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Abstract. We study a dynamic assortment selection problem where arriving customers 
make purchase decisions among offered products from a universe of products under a 
Markov chain choice (MCC) model. The retailer only observes the assortment and the cus
tomer’s single choice per period. Given limited display capacity, resource constraints, and 
no a priori knowledge of problem parameters, the retailer’s objective is to sequentially 
learn the choice model and optimize cumulative revenues over a finite selling horizon. We 
develop a fast linear system based explore-then-commit (FastLinETC for short) learning 
algorithm that balances the tradeoff between exploration and exploitation. The algorithm 
can simultaneously estimate the arrival and transition probabilities in the MCC model by 
solving a linear system of equations and determining the near-optimal assortment based 
on these estimates. Furthermore, our consistent estimators offer superior computational 
times compared with existing heuristic estimation methods, which often suffer from incon
sistency or a significant computational burden.
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1. Introduction
Assortment optimization problems find important 
applications in both brick-and-mortar and online retail
ing. The decision maker selects a subset of products 
(a.k.a., an assortment) to offer to customers from a uni
verse of N substitutable products to maximize the 
expected revenue. Effective assortment management 
improves operational efficiency and provides better cus
tomer coverage and purchasing experiences. By inte
grating advanced analytical methods with assortment 
optimization, retailers can significantly improve their 
revenue and negotiation leverage when selecting sup
pliers (Nip et al. 2021).

Discrete choice models are critical in capturing custo
mers’ preferences for offered products as well as their 
substitution relationship. In a Markov chain choice 
(MCC) model, each incoming consumer intends to pur
chase a specific product and will purchase it immedi
ately if it is available. Otherwise, the customer 
transitions to an alternative product according to a 

transition probability matrix until she reaches an avail
able one and purchases that product. The MCC model is 
a generalization of the multinomial logit (MNL) and the 
random consideration set choice models (Gallego and 
Lu 2021). It also provides a good approximation for all 
other random utility models (RUMs) under mild as
sumptions, such as probit, nested logit, and mixture of 
MNL (MMNL) models. In addition, because assortment 
decisions obtained from the static optimization problem 
depend on the prior knowledge of the discrete choice 
models (Gallego and Topaloglu 2019), the predicted rev
enue is sensitive to which choice model is used to define 
customers’ purchase decisions. As a result, assortment 
selection using the MCC model is robust to model mis
specification while being flexible in capturing customers’ 
substitution behaviors (Berbeglia 2016).

Another important merit of the MCC model is that it 
can be used as an approximate model when the true 
underlying model is known but the associated assort
ment optimization problem is intractable (e.g., MMNL 
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and nested logit models). Blanchet et al. (2016) proved 
that if the MCC model is a good approximation to the 
underlying model, then the derived solution is likewise 
near-optimal. The MCC model’s transition probabilities 
also provide useful information regarding the similarity 
of offered products. According to a recent computa
tional study by Berbeglia et al. (2022), the MCC model 
has a significant advantage in balancing the modeling 
accuracy and computational complexity compared with 
other listed choice models.

This work studies the dynamic assortment optimiza
tion problem under the MCC model. Because the 
demand parameters are unknown a priori, the retailer 
needs to simultaneously learn customers’ preferences 
from the purchase data and optimize cumulative reven
ues over a selling horizon T. The current work considers 
the case of uniform-price items without inventory con
straints, and the product prices are fixed throughout the 
selling horizon. Customers choose the preferred prod
uct to maximize their expected utilities, and the retailer 
only observes purchased items. These are standard 
assumptions in the dynamic assortment literature to 
address the role of assortment in balancing information 
collection and revenue maximization (Sauré and Zeevi 
2013, Agrawal et al. 2019). Solving the dynamic assort
ment optimization problem is critical for promoting 
new products whose demand models can only be esti
mated with abundant historical data. This is particularly 
true when the product life cycle is short. Our interest 
lies in developing a family of explore-then-commit algo
rithms that can automatically transition from the infor
mation collection (exploration) phase to the revenue 
maximization (exploitation) phase.

There is an extensive body of literature on online learn
ing algorithms for the dynamic assortment selection pro
blems under models such as MNL (Rusmevichientong 
et al. 2010; Sauré and Zeevi 2013; Agrawal et al. 2017, 
2019; Wang et al. 2018) and nested logit models (Chen 
et al. 2021a). However, these algorithms typically rely on 
a specific structure that cannot be readily generalized for 
other models and may be sensitive to model selection 
errors. For instance, the MNL model assumes indepen
dence from irrelevant alternatives and is found optimistic 
in estimating recaptured demands (Gallego et al. 2015). 
Here “recapture” describes the situation where demand 
is redirected to a different available product, in contrast 
to “spill” that refers to the loss of demand due to competi
tion or customers choosing not to purchase. Because the 
MCC model serves as a generalization or approximation 
for various RUMs, developing new algorithms for learn
ing optimal assortment under the MCC model can cap
ture more sophisticated purchasing behavior and reduce 
the likelihood of model misspecification.

However, designing learning algorithms for the MCC 
model is inherently challenging for the following 

reasons. The first challenge is parameter estimation. The 
MCC model captures the choice problem by two sets 
of parameters: (i) the arrival probability vector λ that 
characterizes the initial preference for all products when 
customers enter the system and (ii) the transition proba
bility matrix ρ that characterizes the probability of 
choosing each substitution when the preferred product 
is not included in the assortment, including leaving the 
system without a purchase. Hence, the number of 
parameters grows quadratically with the number of 
products. The salient substitution between preferred 
products introduces strong correlations between obser
vations but these substitutions are unobservable to the 
retailer. Because the choice probabilities’ expressions 
include the inverse of transition submatrices (see (SS- 
1)–(SS-2)), there are no trivial unbiased estimators based 
on observing final purchase decisions. The maximum 
likelihood estimation (MLE) method cannot be directly 
applied to the MCC model due to the nonconvexity of 
objective. Second, even assuming that the MCC model’s 
parameters are known a priori, choice probabilities 
and average revenues in the MCC model cannot be 
expressed as a simple functional form of the model 
parameters (Blanchet et al. 2016). Optimizing the assort
ment selection under simple constraints such as limited 
display spaces is shown to be NP-hard by Désir et al. 
(2020). Finally, balancing between exploration and 
exploitation in online learning is intriguing, considering 
that parameter estimation and optimization are already 
challenging tasks on their own. This work aims to 
address these challenges by leveraging the structural 
properties of the MCC model.

1.1. Key Results and Contributions
We propose the first online learning algorithm, named 
fast linear system based explore-then-commit policy 
(FastLinETC), for dynamic constrained assortment 
selection under the MCC model. The name originates 
from the algorithm’s fast exploration, which involves 
testing only O(N2) assortments, and our estimation 
techniques, which revolve around transforming a set of 
linear equations of choice probabilities to recover the 
model parameters.

Our performance measure is the cumulative regret over 
a selling horizon of T periods, which is defined as the dif
ference in expected revenue between a clairvoyant policy 
(with access to all the MCC parameters a priori) and our 
policy (without knowing these parameters). The clairvoy
ant policy could be optimal or near-optimal. On condition 
that the underlying (clairvoyant) model admits a 
polynomial-time algorithm that gives the exact optimal 
assortment, we use the exact optimal solution. By contrast, 
if the underlying model only admits an α-approximation 
algorithm, we use the α-approximate solution instead. We 
obtain the following two sets of regret bounds. 
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i. When the exact optimal assortment is computable, 
our algorithm admits a regret bound of O(poly(N)T2=3 

log T), where poly(N) is a polynomial function of N 
(Theorem 1). The exact optimal assortment under con
straints is computable in some special settings, for 
example, when the MCC model is reduced to an MNL 
model and the constraint set is total-unimodular (TU) 
(Davis et al. 2013), or when the MCC model is reduced 
to a general attraction model and the constraint set is 
cardinality-based (Wang 2013). The most related lower 
bound result for a constrained MNL model is Ω(

ffiffiffiffi
T

√
)

(Chen and Wang 2018). How to close this gap in con
strained MCC models remains an open research question 
(which is discussed in more details in Sections 4 and 7). 
We also remark here that explore-then-commit strategies 
yield a Ω(T2=3) lower regret bound for general batched 
bandits (Perchet et al. 2016).

ii. When the exact optimal assortment is not com
putable, our algorithm admits an α-regret bound of 
O(poly(N)log T) (Theorem 2), where there exists an 
α-approximation algorithm (α < 1) for the static con
strained MCC assortment optimization problem. The 
regret bound is much improved because we are using a 
weaker clairvoyant benchmark.

In deriving the previous main results, we make the 
following main contributions: 

i. We design a dynamic constrained assortment 
selection algorithm under the MCC model, which is 
general enough to envelop the general attraction model 
(including the MNL model) and meanwhile provides a 
satisfactory approximation for more advanced models 
that may not even have extant learning algorithms (for 
instance, the MMNL model).

Our algorithmic framework is versatile in coping with 
any TU-constrained assortment optimization problems, 
such as cardinality, joint display and assortment, and 
capacity constraints. When the static constrained MCC 
assortment optimization problem is NP-hard, we use 
α-optimal assortments as the clairvoyant benchmark. 
The learning algorithm integrates α-approximation algo
rithms into online optimization, which gives the near- 
optimal solution sequentially under the estimated MCC 
parameters.

ii. Our learning algorithm solves a compounded sys
tem of linear equations repeatedly based on batches of 
offered assortments and customer choices and updates 
the parameter estimator sequentially. We develop an 
analytical method based on batch-to-batch sampling to 
quantify the estimation error from the so-called “chain 
of estimators”, involving novel techniques to approxi
mate revenue rate functions via matrix operations. In 
establishing α-regret bounds, we find the optimality 
gap of near-optimal assortments introduces an instance- 
independent “regret-free region” around the true para
meters, which improves the scaling to O(log T).

The learning algorithm carefully balances the explo
ration and exploitation phases to obtain an instance- 
independent scaling of O(poly(N)) (rather than combi
natorially many assortments). By comparison, Gupta 
and Hsu (2020) gave the best-known sample complexity 
O(N2), but this complexity was only achieved in a sta
tionary setting with oracles for purchasing probabilities. 
Also, compared with the state-of-the-art expectation- 
maximization (EM) method for parameter estimation 
(Şimşek and Topaloglu 2018), which incurs an increas
ing computational burden as T grows and does not 
always guarantee convergence, our consistent estima
tors enjoy provable concentration bounds and superior 
efficiency with minimal dependence on T.

iii. Our analysis does not require a suboptimality gap 
typically assumed in the literature (i.e., the revenue 
gap between the unique optimal assortment and all 
other assortments, which is often unknown in practice). 
We show that the use of suboptimality gaps in explore- 
then-commit learning literature (Sauré and Zeevi 2013, 
Gallego and Lu 2021) can be viewed as a special case of 
our α-regret analysis based on near-optimal clairvoyant 
policies (Section 5).

1.2. Literature Review
The MCC model is a flexible scheme for characterizing 
customers’ purchase decisions between offered pro
ducts with close substitutes. Our research is closely 
related to a growing body of literature on MCC assort
ment optimization.

1.2.1. Static MCC Assortment Selection Problem. The 
MCC model was formally introduced in the seminal 
work of Blanchet et al. (2016), whereas Zhang and Coo
per (2005) briefly demonstrated this new type of choice 
process in the context of airline revenue management. 
Blanchet et al. (2016) discovered that the unconstrained 
assortment optimization problem is equivalent to an 
optimal stopping problem. Berbeglia (2016) generalized 
that any MCC model can be converted to a RUM model 
by a random walk argument. Given the special structure 
of the unconstrained assortment selection under the 
MCC model, the optimal solution can be formulated as 
a linear program (LP) (Feldman and Topaloglu 2017, 
Gallego and Topaloglu 2019).

The constrained assortment selection under the MCC 
model is generally APX-hard, that is, not possible to 
approximate better than a constant factor even when all 
listed prices are uniform. Désir et al. (2020) and Udwani 
(2021), respectively, proposed (1=2 � ε)-approximation 
algorithms for the cardinality-constrained and the capacity- 
constrained assortment optimization problems. By 
contrast, this research copes with the assortment selec
tion problem concerning a general category of linear 
constraints.
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Because the MCC model approximates well-known 
models such as nested logit and MMNL models, there is 
continuing research interest in incorporating it into the net
work revenue management problem (Feldman and Topa
loglu 2017), pricing problem (Dong et al. 2019), joint 
pricing and inventory problem (Gallego and Kim 2020), 
and joint assortment and inventory planning problem (El 
Housni et al. 2021). There are also variations of the MCC 
model. Ragain and Ugander (2016) proposed the pairwise 
choice Markov chain model that considered the transition 
probability to alternative products following the stationary 
distribution of a continuous-time Markov chain on the set 
of alternatives. Nip et al. (2021) proposed a variation called 
the single-transition choice model that limits the number 
of times that a customer visits any product during the cus
tomer’s choice process. The platform can control which 
products to recommend to avoid departure without pur
chasing after one transition.

1.2.2. Parameter Estimation in MCC Models. The param
eter estimation of MCC models is substantially more chal
lenging than other RUM choice models such as MNL. 
Blanchet et al. (2016) proposed a straightforward parame
ter estimation approach that offered all products first and 
then the all-but-one assortments, which is not feasible with 
any display specific constraints. Two alternative strategies 
circumvent offering such large-cardinality assortments. 
Şimşek and Topaloglu (2018) developed an EM algorithm 
by converting the unobservable log-likelihood function to 
a complete log-likelihood function with a closed-form 
expression. However, the estimator is not guaranteed to be 
consistent or even to converge to a unique limit point; 
hence, this approach is not applicable to online learning. 
Moreover, the theoretical results in Şimşek and Topaloglu 
(2018) required that the MCC model included self-loops, 
which contradictorily made the MCC model not identifi
able and the estimation problem ill defined; see the proof 
and counterexamples in Appendix C.1. Gupta and Hsu 
(2020) extended the all-but-one assortment idea to a 
parameter recovery algorithm under limited-sized assort
ments and noise-less choice probabilities. Offering consec
utive assortments with the carnality of n∗ and n∗ + 1 can 
reduce the sample complexity to O(N2) with n∗ ⩽ N=2.

1.2.3. Online Learning for Dynamic Assortment Opti
mization. Learning algorithms for assortment optimiza
tion are a growing body of literature. The information 
on customers’ preferences is unknown and needs to be 
learned over the selling horizon with a proper balance 
between exploration and exploitation. The standard 
learning approach cannot be directly applied in this con
text because (a) the expected reward of each assortment 
is not independent of other assortments (correlated 
actions), and (b) the online algorithm needs to select the 
best assortment among a large number of alternatives 
(combinatorial complexity). Efficient online learning 

algorithms for more tractable choice models such as 
MNL models are well studied in the recent literature. 
Rusmevichientong et al. (2010) and Sauré and Zeevi 
(2013) considered the explore-then-commit approach 
with a preset transition threshold over the selling hori
zon. With additional parameter identification assump
tions, Sauré and Zeevi (2013) showed an asymptotic 
O(N log T) regret bound. More advanced algorithms 
have baked this exploration-exploitation tradeoff into 
the multiarmed bandit (MAB) paradigm (Auer et al. 
2002). Agrawal et al. (2017) considered a Thompson 
sampling–based algorithm for the dynamic assortment 
selection with a fixed cardinality constraint K that 
achieved a regret bound of O(

ffiffiffiffiffiffiffi
NT

√
log TK). Agrawal 

et al. (2019) customized the upper confidence bound 
(UCB) approach to the dynamic assortment optimiza
tion problem and achieved a regret bound of Õ(

ffiffiffiffiffiffiffi
NT

√
). 

(Here Õ(·) hides any logarithmic factors.) Chen et al. 
(2021b) relaxed the regret bound on the dependence of 
N. These algorithms match the lower bound Ω(

ffiffiffiffiffiffiffi
NT

√
)

for any regret-minimization assortment optimization 
under the MNL choice model (Chen and Wang 2018). 
Learning algorithms for assortment optimization under 
more general settings have also been studied, for exam
ple, contextual bandit (Bernstein et al. 2019; Oh and 
Iyengar 2019; Chen et al. 2020, 2021b; Kallus and Udell 
2020), other choice models (Chen et al. 2021a), or joint 
operational decisions (Miao and Chao 2021).

Because both assortment optimization and parameter 
estimation for the MCC model are challenging in gen
eral, adaptive assortment selection with demand learn
ing remains an open question in the literature. Gallego 
and Lu (2021) proposed a forward-backward greedy 
heuristic method for the unconstrained assortment selec
tion under the MCC model. Based on this new heuristic, 
they developed an explore-then-commit learning algo
rithm that achieved a regret bound of O(rmaxN2 log T), 
where rmax was the maximal single-product revenue. 
Their algorithm was based on a binary comparison of 
revenues and avoided the issue of parameter estima
tion. However, their heuristic and learning algorithms 
were only applicable to the unconstrained case, as the 
regret analysis was conditioned on the observation that 
locally optimal assortments were globally optimal for 
the unconstrained assortment with the MCC model. 
Moreover, their learning algorithm required knowledge 
of the suboptimality gap at the beginning of the selling 
horizon. This information is however unavailable a pri
ori in practice. Motivated by these limitations, this work 
aims to develop new learning algorithms for more gen
eral dynamic assortment optimization problems.

1.3. Organization
The remainder of this paper is organized as follows. Sec
tion 2 formulates the dynamic assortment selection 
problem under the MCC model. Section 3 proposes a 
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dynamic assortment algorithm with demand learning. 
Section 4 leverages the special structure of the optimal 
assortment and provides performance bounds of the 
assortment algorithm. Section 5 discusses the connec
tion between suboptimality gap and subregret. Section 
6 conducts comparative numerical experiments with 
benchmark results. Section 7 presents our concluding 
remarks.

For ease of presentation, we introduce a notation 
vec(A) that converts a matrix A into a vector composed of 
all the rows of matrix A. For all x ∈ R, [x]+ :� max{x, 0}. 
The acronym i.i.d. stands for “independent and identi
cally distributed.” The acronym w.r.t. stands for “with 
respect to.” The complexity class of APX-hard refers to a 
set of all NP-optimization problems for which a c-approx
imation algorithm exists (with c constant).

2. Problem Description and Model 
Formulation

2.1. Assortment Selection Under the MCC Model
A retailer determines what should be carried in the 
assortment from a set of products N :� {1, 2, : : : , N}. We 
represent customers’ no-purchase alternative by a prod
uct 0. For any product subset S ⊆ N , we define the 
extended subset S+ :� S ∪ {0}. For example, N + � N ∪

{0} � {0, 1, : : : , N} represent all products plus the no 
purchase option. For any assortment S ⊆ N and product 
i ∈ N +, π(i, S) denotes the probability that a customer 
purchases product i. We use ri ∈ [rmin, rmax] to denote 
the revenue for selling one unit of product i ∈ N , where 
rmax and rmin are two constants such that 0 < rmin ⩽ rmax. 
We assume rmin > 0 because products yielding zero rev
enue are unlikely to be offered by sellers, and conse
quently, they will not emerge in the market or be 
considered by customers.

The revenue vector r :� (r0, r1, : : : , rN) with r0 � 0 for 
the no-purchase option.

