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Abstract. We study a dynamic assortment selection problem where arriving customers
make purchase decisions among offered products from a universe of products under a
Markov chain choice (MCC) model. The retailer only observes the assortment and the cus-
tomer’s single choice per period. Given limited display capacity, resource constraints, and
no a priori knowledge of problem parameters, the retailer’s objective is to sequentially
learn the choice model and optimize cumulative revenues over a finite selling horizon. We
develop a fast linear system based explore-then-commit (FastLinETC for short) learning
algorithm that balances the tradeoff between exploration and exploitation. The algorithm
can simultaneously estimate the arrival and transition probabilities in the MCC model by
solving a linear system of equations and determining the near-optimal assortment based
on these estimates. Furthermore, our consistent estimators offer superior computational
times compared with existing heuristic estimation methods, which often suffer from incon-
sistency or a significant computational burden.
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1. Introduction

Assortment optimization problems find important
applications in both brick-and-mortar and online retail-
ing. The decision maker selects a subset of products
(a.k.a., an assortment) to offer to customers from a uni-
verse of N substitutable products to maximize the
expected revenue. Effective assortment management
improves operational efficiency and provides better cus-
tomer coverage and purchasing experiences. By inte-
grating advanced analytical methods with assortment
optimization, retailers can significantly improve their
revenue and negotiation leverage when selecting sup-
pliers (Nip et al. 2021).

Discrete choice models are critical in capturing custo-
mers’ preferences for offered products as well as their
substitution relationship. In a Markov chain choice
(MCC) model, each incoming consumer intends to pur-
chase a specific product and will purchase it immedi-
ately if it is available. Otherwise, the customer
transitions to an alternative product according to a

transition probability matrix until she reaches an avail-
able one and purchases that product. The MCC model is
a generalization of the multinomial logit (MNL) and the
random consideration set choice models (Gallego and
Lu 2021). It also provides a good approximation for all
other random utility models (RUMs) under mild as-
sumptions, such as probit, nested logit, and mixture of
MNL (MMNL) models. In addition, because assortment
decisions obtained from the static optimization problem
depend on the prior knowledge of the discrete choice
models (Gallego and Topaloglu 2019), the predicted rev-
enue is sensitive to which choice model is used to define
customers’ purchase decisions. As a result, assortment
selection using the MCC model is robust to model mis-
specification while being flexible in capturing customers’
substitution behaviors (Berbeglia 2016).

Another important merit of the MCC model is that it
can be used as an approximate model when the true
underlying model is known but the associated assort-
ment optimization problem is intractable (e.g.,, MMNL
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and nested logit models). Blanchet et al. (2016) proved
that if the MCC model is a good approximation to the
underlying model, then the derived solution is likewise
near-optimal. The MCC model’s transition probabilities
also provide useful information regarding the similarity
of offered products. According to a recent computa-
tional study by Berbeglia et al. (2022), the MCC model
has a significant advantage in balancing the modeling
accuracy and computational complexity compared with
other listed choice models.

This work studies the dynamic assortment optimiza-
tion problem under the MCC model. Because the
demand parameters are unknown a priori, the retailer
needs to simultaneously learn customers’ preferences
from the purchase data and optimize cumulative reven-
ues over a selling horizon T. The current work considers
the case of uniform-price items without inventory con-
straints, and the product prices are fixed throughout the
selling horizon. Customers choose the preferred prod-
uct to maximize their expected utilities, and the retailer
only observes purchased items. These are standard
assumptions in the dynamic assortment literature to
address the role of assortment in balancing information
collection and revenue maximization (Sauré and Zeevi
2013, Agrawal et al. 2019). Solving the dynamic assort-
ment optimization problem is critical for promoting
new products whose demand models can only be esti-
mated with abundant historical data. This is particularly
true when the product life cycle is short. Our interest
lies in developing a family of explore-then-commit algo-
rithms that can automatically transition from the infor-
mation collection (exploration) phase to the revenue
maximization (exploitation) phase.

There is an extensive body of literature on online learn-
ing algorithms for the dynamic assortment selection pro-
blems under models such as MNL (Rusmevichientong
et al. 2010; Sauré and Zeevi 2013; Agrawal et al. 2017,
2019; Wang et al. 2018) and nested logit models (Chen
et al. 2021a). However, these algorithms typically rely on
a specific structure that cannot be readily generalized for
other models and may be sensitive to model selection
errors. For instance, the MNL model assumes indepen-
dence from irrelevant alternatives and is found optimistic
in estimating recaptured demands (Gallego et al. 2015).
Here “recapture” describes the situation where demand
is redirected to a different available product, in contrast
to “spill” that refers to the loss of demand due to competi-
tion or customers choosing not to purchase. Because the
MCC model serves as a generalization or approximation
for various RUMs, developing new algorithms for learn-
ing optimal assortment under the MCC model can cap-
ture more sophisticated purchasing behavior and reduce
the likelihood of model misspecification.

However, designing learning algorithms for the MCC
model is inherently challenging for the following

reasons. The first challenge is parameter estimation. The
MCC model captures the choice problem by two sets
of parameters: (i) the arrival probability vector A that
characterizes the initial preference for all products when
customers enter the system and (ii) the transition proba-
bility matrix p that characterizes the probability of
choosing each substitution when the preferred product
is not included in the assortment, including leaving the
system without a purchase. Hence, the number of
parameters grows quadratically with the number of
products. The salient substitution between preferred
products introduces strong correlations between obser-
vations but these substitutions are unobservable to the
retailer. Because the choice probabilities” expressions
include the inverse of transition submatrices (see (SS-
1)—(S5-2)), there are no trivial unbiased estimators based
on observing final purchase decisions. The maximum
likelihood estimation (MLE) method cannot be directly
applied to the MCC model due to the nonconvexity of
objective. Second, even assuming that the MCC model’s
parameters are known a priori, choice probabilities
and average revenues in the MCC model cannot be
expressed as a simple functional form of the model
parameters (Blanchet et al. 2016). Optimizing the assort-
ment selection under simple constraints such as limited
display spaces is shown to be NP-hard by Désir et al.
(2020). Finally, balancing between exploration and
exploitation in online learning is intriguing, considering
that parameter estimation and optimization are already
challenging tasks on their own. This work aims to
address these challenges by leveraging the structural
properties of the MCC model.

1.1. Key Results and Contributions
We propose the first online learning algorithm, named
fast linear system based explore-then-commit policy
(FastLinETC), for dynamic constrained assortment
selection under the MCC model. The name originates
from the algorithm’s fast exploration, which involves
testing only O(N?) assortments, and our estimation
techniques, which revolve around transforming a set of
linear equations of choice probabilities to recover the
model parameters.

Our performance measure is the cumulative regret over
a selling horizon of T periods, which is defined as the dif-
ference in expected revenue between a clairvoyant policy
(with access to all the MCC parameters a priori) and our
policy (without knowing these parameters). The clairvoy-
ant policy could be optimal or near-optimal. On condition
that the underlying (clairvoyant) model admits a
polynomial-time algorithm that gives the exact optimal
assortment, we use the exact optimal solution. By contrast,
if the underlying model only admits an a-approximation
algorithm, we use the a-approximate solution instead. We
obtain the following two sets of regret bounds.
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i. When the exact optimal assortment is computable,
our algorithm admits a regret bound of O(poly(N)T?/3
log T), where poly(N) is a polynomial function of N
(Theorem 1). The exact optimal assortment under con-
straints is computable in some special settings, for
example, when the MCC model is reduced to an MNL
model and the constraint set is total-unimodular (TU)
(Davis et al. 2013), or when the MCC model is reduced
to a general attraction model and the constraint set is
cardinality-based (Wang 2013). The most related lower
bound result for a constrained MNL model is Q(VT)
(Chen and Wang 2018). How to close this gap in con-
strained MCC models remains an open research question
(which is discussed in more details in Sections 4 and 7).
We also remark here that explore-then-commit strategies
yield a Q(T?/3) lower regret bound for general batched
bandits (Perchet et al. 2016).

ii. When the exact optimal assortment is not com-
putable, our algorithm admits an a-regret bound of
O(poly(N)log T) (Theorem 2), where there exists an
a-approximation algorithm (« < 1) for the static con-
strained MCC assortment optimization problem. The
regret bound is much improved because we are using a
weaker clairvoyant benchmark.

In deriving the previous main results, we make the
following main contributions:

i. We design a dynamic constrained assortment
selection algorithm under the MCC model, which is
general enough to envelop the general attraction model
(including the MNL model) and meanwhile provides a
satisfactory approximation for more advanced models
that may not even have extant learning algorithms (for
instance, the MMNL model).

Our algorithmic framework is versatile in coping with
any TU-constrained assortment optimization problems,
such as cardinality, joint display and assortment, and
capacity constraints. When the static constrained MCC
assortment optimization problem is NP-hard, we use
a-optimal assortments as the clairvoyant benchmark.
The learning algorithm integrates a-approximation algo-
rithms into online optimization, which gives the near-
optimal solution sequentially under the estimated MCC
parameters.

ii. Our learning algorithm solves a compounded sys-
tem of linear equations repeatedly based on batches of
offered assortments and customer choices and updates
the parameter estimator sequentially. We develop an
analytical method based on batch-to-batch sampling to
quantify the estimation error from the so-called “chain
of estimators”, involving novel techniques to approxi-
mate revenue rate functions via matrix operations. In
establishing a-regret bounds, we find the optimality
gap of near-optimal assortments introduces an instance-
independent “regret-free region” around the true para-
meters, which improves the scaling to O(log T).

The learning algorithm carefully balances the explo-
ration and exploitation phases to obtain an instance-
independent scaling of O(poly(N)) (rather than combi-
natorially many assortments). By comparison, Gupta
and Hsu (2020) gave the best-known sample complexity
O(N?), but this complexity was only achieved in a sta-
tionary setting with oracles for purchasing probabilities.
Also, compared with the state-of-the-art expectation-
maximization (EM) method for parameter estimation
(Simsek and Topaloglu 2018), which incurs an increas-
ing computational burden as T grows and does not
always guarantee convergence, our consistent estima-
tors enjoy provable concentration bounds and superior
efficiency with minimal dependence on T.

iii. Our analysis does not require a suboptimality gap
typically assumed in the literature (i.e., the revenue
gap between the unique optimal assortment and all
other assortments, which is often unknown in practice).
We show that the use of suboptimality gaps in explore-
then-commit learning literature (Sauré and Zeevi 2013,
Gallego and Lu 2021) can be viewed as a special case of
our a-regret analysis based on near-optimal clairvoyant
policies (Section 5).

1.2. Literature Review

The MCC model is a flexible scheme for characterizing
customers’ purchase decisions between offered pro-
ducts with close substitutes. Our research is closely
related to a growing body of literature on MCC assort-
ment optimization.

1.2.1. Static MCC Assortment Selection Problem. The
MCC model was formally introduced in the seminal
work of Blanchet et al. (2016), whereas Zhang and Coo-
per (2005) briefly demonstrated this new type of choice
process in the context of airline revenue management.
Blanchet et al. (2016) discovered that the unconstrained
assortment optimization problem is equivalent to an
optimal stopping problem. Berbeglia (2016) generalized
that any MCC model can be converted to a RUM model
by a random walk argument. Given the special structure
of the unconstrained assortment selection under the
MCC model, the optimal solution can be formulated as
a linear program (LP) (Feldman and Topaloglu 2017,
Gallego and Topaloglu 2019).

The constrained assortment selection under the MCC
model is generally APX-hard, that is, not possible to
approximate better than a constant factor even when all
listed prices are uniform. Désir et al. (2020) and Udwani
(2021), respectively, proposed (1/2 — ¢)-approximation
algorithms for the cardinality-constrained and the capacity-
constrained assortment optimization problems. By
contrast, this research copes with the assortment selec-
tion problem concerning a general category of linear
constraints.
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Because the MCC model approximates well-known
models such as nested logit and MMNL models, there is
continuing research interest in incorporating it into the net-
work revenue management problem (Feldman and Topa-
loglu 2017), pricing problem (Dong et al. 2019), joint
pricing and inventory problem (Gallego and Kim 2020),
and joint assortment and inventory planning problem (EI
Housni et al. 2021). There are also variations of the MCC
model. Ragain and Ugander (2016) proposed the pairwise
choice Markov chain model that considered the transition
probability to alternative products following the stationary
distribution of a continuous-time Markov chain on the set
of alternatives. Nip et al. (2021) proposed a variation called
the single-transition choice model that limits the number
of times that a customer visits any product during the cus-
tomer’s choice process. The platform can control which
products to recommend to avoid departure without pur-
chasing after one transition.

1.2.2. Parameter Estimation in MCC Models. The param-
eter estimation of MCC models is substantially more chal-
lenging than other RUM choice models such as MNL.
Blanchet et al. (2016) proposed a straightforward parame-
ter estimation approach that offered all products first and
then the all-but-one assortments, which is not feasible with
any display specific constraints. Two alternative strategies
circumvent offering such large-cardinality assortments.
Simsek and Topaloglu (2018) developed an EM algorithm
by converting the unobservable log-likelihood function to
a complete log-likelihood function with a closed-form
expression. However, the estimator is not guaranteed to be
consistent or even to converge to a unique limit point;
hence, this approach is not applicable to online learning.
Moreover, the theoretical results in Simsek and Topaloglu
(2018) required that the MCC model included self-loops,
which contradictorily made the MCC model not identifi-
able and the estimation problem ill defined; see the proof
and counterexamples in Appendix C.1. Gupta and Hsu
(2020) extended the all-but-one assortment idea to a
parameter recovery algorithm under limited-sized assort-
ments and noise-less choice probabilities. Offering consec-
utive assortments with the carnality of #n* and n* +1 can
reduce the sample complexity to O(N?) with n* <N /2.

1.2.3. Online Learning for Dynamic Assortment Opti-
mization. Learning algorithms for assortment optimiza-
tion are a growing body of literature. The information
on customers’ preferences is unknown and needs to be
learned over the selling horizon with a proper balance
between exploration and exploitation. The standard
learning approach cannot be directly applied in this con-
text because (a) the expected reward of each assortment
is not independent of other assortments (correlated
actions), and (b) the online algorithm needs to select the
best assortment among a large number of alternatives
(combinatorial complexity). Efficient online learning

algorithms for more tractable choice models such as
MNL models are well studied in the recent literature.
Rusmevichientong et al. (2010) and Sauré and Zeevi
(2013) considered the explore-then-commit approach
with a preset transition threshold over the selling hori-
zon. With additional parameter identification assump-
tions, Sauré and Zeevi (2013) showed an asymptotic
O(NlogT) regret bound. More advanced algorithms
have baked this exploration-exploitation tradeoff into
the multiarmed bandit (MAB) paradigm (Auer et al.
2002). Agrawal et al. (2017) considered a Thompson
sampling—based algorithm for the dynamic assortment
selection with a fixed cardinality constraint K that
achieved a regret bound of O(VNTlog TK). Agrawal
et al. (2019) customized the upper confidence bound
(UCB) approach to the dynamic assortment optimiza-
tion problem and achieved a regret bound of O(VNT).
(Here O(-) hides any logarithmic factors.) Chen et al.
(2021b) relaxed the regret bound on the dependence of
N. These algorithms match the lower bound Q(\/ﬁf )
for any regret-minimization assortment optimization
under the MNL choice model (Chen and Wang 2018).
Learning algorithms for assortment optimization under
more general settings have also been studied, for exam-
ple, contextual bandit (Bernstein et al. 2019; Oh and
Iyengar 2019; Chen et al. 2020, 2021b; Kallus and Udell
2020), other choice models (Chen et al. 2021a), or joint
operational decisions (Miao and Chao 2021).

