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(Bi,Sb)2(Te,Se)s tetradymite materials are among the most efficient for thermoelectric energy conversion, and
most robust for topological insulator spintronic technologies, but should possess rather disparate doping prop-
erties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of
p-type (Bip43Sbo.s7)2Tes and n-type Bix(Tep 95Sep.05)3 that can contribute to both technology bases, but are
especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like
topological surface states. Comprehensive temperature, field and angular dependent magnetotransport mea-
surements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density
on the order of 10'® cm™2 and a record high mobility exceeding 10* cm? V™! s7! at 2 K. The remarkable
manifestation of strong Shubnikov-de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures,
as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic
structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for
miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for fu-
turistic topological spintronics with unprecedented magnetoelectric functionalities.

[4-8]. The interest in epitaxial films was driven when Hicks and Dres-
selhaus calculated that quantum confinement may significantly boost zT
[9,10], and as a result [11], several initiatives explored the growth of

1. Introduction

Research effort in tetradymites date back to the report from Gold-

smid and Douglas who identified BiyTes as a viable option for all-solid-
state thermoelectric refrigeration [1]. Subsequent research yielded
p-type and n-type solid solutions in the (Bi,Sb)(Te,Se)s family as the
most successful thermoelectrics suitable for commercialization at room
to low temperatures [2,3]. These (Bi,Sb)2(Te,Se)s-based materials since
have successfully breached the challenging figure of merit 2T = 1
threshold which remains as an important materials-quality benchmark
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novel epitaxial superlattices [12-14].

Because of the strong spin-orbit coupling associated with the large
atomic number elements, tetradymites were theoretically proposed [15]
and experimentally demonstrated [16-18] as archetypical
three-dimensional (3D) topological insulators, featuring Dirac-like lin-
early dispersed helical surface states. This has presaged a vast array of
new topologically nontrivial materials showcasing novel phenomena
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[19-25]. And even though epitaxial tetradymite films have enabled new
discoveries such as the quantum anomalous Hall effect [26-28] as well
as breaking the time-reversal symmetry via proximitized exchange
coupling [29-31], the quality of epitaxial (Bi,Sb)2(Te,Se)3 materials for
topological applications is generally lower than their equivalent coun-
terpart grown from the melt in bulk form. The lower quality for epitaxial
films is generally believed to derive from the non-equilibrium growth
mode inherent in molecular beam epitaxy (MBE) that yields films replete
with point defects that can cause unintended doping and scattering, as
well as extended crystallographic defects from antiphase domains with
localized rotational disorder [8].

In this work, we report results from a new strategy that more closely
approaches equilibrium growth conditions using state-of-the-art MBE
method, where the carrier type and concentration are controlled by the
composition only, without employing extrinsic doping. The tempera-
ture, field, as well as angular dependences of the magnetotransport
parameters in p-type (Big 43Sbg 57)2Tes (BAT, thickness t = 220 nm) and
n-type Biy(Tep 95S€0.05)3 (BTS, t = 150 nm) films are thoroughly inves-
tigated. This strategy enables unusually high mobility in this work,
which leads to robust Shubnikov-de Haas (SdH) quantum oscillations in
a wide range of temperature in various field orientations. These efforts
allow for in-depth understanding of the Fermi pockets of these tetra-
dymite thin films.

2. Methods

The growth of tetradymite thin films were carried out in a modular
Gen II MBE system with a base pressure of 10~ Pa, and from conven-
tional Knudsen-style cells using 99.999% pure source materials. Quar-
ters of full three-inch semi-insulating GaAs(001) wafers were used to
facilitate unambiguous interpretation of thermal- and magneto-
transport data. MBE is an inherently non-equilibrium, metastable
growth process so the two-fold strategy adopted for this work is intended
to converge towards more equilibrium processes: 1. employ a 595 K
substrate temperature and 2. invoke a VI/V ratio of 60 for group VI el-
ements (Te and Se) to group V elements (Bi and Sb). The single crys-
talline nature of the c-oriented as-grown films was confirmed using in
situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray
diffraction (XRD) techniques (see Supplementary Fig. 1). The composi-
tional dependence was systematically determined by several techniques.
For the n-type compositions of BTS, leveraging the substantial difference
in the lattice constants, high resolution XRD was used to calculate the c-
axis lattice constant and the composition. For p-type compositions,
energy-dispersive X-ray spectroscopy (EDS) was applied within trans-
mission electron microscope (TEM) to calibrate the full range of BAT.
The compositions reported here were found to yield the lowest carrier
density and highest mobility. In situ angle-resolved photoemission
spectroscopy (ARPES) was carried out to capture the energy-momentum
dispersion along the I'-K high symmetry lines of the Brillouin zone.