We model the demand’s spill and recapture as a Mar
kov chain. Each arriving consumer has a first-choice 
product i ∈ N + with probability λi and purchases prod
uct i as long as it is available in the current assortment; 
otherwise, the demand is redirected to product j ∈ N +

(including no purchase) with probability ρij. Next, the 
customer behaves as if the customer’s first-choice 
demand was product j: she purchases j if available and 
otherwise repeats the redirection. Product 0 represents 
the no-purchase option and is always available for cus
tomers. Therefore, transition from product 0 to other 
products is trivial and we can assume ρ0i � 1 � ρ00 �

0 (i ∈ N ). We also assume ρii � 0 (i ∈ N ), that is, there 
are no self-loops, because (i) we are interested in the 
eventual alternative product’s distribution when a tran
sition occurs, and (ii) any transition matrix with self- 
loops can be transformed into an equivalent matrix 

without self-loops. A transition matrix with self-loops is 
not identifiable as shown in Appendix C.1.

We define a vectorization operation vec(·) that maps 
any subset of {λi}i∈N ∪ {ρij}i, j∈N into a column vector in 
the order of λi(i ∈ N ) and then ρij(i, j ∈ N ), where ρij 
is sorted row-wise (i.e., index i-wise). Particularly, let 
θ :� vec({λi}i∈N ∪ {ρij}i, j∈N ). The MCC model is completely 
characterized by a tuple (N , r,θ): once we know θ, all 
arrival probabilities {λi}i∈N +

for first-choice demand 
and all transition probabilities {ρij}i, j∈N +

for demand 
redirection are known, for example, λ0 � 1 �

P
i∈Nλi.

2.2. Static MCC Assortment 
Optimization Problem

Consider an MCC model (N , r,θ) with all parameters 
known. The retailer determines an assortment to maxi
mize revenues. We first analyze the revenue associated 
with every assortment. Given an assortment S, we com
pute the choice probabilities by solving a system of lin
ear equations: we first compute u(i, S;θ)(i ∈ N +), the 
average visit times to product i under assortment S, by 
solving

u(j, S;θ) � λj +
X

i∈N +

1{i ∉ S+} · u(i, S;θ)ρij, j ∈ N +:

(SS-1) 

The average visit times to product i ∈ N + count the 
expected number of times that the customer’s demand 
is redirected to product i (including the first-choice 
demand) during the customer’s purchase decision pro
cess. For an unavailable product i ∈ N \S, the average 
visit times u(i, S;θ) may be greater than one because a 
customer’s demand may be redirected to this product 
for multiple times. However, for an available product 
i ∈ S+, the average visit times u(i, S;θ) must lie in [0, 1]

because, once a customer’s demand is redirected to 
product i, the preference transition stops and the cus
tomer ends up with purchasing product i. This also indi
cates that the choice probability π(i, S;θ) equals the 
average visit times for every product i ∈ S+:

π(i, S;θ) � 1{i ∈ S+} · u(i, S;θ), i ∈ N +: (SS-2) 

Thus, the (average) single-sale revenue r(S;θ) under assort
ment S can be obtained by

r(S;θ) �
X

i∈N

riπ(i, S;θ): (SS-3) 

We consider the assortment optimization problem pos
sibly constrained and let the set 6 ⊆ 2N denote the possi
ble assortments. Several naturally arising constraints over 
the offered assortments include cardinality constraints, 
(i.e., |S |⩽ s), capacity constraints, (i.e., each product has a 
weight wi, and the assortment is restricted to those with 
total weights 

P
i∈Swi ⩽ W), partition matroid constraints, 

(i.e., the products are partitioned into segments, and the 
assortment has an upper bound on the number of 
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products from each segment), and joint display and 
assortment constraints, (i.e., the assortment should 
include the display segment of each product).

We let S∗(θ) be the assortment maximizing the single- 
sale revenue under constraint 6:

S∗(θ) � arg max
S∈6

r(S;θ): (SS-4) 

When (SS-4) has multiple solutions, we let S∗(θ) be an 
arbitrary assortment that maximizes the single-sale rev
enue r(S;θ). In the unconstrained scenario, that is, 
6 � 2N , the assortment selection (SS-4) under the MCC 
model can be reformulated into an optimal stopping 
time problem. The optimal assortment can be obtained 
from an LP; see theorem 5.1 and lemma 5.2 in Blanchet 
et al. (2016). In the constrained scenario, the exact opti
mal assortment is computable in some special settings, 
for example, when the MCC model is reduced to an 
MNL model and the constraint set is total-unimodular 
(TU) (Davis et al. 2013), or when the MCC model is 
reduced to a general attraction model and the constraint 
set is cardinality based (Wang 2013).

When the MCC model is not reduced, however, Désir 
et al. (2020) showed that the assortment selection (SS-4) 
could be APX-hard even under simple cardinality con
straints and a uniform r. Because the exact optimal 
assortment S∗(·) can be uncomputable (in polynomial 
time), the retailer may instead offer an α-optimal assort
ment (α ∈ (0, 1)), the definition of which is consistent 
with the approximation algorithm literature including 
Désir et al. (2020) and Udwani (2021).

Definition 1 (α-Optimal Assortments). For the MCC 
model (N , r,θ) with possible assortments 6, an α-opti
mal assortment denoted by Sα(θ) is any assortment in 
6 such that

r(Sα(θ);θ)Pαr(S∗(θ);θ):

The collection of α-optimal assortments is denoted by
6α(θ) :� {S ∈ 6 |r(S;θ) Pαr(S∗(θ);θ)}:

For instance, if the possible assortments 6 are subject to 
cardinality or capacity constraints, the approximation 
ratio α may be set to 12 � ε for any ε > 0. The approxima
tion algorithms are provided by Désir et al. (2020) and 
Udwani (2021) (see Appendix B.2). Thus, this paper 
treats α as a predefined constant associated with 6.

2.3. Online MCC Assortment 
Optimization Problem

The online assortment optimization assumes that the 
information about the product set {N , r, 6} is known 
but the MCC parameter θ is not known a priori. During 
the selling horizon, the set of products offered to each 
customer and the customers’ purchased products are 
observable while the transition path that a customer 

follows in the MCC model is not observable. Let T 
denote the total number of customers that arrive during 
the selling horizon with one customer per period. We 
index customers and their arrival periods as t ∈ T :�

{1, 2, : : : , T} and use two terms alternately throughout 
this study. Products’ revenues are assumed to be fixed. 
The retailer’s (average) cumulative revenue is

RP(T,θ) :� E
XT

t�1
r(St;θ):

Here P denotes the retailer’s nonanticipating assortment 
selection policy that is defined as follows: let {St}t∈T ∈

6T be an assortment process, and Zt
i be customer t’s pur

chase decision regarding product i ∈ N with Zt
i � 1 

representing purchasing product i and Zt
i � 0 otherwise. 

Particularly, Zt
0 � 1 represents purchasing nothing and 

Zt
0 � 0 otherwise. Let Zt :� (Zt

0, Zt
1, : : : , Zt

N) be the 
purchase decision vector of customer t. Let ^t :�

σ((Su, Zu)1 ⩽ u ⩽ t), t ∈ T be the filtration associated with 
the assortment process and purchase decisions of custo
mers {0, 1, : : : , t}, and ^0 � Ø. Let 3 be the collection of 
nonanticipating assortment policies, that is, any assort
ment policy P ∈ 3 is a mapping from past histories to 
possible assortment decisions {St}t∈T ∈ 6T such that St 
is ̂ t�1-measurable for all t ∈ T .

Because the MCC parameter θ is not known a priori, 
the assortment selection policy maximizing cumulative 
revenues is not obtainable. We analyze the performance 
of any online assortment selection policy via regret, that 
is, the difference between the cumulative revenue 
earned by an oracle who knows parameter θ and that 
earned by a retailer who is uncertain about θ. Depend
ing on the computability of the static assortment optimi
zation problem (SS-4), we define two types of (average) 
cumulative regret.

2.3.1. Cumulative Regret for Exact Optimal Assort
ment. Suppose the exact optimal assortment S∗(·) in 
(SS-4) is computable. The retailer should repeatedly 
offer the revenue-maximizing assortment S∗(θ) when 
the parameter θ is known a priori. The maximal cumu
lative revenue is

R∗(T,θ) �
XT

t�1
r(S∗

t(θ);θ) � T · r(S∗(θ);θ):

When θ is not known a priori, the exact optimal assort
ment should be used as a benchmark, and our primary 
objective is to derive an assortment selection policy P ∈ 3 
that minimizes the cumulative regret

RegP(T,θ) :� R∗(T,θ) � RP(T,θ):

2.3.2. Cumulative a-Regret for Near-Optimal Assort
ment. When the exact optimal assortment S∗(·) is not com
putable, the retailers may offer α-optimal assortments to 
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customers and obtain the following cumulative revenue 
when the parameter θ is known a priori:

Rα(T,θ) �
XT

t�1
r(Sαt (θ);θ):

Here Sαt (θ) ∈ 6α(θ) may vary with t and may not be 
unique because the α-optimal assortment in the static 
assortment optimization problem (SS-4) may have mul
tiple solutions. In our context, our primary objective is 
to design an assortment selection policy minimizing the 
cumulative α-regret

RegαP(T,θ) :� inf
Sαt (θ)∈6α(θ), t∈T

Rα(T,θ) � RP(T,θ)

� inf
Sαt (θ)∈6α(θ), t∈T

XT

t�1
r(Sαt (θ);θ) � RP(T,θ):

Here operation inf{·} is due to the possible existence of 
multiple α-optimal assortments. The cumulative 
α-regret measures the revenue loss due to the unknown 
MCC parameter and compares the implemented policy 
against the worst α-optimal assortments. If the imple
mented policy is purely comprised of α-optimal assort
ments, the cumulative α-regret is at most zero.

Remark 1 (Near-Optimal Benchmark). Using a weaker 
tractable benchmark as a substitute for exact optimal 
benchmark is not uncommon in the learning litera
ture, particularly when the clairvoyant optimal policy 
is not computable. For example, Zhong et al. (2022) 
considered learning algorithms for the scheduling 
problem in multiclass many server queues with aban
donment, whose optimal policy was intractable even 
when the model parameters were known a priori. The 
authors used a benchmark policy of simple prioritiza
tion rule that was asymptotically optimal as the 
arrival rates and number of servers approach infinity.

The α-regret is also closely related with the concept of 
suboptimality gap in the explore-then-commit learning 
literature. As detailed in Section 5, the use of suboptim
ality gap can be viewed as a special case of our α-regret 
analysis.

3. FastLinETC Algorithm
3.1. Challenges and Overview
This section outlines an explore-then-commit algorithm 
for online assortment selection under the MCC model. 
Algorithms under an MNL model are provided in Rus
mevichientong et al. (2010) and Sauré and Zeevi (2013). 
For our algorithm design under the MCC model, there 
are two central problems: (i) how to identify a separa
tion period τ that divides the selling horizon T into an 
exploration phase and an exploitation phase and (ii) how 
to estimate the MCC parameters conditional on custo
mers’ final purchase decisions in the exploration phase.

The estimation of the arrival probability vector λ 
and transition matrix ρ is challenging because the 
choice probabilities’ expressions (SS-1)–(SS-2) involve 
the inverse of submatrices of ρ and thereby the associ
ated log-likelihood function may not be concave. 
Şimşek and Topaloglu (2018) proposed an EM algo
rithm based on a concave incomplete log-likelihood 
function. However, the EM estimator may have multi
ple limit points in the exploration phase and has no 
consistency guarantee. Moreover, the theoretical results 
in Şimşek and Topaloglu (2018) required that the MCC 
model included self-loops, which contradictorily made 
the MCC model lose identifiability as shown in Appen
dix C.1. Thus, using the EM estimator cannot help derive 
sublinear regret bounds.

We propose a parameter recovery method (E-1)–(E-9) 
with consistency guarantee and sub-Gaussian concen
tration bounds (Lemma 5). To establish that, we assume 
the possible assortment set 6 has a subset such that, by 
presenting the included assortments to customers and 
observing purchase decisions, a consistent estimator of 
θ can be constructed:

Assumption 1. There exist (i) n∗ ∈ 2, 3, : : : , ⌊N
2⌋

� �
, (ii) two 

assortments S∩, S′
∩ ⊆ N such that S∩ ∩ S′

∩ � Ø, |S∩ | �

|S′
∩ | � n∗ � 1, and (iii) assortment collections 60, 6̃0 ⊆ 6 

such that

60 :� {S ∪ {k} | k ∈ N \S, S ∈ {S∩, S′
∩}},

6̃0 :� {S ∪ {k} ∪ {j} | j ∈ N \(S ∪ {k}),
k ∈ N \S, S ∈ {S∩, S′

∩}}:

Assumption 1 is easy to verify under commonly used 
assortment constraints. For example, if 6 is defined via 
a cardinality constraint such that 6 :� {S ⊆ N | |S |⩽ s}, 
Assumption 1 is equivalent to assuming s P3. If 6 is 
defined via a capacity constraint such that 6 :� {S ⊆ N |
P

i∈Swi ⩽ W}, Assumption 1 is equivalent to assuming 
w(2) + w(N�1) + w(N) ⩽ W, where w(i) denotes the weight 
of the ith product in the increasing order of all products. 
These specific constraints are considered because Désir 
et al. (2020) and Udwani (2021) have provided constant- 
factor approximation algorithms for static constrained 
assortment optimization problems.

Our parameter estimation method is based on pre
senting the assortments in 60 ∪ 6̃0. Let d :� |6̃0 | + |60 |

and d0 :� |60 | . Then d ⩽ N2 and d0 ⩽ 2N; that is, we use 
O(N2) different assortments for estimation. Different 
from other RUMs such as MNL models (Agrawal et al. 
2017, 2019), the parameter estimation of the MCC model 
cannot be performed with observations from repeatedly 
offering a single assortment. For example, suppose we 
use a single assortment S ⊂ N to estimate the MCC 
parameters. Then the transition from product i ∈ S to 
other products will never occur, and the resulting transi
tion parameters {ρij}j∈N cannot be identified. Under the 
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unconstrained setting (6 � 2N ), using only O(N) assort
ments is possible, and Appendix E shows how this 
relaxation simplifies our learning algorithm and regret 
analysis.

We weave the estimation techniques into online opti
mization and derive the separation period τ based on 
our estimators’ sub-Gaussian concentration bounds. 
During the exploration phase from period 1 to τ, the 
retailer repeatedly presents assortments in 6 ∪ 6̃0 and 
observes customers’ purchase decisions. At the end of 
this phase, a consistent MCC parameter estimator θ̃τ is 
generated based on the collected data. Next, a recom
mended assortment is computed based on θ̃τ, which will 
be offered during the remaining exploitation phase 
from period τ+ 1 to T. We prove the consistency of esti
mator θ̃τ obtained from the exploration phase in Section 4. 
Because the recommended assortment is computed 
based on θ̃τ, the latter’s consistency ensures the former’s 
convergence in probability to the exact optimal (respec
tively, α-optimal) assortment if the exact optimal assort
ment S∗(·) is computable (respectively, otherwise).

3.2. Description of FastLinETC
3.2.1. Inputs and Initialization. Given the following 
information about products and selling horizon 
{N, r, 6, T}, we have two inputs prior to implementing 
the learning algorithm: (i) a separation period τ that 
splits the exploration and exploitation phases and (ii) an 
assortment function SP(·) that maps the exploration esti
mator θ̃τ to an exact optimal/near-optimal assortment. 
In the following description, we keep the flexibility in 
specifying τ and SP(·), which depend on the availability 
of exact optimal/near-optimal solutions in the static 
assortment optimization and yield different regret 
bounds (Theorems 1 and 2). For example, if S∗(·) is com
putable for any estimated parameter, we let τ �

⌈T2
3 logT⌉ and set function SP(·) to be S∗(·) throughout 

the selling horizon. This combination will yield a cumu
lative regret bounded by O(poly(N)T2

3 log T).

3.2.2. Exploration Phase. In the exploration phase, we 
repeatedly present the assortments in 60 ∪ 6̃0, where 
the assortment set 60 ∪ 6̃0 is defined in Assumption 1, 
and each presented assortment has the cardinality of n∗

or n∗ + 1.

Example 1. For better understanding of this explora
tion phase, we provide a simple illustrative example 
with N � {1, 2, 3, 4}. Following Assumption 1, we can 
define the exploration assortments as 6̃0 ∪ 60 �

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, 
{2, 3, 4}} and denote 6̃0 ∪ 60 as {A0, A1, : : : , A8} accord
ingly. Then in the exploration phase, the algorithm will 
sequentially offer A0, A1, : : : , A8, A0, A1, : : : , A8, : : : to cus
tomers until the separation period τ. w

At the separation period τ, we obtain MCC parameter 
estimators θ̂τ and θ̃τ as follows. We first define the trivial 
parameters’ indices I0 :� {(i, i) | i ∈ N } since ρii ≡ 0, i ∈ N . 
(I0 may include more indices in N 2, such as in a sparse 
transition matrix, ρij ≡ 0 for i, j belonging to different 
product categories.) Then the MCC parameter θ is divided 
into trivial and nontrivial elements such that θ � vec(θ0, 
θ++), where the trivial parameter θ0 :� vec({ρij}(i, j)∈I0 )

and the nontrivial parameter θ++ :� vec({λi}i∈N ∪

{ρij}(i, j)∈N
2
\I0

). Then θ0 is naturally estimated by
θ̂
τ
0 :� vec({ρ̂τij ≡ 0}(i, j)∈I0 ): (E-1) 

Nontrivial parameter θ++ is estimated by solving a system 
of linear equations due to intrinsic properties of the MCC 
model. Based on the collected data in the exploration phase 
including offered assortments {St}t ⩽τ and customers’ pur
chase decisions {Zt}t ⩽τ � {(Zt

0, Zt
1, : : : , Zt

N)}t ⩽τ, we esti
mate the nontrivial parameter θ++ in four steps.

Step 1: The choice probabilities π(i, S) for every i ∈ N +

and S ∈ 60 ∪ 6̃0 are estimated by

π̂τ(i, S) :�

Pτ
t�1 1{St � S, Zt

i � 1}
Pτ

t�11{St � S}
,

i ∈ N +, S ∈ 60 ∪ 6̃0: (E-2) 

Here the denominator denotes the frequency that 
assortment S is offered, and the numerator denotes the 
frequency that product i is purchased under assortment 
S. Therefore, the resulting fraction can be used as an esti
mator for choice probability π(i, S). In the following 
steps, we use these choice probability estimators to con
struct a set of linear equations, from which we recover 
the parameter θ++.

Step 2: We define intermediate variables for all i, j ∈

N +, S ∈ 60 as

π̂τ(j, S | i) :�

1, if i � j,
π̂τ(j, S) � π̂τ(j, S ∪ {i})

π̂τ(i, S ∪ {i})
, if i ∈ N \S,

0, if i ∈ S+\{j}:

8
>><

>>:

(E-3) 
Here π̂τ(j, S | i) estimates the probability of purchasing 
product j from assortment S conditional on that the 
first-choice demand is product i.