Because both assortment optimization and parameter
estimation for the MCC model are challenging in gen-
eral, adaptive assortment selection with demand learn-
ing remains an open question in the literature. Gallego
and Lu (2021) proposed a forward-backward greedy
heuristic method for the unconstrained assortment selec-
tion under the MCC model. Based on this new heuristic,
they developed an explore-then-commit learning algo-
rithm that achieved a regret bound of O(rmaxN?log T),
where rmax was the maximal single-product revenue.
Their algorithm was based on a binary comparison of
revenues and avoided the issue of parameter estima-
tion. However, their heuristic and learning algorithms
were only applicable to the unconstrained case, as the
regret analysis was conditioned on the observation that
locally optimal assortments were globally optimal for
the unconstrained assortment with the MCC model.
Moreover, their learning algorithm required knowledge
of the suboptimality gap at the beginning of the selling
horizon. This information is however unavailable a pri-
ori in practice. Motivated by these limitations, this work
aims to develop new learning algorithms for more gen-
eral dynamic assortment optimization problems.

1.3. Organization

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the dynamic assortment selection
problem under the MCC model. Section 3 proposes a
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dynamic assortment algorithm with demand learning.
Section 4 leverages the special structure of the optimal
assortment and provides performance bounds of the
assortment algorithm. Section 5 discusses the connec-
tion between suboptimality gap and subregret. Section
6 conducts comparative numerical experiments with
benchmark results. Section 7 presents our concluding
remarks.

For ease of presentation, we introduce a notation
vec(A) that converts a matrix A into a vector composed of
all the rows of matrix A. For all x € R, [x], := max{x, 0}.
The acronym iid. stands for “independent and identi-
cally distributed.” The acronym w.r.t. stands for “with
respect to.” The complexity class of APX-hard refers to a
set of all NP-optimization problems for which a c-approx-
imation algorithm exists (with ¢ constant).

2. Problem Description and Model

Formulation

2.1. Assortment Selection Under the MCC Model
A retailer determines what should be carried in the
assortment from a set of products A" :={1,2,...,N}. We
represent customers’ no-purchase alternative by a prod-
uct 0. For any product subset SC N, we define the
extended subset S, := S U {0}. For example, N = N U
{0} ={0,1,...,N} represent all products plus the no
purchase option. For any assortment S € A and product
ie N, m(i,S) denotes the probability that a customer
purchases product i. We use 7; € ['min, 'max] to denote
the revenue for selling one unit of product i € A/, where
Tmax and 7min are two constants such that 0 < 7min < 7max-
We assume rmin > 0 because products yielding zero rev-
enue are unlikely to be offered by sellers, and conse-
quently, they will not emerge in the market or be
considered by customers.

The revenue vector 7 := (ro,71,...,7n) with g =0 for
the no-purchase option.

We model the demand'’s spill and recapture as a Mar-
kov chain. Each arriving consumer has a first-choice
product i € N, with probability A; and purchases prod-
uct i as long as it is available in the current assortment;
otherwise, the demand is redirected to product j € Ny
(including no purchase) with probability p;. Next, the
customer behaves as if the customer’s first-choice
demand was product j: she purchases j if available and
otherwise repeats the redirection. Product 0 represents
the no-purchase option and is always available for cus-
tomers. Therefore, transition from product 0 to other
products is trivial and we can assume p,, =1—py, =
0(ie N). We also assume p, =0(i € V), that is, there
are no self-loops, because (i) we are interested in the
eventual alternative product’s distribution when a tran-
sition occurs, and (ii) any transition matrix with self-
loops can be transformed into an equivalent matrix

without self-loops. A transition matrix with self-loops is
not identifiable as shown in Appendix C.1.

We define a vectorization operation vec(-) that maps
any subset of {A;};cnr U {pi].},-, jen into a column vector in
the order of A;(i€ N') and then pl.].(i,je./\/), where p;;
is sorted row-wise (i.e., index i-wise). Particularly, let
0 :=vec({Aitien U {p}i jex)- The MCC model is completely
characterized by a tuple (N, r,0): once we know 6, all
arrival probabilities {A;},cs-, for first-choice demand
and all transition probabilities {p,}; j\;, for demand
redirection are known, for example, Ao =1 -3, \/A;.

2.2. Static MCC Assortment
Optimization Problem

Consider an MCC model (N, r, 0) with all parameters
known. The retailer determines an assortment to maxi-
mize revenues. We first analyze the revenue associated
with every assortment. Given an assortment S, we com-
pute the choice probabilities by solving a system of lin-
ear equations: we first compute u(i,S;0)(i e N'), the
average visit times to product i under assortment S, by
solving

u(j,S;0) = A; + Z I{ieS.}-ui,S;0)p,;, jeN..
ieN
(S5-1)

The average visit times to product i € N, count the
expected number of times that the customer’s demand
is redirected to product i (including the first-choice
demand) during the customer’s purchase decision pro-
cess. For an unavailable product i € V'\S, the average
visit times (i, S; 0) may be greater than one because a
customer’s demand may be redirected to this product
for multiple times. However, for an available product
i€ S,, the average visit times u(i, S; 0) must lie in [0,1]
because, once a customer’s demand is redirected to
product i, the preference transition stops and the cus-
tomer ends up with purchasing product i. This also indi-
cates that the choice probability m(i,S;6) equals the
average visit times for every producti € S,:

n(i,$;0) = 1{i € S.}-u(i,S;0), ieN,.  (S52)

Thus, the (average) single-sale revenue r(S; 6) under assort-
ment S can be obtained by

r(S;0) =Y rm(i,S;0). (S5-3)
ieN

We consider the assortment optimization problem pos-
sibly constrained and let the set ¥ € 2" denote the possi-
ble assortments. Several naturally arising constraints over
the offered assortments include cardinality constraints,
(i-e., |S|<5), capacity constraints, (i.e., each product has a
weight w;, and the assortment is restricted to those with
total weights > ,.cw; <W), partition matroid constraints,
(i.e., the products are partitioned into segments, and the
assortment has an upper bound on the number of
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products from each segment), and joint display and
assortment constraints, (i.e., the assortment should
include the display segment of each product).

We let 5*(0) be the assortment maximizing the single-
sale revenue under constraint ¥

5°(0) = argmax r(S; 9). (S5-4)

se¥

When (SS-4) has multiple solutions, we let S*(0) be an
arbitrary assortment that maximizes the single-sale rev-
enue r(S;0). In the unconstrained scenario, that is,
& =2V, the assortment selection (S5-4) under the MCC
model can be reformulated into an optimal stopping
time problem. The optimal assortment can be obtained
from an LP; see theorem 5.1 and lemma 5.2 in Blanchet
et al. (2016). In the constrained scenario, the exact opti-
mal assortment is computable in some special settings,
for example, when the MCC model is reduced to an
MNL model and the constraint set is total-unimodular
(TU) (Davis et al. 2013), or when the MCC model is
reduced to a general attraction model and the constraint
set is cardinality based (Wang 2013).

When the MCC model is not reduced, however, Désir
et al. (2020) showed that the assortment selection (S55-4)
could be APX-hard even under simple cardinality con-
straints and a uniform r. Because the exact optimal
assortment S*(-) can be uncomputable (in polynomial
time), the retailer may instead offer an a-optimal assort-
ment (a € (0,1)), the definition of which is consistent
with the approximation algorithm literature including
Désir et al. (2020) and Udwani (2021).

Definition 1 (a-Optimal Assortments). For the MCC
model (N, r, 0) with possible assortments ¥, an a-opti-
mal assortment denoted by S*(0) is any assortment in
& such that

7(5%(0);0) = ar(5(0);0).

The collection of a-optimal assortments is denoted by
F40) := {S € L|r(S;0) = ar(S(0);0)}.

For instance, if the possible assortments & are subject to
cardinality or capacity constraints, the approximation
ratio @ may be set to 1 — ¢ for any ¢ > 0. The approxima-
tion algorithms are provided by Désir et al. (2020) and
Udwani (2021) (see Appendix B.2). Thus, this paper
treats a as a predefined constant associated with &.

2.3. Online MCC Assortment
Optimization Problem

The online assortment optimization assumes that the
information about the product set {\,r,¥} is known
but the MCC parameter 6 is not known a priori. During
the selling horizon, the set of products offered to each
customer and the customers” purchased products are
observable while the transition path that a customer

follows in the MCC model is not observable. Let T
denote the total number of customers that arrive during
the selling horizon with one customer per period. We
index customers and their arrival periods as t €7 :=
{1,2,...,T} and use two terms alternately throughout
this study. Products’ revenues are assumed to be fixed.
The retailer’s (average) cumulative revenue is

T
Rp(T,0) :=E> #(S;;6).

t=1
Here P denotes the retailer’s nonanticipating assortment
selection policy that is defined as follows: let {S},c €
9" be an assortment process, and Z! be customer 's pur-
chase decision regarding product i€ ' with Z{ =1
representing purchasing product i and Z! = 0 otherwise.
Particularly, Z{ = 1 represents purchasing nothing and
Zi =0 otherwise. Let Z':=(Z},Z!,...,Zy) be the
purchase decision vector of customer f. Let %, :=
0((Su.Z")1<u<i) t €T be the filtration associated with
the assortment process and purchase decisions of custo-
mers {0,1,...,t}, and Fy = J. Let P be the collection of
nonanticipating assortment policies, that is, any assort-
ment policy P € % is a mapping from past histories to
possible assortment decisions {S;},c; € T such that S,
is %;_1-measurable for all t € 7.

Because the MCC parameter 0 is not known a priori,
the assortment selection policy maximizing cumulative
revenues is not obtainable. We analyze the performance
of any online assortment selection policy via regret, that
is, the difference between the cumulative revenue
earned by an oracle who knows parameter 0 and that
earned by a retailer who is uncertain about 6. Depend-
ing on the computability of the static assortment optimi-
zation problem (S5-4), we define two types of (average)
cumulative regret.

2.3.1. Cumulative Regret for Exact Optimal Assort-
ment. Suppose the exact optimal assortment S*(-) in
(S5-4) is computable. The retailer should repeatedly
offer the revenue-maximizing assortment S*(6) when
the parameter 0 is known a priori. The maximal cumu-
lative revenue is

RY(T,0) = zT:r(S’;(G); 0)=T-r(S°(0);0).
t=1

When 0 is not known a priori, the exact optimal assort-
ment should be used as a benchmark, and our primary
objective is to derive an assortment selection policy P € %
that minimizes the cumulative regret

Regp(T,0) := R'(T,0) — Rp(T, 6).
2.3.2. Cumulative «-Regret for Near-Optimal Assort-

ment. When the exact optimal assortment 5*(-) is not com-
putable, the retailers may offer a-optimal assortments to
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customers and obtain the following cumulative revenue
when the parameter 0 is known a priori:

T

RY(T,0) =Y _r(S{(6);0).

t=1
Here S¢(0) € $%(0) may vary with t and may not be
unique because the a-optimal assortment in the static
assortment optimization problem (S5-4) may have mul-
tiple solutions. In our context, our primary objective is
to design an assortment selection policy minimizing the
cumulative a-regret

Regp(T, 0) := RY(T,0) — Rp(T, 6)

inf
S8(0)eF"(0),teT

T
f @ . _ R T )
S“(e)e;r}(s), teT ; r(51(6);6) p(T,0)

Here operation inf{-} is due to the possible existence of
multiple a-optimal assortments. The cumulative
a-regret measures the revenue loss due to the unknown
MCC parameter and compares the implemented policy
against the worst a-optimal assortments. If the imple-
mented policy is purely comprised of a-optimal assort-
ments, the cumulative a-regret is at most zero.

Remark 1 (Near-Optimal Benchmark). Using a weaker
tractable benchmark as a substitute for exact optimal
benchmark is not uncommon in the learning litera-
ture, particularly when the clairvoyant optimal policy
is not computable. For example, Zhong et al. (2022)
considered learning algorithms for the scheduling
problem in multiclass many server queues with aban-
donment, whose optimal policy was intractable even
when the model parameters were known a priori. The
authors used a benchmark policy of simple prioritiza-
tion rule that was asymptotically optimal as the
arrival rates and number of servers approach infinity.

The a-regret is also closely related with the concept of
suboptimality gap in the explore-then-commit learning
literature. As detailed in Section 5, the use of suboptim-
ality gap can be viewed as a special case of our a-regret
analysis.

3. FastLinETC Algorithm

3.1. Challenges and Overview

This section outlines an explore-then-commit algorithm
for online assortment selection under the MCC model.
Algorithms under an MNL model are provided in Rus-
mevichientong et al. (2010) and Sauré and Zeevi (2013).
For our algorithm design under the MCC model, there
are two central problems: (i) how to identify a separa-
tion period 7 that divides the selling horizon 7" into an
exploration phase and an exploitation phase and (ii) how
to estimate the MCC parameters conditional on custo-
mers’ final purchase decisions in the exploration phase.

The estimation of the arrival probability vector A
and transition matrix p is challenging because the
choice probabilities” expressions (55-1)-(S5-2) involve
the inverse of submatrices of p and thereby the associ-
ated log-likelihood function may not be concave.
Simsek and Topaloglu (2018) proposed an EM algo-
rithm based on a concave incomplete log-likelihood
function. However, the EM estimator may have multi-
ple limit points in the exploration phase and has no
consistency guarantee. Moreover, the theoretical results
in Simsek and Topaloglu (2018) required that the MCC
model included self-loops, which contradictorily made
the MCC model lose identifiability as shown in Appen-
dix C.1. Thus, using the EM estimator cannot help derive
sublinear regret bounds.

We propose a parameter recovery method (E-1)—(E-9)
with consistency guarantee and sub-Gaussian concen-
tration bounds (Lemma 5). To establish that, we assume
the possible assortment set & has a subset such that, by
presenting the included assortments to customers and
observing purchase decisions, a consistent estimator of
0 can be constructed:

Assumption 1. There exist (i) n* € {2,3,...,[¥]}, (ii) two
assortments Sn,Sh CN such that S, NSHh=0,|Sn| =
|Sh| =n* —1, and (iii) assortment collections $o,Fo C S
such that

So:={SU{k} |ke N\S,S € {Sn,Sh}},
Fo:={SU{kI U {j} |je N\(SU{k}),
ke M\S,S €{Sn,Sh}}.

Assumption 1 is easy to verify under commonly used
assortment constraints. For example, if ¥ is defined via
a cardinality constraint such that & :={S CN||S|<5},
Assumption 1 is equivalent to assuming 5 > 3. If & is
defined via a capacity constraint such that # := {S C V|
Y iesWi < W}, Assumption 1 is equivalent to assuming
W) +wn-1) + W) < W, where w(; denotes the weight
of the ith product in the increasing order of all products.
These specific constraints are considered because Désir
et al. (2020) and Udwani (2021) have provided constant-
factor approximation algorithms for static constrained
assortment optimization problems.

Our parameter estimation method is based on pre-
senting the assortments in ¥ U Po. Letd := |Fo| + | Fo]
and dy := |%y|. Then d <N? and dy <2N; that is, we use
O(N?) different assortments for estimation. Different
from other RUMs such as MNL models (Agrawal et al.
2017,2019), the parameter estimation of the MCC model
cannot be performed with observations from repeatedly
offering a single assortment. For example, suppose we
use a single assortment S C N to estimate the MCC
parameters. Then the transition from product i€ S to
other products will never occur, and the resulting transi-
tion parameters {p;};c\- cannot be identified. Under the
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unconstrained setting (¥ = 2N ), using only O(N) assort-
ments is possible, and Appendix E shows how this
relaxation simplifies our learning algorithm and regret
analysis.

