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I. INTRODUCTION

The dynamics of nanoparticles (NPs) in suspensions play an important role in numerous
applications, ranging from cellular transport! to the fabrication of functional nanomaterials.?
For example, therapeutic agents can be encapsulated inside or attached to NPs for targeted
drug delivery, and differences in NP dynamics in the body can affect their uptake and
efficacy.>® Many factors impact the motion of NPs, including their size, interactions with
each other, and interactions with their surroundings.® This work focuses specifically on the
effect of shape, which has emerged as an important factor for modulating the properties
and function of NPs in many practical applications.”® For example, shape-anisotropic iron-
oxide-based magnetic NPs were shown to enhance contrast for magnetic resonance imaging
compared to spherical NPs,® while quantum rods were shown to have enhanced diffusion
compared to quantum dots in confined networks.? Given that NPs with a variety of shapes
can be readily synthesized!®'? and that many naturally occurring NPs (e.g., the rod-like
tobacco mosaic virus'®* and gibbsite platelets!) also exhibit pronounced shape anisotropy,
it is important to develop a fundamental understanding of the relationship between shape
and transport properties, such as diffusion coefficients, in order to engineer NPs for practical

applications.

Experimentally characterizing how NP dynamics depend on shape and concentration can
be challenging. For example, dynamic light scattering is a common technique for measuring
NP diffusion from fluctuations in scattered light intensity.!® However, knowledge about the
distribution of NP sizes and/or shapes is needed to extract the diffusion coefficient from

the raw measurement data,'™!®

and it is difficult to perform this analysis for non-dilute
solutions.’® Camera-based tracking of tagged NPs is an alternative approach that allows
for the direct measurement of the NP diffusion coefficient,”?? but this method has limited
spatial and temporal resolution.?’ NP properties may also be affected if labeling agents, such
as fluorescent markers, are used.?! Further, it can be difficult to prepare NP suspensions with

sufficiently low polydispersity and at high enough concentrations to accurately assess how

the diffusion coefficient varies with both NP characteristics and concentration.

As a result, theory and simulations have proven to be useful approaches for studying
the dynamics of NP suspensions. Early theories predominantly focused on spherical NPs,

for which the single-particle translational and rotational diffusion coefficients can be calcu-



lated using the classical Stokes—Einstein and Stokes—Einstein—Debye relations, respectively.
Theoretical predictions for the first-order concentration dependence of the long-time self-
diffusion coefficient for suspensions of spherical NPs have also been derived.?>?® Beyond
spherical NPs, pioneering works by Kuhn, Kirkwood, and others have led to estimates for
the single-particle translational and rotational diffusion coefficients of rod-like particles.?* 2
At finite concentration, the diffusive motion of the rods becomes more complex but can
be split qualitatively into three regimes: at dilute concentrations, rods have essentially un-
restricted motion in all directions; at semi-dilute concentrations, their motion is slightly
hindered perpendicular to the long axis of the rod; and at high concentrations, the per-
pendicular diffusive motion is entirely suppressed.®® However, predicting the dynamics of
rod-like NPs with quantitative accuracy still remains challenging because their anisotropic
shape can lead to complex flow patterns around individual NPs and to non-trivial collective
behavior such as nematic or smectic ordering. For more complicated NP shapes than rods,
predicting even single-particle diffusion coefficients becomes challenging, and numerical ap-

31,32 Tn general, fully analytic descriptions of NP dynamics in

proaches are often required.
suspensions are challenging to construct due to the many-body hydrodynamic interactions

(HIs) between NPs that are mediated by the solvent.

Computer simulations are highly useful tools for numerically investigating NP dynam-
ics in suspensions. The main challenge is to construct models that capture the relevant
physics while remaining computationally tractable. Explicitly resolving both the NPs and
the solvent molecules they are suspended in using, e.g., classical molecular dynamics (MD)
approaches, quickly becomes infeasible because NPs are typically much larger than sol-
vent molecules. However, given the corresponding separation of time scales between the
solvent dynamics and NP dynamics, it is often possible to overcome this difficulty using
coarse-grained models having simplified or implicit treatments of the solvent.?® For exam-
ple, Brownian dynamics (BD) is a well-known implicit-solvent technique that accounts for
solvent-induced drag and fluctuating forces on the NPs** but which neglects HIs between
the NPs in its most basic form. HIs can be introduced to BD through appropriate mo-

35 such as the pairwise far-field Rotne-Prager—Yamakawa tensor for spherical

bility tensors,
particles.3%37 Stokesian dynamics, a gold-standard approach for simulating colloidal suspen-
sions, additionally accounts for short-range lubrication forces between NPs within the BD

framework.®3° However, BD approaches that include HIs are often still computationally



demanding to implement and require expressions for the mobility tensor, which may be

difficult to obtain for complex NP shapes.