Step 3: θ++ is estimated (recovered) by minimizing 
squared residuals of the following linear equations:
X

k∈N

[π̂τ(j, S |k) � π̂τ(j, S |0)]ρ̂τik � [π̂τ(j, S | i) � π̂τ(j, S |0)],

i ∈ N \S, j ∈ S+, S ∈ 60, (E-4) 
X

k∈N

[π̂τ(j, S |k) � π̂τ(j, S |0)]λ̂
τ
k � [π̂τ(j, S) � π̂τ(j, S |0)],

j ∈ S+, S ∈ 60: (E-5) 

Note that the predefined trivial parameter estimator 
θ̂
τ
0 � vec({ρ̂τij ≡ 0}(i, j)∈I0 ) is plugged into (E-4) before 
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computing the solutions above. For the convenience of 
exposition, we rewrite events (E-4)–(E-5) using a matrix 
notation:

{θ̂
τ
++ : (E � 4), (E � 5)}� {θ̂

τ
++ : X̂τθ̂τ++ � Ŷτ}, (E-6) 

where entries of X̂τ and Ŷτ are defined by coefficients in 
(E-4) and (E-5). Minimizing squared residuals gives the 
following estimator for θ++:

θ̂
τ
++ :� vec({λ̂

τ
i }i∈N ∪ {ρ̂τij}(i, j)∈N

2
\I0

)

� (X̂τ
⊤

X̂τ)�1
(X̂τ

⊤

Ŷτ), (E-7) 

Combining (E-1) and (E-7), we obtain the following esti
mator for θ:

θ̂
τ

:� vec(θ̂
τ
0, θ̂τ++) � vec({λ̂

τ
i }i∈N ∪ {ρ̂τij}(i, j)∈N

2 ): (E-8) 

Because θ̂τ is computed from (E-4)–(E-5), it may not be 
a valid MCC parameter in space Θ. We use the follow
ing rounded estimator as the final estimator:

θ̃
τ

:� arg min
θ′∈Θ

‖θ′ � θ̂
τ
‖1: (E-9) 

3.2.3. Exploitation Phase. In the exploitation phase, a 
recommended assortment SP(θ̃

τ
) is offered based on esti

mator θ̃τ until period T.
The explore-then-commit learning algorithm for the 

dynamic assortment optimization problem under the 
MCC model is summarized in Algorithm 1.

Algorithm 1 (FastLinETC P(N, T,τ, SP(·)))
Input: integer τ and assortment function SP(·).
Output: offered assortments {St}

T
t�1:

Phase 1. Exploration:
Define an arbitrary order for the exploration assort
ments 60 ∪ 6̃0 satisfying Assumption 1 and denote 
them as {A0, A1, : : : , Ad�1}.
for t ∈ {1, 2, : : : ,τ} do

Define kt :� (t � 1) modd, and offer St � Akt to 
customer t.
Observe the customer purchase decisions Zt �

(Zt
0, Zt

1, : : : , Zt
N).

end for
Compute choice probability estimators π̂τ(i, S) for 
all i ∈ N +, S ∈ 60 ∪ 6̃0 via (E-2).
Compute conditional choice probability estimators 
π̂τ(j, S | i) for all i, j ∈ N +, S ∈ 60 via (E-3).
Compute the linear equation system’s coefficients 
X̂τ and Ŷτ via (E-4), (E-5), and (E-6).
Compute the MCC parameter estimator θ̂τ via (E-1), 
(E-7), and (E-8).
Compute the rounded MCC parameter estimator 
θ̃
τ via (E-9).

Phase 2. Exploitation:
To all remaining T � τ customers, offer SP(θ̃

τ
).

4. Performance Analysis of FastLinETC
Our main results are two instance-independent upper 
bounds on the policy regret associated with Algorithm 1. 
Given the assortment constraints and possible assort
ments 6, if the exact optimal assortment is computable, 
an order-of-T2

3 log T policy (i.e., τ ∈ O(T2
3 log T)) will 

yield a cumulative regret of O(poly(N)T2
3 log T). Other

wise, if near-optimal assortments are computable, an 
order-of-log T policy will yield a cumulative α-regret of 
O(poly(N)log T). Here α ∈ (0, 1) is a predefined constant 
associated with 6 for the benchmark of constrained 
assortment optimization as outlined in Section 2.3.

To establish our results, we make the following 
assumption on parameter space.

Assumption 2. For the MCC model (N , r,θ), θ belongs to 
a space Θ :�Θλ ×

QN
i�1Θρi·

, where

Θλ :�
1

PN
k�0 ak

· (a1,a2,: : : ,aN)

�
�
�
�
�
a0 � 1,aj ∈ [aj,aj], j ∈N

( )

,

Θρi·
:�

1
PN

k�0 bik
· (bi1,bi2, : : : ,biN)

�
�
�
�
�
bi0 � 1,bij ∈ [bij,bij], j ∈N

( )

,

i ∈N , 

and the known constants {ai, ai}i∈N ∪ {bij, bij}i, j∈N ⊆ R+

satisfy the following two conditions: 
(No self-loops) for all i ∈ N , bii � bii � 0; and
(Bounded attraction) 0 < ai ⩽ ai < ∞ (i ∈ N ), and 

bij < ∞ (i, j ∈ N ).
In this assumption, the unknown {ai}i∈N and {bij}i, j∈N 

determine the parameter θ � vec({λi}i∈N ∪ {ρij}i, j∈N ): 
given {ai}i∈N and {bij}i, j∈N , we can compute λi � aiPN

k�0
ak 

and ρij �
bijPN
k�0

bik 
for all i, j ∈ N . Correspondingly, the 

ranges of {ai}i∈N and {bij}i, j∈N define the parameter 
space for θ.

Our main results are formally stated as follows.

Theorem 1 (Regret of Order-Of-T2
3log T Policy). Suppose 

Assumptions 1 and 2 hold and the exact optimal assort
ments S∗(·) are computable under possible assortments 6. 
Let µ > 0 be an arbitrary constant. There exist κ1, T1 ∈

O(poly(N)) such that by letting τ � ⌈µT2
3 logT⌉, SP � S∗(·), 

and policy P1 be defined by Algorithm 1, the regret associ
ated with policy P1 at any time T PT1 is bounded as

RegP1
(T,θ) ⩽κ1T2

3 log T, 

where κ1 and T1 are constants independent of the MCC 
parameter θ.

Theorem 2 (Regret of Order-Of-log T Policy). Suppose 
Assumptions 1 and 2 hold and the γα-optimal assortments 
Sγα(·) are computable under possible assortments 6 where 
α ∈ (0, 1) and γ ∈ (1, 1

α). There exist ψ,κ2, T2 ∈ O(poly(N))
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such that by letting τ � ⌈ψlog T⌉, SP � Sγα(·), and policy P2 
be defined by Algorithm 1, the α-regret associated with policy 
P2 at any time T PT2 is bounded as

RegαP2
(T,θ) ⩽ κ2log T, 

where ψ, κ2, and T2 are constants independent of the MCC 
parameter θ.

We next remark on motivation and weakness of 
Assumption 2, justify the use of γα-optimal assortments 
in Theorem 2, and discuss the regret upper bounds in 
Theorems 1 and 2.

Remark 2 (On Assumption 2). The attraction parameters 
{ai}i∈N and {bij}i, j∈N play the same role as the attrac
tion parameters in the MNL model: They are introduced 
for convenience of estimation, and ai � λi

λ0
(i ∈ N +), 

bij �
ρij
ρi0

(i ∈ N , j ∈ N +). Because a0 � bi0 � 1 for all i ∈ N , 
the fractions defining Θ have strictly positive denomina
tors and are well defined. The main analysis can be simi
larly developed to other closed parameter spaces 
satisfying conditions (i) and (ii) under Assumption 2. 
These two conditions are not strong. Condition (i) has 
been discussed in Section 2.1, which is necessary for 
model identifiability as shown in Appendix C.1. Condi
tion (ii) essentially requires that the arrival probabilities 
{λi}i∈N +

and the transit-to-no-purchase probabilities 
{ρi0}i∈N are lower bounded. (For counterexample, con
sider i, j ∈ N , i ≠ j. ρi0 � 1P

k∈N +
bik 

will approach 0 if bij 

approaches ∞. λi � aiP
k∈N +

ak 
will approach zero if aj 

approaches ∞ or ai approaches zero.) The lower 
bounded {ρi0}i∈N avoids “infinite loops” in the MCC 
model because the customer’s probability of being 
absorbed into the no-purchase option is above zero after 
each transition. Overall, we only require O(N) entries of 
transition matrix ρ lower bounded and allow ρ to be 
sparse (e.g., transitions only occurring within the same 
product category). This condition is significantly weaker 
than Şimşek and Topaloglu (2018) assuming that all 
Ω(N2) entries of ρ and λ are lower bounded.

Remark 3 (Use of γα-Optimal Assortments). In Theorem 2, 
we provide γα-optimal assortments in the exploitation 
phase while we analyze the α-regret and use the α-opti
mal assortments as benchmark. The improvement of 
approximation ratios from α to γα  is insignificant because 
the approximation ratios of near-optimal assortments 
often have open ranges and thereby, we can find a valid 
improvement factor γ > 1 for all ratio α. For example, 
Désir et al. (2020) and Udwani (2021), respectively, gave 
an (1=2 � ε)-approximation algorithm for assortment 
optimization under cardinality or capacity constraints 
with ε > 0 being an arbitrary small constant. Let the 
benchmark take 0.45-optimal assortments (i.e., ε � 0:05). 
Then 0.49-optimal assortments are obtainable. Here we 

can set the predefined constant α � 0:45 and the improve
ment factor γ � 0:49

0:45. The α-regret bound in Theorem 2
depends on factor γ as κ2, T2 ∈ Õ 1

(γ�1)
2

� �
; see Section 4.4. 

In fact, the use of suboptimality gap ∆min in explore-then- 
commit learning literature (Sauré and Zeevi 2013, Gallego 
and Lu 2021) can be viewed as a special case of analyzing 
α-regret while providing γα-optimal solutions where α �

1 � ∆min
2rmax 

and γ � 1
α. A detailed discussion is in Section 5.

Remark 4 (On poly(N) Regret and Its Unconstrained 
Relaxation). Our regret upper bounds scale polynomi
ally in N. This is ideal because it avoids a combinatorial 
complexity of assortment selection. The polynomial 
order of N in both Theorems 1 and 2 has two sources: 
first, in the exploration phase, we use O(N2) different 
assortments, that is, |60 ∪ 6̃0 | ∈ O(N2). Second, when 
we estimate the MCC parameter θ, we solve a system of 
linear Equations (E-4)–(E-5) with O(N2) rows and O(N2)

columns. If the problem is unconstrained, that is, 
6 � 2N , then both the number of exploration assort
ments and the size of linear equations for estimating θ 
will be reduced significantly; see the simplified algo
rithm in Appendix E. Consequently, the order of N in 
regret bounds is also reduced. For example, the regret 
coefficient κ1 in Theorem 1 will reduce its order from 
O(N3:5) to O(N2:5); see Expressions (6) versus (E.4).

Remark 5 (Estimation Efficiency and Consistency). Tech
nically, to estimate the MCC parameters, we devise 
a new batch-to-batch sampling method and derive 
the desired concentrations bounds involving novel 
techniques to approximate stationary distributions via 
matrix operations; see Lemma 5. Compared with the 
state-of-the-art EM method for parameter estimation 
(Şimşek and Topaloglu 2018) that suffers from unguar
anteed convergence and increasing computational bur
den in T, our consistent estimators enjoy sub-Gaussian 
concentration bounds and superior computational times 
with almost negligible dependence on T. In our compu
tational experiments, our estimators are at least 1,000 
times more efficient.

In the static assortment optimization, the exact opti
mal assortment is computable only for the uncon
strained setting (Blanchet et al. 2016) or the MCC 
model’s special cases, for example, the MNL model 
under a TU constraint set (Davis et al. 2013) and the gen
eral attraction model under a cardinality constraint set 
(Wang 2013). The most related lower bound result is 
Ω(

ffiffiffiffi
T

√
) for a constrained MNL model (Chen and Wang 

2018). There is a gap between our T2=3log T upper 
bound and the known 

ffiffiffiffi
T

√
lower bound. We would like 

to make the following comments. 
i. The estimation for MCC parameters is far more 

challenging than traditional MNL models (because it 
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captures both the initial preference and the substitution 
between each pair of products and requires Ω(N) differ
ent assortments for parameter estimation). It is an open 
research question if the lower bound still remains on the 
order of 

ffiffiffiffi
T

√
, which can be worthy of further investigation.

ii. There could be variants of our algorithm (e.g., 
involving multiple batches of exploration and exploita
tion) that could potentially improve our upper bound, 
but the design and analysis would be extremely chal
lenging. For instance, there are two key difficulties in 
using upper confidence bound (UCB) based multi
armed bandit techniques. First, one has to carefully 
define the notion of “arms” and construct the reward 
confidence radius associated with each arm. The pro
ducts cannot be treated as independent arms because 
the customer choice observed on offering a product i 
also depends on other products in the same assortment 
S. It is also computationally inefficient to treat all possi
ble assortments S ∈ 6 as arms. We cannot define arms 
based on each product’s attraction value as in an MNL 
model (Agrawal et al. 2019) because customers’ choice 
probabilities are jointly decided by the arrival probabil
ities of each product and the transition probabilities 
between products. Second, given that the constrained 
assortment optimization problem often lacks comput
able solutions (in polynomial time), we can expect that 
it is even harder to compute the so-called “optimistic” 
constrained assortment over the entire parameter space 
defined via confidence radii in every iteration.

iii. Moreover, a simple explore-then-commit strat
egy is arguably more deployable in real-world settings 
(in terms of implementation and communication to 
various nontechnical stakeholders). Our upper bound 
matches the T2=3 lower regret bound of batched bandits 
under explore-then-commit strategies (Perchet et al. 
2016) up to a logarithmic factor.

In the “more general” static assortment optimization, 
the exact optimal assortment under the MCC model is 
not typically computable, and only near-optimal assort
ments are available. Because a retailer in practice has to 
resort to near-optimal assortments rather than exact 
optimal assortments (which are not computable) in such 
a scenario, the normal regret based on exact optimal 
assortments is almost impossible to quantify. Instead, 
our α-regret is a more practical measure for assortment 
selection policies. Our analysis of α-regret-based learn
ing algorithms departs from previous assortment stud
ies based on a normal regret definition (Agrawal et al. 
2019, Chen et al. 2021a, Gallego and Lu 2021). Because 
the α-regret uses an α-optimal assortment as our clair
voyant policy, the designed learning algorithm con
verges to such a weaker benchmark faster than that in 
Theorem 1, and the derived regret bound is improved. In 
Theorem 2, we find the optimality gap of near-optimal 
assortments introduces an instance-independent “regret- 

free region” (Lemma 4) surrounding the true parameters, 
and the convergence rate of our batch-to-batch estimator 
to this region is on the order of log T, resulting in a better 
regret upper bound.

4.1. Proof Outline
We outline proofs of Theorems 1 and 2 by showing sub- 
Gaussian concentration bounds of θ̃τ and linear bounds 
of exploitation optimality gap w:r:t: θ̃τ. Here the exploita
tion optimality gap denotes the single-sale revenue differ
ence between the exact optimal assortment calculated 
with the true parameter θ and that calculated with the 
estimator θ̃τ, i.e., |r(S∗(θ);θ) � r(S∗(θ̃

τ
);θ) | . A flowchart 

is shown in Figure 1.
First, Section 4.2 studies the smoothness of the objective 

function through the lens of Lipschitz continuity. For any 
assortment S, the single-sale revenue r(S;θ) is Lipschitz 
continuous w:r:t: θ. Moreover, we can find a Lipschitz 
constant CL that is independent of S and decreases as 6 
becomes smaller (Lemma 2). The Lipschitz continuity of 
single-sale revenue implies a linear bound of the exploita
tion optimality gap w.r.t. the estimator θ̃τ ((i) of Lemma 4). 
Moreover, when analyzing near-optimal assortments and 
α-regret, the Lipschitz continuity introduces an instance- 
independent regret-free region: any γα-optimal assort
ment based on a θ̃τ that is within the d∗-neighborhood of 
true parameter θ is α-optimal under θ and thereby the 
associated α-regret is zero. This distance d∗ is independent 
of θ ((ii) of Lemma 4).

Next, Section 4.3 shows the consistency and sub- 
Gaussian concentration bounds of the estimator θ̃τ 

(Lemma 5). We show the following properties of estima
tors: (i) θ̃τ is Lipschitz continuous w.r.t. the estimated 
choice probability π̂τ(i, S) for any i ∈ N + and S ∈ 60 ∪

6̃0 due to the structure of (E-1)–(E-9); and (ii) π̂τ(i, S) for 
i ∈ N +, S ∈ 60 ∪ 6̃0 is a consistent estimator. Following 
empirical distributions of independent samples, we 
derive concentration bounds for π̂τ(i, S) and θ̃τ.

Finally, we derive regret bounds in Section 4.4 using 
the linear bounds and concentration bounds obtained 
previously. These policy regret bounds are obtained by 
balancing and minimizing the cumulative regret of the 
exploration and exploitation phases.

4.2. Lipschitz Continuity
We first show that the single-sale revenue r(S;θ) is the 
unique solution of (SS-1)–(SS-3) and then derive its 
Lipschitz constant w.r.t. θ, based on which we prove 
that the exploitation optimality gap has a linear bound 
w.r.t. θ̃τ. For convenience of analysis, we define the fol
lowing constants. First, we define the following lower 
bound for the maximal single-sale revenue in the worst 
case of θ ∈Θ:

r :� max
S∈6

X

i∈S

airi

1 +
P

k∈N ak
�

maxS∈6
P

i∈S airi

1 +
P

k∈N ak
:
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Indeed, for any assortment S ∈ 6 and product i ∈ S, ri is 
the revenue for selling one unit of product i, and 

ai

1+
P

k∈N
ak

⩽λi is a lower bound for the probability of 

product i being purchased. Thus, r returns a lower 
bound of maximal revenue. Next, we define the mini
mal absorbing probability:

η :� min
i∈N

inf
θ∈Θ
ρi0 �

1
1 + maxi∈N

P
k∈N bik

, 

that is, the minimal transition probability to state 0 (no 
purchase) from any other state (product).

4.2.1. Computation of Single-Sale Revenue. We verify 
that (SS-1)–(SS-3) return the choice probabilities and 
single-sale revenues.

Lemma 1. For the MCC model (N , r,θ) with a parameter 
space Θ, equations (SS-1)–(SS-3) have a unique solution 
and return the average visit times, the choice probabilities, 
and the single-sale revenue for every θ ∈Θ and S ⊆ N .

Proof. The average visit times and choice probabilities 
are well defined according to the following observa
tion. For any θ � vec({λi}i∈N ∪ {ρij}i, j∈N ) ∈Θ and 
S ⊆ N , we have ρ00 � 1 and ρi0 Pη > 0 for all i ∈ N by 
the definition of η. Thus, state 0, that is, no purchase, 
is an absorbing state, and the probability of being not 
absorbed after t transitions is upper bounded by 

(1 � η)t. Thus, the average visit times and choice prob
abilities are well defined and finite.