Temperature and magnetic field dependent transport measurements
were performed in the temperature range of 1.8-300 K in a Quantum
Design Physical Property Measurement System (PPMS) equipped with a
9 T superconducting magnet. An ac electric current (I,) with a typical
magnitude of 5 pA was injected into the current channel of a 10 x 30
pm? Hall bar residing in the crystallographic a-b plane, while longitu-
dinal (V) and transverse (V)) voltages were simultaneously monitored
using a lock-in technique (Stanford Research SR830). For aligning the
magnetic field B, a horizontal rotator was used with an angular reso-
lution of ~0.1°. Thermoelectric measurements of cleaved as-grown
samples (3.5 x 4.0 mm? for BAT and 3.5 x 6.0 mm? for BTS, respec-
tively) were taken in a standard liquid N» cryostat using a conventional
steady state technique. Absolute copper-constantan thermocouples were
fixed at two points along the sample length to measure the temperature
difference in the direction of heat flow; the copper legs of these ther-
mocouples were also used to measure the Seebeck voltage. Current wires
were added to perform conductivity measurements.

Materials Today Physics xxx (xxxx) xXxx

3. Results and discussion

As shown in Fig. 1a, in the absence of external magnetic field B, the
longitudinal electrical resistivity px(T) of both p-type BAT and n-type
BTS display a metallic behavior with positive temperature coefficient for
2 K < T < 300 K. The residual resistance ratio [RRR = p,x(300 K)/psxx(2
K)] is 14 and 16 for BAT [px(2 K) = 0.27 mQ cm] and BTS [px(2 K) =
0.10 mQ cm], respectively. The dominant carrier type is consistent with
the Seebeck coefficient in Fig. 1b (left axis, where the right axis illus-
trates the thermoelectric power factor PF = $2/py), as well as the band
dispersion revealed by ARPES (Fig. 2a and d) [8,32]. Near room tem-
perature, the slope of p,,(T) flattens, forming a peak due to the bipolar
effect, well known for tetradymites when the minority carriers are
thermally activated and contribute to charge transport [33,34]. When
subjected to B = 9 T, py increases in the entire measured T range for
both BAT and BTS, while maintaining the metallicity. The sizable
magnetoresistance (MR, see also Fig. 2b and e) is a synergy of both the
low carrier density n (~1018 cm’3, Fig. 1c) and, to the best of our
knowledge, the record high mobility 4 (>10%cm? V~!s~!at 2K, Fig. 1d)
in these optimally grown ternary tetradymite films. The solid symbols in
Fig. 1c and d represent the Hall carrier density ny,y [= 1/qRy, ¢ = e (—e)
for hole (electron), with e the elementary charge] and the Hall mobility
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Fig. 1. | Temperature dependence of the transport properties. a Temper-
ature dependent longitudinal electrical resistivity p,(T) of p-type (Bi,Sb),Tes
(BAT, black line at 0 T) and n-type Bix(Te,Se)s (BTS, red line at O T), with as-
grown Seebeck coefficient S and power factor PF = $%/p,, in b. At applied
magnetic field B = 9 T, large magnetoresistance is evident for BAT (blue line)
and BTS (purple line), resulting from (c¢) low carrier density n (~10'® cm’s,
positive/negative values for hole/electron-type carriers) and (d) high mobility
u exceeding 10* cm? V™! s! at 2 K. In view of the bulk dominated nature of the
transport, both single-band model (solid symbols) and two-band fitting (open
symbols) have been used to estimate the transport parameters.
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Fig. 2. | Magnetic field dependent longitudinal and Hall resistivity. ARPES (a,d), magnetic field dependence of magnetoresistance (MR) pxx(B)/pxx(0) (b,e) and
Hall resistivity py(B) (c,f) at selected few temperatures, for p-type (Bi,Sb),Tes (a—c) and n-type Bix(Te,Se)s (d-f), respectively. Inset in f, optical microscopic image of
a typical e-beam lithography Hall bar. The curves (b,c,e,f) are vertically shifted for clarity. The p-type film manifests Shubnikov-de Haas (SdH) quantum oscillations
in pyy at low T (b), while the n-type sample develops a large quasi-linear MR without discernible SdH feature at the lowest measured T = 2 K under out-of-plane B up

to 9 T (e). The nonlinearity in p,(B) (c,f) suggests multi-carrier transport.

utanl [=|Ru|/pxx(B = 0)], respectively, where the Hall coefficient Ry is
estimated, presuming a single band, from the linear slope of the low field
Hall resistivity p,(B) in Fig. 2 (see also Supplementary Fig. 2). Towards
300 K, the aforementioned bipolar mechanism leads to reduced
magnitude of Ry, owing to the contribution from minority carriers with
the opposite sign. The resultant artificial uprising of the magnitude of
nyay at higher T hence reveals the limitation of the oversimplified
single-band framework.