To circumvent issues determining inputs needed for a fully implicit treatment of the
solvent, several mesoscale simulation methods, including multiparticle collision dynamics
(MPCD),?34941 dissipative particle dynamics,***® and the lattice Boltzmann method,445
use simplified particle-based solvent models that are less demanding to simulate than an
atomistic model but still have properties resembling that of real solvents. In this work,
we will use MPCD because we have recently shown that MPCD can reasonably reproduce
expected results for the long-time self-diffusion coefficient and sedimentation coefficient for
suspensions of spherical NPs over a range of NP concentrations,*® and the same approach
used to model the spherical NPs can be extended to NPs with other shapes. In MPCD,
NPs are modeled as conventional MD particles that can be coupled to the solvent through
different schemes to ensure HIs develop.“6®? The current state-of-the-art coupling scheme,
first proposed by Poblete et al., uses a discrete particle model that represents an NP as a
mesh of “vertex” particles interconnected via elastic springs.*” The solvent particles interact
with the NPs only through stochastic collisions that are straightforward to compute. We
used a discrete particle model to study the long-time self-diffusion of cubes,* and similar
models have been used to simulate the self-assembly of colloids with shape and/or interaction
anisotropy.®®°® However, we are unaware of a systematic study using MPCD to character-
ize the long-time self-diffusion coefficients and sedimentation coefficients for suspensions of

shape-anisotropic NPs at varying concentrations.

In this work, we use MPCD with a discrete particle model to study the long-time self-
diffusion and sedimentation coefficients of octahedra, cubes, tetrahedra, and spherocylinders
as a function of NP concentration. We investigate the effect of shape by comparing the results
for the different NP shapes with each other and with spheres. We also assess the influence of
solvent-mediated HIs by comparing the MPCD simulations with implicit-solvent Langevin

dynamics simulations.



II. MODELS

A. Multiparticle collision dynamics

In MPCD, the solvent consists of point particles that are propagated in alternating
streaming and collision steps that occur at a regular time interval At. During the streaming

step, the solvent particles move according to Newton’s equations of motion,
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where r; is the position, v; is the velocity, and m; is the mass of particle ¢, while F; is the
force acting on particle i. All solvent particles have the same mass m. Unlike standard
MD particles, MPCD particles do not interact with each other by pairwise forces, but each
particle may be acted on by a body force. For a constant F;, eq. (1) can be integrated
analytically to give the standard equations of ballistic motion.

In the collision step, the solvent particles are sorted into cubic cells of edge length ¢,
then exchange momentum with particles in the same cell according to a collision scheme.
Here, we use the stochastic rotation dynamics (SRD) scheme without angular momentum

conservation.?®*! SRD updates the velocity of particle 7 in cell j according to:
V; <4y —+ Qj . (Vi — Uj), (2)

where u; is the mass-averaged velocity of the particles in cell j and €2; is the rotation matrix
for cell j. The matrix €2; rotates about an axis randomly selected for cell j by a fixed angle
a. At each collision step, the collision cells are shifted along each Cartesian direction by a
random amount drawn uniformly from [—¢/2,+¢/2] to ensure Galilean invariance,”®®" and
a cell-level Maxwellian thermostat is used to maintain a constant temperature 7%

The natural units for MPCD simulations are the length ¢ of the collision cells, the mass m
of the solvent particles, and the thermal energy kg7, where kg is the Boltzmann constant.
The corresponding unit of time is 7 = \/W, where 5 = 1/(kgT). We adopted the
standard SRD parameters At = 0.17, a = 130°, and average solvent number density 5 ¢~3,

which give a liquid-like Newtonian fluid with dynamic viscosity 7y = 3.95 kgT'T/¢3.52
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B. Discrete particle model

A discrete particle model was used to represent the NPs and couple them to the
solvent.*64” The NP shapes we modeled were a sphere, an octahedron, a cube, a tetra-
hedron, and two spherocylinders with different aspect ratios (Fig. 1). Each NP consisted of
N, vertex particles on the surface of the shape, and each vertex particle had mass 5m. The

vertex particles were bonded to their nearest neighbors with a harmonic potential,

ky

Bun(r) = 2 = 1) ®)

where r is the distance between two particles, 7, is the distance required for the bond by
the shape, and £y, is the spring constant. To ensure that the NPs maintained their shapes,
the vertex particles were also bonded to either an additional particle in the center of the NP
(sphere, octahedron, cube, & tetrahedron) or their diametrically opposed vertex particle
(spherocylinders). Excluded-volume interactions between NPs were modeled by applying

the Weeks—Chandler-Andersen repulsive potential®® between vertex particles

12 6
()= (5)] + 1 r=2
r r )