Equation (1) in Şimşek and Topaloglu (2018) shows 
that the average visit times and choice probabilities 
should satisfy (SS-1)–(SS-2). Then to prove Lemma 1, 
it is sufficient to show that the system of linear equa
tions (SS-1) has a unique solution. Let us write (SS-1) 
into the matrix notation with

u :� (u(i,S;θ))i∈S, l :� (λi)i∈S, P :� (ρij)i∈N \S, j∈S,

ū :� (u(i,S;θ))i∈N \S, l̄ :� (λi)i∈N \S, P̄ :� (ρij)i, j∈N \S:

(1) 

Then (SS-1) can be written as

ū � l̄ + P̄⊤ū, (SS-M1) 

u � l + P⊤ū, (SS-M2) 

u(0, S;θ) � 1 �
X

i∈N

λi

 !

+
X

i∈N \S
u(i, S;θ)ρi0: (SS-M3) 

Thus, (SS-1) will have a unique solution if (I � P̄⊤) is 
invertible. For every vector x ∈ R |N \S |

+ , ‖P̄⊤x‖1 ⩽ (1 �

η)‖x‖1 because Pj∈N \Sρij ⩽ 1 � ρi0 ⩽ 1 � η for all i ∈ N \S. 
Then for every x ∈ R |N \S |

+ and thereby every x ∈ R |N \S | , 
we have limt→∞(P̄⊤)

tx � 0. Thus, (I � P̄⊤)
�1 exists and 

Figure 1. Flowchart of Proving Theorems 1 and 2 for Assortment Selection Policies’ Regret Bounds 

Notes. The numbers in circles index the results presented in this figure. Solid arrows highlight main proofs. Dotted arrows represent supplemen
tary proofs.
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equals I + P̄⊤ + (P̄⊤)
2
+ ⋯ Thus, the solution of (SS-1) is 

unique. w

Last, recall (SS-M1)–(SS-M2) and let r :� (ri)i∈S. Then 
we can write the single-sale revenue r(S;θ) as a closed- 
form function

r(S;θ) � r⊤[l + P⊤(I � P̄⊤)
�1l̄]: (SS-M4) 

4.2.2. Lipschitz Continuity and Exploitation Optimality 
Gap. We now prove the Lipschitz continuity of the 
single-sale revenue r(S;θ) w.r.t. θ.

Lemma 2. For the MCC model (N , r,θ) with parameter 
space Θ and possible assortments 6, there exists a Lipschitz 
constant CL such that |r(S;θ2) � r(S;θ1) |⩽ CL ‖θ2 �θ1‖1 
for every θ1,θ2 ∈Θ and S ∈ 6.

We use the following inequalities, the detailed proof 
of which is included in Appendix C.

Lemma 3. For all y ∈ R |N \S |
+ , S ⊆ N , and θ ∈Θ, we have that

‖(I � P̄)
�1y‖∞ ⩽

‖y‖∞

η(6)
, (2) 

‖(I � P̄⊤)
�1y‖∞ ⩽

‖y‖1
η(6)

, (3) 

where the constant η(6) is given by

η(6) :� inf
S∈6,θ∈Θ, i∈N \S

ρi0 � min
S∈6, i∈N \S

1
1 +
P

k∈N bik
:

Here η(6)Pη by definitions, and η(6) can be inter
preted as the lower bound of transition probabilities to 
state 0 (i.e., no purchase) from any other state (product) 
outside S ∈ 6. Thus, a small 6 due to strong assortment 
constraints may yield an η(6) significantly greater than η.

Proof of Lemma 2. Lipschitz constant induced by partial 
derivatives. Given an assortment S ∈ 6, r(S;θ) is differ
entiable w.r.t. the parameter θ ∈Θ because r(S;θ) is a 
composite function of θ produced by (SS-1)–(SS-3).

Formally, recall (SS-M4). Because l, l̄, P, and P̄ are 
differentiable w.r.t. θ � vec({λi}i∈N ∪ {ρij}i, j∈N ) ∈Θ by 
definitions in (1), the composite function r(S;θ) is also 
differentiable w.r.t. θ.

We can define a tight Lipschitz constant C∗
L as the 

largest partial derivative of r(S;θ) w.r.t. elements of θ 
across all S ∈ 6 and θ ∈Θ:

C∗
L :� sup

S∈6,θ∈Θ

max
i∈N

∂r(S;θ)

∂λi

�
�
�
�

�
�
�
�, max

(i, j)∈N
2
\I0

�
�
�
�
�

∂r(S;θ)

∂ρij

�
�
�
�
�

( )

:

The trivial parameters ρij ≡ 0 for all (i, j) ∈ I0 and thus, 
they are immaterial to C∗

L.

4.2.2.1. Divide Partial Derivatives. We divide the par
tial derivatives inside the definition of C∗

L into five 

groups and calculate their bounds. We rewrite C∗
L �

max{CL1 , CL2 , CL3 , CL4 , CL5 }, where each parameter is 
defined as

CL1 :� sup
S∈6,θ∈Θ

max
i∈S

∂r(S;θ)

∂λi

�
�
�
�

�
�
�
�

� �

,

CL2 :� sup
S∈6,θ∈Θ

max
i∈N \S

∂r(S;θ)

∂λi

�
�
�
�

�
�
�
�

� �

,

CL3 :� sup
S∈6,θ∈Θ

max
(i, j)∈((N \S)×6)\I0

∂r(S;θ)

∂ρij

�
�
�
�
�

�
�
�
�
�

( )

,

CL4 :� sup
S∈6,θ∈Θ

max
(i, j)∈(N \S)

2
\I0

∂r(S;θ)

∂ρij

�
�
�
�
�

�
�
�
�
�

( )

,

CL5 :� sup
S∈6,θ∈Θ

max
(i, j)∈(S×N )\I0

∂r(S;θ)

∂ρij

�
�
�
�
�

�
�
�
�
�

( )

:

Here CL5 ≡ 0 because, for all (i, j) ∈ S × N , r(S;θ) is inde
pendent of ρij and ∂r(S;θ)=∂ρij � 0.

4.2.2.2. Bound Partial Derivatives by Groups. Next, 
we bound CL1 , CL2 , CL3 , CL4 . Define r(6) :� maxS∈6, i∈Sri 
⩽ rmax as the maximal single-product revenue under possi
ble assortments 6. According to (1) and (SS-M1)–(SS-M4), 
CL1 satisfies

CL1 � sup
S∈6,θ∈Θ

�
�
�
�

�
�
�
�
∂r(S;θ)

∂l

�
�
�
�

�
�
�
�
∞

� sup
S∈6,θ∈Θ

‖r‖∞ � r(6):

Similarly, CL2 -CL4 can be bounded by

CL2 � sup
S∈6,θ∈Θ

�
�
�
�

�
�
�
�
∂r(S;θ)

∂l̄

�
�
�
�

�
�
�
�
∞

� sup
S∈6,θ∈Θ

‖(I � P̄)
�1Pr‖∞

⩽ sup
S∈6,θ∈Θ

‖Pr‖∞

η(6)
⩽

r(6)

η(6)
, (due to 2( ))

CL3 � sup
S∈6,θ∈Θ

�
�
�
�

�
�
�
�
∂r(S;θ)

∂P

�
�
�
�

�
�
�
�
∞

� sup
S∈6,θ∈Θ

‖(I � P̄⊤)
�1l̄r⊤‖∞

� sup
S∈6,θ∈Θ

{‖(I � P̄⊤)
�1l̄‖∞ · ‖r‖∞}

⩽ sup
S∈6,θ∈Θ

‖l̄‖1
η(6)

· r(6)

� �

⩽
r(6)

η(6)
, (due to 3( ))

CL4 � sup
S∈6,θ∈Θ

max
(i, j)∈(N \S)

2
\I0

∂r(S;θ)

∂ρij

�
�
�
�
�

�
�
�
�
�

( )

� sup
S∈6,θ∈Θ

�

max
(i, j)∈(N \S)

2
\I0

| l̄⊤(I � P̄)
�1Eij(I � P̄)

�1Pr |

�

⩽ sup
S∈6,θ∈Θ

{‖l̄⊤(I � P̄)
�1

‖∞ · ‖(I � P̄)
�1Pr‖∞}

⩽ sup
S∈6,θ∈Θ

‖l̄‖1
η(6)

·
‖Pr‖∞

η(6)

� �

⩽
r(6)

η2(6)
, 

Li et al.: Constrained Assortment Optimization Under Markov Chain Choice Model 
Operations Research, Articles in Advance, pp. 1–30, © 2024 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.2

55
.2

34
.1

4]
 o

n 
05

 A
ug

us
t 2

02
4,

 a
t 1

3:
14

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



where the single-entry matrix Eij ∈ R |N \S |
2 

has only one 
nonzero entry of value one, whose location is the same 
with that of ρij in P̄, and the last row’s inequality is due 
to (2) and (3) in Lemma 3.

Therefore, the tight Lipschitz constant C∗
L is bounded by

C∗
L � max{CL1 , CL2 , CL3 , CL4 , CL5 }

⩽ max r(6), r(6)

η(6)
, r(6)

η(6)
, r(6)

η2(6)
, 0

� �

⩽
r(6)

η2(6)
:

Thus, Lemma 2 requires a Lipschitz constant of r(6)=

η2(6). w

Lemma 2 also implies a linear bound of the exploita
tion optimality gap for exact optimal assortments and a 
regret-free region for near-optimal assortments.

Lemma 4. Consider the MCC model (N , r,θ) with param
eter space Θ and possible assortments 6. For any θ ∈Θ 
and any estimator θ̂ ∈Θ, we have the following: 

i. (Exploitation optimality gap) |r(S∗(θ̂);θ) � r(S∗

(θ);θ) | is bounded by 2CL‖θ̂�θ ||1.
ii. (Regret-free region) If ‖θ̂�θ‖1 ⩽ rα(γ�1)

CL(1+α)
, then 

Sγα(θ̂) ∈ 6α(θ) where α ∈ (0, 1),γ ∈ (1, 1
α). If ‖θ̂�θ | |1 

⩽ r(1�α)

CL(1+α)
, then S∗

(θ̂) ∈ 6α(θ). In other words, a γα-optimal 
assortment under θ̂ is an α-optimal assortment under θ if 
‖θ̂�θ | |1 ⩽ rα(γ�1)

CL(1+α)
; an exact-optimal assortment under θ̂ is 

an α-optimal assortment under θ if ‖θ̂�θ ||1 ⩽ r(1�α)

CL(1+α)
.

Proof. The first statement (i) holds true because

|r(S∗(θ̂);θ) � r(S∗(θ);θ) | � r(S∗(θ);θ) � r(S∗(θ̂);θ)

� [r(S∗(θ);θ) � r(S∗(θ); θ̂)] + [r(S∗(θ); θ̂) � r(S∗(θ̂); θ̂)]

+ [r(S∗(θ̂); θ̂) � r(S∗(θ̂);θ)]

⩽[r(S∗(θ);θ) � r(S∗(θ); θ̂)] + [r(S∗(θ̂); θ̂) � r(S∗(θ̂);θ)]

(by r(S∗(θ); θ̂) ⩽ r(S∗(θ̂); θ̂))

⩽2CL‖θ̂�θ‖1: (by Lemma 2):

The first half of (ii) holds true because
r(Sγα(θ̂);θ)

r(S∗(θ);θ)
P

r(Sγα(θ̂); θ̂) � CL‖θ̂ � θ‖1

r(S∗(θ); θ̂) + CL‖θ̂ � θ‖1

P
r(Sγα(θ̂); θ̂) � CL‖θ̂ � θ‖1

r(S∗(θ̂); θ̂) + CL‖θ̂ � θ‖1
by Lemma 2
� �

P

r(Sγα(θ̂);θ̂)

r(S∗(θ̂);θ̂)
�

CL‖θ̂�θ‖1
r(S∗(θ̂);θ̂)

1 +
CL‖θ̂�θ‖1
r(S∗(θ̂);θ̂)

P
γα�

CL‖θ̂�θ‖1r
1 +

CL‖θ̂�θ‖1r
(by dividing r(S∗(θ̂); θ̂),

and r(S∗(θ̂); θ̂) P r)

P
γα�

α(γ�1)

1+α

1 +
α(γ�1)

1+α

Pα:

 

by ‖θ̂ � θ‖1 ⩽
rα(γ� 1)

CL(1 + α)

!

:

Similarly, the second half of (ii) holds true because

r(S∗(θ̂);θ)

r(S∗(θ);θ)
P

r(S∗(θ̂); θ̂) � CL‖θ̂�θ‖1

r(S∗(θ); θ̂) + CL‖θ̂�θ‖1

P
r(S∗(θ̂); θ̂) � CL‖θ̂�θ‖1

r(S∗(θ̂); θ̂) + CL‖θ̂�θ‖1
by Lemma 2
� �

P
1 �

CL‖θ̂�θ‖1
r(S∗(θ̂);θ̂)

1 +
CL‖θ̂�θ‖1
r(S∗(θ̂);θ̂)

P
1 �

CL‖θ̂�θ‖1r
1 +

CL‖θ̂�θ‖1r

P
1 � 1�α

1+α

1 + 1�α
1+α

Pα:

by r(S∗(θ̂); θ̂) P r, ‖θ̂�θ‖1 ⩽
r(1 �α)

CL(1 +α)

� �

: w 

4.3. Estimator Consistency and 
Concentration Bounds

The estimation strategy in (E-1)–(E-9) provides a con
centration inequality of estimator θ̃τ.

Lemma 5 (Consistency and Sub-Gaussian Concentration 
Bounds). Consider the MCC model (N , r,θ) with the 
parameter space Θ. For every θ ∈Θ, the estimator θ̃τ 

defined through (E-1)–(E-9) is consistent such that θ̃τ→
p
θ 

as τ goes to ∞, where “→
p

” denotes convergence in proba
bility. Moreover, there exist constants ω,φ,ζ0 ∈ R++ inde
pendent of θ such that for all ζ ∈ (0,ζ0N),

P[‖θ̃
τ

�θ‖1 > ζ] ⩽φN2e�ωτζ
2

N7 , τ ∈ N: (4) 

The detailed proof and how to obtain (ω,φ,ζ0) are given 
in Appendix C. The main idea is to develop the follow
ing “chain of estimators” (Figure 1): 

• (E-9) indicates that the distances from the two esti
mators θ̃τ and θ̂τ to the true parameter θ satisfy

‖θ̃
τ

�θ ||1 ⩽ || θ̃
τ

� θ̂
τ

||1 + ‖θ̂
τ

�θ ||1 ⩽ 2‖θ̂
τ

�θ ||1: (5) 

• (E-1) and (E-7)–(E-8) indicate that θ̂τ is Lipschitz 
continuous w:r:t: the intermediate variables (X̂τ, Ŷτ).

• (E-4)–(E-6) indicate that the intermediate variables 
(X̂τ, Ŷτ) are Lipschitz continuous w.r.t. the estimated 
conditional choice probabilities {π̂τ(j, S | i) | i, j ∈ N +, 
S ∈ 60}.

• (E-3) indicates that the estimated conditional choice 
probabilities {π̂τ(j, S | i) | i, j ∈ N +, S ∈ 60} are Lipschitz 
continuous w:r:t: the estimated choice probabilities 
{π̂τ(i, S) | i ∈ N +, S ∈ 60 ∪ 6̃0}.

• For any fixed S ∈ 60 ∪ 6̃0, by the definition of (E-2), 
the estimated choice probabilities {π̂τ(i, S)}i∈N +

form 
an empirical distribution and thus follow the Dvoretzky– 
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Kiefer–Wolfowitz inequality (Kosorok 2006), which is a 
sub-Gaussian concentration bound. Moreover, {π̂τ(i, S) | i ∈

N +, S ∈ 60 ∪ 6̃0} are consistent.
Applying the chain rule to these estimators, θ̃τ is a 

consistent estimator of the MCC parameter θ. More
over, combining the above Lipschitz continuity proper
ties along the estimator chain, we can obtain a 
concentration inequality of θ̃τ based on that of {π̂τ(i, S) |

i ∈ N +, S ∈ 60 ∪ 6̃0}.

Remark 6 (Sampling Strategy in Exploration Phase). We 
elaborate on the rationale behind assigning the explo
ration assortments 60 ∪ 6̃0 equal weights to offer in 
Algorithm 1. Our MCC parameter estimator θ̃τ is con
structed as a highly nonlinear function of choice prob
ability estimators {π̂τ(i, S)}i∈N +, S∈60∪6̃0

; see (E-1)–(E-9), 
which first constructs a set of linear equations using 
both the MCC parameter and the choice probabilities, 
and then inverses the coefficient matrix to recover the 
MCC parameter. To obtain an accurate estimator θ̃τ 

from the exploration phase, Algorithm 1 minimizes 
the supremum error of choice probability estimators 
{π̂τ(i, S)}i∈N +, S∈60∪6̃0

. By the Dvoretzky–Kiefer–Wolfowitz 
inequality, we observe that the concentration bound of 
any choice probability estimator π̂τ(i, S) is completely 
determined by the frequency of assortment S offered 
and is independent of the true choice probability 
π(i, S); see (C.17) in Appendix C.3. This suggests that 
offering the exploration assortments with equal 
weights is as efficient as alternative sampling strate
gies that minimize the supremum error of estimators 
{π̂τ(i, S)}i∈N +, S∈60∪6̃0

.

4.4. Proof of the Performance of FastLinETC
4.4.1. Regret for the Exact Optimal Assortment. We 
prove the regret bounds in Theorem 1 and show that the 
following constants T1 and κ1 in these bounds are inde
pendent of θ ∈Θ.

κ1 :� 2rmaxµ(1 +
φN2

µ2 ) + 3ω�1
2CLN3(1 +

3N
µ

+ 2N)
1
2,

T1 :� max 2, 23
2µ�3

2, ζ�3
0 ω

�3
2N6(1 +

3N
µ

+ 2N)
3
2

� �

: (6) 

Proof. Let us define φ∗ :� φN2,ω∗ :� ωN�7,ζ∗
0 :� ζ0N 

so that (4) can be written as

P[‖θ̃
τ

�θ‖1 > ζ] ⩽φ∗e�ω∗τζ2
, ζ ∈ (0,ζ∗

0),τ ∈ N, (7) 

and we have κ1 P2rmaxµ + 2rmaxµ�1φ∗ + 3(3
µ

+ 2)
1
2ω∗�1

2CL, 
T1 P (3

µ
+ 2)

3
2ζ∗

0
�3ω∗�3

2:

Because T PT1 Pmax 2, 23
2µ�3

2

n o
, we have τ � ⌈µT2

3 log T⌉

P ‖µT
2
3
1 log T1‖P ‖2 log 2‖P2, which further indicates 

ffiffiffiffiffiffiffi
logτ
ω∗τ

q

> 0. In addition, we have
ffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log⌈µT2
3 log T⌉

ω∗‖µT2
3logT‖

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(2µT2
3 log T)

ω∗µT2
3logT

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logµT3

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log T + logµ

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log T

ω∗µT2
3 log T

+
logµ

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ω∗µT2
3
+

2
ω∗T2

3

s

⩽
3
µ

+2
� �1

2

·ω∗�1
2T�1

3 ⩽ζ∗
0:

due toT P T1 P
3
µ

+2
� �3

2

ζ∗
0
-3ω∗-3

2

 !

