.
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MPCD conserves linear momentum, so the sedimentation coe�cients calculated directly

from the simulation are in a frame of reference where the mass-averaged velocity of the NPs

and solvent is zero. However, it is a common practice to consider suspensions in the frame

of reference where the volume-averaged velocity is zero, i.e., hui = �u + (1 � �)u0 = 0

where u0 is the solvent velocity. Shifting from the mass-averaged to volume-averaged frame

of reference amounts to a rescaling of K, which we implemented as in our previous work.46

All values of K are presented in the frame of reference where the volume-averaged velocity

is zero.

The sedimentation coe�cients of the regular polyhedra [Fig. 7(a)] exhibited a qualita-

tively similar dependence on shape and concentration as the self-di↵usion coe�cients did.

We consistently found that the spheres had the largest K, the tetrahedra had the smallest

K, while the octahedra and cubes had an intermediate K. Moreover, all sedimentation coef-

ficients decreased with increasing concentration, as expected, with the tetrahedra having the

strongest concentration dependence. The sedimentation coe�cients of both spherocylinders

were highly similar to each other and to that of the sphere [Fig. 7(b)]. These behaviors are

qualitatively similar to the self-di↵usion coe�cients, so we will not repeat that discussion

here for brevity.

IV. CONCLUSIONS

We investigated the long-time self-di↵usion and sedimentation of NPs with anisotropic

shapes. The anisotropic shapes we studied were an octahedron, a cube, a tetrahedron,

and a spherocylinder. The NPs were represented with a discrete particle model and were

hydrodynamically coupled to each other using the multiparticle collision dynamics method.

Simulations were conducted across a range of volume fractions for each shape where the

NPs remained in a fluid/isotropic phase. Our modeling approach can be easily extended to

explore the dynamics of other NP shapes, e.g., irregular polyhedra and non-convex shapes.102

For regular polyhedra having equal edge lengths, shape had a clear influence on their

transport properties. Octahedra and cubes were slower di↵using than spheres with diameter

equal to their edge length for all investigated volume fractions [Fig. 2(a)]. Tetrahedra di↵used

the fastest at small volume fractions but the slowest at larger volume fractions, which we

partially attributed to the formation of pentagonal dipyramids. The simulated self-di↵usion
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FIG. 7. Sedimentation coe�cient K of (a) spheres, octahedra, cubes, and tetrahedra and (b)

spherocylinders as a function of volume fraction �. The frame of reference used to define K is the

one where the volume-averaged velocity is zero.

coe�cients of all investigated NP shapes at infinite dilution were in good agreement with a

correlation based on sphericity and also with an approximation using the mean diameter of

the spheres that inscribed and circumscribed the shapes. After accounting for di↵erences due

to shape at infinite dilution [Fig. 2(b)], the self-di↵usion coe�cient of the spheres showed the

weakest volume-fraction dependence, that of the tetrahedra showed the strongest volume-

fraction dependence, while the octahedra and cubes showed intermediate behavior. Similar

trends were found for the dependence of the sedimentation coe�cients on volume fraction

[Fig. 7(a)].

For small-aspect-ratio spherocylinders (� = 1 and 2), the di↵usion coe�cients at infinite

dilution showed a dependence on aspect ratio that was consistent with theoretical expec-

tation, meaning that the spherocylinders di↵used more slowly as aspect ratio increased

[Fig. 6(a)]. However, after accounting for shape e↵ects at infinite dilution, the self-di↵usion

coe�cient [Fig. 6(b)] had a volume-fraction dependence that closely followed that of spheres

having diameter equal to the spherocylinders, with only minor di↵erences for the sphero-

cylinder with � = 2. The sedimentation coe�cient [Fig. 7(b)] had essentially the same

volume-fraction dependence for the spheres and both spherocylinders. We expect that the
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dynamics of spherocylinders should deviate more significantly from spheres as � increases,

and in principle, we can expand our spherocylinder model to study this regime. However, do-

ing so incurs higher computational cost due to a substantial increase in the number of vertex

particles per spherocylinder. Further, we would need larger simulation boxes to accommo-

date these spherocylinders and gather good statistics, thereby also increasing the number

of solvent particles required. To mitigate these computational challenges, an alternative

approach is to represent the spherocylinders as linear rods comprised of partially overlap-

ping particles.103 However, establishing a connection between this model, our spherocylinder

model, and experiments is still an open question, which we plan to explore.
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