0, otherwise

Bu(r) = (4)
All vertex particles (but not the central particle) were coupled to the MPCD solvent through
the collision step eq. (2).%7 Between collision steps, the central and vertex particles moved
according to eq. (1). Based on our prior work,%6 we used k;, = 5000 £~2 to make stiff bonds
and 0 = ¢, and we integrated eq. (1) using the velocity Verlet algorithm with time step
0.0057. We visually confirmed that all NPs maintained a nearly rigid shape and that no
NPs penetrated each other for the vertex-particle configurations chosen as described next.
Sphere.—We modeled a sphere having diameter d = 6 ¢ [Fig. 1(a)] as a reference point.
To create the vertex particles, we subdivided the triangular faces of a regular icosahedron
twice and scaled the positions of all vertices to lie on the surface of the sphere. This process
resulted in N, = 162 vertex particles with a typical nearest-neighbor distance between 0.83 ¢
and 0.97/¢. Note that this model differs from the one we used in ref. 46 in two ways: (1)
the number of vertex particles is larger and (2) the excluded volume is handled through the
vertex particles rather than through the central particle. These choices were made in this
work so that the spheres would have a comparable surface density of vertex particles and

the same style of excluded-volume interactions as the anisotropic NPs we studied.



FIG. 1. Discrete particle model for (a) sphere, (b) octahedron, (¢) cube, (d) tetrahedron and (e)
two spherocylinders (aspect ratios A = 1 and 2). The N, vertex particles are shown in orange, and
the bonds to their nearest neighbors are shown in blue. To improve the clarity of these renderings,
the size of the vertex particles has been decreased, and central particles and additional bonds used
to maintain the shape have been omitted. These snapshots were rendered using Visual Molecular

Dynamics (version 1.9.3).64

Octahedron and tetrahedron.—We modeled a regular octahedron and a regular tetrahe-
dron both having edge length a = 6¢ [Figs. 1(b) and 1(d)]. Because the faces of these
polyhedra are equilateral triangles, we first created a three-dimensional triangulated model
of each shape using computer-aided design software, then subdivided the faces 3 times to
create a triangular mesh of vertex particles. This process resulted in 9 vertex particles per
edge and distance a/8 = 0.75 ¢ between all nearest-neighbor vertex particles for both shapes.
The total number of vertex particles was N, = 258 for the octahedron and N, = 130 for the
tetrahedron.

Cube.—We modeled a cube with edge length a = 6 ¢ [Fig. 1(c)] using a square mesh with
8 vertex particles per edge. The total number of vertex particles was N, = 296, and the
distance between nearest-neighbor vertex particles was a/7 & 0.86 £. This is the same vertex
particle configuration as in ref. 46, and the description here corrects a typographical error
for the number of vertex particles per edge. Unlike in ref. 46, though, a central particle was
used to maintain rigidity to keep consistency with the sphere, octahedron, and tetrahedron.

Spherocylinder—We modeled two types of spherocylinders: both had two hemispheres
with diameter d = 6 ¢, but one had a cylinder of length h = 6 ¢ while the other cylinder had
the length h = 12¢ [Fig. 1(e)]. Thus, the spherocylinders had aspect ratios A = d/h = 1
and 2, respectively. This degree of anisotropy is much smaller than that of many rod-

65,66

like particles, such as those of biological origin like the fd virus and tobacco mosaic

virus,!® that is often in the range A > 10. Nanorods with smaller aspect ratios can be
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synthesized,®” % but we found surprisingly little data on their transport coefficients. Hence,
we chose to study spherocylinders with these smaller aspect ratios to begin to bridge the
knowledge gap between spheres and long rod-like NPs. Discrete particle models for the
spherocylinders were constructed through a multi-step process: First, a mesh of vertex
particles for the hemispheres was created by slicing our discrete sphere model in half along
a plane that exposed 20 evenly spaced vertex particles around its circumference and had
91 vertex particles in total. Then, vertex particles for the cylinder were generated from the
ring of 20 exposed vertex particles by translating the ring by 0.75¢ and rotating it around
the axis of the cylinder by 9° to stagger the particles on consecutive rings. This process
was repeated until the entire cylinder surface was covered with vertex particles. The total
number of vertex particles per spherocylinder was N, = 322 for A = 1 and N, = 482 for
A = 2, with the nearest-neighbor distance between vertex particles ranging from 0.83 /¢ to

0.97¢.

C. Simulation details

We performed bulk simulations containing N NPs in a cubic simulation box with edge
length L = 120 ¢ and periodic boundary conditions. We simulated a range of nominal NP
volume fractions ¢ = Nv/L3, where v is the nominal volume of each NP (Table I), by varying
N. We created equilibrated configurations of NPs at the different volume fractions using
Langevin dynamics (LD) simulations. LD simulations are faster to perform than MPCD
simulations because they do not include HI, and we also chose the friction coefficient for
the LD simulations to give faster NP dynamics than in the MPCD simulations in order
to accelerate equilibration. Starting from these configurations, we measured the long-time
self-diffusion coefficient as a function of ¢ using equilibrium simulations (Section IIT A) and
the sedimentation coefficient as a function of ¢ using nonequilibrium simulations (Section
[TIB). All simulations were conducted using HOOMD-blue™ ™ (version 2.9.7) extended with
azplugins™ (version 0.12.0).