: (8) 

Because 
ffiffiffiffiffiffiffiffi
log τ
ω∗τ

q

∈ (0,ζ∗
0), we can plug ζ �

ffiffiffiffiffiffiffi
logτ
ω∗τ

q

into (7), 
which yields

P ‖θ̃
τ

�θ‖1 >

ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r" #

⩽φ∗τ�1: (9) 

Then the regret of policy P1 can be divided into three 
parts: (i) for t ⩽τ, the regret associated with every sin
gle customer is bounded by rmax; (ii) for t > τ such that 
‖θ̃
τ

�θ‖1 >

ffiffiffiffiffiffiffi
logτ
ω∗τ

q

, the regret associated with every sin
gle customer is also bounded by rmax; and (iii) for t > τ 

such that ‖θ̃
τ

�θ‖1 ⩽
ffiffiffiffiffiffiffi
logτ
ω∗τ

q

, the regret associated with 
every single customer is bounded by 2CL

ffiffiffiffiffiffiffi
logτ
ω∗τ

q

due to 
Lemma 4. Therefore, the regret of policy P1 is bounded by 

RegP1
(T,θ) ⩽ rmaxτ+ rmax(T � τ) ·P

"

|| θ̃
τ

�θ ||1 >

ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r #

+ 2CL

ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

(T � τ) ·P

"

|| θ̃
τ

�θ ||1⩽
ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r #

⩽ rmaxτ+ rmax(T � τ) ·φ∗τ�1

+ 2CL

ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

· (T � τ) (due to (9))

⩽ rmaxτ+ rmaxφ
∗Tτ�1 + 2CLT

ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

⩽ rmax⌈µT2
3 log T⌉ + rmaxφ

∗T⌈µT2
3 log T⌉

�1

+ 2CLT
ffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

(due to τ � ⌈µT2
3 log T⌉)

⩽ 2rmaxµT2
3 log T + rmaxφ

∗T(µT2
3 log T)

�1

+ 2CLT ·
3
µ

+ 2
� �1

2

·ω∗�1
2T�1

3 (due to (8))

⩽ 2rmaxµT2
3 log T + 2rmaxµ�1φ∗T2

3 log T

+ 2 3
µ

+ 2
� �1

2

ω∗�1
2CLT2

3

⩽
�

2rmaxµ + 2rmaxµ�1φ∗

+ 3 3
µ

+ 2
� �1

2

ω∗�1
2CL

�

T2
3 log T ⩽ κ1T2

3 log T: w 
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4.4.2. Regret for the a-Optimal Assortment. We prove 
the α-regret bound in Theorem 2 and that the following 
constants ψ, T2, and κ2 in Theorem 2 are independent of 
θ ∈Θ.

κ2 :� rmax + rmaxφN2 +
rmaxN7

ωζ′2 , ψ :�
N7

ωζ′2 ,

ζ′ :� min rα(γ� 1)

CL(1 +α)
,ζ0N

� �

,

T2 :� h(ψ) � inf{xP3 | ψlogy ⩽ y, ∀yPx}: (10) 

By definition, function h(ψ) ∈ O(ψ1+ɛ) for all ɛ > 0. Thus, 
T2 ∈ O(N7(1+ɛ)).

Proof. We first rewrite (10) into ψ � 1
ω∗ζ′2 , ζ′ � min 

rα(γ�1)

CL(1+α)
,ζ∗

0

n o
, and κ2 � rmax + rmaxφ

∗ + rmaxψ. With τ �

⌈ψ log T⌉, inequality T PT2 indicates that T Pmax{τ, 3}. 
In addition, concentration Inequality (7) indicates that for 
all τ ∈ N, we have

P[‖θ̃
τ

�θ‖1 > ζ′] ⩽φ∗e�ω∗τζ′2: (11) 

Thus, the α-regret of policy P2 can be divided into 
three parts: (i) for t ⩽τ, the α-regret associated with 
every single customer is bounded by rmax; (ii) for t > τ 
such that ‖θ̃

τ
�θ‖1 > ζ′, the α-regret associated with 

every single customer is also bounded by rmax; and 
(iii) for t > τ such that ‖θ̃τ�θ‖1 ⩽ζ′, the α-regret asso
ciated with every single customer is zero because 
‖θ̃
τ

�θ‖1 ⩽ζ′ ⩽ rα(γ�1)

CL(1+α)
; that is, θ̃τ falls into the regret- 

free region. Thereby, St � Sγα(θ̃τ)(t > τ) will be an 
α-optimal assortment under the true parameter θ 
according to Lemma 4. Thus, the α-regret of policy P2 
is bounded by

RegαP2
(T,θ) ⩽ rmaxτ+ rmax(T �τ) ·P[‖θ̃

τ
�θ‖1 > ζ′]

⩽ rmaxτ+ rmaxT ·φ∗e�ω∗τζ′2 (due to (11))

⩽rmax⌈ψ logT⌉ + rmaxT ·φ∗e�ω∗‖ψ logT‖ζ′2

⩽rmaxψ logT + rmax + rmaxT ·φ∗e�ω∗ψ logTζ′2

⩽rmaxψ logT + rmax + rmaxφ
∗T1�ω∗ψζ′2

⩽rmaxψ logT + rmax + rmaxφ
∗

�

due toψ�
1
ω∗ζ′2

�

⩽(rmaxψ+ rmax + rmaxφ
∗) logT

⩽κ2 logT: (due to T P 3): w 

5. Connection Between Suboptimality 
Gap and Subregret

In this section, we demonstrate that the use of suboptim
ality gap in explore-then-commit learning literature can 
be viewed as a special case of our α-regret analysis. Let 
∆min denote the suboptimality gap in our static MCC 

assortment selection problem:

∆min :� inf
θ∈Θ

r(S∗(θ);θ) � max
S∈6\{S∗(θ)}

r(S;θ)

� �

, 

which represents the revenue gap between the best and 
the second-best assortments across all θ. We assume (i) 
the optimal solution S∗(θ) is unique and computable for 
θ ∈Θ, and (ii) ∆min > 0, which is a common assumption 
for explore-then-commit learning literature that uses 
suboptimality gap (Sauré and Zeevi 2013, Gallego and 
Lu 2021). Then we find the following equivalence 
between the α-optimality/α-regret and the exact opti
mality/regret.

Proposition 1. By letting α � 1 � ∆min
2rmax

, any α-optimal 
assortment S is also exact optimal:

6α(θ) � {S∗(θ)}, θ ∈Θ: (12) 

For any policy P, its α-regret equals its regret:
RegαP(T,θ) � RegP(T,θ): (13) 

Proof. (12) is because for any S ∈ 6α(θ), we have 
r(S;θ)Pα · r(S∗(θ);θ)P (1 � ∆min

2rmax
) · r(S∗(θ);θ)P r(S∗(θ);θ) �

∆min ·
r(S∗(θ);θ)

2rmax
> r(S∗(θ);θ) � ∆min: because the revenue 

gap between S and S∗(θ) is smaller than ∆min, S � S∗(θ). 
Combining (12) with the definition of regret,

RegαP(T,θ) � inf
Sαt (θ)∈6α(θ), t∈T

Rα(T,θ) � RP(T,θ)

� R∗(T,θ) � RP(T,θ) � RegP(T,θ): w 

We let γ � 1
α and write S∗(θ) as Sγα(θ) with slight abuse 

of notation. Together with Theorem 2, Proposition 1
suggests that by providing γα-optimal assortment (i.e., 
the exact optimal assortment) in the exploitation phase 
and deriving an order-of- log T α-regret, we can eventu
ally bound the (normal) regret as O( logT). Formally, 
we have the following.

Proposition 2. Suppose Assumptions 1 and 2 hold. By let
ting τ � ⌈ψ log T⌉, SP � S∗(·), and policy P′

2 be defined by 
Algorithm 1, the regret associated with policy P′

2 at any 
time T PT2 is bounded as

RegP′2
(T,θ) ⩽κ2 log T, 

where ψ, κ2, and T2 are constants defined in (10) with α �

1 � ∆min
2rmax 

and γ � 1
α.

The proof is similar to that for Theorem 2 and is pro
vided in Appendix D. The regret bound in Proposition 2
matches the explore-then-commit learning literature 
that uses suboptimality gap to obtain an order-of- logT 
regret bound (Sauré and Zeevi 2013, Gallego and Lu 
2021).

Moreover, as discussed in Remark 3, the separation 
period τ and regret coefficient κ2 are both in the order of 
Õ 1

(γ�1)
2

� �
. Because of the definitions of γ and α, we have 
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τ,κ2 ∈ Õ 1
∆2

min

� �
: Then we conclude that our results, that 

is, the regret RegP′2
(T,θ) ∈ O( log T), the separation 

period τ ∈ Õ 1
∆min2

� �
, and the regret coefficient 

κ2 ∈ Õ 1
∆min2

� �
, exactly match that of Gallego and Lu 

(2021) based on assuming available suboptimality gap 
∆min.

As argued in Gallego and Lu (2021, p. 13), given that 
the suboptimality gap is often unavailable, “in practice 
we can artificially choose a small value for ∆min.” By 
doing so, any α-optimal assortment with some α >

1 � ∆min
rmax 

will be considered as good as the exact optimal 
assortment, and its associated regret will be omitted. 
This is essentially to use α-optimal solutions as a bench
mark policy and use α-regret in place of normal regret, 
whereas the exact-optimal solutions are actually com
putable and applied in the exploitation phase (i.e., 
S∗(θ̃τ) instead of Sα(θ̃τ) is provided).

6. Numerical Simulation
We conduct a numerical study of the FastLinETC algo
rithm. Section 6.1 presents the performance of our least 
square estimator for the MCC parameters. Section 6.2
investigates the performance of the proposed policy 
measured by regret.

6.1. Performance in Parameter Estimation
We use the least square (LS) estimator in Algorithm 1
and show its consistency in Lemma 5. Here we consider 
the practical performance of the least square estimator 
in a set of numerical examples. We also present the per
formance of the EM algorithm proposed in Şimşek and 
Topaloglu (2018) as a baseline. Although convergence 
analysis for an EM algorithm is challenging in general 
(Balakrishnan et al. 2017), the EM algorithm under the 
MCC model has appealing performance in various 
practical instances (Berbeglia et al. 2022).

In the experiments, we consider an MCC model with 
randomly generated parameters. We create the assort
ment collection in Assumption 1 with two arbitrary sin
gletons as S∩, S′

∩ and evenly generate samples using 
each assortment in the collection. To evaluate the esti
mation performance, we adopt the log-likelihood of 
independent out-of-sample test data as a criterion 
(Şimşek and Topaloglu 2018, Berbeglia et al. 2022). The 
test data are generated using random assortments 
where each product has a 0.5 probability to be offered 
(and we resample if the assortment contains no pro
ducts). We use 10,000 samples to evaluate the perfor
mance of each estimate. The estimators are assessed by 
the average performance in two different settings with 
n � 5 and n � 10 products, respectively. Those tests are 
repeated 30 and 15 times, respectively, and the latter 
case uses less repetition due to computational burdens.

From the experiments, we find that the LS estimator 
has advantages over the EM algorithm in computational 
time and large sample performance. The disadvantage 
of the EM algorithm is induced by its iterative structure 
and the local search heuristic nature. Because the MCC 
model is favorable among all choice models in large 
data volume situations (Berbeglia et al. 2022), the LS 
estimator’s computational advantages will be appreci
ated along with the proposed explore-then-commit 
policy.

The experiment results are shown in Table 1. It pre
sents the log-likelihood of the estimates using different 
numbers of samples. In the n � 5 case, we observe that 
the EM estimate has better performance when the sam
ple sizes are smaller (103 ~ 104 samples), whereas the LS 
estimate converges faster as the sample size increases. 
Similarly, in the n � 10 case, the EM algorithm requires 
fewer samples to achieve an acceptable (compared with 
the LS estimator with a small sample size) out-of- 
sample likelihood, but it cannot further improve as the 
sample size grows. Conversely, the LS estimator shows 
a better convergence performance.

Table 1 shows the computation time of the estimators. 
We observe that the EM algorithm requires more than 
104 times of computation time than the LS estimator in 
both n � 5 and n � 10 cases. Moreover, the computation 
time of the LS estimator is almost independent of the 
sample size, whereas the EM algorithm has increasing 
computation time as the sample size grows.

6.2. Performance in Cumulative Regret
We illustrate the performance of the FastLinETC algo
rithm regarding the problems with computable and 
uncomputable optimal assortments. In particular, for 
the computable optimal assortment case, we consider 
the unconstrained assortment optimization that can 
be solved by LP (the LP formulation in Blanchet 
et al. (2016) is provided in Appendix B.1). For the 
uncomputable optimal assortment case, we consider the 
cardinality-constrained assortment optimization prob
lem and use the approximation method in Désir et al. 
(2020) to obtain α-optimal solutions (the full description 
is provided in Appendix B.2). The two problems are 
expected to reflect the respective regret bounds in Theo
rems 1 and 2.

To begin with, we illustrate the regret bound in Theo
rem 1 through an unconstrained problem with n � 10 
products. In our experiment, we show the practical per
formance of the explore-then-commit algorithm with 
varying selling horizon T. The performance of the learn
ing algorithms is evaluated over 100 replications of ran
domly generated problem parameters. Specifically, 
each replication shares a fixed revenue vector with ri ∈

[2, 3], i ∈ N and independently generates parameters λi 
(i ∈ N ) and ρij ((i, j) ∈ N

2
\I0) using uniform distribu

tions with proper normalization. We use τ � µT2=3 with 
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constant µ > 0 to approximate the separation period in 
Theorem 1 and the selling horizon T ranging from 106 to 
108. Although Theorem 1 would be valid for any con
stant value of µ, it is natural to enhance practical perfor
mance by incorporating problem scale and the selling 
horizon T into the selection of µ. In our experiment, 
we set the value of µ as µ ≈

log(N2)

log T , which remains 
“asymptotic constant.” Given our experimental setting, 
we observed that log(N2)

log T ≈ 0:3 and therefore we consider 
three values around 0.3 for µ, namely µ � 0:15, 0:3, 0:45. 
To illustrate the efficiency of the separation scheme, we 
also implement the algorithm using µT1=2 and µT3=4 as 
the separation periods to provide performance base
lines. In Figure 2, we present the cumulative regret over 
increasing selling horizons in Figure 2, (a)–(c), and sum
marize the proportion of exploration periods of all cases 
in Figure 2(d). From Figure 2, (a)–(c), we observe that all 
three choices of separation periods can provide sub
linear cumulative regret rates, while the performance 
with τ � µT2=3 provides the smallest total regret. The 
diminishing exploration ratios in all three cases in 
Figure 2(d) validate the slow growth of the cumulative 
regret.

Next, we consider two capacity-constrained problems 
with n � 10 and n � 20 products, respectively. For each 
case, we use a fixed revenue vector with ri ∈ (0, 1), i ∈ N , 
and generate random λi (i ∈ N ) and ρij ((i, j) ∈ N

2
\I0)

using uniformly distributed nonzero entries with proper 
normalization. Because the capacity-constrained problem 
cannot be solved directly, we use an α � 0:4-optimal 

approximation method in the optimization steps in Algo
rithm 1 and obtain the optimal assortments by enumera
tion for regret computation. We set ψ � 350 and present 
the simulation results based on 100 replications in Figure 
3. Figure 3, (a) and (b), presents the average α-regret for 
the random instances with n � 10 and n � 20, respectively. 
The regret are of order-log T in both cases, as predicted in 
Theorem 2. (To better illustrate the order-of-log T rate, we 
provided rescaled plots in Appendix F.) Compared with 
the previous case, the proportion of exploration periods 
(customers) diminishes much faster as the number of 
samples increases. The exploration to selling horizon ratio 
ranges from 0.48% with T � 105 to 0.06% with T � 106. In 
all instances we considered, the final assortment pro
vided by our algorithm achieves a near-zero α-regret.

7. Conclusion
We studied the dynamic constrained assortment selec
tion problem under the MCC model and proposed the 
first online learning algorithm FastLinETC to minimize 
the cumulative regret over a selling horizon. Our results 
are particularly important because the MCC model is 
general enough to encompass the general attraction 
model (including the MNL model) and at the same time 
provides a good approximation for more advanced 
models that have no existing learning algorithms (for 
instance, the MMNL model).

A key future research direction is to develop a 
simultaneously-explore-and-exploit or learning-while- 
doing algorithm for the dynamic assortment planing 
problem under MCC model and obtain a better regret 

Table 1. Performance of LS Algorithm Against EM Algorithm for Estimating the MCC Parameters

Samples (× 103)
Number of 
products N

LS algorithm (this work) EM algorithm

Log-likelihood Runtime (s) Mean error Log-likelihood Runtime (s) Mean error

1 5 �35,134 0.001 0.980 �26,239 13.9 0.479
2 5 �24,303 0.001 0.369 �21,497 29.1 0.212
3 5 �22,368 0.001 0.261 �20,081 42.9 0.132
5 5 �20,158 0.001 0.136 �19,422 70.5 0.094
7 5 �19,246 0.001 0.084 �18,771 100.9 0.058
10 5 �19,160 0.001 0.080 �18,676 144.7 0.053
20 5 �18,324 0.001 0.032 �18,576 305.5 0.047
30 5 �18,266 0.001 0.029 �18,340 453.9 0.034
50 5 �17,940 0.001 0.011 �18,097 732.8 0.020
70 5 �17,894 0.001 0.009 �18,082 998.2 0.019
100 5 �17,863 0.001 0.007 �18,144 1,463.4 0.022
10 10 �51,086 0.022 0.533 �39,233 164.6 0.177
20 10 �45,733 0.003 0.372 �38,446 333.4 0.153
30 10 �43,199 0.002 0.296 �37,371 501.4 0.121
50 10 �39,740 0.002 0.192 �37,602 836.2 0.128
70 10 �38,333 0.003 0.150 �37,278 1,169.7 0.118
100 10 �36,305 0.002 0.089 �37,291 1,673.1 0.119
200 10 �35,104 0.005 0.053 �37,989 3,347.2 0.139
300 10 �34,308 0.005 0.029 �37,045 5,018.3 0.111
500 10 �33,921 0.008 0.018 �37,460 8,371.7 0.124
700 10 �33,736 0.015 0.012 �37,840 11,811.2 0.135
1,000 10 �33,643 0.017 0.009 �36,877 16,852.3 0.106
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bound, for example, in the order of Õ(
ffiffiffiffi
T

√
). We envision 

that the hardness of parameter estimation lies at the 
core of designing such an adaptive learning algorithm. 
Section 3.1 mentioned that a consistent parameter esti
mation for MCC model requires multiple exploration 
assortments, implying that suboptimal assortments are 
included. Remark 6 suggests equal sampling weights 
across exploration assortments. These observations 
indicate that, in an adaptive learning algorithm, the fre
quency of suboptimal assortment is proportional to the 
selling horizon length T and the total regret grows line
arly with T. On an intuitive level, an adaptive learning 
algorithm can yield a better regret bound only if (a) the 
model parameter estimator becomes more accurate as 
time goes by, whereas (b) the optimal assortment is 
assigned an increasing sampling weight as time goes by 
and this weight of optimal assortment should approach 
one; one example is the UCB algorithm for MNL model 

in Agrawal et al. (2019). For the MCC model, however, 
the goals of (a) and (b) are conflicting. Continuously 
offering the optimal assortment alone is not sufficient to 
guarantee an increasingly accurate estimator, particu
larly for transition matrix ρ.