We weave the estimation techniques into online opti-
mization and derive the separation period 7 based on
our estimators’ sub-Gaussian concentration bounds.
During the exploration phase from period 1 to 7, the
retailer repeatedly presents assortments in ¥ U ¥ and
observes customers’ purchase decisions. At the end of
this phase, a consistent MCC parameter estimator 0" is
generated based on the collected data. Next, a recorn-
mended assortment is computed based on 6", which will
be offered during the remaining explo1tat1on phase
from perlod 7+ 1 to T. We prove the consistency of esti-
mator 6" obtained from the exploration phase in Section 4.
Because the recommended assortment is computed
based on 6, the latter’s consistency ensures the former’s
convergence in probability to the exact optimal (respec-
tively, a-optimal) assortment if the exact optimal assort-
ment S*(-) is computable (respectively, otherwise).

3.2. Description of FastLinETC

3.2.1. Inputs and Initialization. Given the following
information about products and selling horizon
{N,r,¥, T}, we have two inputs prior to implementing
the learning algorithm: (i) a separation period t that
splits the exploration and exploitation phases and (ii) an
assortment function Sp(-) that maps the exploration esti-
mator 6" to an exact optimal /near-optimal assortment.
In the following description, we keep the flexibility in
specifying 7 and Sp(-), which depend on the availability
of exact optimal/near-optimal solutions in the static
assortment optimization and yield different regret
bounds (Theorems 1 and 2). For example, if S*(-) is com-
putable for any estimated parameter, we let 7=
[T3 log T and set function Sp(-) to be S*(-) throughout
the selling horizon. This combination will yield a cumu-
lative regret bounded by O(poly(N)T? log T).

3.2.2. Exploration Phase. In the exploration phase, we
repeatedly present the assortments in ¥y U ¥, where
the assortment set ¥, U &, is defined in Assumption 1,
and each presented assortment has the cardinality of n*
orn+1.

Example 1. For better understanding of this explora-
tion phase, we provide a simple illustrative example
with N ={1,2,3,4}. Following Assumption 1, we can
define the exploration assortments as $oU )=
{{1,2},{1,3},{1,4},{2,3},{2,4},{1,2,3},{1,2,4},{1,3,4},
{2,3,4}} and denote ¥y U Fy as {Ag, A1, ...,As} accord-
ingly. Then in the exploration phase, the algorithm will
sequentially offer Ay, A1, ..., As, Ao, A1, ..., As, ... to cus-
tomers until the separation period 7. O

At the separation 1per10d 7, we obtain MCC parameter
estimators 0" and 0" as follows. We first define the trivial
parameters’ indices I := {(i,i)|i € N} since p; =0, i € .
(Io may include more indices in N*, such as in a sparse
transition matrix, p, =0 for i, j belonging to different
product categories.) "I/'hen the MCC parameter 0 is divided
into trivial and nontrivial elements such that 6 = VeC(QO,
0.+), where the trivial parameter 0o :=vec({p;}jer,)
and the nontrivial parameter 0., := Vec({x iHien U
{pyk, i cen?\,)- Then Op is naturally estimated by

6() - Vec({p1] - O}(l ])EI()) (E-]')

Nontrivial parameter 0. is estimated by solving a system
of linear equations due to intrinsic properties of the MCC
model. Based on the collected data in the exploration phase
including offered assortments {S; }, <, and customers’ pur-
chase decisions {Z'}, ¢, ={(Z},Z¢,...,Z})}i<., we esti-
mate the nontrivial parameter 0., in four steps.

Step 1: The choice probabilities 7t(7, S) for every i € N,
and S € ¥y U ¥, are estimated by

S 1{S,=S,Zt =1}
Y l{Si=s 7
lEN.;.,SEg)()Ugjo. (E-Z)

(i, 5) =

Here the denominator denotes the frequency that
assortment S is offered, and the numerator denotes the
frequency that product i is purchased under assortment
S. Therefore, the resulting fraction can be used as an esti-
mator for choice probability 7(7,S). In the following
steps, we use these choice probability estimators to con-
struct a set of linear equations, from which we recover
the parameter 0,...

Step 2: We define intermediate variables for all 7,j €
N, S5ePyas

1, ifi=j,
77, Sli) = { © (’i)(_lgé]{ls};’ W itiens,
0, ' if i€ S \{).
(E-3)

Here 71°(j, S|i) estimates the probability of purchasing
product j from assortment S conditional on that the
first-choice demand is product i.

Step 3: 0. is estimated (recovered) by minimizing
squared residuals of the following linear equations:

> [R7(,SIk) = 77, S10)Ipg, = [R7(,S|i) — 77(, S|0)],

keN
ieN\S,jeS,,Se%y,  (E-4)

S IR, Sk — 7, SI0)IA, = [£7(,9) — (7, S|0)],

keN
j€S:,5€dy.  (E-5)

Note that the predefined trivial parameter estimator
90 —vec({pl] =0}, er,) is plugged into (E-4) before
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computing the solutions above. For the convenience of
exposition, we rewrite events (E-4)—(E-5) using a matrix
notation:

(07, :(E-49),(E-5)}={0,: X0, =77}, (E6)

where entries of X and Y are defined by coefficients in
(E-4) and (E-5). Minimizing squared residuals gives the
following estimator for 0,.:

é:_+ = Vec({i;}ie./\/ u {pz]}(z ])ENZ\IO)
=R XK, (E-7)

Combining (E-1) and (E-7), we obtain the following esti-
mator for 6:

0" = vec(0y,0..) = veelA; }iaw U P} jen?)- (E-8)

Because 0 is computed from (E-4)—(E-5), it may not be
a valid MCC parameter in space ©. We use the follow-
ing rounded estimator as the final estimator:

0" = argmin||0” — oll;. (E-9)
0'c®

3.2.3. Exploitation Phase. In the exploitation phase, a
recommended assortment Sp(@ ) is offered based on esti-
mator 8" until period T.

The explore-then-commit learning algorithm for the
dynamic assortment optimization problem under the
MCC model is summarized in Algorithm 1.

Algorithm 1 (FastLinETC P(N, T, 1, Sp(+)))
Input: integer 7 and assortment function Sp(:).
Output: offered assortments {S;}/_;.
Phase 1. Exploration:
Define an arbitrary order for the exploration assort-
ments ¥ U ¥ satisfying Assumption 1 and denote
them as {Ao,Al, . /Adfl}-
forte{1,2,...,7} do
Define k; := (t —1) modd, and offer S; = Ay, to
customer f.
Observe the customer purchase decisions Z' =
z,zt,...,Z}).
end for
Compute choice probability estimators 71*(i,S) for
allie N,,S €%y UP via (E-2).
Compute conditional choice probability estimators
7°(j,S|i) for all i,j e N4, S € F, via (E-3).
Compute the linear equation system’s coefficients
X" and Y' via (E-4), (E-5), and (E-6).
Compute the MCC parameter estimator 6" via (E-1),
(E-7), and (E-8).
Compute the rounded MCC parameter estimator
0" via (E-9).
Phase 2. Exploitation:
To all remaining T — 7 customers, offer S »(69).

4. Performance Analysis of FastLinETC
Our main results are two instance-independent upper
bounds on the policy regret associated with Algorithm 1.
Given the assortment constraints and possible assort-
ments ¥, if the exact optimal assortment is computable,
an order-of-T3 log T policy (ie., 7€ O(Ts log T)) will
yield a cumulative regret of O(poly(N)T log T). Other-
wise, if near-optimal assortments are computable, an
order-of-log T policy will yield a cumulative a-regret of
O(poly(N)log T). Here o € (0,1) is a predefined constant
associated with & for the benchmark of constrained
assortment optimization as outlined in Section 2.3.

To establish our results, we make the following
assumption on parameter space.

Assumption 2. For the MCC model (N, r,0), 0 belongs to
aspace © := 0, x [I, ©,, , where

1
@/\:: '(ﬂl,ﬂz,...,ﬂ]\])
{ZkN—o“k

1
(@) 3 = 7'(bilrbi2/~--/bil\])
’ {ZkN_obik

ap=1,a;€ [Q;‘ﬂj]JEN},

bio_l b e[bl//bl]]/jeN}/
ieN,

and the known constants {a;a;}icn U {bij,gij}i, jen SR
satisfy the following two conditions:
(No self-loops) forallie N, b; = b =0; and
(Bounded attraction) 0 < g;<a; < oo (i€ N), and
Ei]' < 00(1,] EN)
In this assumption, the unknown {a;};c\ and {b}; e
determine the parameter 0 =vec({A;}cn U {pij}i’ jen):

i
for all i,j € N. Correspondingly, the

given {a;};cr and {by}; jerr, We can compute A; =

and .01] Zk o Di
ranges of {ai}iey and {bj}; e define the parameter
space for 6.

Our main results are formally stated as follows.

Theorem 1 (Regret of Order-Of—T%logT Policy). Suppose
Assumptions 1 and 2 hold and the exact optimal assort-
ments S*(-) are computable under possible assortments &.
Let >0 be an arbitrary constant. There exist x1,T; €
O(poly(N)) such that by letting t=[uT3logT], Sp = S*("),
and policy Py be defined by Algorithm 1, the regret associ-
ated with policy Py at any time T > T is bounded as

Regp, (T,0) < KJ% logT,

where x1 and T, are constants independent of the MCC
parameter 0.

Theorem 2 (Regret of Order-Of-logT Policy). Suppose
Assumptions 1 and 2 hold and the ya-optimal assortments
SY4(-) are computable under possible assortments & where
a€(0,1) and y € (1,1). There exist 1, 12, T € O(poly(N))
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such that by letting © = [log T7, Sp = S7*(:), and policy P,
be defined by Algorithm 1, the a-regret associated with policy
Py at any time T > T is bounded as

Reg%z(T, 0) < xolog T,

where 1, k5, and T, are constants independent of the MCC
parameter 0.

We next remark on motivation and weakness of
Assumption 2, justify the use of ya-optimal assortments
in Theorem 2, and discuss the regret upper bounds in
Theorems 1 and 2.

Remark 2 (On Assumption 2). The attraction parameters
{aitien and {by}; - play the same role as the attrac-
tion parameters in the MNL model: They are introduced
for convemence of estimation, and a; = (l eNy),
P’/ (ieN,jeN,). Because ag = by =1 for allie N,
the fractions defining © have strictly positive denomina-
tors and are well defined. The main analysis can be simi-
larly developed to other closed parameter spaces
satisfying conditions (i) and (ii) under Assumption 2.
These two conditions are not strong. Condition (i) has
been discussed in Section 2.1, which is necessary for
model identifiability as shown in Appendix C.1. Condi-
tion (ii) essentially requires that the arrival probabilities
{Ai}tienr. and the transit-to-no-purchase probabilities
{p;}ien are lower bounded. (For counterexample, con-
sider i,je N,i#j. p;y= Z w1]l approach 0 if by
keN" +

approaches co. A; = Z . w111 approach zero if a;
keN 4

approaches oo or a; approaches zero.) The lower
bounded {p,,},cn avoids “infinite loops” in the MCC
model because the customer’s probability of being
absorbed into the no-purchase option is above zero after
each transition. Overall, we only require O(N) entries of
transition matrix p lower bounded and allow p to be
sparse (e.g., transitions only occurring within the same
product category). This condition is significantly weaker
than Simsek and Topaloglu (2018) assuming that all
Q(N?) entries of p and A are lower bounded.

Remark 3 (Use of ya-Optimal Assortments). In Theorem 2,
we provide ya-optimal assortments in the exploitation
phase while we analyze the a-regret and use the a-opti-
mal assortments as benchmark. The improvement of
approximation ratios from « to ya is insignificant because
the approximation ratios of near-optimal assortments
often have open ranges and thereby, we can find a valid
improvement factor y > 1 for all ratio a. For example,
Désir et al. (2020) and Udwani (2021), respectively, gave
an (1/2 — ¢)-approximation algorithm for assortment
optimization under cardinality or capacity constraints
with € >0 being an arbitrary small constant. Let the
benchmark take 0.45-optimal assortments (i.e., ¢ = 0.05).
Then 0.49-optimal assortments are obtainable. Here we

can set the predefined constant a = 0.45 and the improve-
ment factor y =342 The a-regret bound in Theorem 2

depends on factor y as x>, T> € @) ( 1)2) ; see Section 4.4.

In fact, the use of suboptimality gap Amin in explore-then-
commit learning literature (Sauré and Zeevi 2013, Gallego
and Lu 2021) can be viewed as a special case of analyzing
a-regret while providing y«a-optimal solutions where o =
2%11 and y = 1. A detailed discussion is in Section 5.

Remark 4 (On poly(N) Regret and Its Unconstrained
Relaxation). Our regret upper bounds scale polynomi-
ally in N. This is ideal because it avoids a combinatorial
complexity of assortment selection. The polynomial
order of N in both Theorems 1 and 2 has two sources:
first, in the exploration phase, we use O(N?) different
assortments, that is, |y U %] € O(N?). Second, when
we estimate the MCC parameter 0, we solve a system of
linear Equations (E-4)—(E-5) with O(N?) rows and O(N?)
columns. If the problem is unconstrained, that is,
& =2, then both the number of exploration assort-
ments and the size of linear equations for estimating 0
will be reduced significantly; see the simplified algo-
rithm in Appendix E. Consequently, the order of N in
regret bounds is also reduced. For example, the regret
coefficient x; in Theorem 1 will reduce its order from
O(N*?) to O(N*®); see Expressions (6) versus (E.4).

Remark 5 (Estimation Efficiency and Consistency). Tech-
nically, to estimate the MCC parameters, we devise
a new batch-to-batch sampling method and derive
the desired concentrations bounds involving novel
techniques to approximate stationary distributions via
matrix operations; see Lemma 5. Compared with the
state-of-the-art EM method for parameter estimation
(Simsek and Topaloglu 2018) that suffers from unguar-
anteed convergence and increasing computational bur-
den in T, our consistent estimators enjoy sub-Gaussian
concentration bounds and superior computational times
with almost negligible dependence on T. In our compu-
tational experiments, our estimators are at least 1,000
times more efficient.

In the static assortment optimization, the exact opti-
mal assortment is computable only for the uncon-
strained setting (Blanchet et al. 2016) or the MCC
model’s special cases, for example, the MNL model
under a TU constraint set (Davis et al. 2013) and the gen-
eral attraction model under a cardinality constraint set
(Wang 2013). The most related lower bound result is

Q(VT) for a constrained MNL model (Chen and Wang
2018). There is a gap between our T?®logT upper
bound and the known VT lower bound. We would like
to make the following comments.

i. The estimation for MCC parameters is far more
challenging than traditional MNL models (because it
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captures both the initial preference and the substitution
between each pair of products and requires Q(N) differ-
ent assortments for parameter estimation). It is an open
research question if the lower bound still remains on the
order of VT, which can be worthy of further investigation.

ii. There could be variants of our algorithm (e.g.,
involving multiple batches of exploration and exploita-
tion) that could potentially improve our upper bound,
but the design and analysis would be extremely chal-
lenging. For instance, there are two key difficulties in
using upper confidence bound (UCB) based multi-
armed bandit techniques. First, one has to carefully
define the notion of “arms” and construct the reward
confidence radius associated with each arm. The pro-
ducts cannot be treated as independent arms because
the customer choice observed on offering a product i
also depends on other products in the same assortment
S. It is also computationally inefficient to treat all possi-
ble assortments S € ¥ as arms. We cannot define arms
based on each product’s attraction value as in an MNL
model (Agrawal et al. 2019) because customers’ choice
probabilities are jointly decided by the arrival probabil-
ities of each product and the transition probabilities
between products. Second, given that the constrained
assortment optimization problem often lacks comput-
able solutions (in polynomial time), we can expect that
it is even harder to compute the so-called “optimistic”
constrained assortment over the entire parameter space
defined via confidence radii in every iteration.

iii. Moreover, a simple explore-then-commit strat-
egy is arguably more deployable in real-world settings
(in terms of implementation and communication to
various nontechnical stakeholders). Our upper bound
matches the T?/3 lower regret bound of batched bandits
under explore-then-commit strategies (Perchet et al.
2016) up to a logarithmic factor.