For the spheres and regular polyhedra, we performed one equilibrium simulation of length
2 x 10° 7 and recorded the position of all central particles every 107. We performed one
nonequilibrium simulation consisting of a warmup period of 0.5 x 10° 7 to reach steady state

followed by a production period of length 1.5x10° 7 in which we recorded the average velocity



of the NPs every 0.1057 and the average velocity of the solvent every 0.1 7. The different
sampling frequencies for the NPs and solvent were chosen to account for acceleration of the
NPs between solvent collisions.*® To estimate error bars, we subdivided these trajectories
into three blocks and computed the standard error between blocks.

For the spherocylinders, we performed eight equilibrium simulations of length 10° 7 and
recorded the position of enough vertex particles to reconstruct the center of mass of each
NP every 2.57. We performed three nonequilibrium simulations consisting of a 0.5 x 10° 7
warmup period and 1 x 10° 7 production period with the velocities sampled in the same way
as for the other shapes. Error bars were estimated as the standard error of the independent

simulations.

IIT. RESULTS AND DISCUSSION
A. Long-time self-diffusion coefficient

We computed the long-time self-diffusion coefficient D of the NPs from the time derivative
of the average mean squared displacement (Ar?) of each NP3

2
D — fim LHA)
t—o0 6 dt

()

To improve statistics, we averaged (Ar?) over NPs and time origins, and we extracted D
from the time average of the long-time plateau of d(Ar?)/dt, which we fit in the time range
1047 < t < 2 x 10* 7 for the spheres and regular polyhedra and in the range 3 x 10* 7 <
t < 5 x 10* 7 for the spherocylinders. Note that in defining D in this way, the long-time
self-diffusion coefficient is a scalar quantity. For anisotropic NPs, the short-time motion is
characterized by a diffusion tensor; this tensor is isotropic for the regular polyhedra we have
studied,”™ but it is anisotropic for the spherocylinders.” Hence, D reported in this work
implies an orientational average at long times for the spherocylinders.

Due to the long-ranged nature of solvent-mediated Hls, self-diffusion coefficients mea-
sured in simulations with periodic boundary conditions can suffer from noticeable finite-size
effects.” " For a cubic simulation box such as ours, the self-diffusion coefficient in an in-
finitely large box D is related to D in a finite box with edge length L by 7"

kT

D> =D —_— 6
+£6mL, (6)



where £ &~ 2.837297 and 7 is the suspension viscosity. Applying eq. (6) can be challenging
in practice because it requires knowledge of 1, which depends on the shape and volume
fraction of the NPs. Analytic expressions for 1 exist for some NP shapes,”®"™ but they are
typically only valid for small NP volume fractions;* hence, additional costly simulations are
usually needed to accurately determine 7. To avoid this step, we approximated n with a
Stokes—Einstein-like proportionality, /my = Do/D>,*™ where Dy = kgT' /7y is the long-
time self-diffusion coefficient at infinite dilution (i.e., the single-particle limit) and ~y is the
corresponding hydrodynamic friction coefficient for the NP (again, orientationally averaged
for the spherocylinders). Substituting for 7 in eq. (6) and solving for D yields

-1
Y0
D®¥~D|1—- . 7

( 567T770L> @)

We previously tested this approximate correction by computing D for spherical NPs in
different box sizes L and confirming that D> was independent of L within our measurement
accuracy.6

To apply eq. (7), 7o must be determined for each NP shape. Experimental correlations®!
for vy exist [e.g., eq. (9) below|; however, it is not guaranteed that the MPCD simulations
are consistent with these. Instead, we noted that all diffusivities are corrected by the same
factor in eq. (7) regardless of ¢ and that eq. (6) can be used directly when ¢ is sufficiently
small that n &~ 7. Accordingly, we linearly extrapolated our measured D to ¢ = 0, using
the data from the smallest two values of ¢ that we simulated, to obtain a measured Dy with
finite-size effects. We then applied eq. (6) with n = 1y to calculate D° from D, and used
the ratio D°/Dy as the finite-size correction factor for all D. In the rest of the paper, all

diffusion coefficients have been corrected for finite-size effects in this way, but we will still

refer to them as D and Dy for notational simplicity.

1. Regular polyhedra

We first investigated the shape-dependence of the long-time self-diffusion coefficient ex-
trapolated to infinite dilution Dy for the regular polyhedra we simulated (octahedron, cube,
and tetrahedron). Pettyjohn and Christiansen experimentally measured the settling rates of
particles with these shapes at low Reynolds number.”® They found that the settling rate
could be correlated with particle shape using the sphericity v, defined as the ratio of the
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TABLE I. Geometric properties of the regular polyhedra investigated. General formulae are given
in terms of the edge length a, with the specific value for a = 6/ (the edge length for all our
polyhedral NPs) quoted in parentheses. The properties are the volume v, surface area A, sphericity
1, inscribed-sphere diameter di, circumscribed-sphere diameter dc, and mean of inscribed-sphere

and circumscribed-sphere diameters d.