We close this paper by pointing out two plausible 
directions for future research. First, our model assumes 
the presence of substitution effects between every pair 
of products. Consequently, we need to estimate O(N2)

parameters, which adds complexity to the design of 
learning policies. However, in practice, substitutions 
may exhibit sparsity and only occur between products 
belonging to the same subgroups, such as substitutions 
within the same brand. An interesting direction is to 
identify the substitution sparsity and use the sparsity to 
simplify the policy design and reduce policy regret. 
Second, another interesting direction is to incorporate 
the pricing or inventory planning decisions into the 

Figure 2. (Color online) Performance of Algorithm 1 in Unconstrained Revenue Maximization Problems over Increasing Selling 
Horizons 

Notes. (a) The cumulative regret in the case with µ � 0:15. (b) The cumulative regret in the case with µ � 0:3. (c) The cumulative regret in the case 
with µ � 0:45. (d) The proportion of exploration periods.
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assortment problem under the MCC model and develop 
efficient learning algorithms.
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Appendix A. Summary of Major Notation
Table A.1 summarizes the major mathematical notation 
used in the manuscript.

Appendix B. Optimization Algorithm for Static 
Assortment Optimization

B.1. Unconstrained MCC Assortment Optimization
Blanchet et al. (2016) proposed an approach using LP to 
obtain the optimal assortment for the MCC model. The 
approach considers the following LP

min
g

X

i∈N

gi

s:t: gi ≥ ri, for i ∈ N ,
gi ≥

X

j∈N

ρijgj, for i ∈ N :

(B.1) 

Figure 3. (Color online) Performance of Algorithm 1 in Constrained Revenue Maximization Problems over Increasing Selling 
Horizons 

Notes. (a) Ten products. (b) Twenty products. The solid lines represent the mean regret, and the dotted lines represent the estimated 95% confi
dence intervals for the simulation results.

Table A.1. Major Notation and Their Definitions

Notation Definition

A1, A2, : : : Assortments offered in the exploration phase
ai Attraction parameter associated with λi
ai, ai Lower and upper bounds of ai
α Optimality ratio of approximation algorithms
bij Attraction parameter associated with ρij
bij, bij Lower and upper bounds of bij
CL, (C∗

L) (Tight) Lipschitz constant of r(S,θ) w:r:t: θ
CL1 , CL2 , : : : , CL5 Tight Lipschitz constants of r(S,θ) w:r:t: five different groups of elements in θ
d, d0 Dimensions of 60 ∪ 6̃0 and 60
∆min Suboptimality gap (i.e., the revenue gap between the unique optimal solution and the other solutions)
η, (η(6)) Minimal transition probability to state 0 from any other state (outside any S ∈ 6)
γ Multiplier for optimality ratio
I0 Indices of trivial elements in MCC parameter θ
κ1, T1,κ2, T2 Constants used to construct regret bounds of P1 and P2
l, l̄ Vectors of λi with respectively i ∈ S and i ∈ N \S
λi Arrival probability to state i in the MCC model
N Total number of products
N Set of all products
n∗ Arbitrary integer outlined in Assumption 1
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With the optimal solution g∗ from (B.1), the optimal 
assortment is given by S∗ � {i : ri � g∗

i }. Two alternative 
methods for solving the unconstrained assortment optimi
zation are respectively proposed by Blanchet et al. (2016) 
and Gallego and Lu (2021).

B.2. Approximation Algorithm for Cardinality- 
Constrained MCC Assortment Optimization.
Algorithm B.1 presents the (1=2 � ɛ)-approximation algo
rithm for cardinality-constrained MCC assortment optimi
zation proposed by Désir et al. (2020). The algorithm 

selects a product per iteration and stops when the assort
ment hits the cardinality bound s. We use St to denote the 
set of selected items at step t with S0 � Ø and use Ct to 
denote the consideration set with C0 � N According to 
Désir et al. (2020), we set the tuning parameter β � 1=2.

The adjusted revenue of item i with regard to assort
ment S is defined as

rS
i �

ri �
X

j∈S
ρijrj, if i ∉ S,

0, if i ∈ S:

8
<

:
(B.2) 

Table A.1. (Continued)

Notation Definition

ω,ω∗ Constants used to construct the concentration inequality of θ̃τ

P Assortment selection policy
P, P̄ Matrices of ρij with, respectively, i ∈ N \S, j ∈ S, and i, j ∈ N \S
P1, µ Order of T2=3logT policy and its associated parameter
P2,ψ Order of logT policy and its associated parameter
φ,φ∗ Constants used to construct the concentration inequality of θ̃τ

π(i, S), π̂τ(i, S) Probability that a customer purchases product i from assortment S and its estimator
π(i, S;θ) Probability that a customer purchases product i from assortment S under parameter θ
π(j, S | i), π̂τ(j, S | i) Probability that a customer purchases product j from assortment S conditional on that the first-choice demand 

is product i, and its estimator
r Single-product revenue vector with i ∈ N +

r(S;θ) Average single-sale revenue under assortment S and parameter θ
R∗(T,θ) T-period revenue of the optimal policy under parameter θ
r Vector of ri with i ∈ S
Rα(T,θ) T-period revenue of a policy comprised of α-optimal assortments under parameter θ
rmax, (r(S)) Maximal single-product revenue (under possible assortments S)
rmin Minimal single-product revenue
RegαP(T,θ) Cumulative T-period α-regret of policy P under parameter θ
RegP(T,θ) Cumulative T-period regret of policy P under parameter θ
ρij Transition probability from state i to j in the MCC model
ri Single-product revenue of product i
RP(T,θ) T-period revenue of policy P under parameter θ
r Lower bound of the maximal single-sale revenue in the worst case of θ
S Subset of products
S Set of possible assortments
S0, S̃0 Assortments offered in the exploration phase
S∩, S′

∩ Pivot sets outlined in Assumption 1
S+ Subset of products, including the no purchase option
SP(·) Assortment function in Algorithm 1 that maps any parameter θ to an assortment
St Assortment offered in period t
S∗(θ), (S∗

t(θ)) Exact optimal assortment under parameter θ (offered in period t)
Sα(θ), (Sαt (θ)) α-Optimal assortment under parameter θ (offered in period t)
Sα(θ) Collection of α-optimal assortments under parameter θ
T Selling horizon length
t Index of period
τ Separation period
T Set of all periods
Θ Parameter space for θ
θ, θ̂τ, θ̃τ MCC parameter, estimator, and rounded estimator
θ0, θ̂τ0 MCC parameter (trivial elements) and estimator
θ++, θ̂τ++ MCC parameter (nontrivial elements) and estimator
u(i, S;θ) Average visit times to product i under assortment S and parameter θ
u, ū Vectors of u(i, S;θ) with respectively i ∈ S and i ∈ N \S
X, X̂τ Coefficient matrix constructed by π(j, S | i) to compute θ++ and its estimator
Y, Ŷτ Inhomogeneous vector constructed by π(j, S | i) to compute θ++ and its estimator
ζ′ Upper bound for a “proper” ζ, used to construct regret bounds
ζ0,ζ∗

0 Upper bound for a “proper” ζ, used to construct concentration inequality of θ̃τ

Zt, (Zt
i) Purchase decision vector of customer t (regarding product i)
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The adjusted transition probabilities with regard to assort
ment S are defined as

ρS
ij �

1, if i ∈ S, j � 0,
0, if i ∈ S, j ≠ 0,
ρij, otherwise:

8
><

>:
(B.3) 

With the adjusted transition probabilities, we use θS to 
denote the adjusted MCC parameters with regard to 
assortment S. Finally, the adjusted revenue of assortment 
S̃ with regard to S is given by

rS(S̃;θ) �
X

i∈S̃

rS
i π(i, S̃;θS): (B.4) 

Algorithm B.1 ((1=2 � ɛ)-Approximation Algorithm for 
(N , r,θ) with Cardinality Constraint s)

Compute the unconstrained optimal assortment reve
nue, r(U∗;θ), using (B.1), and set

Bj �
s
N

r(U∗;θ)(1 + ɛ)
j, j � 1, : : : , J, (B.5) 

where J � min{j ∈ N |Bj P r(U∗;θ)}.
for j ∈ {1, 2, : : : , J} do

Set t � 1, S0 � Ø, and C0 � N .
while |St�1 | < s and Ct�1 ≠ Ø do

Set Ct � i ∈ N \ St�1 |rSt�1 ( i{ };θ)Pβ
Bj
s

n o
, where 

rSt�1 ({i};θ) follows (B.4).
St � St�1 ∪ {i∗}, where i∗ � arg maxi∈Ct r

St�1
i (break

ing ties arbitrarily), where rSt�1
i

follows (B.2). Let t :� t + 1.
end while
Let Sj :� St.

end for
Return S1=2�ɛ � Sj∗ where j∗ � arg maxj∈{1, : : : , J}r(Sj;θ).

Appendix C. Proofs for Technical Results in 
Section 4

C.1. Relaxation of Assumption 2 in MCC Models
We can transform any MCC model with self-loops, that is, a 
transition matrix {ρ̂ ij}i, j∈N +

where ρ̂ ii > 0 for some i ∈ N , into 
an MCC model without self-loops by reparameterization. 
Given any arrival probability vector {λi}i∈N +

, this transition 
matrix {ρ̂ij}i, j∈N +

defines a discrete-time Markov chain 
Φ̂(t)(t ∈ N) for a customer’s process of transitioning to pre
ferred products. Here t indexes the number of transitions; the 
preferred product may not change after one transition due to 
ρ̂ ii > 0 for some i ∈ N . Φ̂(t) represents the preferred product 
after t transitions. Particularly, the customer stops and pur
chases whenever the customer’s preferred product is available 
from the offered assortment S or leave with no-purchase.

The reparametrized MCC model without self-loops can 
be defined as follows. Let n ∈ N denote the number of 
preference changes (to a different product) and Φ(n)

denote the preferred product after n changes. Then Φ(n) is 
a Markov chain embedded in Φ̂(t), whose transition 
matrix is denoted by {ρij}i, j∈N +

, and it satisfies the no self- 
loop assumption (i.e., ρii � 0, i ∈ N ). This embedded Mar
kov chain Φ(n) yields identical choice probabilities to the 
original Markov chain Φ̂(t) for any assortment S. This is 

because for any sample path of the original Markov chain 
Φ̂(n), where the customer stops (a product in S or the no- 
purchase) is the same with the corresponding sample path 
of embeded Markov chain Φ(t). Let the reparametrized 
MCC model’s transition matrix be {ρij}i, j∈N +

and arrival 
probability vector remain {λi}i∈N +

. Then the reparame
trized MCC model’s choice probabilities are identical to 
that of the original MCC model for any assortment S.

It is not hard to obtain the reparametrized transition 
matrix. Consider the ith row. If i ∈ N and ρ̂ ii > 0, we have 
ρii � 0 and ρij �

ρ̂ ij
1�ρ̂ ii 

for j ≠ i; otherwise, ρij � ρ̂ ij for j ∈ N +. 
We demonstrate this reparameterization in Example C.1.

Example C.1. Assume that the number of products is n � 2 
and the arrival probability vector {λi}i∈N +

is (0, 0:5, 0:5). 
The original transition matrix {ρ̂ij}i, j∈N +

with self-loops and 
the reparametrized transition matrix {ρij}i, j∈N +

without self- 
loops are

1 0 0
0:25 0:5 0:25
0:25 0:25 0:5

2

4

3

5 and
1 0 0

0:5 0 0:5
0:5 0:5 0

2

4

3

5, 

respectively. Using (SS-1) and (SS-2), we find that the choice 
probabilities are the same for transition matrices {ρij}i, j∈N +

and {ρ̂ ij}i, j∈N +
, given any assortment S � Ø, {1}, {2}, or 

{1, 2}: For instance, if S � {1}, then the choice probability 
vector for products 0, 1, and 2 is (0:25, 0:75, 0) under both 
transition matrices.

This example shows that an MCC model with self-loops 
has identical choice probabilities with the reparametrized 
MCC model without self-loops for any assortment S. More
over, if both models A and B have self-loops and both can be 
reparametrized into a model C without self-loops, then mod
els A and B have identical choice probabilities for any assort
ment S. As a result, the MCC model cannot be identified.

C.2. Proof of Lemma 3
We first prove (2) using the following equality in the 
supremum norm:

‖(I � P̄)
�1y‖∞ � sup

x∈D | N \S |

|x⊤(I � P̄)
�1y | , (C.1) 

where Dk :� {x ∈ Rk
+ |‖x‖1 � 1} is the collection of stochastic 

vectors in Rk(k ∈ N). To bound |x⊤(I � P̄)
�1y | for an arbi

trary x ∈ D |N \S | , we construct the following Markov chain 
with states (N \S)+ � {0} ∪ (N \S). The transition matrix is Q 
indexed by i, j ∈ (N \S)+, where Qi, j∈N \S � P̄ and Q0, j∈N \S � x⊤. 
The Markov chain transition matrix Q is uniquely specified, 
and it has a unique stationary distribution because (i) Qi0 �

1 �
P

j∈N \Sρij Pρi0 Pη(6)Pη > 0, ∀i ∈ N \S and (ii) the com
munication class that contains state 0 forms an irreducible 
Markov chain with a unique stationary distribution that 
equals the unique stationary distribution associated with 
transition matrix Q.

Let a stochastic vector (z0, z) ∈ R1+ |N \S |
+ , where z � (zi)i∈N \S, 

denote the unique stationary distribution associated with 
Q. Then, (z0, z) must satisfy the balance equations:

z0x + P̄⊤z � z, (C.2) 
X

i∈N \S
ziQi0 � z0: (C.3) 
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According to (C.2), we have x⊤(I � P̄)
�1

� z⊤=z0: Accord
ing to (C.3), we have the following lower bound for z0:

z0 P min
i∈N \S

Qi0

� �

·
X

i∈N \S
zi Pη(6) · (1 � z0) ⇒ z0 P

η(6)

1 +η(6)
:

(C.4) 
Because z is a substochastic vector, we have

|z⊤y |⩽ ‖z‖1 · ‖y‖∞ ⩽ (1 � z0)‖y‖∞: (C.5) 

Combining (C.4) and (C.5) yield

|x⊤(I � P̄)
�1y | �

|z⊤y |

z0
⩽

(1 � z0)‖y‖∞

z0
⩽

‖y‖∞

η(6)
:

Plugging this into (C.1) yields (2).
We next prove (3). (C.3) and (C.4) also indicate for all 

x ∈ D |N \S | , ‖(I � P̄⊤)
�1x‖∞ � ‖x⊤(I � P̄)

�1
‖∞ � ‖ z⊤

z0
‖∞ ⩽ 1�z0

z0
⩽ 1
η(6)

:

Therefore, for all y ∈ R |N \S |
+ , S ⊆ N , and θ ∈Θ, we have

‖(I � P̄⊤)
�1y‖∞ ⩽

‖y‖1
η(6)

, 

which is exactly (3). w

C.3. Proof of Lemma 5
We prove the results in four steps. First, we show that θ̃τ 

defines a consistent estimator. Second, we prove the Lipschitz 
continuity of θ̂τ w.r.t. (X̂τ, Ŷτ). Next, we prove a concentration 
inequality for (X̂τ, Ŷτ). Finally, we prove the concentration 
inequalities for θ̂τ and θ̃τ by combining results from Steps 2 
and 3.

C.3.1. Step 1: Consistency. According to theorem 1 in Gupta 
and Hsu (2020), given any θ ∈Θ, the following equality holds:
X

k∈N

[π(j, S |k) �π(j, S |0)] · ρik � [π(j, S | i) �π(j, S |0)],

i ∈ N \S, j ∈ S+, S ∈ 60, (C.6) 
X

k∈N

[π(j, S |k) �π(j, S |0)] ·λk � [π(j, S) �π(j, S |0)],

j ∈ S+, S ∈ 60, (C.7) 

where

π(j, S | i) :�

1 if i � j,
π(j, S) �π(j, S ∪ {i})

π(i, S ∪ {i})
if i ∈ N \S,

0 if i ∈ S+\{j}:

8
>><

>>:

(C.8) 

π(i, S) � π(i, S;θ), i ∈ N +, S ∈ 6̃0 ∪ 60: (C.9) 

Similar to the matrix formulation of (E-4)–(E-5) into (E-6), 
we can also write (C.6)–(C.7) into a matrix equation of nontri
vial parameter θ++ � vec({λi}i∈N ∪ {ρij}(i, j)∈N

2
\I0

) after plug
ging in trivial parameter θ0 � vec({ρij}(i, j)∈I0 ) ≡ 0:

{θ++ : (C:6), (C:7)}� {θ++ : Xθ++ � Y}, (C.10) 

where entries of X and Y are defined by rewriting coeffi
cients in (C.6)–(C.7) into matrices. The following result 
shows that (C.10) returns a unique solution for θ++.

Lemma C.1 (Lemma 7 and Lemma 8 from Gupta and Hsu 
2020). Consider the MCC model (N , r,θ) with parameter space Θ. 
For every θ ∈Θ, define matrices X and Y through (C.6)–(C.10). 
Then X has a full column rank, and for all θ ∈Θ, we have

θ++ � (X⊤X)
�1

(X⊤Y):

Proof. According to lemma 7 and lemma 8 in Gupta and 
Hsu (2020), the matrix X has a full column rank under 
Assumption 2. Unlike the full matrix X in Gupta and Hsu 
(2020), we have reduced nonessential parameters λ0 �

1 �
P

i∈Nλi and {ρi0 � 1 �
P

k∈Nρik}i∈N from our coefficient 
matrix X via elementary column operations, but the full 
rank property still holds. Thus, (C.10) has a unique solu
tion θ++. w

Compared with θ++ exactly satisfying all equalities in (C.6) and 
(C.7), estimators θ̂τ++ with minimal squared residuals may not sat
isfy all equalities in (E-4) and (E-5). Lemma C.1 implies that if the 
intermediate estimators X̂τ � X and Ŷτ � Y, then by definition (E- 
7), θ̂τ++ � (X̂τ

⊤

X̂τ)�1
(X̂τ

⊤

Ŷτ) � (X⊤X)
�1

(X⊤Y) � θ++. More
over, because the choice probability estimators π̂τ(i, S) (i ∈

N +, S ∈ 60 ∪ 6̃0), the conditional choice probability estimators 
π̂τ(j, S | i) (i, j ∈ N +, S ∈ 60), and the linear equation system’s 
coefficients (X̂τ, Ŷτ) are all consistent under norm ‖ · ‖∞, θ̂τ++ as 
a composite estimator is also consistent. Additionally, the triv
ial parameter estimator θ̂τ0 ≡ θ0 ≡ 0 is naturally consistent. 
Thus, estimator θ̂τ � vec(θ̂

τ
0, θ̂τ++) is consistent.

Finally, by the definition of θ̃τ in (E-9) and the distance bound 
in (5), θ̃τ is also consistent, that is, θ̃τ→

p
θ as τ goes to ∞.