In the “more general” static assortment optimization,
the exact optimal assortment under the MCC model is
not typically computable, and only near-optimal assort-
ments are available. Because a retailer in practice has to
resort to near-optimal assortments rather than exact
optimal assortments (which are not computable) in such
a scenario, the normal regret based on exact optimal
assortments is almost impossible to quantify. Instead,
our a-regret is a more practical measure for assortment
selection policies. Our analysis of a-regret-based learn-
ing algorithms departs from previous assortment stud-
ies based on a normal regret definition (Agrawal et al.
2019, Chen et al. 2021a, Gallego and Lu 2021). Because
the a-regret uses an a-optimal assortment as our clair-
voyant policy, the designed learning algorithm con-
verges to such a weaker benchmark faster than that in
Theorem 1, and the derived regret bound is improved. In
Theorem 2, we find the optimality gap of near-optimal
assortments introduces an instance-independent “regret-

free region” (Lemma 4) surrounding the true parameters,
and the convergence rate of our batch-to-batch estimator
to this region is on the order of log T, resulting in a better
regret upper bound.

4.1. Proof Outline

We outline proofs of Theorems 1 and 2 by showing sub-
Gaussian concentration bounds of 6 and linear bounds
of exploitation optimality gap w.r.t. 0". Here the exploita-
tion optimality gap denotes the single-sale revenue differ-
ence between the exact optimal assortment calculated
with the true parameter 0 and that calculated with the
estimator 0, i.e., |r(S*(6);0) — r(S*(6"); 0)|. A flowchart
is shownin F1gure 1.

First, Section 4.2 studies the smoothness of the objective
function through the lens of Lipschitz continuity. For any
assortment S, the single-sale revenue r(S; 0) is Lipschitz
continuous w.r.t. 6. Moreover, we can find a Lipschitz
constant C; that is independent of S and decreases as ¥
becomes smaller (Lemma 2). The Lipschitz continuity of
single-sale revenue implies a linear bound of the exploita-
tion optimality gap w.r.t. the estimator 8" ((i) of Lemma 4).
Moreover, when analyzing near-optimal assortments and

a-regret, the Lipschitz continuity introduces an instance-
independent regret- -free region: any ya-optimal assort-
ment based on a 8" that is within the d*-neighborhood of
true parameter 0 is @-optimal under 60 and thereby the
associated a-regret is zero. This distance d* is independent
of O ((ii) of Lemma 4).

Next, Section 4.3 shows the consistency and sub-
Gaussian concentration bounds of the estimator 8"
(Lemma 5) We show the following properties of estima-
tors: (i) 0" is Lipschitz continuous w.r.t. the estimated
choice probability 72°(i,S) for any ie Ny and Se U
%o due to the structure of (E-1)~(E-9); and (ii) 77 (i, S) for
ieN,,SePyUP, is a consistent estimator. Following
empirical distributions of independent samples we
derive concentration bounds for 27(i,S) and 6.

Finally, we derive regret bounds in Section 4.4 using
the linear bounds and concentration bounds obtained
previously. These policy regret bounds are obtained by
balancing and minimizing the cumulative regret of the
exploration and exploitation phases.

4.2. Lipschitz Continuity

We first show that the single-sale revenue 7(S; 0) is the
unique solution of (S55-1)-(S5-3) and then derive its
Lipschitz constant w.r.t. 0, based on which we prove
that the exp101tat1on optimality gap has a linear bound
w.r.t. 0", For convenience of analysis, we define the fol-
lowing constants. First, we define the following lower
bound for the maximal single-sale revenue in the worst
case of 0 € ©:

ait;
= max
sef Zl +> ek

_ MaXgey ) g i rl
1+ Zke/\/’ Ak
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Figure 1. Flowchart of Proving Theorems 1 and 2 for Assortment Selection Policies” Regret Bounds

--------------------- Subsection 4.4 =-====mmmmmmmmmm e

Assortment selection policies’ regret bounds (9)

Subsection 4.2 ==-====mmmsmmmmmmmmemos

N

Proxy optimality gap’s bound w.z:z. 8% (8) i

(Lemma 4)
)

’
\.

F V3

(Theorem 1&2)

9 <1® ‘\\

e Subsection 4.3 -

7(i,S) gt
Concentration ——— > Concentration
inequality @) 2R84 =D inequality (7)
(Lemma 9 & (C.17)) (Lemma 5)
v. - Py
., B@=06
Lipschitz 3 g ' A
continuity @) ™., "4 ﬁT(j, S; i) )?T’ 7T Lipschitz_
(by (E-3)) ) . . * continuity (1)
C‘oncentlratlfgfl Concentration (by Lemma 7 & (5))
inequality (5) inequality ©)
! (C.18) Lipschitz (Lemma 8) }
\ continuity (2) /
. (by (E-4)-(E-6)) "

Notes. The numbers in circles index the results presented in this figure. Solid arrows highlight main proofs. Dotted arrows represent supplemen-

tary proofs.

Indeed, for any assortment S € ¥ and producti€ S, r; is
the revenue for selling one unit of product i, and
% <A; is a lower bound for the probability of
+Zke.\°ﬂk

product i being purchased. Thus, r returns a lower
bound of maximal revenue. Next, we define the mini-
mal absorbing probability:

1
1+ maxien D gepn b’

that is, the minimal transition probability to state 0 (no
purchase) from any other state (product).

:=mininf p,, =
n ieN 96@‘010

4.2.1. Computation of Single-Sale Revenue. We verify
that (55-1)—(SS-3) return the choice probabilities and
single-sale revenues.

Lemma 1. For the MCC model (N, r,0) with a parameter
space ©, equations (SS-1)—(SS-3) have a unique solution
and return the average visit times, the choice probabilities,
and the single-sale revenue for every 6 € © and S C N

Proof. The average visit times and choice probabilities
are well defined according to the following observa-
tion. For any O =vec({Ai}icn U {pi]'}i,je/\/) €® and
SC N, we have p,,=1and p,, >n>0 for all i e N by
the definition of 7. Thus, state 0, that is, no purchase,
is an absorbing state, and the probability of being not
absorbed after t transitions is upper bounded by

(1 —n)". Thus, the average visit times and choice prob-
abilities are well defined and finite.

Equation (1) in Simsek and Topaloglu (2018) shows
that the average visit times and choice probabilities
should satisfy (SS-1)—-(SS-2). Then to prove Lemma 1,
it is sufficient to show that the system of linear equa-
tions (55-1) has a unique solution. Let us write (55-1)
into the matrix notation with

u:=w(iS;0))es,  A=(Aies,
i:= (i, S;0))iens, A:=Aiewns, Pi=(0y);jenns-

P:=(p;)iens jess

ey

Then (S5-1) can be written as
it=A+PTi, (SS-M1)
u=A+Plu, (SS-M2)

MQ&6)2<1—§:AJ4-§:u@&Gmm (SS-M3)
ieN ieN'\S

Thus, (SS-1) will have a unique solution if (I — P7)is
invertible. For every vector x € RLN\Sl,HPTle <(1-
nllxll; because Y \\sp;<1—py<1—1 for all i€ N\S.
Then for every x € RIV'\9! and thereby every x e RS,
we have lim;_,o(PT)'x = 0. Thus, (I — PT) ! exists and
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equals I +PT + (PT)*+ --- Thus, the solution of (S5-1) is
unique. O

Last, recall (S§5-M1)—(SS-M2) and let r := (;);cg. Then
we can write the single-sale revenue r(S; 0) as a closed-
form function

1S;0)=+"[A+PT(I—PT)'A]. (SS-M4)
4.2.2. Lipschitz Continuity and Exploitation Optimality
Gap. We now prove the Lipschitz continuity of the
single-sale revenue r(S; ) w.r.t. 6.

Lemma 2. For the MCC model (N, r,0) with parameter
space © and possible assortments &, there exists a Lipschitz
constant Cy, such that |r(S; 0;) — r(S;01)|<CL |02 — 61]4
forevery 01,0, €®@and Se .

We use the following inequalities, the detailed proof
of which is included in Appendix C.

Lemma 3. Forall y e RN\, Sc N, and O € ©, we have that

5\ [Ylloo
I-P) ly|., <2, 2
=Py Myl < 7 ©
I*PT -1 oo< ||y||1 , 3
=T Myl G ©
where the constant n(¥) is given by
1

y = N = mn ———.
TT( ) Pio SeS’,ieN\Sl+ZkENbik

in
Se¥,0€0,ieN'\S
Here n(¥) > n by definitions, and 7(¥) can be inter-
preted as the lower bound of transition probabilities to
state O (i.e., no purchase) from any other state (product)
outside S € ¥. Thus, a small & due to strong assortment

constraints may yield an 7)(¥) significantly greater than 7).

Proof of Lemma 2. Lipschitz constant induced by partial
derivatives. Given an assortment S € ¥, r(S; 0) is differ-
entiable w.r.t. the parameter 6 € © because 7(S;0) is a
composite function of 9 produced by (SS5-1)—(SS-3).

Formally, recall (S55-M4). Because A, A, P, and P are
differentiable w.r.t. 6 = vec({A;}icn U {pi].},./jE v) €O by
definitions in (1), the composite function 7(S; 0) is also
differentiable w.r.t. 6.

We can define a tight Lipschitz constant C; as the
largest partial derivative of r(S;0) w.r.t. elements of 0
acrossallS e ¥and 6 € ©:

The trivial parameters ;= 0 for all (i,f) € Iy and thus,
they are immaterial to C;.

or(S; 0) <
A |, peN\io

or(S; 0)
apz’j

C;:= sup {max
ses,0c0 | €N

4.2.2.1. Divide Partial Derivatives. We divide the par-
tial derivatives inside the definition of C; into five

groups and calculate their bounds. We rewrite C;] =
max{Cr,,Cr,,Cr,,Cr,,Cr;}, where each parameter is
defined as

Cr, ;== sup {max or(5;0) }
Ly = a 7
seg,6c0 L €5 | IAi
Cr,:= sup {max 9r(5;0) },
ses, peo LieN\s|  dA;

ar(S; 0)
Cr,:= sup max )
se7,0e0 | NEN\S)XI)\y 8pij
or(S; 0
Cr, == sup max r(S;0) ,
5e%,0e0 | (i,)eWN\S)\lo 8pl.].
or(S; 0
Co= sup { max |ZSO
se,0e@ | (LNESXNM)\o Bpl.].

Here C;, = 0 because, for all (i,j) € S x N, r(S; 0) is inde-
pendent of p;; and 9r(S; 0)/ 8pij =0.

4.2.2.2. Bound Partial Derivatives by Groups. Next,
we bound Cr,,Cr,,Cr,,Cy,. Define 7(¥) := maxgey, jes?;
< "'max as the maximal single-product revenue under possi-
ble assortments &. According to (1) and (SS-M1)~S5-M4),
Cy, satisfies

or(S; 0)
oA

Cr, =
Se¥,0€0

= sup |l =7(F).
o Se¥,0e0

Similarly, Cr,-Cr, can be bounded by

ar(S; 0 -
Ci, = SO = sup la— Py el
Se¥,0e0 o Se¥,0cO
IPrll, _ 7(¥)
< su S — v (due to (2))
sw,ge@ n) n()
or(S; 0 o 1=
C, = PEON = sup - P A
Se¥,0e0 o  Se¥,0e0

= sup {lI-P7) "All, - IIrll}
Ses, 0e©

[IAlly (&)

< p{77(9’) ' 7“’))} <@y (dueel)

or(S; 0)
J Pij

Cr, = sup max
se%,0e0 | (i,))EN\SY\Iy

}

= sup { max_ |AT(I-P)'Ey(I—P) 'Pr| }

se#,0e0  (i,)e(N\8)*\Iy

< sup {AT(I-P) Y., —P)"Pril..}
Sef, 0e©

IIXlll.IIPrlloo} 7(¥)
SSeiol,lge@{’?(ff) n() <172(51’)’
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where the single-entry matrix Ej;; € R NS has only one
nonzero entry of value one, whose location is the same
with that of p; in P, and the last row’s inequality is due
to (2) and (3) in Lemma 3.

Therefore, the tight Lipschitz constant C] is bounded by

Cz = max{CLl,CLZ,CLS,CL4,CL5}
#(F) 7S 7S o} IC))
&) n&) ("~ ()

< max{r(ff),

Thus, Lemma 2 requires a Lipschitz constant of 7(¥)/
7). O

Lemma 2 also implies a linear bound of the exploita-
tion optimality gap for exact optimal assortments and a
regret-free region for near-optimal assortments.

Lemma 4. Consider the MCC model (N, r,0) with param-
eter space © and possible assortments ¥. For any 0 € ©
and any estimator 0 € ®, we have the following:

i. (Exploitation optimality gap) |r(S’ (0);0) —r(S*
(0);0)| is bounded by 2C]16 — Oll1.

ii. (Regret-free region) If |10 —0||; <

7""(6)69’“(6) where a€(0,1),y€(1,2 - If 6 — o1,
< (;(}1 fa), then S (6) € $(60). In other words a ya-optimal
assortment under 6 is an a-optimal assortment under 0 if
ICECIIERS éa(g +a;, an exact-optimal assortment under 0 is
an a-optimal assortment under O if 16 — 6| 1< Cyﬁl_ f 02).

ra(y—1)
S C (g then

Proof. The first statement (i) holds true because

7(S*(0);0) — r(S*(0);0)| = 1(S(6); 0) — (S*(0); 0)
= [1(S"(0);0) — 1(S"(0); 0)] +[1(S(0); 0) — r(S*(0);0)]
+[1(S°(0);6) — r(S*(0); 0)]
<[r(57(0);0) — (S°(0); )] + [1(S*(0); 0) — (S (0); 0)]
(by 7(S*(0);0) < r(5(0);0))
<2CL||9—9||1. (by Lemma 2).

The first half of (ii) holds true because
r(57*(6); 0) . r(87%(6); 6) — Cullf — 6l
r(5(0);0) ~ r(5(6);0) +Cillf — 6l

V(SM(Q) 6) — CLl16 - 6l
" 1(8(0);0) + CLllo — ol

r(87°(0),0) _ CLllo-0
r(S(0),0)  r(s(0),0)
Clb—6ly
r(5(0),0)
CLlo—6l,
T

(by Lemma 2)

>

Yo —

z el (by dividing r(S*(0); 0),
1+ =5

and r(5*(0); 6) = 1)
aly-1)

Yo — S 4 ra(y = 1)
z = = q. — < .
14 40D a (by 16— Ol Ci(l1+a)

T+a

Similarly, the second half of (ii) holds true because

r(5(0);0) _ r(5'(6);0) —Cull6 - 6ll,
r(5*(0); 9) 1(5*(0);6)+C||6 —0l|,
r(S (0);0)—CLlI6 -0l (by Lemma?2)
7(5 (0);0)+Crll6 — 0l
_Gllo—olh 1 _ Cullo—el,
r(5*(0);0) > r
cllé—6l, = 1, CLlé-6l
15*(0);0) 1+ r
_1-a
> ! 11:';: >a
1+ T

(by s @6) > 1,160l < S ) ©

4.3. Estimator Consistency and

Concentration Bounds
The estimation strategy in (E-1)— (E 9) provides a con-
centration inequality of estimator 0.