v (@) A (B | Y | d ()] de (9 d (£)
V2 2 V2+1V3
octahedron ?a}” (101.8)[2v/3a? (124.7)(0.846 \/ga (4.9)| vV2a (8.5) 7 a (6.7)
cube a® (216.0)| 6a® (216.0){0.806| a (6.0)| v3a (10.4) 1+2\/§a (8.2)
ad a 3 2
tetrahedron NG (25.5) | V/3a? (62.4) [0.671 7 (2.4) \/;a (7.3) \[))a (4.9)

surface area of a sphere having the same volume as the shape to the actual surface area A
of the shape,

1/3(60)2/3
p= O ()

The sphericities of our regular polyhedra are listed in Table I. Using the correlation for the

settling velocity from ref. 81, a correlation for the hydrodynamic friction coefficient vy is

o\ /3 . 1
= — 8431 — :
Yo = 3mno ( - ) [0 843 logy (0.065)} (9)

Note that the first term in parentheses is the diameter of an equivalent-volume sphere to
the shape, so eq. (9) gives 79 = 3mnod for a sphere with diameter d as expected.

Based on eq. (9), a cube should diffuse more slowly than an octahedron, while an octa-
hedron should diffuse more slowly than a tetrahedron when all have the same edge length
a; a sphere with diameter d = a is predicted to have Dy between that of the octahedron and
the tetrahedron (Table II). Indeed, our simulation results for Dy were qualitatively consis-
tent with these predictions. Quantitatively, Dy from the cube simulations was in excellent
agreement with the value predicted using eq. (9), but Dy from the octahedron and tetrahe-
dron simulations was 9% and 18% smaller, respectively. We calculated a similar deviation
between the measured and predicted Dy for tetrahedra in recent experiments by Hoffmann
and coworkers, who fabricated tetrahedral clusters from four spherical polystyrene NPs
with diameter 154 nm; they measured a self-diffusion coefficient of Dy = 1.72 x 1072 m? /s

in water,®®3 which is 22% smaller than the predicted value of Dy = 2.2 x 1072 m? /s when
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TABLE II. Diffusion coefficient at infinite dilution Dy for the sphere and regular polyhedra calcu-
lated from our simulations, using eq. (9), and using the Stokes—Einstein relationship for a sphere
with mean diameter d given in Table I. All are in units of 1073 ¢2/7.

simulation using eq. (9) using d

sphere 4.32 4.48
octahedron 3.95 4.36 4.01
cube 3.31 3.33 3.28
tetrahedron  5.14 6.29 5.48

using an edge length of ¢ = 308 nm in eq. (9). These clusters are, however, not true tetra-
hedra so it is unclear whether this deviation from eq. (9) should be expected in the MPCD

simulations too.

We and others previously found that Dy for a cube can also be reasonably well-
approximated by Dy for a sphere with diameter d = (d; + d¢)/2, the arithmetic mean
of the diameters dy and d¢ of the spheres that inscribe and circumscribe it, respectively.346
We carried out the same calculation for the octahedron and tetrahedron, and we again found
good agreement with our simulations (Table IT). Thus, using d seems to provide a quick

and reasonable estimate of Dy for regular polyhedra as an alternative to eq. (9).

We next investigated the volume-fraction dependence of D [Fig. 2(a)]. Given that the dif-
ferent NP shapes had different Dy, we report D /Dy to facilitate comparison between shapes
[Fig. 2(b)]. The tetrahedra exhibited the strongest dependence on ¢, the spheres exhibited
the weakest dependence on ¢, while both the cubes and octahedra exhibited a similar de-
pendence on ¢ that was intermediate between the spheres and tetrahedra. In general, we
expected D to decrease when ¢ increased because increased interactions between NPs usu-
ally slow their motion. At low NP volume fractions, long-ranged solvent-mediated HIs are
important because short-ranged interactions are infrequent. Differences in the dependence
of D/Dy on ¢ seen in Fig. 2 when ¢ is small are then likely caused by differences in Hls

between shapes.

At higher NP volume fractions, direct interactions between NPs become more frequent
and significant, particularly those due to excluded-volume between NPs. Indeed, we expect

that eventually D/Dy — 0 when the NPs reach a freezing or jamming transition that

12



D (107342 /7)
/// O

[ —e—sphere
| —8—octahedron
| —=—cube

tetrahedron

0.0 0.1 0.2

FIG. 2. (a) Long-time self-diffusion coefficient D of spheres, octahedra, cubes, and tetrahedra as
a function of nominal volume fraction ¢. (b) D normalized by its value linearly extrapolated to

infinite dilution Dj.

essentially traps each NP in a local cage of surrounding NPs. Based on ¢, the regular
polyhedra we simulated were all expected to be fluids even at our largest concentration
(¢ = 0.20).3%7 However, we noted that the actual excluded volume v, of the NPs (and
hence excluded-volume fraction ¢ey) differs from the nominal volume v (and nominal volume
fraction ¢) because the vertex particles in our discrete model have a finite size. For example,
the vertex particles on the surface of the cube [Fig. 1(c)] protrude roughly /2, so the edge
length of the volume excluded by the cube is roughly ¢ longer than the nominal edge length.
In general, we define the excluded volume as that of the regular polyhedron that contains
the spheres with diameter o on the surface of the nominal regular polyhedron. Geometric
considerations give the edge length ae, of our excluded-volume regular polyhedron as a., =
a(1+0/d;). The ratio of the excluded volume to nominal volume is then ve, /v & (1+0/dp)?
and ¢y is proportionally larger than ¢ by the same factor. This larger excluded size a.y is

evident in the radial distribution function g(r) (Fig. 3) for all shapes.