C.3.2. Step 2: Lipschitz Continuity in Intermediate Estima
tors. In this section, we further develop results in Step 1 and 
show that the error of θ̃τ is Lipschitz continuous in that 
of (X̂τ, Ŷτ).

Let us first define the following constants independent 
of θ ∈Θ:

LΛ :� inf
θ∈Θ
Λmin(X⊤X), UXY :� sup

θ∈Θ

‖X⊤Y‖2,

UX :� sup
θ∈Θ

‖X‖2, UY :� sup
θ∈Θ

‖Y‖2:

Here, the matrices X and Y are defined through (C.6)–(C.10) 
and are dependent on θ. By Lemma C.1, Λmin(X⊤X) > 0 for 
all θ ∈Θ. Because Θ is compact, LΛ � infθ∈ΘΛmin(X⊤X) > 0. 
We also define Lπ as a lower bound for the choice probabilities 
{π(i, S ∪ {i}) | i ∈ N \S, S ∈ 60}, which is independent of θ ∈Θ. 
For example, because π(i, S ∪ {i})Pλi, we can let Lπ �

mini∈N infθ∈Θ λi{ } � mini∈N
ai

1+
P

k∈N
ak+(ai�ai)

: Last, let dim(M)

denote the total number of elements in a matrix M.
We have the following Lipschitz continuity result.

Lemma C.2. For the MCC model (N , r,θ) with parameter 
space Θ, define matrices X and Y through (C.6)–(C.10) with 
a fixed θ ∈Θ. There exist constants δ1 and CE independent of 
θ ∈Θ such that for every X̂ ∈ Rdim(X) and every Ŷ ∈ Rdim(Y), if 
‖(X̂, Ŷ) � (X, Y)‖2 ⩽δ1, then X̂ has a full column rank and

‖(X̂⊤X̂)
�1

(X̂⊤Ŷ) � (X⊤X)
�1

(X⊤Y)‖2 ⩽ CE‖(X̂, Ŷ) � (X, Y)‖2:
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Particularly, we can define δ1 and CE as

δ1 :� min UX , LΛ
6UX

� �

,

CE :� max 2
ffiffiffi
2

√
UY

LΛ
+

6
ffiffiffi
2

√
UXYUX

L2
Λ

, 4
ffiffiffi
2

√
UX

LΛ

( )

:

Proof. Let ∆X :� X̂ � X and ∆Y :� Ŷ � Y. We first prove 
the smallest eigenvalue perturbation:

|Λmin(X⊤X) �Λmin(X̂⊤X̂) |⩽ ‖∆X | |
2
2 + 2‖∆X ‖2‖X‖2: (C.11) 

Let “M � 0” denote that the matrix M is positive semi
definite, vec(M) denote the vectorization of M, and opera
tion M1 ◦ M2 denote trace(M⊤

1 M2) � vec(M1)
⊤vec(M2). Then 

we have

Λmin(X⊤X) � max{t ∈ R : X⊤X � tI � 0}

� min{Z ◦ (X⊤X) : trace(Z) � 1, Z � 0},

Λmin(X̂⊤X̂) � max{t ∈ R : X̂⊤X̂ � tI � 0}

� min{Z ◦ (X̂⊤X̂) : trace(Z) � 1, Z � 0}, 

where the second equality of each row is due to the duality 
of semidefinite programming. Let Z∗ � argmin{Z ◦ (X⊤X) :

trace(Z) � 1, Z � 0}. Then,

Λmin(X̂⊤X̂) � min{Z◦(X̂⊤X̂) : trace(Z) � 1,Z�0} ⩽ Z∗ ◦(X̂⊤X̂)

⩽Z∗ ◦ (X⊤X)+Z∗ ◦ (∆⊤
X X+X⊤∆X +∆⊤

X ∆X )

(due to X̂ � X+∆X )

⩽Λmin(X⊤X)+vec(Z∗)
⊤vec(∆⊤

X X+X⊤∆X +∆⊤
X ∆X )

⩽Λmin(X⊤X)+‖Z∗‖2 · (‖∆⊤
X X‖2 +‖X⊤∆X ‖2 +‖∆⊤

X ∆X ‖2)

⩽Λmin(X⊤X)+(2‖∆⊤
X X‖2 +‖∆⊤

X ∆X ‖2), (C.12) 

where the last inequality is because of ‖Z∗‖2 ⩽ 1:

‖Z∗ ||
2
2 � vec(Z∗)

⊤vec(Z∗) � trace(Z∗Z∗) � trace(diag(Z∗)diag(Z∗))

⩽trace(diag(Z∗)) ⩽ 1 (due to diag(Z∗)�0, trace(diag(Z∗))

� trace(Z∗) � 1):

(C.13) 
Similarly, we can define Ẑ∗

� argmin{Z ◦ (X̂⊤X̂) : trace(Z)

� 1, Z � 0}. Then,

Λmin(X⊤X) � min{Z◦(X⊤X) : trace(Z) � 1,Z�0} ⩽ Ẑ∗
◦ (X⊤X)

⩽Ẑ∗
◦ (X̂⊤X̂)+ Ẑ∗

◦ (�∆⊤
X X�X⊤∆X +∆⊤

X ∆X )

(due to X � X̂ �∆X )

⩽Λmin(X̂⊤X̂)+vec(Ẑ∗
)
⊤vec(�∆⊤

X X�X⊤∆X +∆⊤
X ∆X )

⩽Λmin(X̂⊤X̂)+‖Ẑ∗
‖2 · (‖∆⊤

X X‖2 +‖X⊤∆X ‖2 +‖∆⊤
X ∆X ‖2)

⩽Λmin(X̂⊤X̂)+(2‖∆⊤
X X‖2 +‖∆⊤

X ∆X ‖2), (C.14) 

where the last inequality is because of ‖Ẑ∗
‖2 ⩽ 1 with exactly 

the same reason of (C.13). Now, combining (C.12) and 
(C.14) yields (C.11):

|Λmin(X⊤X) �Λmin(X̂⊤X̂) |⩽ 2‖∆⊤
X X‖2 + ‖∆⊤

X ∆X ‖2

⩽‖∆X | |
2
2 + 2‖∆X ‖2‖X‖2:

Next, we show that X̂ has a full column rank by proving that 
X̂⊤X̂ has a positive smallest eigenvalue and thus is invertible:

Λmin{X̂⊤X̂}PΛmin{X⊤X}�‖∆X ||
2
2 �2‖∆X ‖2‖X‖2 (due to (C:11))

PLΛ�3UX ‖∆X ‖2 (due to ‖∆X ‖2 ⩽ δ1 ⩽ UX )

P
LΛ
2 : due to ‖∆X ‖2 ⩽ δ1 ⩽

LΛ
6UX

� �

Last, we prove the Lipschitz continuity in Lemma C.2. Let 
Λmax(·) represents taking the largest eigenvalue. Then we have

‖(X̂⊤X̂)
�1

(X̂⊤Ŷ) � (X⊤X)
�1

(X⊤Y)‖2

⩽ ‖(X̂⊤X̂)
�1

(X̂⊤Ŷ) � (X̂⊤X̂)
�1

(X⊤Y)‖2

+ ‖(X̂⊤X̂)
�1

(X⊤Y) � (X⊤X)
�1

(X⊤Y)‖2

⩽ ‖(X̂⊤X̂)
�1

(X̂⊤Ŷ � X⊤Y)‖2

+ ‖(X̂⊤X̂)
�1

(X⊤X � X̂⊤X̂)(X⊤X)
�1

(X⊤Y)‖2

⩽ Λmax(X̂⊤X̂)
�1

· ‖X̂⊤Ŷ � X⊤Y‖2

+Λmax(X̂⊤X̂)
�1

· ‖X⊤X � X̂⊤X̂‖2 ·Λmax(X⊤X)
�1

· ‖X⊤Y‖2

⩽ Λ�1
min(X̂⊤X̂) · ‖∆⊤

X Y + X⊤∆Y + ∆⊤
X ∆Y‖2

+Λ�1
min(X̂⊤X̂) · ‖X⊤X � X̂⊤X̂‖2 ·Λ�1

min(X⊤X) · UXY

⩽
2

LΛ
· (‖Y‖2‖∆X ‖2 + ‖X‖2‖∆Y‖2 + ‖∆X ‖2‖∆Y‖2)

+
2UXY

L2
Λ

· (‖∆X ||
2
2 + 2‖∆X ‖2‖X‖2)

⩽
2

LΛ
· (UY‖∆X ‖2 + 2UX ‖∆Y‖2) +

2UXY

L2
Λ

· (3UX ‖∆X ‖2)

⩽
2UY

LΛ
+

6UXYUX

L2
Λ

� �

· ‖∆X ‖2 +
4UX

LΛ

� �

· ‖∆Y‖2

⩽ max
(

a 2UY

LΛ
+

6UXYUX

L2
Λ

, 4UX

LΛ

)

·
ffiffiffi
2

√
‖(X̂ � X, Ŷ � Y)‖2

⩽ CE · ‖(X̂ � X, Ŷ � Y)‖2: w 

C.3.3. Step 3: Concentration Inequality of Intermediate 
Estimators. We show that the intermediate estimators 
(X̂τ, Ŷτ) are converging with the following rate.

Lemma C.3 (Intermediate Estimator Concentration). For the 
MCC model (N , r,θ) with parameter space Θ, define matrices 
X and Y through (C.6)–(C.10) with a fixed θ ∈Θ. Also define 
the intermediate estimators (X̂τ, Ŷτ) through (E-2)–(E-6). There 
exist constants ωXY , CXY ,ζXY ∈ R++ independent of θ such 
that

P[‖(X̂τ, Ŷτ) � (X, Y)‖2 > ζ] ⩽ CXY · e�ωXY ·τζ2
,

∀ζ ∈ (0,ζXY),τ ∈ N:

Particularly, ωXY , CXY , and ζXY can be defined as

CXY :� 5N2, ωXY :�
L4
π

28(n∗ + 1)N5
, ζXY :�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n∗N3

√

Lπ
:
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Our proof uses the Dvoretzky-Kiefer-Wolfowitz inequality 
for discrete distributions.

Lemma C.4 (Theorem 11.5 in Kosorok 2006). For any i.i.d. 
sample Z1, : : : , Zn with distribution F(s) and empirical distribu

tion F̂n(s) :�

Pn
i�1

1{Zi ⩽ s}

n ,

P sup
s∈R

| F̂n(s) � F(s) | > ζ

� �

⩽ 2e�2nζ2
, ∀ζ > 0, n ∈ N:

Here F(s) can be any continuous distribution or any discrete 
one with at most countable discontinuities.

Proof. Because (X̂τ, Ŷτ) (respectively (X, Y)) is composed 
by {π̂τ(i, S) | i ∈ N +, S ∈ 60 ∪ 6̃0} (respectively, {π(i, S) | i ∈ N +, 
S ∈ 60 ∪ 6̃0}), it is useful to first explore the concentration 
inequality of {π̂τ(i, S) | i ∈ N +, S ∈ 60 ∪ 6̃0}. For a fixed θ ∈Θ 
and a fixed S ∈ 60 ∪ 6̃0, the stochastic vector {π(i, S)}i∈N +

forms a discrete distribution F(s) :�
P

i∈N +
π(i, S)1{i ⩽ s}. Then, 

{π̂τ(i, S)}i∈N +
can be viewed as jump sizes in the empirical 

distribution F̂n(τ)(s) :�
P

i∈N +
1 i ⩽ s{ } ·

Pτ

t�1
1{St�S,Zt

i �1}
Pτ

t�1
1{St�S}

�
P

i∈N +
1 i ⩽ s{ }

π̂τ(i, S), where n(τ) denotes the sample size 
Pτ

t�1 1{St � S}, 
and n(τ)P ⌊τd⌋ according to Algorithm 1. Then, F̂n(τ)(s) is 
an empirical distribution formed by an i.i.d. sample of size 
n(τ) with distribution F(s). Thus, according to Lemma C.4,

P sup
s∈R

| F̂n(τ)(s) � F(s) | > ζ

� �

⩽2e�2n(τ)ζ2
, ∀ζ> 0,τ ∈N: (C.15) 

For every i ∈ N +, we have

|π̂τ(i, S) �π(i, S) | � |(F̂n(τ)(i) � F̂n(τ)(i � 1)) � (F(i) � F(i � 1)) |

⩽ | F̂n(τ)(i) � F(i) | + | F̂n(τ)(i � 1) � F(i � 1) | :

(C.16) 
Plugging (C.16) into (C.15) yields

P
�

max
i∈N +

| π̂τ(i, S) � π(i, S) | > ζ

�

� 1 � P
�

max
i∈N +

|π̂τ(i, S) � π(i, S) | ⩽ ζ
�

⩽ 1 � P sup
s∈R

| F̂n(τ)(s) � F(s) | ⩽
ζ

2

� �

⩽ 1 � [1 � 2e�n(τ)ζ
2
2 ] ⩽ 2e�n(τ)ζ

2
2

⩽ 2e�⌊τd⌋ζ
2
2 ⩽ 2e�‖ τ

N2‖ζ
2
2 , ∀ζ > 0, τ ∈ N: (C.17) 

Consider the union of the previous concentration 
inequalities across all S ∈ 60 ∪ 6̃0. We have that

P
�

max
S∈60∪6̃0

max
i∈N +

|π̂τ(i, S) �π(i, S) | > ζ

�

⩽
X

S∈60∪6̃0

P
�

max
i∈N +

| π̂τ(i, S) �π(i, S) | > ζ

�

⩽ 2N2e�⌊ τ
N2⌋ζ

2
2 , ∀ζ > 0,τ ∈ N: (C.18) 

Next, we consider the concentration inequality of 
{π̂τ(j, S | i) | i, j ∈ N +, S ∈ 60}. According to (E-3) and (C.8), 
the estimation errors occur only when i ∈ N \S. Recall that 
we have π(i, S ∪ {i})PLπ for all i ∈ N \S, S ∈ 60,θ ∈Θ. 
Then we can outline the concentration inequality when 
errors of {π̂τ(i, S) | i ∈ N +, S ∈ 60 ∪ 6̃0} are below Lπ

2 : for 
every ζ⩽ Lπ

2 , if maxS∈60∪6̃0
maxi∈N +

| π̂τ(i, S) �π(i, S) |⩽ζ, 

then for all j ∈ N +, i ∈ N \S, S ∈ 60, we have

| π̂τ(j, S | i) �π(j, S | i) |

�
π̂τ(j, S) � π̂τ(j, S ∪ {i})

π̂τ(i, S ∪ {i})
�
π(j, S) �π(j, S ∪ {i})

π(i, S ∪ {i})

�
�
�
�

�
�
�
�

⩽
π̂τ(j, S) � π̂τ(j, S ∪ {i})

π̂τ(i, S ∪ {i})
�
π̂τ(j, S) � π̂τ(j, S ∪ {i})

π(i, S ∪ {i})

�
�
�
�

�
�
�
�

+
π̂τ(j, S) � π̂τ(j, S ∪ {i})

π(i, S ∪ {i})
�
π(j, S) �π(j, S ∪ {i})

π(i, S ∪ {i})

�
�
�
�

�
�
�
�

⩽ | π̂τ(j, S) � π̂τ(j, S ∪ i{ }) | ·

�
�
�
�

1
π̂τ(i, S ∪ {i})

�
1

π(i, S ∪ {i})

�
�
�
�

+
1

π(i, S ∪ {i})

�
�
�
�

�
�
�
� · | [π̂τ(j, S) � π̂τ(j, S ∪ i{ })]

� [π(j, S) �π(j, S ∪ i{ })] |

⩽
1

π̂τ(i, S ∪ {i})
�

1
π(i, S ∪ {i})

�
�
�
�

�
�
�
�

+
1

Lπ
· | [π̂τ(j, S) �π(j, S)] � [π̂τ(j, S ∪ i{ }) �π(j, S ∪ i{ })] |

(due to π̂τ(j, S), π̂τ(j, S ∪ {i}) ∈ [0, 1];π(i, S ∪ {i}) P Lπ)

⩽
π̂τ(i, S ∪ {i}) �π(i, S ∪ {i})

π̂τ(i, S ∪ {i})π(i, S ∪ {i})

�
�
�
�

�
�
�
�

+
| π̂τ(j, S) �π(j, S) | + | π̂τ(j, S ∪ {i}) �π(j, S ∪ {i}) |

Lπ

⩽
ζ
L2
π

2

� �+
2ζ
Lπ

�

due to π̂τ(i, S ∪ i{ }) P π(i, S ∪ i{ }) � ζ

P Lπ �
Lπ
2 P

Lπ
2

�

⩽
2 + 2Lπ

L2
π

� �

ζ⩽
4

L2
π

ζ: (due to Lπ ⩽ 1)

Additionally, when i ∉N \S, | π̂τ(j, S | i) �π(j, S | i) | � 0. Thus, 
for all j, i ∈ N +, S ∈ 60, we have | π̂τ(j, S | i) �π(j, S | i) | ⩽ 4

L2
π
ζ. 

Using this property and (C.18), we have

P
�

max
S∈60

max
i, j∈N +

|π̂τ(j, S | i) �π(j, S | i) | > ζ

�

⩽P max
S∈60∪6̃0

max
i∈N +

|π̂τ(i, S) �π(i, S) | >
L2
π

4 ζ
" #

⩽ 2N2e�
L4
π

32 ⌊ τ
N2⌋ζ2

, ∀ζ ∈ 0, 2
Lπ

� �

, ∀τ ∈ N: (C.19) 

Last, recall the definition of (X̂τ, Ŷτ) via differencing 
{π̂τ(j, S | i) | i, j ∈ N +, S ∈ 60} and {π̂τ(i, S) | i ∈ N +, S ∈ 60 ∪ 6̃0} in 
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(E-4)–(E-6). We have

P[‖(X̂τ, Ŷτ) � (X, Y)‖2 > ζ]

⩽P ‖(X̂τ, Ŷτ) � (X, Y)‖∞ >
ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n∗ + 1)N3

p

" #

(due to the dimension of (X, Y))

⩽P max
S∈60

max
i, j∈N +

|π̂τ(j, S | i) �π(j, S | i) | >
ζ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n∗ + 1)N3

p

" #

+

P max
S∈60∪6̃0

max
i∈N +

| π̂τ(i, S) �π(i, S) | >
ζ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n∗ + 1)N3

p

" #

⩽ 2N2e�
L4
π

28 (n∗+1)N3⌊ τ
N2⌋ζ2

+ 2N2e� 1
24 (n∗+1)N3‖ τ

N2‖ζ2

⩽ 4N2e�
L4
π

28 (n∗+1)N3⌊ τ
N2⌋ζ2

,

∀ζ ∈ 0, 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n∗N3

√

Lπ

 !

⊂ 0, 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n∗ + 1)N3

p

Lπ

 !

, ∀τ ∈ N:

To remove the floor operation, we have

P[‖(X̂τ, Ŷτ) � (X, Y)‖2 > ζ] ⩽ 4N2e�
L4
π

28 (n∗+1)N3⌊ τ
N2⌋ζ2

⩽ 4N2e�
L4
π

28 (n∗+1)N3
τ

N2�1
� �

ζ2

⩽ 4N2e�
L4
π

28 (n∗+1)N5τζ
2+

L4
π

28 (n∗+1)N3ζ
2

⩽ 4N2e�
L4
π

28 (n∗+1)N5τζ
2+

L2
π

23 due to ζ ⩽
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n∗N3

√

Lπ

 !