Lemma 5 (Consistency and Sub-Gaussian Concentration
Bounds). Consider the MCC model (N,r,0) with the
parameter space ©. For every 0 €O, the estzmator 6
defined through (E-1)— (E 9) is consistent such that 050
as T goes to oo, where “—" denotes convergence in proba-
bility. Moreover, there exist constants w, P,y € Ry, inde-
pendent of O such that for all C € (0,(oN),

B[IE" - Ol > (I<oN%™, teN. @)

The detailed proof and how to obtain (w, ¢, (y) are given
in Appendix C. The main idea is to develop the follow-
ing “chain of estimators” (Figure 1):

o (E- 9) md1cates that the distances from the two esti-
mators & and " to the true parameter 0 satisfy

16" — 1l <[18° = 6"l +116" — 01l <216" ~6ll. (5)

e (E-1) and (E-7)—(E-8) indicate that 0" is LlpSChltZ
continuous w.r.t. the intermediate variables (X Y )

o (E-4)—(E-6) indicate that the intermediate variables
(X5, Y") are Lipschitz continuous w.r.t. the estimated
conditional choice probabilities {7*(j,S|i)|i,j e N,
Sed 0}.

o (E-3) indicates that the estimated conditional choice
probabilities {7“(j,S|i)|i,j e N'4,S € Fy} are Lipschitz
continuous w.r.t. the estimated choice probabilities
{R"(0,8)|ie Ny, S € FoUPo).

e For any fixed S € ¥y U o, by the definition of (E-2),
the estimated choice probabilities {71"(i,S)};cy,, form
an empirical distribution and thus follow the Dvoretzky—
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Kiefer-Wolfowitz inequality (Kosorok 2006), which is a
sub-Gaussian concentration bound. Moreover, {71*(7,S)|i €
N, Se%Py U P} are consistent.

Applying the chain rule to these estimators, 6" is a
consistent estimator of the MCC parameter 6. More-
over, combining the above Lipschitz continuity proper-
ties along the estimator chaln we can obtain a

concentration inequality of 0" based on that of {27(i,S)|
ZEN.;.,SEg?oUg’o}

Remark 6 (Sampling Strategy in Exploration Phase). We
elaborate on the rationale behind assigning the explo-
ration assortments $o U ¥ equal weights to offer in
Algorithm 1. Our MCC parameter estimator 6" is con-
structed as a highly nonlinear function of choice prob-
ability estimators {7t (i, S)} .. seq,ug, See (E-1)~(E-9),
which first constructs a set of linear equations using
both the MCC parameter and the choice probabilities,
and then inverses the coefficient matrix to recover the
MCC parameter. To obtain an accurate estimator 0
from the exploration phase, Algorithm 1 minimizes
the supremum error of choice probability estimators
{7°(i, 9}, sesoug,- BY the Dvoretzky—Kiefer-Wolfowitz
inequality, we observe that the concentration bound of
any choice probability estimator 71°(i, S) is completely
determined by the frequency of assortment S offered
and is independent of the true choice probability
(i, S); see (C.17) in Appendix C.3. This suggests that
offering the exploration assortments with equal
weights is as efficient as alternative sampling strate-
gies that minimize the supremum error of estimators

{7"(, S)}ie/\/’+, SeFouFy"

4.4. Proof of the Performance of FastLinETC
4.4.1. Regret for the Exact Optimal Assortment. We
prove the regret bounds in Theorem 1 and show that the
following constants T; and «; in these bounds are inde-
pendent of 0 € ©.

2
K1 1= 2maxpt (1 + qZZZ) +3w 2C N3 (1 + 3::] +2NY,

T, —rnax{Z 2u3, (Pw N1 +7N+2N) } (6)

Proof. Let us define ¢":= pN?,
so that (4) can be written as

w =wN~7,( =N

P[I6" - 6ll, > Cl1<¢pe ™,  Ce(0,5),teN, (7)

and we have x71 > 2rmaxt + 2rmaxtt 1" +3(2 2+ 2)iwHCy,
(3 + Z)ZC W 3.

Because T>T > max{z Z%y*%} we have 7 = [uT3log T]

> ||uT; log Tyl = [2log?2|| > 2, which further indicates

15
\ /10 0. In addition, we have
logT log[‘uT% log T'| log(Z‘uT2 3log T) loguT?®
@ ||yT210gT|| @ yTSIOgT < w‘yT% log T
10gT+logy 3log T N logu
) yTlogT a)*yTélogT a)*‘uT% logT
< N (§+2)2-w**%r%<ca-
) ‘uﬁ w3 \p

<due toT > T > (i ) G w ) 8)

Because 4/~ 1°g * € (0,;), we can plug C = \/lzg; into (7),
which yields

IP’[H@T o, > \/1"5“1 <éT )

Then the regret of policy P; can be divided into three
parts: (i) for £ <1, the regret associated with every sin-
gle customer is bounded by rmay; (ii) for ¢ > 7 such that

10 — 61, > /57, the regret associated with every sin-
gle customer is also bounded by max; and (iii) for t > t
such that |6 — 0, <

every single customer is bounded by 2C;

the regret associated with

(u 't
log
w*T

Lemma 4. Therefore, the regret of policy P; is bounded by

due to

ReGy, (T, 0)< i + (T = 1) P{He ol > Zgj

log T ~T log T
+2CL\/w§T(T—T)-IP’[||9 —e||1<,/w§1]

< TmaxT + Tmax(T — 7) - @'1T -1

I
+201 /=22

(T—1) (due to (9))

I
< P + Fenan ) TT 1 +2C, T/ Zg;

< rmax[yT%log T+ rmax(j)*T[yT% log T

+2C.Ty/ IOgTT

< 2t T3 108 T + Py T(u T3 log T) !

(duetot = |'pT% log T7)

%
+20,T- G + 2) e (due to (8))

< Zrmax‘uT% log T+2rmxy_lqb*T% log T
1
+2 (§ + 2) zw*’%CLTé
u
< <2rmy + 2L

. 3(%4,2)267%&)”[% log T < T logT. O
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4.4.2. Regret for the a-Optimal Assortment. We prove
the a-regret bound in Theorem 2 and that the following
constants 1, T, and «, in Theorem 2 are independent of
0.

o 2 rmaxN7 L N7
Ka = rmax+rmax¢N + G)C’Z ’ l;l}-_ (A)C’Zl
s Jra(y—1)
C .—mm{cL(1+a),CoN},

T :=h() =inf{x > 3| Ylogy <y, Vy = x}. (10)
By definition, function h(¢)) € O(1'*¢) for all € > 0. Thus,
T, € O(N70+9)),

Proof. We first rewrite (10) into ¢ = i, ' =min

{%,CB}, and K2 = Fmax + Tmax®” + Fmaxyp. With 7=

[11og T, inequality T > T» indicates that T > max{t,3}.
In addition, concentration Inequality (7) indicates that for
all 7 € N, we have

P10 — Ol > 1< e ™2, (11)

Thus, the a-regret of policy P, can be divided into
three parts: (i) for <7, the a-regret associated with
every smgle customer is bounded by 7may; (ii) for t > 7
such that ||6 — 0|, > T, the a-regret associated with
every single customer is also bounded by 7may; and
(iii) for t > 7 such that ||6 — 0|, £T, the a-regret asso-

ciated with every single customer is zero because
16" — 6], <T < ?(()1/ +3/ that is, 8" falls into the regret-
free region. Thereby, S;=S5"%(0 t>1) will be an
a-optimal assortment under the true parameter 0
according to Lemma 4. Thus, the a-regret of policy P,
is bounded by

Reg}, (T,0) < Fmax T + Fmax(T —7) P[0 — 0]l > T']
< Fmax T+ Fmax T+ e ™2 (due to (11))
$Tmax[ W10 T] + 1o T - e~ W10 TIIC2
$TmaxW 108 T + T + T T - e~ ¥108TC'2

$Tmaxt 108 T+ Finax + Fmax @ TH V<2

1
STmax 108 T + Fmax + maxP” (due toy= a)—C,’Z)

< (rmaxl/} + ’max + rmax(z)*) 10g T

<xylogT. (duetoT =3). O

5. Connection Between Suboptimality
Gap and Subregret

In this section, we demonstrate that the use of suboptim-
ality gap in explore-then-commit learning literature can
be viewed as a special case of our a-regret analysis. Let
Amin denote the suboptimality gap in our static MCC

assortment selection problem:

Amin = ére‘é (r(S (6);0) Segr){l{eslzée)}r(s, 6)),
which represents the revenue gap between the best and
the second-best assortments across all 0. We assume (i)
the optimal solution 5*(0) is unique and computable for
0 € ©, and (ii) Amin > 0, which is a common assumption
for explore-then-commit learning literature that uses
suboptimality gap (Sauré and Zeevi 2013, Gallego and
Lu 2021). Then we find the following equivalence
between the a-optimality/a-regret and the exact opti-
mality /regret.

Proposition 1. By letting a=1— ZAr:“ , any a-optimal
assortment S is also exact optimal:

F46)={S"(0)}, 6€0O. (12)
For any policy P, its a-regret equals its regret:
Reg$(T, 6) = Regy(T, 0). (13)

Proof. (12) is because for any Se %%(0), we have
7(S;0) = a-7(5(0); 0) = (1 —522) - 1(S(0); 6) = r(5*(0); 6) —
Amin - %{f‘i’@) > 1(5*(0); 0) — Apin. because the revenue
gap between S and 5*(0) is smaller than Apn, S = S*(0).
Combining (12) with the definition of regret,

Regp(T,0) = inf RY(T,0) — Rp(T, 0
eGh(T,0)=_  inf RT,0)-R(T,0)

=R(T,0) — Rp(T, 0) = Regy(T,0). O

We let y =1 and write $*(0) as $7*(0) with slight abuse
of notation. Together with Theorem 2, Proposition 1
suggests that by providing ya-optimal assortment (i.e.,
the exact optimal assortment) in the exploitation phase
and deriving an order-of-log T a-regret, we can eventu-
ally bound the (normal) regret as O(logT). Formally,
we have the following.

Proposition 2. Suppose Assumptions 1 and 2 hold. By let-
ting T =[1logT], Sp = S*(:), and policy P5 be defined by
Algorithm 1, the regret associated with policy P5 at any
time T > T» is bounded as

Regp,(T,0)<x2logT,

where Y, ko, and T, are constants defined in (10) with a =
1—Amegpdy =1

r max

The proof is similar to that for Theorem 2 and is pro-
vided in Appendix D. The regret bound in Proposition 2
matches the explore-then-commit learning literature
that uses suboptimality gap to obtain an order-of-log T
regret bound (Sauré and Zeevi 2013, Gallego and Lu
2021).

Moreover, as discussed in Remark 3, the separation
period T and regret coefficient «; are both in the order of

0) ( (yj 1)2) . Because of the definitions of y and o, we have
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AZ

min

T,Ky € O( 1 ) Then we conclude that our results, that

is, the regret Regp,(T,0) € O(logT), the separation

period €O ( A,:mz)’ and the regret coefficient
Ky € @) ( x

(2021) based on assuming available suboptimality gap
Amin-

As argued in Gallego and Lu (2021, p. 13), given that
the suboptimality gap is often unavailable, “in practice
we can artificially choose a small value for Apin.” By
doing so, any a-optimal assortment with some « >
1- ffmm will be considered as good as the exact optimal
assortment, and its associated regret will be omitted.
This is essentially to use a-optimal solutions as a bench-
mark policy and use a-regret in place of normal regret,
whereas the exact-optimal solutions are actually com-
putable and applied in the exploitation phase (i.e.,
$*(0.) instead of $%(0) is provided).

12), exactly match that of Gallego and Lu

min

6. Numerical Simulation

We conduct a numerical study of the FastLinETC algo-
rithm. Section 6.1 presents the performance of our least
square estimator for the MCC parameters. Section 6.2
investigates the performance of the proposed policy
measured by regret.

6.1. Performance in Parameter Estimation

We use the least square (LS) estimator in Algorithm 1
and show its consistency in Lemma 5. Here we consider
the practical performance of the least square estimator
in a set of numerical examples. We also present the per-
formance of the EM algorithm proposed in Simsek and
Topaloglu (2018) as a baseline. Although convergence
analysis for an EM algorithm is challenging in general
(Balakrishnan et al. 2017), the EM algorithm under the
MCC model has appealing performance in various
practical instances (Berbeglia et al. 2022).

In the experiments, we consider an MCC model with
randomly generated parameters. We create the assort-
ment collection in Assumption 1 with two arbitrary sin-
gletons as Sn,Sh and evenly generate samples using
each assortment in the collection. To evaluate the esti-
mation performance, we adopt the log-likelihood of
independent out-of-sample test data as a criterion
(Simsek and Topaloglu 2018, Berbeglia et al. 2022). The
test data are generated using random assortments
where each product has a 0.5 probability to be offered
(and we resample if the assortment contains no pro-
ducts). We use 10,000 samples to evaluate the perfor-
mance of each estimate. The estimators are assessed by
the average performance in two different settings with
n =5 and n = 10 products, respectively. Those tests are
repeated 30 and 15 times, respectively, and the latter
case uses less repetition due to computational burdens.

From the experiments, we find that the LS estimator
has advantages over the EM algorithm in computational
time and large sample performance. The disadvantage
of the EM algorithm is induced by its iterative structure
and the local search heuristic nature. Because the MCC
model is favorable among all choice models in large
data volume situations (Berbeglia et al. 2022), the LS
estimator’s computational advantages will be appreci-
ated along with the proposed explore-then-commit
policy.

The experiment results are shown in Table 1. It pre-
sents the log-likelihood of the estimates using different
numbers of samples. In the n = 5 case, we observe that
the EM estimate has better performance when the sam-
ple sizes are smaller (103 ~10* samples), whereas the LS
estimate converges faster as the sample size increases.
Similarly, in the n = 10 case, the EM algorithm requires
fewer samples to achieve an acceptable (compared with
the LS estimator with a small sample size) out-of-
sample likelihood, but it cannot further improve as the
sample size grows. Conversely, the LS estimator shows
a better convergence performance.

Table 1 shows the computation time of the estimators.
We observe that the EM algorithm requires more than
10* times of computation time than the LS estimator in
both 11 = 5 and n = 10 cases. Moreover, the computation
time of the LS estimator is almost independent of the
sample size, whereas the EM algorithm has increasing
computation time as the sample size grows.

6.2. Performance in Cumulative Regret

We illustrate the performance of the FastLinETC algo-
rithm regarding the problems with computable and
uncomputable optimal assortments. In particular, for
the computable optimal assortment case, we consider
the unconstrained assortment optimization that can
be solved by LP (the LP formulation in Blanchet
et al. (2016) is provided in Appendix B.1). For the
uncomputable optimal assortment case, we consider the
cardinality-constrained assortment optimization prob-
lem and use the approximation method in Désir et al.
(2020) to obtain a-optimal solutions (the full description
is provided in Appendix B.2). The two problems are
expected to reflect the respective regret bounds in Theo-
rems 1 and 2.