We attempted to assess the effect of this difference in nominal and excluded volume
using the spherical NPs. We performed additional simulations where we implemented

the excluded-volume interaction between spheres through a core-shifted Weeks—Chandler—
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FIG. 3. Radial distribution function for (a) spheres, (b) octahedra, (c) cubes, and (d) tetrahedra at
different nominal volume fractions ¢. The arrows in (d) denote signature peaks for the transition

to pentagonal dipyramids at 0.55aex and 0.75aey.548?

Andersen potential between only their central particles, like in ref. 46. As expected, we found
that there was less structuring in the fluid, measured through g(r), at a given nominal volume
fraction ¢ due to the smaller excluded volume of each sphere [Fig. 4(a)]. However, we found
little difference in the diffusivity over the range of volume fractions investigated [Fig. 4(b)].
Moreover, the simulation data of D/D, agreed well with experimental data when plotted
using ¢. We observed similar agreement between MPCD simulations and experiments for
cubes using the nominal volume fraction ¢ in our prior work?® [see also Fig. 5(c)]. Hence,
at least over the range of volume fractions considered for the spheres, the nominal volume

fraction ¢ seems to be a good description of the concentration.

We note, though, that structural effects caused by differences in nominal and excluded
volume may still become significant at sufficiently high excluded volume fractions, particu-

larly if a phase transition is approached. The tetrahedron, which has the largest ve, /v ratio
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FIG. 4. (a) Radial distribution functions for spheres with excluded volume handled through either
vertex particles (solid lines) or a central particle (dashed lines). (b) Long-time self-diffusion coef-

ficient D (normalized by Dy) for the same systems compared with experimental data.5%8

of our regular polyhedra, is an excellent example of this point. Previous simulations of hard
tetrahedra®*®® revealed a transition to a fluid consisting of pentagonal dipyramids when the
volume fraction was 0.47. That study found that g(r) showed a distinct signature of this
transition: at low volume fractions where dipyramids did not form, g(r) had its first peak at
r = 0.75 a; whereas, at higher volume fractions where dipyramids formed, this original peak
disappeared, and the first peak shifted to a much smaller distance r = 0.55a. Our largest
nominal volume fraction ¢ = 0.20 is well below the reported transition to dipyramids, but
if we instead consider the excluded volume fraction (¢ex = 0.56), then the system should
have surpassed this transition. When we computed g(r) for the tetrahedra [Fig. 3(d)], we
observed these signature peaks emerging at the reported r if a., was used rather than a.
Thus, the tetrahedra appear to undergo a transition to dipyramids that is not expected us-
ing only ¢. The more dramatic slowing down of the tetrahedra dynamics with ¢ compared

to the other shapes could be partially due to this transition.

Finally, we assessed the influence of HIs between the NPs on their long-time self-diffusion
by performing complementary LD simulations that do not have these interactions (Fig. 5).

Due to the lack of long-ranged solvent-mediated HIs, we did not perform any finite-size
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FIG. 5. Comparison of long-time self-diffusion coefficient D (normalized by Dy) of (a) spheres, (b)
octahedra, (c) cubes, and (d) tetrahedra as functions of volume fraction ¢ from MPCD and LD
simulations. Experimental data is included in (a) and (c) from multiple sources. The experimental

values of D for the spheres8®8?

were scaled by the Stokes—Einstein prediction for Dg, while the ex-
perimental values of D for the cubes? were scaled such that D/Dg = 1 for the lowest-concentration

point in that data set (¢ ~ 0).

corrections for the diffusion coefficients. Qualitatively, D /Dy had a similar dependence on
¢ both with and without HIs, with differences for the tetrahedra being most pronounced
and differences for the cubes being least pronounced. However, there were clear quantitative
differences between the MPCD simulations with HIs and the LD simulations without HlIs.
For all shapes, D/Dy was smaller for a given ¢ (had a stronger ¢ dependence) in the LD
simulations compared to the MPCD simulations. Taken together, these differences support
the established picture that solvent-mediated HIs and excluded-volume interactions between

NPs that determine their fluid structure both play a role in determining the NP dynamics.

As an aside, we remark that the agreement between our MPCD simulations and

88,89

experiments significantly improved for the spherical NPs compared to our previous

study,*® which is likely due to the higher surface density of vertex particles used in this
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work. The accuracy of discrete particle models typically improves with increasing surface
density,”! and the surface density of vertex particles on the sphere was roughly four times
that of ref. 46. We note that Poblete et al. recommended an optimal surface density of
0.53/¢2 for spheres in MPCD to balance discretization and inertia effects,*” which lies be-
tween the value of 0.37/¢% used in ref. 46 and 1.43/¢? used here. The surface density of

vertex particles used for the other regular polyhedra was comparable to that of the spheres.