Nonlinearity develops in p.(B) with decreasing T for both BAT
(Fig. 2c) and BTS (Fig. 2f). Together with the observation that Kohler’s
plot of Ap,(B)/pxx(0) deviates from a single scaling functional f(B/
Pxc(0)) in Supplementary Fig. 3, it suggests the existence of multiple
carriers with different Hall mobility (effective mass or scattering time
7g). In order to decipher contributions from different bands, conductivity

tensor oy, = py,/ (pf(x +p§x) and Gy = P/ (p?(x +p§x) are examined

against a two-band model [35],

1
Oyy =Ny B| ———+Cy |, @
T
and
Oxx = N€, ! + C. 2)
Xxx 7 1+(,MB)2 xx | -

Here ny (n) and py (1) denote the carrier density and mobility from the
high-mobility dominant band as estimated using oy, (0xx), while Cy,
(Cxx) refers to the contribution from the less-mobile secondary pockets.
As demonstrated in Supplementary Fig. 4, the two-band model fits
reasonably well the experimental data measured in a wide range of B
and T for both BAT and BTS. The model of Eq. (1) may be further
improved (see the insets of Supplementary Figs. 4a and 4b) by explicitly
considering the B dependence originated from the secondary carriers
[36,371,

nieu?B
1+ (uB)*

2
Gy = nyeupB . 3)
1+ (uyB)
where the secondary carrier density n;, and mobility y, are introduced as
the new fitting parameters replacing Cy,. The transport parameters of
the dominant band determined via the two-band model are plotted in
Fig. 1c and d (open symbols), where ng = 1.1 x 10'® cm™ and -3.6 x
10'® cm™ at T = 2 K for BAT and BTS, respectively.

The manifestation of nonlinear p,(B) is accompanied by MR
evolving from parabolic shape towards quasi-linear dependence upon
cooling (Fig. 2b and e). A MR value [= (px(9 T)/pxx(0) — 1) x 100%]
exceeding 200% (450%) for BAT (BTS) has been observed at T = 2 K.
This impressive MR likely originates from the dominant carrier with an
extremely high mobility, whose filed dependence is well characterized
by the two-band model (Supplementary Fig. 4d) [35,38-41]. It is
remarkable that robust SdH quantum oscillations emerge in py, for BAT
at low T with out-of-plane B (and for other configurations in Supple-
mentary Figs. 5 and 6). For BTS, SdH signals are also discernible with
in-plane perpendicular B (Supplementary Figs. 7 and 8), although no
oscillations were detected under the out-of-plane Hall configuration up
to 9 T. The appearance of SAH oscillations at liquid helium T under
modest B attests to the superior quality of these ternary tetradymite
films.

We now turn to the SdH behavior of BAT, whose detailed B, T and
angular 6 (inset of Fig. 4a) dependences are instrumental in experi-
mentally probing the Fermi surface (FS) morphology. As illustrated in
Fig. 3a, the oscillatory Apy(B)/pxx(0), after removing a smooth back-
ground, displays periodic-like profile against 1/B, which can be
described by the Lifshitz-Kosevich (LK) theory [42],

Ap(B) / Prc(0)=a <§> 1/2RTRD cos {23 (g + y—5> ] : C))

Here a is the amplitude constant, F is the oscillation period, phase factors
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Fig. 3. | Quantum oscillation in p-type (Bi,Sb),Te3. a After subtracting a smooth background, traces of Ap,(B)/pxx(0) vs. 1/B at selected T reveal Shubnikov-de
Haas (SdH) quantum oscillations. b Landau level index plot of Ap,, extrema vs. ny;. The linear fit points to no = 0.02, suggesting a Berry curvature of 0, consistent
with bulk dominated transport. ¢ Temperature damping of the SdH oscillation amplitudes, which are well characterized by Lifshitz-Kosevich (LK) formula with an
effective mass 0.079(£0.014) m,. d Dingle plots of In[Ap,,/pxx(0) B sinh(4)] vs. 1/B at selected T, which has been used to estimate the phase coherence lifetime =