To begin with, we illustrate the regret bound in Theo-
rem 1 through an unconstrained problem with n = 10
products. In our experiment, we show the practical per-
formance of the explore-then-commit algorithm with
varying selling horizon T. The performance of the learn-
ing algorithms is evaluated over 100 replications of ran-
domly generated problem parameters. Specifically,
each replication shares a fixed revenue vector with r; €
[2,3], i € N and independently generates parameters A,
(ieN) and p; ((i,)) €N *\Iy) using uniform distribu-
tions with proper normalization. We use 7 = uT?/3 with
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Table 1. Performance of LS Algorithm Against EM Algorithm for Estimating the MCC Parameters

LS algorithm (this work)

EM algorithm

Number of
Samples (x 10°) products N Log-likelihood Runtime (s) Mean error Log-likelihood Runtime (s) Mean error
1 5 —35,134 0.001 0.980 —26,239 13.9 0.479
2 5 —24,303 0.001 0.369 —21,497 29.1 0.212
3 5 —22,368 0.001 0.261 —20,081 429 0.132
5 5 —20,158 0.001 0.136 —19,422 70.5 0.094
7 5 —19,246 0.001 0.084 —18,771 100.9 0.058
10 5 —19,160 0.001 0.080 —18,676 144.7 0.053
20 5 —18,324 0.001 0.032 —18,576 305.5 0.047
30 5 —18,266 0.001 0.029 —18,340 453.9 0.034
50 5 —17,940 0.001 0.011 —18,097 732.8 0.020
70 5 —17,894 0.001 0.009 —18,082 998.2 0.019
100 5 —17,863 0.001 0.007 —18,144 1,463.4 0.022
10 10 —51,086 0.022 0.533 —39,233 164.6 0.177
20 10 —45,733 0.003 0.372 —38,446 333.4 0.153
30 10 —43,199 0.002 0.296 -37,371 501.4 0.121
50 10 —39,740 0.002 0.192 —37,602 836.2 0.128
70 10 —38,333 0.003 0.150 —37,278 1,169.7 0.118
100 10 —36,305 0.002 0.089 -37,291 1,673.1 0.119
200 10 —35,104 0.005 0.053 —37,989 3,347.2 0.139
300 10 —34,308 0.005 0.029 —37,045 5,018.3 0.111
500 10 —33,921 0.008 0.018 —37,460 8,371.7 0.124
700 10 —33,736 0.015 0.012 —37,840 11,811.2 0.135
1,000 10 —33,643 0.017 0.009 —36,877 16,852.3 0.106

constant i > 0 to approximate the separation period in
Theorem 1 and the selling horizon T ranging from 10° to
10%. Although Theorem 1 would be valid for any con-
stant value of (i, it is natural to enhance practical perfor-
mance by incorporating problem scale and the selling
horizon T into the selection of u. In our experiment,
log(N?)

logT 7
“asymptotic constant.” Given our experimental setting,

log(N?)
log T

three values around 0.3 for y, namely p = 0.15,0.3,0.45.
To illustrate the efficiency of the separation scheme, we
also implement the algorithm using uT'/? and uT%* as
the separation periods to provide performance base-
lines. In Figure 2, we present the cumulative regret over
increasing selling horizons in Figure 2, (a)—(c), and sum-
marize the proportion of exploration periods of all cases
in Figure 2(d). From Figure 2, (a)—(c), we observe that all
three choices of separation periods can provide sub-
linear cumulative regret rates, while the performance
with 7= uT?? provides the smallest total regret. The
diminishing exploration ratios in all three cases in
Figure 2(d) validate the slow growth of the cumulative
regret.

Next, we consider two capacity-constrained problems
with n = 10 and n = 20 products, respectively. For each
case, we use a fixed revenue vector with r; € (0,1), i € NV,
and generate random A; (i € V) and pj; ((i,f) e N\l
using uniformly distributed nonzero entries with proper
normalization. Because the capacity-constrained problem
cannot be solved directly, we use an a = 0.4-optimal

we set the value of p as p= which remains

we observed that ~ 0.3 and therefore we consider

approximation method in the optimization steps in Algo-
rithm 1 and obtain the optimal assortments by enumera-
tion for regret computation. We set 1y = 350 and present
the simulation results based on 100 replications in Figure
3. Figure 3, (a) and (b), presents the average a-regret for
the random instances with n = 10 and n = 20, respectively.
The regret are of order-log T in both cases, as predicted in
Theorem 2. (To better illustrate the order-of-log T rate, we
provided rescaled plots in Appendix F.) Compared with
the previous case, the proportion of exploration periods
(customers) diminishes much faster as the number of
samples increases. The exploration to selling horizon ratio
ranges from 0.48% with T = 10° to 0.06% with T = 10°. In
all instances we considered, the final assortment pro-
vided by our algorithm achieves a near-zero a-regret.

7. Conclusion

We studied the dynamic constrained assortment selec-
tion problem under the MCC model and proposed the
first online learning algorithm FastLinETC to minimize
the cumulative regret over a selling horizon. Our results
are particularly important because the MCC model is
general enough to encompass the general attraction
model (including the MNL model) and at the same time
provides a good approximation for more advanced
models that have no existing learning algorithms (for
instance, the MMNL model).

A key future research direction is to develop a
simultaneously-explore-and-exploit or learning-while-
doing algorithm for the dynamic assortment planing
problem under MCC model and obtain a better regret
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Figure 2. (Color online) Performance of Algorithm 1 in Unconstrained Revenue Maximization Problems over Increasing Selling
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with i = 0.45. (d) The proportion of exploration periods.

bound, for example, in the order of @(\/T ). We envision
that the hardness of parameter estimation lies at the
core of designing such an adaptive learning algorithm.
Section 3.1 mentioned that a consistent parameter esti-
mation for MCC model requires multiple exploration
assortments, implying that suboptimal assortments are
included. Remark 6 suggests equal sampling weights
across exploration assortments. These observations
indicate that, in an adaptive learning algorithm, the fre-
quency of suboptimal assortment is proportional to the
selling horizon length T and the total regret grows line-
arly with T. On an intuitive level, an adaptive learning
algorithm can yield a better regret bound only if (a) the
model parameter estimator becomes more accurate as
time goes by, whereas (b) the optimal assortment is
assigned an increasing sampling weight as time goes by
and this weight of optimal assortment should approach
one; one example is the UCB algorithm for MNL model

in Agrawal et al. (2019). For the MCC model, however,
the goals of (a) and (b) are conflicting. Continuously
offering the optimal assortment alone is not sufficient to
guarantee an increasingly accurate estimator, particu-
larly for transition matrix p.

We close this paper by pointing out two plausible
directions for future research. First, our model assumes
the presence of substitution effects between every pair
of products. Consequently, we need to estimate O(N?)
parameters, which adds complexity to the design of
learning policies. However, in practice, substitutions
may exhibit sparsity and only occur between products
belonging to the same subgroups, such as substitutions
within the same brand. An interesting direction is to
identify the substitution sparsity and use the sparsity to
simplify the policy design and reduce policy regret.
Second, another interesting direction is to incorporate
the pricing or inventory planning decisions into the
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Figure 3. (Color online) Performance of Algorithm 1 in Constrained Revenue Maximization Problems over Increasing Selling
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assortment problem under the MCC model and develop
efficient learning algorithms.
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Appendix A. Summary of Major Notation
Table A.1 summarizes the major mathematical notation
used in the manuscript.

Table A.1. Major Notation and Their Definitions

Appendix B. Optimization Algorithm for Static
Assortment Optimization

B.1. Unconstrained MCC Assortment Optimization

Blanchet et al. (2016) proposed an approach using LP to

obtain the optimal assortment for the MCC model. The

approach considers the following LP

min Zgi
8 N
st. g1, forieN, (B.1)

9> Zpi].g]», forie N.
jeN

Notation Definition

Aq,Ay,. .. Assortments offered in the exploration phase

a; Attraction parameter associated with A;

a;,a; Lower and upper bounds of 4;

a Optimality ratio of approximation algorithms

by Attraction parameter associated with p;

by, by Lower and upper bounds of b;

C.,(C)) (Tight) Lipschitz constant of #(S,0) w.r.t. 0

Cr,,CL,,--.,Cry Tight Lipschitz constants of #(S,0) w.r.t. five different groups of elements in 6
d,dy Dimensions of $5 U %, and ¥,

Amin Suboptimality gap (i.e., the revenue gap between the unique optimal solution and the other solutions)
n,(n(¥)) Minimal transition probability to state O from any other state (outside any S € &¥)
y Multiplier for optimality ratio

Iy Indices of trivial elements in MCC parameter 0

x1,T1,12,To Constants used to construct regret bounds of P; and P,

A Vectors of A; with respectively i € S and i € N'\S

Ay Arrival probability to state i in the MCC model

N Total number of products

N Set of all products

=

Arbitrary integer outlined in Assumption 1
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Table A.1. (Continued)

Notation Definition

w,w"* Constants used to construct the concentration inequality of 0"

P Assortment selection policy

P,P Matrices of p;; with, respectively, i€ M\S,j €S, and i,j € N'\S

Py, u Order of T*?logT policy and its associated parameter

Py, Order of logT policy and its associated parameter

¢, 0" Constants used to construct the concentration inequality of 6"

n(i,S), 7" (i,S) Probability that a customer purchases product i from assortment S and its estimator
n(1,S; 0) Probability that a customer purchases product 7 from assortment S under parameter 6

n(j, S1i), 2" (j, S|i)

r

Probability that a customer purchases product j from assortment S conditional on that the first-choice demand
is product i, and its estimator
Single-product revenue vector with i € NV,

7(S;0) Average single-sale revenue under assortment S and parameter 0

R*(T, 0) T-period revenue of the optimal policy under parameter 0

r Vector of r; withi€ S

R*(T, 6) T-period revenue of a policy comprised of a-optimal assortments under parameter 6
Tmax, (7(S)) Maximal single-product revenue (under possible assortments S)

Fmin Minimal single-product revenue

Regy(T, 6) Cumulative T-period a-regret of policy P under parameter 0

Reg,(T, 0) Cumulative T-period regret of policy P under parameter 0

Pij Transition probability from state i to j in the MCC model

T Single-product revenue of product i

Rp(T, 0) T-period revenue of policy P under parameter 0

r Lower bound of the maximal single-sale revenue in the worst case of 0
S Subset of products

N Set of possible assortments

So, S0 Assortments offered in the exploration phase

S5n,S'n Pivot sets outlined in Assumption 1

S Subset of products, including the no purchase option

Sp(*) Assortment function in Algorithm 1 that maps any parameter 0 to an assortment
S Assortment offered in period ¢

540),(5;(0)) Exact optimal assortment under parameter 0 (offered in period t)
54(0),(5%(0)) a-Optimal assortment under parameter 0 (offered in period t)

S*(0) Collection of a-optimal assortments under parameter 6

T Selling horizon length
t Index of period

T Separation period

T Set of all periods

(S) Parameter space for 0
0

0,0 MCC parameter, estimator, and rounded estimator
0o, ég MCC parameter (trivial elements) and estimator
9++,éi " MCC parameter (nontrivial elements) and estimator
u(i,S; 0) Average visit times to product i under assortment S and parameter 6
u,i Vectors of u(i,S; 0) with respectively i € S and i€ N'\S
X,XT Coefficient matrix constructed by 7(j, S|i) to compute 0. and its estimator
YY" Inhomogeneous vector constructed by 7(j, S|7) to compute 6., and its estimator
¢ Upper bound for a “proper” (, used to construct regret bounds
Co, G Upper bound for a “proper” ¢, used to construct concentration inequality of 8"
Zt(Zh) Purchase decision vector of customer t (regarding product i)

With the optimal solution g* from (B.1), the optimal
assortment is given by S*={i:r;=g7}. Two alternative
methods for solving the unconstrained assortment optimi-
zation are respectively proposed by Blanchet et al. (2016)
and Gallego and Lu (2021).

B.2. Approximation Algorithm for Cardinality-
Constrained MCC Assortment Optimization.

Algorithm B.1 presents the (1/2 — e)-approximation algo-
rithm for cardinality-constrained MCC assortment optimi-
zation proposed by Désir et al. (2020). The algorithm

selects a product per iteration and stops when the assort-
ment hits the cardinality bound 5. We use S; to denote the
set of selected items at step t with Sy =& and use C; to
denote the consideration set with Co =N According to
Désir et al. (2020), we set the tuning parameter f=1/2.

The adjusted revenue of item i with regard to assort-
ment S is defined as

ri — pi.r]-, ifig S,
= ,zs: ! (B.2)

0,ifieS.
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The adjusted transition probabilities with regard to assort-
ment S are defined as

1,ifieS,j=0,
pp=9q 0 ifieSj#0, (B3)
Pijs otherwise.

With the adjusted transition probabilities, we use 0° to
denote the adjusted MCC parameters with regard to
assortment S. Finally, the adjusted revenue of assortment
S with regard to S is given by

r°(5;0)=> rin(i,5;6°). (B.4)

i€S

Algorithm B.1 ((1/2 —e¢)-Approximation Algorithm for
(N, r,0) with Cardinality Constraint 5)
Compute the unconstrained optimal assortment reve-
nue, r(U*; 0), using (B.1), and set

B, :%r(lf; O)1+e),i=1,...,], (B.5)

where | = min{j € N|B; > r(U*; 0)}.
forje{1,2,...,]} do
Sett=1,5,=0, and Co =N.
while |S; 1| <5and C; 1+ T do
Set Cr={ie N\Si1|r51({i};0) > ﬁ%}, where
rS1({i}; 0) follows (B.4).
S =8S;_1 U{i"}, where i* = arg maxyc,r;'" (break-
ing ties arbitrarily), where ris”1
follows (B.2). Let t:=t+1.

end while
Let §/:=6;.
end for

Return §'/27¢ = §/ where j* = arg max;c(s, ...,
Appendix C. Proofs for Technical Results in
Section 4

C.1. Relaxation of Assumption 2 in MCC Models

We can transform any MCC model with self-loops, that is, a
transition matrix {f}; jey, where p; >0 for some i € N, into
an MCC model without self-loops by reparameterization.
Given any arrival probability vector {A;},cy,, this transition
matrix {p;}; ey, defines a discrete-time Markov chain
P(t)(t €N) for a customer’s process of transitioning to pre-
ferred products. Here t indexes the number of transitions; the
preferred product may not change after one transition due to
p, >0 for some i € N. O(t) represents the preferred product
after t transitions. Particularly, the customer stops and pur-
chases whenever the customer’s preferred product is available
from the offered assortment S or leave with no-purchase.

The reparametrized MCC model without self-loops can
be defined as follows. Let n €N denote the number of
preference changes (to a different product) and ®(n)
denote the preferred product after n changes. Then ®(n) is
a Markov chain embedded in @(f), whose transition
matrix is denoted by {p;}; je,, and it satisfies the no self-
loop assumption (i.e., p,; =0, i€N). This embedded Mar-
kov chain ®(n) yields identical choice probabilities to the
original Markov chain d(t) for any assortment S. This is

because for any sample path of the original Markov chain
(1), where the customer stops (a product in S or the no-
purchase) is the same with the corresponding sample path
of embeded Markov chain ®(f). Let the reparametrized
MCC model’s transition matrix be {pij}i,]'EN+ and arrival
probability vector remain {A;};y, . Then the reparame-
trized MCC model’s choice probabilities are identical to
that of the original MCC model for any assortment S.

It is not hard to obtain the reparametrized transition
matrix. Consider the ith row. If i€ A" and j,. >0, we have
p;=0and p, = 15’1 for j # i; otherwise, p; = p; for je N..
We demonstrate this reparameterization in Example C.1.

Example C.1. Assume that the number of products is n = 2

and the arrival probability vector {A;}cy, is (0,0.5,0.5).

The original transition matrix {f}; j\;, with self-loops and

the reparametrized transition matrix {p}; ;e\, without self-
loops are

1 0 0 1 0 0

[0.25 0.5 0.25} and {0.5 0 05],

0.25 025 0.5 05 05 0

respectively. Using (SS-1) and (SS-2), we find that the choice
probabilities are the same for transition matrices {p;}; jer,
and {pAz.j},-, jenv,, glven any assortment S=6,{1},{2}, or
{1,2}. For instance, if S={1}, then the choice probability
vector for products 0, 1, and 2 is (0.25,0.75,0) under both
transition matrices.