2. Spherocylinders

Having studied the self-diffusion of these regular polyhedra, we next investigated the
long-time self-diffusion of spherocylinders. Bolhuis and Frenkel numerically studied the
phase diagram of hard spherocylinders for a range of aspect ratios A\.°2 For A < 2, the
spherocylinders exhibited only two phases—a low-density isotropic phase and a high-density
crystal phase—with the transition between these occurring at volume fraction 0.58 and 0.53
for A = 1 and 2, respectively. We therefore restricted our simulations to ¢ < 0.30, which
corresponds to ¢ < 0.44 for our spherocylinders (vex/v = 1.45 and 1.41 for A = 1 and 2),
in order to focus our calculations on the isotropic phase. We confirmed this was the case
by computing a global nematic order parameter,®%* finding it to be close to zero (0.02 and
0.03 for A =1 and 2 when ¢ = 0.30) as expected for an isotropic phase.

In the isotropic phase, the translational diffusion of rod-like objects is the orientational
average of their parallel and normal components. The self-diffusion coefficient of rods in the
infinite dilution limit can be estimated as”

kT 05825  0.050
=———|In(A+1 0.316
Srn(h 4 1yd [MAH D H08I6+ FEE |

(10)

0

where the last three terms in the parenthesis correct for end effects.?®2%% This equation
gives Dy = 2.94 x 1072 ¢*/7 and 2.41 x 1072 ¢?/7 for rods with A = 1 and 2 in our MPCD
solvent, respectively. Our simulated values Dy = 3.09 x 1072 ¢?/7 and 2.57 x 1073 ¢* /7 were
within 5% of eq. (10), showing the expected decrease of Dy with A. We also note that
eq. (10) underpredicts the diffusivity of a sphere (A = 0) by about 5% compared to the
classical Stokes—Einstein relation.

The concentration dependence of D/Dy with ¢ was similar for both spherocylinders

(Fig. 6). Indeed, D/Dq for the spherocylinders with A = 1 was nearly indistinguishable
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FIG. 6. (a) Long-time self-diffusion coefficient D for spherocylinders with aspect ratios A = 1 and
2 as functions of volume fraction ¢. The sphere data from Fig. 2 is included as a reference point
with A = 0. (b) D normalized by its value extrapolated to infinite dilution Dy. The dashed curves
in (b) are D/Dy predicted from the fit of ref. 97.

from that for the spheres (A = 0). The longer spherocylinders with A = 2 showed some
systematic differences, consistently having a slightly smaller value than for A = 1 at a given
¢. This result indicates that even a small amount of anisotropy may begin to have an effect
on the diffusive dynamics, but the magnitude of this effect seems to be small. We also
compared our simulation data to the parametric fit of ref. 97. Our simulations qualitatively
agreed with the prediction that D /Dy should be smaller for a larger A at a given ¢, but the
simulations consistently had smaller values of D/D, than predicted. We note that ref. 97
used BD simulations that lacked HIs to develop this fit, so it is unclear to what extent we

should expect agreement to simulations with HIs.

B. Sedimentation

After investigating the long-time self-diffusion coefficients of our shape-anisotropic NPs,
we characterized their sedimentation coefficients. This complementary dynamic property of
a suspension is important for understanding, e.g., how NPs settle under gravity. We defined

the sedimentation coefficient K from the linear proportionality between the average velocity
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u of an NP under a sufficiently small applied force F,
u= Ky, 'F. (11)

To measure K in our simulations, we imposed a constant force F = f,x on all NPs, where
X is the unit vector in the x direction, and measured their average velocity u, = u - X.
The applied forces were f, = 0.5kgT /¢ and 1.0 kgT'/¢ per NP, which we distributed evenly
among all the vertex and central particles in each NP. A balancing force was applied to
the MPCD particles to ensure that the total force on the system was zero. We allowed the
system to reach a steady state under the imposed forces, performed a production run where
we measured u,, and extracted K from a linear regression of u, and f,.

As for diffusion coefficients, the sedimentation coefficients from our MPCD simulations
must be corrected for finite-size effects from periodic boundary conditions. The sedimenta-
tion coefficient measured in an infinitely large box K is related to the one measured in a
finite box by”®

K* =K+ 55(0)6;;L (12)

where S(0) is the static structure factor at zero wavevector. This structure factor is related

to the isothermal compressibility and so can be computed from an equation of state. Here,

we used the virial expansion of the pressure, which gives

S(0) = (1 +) an¢g;1> (13)

where B, = B, Jv" ! and B, is the n-th virial coefficient. We used ¢, in eq. (13) be-
cause it should characterize the structure of the suspension better than ¢ (see discussion
of Fig. 3). We used up to the 8th virial coefficient for the regular polyhedra® and up to
the 5th virial coefficient for the spherocylinders.!%%1%! Tike eq. (6), eq. (12) also includes the
suspension viscosity n so we made the same Stokes—FEinstein-like approximation to eliminate
this dependency,

D

K™~ K +£5(0) T~

We used the finite-size-corrected D /Dy and computed 79 = kgT'/Dy from the finite-size-
corrected Dy. Note that egs. (12) and (14) fix an error in egs. (19) and (20) of ref. 46. All

(14)

sedimentation coefficients are corrected in this way, but for notational simplicity, we will

refer to them as K in the remaining discussion.