~1.2 x 10735,

a b c 16 T T
e F, y
“ L FZ Il
= , - — - 1/cos@ t
£ 12 7 b
S g e e ! 4
= 8 z /
% =) % ® °® " m
) % ] ’
= >Q. g 8r // -
Q Q fr W
3
=) 0.0 ] <2 _ band 1
dg--w ™ ® L h
)
1 1 1 1 1 .’
0.1 0.2 0.3 0.4 0.5 0 30 60 90

B(T)

1/B (T-)

6 (deg)

Fig. 4. | Angular dependence of the quantum oscillation. a Magnetoresistance measured at selected angles  with respect to the film normal direction, as depicted
in the inset, where 6 = 0° indicates out-of-plane magnetic field B and § = 90° corresponds to B parallel to current J. b Oscillatory traces of Apy,(B)/pxx(0) vs. 1/B
(shifted vertically for clarity). ¢ Fast Fourier transform frequency analysis of the SdH spectra, revealing contributions from two 3D bulk pockets. The dashed line of 1/

cosf indicates that the secondary band 2 is not of 2D origin.

8 = 0 (£1/8) for 2D (3D) FS and y = 1/2- ¢p/(2n) with ¢p the Berry
phase. The temperature and Dingle factors are given by

Ry =A(T) / sinh(A(T)), (5)
and
Rp =exp(-A(Tp)), (6)

using the expression

272 kg mzyc T

A(T) weB

@)
where kg, mzyc and h are the Boltzmann constant, the cyclotron effective
mass and the reduced Planck constant, respectively. The Dingle tem-
perature is governed by scattering via Tp = h/(2nkpr), where 7 is the
phase coherence lifetime of the carriers. The Landau fan diagram has
been constructed at T = 2 K in Fig. 3b for the dominant carrier by
assigning SAH Ap,, minima [43] as integer Landau level (LL) indices nyy..
Extrapolation to 1/B = 0 leads to ny = 0.02, based on which ¢jg is
determined to be close to 0, consistent with 3D bulk metallic behavior
with insignificant topological surface transport [44]. The slope yields
the dominant SdH frequency F = 12.4 T, with Fermi wave vector kp =
\/2eF/h = 0.019 A~L. By taking into account both the spin (N; = 2) and

valley (Ny = 6) degeneracies [8,45-49], the SdH carrier density ngqy =
NNyk}/(67%) = 1.4 x 10'® ecm ™3 is in excellent agreement with ny of
1.1 x 10'® cm™3 extracted from the two-band modeling for the high--
mobility dominant band. As shown in Fig. 3c and d, the T and B
dependence of the SdH oscillation amplitudes reveal m_, = 0.079 m,
(me being the rest mass of free electron) with 7 ~ 1.2 x 10718 s,
consistent with typical tetradymites. As usual, the SAH mobility derived
using the phase coherence lifetime pgqy = ez/ mzyc =27 x10%cm?2v!
s ! at 2 K, is smaller than the Hall mobility estimated directly from
transport, which involves the scattering time, the average time between
momentum-altering scattering events.

Fig. 4a depicts the SdH signals at various #, where B is tilted from the
out-of-plane orientation (¢ = 0°) to that of the in-plane electric current
density Je (0 = 90°). The oscillatory Ap,,(B)/pxx(0) traces plotted against
1/B (Fig. 4b) and its out-of-plane component 1/B, (Supplementary Fig.
5a) suggest that the angular dependence is incompatible with a 2D FS
that leads to a 1/cos6 dependence (dashed line in Fig. 4c). This confirms
the 3D nature of the pockets responsible for the SdH oscillations. Apart
from the dominant F; from the high-mobility band, fast Fourier trans-
form (FFT) analysis indeed further corroborates the coexistence of an
additional frequency F, (Supplementary Fig. 5b) with somewhat smaller
mzyc of 0.067 me (Supplementary Fig. 6). The 0 dependence of F; and Fs
are visualized in Fig. 4c, providing experimental assessment of the FS
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morphology in ternary tetradymites.
4. Conclusion

In summary, we have grown ternary tetradymite thin films that host
low n ~10'® cm ™2 and exhibit a record high y exceeding 10* em? V1571
at 2 K for both p-type BAT and n-type BTS. The T, B and 6 dependent
magnetotransport experiments and subsequent in-depth SdH analyses
have disclosed contributions from relevant bulk bands near the Fermi
level. The present study has carefully examined the bulk electronic band
structure with optimized ternary alloying ratio, a regime that is of strong
technological interest serving as a fertile playground for miniature
thermoelectric modules compatible with commercial wearable elec-
tronics [50], as well as for materializing futuristic spintronic and topo-
logical devices [51], especially when quantized Hall channels associated
with topological surface conduction are made to prevail with reduced
film thickness.
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