This example shows that an MCC model with self-loops
has identical choice probabilities with the reparametrized
MCC model without self-loops for any assortment S. More-
over, if both models A and B have self-loops and both can be
reparametrized into a model C without self-loops, then mod-
els A and B have identical choice probabilities for any assort-
ment S. As a result, the MCC model cannot be identified.

C.2. Proof of Lemma 3
We first prove (2) using the following equality in the
supremum norm:

IT=P)'yls= sup IX"U-P)'yl,  (CD
xeD M|
where DF:= {x e RY ||lx||; = 1} is the collection of stochastic
vectors in Rf(k e N). To bound |xT(I ff’)flyl for an arbi-
trary x € D\, we construct the following Markov chain
with states (M\S), = {0} U (M\S). The transition matrix is Q
indexed by i,j € (V\S),, where Q; x5 =P and Qq jenns =%
The Markov chain transition matrix Q is uniquely specified,
and it has a unique stationary distribution because (i) Q;, =
1- Zje/\/\spij =020 =n>0,Vie N\S and (ii) the com-
munication class that contains state 0 forms an irreducible
Markov chain with a unique stationary distribution that
equals the unique stationary distribution associated with
transition matrix Q.
Let a stochastic vector (zo,z) € REWVI where z = (z1)ieps,
denote the unique stationary distribution associated with
Q. Then, (2o, z) must satisfy the balance equations:

zox+PTz =z, (C2)
> ziQp =20 (C3)
ieN\S
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According to (C.2), we have x™(I —P) ' =z7/z. Accord-
ing to (C.3), we have the following lower bound for z:

(&)
Zp (ZIE?\}{}SQIO) i;f\szz n(F)-1-z) = zo 1+1(9)
(C4)
Because z is a substochastic vector, we have
Iz y|<lzll - [yl < (1 = z0)lIYlleo- (C5)

Combining (C.4) and (C.5) yield
| Tyl ( — 20)lWlleo  Wlleo

T 5\ —1
=Pyl = Faa

Plugging this into (C.l) y1elds 2).
We next prove (3). (C.3) and (C. 4) also indicate for all
x € DV I BT) il = (- B) Ml = [l < 52 <

Zo

Therefore, for all y € RLN Sl SC AN, and 6 € ®, we have

: Iy
1= P7) Myl < G

which is exactly (3). O

C.3. Proof of Lemma 5

We prove the results in four steps. First, we show that 0
defines a consistent estimator. Second, we prove the Lipschitz
continuity of 0" W.T. t. (X Y* )- Next, we prove a concentration
inequality for (X Y. Fmally, we prove the concentration
inequalities for 6° and 8" by combining results from Steps 2
and 3.

C.3.1. Step 1: Consistency. According to theorem 1 in Gupta
and Hsu (2020), given any 0 € ©, the following equality holds:

> In(, S1k) = 7(j, S10)] - py = [, S1i) — (7, S|0)],
keN

ieN\S,jeS,Se, (C6)

> 1, S1k) = 7(, S10)] - Ak = [7(j, S) = 7(j, S|0)],

keN
j€S,, S, (CD)

where
1 ' _ifi=],
n(j,S|i) := (. Sn)(l’sﬂg {SI}L)J ) e M\S, (C.8)
' if i € S, \{j}.
n(i,S) = (i, S;0), i€ N.,SeFyUF,. (C.9)

Similar to the matrix formulation of (E-4)—(E-5) into (E-6),
we can also write (C.6)~(C.7) into a matrix equation of nontri-
vial parameter 6., =vec({A;};cnr U {p,]}(l ) QA,z I ) after plug-
ging in trivial parameter O = vec({p;}( jer,

{0441 (C6),(CT)} = {04y : XO., = Y}, (C.10)

where entries of X and Y are defined by rewriting coeffi-
cients in (C.6)-(C.7) into matrices. The following result
shows that (C.10) returns a unique solution for 0.

Lemma C.1 (Lemma 7 and Lemma 8 from Gupta and Hsu
2020). Consider the MCC model (N, r, 0) with parameter space ©.
For every O € ®, define matrices X and Y through (C.6)-(C.10).
Then X has a full column rank, and for all © € ©, we have

O =(X"X)HXTY).

Proof. According to lemma 7 and lemma 8 in Gupta and
Hsu (2020), the matrix X has a full column rank under
Assumption 2. Unlike the full matrix X in Gupta and Hsu
(2020), we have reduced nonessential parameters Ag=
1= cvAi and {p,y =1 =\ Pitien from our coefficient
matrix X via elementary column operations, but the full
rank property still holds. Thus, (C.10) has a unique solu-
tion 0,,. O

Compared with 6++ exactly satisfying all equalities in (C.6) and
(C.7), estimators 0, + with minimal squared residuals may not sat-
isfy all equalities in (E—4) and (E-5). Lemma C.1 implies that if the
mtermechate e§t1mators X X andY" Y then by definition (E-
7), 6++ X" XH'X Y )=(XTX) H(XTY)=0,,. More-
over, because the choice probability estimators 7t°(7,S) (i€
N,,SeFyU 9 0), the conditional choice probability estimators

7(j,Sli) (i,j € /\/+, 5€%), and the linear equation system’s
coefficients (X", Y") are all consistent under norm || - ||, 0 44 a8
a composite estimator is also consistent. Additionally, the triv-
ial parameter estlmator 0 = 60 =0 is naturally consistent.
Thus, estimator 6 = vec(0,, 6 o +) is consistent.

Finally, by the definition of 0" in (E 9) and the distance bound

in(5),0" isalso consistent, that is, 0" S0ast goes to co.

C.3.2. Step 2: Lipschitz Continuity in Intermediate Estima-
tors. In this section, we further develop results in Step 1 and
show that the error of 0 is Lipschitz continuous in that
of (X, Y").

Let us first define the following constants independent
of 0€O:

Uxy :=sup [|X"Y],,

— s ) T
LA = ggc_f:) Amm(X X)/ e

Uy :=sup [IX]l,,

Uy :=sup ||Y],.
0c® 0c®

Here, the matrices X and Y are defined through (C.6)~C.10)
and are dependent on 6. By Lemma C.1, Apn(X"X) >0 for
all 0 €®. Because © is compact, L = infgee Amin(X" X) > 0.
We also define L, as a lower bound for the choice probabilities
{n(i,SU{i})|ie N\S,S € Fy}, which is independent of O € ©.
For example, because mt(i,SU{i})>A;, we can let L, =
mjnieNinf@E@{/\i} Zn’]jl’l,-e',\/'m. Last, let d]In(M)
denote the total number of elements in a matrix M.

We have the following Lipschitz continuity result.

Lemma C.2. For the MCC model (N,r,0) with parameter
space ©, define matrices X and Y through (C.6)-(C.10) with
a fixed O €©. There exist constants 01 and Cg independent of
0 €@ such that for every X € R™X gnd every Y € RI™Y), jf
IX,Y) - (X, Y)|l, <61, then X has a Sfull column rank and

AT A

X2 RTY) - (XX XYL <CElX, V) = (X, V),
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Particularly, we can define 61 and Cg as

L
01 —mm{U;g, 6&;}

Ce i max 2\Fuy+6xfuxyuxl4xfu2(
Ly L3 Ly

Proof. Let Ay:=X —X and Ay:=Y —Y. We first prove
the smallest eigenvalue perturbation:

AT A
| Amin(XTX) = Amin(X " X)[< 18213 + 20 A2 lIX]. - (C.11)

Let “M>0" denote that the matrix M is positive semi-
definite, vec(M) denote the vectorization of M, and opera-
tion M; o M, denote trace(M] M) = vec(M;) vec(M,). Then
we have

Amin(X"X) =max{t e R: X" X — t[ >0}
=min{Z o (X" X) : trace(Z) =1,Z =0},
Amm(XT)A() =max{teR: X' R —t= 0}
=min{Zo (X' X): trace(Z) =1,Z >0},
where the second equality of each row is due to the duality
of semidefinite programming. Let Z* = argmin{Zo (X" X):
trace(Z) = 1,Z > 0}. Then,
Amin(X " X) =min{Zo (X" X): trace(2)=1,Z>0} < Z" o (X' X)
SZo(XTX)+Z o (ALX+ X Ax+ALAx)
(dueto X =X+Ax)
KAmin(XTX) +vec(Z) ' vec(A X+ XAy +ALAy)
SAmin(XTX)+1Z7l2 - (AL X + 11X Al +[1A 3 Acellp)
SAmin(XTX) + QAL X + 1A Y Axll), (C12)
where the last inequality is because of ||Z*[|, <1:
|Z* ||§ =vec(Z") 'vec(Z") = trace(Z* Z") = trace(diag(Z")diag(Z"))
Strace(diag(Z")) <1 (due to diag(Z") >0, trace(diag(Z"))
=trace(Z*)=1).
(C.13)
Similarly, we can define 7' = argmin{Z o (YT)A() s trace(Z)
=1,Z>0}. Then,
Amin(XTX) =min{Z o (X" X): trace(Z)=1,Z =0} < Z o (X X)
<2 o(X " X)+2 o(—ATX—X"Ax+ALAx)
(dueto X=X —Ay)
Amin(X'X) +vec(Z") vec(—ALX — XTAxy+ALAY)
&R+ - (AT X + X Anl + AT A)

AT A

SAmin(X X) +Q@IAYXI]L +A AL, (C.14)

where the last inequality is because of 1z I, <1 with exactly
the same reason of (C.13). Now, combining (C.12) and
(C.14) yields (C.11):

AT A

| Amin(XTX) = Amin(X* X)[<20ALXI + 1A Al
<UAX]13 +2IA X1l

_ Next, we show that X has a full column rank by proving that
XX hasa positive smallest eigenvalue and thus is invertible:

AmindX X} = Amin XX} —[|Ax 12— 2/|Ax]]IX]],  (dueto (C.11))
=Ly —3Uxl|Axll, (duetol|Ax|, <01 <Ux)

L
> 7/\ (due to[|Axll, <61 < W)

Last, we prove the Lipschitz continuity in Lemma C.2. Let
Amax(-) represents taking the largest eigenvalue. Then we have
X)X ) - (X0 XY),

AT A

<IXD)TE ) - X)X,

AT A

+HIX X TXTY) — (XTX) XY
I R)TX Y - XY,

AT A

+HIX DT XX - XXX XYL
Amax (X)X Y - XY,

+ AR X) T IXTX = X Rl Aman (XTX) T IXTY
A XTR) ALY + XTAy + AL A,

+ AR R)IXTX = R R - A (XTX) - Uiy
2
< o WA, + IXIRIAY I, + 1Al 1A51)

2U
2o
LA

(A3 +21AxlLlIXI)

2U
L A(UlIAxly + 2UxlAyl) + =5 (BUAx)
A

2Uy  6UxyU 4U
< (05 i+ (1) sl

<max] o 24y Sy AU ooy y vy,
La L2 L

<Ce |X=XY-Y),. O

C.3.3. Step 3: Concentration Inequality of Intermediate
Estir[ITators. We show that the intermediate estimators
(X%,Y") are converging with the following rate.

Lemma C.3 (Intermediate Estimator Concentration). For the
MCC model (N,r,0) with parameter space ©, define matrices
X and Y through (C.6)—(C. 10) wzth a fixed 0 € ©. Also define
the intermediate estimators (X ,Y") through (E-2)-(E-6). There
exist constants wxy,Cxy,Cxy € Riy independent of O such
that

T 8T

PIIX,Y") = (X, V)|, > (] < Cay - e,
V(€ (0,Cxy), TEN.
Particularly, wxy, Cxy, and Cyy can be defined as
Ly AT

Cry=5N?,  wxyi=—g—"——0:, =
w WE SN YT L,
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Our proof uses the Dvoretzky-Kiefer-Wolfowitz inequality
for discrete distributions.

Lemma C.4 (Theorem 11.5 in Kosorok 2006). For any i.i.d.
sample Z1,...,Z, with distribution F(s) and empirical distribu-
tion L (s) := w,

P|sup |E,(s) = F(s)] > C <2e’2ncz,
seR

V(>0,neN.

Here F(s) can be any continuous distribution or any discrete
one with at most countable discontinuities.

Proof. Because (X Y' ) (respectlvely (X, Y)) is composed
by {#°(i,S)lie N'\,SeFyUFo} (respectively, {n(i,S)|ie Ny,
SePoUF)), it is useful to first explore the concentration
inequality of {#7(i,S)|ie V'y,S €%y U F}. For a fixed 0 €®©
and a fixed Se¥%,uU%,, the stochastic vector {70, )} e,
forms a discrete distribution F(s) := 3\, 7(i, S)1{i<s}. Then,
{7t"(i,5)}ienr, can be viewed as jump sizes in the empirical
distribution £,(s) = Yoy 1{i<s) - % = Sx 1i<s)
7"(i,S), where n(t) denotes the sample size > ,_, 1{S; = S},
and n(t) > 5] according to Algorithm 1. Then, IE,,(T)(S) is
an empirical distribution formed by an i.i.d. sample of size
n(t) with distribution F(s). Thus, according to Lemma C .4,

P |sup |Epe)(s) — F(s)| > C| <2e 2%, ¥T>0,7€N. (C.15)
seR

For every i e N, we have
17735, S) — 113, S)| = | (F o) (i) — F ey (i — 1)) — (F()) — F(i — 1))
<y () = FG)| + |F oy (i — 1) — F(i — 1)
(C.16)
Plugging (C.16) into (C.15) yields

P{max |[7t°(i,S) — m(i,S)| > C}

ieNy
=1- P{mﬁx |77, S) — (i, S)| <C}

<1- P{sup |15n(T)(s) —F(s)| < §
seR

<1 —[1 =205 <205

<235 <2 R, vesoren. (C.17)

Consider the union of t}}e previous concentration
inequalities across all S € ¥y U ¥y. We have that

]P’[ max max |7°(i,S) — (i, S)| >C]
SeSyUF iEN &

< X P|max |78 769 >

SeSoUT

2

<NZ%e T, viso,7eN. (C.18)
Next, we consider the concentration inequality of
{7°G,Sli)li,je N1, S e Fo}. According to (E-3) and (C.8),
the estimation errors occur only when i € A'\S. Recall that
we have 7(i,SU{i})>L, for all ie N\S,Se€Fy0€0.
Then we can outline the concentration inequality when
errors of {ﬁT(i,S)|ie/\/+,S€ffo U%o} are below %”: for
every (< =, if maxSE%UgnmaxieAh|ﬁT(i,S) —7n(i,S)|<C,

then for all je N'y,ie M\S,S € ¥y, we have
[7°(j, S|i) — 7(j, S|D)]

G, S) -G, SU{iy) 7n(,S) —n(,SU{i})

A7(1,S U {i}) n(i,S U {i})
|G S) — TGSV  —G,S) ~R—7G,S U {)
= A7(,S U {i}) (i, S U {i})
', S) -G, SV{i}) n(,S)—mn(,SV{i})
(i, S U {i}) (i, S U {i})
<R GS) - R GSU ]|l
Sy S, 77G,SU ) =G, SuU{i})

1 AT N ,
. m"”” (1,5) ~ 7,5 U {i))]

=[G, 8) = m(G, S VLD

< 1 — !
SRTGSu{iy) mG,SuU{i)

+Li~ [, S) = m(j, $)] =[2G, S U {i}) — m(, S U {ip]]

(due to 717(j,5), " (j,S U {i}) € [0,1]; (i, SU {i}) = Ly)

|RTGS U —n,S Ui}
273, S U {i)n(i,S U {i})

LGS =G S+ 177G, S Ui} — (i, S U {i})]
Lr

™
+
B

VAN

/N

(due to 77(i,S U {i}) = m(i,S U {i}) - C

N |:x[7\‘:
S~—
—~

A

L. _ Lq
>Li-2 > 2
2 2)

2+ 2L 4
< (Tn)c< EC (duetoL, <1)

Additionally, when i¢N\S, |7°(j,S|i) — n(j,S|i)| =0. Thus,
for all j,ie Ny, SePy, we have |71°(j,S|i) — n(j,S|i)| < ch
Using this property and (C.18), we have

]P’{max max |72°(j, S|i) — m(j,S|i)| > C

SeFo i,jeN+

2
<]P’[ max max |R"(i,S) — (i, S)| >L"C}

SeFoUF €N +
,QLLJCZ 2
<2N?Ze 2l V(e 0, ) VreN. (C.19)
e

Last, recall the definition of (}A{T,YT) via differepcing
{7°(,S1)i,je N1, Se S} and {R7(;,S)|[i e N's,S € Py U Fp} in
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(E-4)-(E-6). We have
PIICX", YY) — (X, V), > (]

AT AT C
<P _||(X YY) = (XY >\/m}

(due to the dimension of (X, Y))

<P |max max |2°(j,S|i) — n(j,S|i
< SE%Z,/WI G, Sli) —n(j, S| >

C
2:/2(n + 1)N3} i

P| max max|R"(i,S) — n(i,S)| >
SeH’OUE/’g €N,

___c
2,2 + NP
< INZe TR | e e

3 2
<4N23_W|‘N_2JC ,

BNE * 3
Vie (0,4'2L”N>c (0,4VZ(”L+1)N), VTEN.