⩽ 4e
L2
π
8 N2e�

L4
π

28 (n∗+1)N5τζ
2

⩽ 4e1
8N2e�

L4
π

28 (n∗+1)N5τζ
2

⩽ 5N2e�
L4
π

28 (n∗+1)N5τζ
2

, ∀ζ ∈ 0, 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n∗N3

√

Lπ

 !

, ∀τ ∈ N, 

which is exactly the concentration bound in Lemma C.3. w

C.3.4. Step 4: Concentration Inequality of Main Esti
mators. We now combine results from Steps 2 and 3 and 
develop them into a concentration inequality for θ̃τ. Recall 
Lemmas C.2 and C.3. Fix any θ ∈Θ and its corresponding 
matrices X and Y defined through (C.6)–(C.10). For all 
τ ∈ N, if ‖(X̂τ, Ŷτ) � (X, Y)‖2 ⩽ζ⩽δ1, then ‖θ̂

τ
�θ‖2 � ‖(X̂τ

⊤

X̂τ)�1 

(X̂τ
⊤

Ŷτ) � (X⊤X)
�1

(X⊤Y)‖2 ⩽ CEζ by Lemma C.2. Then, by 
Lemma C.3, for every ζ ∈ (0, min{CEδ1, CEζXY}),

P[‖θ̂
τ

�θ‖2 > ζ]⩽P ‖(X̂τ, Ŷτ) � (X,Y)‖2 >
ζ

CE

� �

⩽CXY · e
�
ωXY

C2
E

·τζ2

,

∀τ∈N:

Recall (5). We have that for every ζ ∈ (0, 2NCEmin δ1,ζXY

� �
)

� 0, 2NCEmin δ1, 4
ffiffiffiffiffiffiffiffiffi
2n∗N3

√

Lπ

n o� �
,

P[‖θ̃
τ

�θ‖1 > ζ] ⩽P ‖θ̂
τ

�θ‖1 >
ζ

2

� �

⩽P ‖θ̂
τ

�θ‖2 >
ζ

2N

� �

⩽ CXY · e
�
ωXY

4N2C2
E

·τζ2

⩽ 5N2e
�

L4
π

210 (n∗+1)C2
EN7 ·τζ2

, ∀τ ∈ N:

Then we can define let φ :� 5, ω :�
L4
π

210(n∗+1)C2
E
, and ζ0 :�

2CEmin δ1, 4
ffiffiffiffiffiffiffiffiffi
2n∗N3

√

Lπ

n o
: Then we have P[‖θ̃

τ
�θ‖1 > ζ] ⩽φN2 

e�ωN�7τζ2 , ∀ζ ∈ (0,ζ0N),τ ∈ N. This completes the proof of 
Lemma 5.

Appendix D. Proof for Proposition 2
Proof. With γ specified as 1

α, we have ζ′ � min r(1�α)

CL(1+α)
,ζ∗

0

n o
. 

The α-regret of policy P′
2 can be divided into three parts: 

(a) for t ⩽τ, the α-regret associated with every single 
customer is bounded by rmax; (b) for t > τ such that 
‖θ̃
τ

�θ‖1 > ζ′, the α-regret associated with every single 
customer is also bounded by rmax; and (c) for t > τ such 
that ‖θ̃

τ
�θ‖1 ⩽ζ′, the α-regret associated with every sin

gle customer is zero because ‖θ̃τ�θ‖1 ⩽ζ′ ⩽ r(1�α)

CL(1+α)
, that is, 

θ̃
τ falls into the regret-free region. Thereby, St � Sγα(θ̃τ) �

S∗(θ̃
τ
)(t > τ) will be an α-optimal assortment under the 

true parameter θ according to Lemma 4. Thus, the 
α-regret of policy P′

2 is bounded by

RegαP′2
(T,θ) ⩽ rmaxτ+ rmax(T � τ) ·P[‖θ̃

τ
�θ‖1 > ζ′]

⩽ rmaxτ+ rmaxT ·φ∗e�ω∗τζ′2 (due to (11))

⩽ rmax⌈ψ log T⌉ + rmaxT ·φ∗e�ω∗‖ψ log T‖ζ′2

⩽ rmaxψ log T + rmax + rmaxT ·φ∗e�ω∗ψ log Tζ′2

⩽ rmaxψ log T + rmax + rmaxφ
∗T1�ω∗ψζ′2

⩽ rmaxψ log T + rmax + rmaxφ
∗ due to ψ �

1
ω∗ζ′2

� �

⩽ (rmaxψ+ rmax + rmaxφ
∗) log T ⩽κ2 log T:

(due to T P 3):

Because of (13), we have RegP′2 (T,θ) � RegαP′2
(T,θ) ⩽ κ2 log T, 

which is exactly the result of Proposition 2. w

Appendix E. Simplified Algorithms for Unconstrained 
Model

This section discusses the unconstrained setting (i.e., 6 � 2N ) 
and show how this condition will simplify our algorithm and 
regret bounds.

We mainly modify the exploration phase, during which we 
repeatedly present the assortments in 6U :� {N } ∪ {N \{i}}i∈N . 
Each presented assortment has the cardinality of N � 1 or N. 
The number of assortments dU :� |6U | � N + 1.

Example E.1. Suppose N � {1, 2, 3, 4}. Then 6U � {{1, 2, 3, 4}, 
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, which we denote as {A0, 
A1, : : : , A4} accordingly. In the exploration phase, the algo
rithm will sequentially offer A0, A1, : : : , A4, A0, A1, : : : , A4, : : :

to customers until the separation period τ. w

At the separation period τ, θ0 is naturally estimated by

θ̂
τ
0 :� vec({ρ̂τij ≡ 0}(i, j)∈I0 ): (E.1) 

Nontrivial parameter θ++ is estimated in two steps.
Step 1: The choice probabilities are estimated by

π̂τ(i, S) :�

Pτ
t�1 1{St � S, Zt

i � 1}
Pτ

t�11{St � S}
, i ∈ N +, S ∈ 6U: (E.2) 

Step 2: The arrival and transition probabilities are esti
mated as

λ̂
τ
i :� π̂τ(i, N ), i ∈ N ;

ρ̂τij :�
π̂τ(j, N \{i}) � π̂τ(j, N )

π̂τ(i, N )
, (i, j) ∈ N

2
\I0: (E.3) 
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Step 3: Recall θ++ :� vec({λi}i∈N ∪ {ρij}(i, j)∈N
2
\I0

). θ++ is 
naturally estimated as

θ̂
τ
++ :� vec({λ̂

τ
i }i∈N ∪ {ρ̂τij}(i, j)∈N

2
\I0

): (E.4) 

Combining (E.1) and (E.4), we obtain the following 
rounded estimator θ̃τ for θ:

θ̂
τ

:� vec(θ̂
τ
0, θ̂τ++), θ̃

τ
:� argmin

θ′∈Θ

‖θ′ � θ̂
τ
‖1: (E.5) 

The modified FastLinETC under the unconstrained MCC 
model is summarized in Algorithm E.1.

Algorithm E.1 (Modified FastLinETC PU(N, T,τ) for Un
constrained MCC Model)

Input: integer τ.
Output: offered assortments {St}

T
t�1:

Phase 1. Exploration:
Define the exploration assortments 6U :� {N } ∪ {N \{i}}i∈N 

and denote them as {A0, A1, : : : , AN}.
for t ∈ {1, 2, : : : ,τ} do

Define kt :� (t � 1) mod dU, and offer St � Akt to 
customer t.
Observe the customer purchase decisions Zt � (Zt

0, Zt
1, 

: : : , Zt
N).

end for
Compute choice probability estimators π̂τ(i, S) for all i ∈

N +, S ∈ 6U via (E.2).
Compute arrival and transition probability estimators 
{λ̂
τ
i }i∈N and {ρ̂τij}(i, j)∈N

2
\I0 

via (E.3).
Compute the rounded MCC parameter estimator θ̃τ via 
(E.1), (E.4), and (E.5).
Phase 2. Exploitation:
To all remaining T � τ customers, offer S∗(θ̃

τ
).

We have the following instance-independent upper bounds 
on the policy regret associated with Algorithm E.1.

Theorem E.1 (Regret of Unconstrained Policy). Suppose 
Assumptions 1 and 2 hold and the possible assortments 6 � 2N . Let 
ν > 0 be an arbitrary constant. There exist κ3, T3 ∈ O(poly(N))

such that by letting τ � ⌈νT2
3 log T⌉ and policy P3 be defined by 

Algorithm E.1, the regret associated with policy P3 at any time 
T PT3 is bounded as

RegP3
(T,θ) ⩽κ3T2

3 log T, 

where κ3 and T3 are constants independent of the MCC parameter θ.

Proof. Because the exploitation optimality gap in Lemma 4
still holds, we only need to construct a new concentration 
inequality for θ̃τ in place of Lemma 5. We start from con
centration inequalities for {π̂τ(i, S)}i∈N + , S∈6U . Using the same 
argument for (C.18), we obtain

P
�

max
S∈6U

max
i∈N +

| π̂τ(i, S) �π(i, S) | > ζ

�

⩽
X

S∈6U

P
�

max
i∈N +

|π̂τ(i, S) �π(i, S) | > ζ

�

⩽ (N + 1) · 2e�⌊ τN+1⌋ζ
2
2 , ∀ζ > 0,τ ∈ N: (E.6) 

This indicates

P
�

max
i∈N

| λ̂
τ
i � λi | > ζ

�

⩽P max
S∈6U

max
i∈N +

| π̂τ(i, S) � π(i, S) | > ζ

� �

⩽ (N + 1) · 2e�⌊ τN+1⌋ζ
2
2 , ∀ζ > 0, τ ∈ N:

(E.7) 
Next we consider the concentration inequality of {ρ̂τij | (i, j)

∈ N
2
\I0}. We define Lλ :� infθ∈Θmini∈Nλi, which is a con

stant independent of θ ∈Θ. Recall that π(i,N ) � λi PLλ for 
all i ∈ N ,θ ∈Θ. We also define assortment Ai :� N \{i} ∈

6U, i ∈ N : Then we can outline the concentration inequality 
for ρ̂τij when errors of {π̂τ(i, S) | i ∈ N +, S ∈ 6U} are below Lλ

2 : 
for every ζ⩽ Lλ

2 , if maxS∈6U maxi∈N +
|π̂τ(i, S) �π(i, S) |⩽ζ, 

then for all (i, j) ∈ N
2
\I0, we have

| ρ̂τij � ρij | �

�
�
�
�
π̂τ(j, Ai) � π̂τ(j,N )

π̂τ(i,N )
�
π(j, Ai) �π(j,N )

π(i,N )

�
�
�
�

⩽
π̂τ(j, Ai) � π̂τ(j,N )

π̂τ(i,N )
�
π̂τ(j, Ai) � π̂τ(j,N )

π(i,N )

�
�
�
�

�
�
�
�

+

�
�
�
�
π̂τ(j, Ai) � π̂τ(j,N )

π(i,N )
�
π(j, Ai) �π(j,N )

π(i,N )

�
�
�
�

⩽ | π̂τ(j, Ai) � π̂τ(j,N ) | ·

�
�
�
�

1
π̂τ(i,N )

�
1

π(i,N )

�
�
�
�

+

�
�
�
�
[π̂τ(j, Ai) � π̂τ(j,N )] � [π(j, Ai) �π(j,N )]

π(i,N )

�
�
�
�

⩽
�
�
�
�

1
π̂τ(i,N )

�
1

π(i,N )

�
�
�
�

+
|[π̂τ(j, Ai) �π(j, Ai)] � [π̂τ(j,N ) �π(j,N )] |

Lλ

(due to π̂τ(j, Ai), π̂τ(j,N ) ∈ [0, 1];π(i,N ) P Lλ)

⩽
�
�
�
�
π̂τ(i,N ) �π(i,N )

π̂τ(i,N )π(i,N )

�
�
�
�

+
|π̂τ(j, Ai) �π(j, Ai) | + |π̂τ(j,N ) �π(j,N ) |

Lλ

⩽
ζ
L2
λ

2

� �+
2ζ
Lλ

⩽
2 + 2Lλ

L2
λ

� �

ζ⩽
4

L2
λ

ζ:

due to π̂τ(i,N ) P π(i,N ) � ζP Lλ �
Lλ
2 P

Lλ
2

� �

:

Using this property and (E.6), we have

P max
(i, j)∈N

2
\I0

| ρ̂τij � ρij | > ζ

" #

⩽P max
S∈6U

max
i∈N +

| π̂τ(i, S) � π(i, S) | >
L2
λ

4 ζ
� �

⩽ (N + 1) · 2e�
L4
λ

32⌊ τN+1⌋ζ2
, ∀ζ ∈ 0, 2

Lλ

� �

, ∀τ ∈ N:
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Combining this with (E.7), we have

P[‖θ̂
τ

� θ‖1 > ζ] ⩽P ‖θ̂
τ

� θ‖∞ >
ζ

N2

� �

(due to the dimensions of θ++,θ)

⩽P max
i∈N

| λ̂
τ
i � λi | >

ζ

N2

� �

+ P max
(i, j)∈N

2
\I0

| ρ̂τij � ρij | >
ζ

N2

" #

⩽ (N + 1) · 2e� 1
2N4⌊ τN+1⌋ζ2

+ (N + 1) · 2e�
L4
λ

32N4‖ τN+1‖ζ2

⩽ 8Ne�
L4
λ

32N4⌊ τN+1⌋ζ2
, ∀ζ ∈ 0, 2N2

Lλ

� �

, ∀τ ∈ N:

To remove the floor operation, we have

P[‖θ̂
τ

�θ‖1 >ζ]⩽8Ne�
L4
λ

32N4⌊ τN+1⌋ζ2
⩽8Ne�

L4
λ

32N4( τN+1�1)ζ2
⩽8Ne�

L4
λ

32N4
τ

N+1ζ
2+

L4
λ

32N4ζ
2

⩽8Ne
L4
λ

32N4ζ
2
·e�

L4
λ

32N4
τ

N+1ζ
2
⩽8e

L2
λ
8 Ne�

L4
λ

32N4
τ

N+1ζ
2

due to ζ<
2N2

Lλ

� �

⩽10Ne�
L4
λ

64N5τζ
2
, ∀ζ∈ 0, 2N2

Lλ

� �

, ∀τ∈N:

Therefore, we have

P[‖θ̃
τ

� θ‖1 > ζ] ⩽P ‖θ̂
τ

� θ‖1 >
ζ

2

� �

⩽ 10Ne�
L4
λ

28N5τζ
2
,

∀ζ ∈ 0, 4N2

Lλ

� �

, ∀τ ∈ N:

By letting φ :� 10,ω :�
L4
λ

28 ,ζ0 :� 4
Lλ, we have the following 

concentration inequality in place of Lemma 5: For all 
ζ ∈ (0,ζ0N2),

P[‖θ̃
τ

�θ‖1 > ζ] ⩽φNe�ωτζ
2

N5 , τ ∈ N: (E.8) 

Last, we prove the regret bounds in Theorem E.1 and 
show that the following constants T3 and κ3 in these 
bounds are independent of θ ∈Θ.

κ3 :� 2rmaxν+ 2rmaxν
�1φN + 3ω�1

2CLN2 1 +
3N
ν

+ 2N
� �1

2

,

T3 :� max 2, 23
2ν�3

2,ζ�3
0 ω

�3
2(1 +

3N
ν

+ 2N)
3
2

� �

: (E.9) 

Let us define φ∗ :� φN,ω∗ :� ωN�5,ζ∗
0 :� ζ0N2 so that 

(E.2) can be written as

P[‖θ̃
τ

�θ‖1 > ζ] ⩽φ∗e�ω∗τζ2
, ζ ∈ (0,ζ∗

0),τ ∈ N, (E.10) 

and we have κ3 P2rmaxν+ 2rmaxν�1φ∗ + 3(3
ν+ 2)

1
2ω∗�1

2CL, T3 P 

(3
ν+ 2)

3
2ζ∗

0
�3ω∗�3

2:

Because TPT3 Pmax 2, 23
2ν�3

2

n o
, we have τ � ⌈νT2

3 log T⌉

P ‖νT
2
3
3logT3‖P ‖2log2‖P2, which further indicates 

ffiffiffiffiffiffiffiffi
logτ
ω∗τ

q

> 0. 

In addition, we have
ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log⌈µT2
3 log T⌉

ω∗⌈µT2
3 log T⌉

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(2µT2
3 log T)

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logµT3

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log T + logµ

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log T

ω∗µT2
3 log T

+
logµ

ω∗µT2
3 log T

s

⩽

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ω∗µT2
3
+

2
ω∗T2

3

s

⩽
3
µ

+ 2
� �1

2

·ω∗�1
2T�1

3 ⩽ζ∗
0:

due toT P T1 P
3
µ

+ 2
� �3

2

ζ∗
0
-3ω∗-3

2

 !

:

(E.11) 
Because 

ffiffiffiffiffiffiffiffi
logτ
ω∗τ

q

∈ (0,ζ∗
0), we can plug ζ �

ffiffiffiffiffiffiffiffi
logτ
ω∗τ

q

into (E.10), 
which yields

P ‖θ̃
τ

�θ‖1 >

ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r" #

⩽φ∗τ�1: (E.12) 

Then the regret of policy P3 can be divided into three 
parts: (a) for t ⩽τ, the regret associated with every single 
customer is bounded by rmax; (b) for t > τ such that 
‖θ̃
τ

�θ‖1 >

ffiffiffiffiffiffiffiffi
logτ
ω∗τ

q

, the regret associated with every single 
customer is also bounded by rmax; and (c) for t > τ such 
that ‖θ̃

τ
�θ‖1 ⩽

ffiffiffiffiffiffiffiffi
logτ
ω∗τ

q

, the regret associated with every 
single customer is bounded by 2CL

ffiffiffiffiffiffiffiffi
logτ
ω∗τ

q

due to Lemma 4. 
Therefore, the regret of policy P3 is bounded by

RegP3
(T,θ) ⩽ rmaxτ+ rmax(T � τ) ·P ‖θ̃

τ
�θ‖1 >

ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r" #

+ 2CL

ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

(T � τ) ·P ‖θ̃
τ

�θ‖1 ⩽
ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r" #

⩽ rmaxτ+ rmax(T � τ) ·φ∗τ�1

+ 2CL

ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r

· (T � τ) (due to (E:7))

⩽ rmaxτ+ rmaxφ
∗Tτ�1 + 2CLT

ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r
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3 log T⌉ + rmaxφ

∗T⌈νT2
3 log T⌉

�1

+ 2CLT
ffiffiffiffiffiffiffiffiffiffiffi
logτ
ω∗τ

r
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3 log T⌉)
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3 log T)

�1
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3
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+ 2 3
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3 log T + 2rmaxν

�1φ∗T2
3 log T

+ 2 3
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Appendix F. Additional Plots
We change the x axes (selling horizon) in Figure 3 to log-scale. The linear trend in Figure F.1, (a) and (b), indicates that 
the cumulative regret is roughly O( log T), which is consistent with Theorem 2.
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