19



MPCD conserves linear momentum, so the sedimentation coefficients calculated directly
from the simulation are in a frame of reference where the mass-averaged velocity of the NPs
and solvent is zero. However, it is a common practice to consider suspensions in the frame
of reference where the volume-averaged velocity is zero, i.e., (u) = ¢u+ (1 — ¢)up = 0
where ug is the solvent velocity. Shifting from the mass-averaged to volume-averaged frame
of reference amounts to a rescaling of K, which we implemented as in our previous work.5
All values of K are presented in the frame of reference where the volume-averaged velocity
1s zero.

The sedimentation coefficients of the regular polyhedra [Fig. 7(a)] exhibited a qualita-
tively similar dependence on shape and concentration as the self-diffusion coefficients did.
We consistently found that the spheres had the largest K, the tetrahedra had the smallest
K, while the octahedra and cubes had an intermediate K. Moreover, all sedimentation coef-
ficients decreased with increasing concentration, as expected, with the tetrahedra having the
strongest concentration dependence. The sedimentation coefficients of both spherocylinders
were highly similar to each other and to that of the sphere [Fig. 7(b)]. These behaviors are
qualitatively similar to the self-diffusion coefficients, so we will not repeat that discussion

here for brevity.

IV. CONCLUSIONS

We investigated the long-time self-diffusion and sedimentation of NPs with anisotropic
shapes. The anisotropic shapes we studied were an octahedron, a cube, a tetrahedron,
and a spherocylinder. The NPs were represented with a discrete particle model and were
hydrodynamically coupled to each other using the multiparticle collision dynamics method.
Simulations were conducted across a range of volume fractions for each shape where the
NPs remained in a fluid/isotropic phase. Our modeling approach can be easily extended to
explore the dynamics of other NP shapes, e.g., irregular polyhedra and non-convex shapes. 02

For regular polyhedra having equal edge lengths, shape had a clear influence on their
transport properties. Octahedra and cubes were slower diffusing than spheres with diameter
equal to their edge length for all investigated volume fractions [Fig. 2(a)]. Tetrahedra diffused

the fastest at small volume fractions but the slowest at larger volume fractions, which we

partially attributed to the formation of pentagonal dipyramids. The simulated self-diffusion
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FIG. 7. Sedimentation coefficient K of (a) spheres, octahedra, cubes, and tetrahedra and (b)
spherocylinders as a function of volume fraction ¢. The frame of reference used to define K is the

one where the volume-averaged velocity is zero.

coefficients of all investigated NP shapes at infinite dilution were in good agreement with a
correlation based on sphericity and also with an approximation using the mean diameter of
the spheres that inscribed and circumscribed the shapes. After accounting for differences due
to shape at infinite dilution [Fig. 2(b)], the self-diffusion coefficient of the spheres showed the
weakest volume-fraction dependence, that of the tetrahedra showed the strongest volume-
fraction dependence, while the octahedra and cubes showed intermediate behavior. Similar
trends were found for the dependence of the sedimentation coefficients on volume fraction
[Fig. 7(a)].

For small-aspect-ratio spherocylinders (A = 1 and 2), the diffusion coefficients at infinite
dilution showed a dependence on aspect ratio that was consistent with theoretical expec-
tation, meaning that the spherocylinders diffused more slowly as aspect ratio increased
[Fig. 6(a)]. However, after accounting for shape effects at infinite dilution, the self-diffusion
coefficient [Fig. 6(b)] had a volume-fraction dependence that closely followed that of spheres
having diameter equal to the spherocylinders, with only minor differences for the sphero-
cylinder with A = 2. The sedimentation coefficient [Fig. 7(b)] had essentially the same

volume-fraction dependence for the spheres and both spherocylinders. We expect that the
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dynamics of spherocylinders should deviate more significantly from spheres as A increases,
and in principle, we can expand our spherocylinder model to study this regime. However, do-
ing so incurs higher computational cost due to a substantial increase in the number of vertex
particles per spherocylinder. Further, we would need larger simulation boxes to accommo-
date these spherocylinders and gather good statistics, thereby also increasing the number
of solvent particles required. To mitigate these computational challenges, an alternative
approach is to represent the spherocylinders as linear rods comprised of partially overlap-
ping particles.!®® However, establishing a connection between this model, our spherocylinder

model, and experiments is still an open question, which we plan to explore.
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