To remove the floor operation, we have

5T NT

_ Ly 2
P[I(X", Y*) = (X, V)ll, > C] <4N2e otz
L4 . L4 L4
< 4]\’26_28(*1*7+11)N3 (N_z_l)cz < 4N2€_28(H”Z])N5TCZ+28()1’°:1)N3CZ

4\/2n*N3>

L 2.t
<4ANZe Fwaw -
Ln

<due to C <

12 21 2 ) |5 e
I S _
<4esN2Ze For+0v - < 4esN2e For+n®

|54 /21 N3
< 5Nze’zs(m+1w—5TCZ/ V(e (0, %)/ VreN
s

which is exactly the concentration bound in Lemma C.3. O

C.3.4. Step 4: Concentration Inequality of Main Esti-
mators. We now combine results from Steps 2 and 3 and
develop them into a concentration inequality for °. Recall
Lemmas C.2 and C.3. Fix any 0 € © and its corresponding
matrices X and Y defined through (C. 6) (C.10). For all

AT AT

TEN if (X577~ (X, V),<C<&, then |07 — 0], =[|(X° % 9!
X" % )— (XTX) " (XTY)l, < CeC by Lemma C.2. Then, by
Lemma C.3, for every C € (0, min{Cg61,CeCxy}),

_oxy. CZ
<ny e Cz ,

FLI6" - 0l > <P I, 7) - (X V) > &

VteN.
Recall (5). We have that for every C € (0, 2NCEmjn{61,CXy})
= (0,2NCemin{s;, 227,
C

B[IE" — 6l > C] sr[néT ol >
7“’/21’}2 T?
SCXy' 4NC

AT C
P||6 =0l > ==
167 =1l > 5

14

e r2
<5N267210(n*+ncéw7¢" VT eN.
Then we can define let ¢:=5, w: 2]0(nLT)CZ’ and (:=
ZCEmm{él War® } Then we have P[[|8" — 6]|; > {] < pN?

e N TTC yre (0, CoN), T € N. This completes the proof of
Lemma 5.

Appendix D. Proof for Proposition 2

Proof. With y specified as 1, we have (' = min{crﬁﬂla))fca}.

The a-regret of policy P5 can be divided into three parts:
(a) for t<rt, the a-regret associated with every single
Customer is bounded by fmax; (b) for t>7 such that
6" — 0|, >, the a- regret associated with every single
customer is also bounded by rmax; and (c) for t>1 such
that ||0° — 0|, <T, the a- regret assoc1ated with every sin-
gle customer is zero because [|0° — 0], <C' < cr(h fa), that is,
0" falls into the regret-free region. Thereby, S; = 57*(0") =
S0 (t>1) will be an a- optimal assortment under the
true parameter O according to Lemma 4. Thus, the
a-regret of policy P3 is bounded by

Regp' (T 6) < TmaxT + rmax(T - T) : IED[”éT - 6”1 > C/]
TmaxT + rmaxT (P* e 2 (due to (11))
< "max |-l,U log T-| + VmaxT . (f)*ef(‘)‘“wk’g TlIc2

<TmaxtP1og T + Pmax + rmax T - (]b*e_“"”*l‘)gmlz

VAN

/

< Tmaxll} log T+ ¥max + }’maxq)ae Ti-wye2

1
STmaxtP 108 T + Fmax + max®” <due toy = w‘—C’Z)

< (rmaxl,b + "max + rmaxq)*) 10g T<x IOg T.
(dueto T = 3).

Because of (13), we have Regp, (T, 6) = Reg, (T,6) < 2 log T,
which is exactly the result of Proposition 2. O

Appendix E. Simplified Algorithms for Unconstrained
Model

This section discusses the unconstrained setting (i.e., ¥ = 2M)

and show how this condition will simplify our algorithm and

regret bounds.

We mainly modify the exploration phase, during which we
repeatedly present the assortments in ¥y := {N} U {N\{i}};cp-
Each presented assortment has the cardinality of N — 1 or N.
The number of assortments dy; := |Fy| = N+1.

Example E.1. Suppose N ={1,2,3,4}. Then ¥;; ={{1,2,3,4},
{1,2,3},1{1,2,4},{1,3,4},{2,3,4}}, which we denote as {Ao,
Ay, ..., A4} accordingly. In the exploration phase, the algo-
rithm will sequentially offer Ag, Aj,...,As,Ag,A1,..., Ay,
to customers until the separation period 7. O

At the separation period 7, 0y is naturally estimated by

6o = vec({p}; = 0} per,)- (E.1)

Nontrivial parameter 0., is estimated in two steps.
Step 1: The choice probabilities are estimated by

. ST 1{S, =8,2t =1}
(4,8) = 12:11{&:5} ,

Step 2: The arrival and transition probabilities are esti-
mated as

i€N+,S€g)u. (EZ)

~T

A= ATGN), i€ N

o TGN\ — 725G N)
pz‘j T ﬁT(i,/\/)

, (,j) e N2\ (E3)
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Step 3: Recall 6., :=vec({Ai}ien U {pl]}(l ])wz\lo) 0.y is
naturally estimated as

0., = vee({Aihiew U Diy penys)- (E4)

Combining (E.1) and (E.4), we obtain the following
rounded estimator 6" for O:

0" = argmin||0" — 0|\, (E.5)
6'e®
The modified FastLinETC under the unconstrained MCC
model is summarized in Algorithm E.1.

Algorithm E.1 (Modified FastLinETC Py(N,T,t) for Un-
constrained MCC Model)

Input: integer 7.

Output: offered assortments {S;}/_;.

Phase 1. Exploration:

Define the exploration assortments ¥y := {N} U {N\{i}};err

and denote them as {Ao, A1, ..., AN}

forte{1,2,...,7} do

0" = Vec(ég,éL),

Define k;:=(t—1) moddy, and offer S;=A4A; to
customer t.
Observe the customer purchase decisions Z' = (Z{, Z!,
L Z4).
end for

Compute choice probability estimators 71°(i,S) for all i €
N,,S ey via (E.2).

Compute arrival and transition probability estimators
{/\ },w and {pl]}(I]EMZ\I via (E.3).

Compute the rounded MCC parameter estimator 0 via
(E.1), (E4), and (E.5).

Phase 2. Exploitation:

To all remaining T — T customers, offer S* (9 ).

We have the following instance-independent upper bounds
on the policy regret associated with Algorithm E.1.

Theorem E.1 (Regret of Unconstrained Policy). Suppose
Assumptions 1 and 2 hold and the possible assortments & =2V, Let
v>0 be an arbitrary constant. There exist «3,T3 € O(poly(N))
such that by letting ©=[vT3logT] and policy Ps be defined by
Algorithm E., the regret associated with policy Ps at any time
T > T is bounded as

Regp, (T, 0)< k3T log T,
where k5 and T are constants independent of the MCC parameter 6.

Proof. Because the exploitation optimality gap in Lemma 4
still holds, we only need to construct a new concentration
inequality for 6" in place of Lemma 5. We start from con-
centration inequalities for {7t"(i,S)}icpr, sey,- Using the same
argument for (C.18), we obtain

P T ]
[rsr;%gggxm (i,5) (5, )| > c}

Z P{maxlﬁT(z S)—7(i,S)| > C}

Sy ieN .

2
<(N+1)-2¢7F7, v{>0,7eN. (E.6)

This indicates

P | max |)iiT —Ai| > C} <P|maxmax |77, S) — (i, S)| > C
ieN SeSy ieN .

VC>0,T€N.
(E.7)

Next we consider the concentration inequality of {pl] [(d,7)
eN? \lp}. We define L, := infgcominy-A;, which is a con-
stant independent of 6 € ®. Recall that n(i, N)=A; > L, for
all ieN,0€0®. We also define assortment A;:=N\{i}e
Fu,i€ N. Then we can outline the concentration mequahty
for pl when errors of {A°(i,S)|ie N'y,S € Sy} are below & EE
for every C< %, if maxsey,maxey, [1°(i,S) — (i, S)|<C,
then for all (i, ) e NIy, we have

2
<S(N+1)- 2557,

ﬁf(j,A,') — ﬁT(],N) _ ﬂ(f,Ai) — ﬂ(f,/\/)

195 — pyl = 273, N) (i, N)
[FGAI=FGA) A7 A) ~ RGN
27, N) (i, N)
LR GA) = RGN G A) - (i, N)
(i, N) (i, N)
1

<G A) = 75N -

2G,N)  n(i,N)

[7°G,A) —~"°G,N)] - [N(J?Af)—ﬂ(ir/\/)]‘
(i, N)

1
SIFGN)  7GN)

N [[7°(j, Ai) — m(j, A)] = [2"(j, N) — m(j, N)]|
L)

(due to °(j, A), T (j, N) € [0,1]; (i, N') = L)

7 (i, N) — (i, N')
7 (i, N)n(i, N)

+ [7°(j, Ai) — e, A) | + |7, N) — m(j, )|
Ly

< C +2_C<(2+2LA>C\LZC‘

'

(duet0 276,09 > 6,00~ (> L -2 > 21),

Using this property and (E.6), we have

P| max |p,] Pl >C
(U])EN \Io

<P

12
A7(i S n '/ S A
Igelhal’g Iz’le’lje/'x | T (l ) (Z ) | > 1 C:|

5 2
S(N+1)-20 300 yre (0, L—), VT eN.
A
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Combining this with (E.7), we have

BUIG" — 0l > <P 16" - 6l > ]

(due to the dimensions of 6,.,0)

T C
SP{III';%/XMi — A4 >ﬁ]

c
+P| max |pf—p;l>—5
Lwav 2y, TN

4
S(N+1)- 2620w 4 (N 4 1) 20 el
4 2
At 2
< 8Nefﬁ[chzl V(e (O, Lﬁ)’ V7 e N.
A

To remove the floor operation, we have

4 4 4 4
N AT |2 A (T r2 A1 2, A2
P[||91—9||1>C]<8Ne aallC <8Ne i )¢ <8Ne i +iC

5 A 2 5 2

A2 2 _k 2 2N
<BNema® ¢ mav1" 8e % Ne mav-1- (duetoC<L—>
A
2N2

L‘}l )
<10Ne @™, V(e <0’L—>’ VteN.
A

Therefore, we have

P[I6" —e||1>c1<P{||e ol > C]<10Ne et

2
VCE( 4?) VteN.

A

By letting ¢ :=10,w: =5 ,CO = L , we have the following
concentration inequality in place of Lemma 5: For all
C € (0/ CON 2)/

~ WTH 2
PO — 6l > (I <$Ne %, 7eN. (E.8)

Last, we prove the regret bounds in Theorem E.1 and
show that the following constants T3 and k3 in these
bounds are independent of 0 € ©.

1

» (., 3N 2
K3 1= 2FmaxV + 2rmax? PN +3w 2C N°( 1+—+2N
Ty := max{Z, 2v3, R0 (1 + g + 2N)%}. (E.9)

Let us define ¢ :=¢N,w":=wN7,{:=(N? so that
(E.2) can be written as

P[I0° - 6ll; > CI<¢p'e ™,  Ce(0,G),teN,  (E10)

and we have k3 = 2rmaxV + 2rmaxv 1" + 3(% + 2)%a)**%CL, T3 >
(3'+2)2 B,
Because T>T;> max{z 23y~ 2} we have 7= [ng slog T

> ||vT§logT3|| > |l2log2|| > 2, which further indicates 4/ lz,g: > 0.

In addition, we have
[logt log|'yTzlog T'| log(ZyT2 slog T) loguT?
W*'T 1) |'yTzlog T] ) ‘uTglogT S a)*yT%logT

3logT + log‘u 3logT logu
+
w ‘uTglogT w'uTilogT  w'uTilogT

1
2
<2 +—22<(§+2> @ ITEL,
a)*yT% T \M
3 % *=3  x=3
duetoT > T; > p+2 G w .
(E.11)

Because 1/ (OgT €(0,(;), we can plug C = laoff into (E.10),
which yields

-1 logt .
P[HG 9”1>‘/a§1] <¢r L. (E.12)

Then the regret of policy P; can be divided into three
parts: (a) for t<7, the regret associated with every single
customer is bounded by rma; (b) for t>7 such that

e* - ol > «/]z,g:, the regret associated with every single

customer is also bounded by rma.x; and (c) for t> 7 such

that [|0° — 0], <\/8%, the regret associated with every

W't/
logT

single customer is bounded by 2C;, due to Lemma 4.

Therefore, the regret of policy Pj is bounded by

logt

16"~ lh >/ g}
W't

logt _ logt

+20, - BN - )P{ne ol < \/m}

< ’maxT + rmaX(T - T) (P* !

Regp, (T, 0) < TmaxT + Fmax(T — 7) - P

+2Cp

1:;‘5 ° (due to (E.7))

(T-1)
T
log

*

< FmaxT + Fmax ' TT 1 +2C, T

< Tmax |'1/T% log T+ rmaxq)*vaT% log TTI

1
+2C.Ty/ Og:

< 2rmaXvT% log T + rmaxq)*T(vT% log T)f1

(duetot= [VT% log T7)

1

2
+20,T <§+z) i (due to (E.6))

T

< 2rmava§ log T+ rmaxv’lq)* TogT

1
2
+2 (é + 2) W' IC, T3
v

< Zrmava% log T + ZTmaxv_lcp*T% log T
1
2
+2 (% + 2) a)*’%CLT%
1

< (2 maxV + 2maxV P +3 G + 2) ""CL)TZ log T

(dueto T = 2)

< K3T% logT. O
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Appendix F. Additional Plots

We change the x axes (selling horizon) in Figure 3 to log-scale. The linear trend in Figure F.1, (a) and (b), indicates that
the cumulative regret is roughly O(logT), which is consistent with Theorem 2.

Figure F.1. (Color online) Performance of Algorithm 1 in Constrained Revenue Maximization Problems over Increasing Selling

Horizons

(a)

6400

6200
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5600

Cumulative Regret

5400

5200 L

5000
10° 107
Selling Horizon, T

(b)

Cumulative Regret

1.2 -
10° 107 10°
Selling Horizon, T

Notes. (a) Ten products. (b) Twenty products. The selling horizons are plotted in log-scale. The solid lines represent the mean regret, and the dot-
ted lines represent the estimated 95% confidence intervals for the simulation results.
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